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Introduction

This paper deals with geometries and geometrical objects which are usually
symbolized by diagrams of the following kind:

O—@—O

FIG. 1

Such symbols occur in the literature in two different contexts; on the one hand,
they represent shadow geometries of incidence geometries in the sense of Tits, on
the other hand, they are used in connection with Wythojfs construction for
regular polytopes [7,8,9,10,11].

An example of a shadow geometry is the 'space' which is obtained from a
three-dimensional projective space in the following way: the 'points' are the lines
of the original space, there is one 'line' for each flag {point/? cz plane z} of the
original space, consisting of all 'points' / such that p <= / c z , and there are two
classes of 'planes', a 'plane' consisting of all 'points' containing a given point or
contained in a given plane of the original space. The associated diagram is of
course the second example given above. This example of a shadow geometry
generalizes to a projective n-space and any distinguished set / o c {0, ..., n — 1},
of dimensions. The 'points' are the flags (totally ordered sets of subspaces ) P of
the distinguished dimension type, and each subspace by definition comes from a
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flag F and consists of all P such that F U P is again a flag in the original projective
space. (Not all types of flags F are actually needed to produce all subspaces.) In
the case of a general incidence geometry, the definition is the same, just replacing
{0,..., n - 1} by the set of types of that geometry.

An example of a 'semiregular' polytope obtained by WythofPs construction is
the truncated cube (Fig. 2).

FIG. 2

The vertices of this figure are by definition all the transforms of some given
point under the symmetry group of the cube. The group being fixed, different
choices of the starting vertex lead to different polytopes. Combinatorially, there
are seven different choices, corresponding to the subsets of the set of 'types' of
reflecting hyperplanes. (Once a fundamental chamber of the group is fixed, this
set of types is identified with a set of generating reflections.) The seven polytopes
are the cube, the octahedron, the cubeoctahedron, the truncated cube, the
truncated octahedron, the rhombicubeoctahedron [8, p. 17], and the truncated
cubeoctahedron [8, p. 18].

The idea of Wythoffs construction is also used in the case of planar tilings, and
more generally of tilings of Euclidean n-space. An example is shown in Fig. 3.

FIG. 3

It has certainly been observed before that the combinatorial properties of the
tiling in Fig. 3 and of the truncated tube, that is, their vertices, edges and faces
and their inclusion relation, are described by shadow geometries. The incidence
geometry to start from is, of course, the set of vertices, edges, and faces of the
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regular square tiling, respectively the cube. However, it seems that the relation
between shadow geometries and Wythoff s construction had never been investig-
ated carefully and exhaustively until the recent paper [28] of G. Maxwell which
was written independently of this paper.

In the present paper, the shadow geometry associated to an incidence geometry
(more generally, to a chamber system [42]), and a distinguished set of types, is an
abstract poset which in important cases is isomorphic to the poset of subspaces of
the classical shadow geometry [41, Appendix I; 5; 32]. One of my main results
(Theorem 1.5) states that the standard geometrical realization (in the sense of
combinatorial topology) of such a poset is (more or less canonically) homeomor-
phic to the standard geometrical realization of the original incidence geometry
(that is, of its flag complex). On the other hand, it is known [16] that any pure
poset Sf can be considered as a tiling or tessellation of its standard geometrical
realization \\Sf\\ in the following way. For each s e Sf one considers the
geometrical realization ||$*|| of 5* := {/ e 5 |̂ t^s), viewed as a subset of \\Sf\\.
These 'cells' ||.s*|| are the tiles of the associated tiling, the dimension of ||5*||
being the combinatorial dimension of s in the pure poset &>. Combining my
above-mentioned result with this general construction, we see that every shadow
geometry of a given incidence geometry A (technically, A is a 'numbered
complex') can be considered as a tiling of its standard realization ||A||. More
generally, in the case of a chamber system %, one has not only the standard
realization, but also various geometrical realizations £(<#, M) depending on the
choice of a 'typical chamber' M. An appropriate subgeometry, depending on M,
of a shadow geometry 5̂  of %, can be represented by a family of 'cells' in
E(Vo, M) (which is canonical in a certain sense if one allows the orderings to be
reversed, that is, small elements in 5̂  correspond to big cells). Now a
generalization (Theorem 3.1) of the above-mentioned Theorem 1.5 says that
under certain conditions on % and M, these families of 'cells' are tilings of
£(<£, M).

In the case of a spherical or Euclidean reflection group, one can apply this
result to the Coxeter-Tits complex or chamber system of this group and thereby
obtain—at least combinatorially—the semi-regular polytopes (considered as
tilings of the sphere) and the Euclidean tilings which are known from WythofFs
construction. Thus, the relationship between shadow geometries and WythofPs
construction is clarified and is not restricted to examples any more. Indeed,
although formally and technically this paper stays inside the framework of
incidence geometries, I would rather view it as a contribution to discrete
geometry. Even in the classical cases, at least for the combinatorial side of
WythofFs construction, a new foundation is given by defining the faces of the
new objects in all dimensions and describing them in a unique fashion, whereas
the original idea applied to the vertices alone. The very first place in the literature
where a general treatment with full proofs of WythofPs construction has been
given is, to my best knowledge, the paper [28] by G. Maxwell already mentioned
above. In that work, a description of the face lattice of a Wythoff poly tope or
tessellation is given which easily shows that it is equivalent to a set of shadows as
described by Tits in [41]. Thus the face lattice is indeed a shadow geometry in our
sense. Strictly speaking, it is this result of Maxwell's which gives the full
justification to my claim that the present paper can be viewed as a generalization
of WythofFs construction.
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This paper is organized into five sections as follows. In §1, after some
preparation concerning the basic graph of an incidence geometry, the shadow
geometries of incidence geometries are introduced and the main result about the
standard geometrical realization, that is, the interpretation as tessellations, is
formulated. In the easy but important Proposition 1.7, some basic properties of
the 'separation relation' in a finite graph are collected which are fundamental for
all further developments of this paper. In § 2, I present the framework which
allows us to treat simultaneously the shadow geometries of incidence geometries
and the shadow geometries of reflection groups. To this end, I introduce shadow
geometries and geometrical realizations of chamber systems, that is, spaces which
are constructed by pasting copies of a 'fundamental cell' along its panels ('faces'
of codimension 1). In § 3, the main theorem of § 1 about shadow geometries and
tessellations is extended to the shadow geometries of chamber systems. In § 4 we
derive additional properties of these tessellations in the case of reflection groups:
the tiles are convex, all tiles are faces of the maximal tiles and intersections of
maximal tiles. Furthermore, it is shown that the geometrical realizations of the
shadow geometries of a reflection group are essentially the only tessellations on
which the group acts transitively on the maximal tiles. In § 5,1 derive the Delaney
symbols (or generalized Schlafli symbols) [16,17] of the shadow geometries of
reflection groups. This is a fairly straightforward combination of the ideas of
[16,17] with previous results of the present paper. Section 5 can be regarded as
complementary to the explicit listings of numerical parameters of semiregular
poly topes and tessellations as given in [10,11].

Sections 1,2, the first part of § 3, and § 5 are completely elementary and can in
principle be read without any particular prerequisites. In the second half of § 3
and particularly in § 4, the theory of reflection groups on, for example, Euclidean
or hyperbolic spaces [25; 2, chapitre V; 44] and the related theory of abstract
Coxeter groups [2, chapitre IV; cf. 41] is presupposed.

Acknowledgement. I am indebted to Andreas Dress for helpful suggestions and
comments.

General definitions and notation

A poset is a set X together with a partial ordering, that is, a transitive and
antisymmetric relation =s. It is called pure if any two maximal flags (totally
ordered subsets) have the same finite cardinality n + 1 (or 'length' n). This
number, n is the dimension of X. If X is pure and x e X, and x0 < xx <... < xd =
x <... <xn a maximal flag, then d, the dimension of x in X is independent of the
choice of the flag.

A simplicial complex A with vertex set X is a set of finite subsets of X such that
i 4 c B e A implies A e A, and {x} e A for all x e X. Such a A is a poset with
respect to the inclusion relation, and any poset isomorphic to such a A is also
called a simplicial complex. Therefore, we will often not distinguish between a
vertex x and the one-element set {x}. If / is any finite set, then the power set P(/)
is a simplicial complex. If A is a simplicial complex, then the (standard)
geometrical realization of A is obtained by replacing each 'abstract' simplex A
(element of A) by a 'geometrical' simplex \\A\\ in some vector space, and
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respecting inclusion. Formally:

= { E V | rxeU,rx^0, E r, = 1, {x| r,>0}eA},
={Eraa| ra >0, S ra = 1} s

If (A!", «£) is a pure poset, then the set of flags in X is a simplicial complex,
denoted by A ^ , =s). The geometrical realization \\X, =s|| is, by definition, the
geometrical realization of the flag complex.

We shall distinguish between the two notions of a ' Coxeter group' and a
'reflection group'. A Coxeter group is a pair (W, S), where W is a group, 5 a
finite generating set, and the well-known conditions of [2, chapitre IV] hold. A
reflection group is a transformation group W on some space E subject to certain
conditions which have to be specified and which imply that W, together with a
generating set coming from a 'fundamental chamber', is a Coxeter group. An
important class consists of the properly discontinuous reflection groups. Here, E is
a differentiable manifold, the 'reflections' in W are involutionary diffeomorphisms
such that the complement of the fixed point set consists of two connected
components and W operates properly discontinuously [25, Chapter III, §3].
Another important class consists of the linear reflection groups. Here, £ is a
subset of a vector space, the reflections are linear mappings with fixed point set a
hyperplane. The most important examples of spherical, Euclidean, or hyperbolic
reflection groups are properly discontinuous and can also be regarded as linear
reflection groups.

1. Shadow geometries of incidence geometries

At the beginning of this first section, an introduction to the Tits incidence
geometries [38,3], more precisely to the slightly more general 'numbered
complexes' [41; 2, chapitre IV, § 1, Exercices 15 a 24] is given. This short
presentation of well-known material had to be included because Proposition 1.1
(the 'main theorem about the basic graph') cannot be found in the literature in
the form given here.

After these generalities, the shadow geometries of a numbered complex are
introduced. There is one such geometry for each non-empty subset /0 of the type
set / of the given complex. We begin with a certain condition which in [41,
Appendix I] in the case of buildings occurs as a criterion for the inclusion of two
'shadows'. My starting point was the observation that, without any particular
assumption on the complex, this condition defines a partial ordering on certain
'reduced' simplices of the complex. These posets are the shadow geometries of
the present paper.

If one examines the construction of shadow geometries with respect to some
basic combinatorial properties of complexes and posets, one observes that certain
properties of a given complex are inherited by all its shadow geometries. It is
known that the properties in question, 'purity', 'strong connectedness', 'thinness',
'pseudomanifold' are topological invariants. Therefore one looks for a topological
'explanation' of the observation mentioned. Indeed, one main result of the
present paper states that the geometrical realization of each shadow geometry y
of a given complex A is homeomorphic to the geometrical realization of A. More
precisely, the geometrical simplicial complex ||5^|| can be considered as a
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subdivision of ||A||. This result is formulated in 1.5; in 1.6 a special case
independent of incidence geometries is emphazised; the theorem will be proved
only in § 3 below.

Proposition 1.7 collects some basic facts about the 'separation relation' in a
finite graph which are not difficult but essential for all further developments of the
present paper. This proposition deals with certain 'reduced' and certain 'closed'
vertex sets of the graph and with their relations to each other. In the applications,
this graph is the basic graph of a numbered complex, and the reduced sets have
already occurred in the definition of the shadow geometries. The utility of the
closed sets has been pointed out to me by A. Dress. He also observed that the
relation between reduced and closed sets as described in Proposition 1.7 is
already sufficient to construct a subdivision of a single simplex. This result is
included as the final Theorem 1.8 of this first section.

A numbered complex is a simplicial complex A together with a partitioning
X = (J/6/ Xi °f its vertex set X such that each maximal simplex contains precisely
one vertex of each Xt. Here, / is some finite index set which is called the type set
of A. Every simplex AeA is of the form A = {jcy| jeJ} for some Jc.1 and
Xj e Xj\ the set / is called the type of A and denoted by J = type A. An important
example is the flag complex (complex of totally ordered subsets) of a pure poset
(X, ^ ) , where / = {0,1, . . . , dimZ} and Xt = {xeX\ dimjt = i}. More gene-
rally, Xi can be the set of 'objects of type /' in an incidence geometry in the sense
of Tits. Such a geometry by definition consists of a set X, partitioned as above
and an 'incidence relation' on X such that each maximal set of pairwise incident
elements contains precisely one object in each Xt. The incidence geometries can
be identified with a subclass of the numbered complexes, a complex 'being a
geometry' if and only if each set of vertices such that any two of them form a
simplex is a simplex itself.

Following [41], we shall use the terminology of incidence geometries also for
the numbered complexes. For instance, two vertices x, y are incident if {x, y} is a
simplex, and two simplices are incident if their union is also a simplex. At some
places, for instance in the title of this section, I shall even use the term
'(incidence) geometry' for a member of the more general class of numbered
complexes.

If A is numbered with type set / and A e A, the star StA = {B e A| B ̂ A} is
numbered with type set cotype^4 : = A type A The maximal simplices are called
chambers, the simplices of codimension 1 are called panels. Two chambers
C, C are called adjacent if C D C is a panel, more precisely i-adjacent if
cotype(C flC') = i. A numbered complex A is connected if any two chambers can
be connected by a gallery, that is, a sequence of chambers which are successively
adjacent or equal. It is called strongly connected if, furthermore, the stars of all
simplices are connected.

DEFINITION. Let A be a numbered complex with type set /. The basic graph of
A has the vertex set /, and {i,j}cl is not an edge if for each A e A of cotype
{i, j}, the star St.4 is a 'generalized digon', that is, each vertex of type / in StA is
incident with each vertex of type j in StA

If A is the flag complex of a pure poset X of dimension n, then i, j e {0, ..., n}
are not connected if \i — j \ 5= 2. The basic graph of each star StA, with A e A, is a
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subgraph of the basic graph of A. That is, if iJecotypeA are connected with
respect to StA, then they are also connected with respect to A.

If some graph with vertex set / is given and J, K^I, we say that / , K are
separated from each other if there exists no path in the graph starting inside / and
ending inside K. Equivalently, the graph is the disjoint union of two subgraphs
having vertex sets / ' , K' such that / c / ' and K^K'. If L is a third vertex set,
then / and K are separated by L if J\L and K\L are separated from each other
in the subgraph induced on I\L. This means that there exist J^J and K^K
such that A / and A £ are not connected and I\L = I\JUI\K.

The following 'Main Theorem on the basic graph' is due to Tits for the case of
buildings, and has been proved for general incidence geometries by Buekenhout
in [3].

1.1. PROPOSITION. Let A be a strongly connected numbered complex and let Alt

A2, A3 be simplices of A; set Jt := typeAt. If AXUA2 and A2UA3 are simplices,
and Jx and J3 are separated by J2 in the basic graph, then Ax U A2 U A3 is a simplex.

Proof. By strong connectedness, it is sufficient to prove the claim inside St A2.
Therefore consider two simplices A, B such that, for J:=typeA, K:=typeB,
the whole type set / equals JUK, and J, K are separated from each other. We
have to show that A U B is a simplex. Set Ao = A and choose Bo and D such that
A0UBo and DUB are chambers. Connect AoUBo and D U B b y some gallery,
and write this gallery in the form

(*) (A0U Bo, AXU Bx, ..., AmU Bm = D U B),

where type J4, = / , type Bt = K for all t. Consider three consecutive chambers,

(**) V i U B M , A,UBt, At+XUBI+X,

and assume that in the first step a vertex bx such that type bxeJ and in the second
step a vertex b2 such that type b2 e K is exchanged:

A'Uax\JB'Ubx, A'Ua2UB'Ubx, A' Ua2U B' Ub2.

Considering St(A' U B') whose basic graph consists of two isolated vertices, we
see that also A' U ax U B' U b2 is a simplex. Therefore we can modify (* *) such
that the change takes place at first in K and then in / , and not conversely.
Therefore the gallery (*) can be modified in such a way that Bo =£ Bx =£... =£ Br =
Br+X = ... = Bm for some r<m. So A U B = AoU Bm = Ar U Br is a simplex, as
desired.

After this short introduction to our general framework we now come to the
various 'shadow geometries', derived from a given geometry. We first have to
repeat the following observation from [41, Appendix I]; cf. [4].

1.2. REMARK AND DEFINITION. Fix a subset Io of the vertex set I of some finite
graph. Consider, for subsets J, Kc.1, the relation

J <K <^ /0 and K are separated by J.

For each K, there exists an (obviously unique) smallest subset KTed c K such that
Kred < K, that is, KK and J <^K imply Kred c J. Vertex sets of the form Kred are
called reduced.
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Proof. By the finiteness of /, it is sufficient to show that J<K, J' <K, J c tf,
/ ' c t f imply JC\J'<K. If keK and i0, i l f . . . , iOT = fc is a path in the graph,
ioe/o, then the first it lying in / U / ' actually must lie in JOJ'. This is true
because J<J' <J.

In Proposition 1.7 below, we shall collect various properties of the function

1.3. PROPOSITION AND DEFINITION. Let A be a strongly connected numbered
complex with type set I, and let ̂  c /.

(a) On 5?(A, ̂ ) := {A € A| type A = (type i4)red} f/ie relation

A<B :€> AUBeA, typeA<type5

w a partial ordering, the so-called shadow geometry of A with respect to Io. Here,
'red' and '<' are defined as in 1.2, with respect to the basic graph of A.

(b) IfA1<A2<...<Adisaflagin 5̂ (A, Io), then AlUA2U... \JAde A.
(c) Assume furthermore that Io meets every connected component of the basic

graph. Then all maximal flags of the shadow geometry have cardinality n = \I\, and
Ax U A2 U... U An is a chamber for each maximal flag Ax <A2 <.. • < An. That is,
the chamber set of the shadow geometry can be canonically identified with the
product of the chamber set of A by the set of maximal flags of reduced type sets
(with respect to the separation relation <).

Proof. Trivially, A < A for each AeSf:= S^A, 70). If A, B e & and A < B <A,
then, in particular, type A< type B< type A, and type A and typefl have to
coincide because they are reduced. Then also A and B have to coincide, because
they are incident.

For the proof of (b), which contains the transitivity of '< ' as a special case, we
use induction on d, and we may suppose that d s*3. Let Ax,..., Ad e 5̂  be given
such that Ai<A2<... <Ad. By assumption, AXKJA2€ A, and by the
induction hypothesis, A2U (A3 U... UAd) e A. Furthermore,

type Ax ^ type A2 < type(i43 U... U Ad)

from which it easily follows that typeAt and type(y43U... UAd) are
separated by type^- Now Proposition 1.1 implies that

Ax \JA2KJ (A3 U ... UAd) G A,

as desired.
For technical reasons, the proof of (c) will only be given after Proposition 1.7.

I want to point out the following special case of Proposition 1.3. If the basic
graph of A is a 'chain', that is, I = {0, 1,..., n), i is connected withy if and only if
\i —j\ = 1, then the vertex set of A becomes a poset by setting

x^y <=> {x,y}eA, typex ^ typey,

and A is the flag complex of this poset. This means that in the case of chain basic
graphs, firstly all strongly connected numbered complexes actually 'are' incidence
geometries, and secondly all incidence geometries are posets. These two
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substatements or special cases thereof have been considered before by various
authors.

The following remark relates the definition of shadow geometries given above
to [41, Appendix I], which was the starting point of my consideration.

1.4. REMARK. The 'classical' shadow geometry of A with respect to 70 consists
of

as the set of points and the shadows

SIo(B):={AeSIo\ A<B},

where B runs through A, as the subspaces.

By Proposition 1.3 and its proof, we have

SIo{B) = Slo(Bred),

where BTed is defined by Bred c B and type Bred = (type B)red, and

Br<B2 => SIo(B1)^Sio(B2).
We say that the shadow geometry is faithful if the converse of the last implication
holds for any two Blt B2 of reduced type. In this case, the shadow geometry in
the sense of the above definition is isomorphic to the set of subspaces of the
'classical' shadow geometry, partially ordered by inclusion. A basic theorem by
Tits [41, Appendix I] states that all shadow geometries of buildings are faithful. A
new proof of this result will be given in § 4 below.

Before stating my main result about shadow geometries of numbered com-
plexes, I recall that the (standard) geometrical realization of a poset is by
definition the (standard) geometrical realization of its flag complex.

1.5. THEOREM. If A is a strongly connected numbered complex and Io a subset
of its type set I meeting each connected component of the basic graph of A, then the
geometrical realization of the shadow geometry of A with respect to Io is
canonically isomorphic to the geometrical realization of A itself.

More precisely: the mapping which associates each element A of the shadow
geometry to the bary centre of the geometrical simplex | | J 4 | | C | | A | | , extends to a
simplicial isomorphism of ||5^(A, 70)|| onto ||A||.

In view of Proposition 1.3(b) and (c), the theorem means that, starting from
the standard realization of A, one can realize the shadow geometries 5̂  of A in
such a way that each maximal geometrical simplex of A is the union of such
simplices of $f. That is, ||Sf|| can be considered as a subdivision of ||A||.

Theorem 1.5 will be a corollary of a more general result on shadow geometries
of chamber systems which will be proved in § 3 below.

1.6. SPECIAL CASE. For each non-empty subset J o / denote by pj the bary centre
of the standard simplex \\J\\ (considered as a face of \\I\\). For all flags
Jl<J2<... <Jd of reduced type sets, the point sets pJlf ..., pJd c ||/|| are affinely
independent, and \\I\\ is the disjoint union of the open simplices spanned by these
point sets.
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We illustrate the Special Case of Theorem 1.5 by the following two examples,
the first of which is directly related to the examples given in the Introduction.

EXAMPLE 1.

Graph and /0:

poset of reduced types:

subdivision of

EXAMPLE 2.

Graph and /0:

poset of reduced types:

subdivision of

FIG. 5

The figures in Examples 1 and 2 can also be considered as an illustration for the
general case of Theorem 1.5: using the numbering of any complex A over /,
identify each maximal simplex ||C||, for C e ^ , with ||/||, and subdivide each
||C|| in the same way, as indicated. Obviously, this construction can be carried
out for any /-numbered complex and any simplicial subdivision of ||/||. The
particular feature of the present construction is the fact that the new complex is
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always the geometrical realization of a poset, viz. 5 (̂A, /0). The geometric
relevance of this property will be the subject of § 4.

The following proposition collects some basic properties and technicalities
about the separation relation <. It will be used without comment throughout the
remainder of this paper.

1.7. PROPOSITION. For a finite graph with vertex set I and some distinguished
subset Io c /, the separation relation '< ' and the corresponding equivalence relation
7 <K<T on P(I) have the following properties.

(a) The equivalence class of each J c / contains a smallest set Jred.
(b) The equivalence class of each J c / contains a largest set J.
(c) The mapping J*-*J is a monotonous closure operation on P(I), that is,

J J
(d) The mappings / |->/red and J*-*J induce bijections, inverse to each other,

between the closed sets J = J and the reduced sets J = /red.
(e) / < K <?> J 3 K, for any two subsets J, K^I.
(f) IfJ=Jis closed and j e J, then J\j is closed if and only if j e /red.
(g) Jted consists of the boundary of J in the graph and ofJH Io:

/red=a/u(/n/0),
where dJ:= {j eJ\ there exists an edge {j, k} such that k$J).

(h) / / / and K are reduced and J<K, then K\KcJ\J.

Proof, (a) This is identical with 1.2.
(b) This is obviously true if we set J = {i el\ J < i}.
(c), (d), (e) These are trivial.
(f) Here / \ ; is closed if and only if ; $J\j, that is, if j and /0 are not separated

by J\j.
(g) An element / eJ is in /red if and only if there exists a path i0, ilt ..., im =j

such that i0 e /0 and i, $ J for t < m.
(h) Let Kc.J (cf. (e)). Applying (g) twice, we conclude that KHJ c.K, that

is, K\K^J\J.

Although the statements 1.7(b) to (e) are obvious once / is defined, it seems
that they have not been used in a systematic way in previous work on shadow
geometries. They demonstrate some properties of the poset of reduced sets which
are not completely obvious from the definition. For instance, it is clear by (c) that
our closed sets form a lattice with respect to inclusion. Furthermore, it is evident
by (f) that they form a pure poset of dimension |/| — 1, provided that /red =£ 0 for
all / =£ 0 , that is, provided that /0 meets each connected component of the graph.
More generally, any two closed sets / , K with K => / can be joined by a flag of
closed sets such that the cardinality decreases only by one at each step. To see
this, it is sufficient to find a k e K\J such that K\k is closed, that is, a k e Kred\J,
by 1.7(f). Such a k actually exists, for otherwise KTed^J, which implies that
K = ATredc7 = /. Some of these properties have been discussed in [4]. In a
completely different context, the relation between separation in a graph and
lattice theory is also discussed in [24].

Proof of 1.3(c). By 1.3(b) it is sufficient to show that each maximal flag of
reduced type sets has the cardinality n and the whole of / as its union. By 1.7(d)
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and (e), and taking into account that 0 = 0 , by assumption, it is sufficient to
show the following: if Jx =5/2 => ••• ^Jd is a maximal flag of closed sets, then Jt\Jt+i
consists of a single element /„ and this ;, is in (/,)red. We have already observed
that this follows from 1.7(f).

Finally, I wish to formulate a generalization of the special case 1.6 of Theorem
1.5 which will not be used in the sequel. It is due to A. Dress who also pointed
out the usefulness of the closed type sets for the study of the reduced type sets.

1.8. THEOREM. Let 1 be a finite set, and let / • -» / be a monotonous closure
operator on P(I) such that, for each J cl, there exists a smallest /red such that
JTed = J- Define, for such 'reduced' sets J = /red a partial ordering by J ^K <£>
/ 3 K. If in addition 0 = 0 , or, equivalently, {i}ted = {i} for all i e I, then all the
point sets pJx,..., pJd, where Jx <J2 <... </«/ runs through all flags of non-empty
reduced subsets of I, are affinely independent, and the standard simplex \\I\\ is the
disjoint union of the open simplices spanned by these pJx,..., pJd.

The proof uses induction on |/| and the following two facts.
(1) For 0 =£/ c /, the simplex ||/|| is a cone with vertex pj and basis the union

of all panels (faces of codimension 1) not containing py (cf. § 3 below).
(2) The restriction of one of the closure operators described in 1.8 to one of its

closed sets / = / again has the same properties, and the KKd belonging to this new
operator are the old ones.

2. Shadow geometries of chamber systems and their geometrical realizations

In the first section of this paper, we started from certain abstract simplicial
complexes whose simplices could be thought of as the 'flags' of a more or less
unspecified 'geometry'. We defined the shadow geometries of these complexes as
certain abstract posets. Then an interpretation of these shadow geometries was
given which refers to the geometrical realizations of the complexes and posets and
not to the abstract objects alone.

In the present (intermediate) section, I introduce geometrical realizations
E(%, M) of chamber systems which are constructed from an (abstract, com-
binatorial) chamber system ^ together with a 'space with panels' M. This M
serves as a typical chamber of the realization. Such spaces in particular occur in
connection with reflection groups, for instance, discrete isometry groups of a
spherical, Euclidean or hyperbolic space which are generated by reflections in
hyperplanes. Already in the hyperbolic case, the chambers can be much more
complicated than simplices, and in general, they can be prescribed more or less
arbitrarily (cf. [14,37]).

Independently of the introduction of the spaces E{%, M), I then define the
shadow geometries of a chamber system <# as certain abstract posets, again.
Finally, in Proposition 2.3(b) a certain subposet, depending on a given M, of such
a shadow geometry y is realized by a family of subsets of E = E{%, M). That is,
the partial ordering between the members of Sf is given by the inclusion of the
corresponding subsets of E. This collection of subsets of E is called the
geometrical realization in E of the shadow geometry Sf. These realizations must
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not be confused with the geometrical realizations of chamber systems (i.e. with E
itself). They have also to be distinguished from the standard geometrical
realizations of the abstract posets Sf. The relation between the realization in E
and the standard realization of some 9* is the subject of the following section, § 3.

A chamber system is a set % together with a family ~,, with i e I, of
equivalence relations on %, indexed by some finite 'type set' /. One may, in
particular, think of the set of chambers of a numbered complex or of a reflection
group, where two chambers are /-equivalent if they have the panel of cotype i in
common. Also for general chamber systems, we adopt the term i-adjacent for two
chambers which are /-equivalent but distinct.

I recall that the general theory of reflection groups is presupposed for this
paper, and I only repeat the definition of the chambers and their faces. With a
reflection group W on some space E, there is associated a family Vt of reflecting
hyperplanes of W. These are closed subspaces whose complement consists of two
connected components, and to each H e %t there belongs an involution sH e W
with fixed point set H. Now consider the following equivalence relation on the
points of E: two points are equivalent if, for each reflecting hyperplane H, they
both lie in H or both in the same open halfspace determined by H. The
topological closures of these equivalence classes are the 'faces', the maximal faces
are called chambers, and the faces of codimension 1 are called panels. Each
chamber C is a fundamental domain for W; that is, for fixed C, the mapping
w *•» wC from W into the set of chambers <£ is bijective, and from p,qeC, w e W
and wp = q it follows that p = q. The type set I = Iw can be defined independently
of the choice of a chamber as the set of W-orbits of panels. Each chamber
contains precisely one panel of each type.

In addition to a chamber system % over / we now give ourselves a space with
panels over /. This is an object (Af, Af1, i € / ) , where M is some set and the Af' are
subsets, the 'panels', of Af. For / c /, we set

MJ:=r\MJ,

and we shall occasionally call these sets the faces of M. A priori no assumptions
are made on the intersections of the M'. Later, M will be a topological space and
the Af closed subspaces, and the most important case is that Af is a compact
convex polytope and the panels are the faces of codimension 1.

The geometrical realization of % with typical chamber Af, denoted by
E{c€,M) = E(c€,~i,M,Mi,ieI) is the quotient of % x M by the coarsest
equivalence relation which, for any two /-adjacent chambers C and D, identifies
the subsets C x Ml and D x Af' of % x M in the obvious way. The projection
c€xM^>E(%M) will be written as (C,p)^>[C,p\. The equivalence relation
introduced on ̂  X Af can be described more explicitly as follows. A gallery (in
the chamber system <€) is a sequence (Co, Cx, ..., Cm\ iu ..., im) such that C, € <#,
it e I and Ct-i ~f/ C, for all t. Two chambers C and D are J-equivalent, C ~y D, for
some subset / c /, if there exists a gallery as above such that Co = C, Cm = D,
and it e / for all t. For a point p e M set

J{p):={jel\peM'}.

Using these notations, we find that the following holds for C, D e<€, p, q e Af:

[C,p] = [D,q] & p=q,C~Hp)D.
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In particular J(x) :=J(p) is well defined for all x = [C, p] e E := £(<£, M), and
every C x M is mapped injectively into E. Often, the image [C, M] of some
C x M in £ will be denoted by C, again, and called a chamber in £. The subsets

are the panels of C c E, the subsets

Cy^nC for/c/,
JeJ

are the /aces of C. We have

C = {x e C\ J(x) =>/} = [C, My].

Sometimes it is more convenient to use the faces

therefore we also introduce the notation

/(*):= A/(x), forxeE,

and call /(*) the type of JC. Accordingly, CK is said to be of type K. We have

Notice that CJ only depends on the /-equivalence class of C. Type sets / such that
MJ =£0 and thus CJ =£0 for all C are called spherical, their complements

If <# is the chamber system of a numbered complex A, Af = ||/|| c R y is the
standard simplex, and the Af1 := ||A/|| are its panels, then there is an obvious
surjective mapping from E{%, M) onto the geometrical realization ||A||, which
maps each chamber [C, M] of E{%, M) onto the geometrical simplex spanned by
C. This mapping is bijective if and only if any two chambers C, D having the face
of type A / in common are /-equivalent, that is, if A is strongly connected.

If % is the chamber system of a reflection group W on some space E' and
M c F a chamber of W, the M' its panels, then E{^>, M) can be identified with
E' by observing that the mapping % x M-+E', (wM, p)*-+wp factors bijectively
over E{%, M). This comes from the fact that the chambers containing some CJ

form one orbit under the stabilizer of CJ and therefore are precisely the chambers
/-equivalent to C. This reconstruction of E' is classical; see [25].

We have just recorded that for the chamber systems of strongly connected
complexes or of reflection groups, the isomorphism between £(<#, M) and ||A||,
respectively E', relies on the fact that in A, respectively E', all chambers
containing a fixed face of type A / are actually /-equivalent to each other. Our
next remark gives a condition under which this last property holds in spaces of the
form E{VD, M). Before formulating this precisely, we notice that, in general, a
subset si c ^ may be a /-equivalence class for more than one type set /.
Therefore, we shall always consider a /-class as a pair (M, J) where / c /, and
si c ^ is an equivalence class with respect to the relation ~j.

2.1. REMARK. Let M be non-degenerate in the sense that each non-empty MJ

contains an interior point p, that is, a point p such that J(p) = / . Then, for every
chamber system <€, every chamber C e ^ and every spherical type set / , the
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/-class of C is determined by CJ:
K, J,KczI, C,De<€ d> J = K, C~jD.

The product of two spaces with panels over Ix and /2, respectively, is a space
with panels over Ix x I2 in a natural way. It is non-degenerate if and only if both
factors are non-degenerate.

Before introducing the shadow geometries of a chamber system <# and their
realizations, we finally have to define the basic graph of %. It has the vertex set /,
and i and ; are not connected if the corresponding adjacency relations commute,
that is, if for any gallery of the form (C, D, E ; i , j), C^D^E, there exists a
chamber D' =£ C, E such that (C, D',E \j, i) is a gallery as well. If <# comes from
a reflection group, this is equivalent to the commutativity of the corresponding
generators s, and Sj. If % is the chamber system of a strongly connected numbered
complex, then the basic graph of % coincides with the basic graph of the complex.
The analogue of the 'main theorem about the basic graph', Proposition 1.1, in the
case of chamber systems is a triviality.

2.2. PROPOSITION. Let {<€, ~h is I) be a chamber system, / c / and (sd,J) a
J-class, suppose that J = / t U J2, where Jx and J2 are not connected in the basic
graph. Then every Jx-class contained in si has a non-empty intersection with every
J2-class contained in si.

We can now define the shadow geometry of a chamber system (<£, —,, i e /)
with respect to a type set /0 c /, which we shall call the 70-shadow geometry of <€,
for short:

:= {{si, I\J)\ / e / is 70-reduced in the basic graph,
si an (A/)-class}.

Furthermore, we set

{®, I\K) :<» J<K and si

where the '< ' on the right is the separation relation with respect to Io, as before.
If ^ comes from a strongly connected numbered complex A, then the

(7\7)-classes correspond bijectively to the simplices of type J by

and A UB exists if and only if <€(A) D ̂ (5)=^0, by definition. Therefore, the
present definition of S (̂<#,/()) is a translation of the definition given in § 1 for
complexes.

Following the proof of 1.2, one can easily derive from 2.2 that < is a partial
ordering on Sf{%, 70). This is also a corollary of the following proposition, taking
for M the standard simplex ||/||.

2.3. PROPOSITION. Let a chamber system % and a non-degenerate space with
panels M with common type set I be given. Fix a set of types IQ c /. For each class
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{si, 1\J) in <% consider the subset

F(si,I\J): = U
Cesi

of the geometrical realization E(Vo, M) (for J, cj. 1.7).
(a) IfJ is reduced with respect to Io and si' is a (J\J)-class contained in si, then

F(si,I\J) =
Cest1

(b) //, furthermore, (38, I\K) is an (I\K)-class, J, K are reduced with respect
to Io and J, K are cospherical, then the following is true:

F(si,I\J)^F(®,I\K) <£> (si,I\J)^(®,I\K).

Proof, (a) Let Cesi be given. Choose some Cesi'; then C—^jC. By
Proposition 1.7(g), 7\7 and J\J are not connected in the basic graph. Therefore,
there exists a chamber C" such that C~/v/-C"~jvC'. Then C" e si', and Cj=C'},
as desired.

(b) Suppose that F(38, I\K) c F(si, I\J). Choose some D e 38 and an interior
point p in M#. There exists C e d such that [D, p] e Cj. This means firstly that
p eM], that is, £ = 7(p) c / , and secondly that C~J\KD, a fortiori C~/\^D, and
therefore C e 28, so that indeed si C\ 38 =£0. Conversely, suppose that £ c j and
^ D 38 =£0. By (a), we have

F(®,I\K)= U D'k,
D'eSB'

for some (£\A>class 38' such that jtfn38'=£0. By Proposition 1.7(h),
K\K^J\J holds, and therefore 38' c .stf, and therefore

F(®,l\K)cz U #*£ U Dj = F(si,I\J).
Desi Desi

The non-empty F(sA, 1\J) described in Proposition 2.3 are sometimes called
cells, the family of all cells is called the geometrical realization of the shadow
geometry 5^(^, 70) in the space E(%, M). Strictly speaking, only a part of S ^ , 70)
which should systematically be called &(%, Io; M) is represented or realized in
E{%, M). If one identifies according to 2.1 an (7\/)-class si with the face
Cj C E{%, M), for some Cesi, then the corresponding cell F(Cj) :=F(si, I\J)
is the union of all faces of type 7 which contain Cj.

We illustrate this by the simple example of the shadow geometry,

realized in the Euclidean plane E'. The original simplicial complex is the
barycentric subdivision of the regular square tessellation, the vertices of types 0,
1, 2 are the vertices, midpoints of the edges, midpoints of the faces, respectively,
of the square tessellation. The family of cells F(si, I\J) looks as shown in Fig. 6.

The fact that the F(si, I\J) again form a 'tessellation' of E (in a precise sense,
to be defined below) is the subject of the following § 3.

So far, the typical chamber M of a space £(*#, M) has had to be just a set. In
the applications, M usually is a topological space. In this case, £(<£, M) is
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FIG. 6

equipped with the quotient topology of the product topology on ^ x M, where <£
is equipped with the discrete topology. This topology on £(<#, M) coincides with
the weak topology with respect to the chambers, each chamber being equipped
with the given topology of M via the canonical bijection. We shall always assume
that the panels M1, and therefore all the faces M,, are closed in M. Then (and
only then) all chambers are closed in £(<£, M), and the topology of a chamber
induced from £(<#, M) coincides with the original topology of the chamber. If M
is Hausdorff, then every £ ( % M) is Hausdorff, no matter what % looks like. If %
is the chamber system of a properly discontinuous reflection group on £ ' and M is
a chamber of that group, then the bijection from £(<#, M) onto £ ' given above is
a homeomorphism, by [25, Chapter III, § 3].

3. Interpreting the shadow geometries as tessellations

In the second section of this paper we started from an abstract chamber system
% and a space with panels Af, and we have constructed a space £ = £ ( % M) by
pasting copies of M according to the data given in <€. Then certain decomposi-
tions of such a space were defined, each of which was determined by a specified
subset 70 of the common type set / of % and M. These decompositions could be
regarded as geometrical realizations of certain abstract shadow geometries of <€.

In the present section I shall prove that, provided that the model chamber M is
a compact convex poly tope which is non-degenerate in the sense of §2, and
assuming a certain compatibility between M and the basic graph of <#, each of our
decompositions of £ possesses a 'barycentric subdivision'. More precisely, it is
shown that the standard geometrical realization of the abstract poset of all cells of
the decomposition can be regarded as a subdivision of the original decomposition
of £ into the chambers and their faces. The reader should notice that in the case
of polytopes, our notion of non-degenerateness coincides with the well-studied
[13,29,36] notion of a simple poly tope, that is, all vertex figures are simplices.

The following definition is due to A. Dress [16]:

DEFINITION. Let £ be a topological space and 3* a family of subsets of £. We
say that 2F admits a barycentric subdivision, or that & is a tessellation of £, if the
following conditions hold:

(a) 2F is a pure poset with respect to inclusion;
(b) there exists a homeomorphism from the standard geometrical realization

\\9, c | | of the poset & onto £ which, for every F e f , maps the
subcomplex ||F»|| := \\{G e &\ G cF}\\ onto F.
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In the case of two-dimensional manifolds, this definition agrees with the
definition generally used (except for the fact that in our definition, the
intersection of two members of & need not be connected; cf. [20]). The present
paper shows that the definition is also reasonable in higher dimensions.

Notice that the geometrical realization of (^, c ) (or any pure poset of
dimension n) has the following properties. It comes along with a filtration
||&\\d: = ||% U 9X U... U 0j,||, for d = 0,..., n, where 9d c & are the elements of
dimension d, and each ^-dimensional 'cell' \\F*\\ (Fe cFd) is a cone with basis its
boundary d ||F»|| := ||F*|| n | | ^ | | d - i= ||F*\{F}||, that is, the union of the seg-
ments qF, for q e 9 \\F*\\, which have pairwise only the vertex F in common. If
| |^ , c | | is a manifold, then the 3||F*|| are necessarily spheres, and ||^||rf+1 is
constructed from \\SF\\d by adjoining the (d + l)-cells ||F*||, where F e &d+1. So a
tessellation of a manifold is in particular a CW-complex (cf. [16,17]).

In the following main theorem of this paper and its proof, the notions 7red and 7
are relative to the basic graph of the chamber system and the distinguished type
set /0, as in § 2 and in Proposition 1.7.

3.1. THEOREM. Let (<€, ~,, iel) be a chamber system, (M, Ml, iel) a space
with panels, and 70 a non-empty subset of the type set I. The following conditions
imply that the geQmetrical realization in £(<#, M) of the I0-shadow geometry of <€
is a tessellation of £{<€, M):

(a) % is strongly connected, that is, from C~jD~KC, C, D e % J, Kc.1 it
follows that C~JC\KD;

(b) M is a compact convex poly tope, and M' are its faces of codimension 1,
and M is a non-degenerate;

(c) if] is a cospherical (with respect to M) type set, then /red is also cospherical;
or

(c') (i) Io is cospherical,

(ii) the basic graph of ^ is compatible with the spherical type sets in the
following sense: if J, K are spherical and not connected in the basic
graph, then also / U K is cospherical.

Proof. We denote by & the geometrical realization in question, this is the set
of all cells F(s&, I\J) considered in Proposition 2.3(b).

I first show that (c) follows from (c'), and I shall use in the remainder of the
proof only the conditions (a), (b), (c). The stronger condition (c') has been
included in the theorem because it subdivides the condition (c) into two parts
which can often be verified more easily. Notice that (i) is a special case of (c), and
(ii) is independent of the particular 70.

Let / be cospherical; then J is a fortiori cospherical. By Proposition 1.7(g), 7\7
and 7\/red are not connected in the basic graph. By (c') (ii), it is therefore
sufficient to show that J\Jred is spherical. But 7 n / o c / r e d , that is, / \ 7 r e d c / \ / 0 ,
and 7\/0 is spherical by the assumption (c') (ii).

The following first step of the proper proof relies on the assumption that M is
non-degenerate in the sense of § 2. This implies that dim(My) = dim(Af) — |7| for
each spherical type set 7.
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(1) / / / is cospherical and minimal among the closed cospherical type sets, then
Mjis a point and J = /red.

We first notice that the second part of the claim follows from the first. For, if
My is a point, then 7 is minimal among the cospherical type sets; on the other
hand, the subset Jred^J is also cospherical, by (c). Now assume that Mj contains
more than one point, and let Mj C\ Mk, with keK, denote the panels of Mj. Then
MjnMK = 0, that is, (I\J)UK is not spherical. This implies that K£I\JIcd.
Choose a k eKC\JTed. Then, on the one hand, 7\A: is closed, and, on the other
hand, Cj\k = Cj(~)Ck i^0, so J\k is a cospherical. This implies that J is not
minimal among the closed, cospherical type sets, which was to be shown.

(2) The closed cospherical type sets form a pure poset of dimension n =
dim(M).

All / such that Mj is a point have the same cardinality |/| — dim(M). Therefore,
(2) is an immediate consequence of (1), and the considerations following 1.7.

(3) The flags of the shadow geometry 5f(% 70) are all of the form
{Mi, A/i) , ..., (s&s, I\JS), where J1<J2<... <JS and the intersection of all s&t is
non-empty.

To prove this, let s 2s 3. Choose some C e s£x C\ si2 by assumption, and some
C ' e ^ ^ - H i s by induction. Since J\<J2<h, it follows that Jx and J3 are
separated by J2 (see the proof of 1.2). So there exist type sets JX^J\, / 3 3 / 3 such
that I\J2 = I\JiilI\J3, and A/ i and 7\/3 are not connected. Now consider the
(A/0-class % of C and the (7\/3)-class 583 of C . We have ^ £ ^ 0 4
because I\JX <=.I\JXC\I\J2, and 383c s&2n s£3n ... D s&s, because

A/3 c A/2 n A73 c (A/2) n (A/3) n... n (A/,).

Applying Proposition 2.2 to s& = s£2 gives ^ n S83 ¥= 0 , so a fortiori

The properties (2) and (3) immediately imply that $F is a pure poset, so it
satisfies Condition (a) in the definition of a tessellation. In order to prepare the
proof of (b), that is, the construction of the barycentric subdivision of SF, we
introduce a piecewise linear structure on E. For this, we verify that for any two
points x, y lying in one chamber C, SOJC = [C, p], y = [C, q], p, q eM, and for
r e U, 0 =£ r ̂  1, the definition

(l-r)x + ry:=[C,(l-r)p + rq]

makes sense. So let C be such that [C,p] = [C',p], [C,q] = [C',q]. For
0 < r < l , we obviously have J((l-r)p+ rq)=J(p)nJ(q), and the strong
connectedness of 92 indeed implies that [C, (1 — r)p + rq] = [C, (1 — r)p + rq].
Each cell F = F{s&, I\J) possesses a 'barycentre' x(F), namely the point [C, pj]
where C e si is arbitrarily chosen and ps is the barycentre of Mj.

If FQCFXCZ... <=Fd is a flag in ^ , then, by (3), there exists a chamber C c £
which contains all x(Ft). So we can consider the simplex spanned in E by all the
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x(Ft):
Z(F0,...,F,):=Z(*(F0),...,*(Fd))

and there exists a simplicial map

given by <p(F) = x(F). I shall now prove that this (p is a homeomorphism mapping
each ||F,|| onto F.

Following the remarks after the definition of a tessellation, we first show that
each F is a cone over a suitably defined 'boundary' dF. We set Ed := U 9d :=
UFeFd F(d = l,...,n), and for F e ^ d , we set

dF:=\J{Ge&\ G cF} = U(F,\{F}).

More precisely, 3F should be called the (combinatorial) ^-boundary of F. We
want to show the following:

(4) F = U {x(F)y\ yedF}, for each Fe9, and the segments x(F)y have
pairwise only the point x(F) in common. That is, each x e F has a representation
x = (1 — r)y 4- rx{F), for a unique r e [0,1] and y e dF, unique if r ̂  1.

The proof of (4) uses the fundamental property of a compact convex polytope
being a cone with vertex chosen arbitrarily from its points and with basis the
union of all panels not containing this point. In particular,

and therefore

G = \j\l(Ffi\ye\JcJ.
I jeJ J

The statement (4) is an immediate consequence once we know the following:

(5) dF

For the proof of (5), we first notice that Cj\j, for Ces&, j eJ, is contained in
F{s&', 1\J') <= F, where / ' := (/\;)red and si' is the (A/')-class containing C. So
Cj\j is indeed contained in dF. Conversely, consider some F' = F(0&, I\K)^dF,
where K is cospherical, reduced, KcJ, s4n<%=£0. Choose a (£\K>class 08'
contained in 38 and such si n 98' # 0 , that is, 9B' c jtf. By Proposition 2.3(a),

for some appropriate ; e / , as desired.
From (4) it immediately follows, by induction on d, that

F={Z(F0,Fx,...,Fd_uF)\ F0^F1^...^Fd.l^F},

that is, F = <p ||F*||, as soon as we know that F € ̂  consists of the single point
x{F), only. This follows from (1) and Proposition 2.3(a).
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In order to derive the injectivity of q>, we first show the following:

(6) IfF,Ge 9, with F£G, then FHG^dF. In particular, 9F = F n Ed.x.

For the proof, let F = F{s&, 1\J), G = F(38, I\K). Choose a point xeFDG,
so x e Cj fl DJC for some Cesd, D e 58. Notice that C,(x) = DI(x). We want to show
that x e Cj\j for an appropriate j eJ. Ifthis is not the case, then x $ O, for y e / ,
that is, / C / ( J C ) . Then J^K, so J^K, and CJ = DJ, so Desi. So altogether
F c G holds, a contradiction.

Property (6) means that, for JC e Ed\Ed_x, there is a unique F e2Fd containing
F. From this fact and (4) it follows easily, by induction on d, that q> is injective on
all \\9\\d and therefore injective on \\&\\ = \\&\\n.

We finally have to show that <p is a homeomorphism. For every chamber C, the
union Z c of all maximal simplices in | |^ | | which are mapped into C, is mapped
bijectively and therefore, being compact, homeomorphically onto C. So we only
need to know that \\&\\ has the weak topology with respect to the Zc . This is
trivial.

As a first application of Theorem 3.1, we consider the situation of Theorem
1.5. That is, % is the chamber system of a strongly connected /-numbered
complex A and M is the standard simplex ||/||. Then the chambers /-equivalent to
a fixed chamber C are precisely the chambers which contain the simplex of type
A / contained in C. Therefore, % is strongly connected in the sense of (a). The
cospherical type sets are precisely the non-empty subsets of /. So the assumption
(c) of 3.1 is fulfilled as soon as we assume that / being non-empty implies that /red

is non-empty. But this is equivalent to the assumption made in 1.5 that /0 meets
every connected component of the basic graph. So 1.5 is proved. The more
precise statement at the end of 1.5 is not formulated in 3.1, but it is easily read off
from the proof of 3.1.

The following second corollary of Theorem 3.1 is the main motivation for our
general framework of chamber systems.

3.2. COROLLARY. Let W be a fixed point free reflection group on a sphere E, or
a reflection group with compact chambers on a Euclidean or hyperbolic space E.
Let Io be a subset of the type set IofW which meets every connected component of
the Coxeter graph and such that the subgroup corresponding to I\I0 is finite. Then
the geometrical realization in E of the I0-shadow geometry of the chamber system
of W is a tessellation of E.

Proof First, remember the identification of E with the appropriate £(<#, M),
given in § 2. The chamber system of W is strongly connected, by the same reason
(with 'face' replacing 'simplex') as in the simplicial case treated above.

In the fixed point free spherical case, a chamber is a (spherical) simplex;
therefore we are in the simplicial case (Theorem 1.5). In the Euclidean case, a
compact chamber is a product of simplices; in particular, it is non-degenerate.
Also in the hyperbolic case, a chamber is a convex poly tope (regarded as space
with panels; in a suitable model it is even an ordinary poly tope). By [1, Theorem
1; cf. 44, Theorem 7], these polytopes are non-degenerate. (The reason is that
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their vertex figures are spherical polytopes with angles at most \n, and therefore
are spherical simplices.) In the Euclidean and hyperbolic cases, the spherical type
sets are precisely those for which the corresponding subgroup of W is finite.
Therefore the assumptions (c') (i) and (ii) of the Theorem 3.1 are also satisfied.
(Notice that in the Euclidean case, the cospherical type sets are precisely those
which meet every connected component of the Coxeter graph. So the two
assumptions on Io are equivalent, the assumption (c) of Theorem 3.1 obviously
holds, not using (c').)

In the hyperbolic case, the reflection groups whose chambers have finite
volume form a reasonable class, whereas it is rather limiting to restrict oneself to
compact chambers. This is indicated, for instance, by the examples and results of
[27, 26, 43, 45, 31, 46, 30, 23, 34]. The chambers of finite volume of hyperbolic
reflection groups can be compactified by adding certain 'improper vertices' or
'cusps' in such a way that they become compact convex polytopes. However, in
general these polytopes are not simple any more. For instance, in dimension 3, in
a cusp four edges may meet; this happens if the stabilizer of the cusp is a product
of two infinite dihedral groups each acting on the affine line, with diagram

o—o o—o.

Therefore, the theory developed in this paper does not directly apply to
hyperbolic reflection groups with a non-compact fundamental domain of finite
volume. We shall show in future work, in the context of tessellations of
hyperbolic space by ideal Archimedian solids, how to modify the notion of
shadow geometries in order to include those reflection groups as well.

We conclude this section with a general application of Theorem 3.1, independ-
ent of chamber systems, which may illustrate the definition of a tessellation
adopted here.

3.3. PROPOSITION. Let $Fn be a locally finite family of n-dimensional compact
convex polytopes {in some UN) and 8F^8Fn be the set of all faces of members of
SF. Suppose that F, G e 8F, F £G implies that FOG is contained in the boundary
of F. Then & is a tessellation of the union of its members.

Proof In the proof of Theorem 3.1, the construction of the bijection g> only
used the following facts: the poset & is pure of dimension n, the minimal
members of ^ a r e points, the cone property (4) holds, and the members of ^can
only meet in their combinatorial ^-boundaries (6). All these four ingredients are
trivially satisfied in our present situation. For the last one, notice that the above
assumption on the intersections F C\G implies that the ^-boundary of a member
of $F coincides with the ordinary boundary. From the local finiteness of 9>, it
easily follows that the bijection <p is actually a homeomorphism.

4. Transitive tessellations for reflection groups

In this section, some extensions of the results of § 2 and § 3 will be given in the
case of (chamber systems of) reflection groups. If W is a reflection group on some
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space E, then the shadow geometries of the chamber system of W will be called
shadow geometries of W, for simplicity, and all geometrical realizations in the
sense of § 2 will be in E. In order to illustrate what one can say in addition to the
general result that the realization of shadow geometries are tessellations
(Corollary 3.2), we come back to the examples

-O=O

which we have already used. We wish to emphasize the fact that the lower-
dimensional faces of the corresponding tessellations as described after Proposition
2.3, are precisely the faces in the sense of convexity of the maximal tiles. It is the
purpose of the first Theorem 4.1 of this section to prove this in general for the
geometrical realizations of shadow geometries of reflection groups. The com-
plementary Proposition 4.5 shows that, in a sense, the tessellations described in
Corollary 3.2 and Theorem 4.1 are the only ones with a reflection group acting
transitively on the maximal tiles. More precisely, the maximal tiles are necessarily
as in the case of geometrical realizations of shadow geometries. In the
two-dimensional Euclidean case, this result can be checked by direct inspection,
using the list of all isohedral tilings of the Euclidean plane given in [21], cf. [19,
15], and restricting this list to the groups p6m, p^m, p3ml, in the notation of [21,
12]. The correspondence is as shown in Table 1.

TABLE 1. The shadow geometries of the irreducible reflection
groups in the Euclidean plane

O—OFMO IH 77

IHS7

In this section, a reflection group is a 'linear reflection group' in the sense of
[44]. That is, £ is a subset of a vector space, W acts by restriction of linear
mappings, and the hyperplanes are ordinary linear hyperplanes. The chambers
are full intersections of half spaces. So E consists of rays with endpoint the origin,
and will often be replaced by its intersection with an appropriate hypersurface.
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The new E then has the 'right' dimension. A linear reflection group in general
does not act properly discontinuously, but it has the usual combinatorial
properties of a reflection group. This, in particular, means that the chamber
system % of W and, after the choice of a chamber M, the canonical bijection
E{%, M) -=-> E exist. Thus we can indeed apply the notions and results of § 2.
However, the canonical bijection is in general not a homeomorphism. The
spherical, Euclidean and hyperbolic reflection groups can be considered as linear
reflection groups. Here, the hypersurface is the unit sphere, a hyperplane x0 = 1
or a hyperquadric XQ-X\-... -x2

n = 1, with JCO>0, respectively. The hyper-
quadric can be transformed onto the open unit ball of the (xl, ..., jcn)-space by
dividing by x0- In addition to the groups just mentioned, the 'geometrical
representations' of abstract Coxeter groups (W, sif i e /) introduced in [39; 2,
chapitre V, § 2] form an important class of linear reflection groups. Here, the
chambers are simplices (strictly speaking, simplicial cones, see above), and the
poset of the chambers and their faces is isomorphic to the (abstract) Coxeter-Tits
complex of (W, sit i e / ) , whose simplices are by definition the cosets of
subgroups (SJ\ y e / ) , where / c / [41, Chapter 2; 2, chapitre IV, § 1, Exercices
15 a 23].

4.1. THEOREM. The geometrical realization of the shadow geometry of a
reflection group W on E with respect to a cospherical type set Io has the following
properties:

(a) the cells are convex, and the cells contained in a cell F are exactly the faces in
the sense of convexity of F;

(b) each cell is an intersection of maximal cells.

For the proof, I first give an explicit representation of an arbitrary cell as an
intersection of reflecting hyperplanes and half spaces. If C is a chamber and / a
reduced, cospherical type set, then F(C,J) denotes the cell belonging to the
(7\/)-class containing C. Recall that this is the union of all faces of type /
containing Cj. For each i e /, we denote by H,(C) the hyperplane whose
intersection with C is the panel C", and by Hf(C) and #,r(C) the closed
halfspace of Ht{C) which contains, respectively does not contain, C. The
reflection at Ht(C) is denoted by s,(C) or simply by sit and ( / ) c or (/) denotes
the subgroup of W generated by the sy, for j e / . We have the formula

) = (I\J)CJ=(J\J)CJ;

the second equality holds by Proposition 2.3(a).

4.2. LEMMA.

F(C,J)= n_H,{C)n Pi Hf{D).
ieJ\J jeJ

De(J\J)C

Proof We shall first derive the formula

() = Q Hf{D)
De{I\J)C

(which in the case where / = /0 is already the full Lemma). Given a chamber wC,
with w e (I\J), and given y e / and D = vC, v e (I\J), we have Cy = v~xwCj c
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v~lwC and CJ^Hj{C) = Hj{C)r\Hf{C) and therefore CJ£HJ(C), a fortiori
v~lwC£H~(C). Thus wC^Hj{p) and therefore wCc//+(£>), as desired.

To prove the converse inclusion we notice that the right-hand side F in (*) is a
union of full chambers. Let C be a chamber contained in F and (Co =
C, Cu ..., Cm = C) be a shortest gallery. As Fis an intersection of halfspaces, all
C, are contained in F (cf. [41, Proposition 1.10]). Assuming C £ (I\J)C, let the
index t be such that Q _ 1 c ( / \ / ) C , C , £ ( A / ) C . Now Ct.x = wC for some
w € (I\J), and the adjacent chamber C, necessarily is of the form WSjC for some
/ e /. Then / e / , for otherwise C, c (I\J)C. But syC c //~(C), so C, c HJ(wC),
contradicting the assumption C, c F.

We now prove the formula given in the lemma; the right-hand side is again
denoted by F. By (*), F(C, J) c Hf(D) for every jeJ, De (J\J). Furthermore,
each sk, with keI\J, fixes each wCj, with we(J\J), because skw = wsk.
Combining these two facts we see that F(C, J) c F.

Let, conversely, q e F be given. For each v e (I\J) and D e (J\J)C, we have
q = vq e Hf(yD). From the decomposition ( A / ) = (I\J)(J\J), it then follows
that g e Hf(D) even for all D e (I\J)C and y e / . So, by (*), q = wp for some
p e C and H> e (I\J). Write w = uv = vu, u e (I\J), v e (J\J). We now use the
length function I on XV with respect to the generating set sh for i e /. The shortest
element «' in the coset u(K), with (K) the stabilizer of p, is a fortiori contained
in ( A / ) (cf. [2, chapitre IV, § 1, Exercice 3]). Therefore we may suppose that
u = u'. Then our assumption stq = q for i e (I\J) implies that Sjiip = up, that is,
Siu(K) =u(K), and therefore /(5,M)>/(M). This can only hold for u = 1. So
stp=p for all ieI\J, that is, peCj, and furthermore q = vp e (J\J)Cj, as
desired.

We shall now describe the faces of codimension 1 of F{C, J) which are
obtained by replacing one of the halfspaces Hf{D) occurring in Lemma 4.2 by its
boundary Hj(D).

4.3. LEMMA. Let J be cospherical, reduced, and j eJ such that J\j is cospheri-
cal. Then

F{c, J) n Hj(C) = F(c, /

Proof. Notice that 7 \ ; is closed, set J, := (J\j)Ted. We use 1.7(g) and the fact
that the boundary of J\j in the basic graph consists of the points of the boundary
of J distinct from j and of the neighbours of / in J. It follows that

(J\j)\Jj = {ieJ\J\ m/y = 2}

and therefore

F{C, Jj) = ZCjy, Z={ie J\J\ m,j = 2>c.

In particular, F(C, 7y)c (J\J)Cj= F(C, J), and F(C, 7y) is fixed by sj = Sj(C),
because Z commutes with Sj. Conversely, consider a face wCK, with w e (J\J),
Kc.J, contained in F{C, J), and fixed by sy. Then

Sj\v = wv for some v e (I\K).

As in the proof of 4.2, we can assume that w is the shortest element in the coset
w(I\K). Then l(sjw) = l(wv) = l(w) + l(v), so l(v) = 1, and sy occurs in every
shortest word representing wv. But j eJ and w e (J\J), so this can only happen
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for Sj = w, and w centralizes Sj. Thus CK is fixed by sj} that is, Kc.J\j. We now
use the fact that the above group Z is the exact centralizer of Sj in (J\J). (This is
an easy consequence of theoreme 3 in [40].) Thus weZ, and WCK^ZCJXJ^

F(C, Jj), as desired.

Proof of Theorem 4.1. Each of the faces F(C, J) D Hj(D) in Lemma 4.3 has
indeed no larger codimension than 1, for it contains Cj\j. So it follows from 4.2
and 4.3 that the faces of codimension 1 of an F(C,J) are precisely the
F(D, (J\j)red), where ; is as in 4.3 and D runs through the chambers containing
Cj. By 2.3(b), these are precisely the maximal ones among the cells properly
contained in F(C, J). This proves (a).

For the proof of (b), I show that every non-maximal F{C, K), with_K=£/0, is
the intersection of two cells of the next highest dimension. Let j el\K be such
that K Uy is closed. Set / := (K U;)red, and C = sk(C). C. I claim that

F(C,K) = F(C,J)nF(C,J).

The inclusion ' c ' is trivial, because CK = C'K and therefore F{C, K) = F(C, K).
Conversely, it follows from Lemma 4.2 that F(C,J)g:Hj'(C), F^',!)^
Hf{C') = HJ{C)\ therefore the intersection F{C,J)r\F(C',J) is indeed con-
tained in Hj(C) H F(C, J) = F(C, K) (see 4.3).

The general assumption of a linear reflection group is not essential for the
Theorem 4.1. It merely has the advantage that one can speak of convexity
without comment. The two Lemmata and 4.1(b) are true for arbitrary properly
discontinuous reflection groups.

4.4. COROLLARY (Tits). The shadow geometries of buildings are faithful. That
is, for two simplices A, B of reduced type, S,0(A) c S,0(B) is equivalent to A<B.

Proof. As usual, one can verify the claim inside one apartment, so it is enough
to prove the corollary for the Coxeter-Tits complex of a Coxeter group
(W,shiel). The result immediately follows from 4.1(b), applied to the
geometrical representation of W (or, more elementarily, to the barycentric
subdivision E(W, P(I)) of the Coxeter-Tits complex).

The following final proposition of this section is a sort of converse to Corollary
3.2.

4.5. PROPOSITION. Let E be a spherical, Euclidean or hyperbolic space and W a
discrete reflection group on E whose chambers have finite volume. Each
W-invariant tessellation of E such that the tiles have finite volume and W acts
transitively on the maximal tiles has the same maximal tiles as the geometrical
realization of an appropriate shadow geometry of W.

Proof. A maximal tile of any tessellation is always the closure of its interior,
the interior is connected, and the interiors of two distinct maximal tiles are
disjoint. Therefore it is enough to show the following:
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Let F be an open connected subset of finite volume of E such that

(i) E= U wF,
weW

(ii) F(lwF^0 => F = wF, forweW.

Then F = F(p0) for an appropriate point p0, where F(p) denotes the interior of the
union of all chambers containing p.

For the proof, we first remark that a domain of the form F(p0) satisfies (ii)
and that its stabilizer WF(po) coincides with the point stabilizer WPo. (This is easy
and well known.) Therefore it is sufficient to find p0 such that F c F(p0) and
WPo<^ WF. Indeed, if q e F(p0) is arbitrary, then by (i), we can choose w such that
wq e F, so F(p0) 0 wF(p0) =£ 0 , so w € WF(D^ = WPo c WF, and so q e F.
Therefore, F(p0) c F; consequently F c F(p0) c F and therefore F = F(p0).

Consider the group VF:=(sH\ HC[F=£0) (with H running through all
reflecting hyperplanes). By (ii), VF c WF. By the assumption of finite volume, WF,
and a fortiori VF, is finite. So we can consider the mapping

/ : E-+E,

I^Fl veVF

Here, E is for the moment supposed to be Euclidean or hyperbolic. In the
hyperbolic case, the definition of f(p) makes sense in the 'linear model', that is,
the open unit ball.

We first show that the desired inclusion F c F(f(p)) holds for every p e F. It is
sufficient to know that for each hyperplane H not containing f(p), the domain F
is fully contained in the open halfspace of H containing f{p). Now H C\F = 0 ,
for otherwise sHeV and therefore sHf(p)=f(p). So F, being connected, is
contained in one open halfspace of H. This halfspace contains all vp, with v e VF,
and therefore contains/(p).

We shall now prove the desired inclusion W/(p) c WF by showing that
Wf(P) = VF for an appropriate p e F. Notice that / is an open mapping from E onto
the fixed point set E' = H {#| H H F =£ 0 } of Vp. For all points g contained in
the dense subset E"={qeE'\ q$H' for all H' such that H ' f l F = 0 } , the
stabilizer Wq is equal to VF. Now F is open, and therefore there exists indeed a
point p e F such that f(p)e E".

If E is the sphere, we have to modify the definition of / by dividing the vector
on the right-hand side by its norm. Thus, / is not defined on a certain subsphere
EF c E. One easily verifies that VF=£W (otherwise F = E). This implies that VF

has a fixed point, that is, EF ¥= E, and the domain E\EFoffis open and dense in
E. Thus, the argument given in the Euclidean and hyperbolic case still holds.

If a W-invariant tessellation of E with transitivity on the maximal tiles is given,
one can construct lots of new tessellations of that kind by subdividing the
non-maximal tiles in a W-compatible way. Therefore one cannot improve on the
fact that Proposition 4.5 only gives a conclusion about the maximal tiles.
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5. The Delaney symbols of the tessellations with a
transitive reflection group

A part of the results of the present paper can be roughly summarized by saying
that the tessellations of a spherical, Euclidean, or hyperbolic n-space together
with an action of a reflection group, transitive on the maximal tiles, are
completely characterized by specifying the Coxeter diagram of a reflection group
(with chambers of finite volume), together with a distinguished subset, belonging
to a finite subgroup. In [16], A. Dress has quite generally defined a so called
Delaney symbol (or generalized Schlafli symbol) (2>(^", G); rlf r2,..., rn) for any
pair (&, G) consisting of a tessellation & of some n-manifold and a group G of
homeomorphisms respecting 5". This symbol depends only on G and the
underlying combinatorial tessellation, that is, the poset 3'. In the case where the
poset 3" comes from a simply connected manifold, the pair (5 \ G) is determined
up to isomorphism (in the obvious sense) by (2>(^", G) ; rlt..., rn).

The first part of the symbol, the 'Delaney set' S)(^", G) is just the quotient of
the chamber system of J (that is, the chamber system of the flag complex of the
poset (J", c)) by G:

®(ST, G):=G\(€(T).

Recall from [16] or [17, 18, 19] that geometrically, the chambers (elements of
are the maximal simplices of the barycentric subdivision of ST.

EXAMPLE 1. In our standard example of the Archimedian tiling by squares and
octagons (Fig. 3), the chambers C, D, E as indicated in Fig. 7 are obviously
representatives for the action of W on <<o(̂ "). Thus, the Delaney set 2) can be
identified with {C, D, E). The chamber system structure is

where — denotes i-adjacency.

FIG. 7
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It is known [16] that the chamber system of a tessellation of a manifold is thin,
that is, for any chamber C and any dimension d e (0,. . . , n), there is a unique
chamber D which is d-adjacent to C. We denote this chamber by C. od:

~dU, C=FL> <=>. U — C.Od.

Obviously, {C. od). od=(C. od) . od if \d-d'\^2. Therefore, the chamber
system structure on <€(&) as well as on 2>(5", G) can be described by an action of
the 'universal' Coxeter group,

2(n) := (od\ d = 0, ..., n\cPd=\\ odod- — odod for \d — d'\ 2*2).

We can now define the rd which are functions from 2(ST, G) into {2,3,4,. . .}.
For C 6 1o{jP), and d e {1, ..., n}, we set

rd(C) = min{r^ 1| C. (od-Xod)
r = C}.

Geometrically, the definition of rd(c) implies that C. (od-x, od), which is the
{d - 1 , d}-class of C, has 2rd{C) elements, and in fact is an 2rd(C)-gon.
Considering more concretely the case where d = \, we can identify a {0, l}-class
with a partial flag (t2,..., tn) of elements of 3~, and the value of r, on that flag
gives the number of vertices and edges of the two-dimensional face t2. This
number depends only on the orbit G. C; therefore rd can indeed be viewed as a
function on 2>(ST, G). The rd(C) are called the ramification numbers of (3~, G).

EXAMPLE 1 (continued). For the Archimedian tiling by squares and octagons,
the ramification numbers are as follows (C, D, E are as in Fig. 7):

C D E

4 8 8

3 3 8

For the remainder of this section, we fix the following notation: W is a discrete
reflection group on spherical, Euclidean, or hyperbolic n-space E whose
chambers have finite volume; / is the type set of W and M = (ml7), ye/ the Coxeter
matrix of W. By % we denote the chamber system of W. We fix some cospherical
70c7; that is, the subgroup belonging to A/ o is finite. By Sf = &{%, 70; E) we
denote that part of the abstract shadow geometry 5^(^,/0) (see §2) that can be
realized (in the sense of 2.3) in the space E. By 2.1, this poset & can be redefined
as

5? = {Cj\ Cz%,J reduced with respect to Io, Cj * 0 }

and

Cj < DK <=> / < K, Cj U DK is contained in a chamber.

We know from 2.3(b) and 3.1 that the poset & comes from a W-equivariant
tessellation of E. Notice that Sf is combinatorial^ dual to the tessellation defined
in § 2 (the ordering is reversed in 2.3(b)), but it coincides with what has been
obtained in special cases by WythofFs construction [7, 8, 9, 10,11].

The goal of the present section is simply an explicit determination of the
Delaney symbol (2>(S ,̂ W); rx,..., rn) in terms of the Coxeter matrix M and Io.
Since, by definition, the underlying set 2>(#\ W) = W\ ^(Sf) can be identified with
those maximal simplices of the barycentric subdivision of the geometrical
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realization of &* that lie inside a fixed chamber (fundamental domain) of W, it is
clear that ®(5f, W) can be identified with the set of maximal flags of cospherical,
reduced type sets (cf. 1.3(c)). To see this concretely, recall Figs 4 and 5 of § 1.
For the determination of the rd we shall need an explicit description of the
2(n)-action on %{&) which we shall now derive.

5.1. LEMMA. Let 3)' denote the set of all injective mappings \ =
(i(0), /(I), ...,i{n- \))from {0, 1,... , n - 1} into I such that

(ii) i(t)elo, or i(t) is connected with {/(0),..., i(t- 1)} in the Coxeter graph,
for t = 0,..., n — 1,

(iii) {/(0),..., i(t)} is spherical, for all t = 0,..., n-1.

(a) There is a bijective correspondence between 2' and the set of all maximal
flags of cospherical, reduced type sets given by

where Jt = (I\{i(O),...,i(t-l)})ted.
(b) For i e 2)', there is a unique i(n)el such that {i(0),..., i{n -2), i(n)} is

spherical.

Proof. From the very first part of the proof of Theorem 3.1 we know that, if /
is cospherical, then J is cospherical itself. Therefore, we only have to describe the
flags of closed, cospherical type sets with respect to inclusion (see Proposition

If / c / is closed, then the elements j eJ such that / \ ; are closed are precisely
the elements in J D /0 and the elements connected with the complement A / . We
know this from Proposition 1.7(f) and (g). Therefore, the flags of complements of
closed, cospherical type sets are indeed the sets {/(0),..., i(t)}, where i is as
above. The cardinality of the maximal flags of this kind is n +1, by (2) in the
proof of Theorem 3.1. Thus (a) is proved.

As for (b), notice that C{'(0) <(""2)} is an edge of the chamber C, which has
precisely two vertices, namely C{l(0) l("~1)> and a vertex of the form
C{/(0) I(""2)' '(n)} for some i(n) $ {i(0),..., i(n - 1)}.

With the notation introduced in Lemma 5.1, we are now able to describe the
chamber system of our specified shadow geometry Sf of W explicitly. For this
purpose, we set

2> = {i: {0, . . . ,n}->/ | (i(0),..., i(n-l))e2', /(n) is as in 5.1(b)}.

For ie3) or, more generally, for any i: {0, . . . ,n}-»/ , we denote by i ' : =
(i(0),..., i(n — 1)) its restriction to {0,..., n — 1}.

In the following proposition, (d — 1, d) denotes the transposition of d — 1, d,
and for C e ^ and / e /, the unique chamber /-adjacent to C is denoted by C. /.

5.2. PROPOSITION. There is a canonical bijection from the set <€ x 3) onto the set
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of all maximal flags in Sf, as follows: to C e% and i e 3) we associate the flag

where Jt = (I\{i(0),..., i(t — l)})ied. Under this bijection, the X(n)-action on the
thin chamber system ^{Sf) corresponds to the action given by

(C,i).ao = (C.i(0),i),

K^'l)' d
, i ° (d- l , d)) ifi°(d-l,d)e@,

for d = \,..., n, d^n — 1,

where i is the unique element in 2 such that i' = i' ° (n — 2, n — 1).

Proof From statement (3) in the proof of Theorem 3.1 we know that our map
<# x 2—>• 2{3>) is surjective.

To prove the injectivity, it is sufficient to show the uniqueness of C, for a given
maximal flag (C/o, ..., CJn). Let D be another chamber such that CJt = DJt for all t.
We know from statement (1) in the proof of Theorem 3.1 that /„ is closed, that is,
Jn=I\{i(0), . . . , / ( n - l ) } . Furthermore, i(t)eJt, for i = 0, . . . , n - l , by 1.7(f).
Therefore the union of the /„ for t = 0,..., n, is all of /, and the intersection of
the A/ , is empty. But C~ / V / D for all f = 0,..., n, so C = D.

We now determine the 2(n)-action on <# x 2. So let a maximal flag [C, i] be
given, and let d e {0,..., «}. We are looking for a flag [D, k] = (£>*0,..., DKn)
such that C,, = DKi for t*d and Cyd =£DKd. If we set / ' = U,#rf/,, then Cr = D,",
that is, C~t\jD. Arguing as in the proof of the injectivity, we see that
J'^I\{i{d)}\ therefore D = C or D = C. i(d). On the other hand, it is clear
from the definition of i and k that i = k in the case where d = 0, and i(t) = k(t) for
t±d-\,d,n, {i(d - 1), i(d)} = {k{d - 1), k(d)} in the cases where 0<d <n.
The same also holds in the case where d = n, because i{d — 1) and i(d) are the
only elements i €/\{/(0), ..., i(n —2)} such that {i(0), ..., i(n — 2), /} is spheri-
cal. Therefore k = i or k = i°(d — 1, d) except possibly for d = n — l, where it
may happen that i{n)i^k{n). In the case where d = 0, obviously 7' = A{/(0)};
therefore [D, k] = [C. i(0), i], as claimed.

Now let d > 0, and assume first that d =£ n — 1. We have to distinguish two
cases. lfi°(d — l,d)$ 2, that is, i(d) is not contained in /0 and not connected to
{i(0), ..., i(d - 2)}, then i(d) is a fortiori not connected to {/(0), ..., i(t- 1)} =
A/, , for t<d, and therefore i{d) is not contained in Jt (by 1.7(f) and (g)). For
f>d, *(d) is by definition not contained in /,. Therefore J' = I\{i(d)}, and
[C. i(d), i] is the unique ^-neighbour of [C, i]. If \°{d-\,d)e2, that is,
i(rf) e /0 or i(d) is connected to {/(0),..., i(d — 2)}, then i(d) eJd-lf by 1.7(f) and
(g); therefore / ' = / and necessarily C = D. So [C, \°(d — 1, d)] is the unique
^-neighbour of [C, i], as claimed. For d = n — \, this argument applies with the
obvious modifications.
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5.3. COROLLARY. The Delaney set 2(Sf, W) is canonically isomorphic to the set
3), the H(n)-action being given by

i . o0 = i, for all i e 3),

or ifi°(n — l,n)$3),d = n,

\°(d-l,d) ifi°(d-l,d)e3),0<d<n,d*n-l,

ifi'o(n-2,n-l)e2',d = n-l,

where i denotes the unique element in 3) such that i' = i' ° (n — 2, n — 1).

5.4. PROPOSITION. The ramification numbers rd(i), where ie2>, of the pair
($f, W) (cf. 5.3) are given as follows.

In the case where d — \,

In the cases where d^2, and d¥=n, if the fundamental domain of W is not a
simplex, we proceed as follows. Consider the following graph on four points A,
i = i(d — 2), j = i{d — 1), k = i(d): the edges inside {i, j , k) are as in the Coxeter
graph, and I e {i, j , k} is connected to A if it is connected to some i(t), for
t<d — 2, or is an element of Io. According to the possibilities for this graph, the
values of rd are as follows:

Case 1. A 1 / k rd(i) = mjk.

Case 2. A / ^ " rd(i) = 2mJk.
k

Case 3. (a) A / /

\ :
k

(b) A i k rd(i) = 3.

(c) A 1

7 k

Case 4. (a) [
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Case 5. A j • rd{\) = 3.

(A dotted line means that this edge may be absent.)

Proof. It is readily checked that the graphs in the list are indeed all the graphs
on {A, i, j , k} such that A and i are connected,; and {A, i) are connected, k and
{A, i,j} are connected. In each case, and also in the case where d — 1, the claim
about rd(\) easily follows from Proposition 5.2. It is helpful to distinguish the five
cases by the shape of the (od-lf ad)-orbit of i, that is, the {d - 1 , d}-class in the
thin chamber system 2. This looks as follows, with the obvious abbreviations:

Case 1. the trivial orbit i — ijk

Case 2. ijk ikj

d d-\
Case 3(a). ijk ikj kij

d d-\ d
Case 4. jki jik ijk ikj

d - J / lJk ikJ>^d-l
Case 5. jik kij

jki -—kji

For instance, in Case 2, the relevant part of the {od-x, ad_2)-orbit of some [C, i]
looks as follows:

... [C, i] - ^ - [C. j , ijk] -?— [C.;, ikj] - ^ - L

Now notice that the action from the right of the symbols I el on the chambers
C e ? factors through a faithful action of the abstract Coxeter group
(/ e / | (//')m" =1) . (This action has to be distinguished from the left action of W
on %\ it is the 'action by galleries'.) Therefore

[CM]. ( a r f - i a ^ - t C . (/*)',!],

for all r 2= 1, and 2mjk is indeed the smallest r such that (od_^od)
r fixes [C, i]. The

other cases are similar.

We illustrate Proposition 5.4 by a series of Examples. We start with the
Archimedian tiling of the plane by squares and octagons (Fig. 3, Example 1 of
this section) where we already know the values of rx and r2.

EXAMPLE 1 (continued). Let (Sf, W) be given by the diagram
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(E is the Euclidean plane). The three maximal flags of reduced types as given in
§ 1, Example 1 read as follows in our present notation:

{01,02,0} -120,

{01,02,2}-102,

{01,1,2} -012.

(Recall that this correspondence is obtained by first passing to the corresponding
flags of closed sets of types {012,02,0}, {012,02,2}, {012,12,2}.) Comparing
Fig. 4 in § 1 with Fig. 7, one sees that they are to be identified with the flags
denoted above by C, D, E, respectively. According to Proposition 5.4, we can
now recalculate the values of rx and r2 on 3) as follows:

120 102 012

4 8 8

3 3 3

(For r2, Cases 3(a), 3(b), 3(c), respectively, of 5.4 apply.)
If we replace the diagram by

and the Euclidean plane by the 2-sphere, the same discussion applies, except that
^(120) = 3 now. The tessellation is given by the truncated cube as shown in Fig. 2
in the Introduction.

EXAMPLE 2. Let (9*, W) be given by the diagram

(E is Euclidean 3-space). Before passing to a formal treatment, let us briefly
describe this tessellation intuitively. Consider the group W as the symmetry
groups of the regular tessellation by cubes. The vertices of types 0, 1, 2, 3 of the
simplicial complex belonging to W are the vertices of the cube tessellation, the
centres of the edges, the centres of the square faces, and the centres of the cubes,
respectively. Distinguishing the set of types Io = {0, 1} means that the new
vertices are all centres of 'half-edges' (or some other points specified on the
half-edges in a uniform way). Thus, it is intuitively clear that the tessellation $f
consists of truncated cubes and of octahedra (the octahedra sitting around the
vertices of the original cube tessellation). We shall now derive this result in a
formal way, analogous to Example 1, which is equally applicable in less intuitive
(e.g. higher-dimensional) cases.

The four maximal flags of reduced types as given in § 1, Example 2 now read as
follows:

{01,02,03,0} = 1230 = :C,

{01,02,03, 3} -1203=: D,

{01,02,2,3} =1023=:£,

{01,1,2,3} =0123=:F.
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The chamber system structure of the Delaney set 9 = {C, D, E, F} obviously is

3 2 1

If we calculate the ramification numbers by means of Proposition 5.4, we get the
following table:

h

r2

C

3

4

3

D

3

3

3

E

8

3

3

F

8

3

4

(For r2, Cases 1, 3(a), 3(b), 3(c), and for r3, Cases 3(a), 3(b), 3(c), 1,
respectively, of Proposition 5.4 apply.)

In order to visualize the tessellation, we describe its maximal tiles and its vertex
figures. It is clear from the definitions that the classes of maximal tiles (with
respect to W) are in one-to-one correspondence with the (o0, ox, o2)-orbits on
9 = {C, D, E, F). There are two such orbits: 9' = {C}, 9" = {D, E, F}. If we
restrict rx and r2 to 9' and 9", we get the Delaney symbols of the two kinds of
maximal tiles. The group acting on the respective tile and defining 9', 2" is its
stabilizer in W which is (conjugate to) (sx, s2, s3), respectively (s0, sx, s2). Thus
the tile corresponding to 9' is platonic with rx = 3, r2 = 4, that is, is an
octahedron. The tile corresponding to 9" has the Delaney symbol

r2

D

3

3

E

8

3

F

8

3

We know from the previous Example 1 that this describes the truncated cube.
We now look at the vertex figures. By the general construction of the

tessellation realizing a shadow geometry (or rather, its dual, as considered in the
present section), there is only one orbit of vertices with respect to W. This
corresponds to the fact that already the subgroup (ax, o2, o3) c2(3) acts
transitively on the Delaney set 9. The Delaney symbol of a typical vertex figure
is the original 9, neglecting the function rx, and shifting the dimensions by one:

9: C D

rx

r2

C

4

3

D

3

3

E

3

3

F

3

4

Figure 8 immediately shows that this Delaney symbol describes the cone over a
square (considered as a spherical tiling) together with the symmetry group of the
square.



650 RUDOLF SCHARLAU

FIG. 8

In passing we remark that this is the tiling denoted by 2HTS31(4) in
Grunbaum's and Shephard's classification of all spherical tilings with only two
classes of edges [22]. This tiling is even 'minimal non-transitive', that is, has
precisely two orbits of vertices, edges, and faces. The plane analogues (with the
same Delaney set

but different ramification numbers) are the tilings 1.1 to 1.8 of [20]. Returning to
the tessellation by truncated cubes and octahedra described at the beginning of
this example, the reader will immediately convince himself that, combinatorially,
the vertex figures of that tiling are precisely what we have just described.

EXAMPLE 3. Let (9*, W) be given by

0 Q— 2=3.
The poset of reduced types is the following:

i/f
Y

I
The maximal flags are

{1,02,03,0} = {0123,023,03,0} -1230 = : C,

{1, 02, 03, 3} - {0123, 023, 03, 3} - 1203 =: D,

{1, 02, 2, 3} - {0123, 023, 23, 3} -1023 =:£ .

The Delaney set is

cJ-DJ-E.
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The values of rlf r2, r3 on 2 are as follows:

r2

1230

3

4

3

1203

3

4

3

1023

3

4

3

(For r2, Cases 1, 2, 2, and for r3, Cases 3(a), 3(b), 3(c), respectively, of
Proposition 5.4 apply.)

We see that the functions rx, r2, r3 are constant on 2. This implies that the
automorphism group Aut(S^) is a quotient W(F4)/N of the Coxeter group of
type F4:

o—o=o—o
(see Theorem 2 in [16]). By our main result Theorem 3.1 (or 3.2), the
geometrical realization \\Sf\\ is the 3-sphere, and in particular, is simply
connected. This fact and Theorem 3 of [16] imply that actually N = 1, that is,
Aut(^) = W(F4). Thus $f 'is' the 24-cell, and we get an embedding

W = W(C4) <•

This construction is of course well known from the classical theory of regular
poly topes in Euclidean 4-space; see [7, §8.3]. In the context of shadow
geometries, the above embedding occurs in a systematic way.

If we replace the group by

0 = 1 2 = 3

but keep 70 = {1}, we get

1230 1203 1023

The choice of the new vertices as the centres of the edges of the regular
tessellation by cubes suggests that 5̂  is a tessellation by cubeoctahedra and prisms
over squares (combinatorially regular, but not metrically). This can be derived
formally by looking at the Delaney symbols of the maximal tiles and vertex
figures in a way completely analogous to Example 2. Notice that the Delaney
symbol of the cubeoctahedron (with the maximum possible group acting) is
indeed

D E,

D

3 4

4 4

The faces are triangles and squares, the vertices are regular of valency 4.
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EXAMPLE 4. Let (5^, W) be given by the diagram

0=2 3 ••• (n-1) n,

(V)=2' 3' ••• (m-l)' m\

that is, W has the Coxeter diagram CnxCm, n s* 1, m 5= 1. It is clear how the
reduced types, the closed types and our set 3) look like. The value of rx is always
4 = 2mn- = m12 = mvr. The value of rd, for d 2= 2, is always 3 (by Case 1 or Case
3 of Proposition 5.4). By the same argument as is used in Example 2, the flag
complex A(50 is actually the Coxeter-Tits complex of type Cn+m.

Now let A1} A2 be buildings of type Cn, Cm, respectively, and consider the
shadow geometry 5^= 5 (̂Ai x A2, {1,1'}) as above. It is readily checked that the
products of the apartments in A2 and A2 give rise to a system of apartments (in
the sense of Conditions (B3), (B4) in [41, Chapter 3]) in the flag complex A(5^).
We have just seen that these apartments in A(5 )̂ are indeed Coxeter-Tits
complexes. Therefore, A(S )̂ is a weak (that is, not necessarily thick) building of
type Cn+m.

If we consider this building as the flag complex of a polar space 5 in the usual
way (see, for instance, [41]), we have to dualize Sf. The points are the elements
of highest dimension n + m — 1 in 5 ,̂ that is, the vertices of type n in Ax and the
vertices of type m' in A2. The lines correspond to the elements of dimension
n + m — 2 in 9>, that is, the vertices of type n - 1 in Aj, the vertices of type
(m - 1)' in A2, and the flags of type {n, m'}. If we also consider Ax, A2 as flag
complexes of polar spaces Sly 5^, this can be rephrased as follows: the new polar
space S has as point set the disjoint union of St and 5 .̂ Its lines are the original
lines and, furthermore, all pairs (plf p2), with pieSi, p2e S2. This is exactly the
polar space considered by Buekenhout and Sprague in [6, p. 226; cf. 33, p. 78].

EXAMPLE 5. Let W be an arbitrary reflection group whose fundamental domain
is a simplex, and set I0 = I. Then all values of all rd, with d^2, are equal to 3,
because Case 5 of Proposition 5.4 always applies. This means that all 'vertex
figures' {/ e 5 |̂ t>s), where s is a minimal element of 5 ,̂ are isomorphic to a
simplex P{0, ..., dimii}. Indeed, the tessellation of E corresponding to Sf is the
dual of the decomposition of E into the chambers and faces of W.

EXAMPLE 6. In this example, the underlying space is hyperbolic 3-space H3,
and for the group W we take the reflection group with compact fundamental
domain described by Mennicke in [30], using explicit coordinates for the
bounding planes and vertices. If we keep Mennicke's original labelling of the
planes, the Coxeter diagram is as follows:

Following a convention of Vinberg's, we note that a dotted edge i... j denotes a
pair of planes which are non-intersecting and non-parallel. In particular, the
order of the product of the corresponding reflections is infinity. The spherical
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subsets of / = {1, 2, 3, 4, 5, 6} are precisely the subsets such that the correspond-
ing subgroup is finite. In particular, ij is spherical if and only if i and; are not
joined by a dotted edge. (Notice that pairs of parallel bounding planes do not
occur.) If we denote the faces corresponding to the above labels by Si, ..., S6, the
2-element spherical subsets ij correspond to the edges 5, D 5;, and the 3-element
spherical subsets ijk correspond to the vertices 5, n 5y n Sk of the fundamental
chamber. Obviously, the spherical subsets are the following; we list the edges for
each face.

Edges
12 13 14 15
21 23 24 25 26
31 32 34
41 42 43 45 46
51 52 54 56
62 64 65
Vertices
123 125 134 145 234 246 256 456

Thus, the poly tope is bounded by two triangles 3 and 6, two 4-gons 1 and 5, and
two pentagons 2 and 4, and has eight vertices. Figure 9 does not take care of the
hyperbolic metrical properties; it is just supposed to show the combinatorial
shape and the combinatorial symmetry of the fundamental domain.

256

234

We now discuss two distinct shadow geometries and tessellations for W. The
first one is the tessellation considered by Mennicke, where a typical maximal tile
is the union of the six chambers containing the edge 24. In our language, this is
the geometrical realization by cells F(C, J) of the shadow geometry with respect
to 70 = / \{2, 4} = {1, 3, 5, 6} as studied in §§ 2-4 above. We shall now discuss at
the same time the shadow geometry with respect to /0= {1, 5, 6}. That is, the
maximal tiles are the union of the twelve chambers containing the vertex 234
(forming one orbit under the 12-element subgroup (s2, s3, s4) c W) and all its
transforms under W. As in the previous examples, we shall write down the
Delaney set by means of Corollary 5.3, and we shall calculate the ramification
numbers.

In order to derive the flags of reduced (or closed) cospherical type sets, it is not
suitable to write down the totality of reduced sets and to restrict to the
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cospherical ones afterwards. In all cases where the number of cospherical sets is
small (compared to 2m), it works faster to calculate the closure for the
complements of all spherical sets (which we have listed anyway), then to suppress
sets which occur several times, and to order the remaining ones by reversed
inclusion. If we carry this out for / 0 = {1, 3, 5, 6}, we immediately arrive at the
following poset of closed, cospherical types:

123 236 346 456

1234 1236 .2346 3456 .2456

12345 12456

In the case where 70= {1, 5, 6}, the three sets to the right 12456, 2456, 456
have to be omitted; all other sets remain closed. The first three symbols ijk e 2>'
of a maximal flag ijkle 2 (cf. Lemma 5.1) are now directly read off from this
figure; recall that ijke 3)' corresponds to the flag {/, 7\{/}, / \ { / , ; } , I\{i,j, k}}
of closed sets. Recall, furthermore, that the last symbol / is such that {/,;, /} is
spherical. (Here, the definition of / becomes crucial for the first time; in the
examples given up to now, the last symbol i(n) was the unique 'missing' symbol,
i.e. trivially determined by the equality / = {i(0),..., i(n - 1), /(«)}•

For /0= {1, 5, 6}, we obtain the Delaney set:

(6542) — (5642) - 2 - (5 4 6 1 )

(5124) —J—(1524)—^- (1253)

For 70 = (1, 3, 5, 6}, this figure has to be completed to the right by

• • (1253)-2-(1235)-^- (1324)^— (3124).

Thus 3) becomes symmetric with respect to interchanging 24, 15, 36, as is to be
expected from the fact that this renumbering is a diagram automorphism
respecting 70 of the Coxeter diagram.

The ramification numbers rx(ijkl), r2(ijkl), ijkl e 3) can now be calculated by
means of Proposition 5.4 as before. They turn out to be constant: rx = 4, r2 = 3.
For the calculation of r3, the fact becomes crucial that in an adjacency

(ijkl) (ikjV)

we usually have /=£/'. Recall that this was the reason why rn had to be excluded
in Proposition 5.4 in the non-simplicial case. In each concrete case like the given
one, we can however calculate r3 by determining the (o2, o3)-orbits of chambers
directly from Proposition 5.2.

We first treat Mennicke's 'symmetric case' 70= {1, 3, 5, 6}. There are four
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cases corresponding to the four (o2, a3)-orbits on 2>, which are reduced to two
cases (6542) and (5642) by the diagram automorphism.

If C is any chamber for W, the (a2, a3)-orbit of the chamber [C, 6542] of the
shadow geometry looks as follows:

2 3 2
[C, 6542] [C. 4, 6542] [C. 42, 6542] [C. 424, 6542]...,

and therefore r3(6542) = m24 = 6.
For 5642, we have

[C, 5642] — [C, 5461] — [C, 5416] — [C, 5142] —

[C, 5124] — [C. 2, 5124] — [C. 2, 5142] — [C. 2, 5416] —

[C. 2, 5461] — [C. 4, 5642] — [C, 5642],

and therefore r3(5642) = 5.
For the geometrical interpretation, We have to recall that Mennicke's tessella-

tion is dual to what we have considered in this section for defining the rh that is,
we have to reverse the roles of rx and r3. Thus, the values of r3 reconfirm the
result that the faces of a maximal tile are hexagons and pentagons (the plane 6
supports a hexagon, the plane 5X supports a pentagon; see [30, Figure 4]). The
values rx = 4, r2 = 3 show that, combinatorially, the vertex figures are all
octahedra.

In the case where / 0 = {1> 5, 6}, the element 1542 € 2 represents a different
(°2> °i)-orbit which now is not equivalent to 5642 by a diagram automorphism.
A calculation similar to that above yields the result r3(1542) = 6.
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