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Introduction to the Introduction 

aim of this paper is to give an introduction to the theory of reductive monoids, 
well developed branch of semigroup theory with good prospects. It has highly 

t.r.,·t.•·r~>n problems which, like those in the theory of rf)ductive groups, are rooted 
the combinatorics of the Weyl group. This theory is the work of Mohan Putcha 

Lex Renner, who originated it independently around 1980. There are now at 
50 papers on the subject- most of them by Putcha and/or Renner, although 

notably Okninski, have been involved. Their work has been more or less 
by those who might enjoy it and profit from it. These include workers in 

order is alphabetic) algebraic groups and related finite groups, algebraic com-
!luac•u'·'""' semigroups, and possibly other parts of mathematics. This subject has 
marketing problem. My estimate, based on some minimal evidence, is that those 

do algebraic groups are sympathetic but uninterested, those who do algebraic 
:omoinlat<JrH:s do not know that the subject exists, and those who do semigroups 

put off by prerequisites which seem formidable. 
A reductive monoid M is pieced together from its group of units G = G(M) 

its set of idempotents E = E(M). The group G is a reductive group. The 
l,li;J.deJnpotE~nt;s are intimately connected to the group structure. Although one c~n see 

connection in the simplest example, where M is the monoid of all matrices over 
field and G is the general linear group, it is remarkable that natural questions 

idempotents lead to all the standard constructs in semisimple Lie theory: 
parabolic subgroups, Tits building, and so forth. 

My intent in this paper is to give an introduction to the theory of reductive 
monoids from scratch, for a reader with general background and interest in algebra 

no special knowledge of semigroup theory or reductive algebraic groups. The 
·;•w-•rn"'"'"" of reductive groups is itself a big subject with various prerequisites. To over

come the prerequisites in minimal space we concentrate on examples in the context 
both groups and monoids. Statements of the main theorems are accompanied by 

references but not by proofs. Comments written as footnotes provide some further 
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references as well as bits of argument and hints concerning the depth of unsupported 
statements. The footnotes may be ignored at first reading without loss of continuity. 
A willing beginner should be able to check most of the details in the examples. Ill 
the first steps, and perhaps at any time, the examples are more important than th 
theorems·. 

The best course is to begin with an example which is elementary but sufficiently 
interesting. Example 2.3 in Section 2 should do the job. Once this is done there 
should be some incentive for you to accept the basic definitions in the theory o, 
reductive groups: weights, roots, Coxeter-Dynkin diagram, parabolic subgroup, BN-' 
pair and so forth. Weights are introduced in Section 2 and the rest of the apparatus 
is introduced in Section 4. The exposition here has been stripped to a minimum; 
we do what is necessary for an understanding of the monoid problems and no more.: 
This will allow us to describe in Section 5 by example and statement of theorem,· 
some of the main results of Putcha and Renner, in particular Putcha's cross section 
lattice and Renner's analogue of the Bruhat decomposition via the Renner monoid. 

I would like to thank Mohan Putcha and Lex Renner for their encouragement. ' 
I would also like to thank NATO and the organizers of this meeting, in particular 
J. Fountain, S. Goberstein, and V. A. R. Gould, for the chance to give the talks. 

2. Algebraic Monoids 

A monoid is a semigroup with 1. What is an algebraic monoid? Let K be an 
algebraically closed field. Let Mn = Mn(K) denote the set of all n x n matrices'. 
over K. We may think of Mn as an affine space of dimension n2 with coordinate · 
functions X,; defined by 

Cij E K. 

It is also a monoid with the general linear group GLn = GLn(K) as its group of 
units. If V is a vector space over K of dimension n, then choice of a basis allows us 
to identify Mn with EndK(V) and GLn with GL{V). In these notes Vis usually 
the space Kn of column vectors and { v1 , ..• , vn} is the standard basis for Kn. 

A linear algebraic monoid, for short an algebraic monoid, is a submonoid M of 
Mn which is a Zariski closed set. 1 This means that M is the set of common zeros 
of a family of polynomials in the Xi;. For example Mn itself is algebraic, defined by 
the empty family of polynomials. The monoid Dn = Dn(K) of diagonal matrices 
is defined by vanishing of the Xii with i f: j and is thus algebraic. Similarly, the 
monoid of upper triangular matrices is defined by vanishing of the Xij with i > j 
and is thus algebraic. 

If K = Fq is the algebraic closure of a finite field F q with q elements, there are 
closely related finite monoids. Let u : Mn ~ Mn be the Frobenius map defined .. 

1 We use Putcha [31] as a reference on algebraic monoids; we have tri.ed, whenever possible, to 
give a reference to original source. ' 
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by [Ci;]~-+ [c{1]. The set of fixed points of u is the monoid Mn(F9 ) of all matrices 
F 9 • If M ~ Mn is any algebraic monoid which is the zero set of a family of 

pol:ync>mJ.aiS with coefficients in F 9 then u M = M. Let Mu = {a E M I ua = a} 
the set of fixed points. Then M 17 ~ Mn(F 9 ) is a finite monoid. For example 

if M = Mn then Mu = Mn(Fq); if M = Dn then Mu is the monoid of diagonal 
matrices with coefficients in F q· 

2 

An algebraic monoid M is connected if it is connected in the Zariski topology. An 
monoid is irreducible if it is irreducible as affine algebraic set - it cannot 

be written as a union of proper Zariski closed subsets. Irreducible implies connected 
but not conversely. For example the monoid M = { diag( c1, c2) E D 2 I c1 c2 = 0} is 
connected but not irreducible. Since every finite monoid M is an algtbbraic monoid, 
· assume throughout that M is irreducible. Every algebraic monoid M has a 
dimension, dim M, which we will not attempt to define [15, 3.1]. On the intuitive 

dim Mn = n2 and dim Dn = n. 
A linear algebraic group, for short an algebraic group, is a subgroup of GLn which 

is the intersection of GLn with a Zariski closed subset of Mn. 3 For example G = 
GLn is an algebraic group, as is the group G = Tn of invertible diagonal matrices. 
The coordinate ring or affine ring of G is the K-algebra of functions on G generated 
by the restrictions to G of the coordinate functions Xij as well as the reciprocal of the 
determinant function det : GLn -+ K*, where K* ~ GL1 denotes the multiplicative 
group of K. Thus, for example, if G = Tn and Xi denotes the restriction of Xii to 
G then K[GJ = K[X1, ... ,Xn, (X1 • · ·Xn)-1] = K[X1, ... ,Xn,X:11

, ... ,X;1
] is a 

ring of Laurent polynomials in n indeterminates with coefficients in K. A subgroup 
of G is, by definition, closed if it is the intersection of G with a Zariski closed 
subset of Mn; thus a closed subgroup of an algebraic group G is itself an algebraic 
group. A direct product of algebraic groups is an algebraic group. An algebraic 
group G is connected if and only if it is irreducible as algebraic set [15, 7.3]. 4 If 
G = ( Yi., ... , Yr) where the Yi are closed connected subgroups which generate G 
as an abstract group, then G is connected [15, Corollary 7.5]. This is a useful fact.· 
which we will apply several times. 

It is very easy to construct algebraic monoids. If X is any subset of Mn let 
X denote the Zariski closure of X, the intersection of all Zariski closed sets which 
include X. The Zariski closure of any submonoid of Mn is a monoid 5 and hence an 
algebraic monoid. In particular, the Zariski closure G of any subgroup G ~ GLn is 

2 The classical groups over finite fields were introduced by Jordan and were placed in a Lie 
theoretic context by Dickson and Chevalley. Steinberg [51, §10-§15] studied the Chevalley groups, 
and certain variations on them which include the finite unitary groups, as fixed point sets Gu = 
{g E G I ug = g} where G is a semisimple algebraic group defined over Fq. Renner introduced the 
analogous construction M --+ Mu for algebraic monoids [44],[46] and studied the Mu when M is 
reductive; see Section 5 of this paper. 

3 We use Borel [3] and Humphreys [15] as references on algebraic groups; with occasional ref
erence to Springer [50] and Seminaire Chevalley [6]. The boldface notation used here differs from 
the boldface notation in [3] and [15]. It is "dictated" if we let Dn denote the monoid of diagonal 
matrices in Mn. Thus, here, Tn is the standard torus of invertible diagonal matrices and Bn is 
the Borel subgroup of invertible upper triangular matrices in GLn. 

4 In the theory of algebraic groups the term "irreducible" is usually suppressed in this context 
and is reserved for representation theory. By convention, this is also done for monoids in (31, 
Definition 1], so that "connected" in [31] means "irreducible" here. 

5 To prove this, argue as in Lemma 2.1 of (25]. 
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an algebraic monoid. If G <;; GLn(K) is an algebraic group then G is an 
monoid which has G as its group of units. In the opposite direction, if M <;; Mn 
an algebraic monoid then M n GLn is an algebraic group which is in fact the 
of units of M, the set of elements of M with an inverse in M [10, Corollary II, § 
3.5], [39, Corollary 2.2.2]. 6 Thus if G <;; GLn(K) is an algebraic group, then G 
an algebraic monoid which has G as its group of units. For example, if G = 
then G = Mn and GLn is the group of units of Mn. If G = Tn then G = Dn 
Tn is the group of units of Dn. Thus we have a method for constructing "'"'c•"'u.•a.J.' 
monoids with a prescribed algebraic group G of units. If G is connected then G · 
irreducible [31, p.48]. 

To construct interesting algebraic monoids we choose an algebraic group Go 
GLm and let G = p(Go) where where p is a rational representation. Recall 
a representation of a group G0 is a homomorphism p : Go --+ GLn for some n. 
representation p of an algebraic group Go is a rational representation if, for 
coordinate function Xi; on Mn, the function g ~---+ Xi;(p(g)), g E G0 , lies in 
affine ring K[G0]. For example, if A= [ai;] is any m x n matrix of integers then 
may define a rational representation p: Tm --+ GLn by 

{1) 

for g = diag(t1 , .•. ,tm) E Tm. The representation is rational because Xi;(p(g)) 
for i =/= j and X;; (p(g)) = t~'; · · ··t~~; is a Laurent polynomial in the matrix 
of g. In fact every rational representation of Tm is equivalent to a rei>reseiJLta1;ion 
the form {1). 7 If G0 = GLm and T means transpose then p: Go --+ GLm 
by g --+ (g-1) T is a rational representation because each matrix entry of g-1 is 
product of {detg)-1 and a cofactor of g; the cofacfor is a polynomial in the 
entries of g. If G0 is any algebraic group and pis a rational representation then 
is an algebraic group [3, 1.4],[15, Proposition 7.4.B{b)]. Unfortunately, the 
this theorem does not tell you how to construct polynomials in n 2 

Xi; which generate the ideal of polynomials which vanish on p(G0 ). It is hard 
give an explicit description of M in terms of concretely given Go and p. 

Let's look at an example. Let G0 = SLm = SLm(K) be the special linear 
which consists of all elements of GLm with determinant 1. Let p : Go --+ 

be a rational representation. Since G = p(G0 ) is an algebraic group, there is 
Zariski closed subset X of Mn such that G =X n GLn. Since every g EGo is 
product of commutators xyx-1 y-1 it follows that p(g) is a product of cornmutators 
p(x)p(y)p(x)-1 p(y)-1 . Thus det p(g) = 1 so G <;; SLn. Thus G =X n SLn. But 
is Zariski closed because it is the zero set of the polynomial det [Xi;]- 1. Thus G. 
Zariski closed in Mn. So the monoid G = G is a group and we have · 
nothing. 

6 It is not clear without argument that if a E M is an invertible matrix then a-1 E M. 
example, if a E K• has infinite order and M = {1, a, a2 , • •• } then M is a monoid, not an 
monoid, in which every element is invertible in K, but M has no units except 1. 

7 The key point here is the case m = n = 1 where one must check that every rational 
phism K* -> K* has the form t ,..... ta for some a E Z. Then use the fact [3, Proposition 8.4] 
p(Tm) is conjugate to a subgroup of Tn. 
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This is just setting you up. We have learned something. To construct monoids 
ich are not groups, G must contain matrices with determinant different from 1. 8 

is suggests that we adjoin the scalar matrices to p(Go) and choose 

G = {cp(g) I c E K* and g EGo}= K*p(Go) 2 p(Go). 

e have taken our first attempt p(Go) and modified it by adjoining the nonzero 
ar matrices. The group G is an algebraic group but it is not a closed subset of 

n· 9 Let M be its Zariski closure. Then, as we have remarked, M is an algebraic 
noid with Gas its group of units. Write M = M(p) to denote the ~ependence on 
Since Go and K* are connected, so is G = K*p(G0 ). Thus M(p) is an irreducible 

gebraic monoid. Since Ker pis a normal subgroup of Go = SLm, it is either equal 
G0 , a case we agree to ignore, or it is a finite central subgroup of Go of order equal 
a divisor of m. Thus for any nontrivial representation p, the group G = K* p( Go) 
units of M(p) is a close relative of GLm. 10 Any significant structural difference 
tween M(p) and Mm must lie in its set of idempotents. 11 

If M is a monoid, let E(M) denote its set of idempotents. We give E(M) the 
rtial order 

f '5:. e {:} ef = f = fe . 

e agree that the partial order on any subset of E(M) is inherited from this one. 
We give three examples of the construction (Go, p) ..,.. M(p) with Go = SLm and 
ious p. They presuppose no special knowledge about the representation theory 
SLm. Even so, the monoid in the third example is quite different from familiar 
jects. Let Km be the space of column vectors and let v1 , .•. , Vm be the standard 
is for Km. Let T0 = Go n T m be the group of diagonal matrices in Go and let 
= K*p(To) ~ K*p(Go) =G. Thus T ~ G = M(p). 

ample 2.1 Let V = Km. Thus n =dim V = m. Define p: Go -+ GL(V) by 
(g)= g. Then G = {cg I c E K*,g E SLm} = GLn, T = Tn, and M(p) = Mn. 
e are on very familiar territory. This example is the prototype. Let Eij E · Mn be 

lie matrix units. The idempotents in E(T) are of the form e1 = l:iei Eii where I 
ges over the subsets of {1, ... , n }. The poset E(T) is isomorphic to the Boolean 

8 Renner (39, Theorem 3.3.6] and Waterhouse (54] gave precise conditions under which an alge
aic group G may be imbedded as the group of units of an algebraic monoid M which is not a 

·oup . 
• 9 ·Imbed K* X Go --> GLn+l in the natural way. Then G is the image of the algebraic group 
• X Go under the representation ( c, g) >-+ cpjg) and hence is an algebraic group. Since the closure 
K*p(l) contains the zero matrix, so does G. 
0 To be precise, note that the homomorphism K* X Go -+ G is surjective with finite kernel. So 
the homomorphism K* x Go-+ GLm given by (c,g) ,_. cg. 
1 One should not conclude from this statement that the distinction between K* x SLm and G Lm 

~~~ay be ignored in the context of monoids. For example, if m = 2 it enters the proof of Renner's 
1

~1assification theorem for semisimple algebraic monoids [40], (41] and into Renner's construction of 
~~nanalogue forM of the Bruhat decomposition for G (43]. However, in the present context, the 
~difference between groups is subtle while the difference between idempotent sets can be spectacular. 
~~~hus it seems best, with first examples, to concentrate.on the idempotents. 

~K 
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lattice of subsets of {1, ... , n }. In view of Example 5.4, it is equally true, and 
to the general Theorem 5.4 which governs E(T), to say that E(T) is isomorphic 
the lattice offaces of a simplicial cone in Rn generated by n rays through the · 

Example 2.2 Let V = Km 0 Km. Then V has a basis {v; 0 Vj 11 :$; i < j $ 
son= dim V = m2 • Define p: Go -+ GL(V) by p(g)(v 0 v') = gv 0 gv'. 
G = {cp(g) I c E K*,g E SLm} = {g 0 g I g E GLm}· Note that pis a 
representation: iCg = [c;j] then the matrix entries of p(g.) have the form CijCkt 
are thus polynomials in the matrix entries of g. We may extend p to a ret:,re!;en1Gatic 
of Mm by defining p(a)(v 0v') = av 0 av' for a E Mm. Then p(Mm) = {a0a I 
Mm} is Zariski closed12 and has G as its group of units, so G = p(Mm) and 
M(p) = p(Mm)· In particular, E(M(p)) ::::: E(Mm), isomorphism of posets, 
e 0 e <-->e. Thus we get nothing new. 

Example 2.3 Let V = Km 0 Km be as in Example 2.2 so again n =.dim V = m 
Define p: Go-+ GL(V) by p(g)(v 0v') = gv 0 (g-1)T v'. Note that pis a 
representation: if g = ( Cij) then the matrix entries of p(g) have the form CijC~1 
the c].1 are cofactors of g and hence polynomials in the matrix entries of g. We 
construct some idempotents in E(T) which show that E(M(p)) is radically 
from E(Mm)· Our calculation here contains the germ of a general argument 
ancestry may be traced. to Hilbert; see Theorem 5.4 for a formulation in the 
of reductive monoids. If g E To write g = diag(t1,.:. , tm) where t; E K* 
t1 · · ·tm = detg = 1. Then p(g)(v; 0 vj) = t;tj1 (v; 0 Vj)· Thus, using the basis 
·elements v; 0 Vj, the matrix p(g) is diagonal: 

(4) 

Let's try to produce idempotents in T. Here is the idea. Suppose we can find 
negative integers a1, ... , an such that 

(5) diag(ta', ... , tan) E T for all t E K* . 

Then 

(6) 

We may set t = 0 in (6). Under this substitution, ta• 1-t 1 if a; = 0 and ta• H 0 
if a; > 0. Thus the element in (6) is a diagonal matrix with entries in {0, 1} and 
hence is an idempotent e E T. It is tempting to write e = limt .... o diag(ta', ... , t""). 
See (77) for an elaboration of this limit argument. Set t; = tb• and t; = tb; 

12 This must be checked. If M s;; Mm is an algebraic monoid and p : M -> Mn is a hnn•nm<>r·<'~!i 
phism of monoids such that the matrix entries of p( a) are polynomials in the matrix 
does not follow that p(M) is a closed submonoid of Mn. This is quite different from the •itn.~t.ion\!!11 
with algebraic groups [15, Proposition 7.4.B]. For example take M = Mm and. let p(a) = u~·'~'"''"~ 
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where b1, ... , bm E Z are to be found. The condition h · · · tm = 1 demands 
+ · · · + bm = 0. Thus 

diag( ... , tb;-b;, ... ) E p(To) C T 

all t E K* and all integers b1, ... , bm such that b1 + · · · + bm = 0. There is still 
fre~dom left since T = K* p(To) contains the scalar matrices tbo p(1) fort E K* 

b0 E Z. Thus 

diag( ... , tbo+b;-b;, ... ) E T . 

want to choose integers b0 , b1, ... , bm so that b1 + · · · + bm = 0, all bo + b;- bj 
non-negative, and some b0 + b; - b3 is positive. This is a problem in linear 

pro;gramrnm.g over Z. Let's exhibit some solutions. Fix a pair of indices i,j with 
:::; i -:j:. j::::; m. Choose b0 = 2,b; = -1,b3 = 1, and let bk = 0 fork#- i,j. Then 
+ b; - '2_ = 0 and all other b0 + bp - bq are positive. This gives us an idempotent, 

e;i E T. 
Let M = M(p). Since e;i E Dm@ Dm ~ Dn is a diagonal matrix with just one 

1"'''111UJ.l"'"•v entry, it has rank 1 and hence is a minimal element of the poset E(M). 
E(M) has a set of m(m- 1) minimal elements which mutually commute. 

the other hand, in E(Mm) any set of commuting minimal idempotents may be 
diagonalized and thus has cardinality at most m. Thus E(M) and 

are not isomorphic. The monoids M and Mm have closely related groups 
units but they are radically different from one another. The poset E(T) is in fact 

---·--r---- to the lattice of faces of the polytope P in Rm which has its vertices 
the points e;3 = e; - ej, where e1, ... , em is the standard basis for the space 

of column vectors. This fact may be deduced from (103). By contrast, the 
corresponamg poset E(Tm) is isomorphic to the lattice of faces of a simplex. 

Let's describe the polytope P explicitly in case m = 4. The calculation begun 
which leads to this ·description will be completed in Example 5.6. We can 
the polytope P in R 3 because its vertices e;j lie in the hyperplane H = 

n::::=l x;e; I L:i=l Xi = 0} of R 4. Define an R-linear map rP : H --t R 3 c R 4 

rp(e1 - e2) = e2- e3, ¢(e2 - e3) = e1- e2, rp(ea- e4) = e2 + e3. The rp(e;j) 
the 12 points '2:~= 1 x;e; such that {x1,x2,x3} ~ {0,±1} and precisely one of 

x2 , x3 is 0. These points are the midpoints of the edges of a cube with vertices 
±e1 ± e2 ± e3. Thus the polytope P is the convex hull of the midpoints of a 

This is a cub octahedron. In Figure 2.1, ¢( e;3) is labeled ij and the "invisible" 
41, 42,43 are omitted. 

We may perform the construction (Go, p) ...,... M(p) with any algebraic group 
~ GLm and rational representation p. If we want interesting monoids we start 

interesting groups. By common agreement (? /!) these are the reductive groups. 
postpone the definition of "reductive" to Section 3 and simply remark here that 
family of reductive groups includes the special linear, general linear, symplectic 
orthogonal groups, and that reductive groups have an extraordinary structure 

rrnv1>rn1>n by finite group W called the Weyl group. One might hope that if we apply 
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Figure 2.1. Cuboctahedron 

the construction (Go, p) --> M(p) to a reductive group, then the resulting monoid 
will also have extraordinary structure. This turns out to be the case; see Section 5 
where we apply this construction in case Go is semisimple and p has finite kerneL 
Example 2.3 exhibits some of the appeal of the theory of reductive groups. At the 
core of an enormous edifice lie the regular polyhedra and their close relatives. In any 
event, since G = GL,. is reductive with Zariski closure M = M,., the hypothesis 
that a monoid is reductive can't lead us too far astray - any general theory must 
include the multiplicative aspects of matrix algebra over a field. 13 

An algebraic torus, or simply a torus, is an algebraic group T isomorphic to T m · 

for some integer m. The dimension ofT ism. We often identify Tm with (K*)m. A 
closed connected subgroup of a torus Tis itself a torus [3, Corollary 8.5]. For example 
Tm n SLm is a closed subgroup of Tm of dimension m- 1, which is isomorphic to 
(K'")m-l via diag(tl,··· ,tm) 1-+ (t~, ... ,tm-1) because t1···tm = 1. A rational 
character of a torus T is a rational representation X : T --+ K*. For example if 
g = diag(t1, ... , tm) E Tm then 

(9) 

13 There is no reason except for the infancy of the subject, to assume that K is a field; one might 
envision K = Z or a more general coefficient ring as in the theory of algjlbraic groups. In case K 
is a field Renner, [43] has given a monoid analogue of the row echelon form for square matrices. 
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defines a rational character C:i of Tm· The rational characters of a torus T form 
a group X(T) under multiplication, which is free abelian of rank equal to dim T 

8.5]. For example X(Tm) has a basis {c:1, ... , cm}i if X E X(Tm) is a rational 
character of T m then there exist unique a1, ... , am E Z such that X = c:~1 • • • c:~"'. 

if g = diag(t1, ... , tm) then 

This is just (1) when n = 1. 
Let To~ Tm be a torus and let p: To-t GL(V) ~ GLn be a rational represen

tation. 14 A nonzero vector v E Vis a weight vector for p if p(T0 )v = Kv. Thus v 
is an eigenvector for all p(g) with g E T0 • Define a function x: To-t K* by 

p(g)v = x(g)v g E To . 

Since pis a representation, x is a character of To. The characters x which arise in 
this way are called weights of the representation p. Let ~(p) C X(To) denote the 
set of weights of p. The set ~(p) is finite, of cardinality at most n. If X E !P(p) 
then the space Vx = { v E V I gv = x(g )v for all g E To} is called the weight space 
corresponding to X· The dimension dim Vx is called the multiplicity of the weight 
X· It is a fact [3, 8.17] that there exists a basis B for V which consists of weight 
vectors for p. We usually use B to identify GL(V) with GLn so that p(To) ~ Tn. If 
B = {v1, ... 'Vn} is the standard basis for Kn and p(g)vj = x;(g)v; forgE To then 
iJ!(p) = {X1, ... , Xn}. It may happen that X; = Xk for j =/= k. 

For example if p: Tm -t Tn is the representation in (1), define X; E X(Tm) for 
1 '5: j $ n by X;(diag(tb ... , tm)) = t~1; • • • t~"';. Then !P(p) = {x1, ... , xr.}. Let's 
describe !P(p) for the representations p of SLm in Examples 2.1-2.3. We view pas a 
representation of the torus To= Tm n SLm. Define c:;: T0 -t K* by 

(12) c:·(g) = t· 1 < i < m 
1, t' - -

for g = diag(tb ... , tm) E To. Although the formula in (12) is exactly as in (9), one 
must remember that in X(To) we have c1 · · ·C:m = 1 because detg = 1 forgE T0 • 

Thus the C:i in (12) are the restrictions to To of the C:i in (9). The bases B of weight 
vectors and the corresponding sets ~(p) are given in the following table. Here c:; is 
defined as in (12) and V1, • •• , Vm is the standard basis for Km. 

Example 

(2.1) 

(2.2) 

(2.3) 

B 
{v;ll:::; i:::; m} 

{v; ® v;l1:::; i,j:::; m} 

{v; ® v;ll:::; i,j:::; m} 

~(p) 

{c:;ll:::; i:::; m} 

{c:;c:;ll:::; i,j:::; m} 

{c:;c:j1ll:::; i,j:::; m}. 

[ In Example 2.3 the weights c:;c:j1 with i f. j have multiplicity 1 while the weight 

1 = .::1.::11 = · · · = C:mc:-;;,.1 has multiplicity m. 
i 

~(, 14 The change in notation from T to To will be useful in Section 5 where To ~ Tm and p(To) ~ r T ~ Tn. In Section 4 a torus will usually be written T. 
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3. The .J-class structure of an Algebraic Monoid 

Let M be an algebraic monoid. How shall we begin a structure theory of M? Let 
be the group of units of M. Since GM ~ M and MG ~ M, the group G x G acts 
on M by.(g, h)· a= gah-1 for g, hE G and a EM. Let G\M/G denote the set o£ 
orbits 0 = GaG for this action. From the group theoretic point of view, the fitst 
main problem is to describe the set G\MfG. 

From the point of view of semigroup theory, the analogous problem is to describe 
the equivalence classes for Green's .]-relation, which is defined by a.Jb if and only 
if MaM = MbM [31, 1.1]. Clearly GaG= GbG => MaM = MbM. Recall-that we 
have agreed to assume throughout that M is irreducible. If M is irreducible then 
MaM = MbM =>GaG= GbG [31, 6.1], [24, Theorem 13]. Thus a, b lie in the same 
.J-class if and only if they lie in the same G x G orbit, so that the natural group 
theoretic and semigroup theoretic equivalence relations are the same. The .J-class 
of a is thus the orbit GaG. We will often write G x G orbit rather than .J-class 
because it suggests a connection with other parts of mathematics. In general, the 
set of J."-classes in a monoid M carries a natural partial order given by inclusion: 
MaM :$ MbM ¢} MaM ~ MbM [31, 1.1]. 

Example 3.1 Let M = Mn. Then G = GLn. If a, bE M then GaG= GbG if and 
only if rank a= rank b. Thus there is a bijection G\M/G +-+ {0, 1, ... , n} given by· 
GaG---+ rank q,. In particular, the number of G x G orbits is finite. The partial order· 
is the natural linear order on {0, 1, ... , n }. 

Example 3.2 ([24, Example 15]) Let M C Mn+l consist of all matrices 

0 X 0 0 

a= 0 0 x 0 

0 0 0 X 

where x, x1, ... , Xn E K. For simplicity of notation write a = (x, x1, ... , xn)· The 
group G consists of those a with x =/:- 0. The G x G orbits are G, {0 = (0, ... , 0)} and · 
orbits which contain matrices (0, x1 , ..• , xn) with Xi not all 0. For the latter we have 
(0, X1, ... , Xn) and (0, Yl, ... , Yn) in the same orbit if and only if there exists c E K' 
With Yi = CXi for all i. Thus these orbits are in one to one correspondence with points 
in the projective space pn-1 (K). There is a bijection G\M/G +-+ GU{O}upn-1(K). 
This example has some undesired features. The number of G x G orbits is infinite 
(unless n = 1) and M has no idempotents except 0, 1. Thus we are led to the 
following definition [31, 1.5]. 

Definition 1 Let U(M) = {0 E G\M/G I 0 n E(M) =f:. 0}. 

Thus U(M) is the set of .J-classes which contain an idempotent. It inherits 
a partial order from the set of all .]-classes. In Example 3.2 the poset U(M) is 
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~~:,: 

~isomorphic to the poset {0, 1}. In general, if M is an irreducible algebraic monoid 
~~then U(M) is a finite lattice [31, Theorem 5.10], [21, Theorem 1.7], [22, Theorem 
~\2.7] and any two maximal chains in U(M) have the same length [23, Theorem 1.9]. 
~;The following conjugacy ·theorem will be useful in Section 5. 
~;: 

~~heorem 3.1 ([24, Theorem 9]) Lei M be an irreducible algebraic monoid. Sup
l~pose e, f E E(M). Then GeG = G fG if and only if e and f are conjugate under 
!{G. 
~~/ 
lf\:; 

~~Example 3.3 Suppose M = Mn. Then G = GLn· If e,J E E(M) and GeG = GfG, 
~i~then rank e =rank f so e, f are conjugate under G. 
%;'> 

!j~ We will impose conditions on M which exclude the pathology in Example 3.2 
!!:and insure that G\M/G = U(M). A monoid M is unit regular if M = GE(M). A 
~~monoid M is regular if given a E M there exists b E M such that a = aba. 

~:Proposition 3.2 Let M be an irreducible algebraic monoid. Then the conditions 
tflJ M is unit regular, (2) M is regular and (3) G\M/G = U(M), are equivalent. 

t; For (1) =} (2) note that if a= eg withe E E(M) and g E G then ag-1a = ea = a. 
rFor (2) =} (3) note that, by our earlier remark, the .J-classes are the G X G orbits, 
hnd that if aba = a then ab = abab is an idempotent in the .J-class of a. To prove 
!,that (3) =} (1), given a E M choose g, h E G and e E E(M) with a = geh. Then 
~a= gh · h-1 eh E GE(M). 
I 

k Thus, if M is regular then the set G\M JG is finite. If a E M then M aM is stable 
~.under the G x G action and is thus a finite union of orbits GbG. The closure M aM 
;;:is thus a finite union of sets GbG. On the other hand, if M regular then M aM is 
~closed and irreducible as algebraic set. This is proved in [22, Corollary 2.5] under the 
f:hypothesis that a is idempotent, but this is no restriction since G\M/G = U(M). 
)!Thus MaM = GaG. It follows that if M is regular then for a,b E M we have 
;'.MaM :::; MbM {:} GaG ~ ·.QbG. Thus the partial order on U(M) which is defined 
naturally in terms of the semigroup structure has an algebro-geometric interpretation 

\in terms of the closures of group orbits. In Example 3.1, if rank a= r then GaG 
lconsists of the matrices of rank at most r. 
. . We may also exclude the undesired behavior in Example 3.2 by imposing the 
~requirement that G be a reductive group. What is a reductive group? To define it 
~~we need some preliminaries. A matrix u E GLn is unipotent if all its eigenvalues are 
;) [15, 15.1]. A subgroup of GLn is unipotent if all its elements are unipotent [15, 
·17.5]. For example the group 

.• {13) U n = {I + L Cij Eij I Cij E K} 
l:$i<j~n 

>of all upper unitriangular matrices is unipotent. In fact every unipotent subgroup 
;of GLn is conjugate to a subgroup of Un [3, Theorem 4.8], [15, Corollary 17.5]. The 
·set of all connected unipotent normal subgroups of a connected algebraic group G 
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has a unique maximal element nu(G) called the unipotent radical [3, 11.21], [15, . 
19.5] of G. The group G is said to be reductive [3, 11.21], [15, 19.5] if nu(G) = {1}, 
Let Bn ~ GLn denote the group of all invertible upper triangular matrices. 

Example 3.4 If G = B~ then nu(G) = Un. Thus Bn is not reductive for n ~ 2. 

Example 3.5 Let G = GLn. Since any normal subgroup of G either contains SLn 
or is included in the center Z(G) = {ti I t E K*}, G is reductive. Similarly SLn is 
reductive. 

If e E E(M) is idempotent, define the right centralizer P(e) and left centralizer 
p-(e) of e in G to be the subgroups [31, p.47] 15 

(14) P(e)={gEGige=ege}, p-(e).={gEGieg=ege}. 

Let Ca(e) = {g E G I ge = eg} be the centralizer of e in G. Then 

(15) Co( e)= P(e) n p-(e) . 

Sometimes we write L(e) = Ca(e) since it turns out that L(e) is a common Levi 
factor of P(e) and p-(e); see (64) for the definition of Levi factor and see the case .. 
r = {e} of Theorem 5.7. 

Example 3.6 Let G = GLn. For 1 ::::; r ::::; n let e = er = diag(1, ... , 1, 0, ... , 0) E 

Dn where there arer entries equal to 1. Then P(e) = [~ :J and p-(e) = [: ~]where 
the *'s are arbitrary matrices of the appropriate size such that the diagonal *'s are 
invertible. These groups have unipotent radicals U(e) = [~ il and u-(e) = [! ~~ 
respectively, where the I'$ are identity matrices of the appropriate size. Note that 
the intersection L(e) = [~ ~] is the centralizer of e in GLn. It is isomorphic to 
GLr x GLn-r and hence is a reductive group. Note also that P(e) and p-(e) 
factor as semidirect products P(e) = L(e)U(e) and p-(e) = L(e)U-(e). Since 
L(e) is reductive and U(e) is a unipotent normal subgroup of P(e) we have U(e) = · 
'R-u(P(e)). Similarly u-(e) = nu(P-(e)). This is an important example in the 
general theory; see (64) and Example 4.30. 

Definition 2 A reductive monoid is an algebraic monoid which is irreducible as 
algebraic set and has a connected reductive group of units. 16 

Thus, for example, Mn is reductive because GLn is reductive. The monoid in 
Example 3.2 is not reductive. An element g = (x, xll· .. , xn) E G is unipotent if 
and only if x = 1. The set U = {(1, xll ... , xn)} of all unipotent elements in G is a 
normal subgroup of G which is Zariski closed because it is isomorphic to a product 
of n copies of K. Thus U = nu(G) and G is n0t reductive. 

It is truly remarkable, an unexpected confluence of group theory and semigroup 
theory, that M is reductive if and only if M is regular. 

15 These are sometimes written as C(;(e) and Ch(e). The notation P(e), p-(e) is more suggestive 
in the context of reductive ·monoids, since P( e), p- (e) are parabolic subgroups of G; see the remarks 
which precede Example 4.29 for the definition of parabolic subgroup. 

16 The connectivity of G is in fact a consequence of the irreducibility of M [25, p. 695]. 
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Theorem 3.3 Let M be an irreducible algebraic monoid with zero. Then M is 
'rP/m.r•r.u:•P if and only if M is regular. 17 

There is a clear signal here. Regular semigroups are a distinguished class in 
theory. Reductive groups form the centerpiece of the theory of algebraic 

groups. Two notions which, on the face of it, have nothing to do with one another 
in fact closely related. From the point of view of semigroup theory, it might be 

a good idea to learn something about reductive groups. We will do this in the next 
section. From Theorem 3.3 and Proposition 3.2 we conclude: 

Theorem 3.4 Let M be a reductive monoid with zero. Let G be the group of units 
of M. Then G\M/G is finite, and every G x G orbit contains an idempotent. 

4. Reductive Groups 

This is a big subject. Our aim is to maximize understanding in minimal time by 
study of some of the main examples. Thus the sequence of definitions and theorems 
given here is not the sequence one would ordinarily use to develop the theory. We 
have not in-general used the formal notice Theorem. 'There are two exceptions. It 
would not be possible to prove the main theorems on reductive groups in the order 
given here. The Lie algebra has been suppressed, the roots are defined in terms 
of their corresponding root groups and introduction of the Borel subgroup is long 
postponed. We will make the necessary definitions, state some of the main theorems, 
and spend most of our time on examples. The examples will be GLn, SLn, and the 
symplectic group Spn. To avoid trivial cases we assume throughout that n 2:: 2. Note 
though that GL1 ~ K*. 

This is a long section, which I have tried to make "user-friendly." A reader who 
cares about semigroups, but knows nothing about reductive groups, might turn to 
the last paragraph of this section. Here, in the correct general context, we find the 
right and left centralizers P(e), p-(e) of an idempotent e E Mn which were defined 
in (14) and computed in Example 3.6. 

Our first aim is to introduce the roots of a reductive group, relative to a chosen 
maximal torus. Let's begin in comfort with GLn. For 1 ~ i =/:. j ~ n let 

U;i = {I + cEij I c E K} 

where E;j is a matrix unit. Then Uij is a unipotent subgroup of G and the map 
x;; : K+ --7 U;i defined by 

17 The implication "regular => reductive" was proved by Putcha in [26, Theorem 2.11]. The 
converse was proved by Putcha [28, Theorem 2.4] if K has characteristic zero, using complete 
reducibility of the rational representations of G. The converse was proved in arbitrary characteristic 
by Renner in his Thesis [39, Theorem 4.4.15], [42, Theorem 3.1]. Renner's proof uses a fair amount of 
algebraic geometry. Putcha [29, Theorem 1.1] gave a different proof, valid in arbitrary characteristic, 
which uses the structure of reductive groups and some geometry. This argument also appears in [31, 
Theorem 7.3]. The hypothesis concerning zero is "necessary". If M is a regular algebraic monoid 
and H is a connected algebraic group which is not reductive, then the monoid of all matrices 
diag(a, h) with a EM and hE His regular but not reductive. 
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(17) x;;(c) =I+ cE;; , c E K 

is an isomorphism. Here K+ denotes the additive group of K. It has been known 
since Jordan in the case of the finite field F P> and since Dickson in general, that 
the subgroups Uij generate SLn and hence, together with the invertible diagonal 
matrices, generate GLn· If t = diag(tb ... , tn) E Tn then 

(18) 

For i f. j define a;; E X(Tn) by a;; = c;cj1 where c; is as in (9). Then we may 
rewrite (18) as 

(19) tx;;(c)C1 = x;;(a;;(t)c) , t E Tn, c E K . 

This formula suggests a definition, (20) below, in any connected reductive group G. 
First we define the analogue in G of the subgroup Tn of GLn. A maximal torus 
of G is a torus T ~ G of maximal dimension. Since a closed connected subgroup 
of a torus is itself a torus [3, Corollary 8.5], a maximal torus is maximal in the set 
theoretic sense. Choose, once and for all, a maximal torus T. Since T is uniquely 
determined up to conjugacy in G [3, Corollary 11.3], [15, Corollary 21.3.A], our later 
constructions do not depend on the choice of T. A character a E X (T) is a root of 
G relative to T if there exists a monomorphism cp : K+ ~ G such that 18 

(20) tc,O(c)C1 = cp(a(t)c) , t E T, c E K . 

Define 

(21) Ua = cp(K). 

In view of the preceding footnote, the group cp(K) is uniquely determined by a: and 
our usage of Ua is consistent with that in [3, 15). The subgroups Ua are called root 

18 This is not the usual definition of "root" a.s given for example in (3, 8.17] or (15, 16.4) but 
is equivalent to it. The point of the definition given here is that it allows us to enter the subject 
with minimal prerequisites. Since roots are the essence of reductive groups we show the reader 
where to find a proof that the two definitions are equivalent. The group G and hence the maximal 
torus T has a representation on the Lie algebra of G - not defined in this paper - called the adjoint 
representation (15, 9.1], (3, 3.13] and written Ad. The set of roots of G relative to T is, according 
to the usual definition, the set il>(Ad) of weights of the adjoint representation. If a E ii>(Ad) then 
(15, Theorem 26.3(c)] proves the existence of a monomorphism cp which satisfies (20). Conversely 
suppose a E X(T) satisfies (20). Then T normalizes cp(K). It follows from (3, Proposition 13.20] 
with H = cp(K) that there exists {3 E il>(Ad) such that cp(K) = Uf:l where the group Uf:l is defined 
in [3, Theorem 13.18(4)(d)J or (15, Theorem 26.3(a)]. It follows from (15, Theorem 26.3(c)] that 
there exists a monomorphism 1/J : K+ -+ G such that t'I/J(c)t- 1 = 1/J(f3(t)c) for t E T and c E K. 
Since ..p-1 cp is an automorphism of K+ it follows from [3, 10.10] that there exists k E K* with 
1/J(c) = cp(kc). Then cp(ka(t)c) = cp(kf3(t)c) so a = {3. Thus a E il>(Ad). This argument also shows 
that the group cp(K) in (19) is uniquely determined by the root a a.s cp(K) = Ua. 
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groups. The map r.p is not uniquely determined by a. However, as remarked in the 
preceding footnote, the automorphisms of K+ have the form c ~ kc, so the map r.p 
is determined up to replacement of r.p by c ~ r.p(kc) for some k E K*. For given a 
we make a fixed choice of r.p. 

The term "root" may puzzle a beginner. The Lie algebra of GLn is Mn with the 
bracket operation [a, b] =ab-ba for a, bE Mn· If a= diag(all · · · , an) E Dn ~ Mn 
is a diagonal matrix, then the formula [a, EiJ] = ( ai - a1 )Eij shows that EiJ is an 
eigenvector for the K-linear map denoted ad a : Mn ---? Mn which is defined by 
b ~ [a, b], for b E Mn and that the corresponding eigenvalue, alias characteristic 
root, is ai- a1. This is the Lie algebraic version of (18) and is the source of the 
terminology. 

The set i!?(G,T) ofroots is finite and 19 

(22) li!?(G,T)I =dim G- dim T. 

Example 4.1 Let G = GLn· Then G is a connected reductive group and T = Tn 
is a maximal torus. 20 Let Ei be as in (9). Then if?(G,T) = {c:ic:j 1 II~ i =/= j ~ n} 
because (18) shows that Cit:j1 E if?(G,T) and li!?(G,T)I =dim G- dim T = n 2 - n 

is the number ofcicj1 with i =/= j. If a= Eit:j1 then Ua = Uij is as in (16). 

Example 4.2 Let G = SLn. Then G is a connected reductive group and T = GnTn 
is a maximal torus. Let C:i be as in (12). Then if?(G,T) = {cit:j1 11 ~ i =/= j ~ n}. 
The homomorphisms Xij are exactly as in G Ln and I iJ? ( G, T) I = dim G - dim T = 
(n2 - 1)- (n- 1) = n2 - n as in GLn. Again, if a= Eicj1 then Ua is as in (16). 

Example 4.3 Let n = 2l be even and let {v1 , ... ,vn} be the standard basis for Kn. 
Let J = [_~ ~] E Mn where I is the identity matrix of size l. Thus J is nonsingular 
and skew symmetric. The symplectic group is by definition 

I 

(23) 

It is connected and reductive. 21 LetT= G n Tn. Elements ofT have the shape 

(24) 

19 This follows from [3, Proposition 13.20], [15, Corollary 26.2.B] and the fact that the dimension 
of G is equal to the dimension of its Lie algebra [3, 3.5], [15, 9.1]. 

20 Since the torus T is its own centralizer in G it is a maximal torus. To prove that G is connected, 
note that G = ( T, U;j I 1 :=:; i of; j :=:; n ). Since T ~ (K*)n and the U;j ~ K+ are connected we 
may apply [15, Corollary 7.5]. We have already remarked that G is reductive. 

21 The group G is generated by transvections [1, Theorem 3.21], each of which may be imbedded 
in a subgroup isomorphic to the connected group K+ [50, 6.6]. Thus we may apply (15, Corollary 
7.5] to prove that G is connected. To prove that G is reductive one may use the fact that the only 
proper normal subgroup of G, as abstract group, is its center of orcler at most 2 [1, Theorem 5.2]. 
Alternatively, one may exploit the fact that the natural representation of G on Kn is irreducible 
[6, Expose 22, p.1]. 
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where t1. ... , t1 are arbitrary in K*. Thus T is a torus of dimension l. As in the 
case of GLn, it is a maximal torus because it is its own centralizer in G. Define 
c:i : T -+ K* for 1 $ i $ l by 

(25) 

Since dim G = l(2l + 1) [6, Expose 22, p.3] we have lq>(G, T)l =dim G- dim T;::;; 
l(2l + 1) -l = 2l2 • 22 We will exhibit 2l2 homomorphisms cp : K+ -+ G which satisfy 
(20) for suitable characters a E X(T) [6, Expose 22, p.2]. For 1 $ i i: j $ l define 
Yij : K+ -> SL, by Yij(c) =I+ cEij forcE K. These are precisely the maps used 
in (17) with a change of notation because the letter "x" is now reserved for Spn. 
Define Xij : K+ -> Spn by 

(26) Xij(c) = [Yij(c) 0 ] 
0 Y;i( -c) 

To check that Xij(c) E Spn use Y;i(c) = Yii(c)T. For 1 $ i i: j $land c E K, define 
x~j,xij by 

(27) ~-()_[I c(Eii +Eii)] ~'·() = [ I 0] x,J c - , x,J c . 
0 I c(Ei; + Eji) I 

For 1 $ i $land c E K, define Xi, xi by 

(28) Xi (c) = [I cEii ] , xi (c) = [ I 0 ] 
0 I cEii I 

Here the Eij E Mt are matrix units and I is the identity matrix of size l. These maps 
cp = Xij, x;i, xij, Xi,xi are all monomorphisms from K+ -+ SPn· 23 We must compute 
tcp(c)t-1 for these monomorphisms cp and check that there exist characters a E X(T) 
which satisfy (20). This calculation may be done easily with block matrices of size 
l and we simply tabulate the results below. We have 

cp tcp(c)t-1 a 

Xij Xi;(titj 1c) -1 C:iC:j 1$i#j$l 

(29) xi; xi;(tit;c) C:iC:j 1$i<j$l 

x~'. , (t-1c1 ) -1 -1 1$i<j$l 
•J xij i i c c:i c:j 

Xi xi(trc) c:~ • 1$i$l 

x'. xWi2c) -2 1$i$l • c:i 

22 The dimension of G is computed in [6, Expose 22] by algebro-geometric argument; one may 
also compute it as the dimension of the Lie algebra Lie( G)= {a E Mn I aT J + Ja = 0}. 

23 They may be found, with slightly different notation, in [6, Expose 22] 
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the ci are as in (25) and t and the ti are as in (24). Thus the set cl?(G, T) of 
of G = Spn relative to the chosen maximal torus T is the set of characters a 

the right hand column of the table, namely 

the restrictions on i,j given above. If a E ~ then Ua is the set of matrices 
appear in the appropriate line (26)-(28). 

Let G be a connected reductive group. Then 

G = < T,Ua I a E ~(G,T) > 

generated by the maximal torus T and the root groups Ua [3, Corollary 14.8.1], 
Theorem 26.3(d)]. Thus the structure of G is determined in large part by the 

manner in which the various Ua are glued together. This is controlled by the Weyl 
group, a finite group with extraordinary properties. The setup is complex enough 
to be interesting but structured enough to be manageable. Our next objective is to 

the Weyl group. The Weyl group of G relative to T is by definition 

W(G,T) = Na(T)/T 

Na(T) is the normalizer ofT in G. 24 Let's simplify notation. Henceforth we 
a maximal torus T and write~= ~(G,T) for the set of roots, N = Na(T) for 
normalizer and W = W(G,T) for the Weyl group. The Weyl group is finite [3, 

[15, Proposition 24.l.A]. 

1:1;,•"A"" ... Jl-'~"' 4.4 Let G = GLn. Let Sn be the symmetric group on {1, ... , n }. Define 
subgroup Nn of GLn by 

Nn = {w = L:T=1 tiE1rj,j I ti E K* and 1r E Sn} . 

The group Nn consists of all matrices which have just one nonzero entry in each row 
and column. These are sometimes called monomial matrices. The notation Nn is 
not standard but will be useful. Let's choose T = Tn as our maximal torus. Then 
N = Nn. The map w = LJ=l tjE1rj,j 1-+ 1r is a homomorphism from N onto Sn with 
kernel T. Thus W = N /T ~ Sn so the Weyl group is isomorphic to the symmetric 

·group on n letters. Let Pn C G be the group of permutation matrices. By definition 
these are matrices of the form p = 2:;=1 E1r3,3 where 1r E Sn. Then N = TPn splits 
as a semidirect product and we may realize W as a subgroup of G. This simplifies 
calculations in case G = GLn but it is misleading. In general there is no semidirect 
product decomposition N = T P with P isomorphic to W. 

24 IfG is a connected algebraic group and T ~ G is a torus, then the Weyl group is defined (3, 
11.19], (15, 24.1] by W(G, T) = No(T)/Zo(T) where Zo(T) is the centralizer ofT in G. If G is 

and Tis a maximal torus then Zo(T) = T [3, Corollary 13.17(2)], [15, Corollary 26.2.A] 
so W(G, T) is as in (32). 
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Example 4.5 Let G = SLn and T = GnTn. Then N = GnNn. The map N-+ Sn .· 
defined by p = Ej=1 t3E1rj,j ~ 1r is surjective, as in the case of GLn and has. 
kernel T. Thus again W = N/T ~ Sn. Note that permutation matrices may haye. 
determinant -1 and thus need not be in G. For example, if n = 2 and 1r = (12), the . 
corresponding coset inN may be represented by w = [_0

1 ~] but not by p = [~ ~]. 

Example 4.6 Let G = Spn and let T be as in Example 4.3. Let's compute W. 
The description of N is complicated by the fact that Spn ~ SLn so that Spn does 
not contain the group Pn of permutation matrices; see the last sentence in Example 
4.5. Let's ignore this difficulty for the moment. If 1r E Sn let P1r = E~=l E1ri,i E Pn • 
be the corresponding permutation matrix. Define an involutory permutation i H I 
of {1, ... , n} by I = i + l if 1 :::; i :::; l and I = i - l if l + 1 :::; i :::; n. Let C 
denote the centralizer of this involution in Sn. Then P1r normalizes T if and only 
if 1r E C. The group C factors as a semidirect product C = C1 C2 where C1 is a 
normal abelian subgroup of order 21 generated by the transpositions (1I), ... , (11) 
and C2 ~ S, consists of all permutations 1r E Sn which stabilize {1, ... , l} and act 
on the complement {l+1, ... ,n} in the unique manner consistent with the assertio11 
that 1r E C. For example, with l = 5, if the restriction of 1r to {1, ... , 5} is (135)(24) 
in cycle notation, then 1r = (135)(24)(135)(24). Note that ICI = IC1IIC2I = 211!. 
Now return to the difficulty mentioned at the beginning. It is possible to multiply 
P1r by a suitable diagonal matrix d1r with entries ±1 such that W1r = d1rP1r E Spn. 
Since P1r normalizes T so does w1r· Thus W1r EN. This shows that N 2 U1rEC w"T, 
where U means disjoint union. In fact N = U1rEC w1rT. Thus W = N /T ~ C ~ Sn. 
Fori= 1, 2 let N, = U1rEC; w1rT and let Wi = NifT. Then W = W1 W2 ~ C1C2 = 
C ~ Sn where the products are semidirect. There exists an isomorphism fJ : W--> 
GLz(R) such that fJ(WI) is the group of diagonal matrices with entries in {±1} and. 
fJ(W2) = P1 is the group of permutation matrices. The group fJ(W) is the symmetry 
group of the hyperoctahedron or cross polytope in R 1 with vertices at the 2l points 
±e1 , ... , ±ez where e1 , ... , ez is the standard basis for R 1• Thus W is sometimes . 
called the hyperoctahedrol group. 

Let G be a connected reductive group and let T ~ G be a maximal torus. If 
x E X(T) and w E N, define a function wx : T -+ K by (wx)(t) = x(w-1tw) · 
for t E T. Then wx E X(T). Since w-1 tw depends only on w = wT we write 
wx = wx. Thus W acts on X(T). If x, x' E X(T) then w(xx') = (wx)(wx'), so 
w(xx') = (wx)(wx'). Thus W acts as a group of automorphisms of the abelian • 
group X(T). This action is faithful: if wx = X for all X E X(T) then w = 1.25Let 
p : G -+ GL(V) be a rational representation. View p as a representation ofT and, 
as in Section 2, let ~(p) C X(T) be the set of weights of p. Suppose x E ~(p) 
and v E V is a vector of weight X· Thus p(t)v = x(t)v for t E T. If w E N then 
p(t)p(w)v = p(w)p(w-1tw)v = p(w)x(w-1tw)v = (wx)(t)p(w)v. Thus wx E ~(p). 
Thus 

(34) W~(p) = ~(p) . 

25 Suppose w E N and wx =X for all X E X(T). If t E T then x(w-1twr1 ) = x(w- 1tw)x(tt 1 = 
1. Thus wtw-lt-1 = 1 sow centralizes T and thus wET; see the footnote which follows (32). 
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If we had defined roots using the adjoint representation - see the footnote to (20) -
it would follow in particular from (34) that W~ =~.Let's check this directly 

using our definition (20). Note that N acts on Hom(K+, G) by (wrp)(c) = wrp(c)w-1 

w E N, rp E ·Hom(K+, G) and c E K. If a E ~ and rp E Hom(K+, G) satisfY 
(20) then fJ = wa and 'lj; = wrp satisfy t'lj;(c)r1 = 'lj;(fJ(t)c) fort E T and c E K so 
= wa E ~. Thus indeed 

W~=~. 

If a E ~then, since T normalizes U01 , the group wUaw-1 depends only on w = wT E 
W. We abuse notation and write wUaw-1 = wUaw-1• Thus [15, Theorem 26.3(b)] 

Example 4. 7 Let G = GLn and let T, N be as in Example 4.4. If 1r E Sn let 
p = Ej=1 E1rj,j E Pn ~ N be the corresponding permutation matrix. Let £i E X(T) 
be as in (9). Then {c:~, ... , en} is a basis for the abelian group X(T). Since W acts 
as a group of automorphisms of X(T), the action of w on X(T) is determined by 
the W£i· Let w =pT. Then W£i = £1ri· Thus, as one might expect, W ~ Sn permutes 
et, ... , £n in the same way that Sn permutes {1, ... , n }. From Example 4.1 we have 
<P = {£i£j1 II$ i =/= j $ n}. Then w(£i£j1

) = (wc:i)(wc:j)- 1 = £1ric:;] E ~.If Uij is 
the root group corresponding to £i£j1 and 1r E Sn is the permutation corresponding 
tow E W then wUijW-1 = U1ri,1rj· 

Example 4.8 Let G = SLn. LetT, N be as in Example 4.5 and let £1, ... , £n be as 
in (12). Remember in this case that £1 · · · £n = 1. Here we may choose £1, ... , £n-1 as 
a basis for X (T). In spite of this difference, the bottom line for SLn is the same as for 
GLn. By Example 4.2 we have~= {£i£j1 II$ i =/= j $ n}. If wE W corresponds 
to 7r E Sn then W£i = £1ri and w(£icj1

) = £1ric:;J E ~and wUijW-1 = u1ri,7rj• 

Example 4.9 Let G = Spn where n = 2l. Let T, N be as in Example 4.6 and let 
Cl, ... , £I be as in (25). Recall from Example 4.6 that w = w1 w2 ~ c1 c2 = c ~ 
Sn· To describe the action of w E W on X (T) it suffices to know the action of w E W1 

and w E W2. H w E W1 and 1r E Sn is the corresponding permutation then there 
exists a subset I of {1, ... , l} such that 1r = Ite1 (il). Then for 1 $ i $ l we have 
we:i = £i1 if i E I and W£i = £i if i f/. I. If w E W2 and 1r E Sn is the corresponding 
permutation then 1r{l, ... , l} ~ {1, ... , l} and the action of won X(T) is given by 

= £1ri for 1 $ i $ l. It follows that the set ~ listed in (30) is stable under both 
W1 and W2 and is thus stable under W. To check that wUaw-1 = Uwa in Spn one 
must separate the cases (26), (27), (28) and one may choose w E W1 or w E W2 • 

Let G be a connected reductive group and let T ~ G be a maximal torus. Since 
X(T) is a free abelian group, we may use additive notation and write x + x' rather 
than XX'· If w E W and x,x' E X(T) then w(x + x') = wx + wx'. Thus W 

faithfully as a group of Z-linear mappings of X(T). Identify X(T) with a Z
submodule of the real vector space X = X(T) 181 R via x = x 181 1 [3, 14.8],[15, 
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26.1j26 .The dimension dimRX of X as vector space over R is equal to the rank of 
X (T) as free abelian group which is dim T. If {x1 , ••• , Xr} is a basis for X (T) as 
free abelian group, then {x1 , ••. , Xr} is also a basis for X as vector space over R. 
The Weyl group W may now be viewed as a group of R-linear transformations of 
X, as well as a group of Z-linear transformations of X(T). 

The roots<} need not span, the real vector space X. To describe the difference be
tween dimR X and dimR Eae~ Ra we introduce the notions of rank and semisimple 
rank. The integer r =dim T = dimR X is called the rank (15, 21.3] of G. 27 To define 
the semisimple rank of G we introduce the notions of radical and semisimple group. 
Any connected algebraic group G has a unique maximal connected solvable normal 
subgroup "R-(G) called the radical [3, 11.21], [15, 19.5] of G. The radical is automati: 
cally a closed subgroup of G. The group G is by definition semisimple [3, 11.21], [15, 
19.5] if G jl:.{1} and "R-(G) = {1}. If G is semisimple then the connected component 
Z(G) 0 ofthe center is {1} so Z(G) is finite. For example G = SLn and G = Spn are 
semisimple; in either case a normal subgroup different from G is a subgroup of Z(G). 
If G is semisimple then G is reductive. In the opposite direction, if G is reductive 
then "R-(G) = Z(G)0 is a torus [3, Proposition 11.21], (15, Lemma 19.5]. If G is re
ductive then the commutator subgroup (G, G) is semisimple [3, 14.2]. Furthermore 
G = (G, G) Z(G)o and (G, G) n Z(G) is finite [3, Proposition 14.2], [15, 27.5]. For 
example, if G = GLn then "R-(G) = Z(G) = {ti I t E K*} and (G, G) = SLn so 
that (G,G) n Z(G) = {ti I tn = 1}. If G is a connected reductive group and Tis a 
maximal torus of G, the semisimple rank [3, 13.13], [15, 25.3] of G is by definition 
l =dim T- dim (T n "R.(G)). Then l =dim T- dim Z(G) = dimREae~ Ra by 
[3, Theorem 14.8]. Thus the semisimple rank of G is equal to the dimension of the 
real vector space spanned by the roots. Let's translate the statements in Examples 
4.7-4.9 into the additive language. 

Example 4.10 Let G = GLn. Here X(T) = Ze1 EEl··· EEl Zen and X = Re1 ffi · · · 
• • • EfJ Re ... Then C.!! = {ei- e; 11 :5 i i= j :5 n}. If w E W corresponds to the 
permutation 1l" E s .. then Wei= e.,., and thus w(ei- e;) = e.,.i- e.,.1. The r~k of G 
is r = n; the semisim~le rank is l = n - 1. 

Example 4.11 Let G = SL ... Here X(T) = Ze1 +·+Zen and X= Re1 +· · +Rcn· 
The sums are not direct since e1 +···+en = 0. We have X(T) = Ze1 EfJ • • • EfJ Zen-! 
and X= Re1 EEl··· ffi Ren-l· The bottom line for SLn is the same as for GLn. We 
have C.!!= {ei- e; 11 :5 i i= j_-5, n} and Wei= e.,.i so w(ei- e;) =e.,.,- e.,.i E <P. 
The rank of G and the semisimple rank of G are given by r = l = n - 1. 

Example 4.12 Let G = Sp ... Here X(T) = Ze1 EEl·· ·EElZez and X= Re1E9· · ·ffiRc:1 
where n = 21. From (30) we get 

26 In the rest of this section it would be possible, in most statements, to replace the real field R 
by the rational field Q and work in X(T) ® Q as in [3, 15]. 

27 This differs from the definition ofrank given in [3, 12. 2] but .the two definitions are equivalent 
when G is reductive, by [3, Corollary 13.17.2(c)]. 
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In the notation of Example 4.9 the action of W is given as follows. H w E W1 
corresponds to 1r = lliei(ii) E Sn then WC:i = -C:i when i E I and WC:i = C:i when 
i f/. I. H w E w2 corresponds to 1f' E Sn then WC:i = C:,..i for 1 :::; i :::; l. Thus w, 
in its action on X, permutes the set {±c:1 , .•. , ±c:,}. H we use the basis £1, ... , c:1 
to identify X with Euclidean space R 1 then the points ±c:i are the vertices of the 
cross polytope, and this representation of W by linear transformations is the one 
mentioned in Example 4.6. The rank of G and the semisimple rank of G are given 
by r = l = kn. 

Let X be a real vector space of finite dimension. An element s E GL(X) is a 
reflection [3, 14.7], [15, p.229] if s =/= 1 and s fixes a subspace of codimension 1. Then 
s has just one eigenvalue different from 1 which, since the characteristic polynomial 
of s has real coefficients, must be -1. Thus s2 = 1 and there is a nonzero vector a, 
determined uniquely up to a scala,r multiple, such that sa = -a. 

Theorem 4.1 Let G be a connected reductive group and letT be a maximal torus. 
Let~= ~(G,T) be the set of roots and let W = W(G,T) '-+ GL(X) be the Weyl 
group. If a E ~ then -a E ~ and there exists a reflection Sa E W such that 
saa = -a. The group 

(37) W = < s"' I a E tl. > 
is generated by the reflections Sa corresponding to the simple roots a E tl.. Further
more, if a, f3 E ~ then there exists np,"' E Z such that 

(38) 

This theorem is the most amazing and important fact in the structure theory of 
reductive groups. It makes the subject. The proof is long and difficult. 28 Note 
that na,a = 2 since saa = -a. 

For the moment, let X be any real vector space of finite dimension and let 
W C GL(X) be a finite group of linear transformations. There exists a positive 
definite inner product (symmetric bilinear form) on X which is W-invariant: 29 

(wx, wx') = (x, x') for w E Wand x, x' EX. Let O(X) C GL(X) be the orthogonal 
group, the group of all linear transformations g E GL(X) such that (gx, gx') = 
(x, x') for all x, x' E X. Then W C O(X). If s E O(X) is a reflection and a E V is 
a nonzero vector with sa = -a then 

(39) 
2(x, a) 

SX = X - -(--) 0! • 
a, a 

28 The main effort is to show that .P is a root system in the real vector space I:ae~ Ra. See [3, 
14.7], [9, 64.4], [15, 27.1], for the definition of root system, and (3, Theorem 14.8] for the last lines 
in the proof. There are important preliminary steps in the proof, which concern reductive groups 
of semisimple rank 1; these are used to prove the existence of the groups Ua. See (3, Theorem 
13.18(4)], [15, 27.1] for the existence of a reflection sa with saa = -a. See [3, Corollary 14.6], 
(15, 27.2] for the proof of (38). Once one knows that <I1 is indeed a root system, the assertion (37) 
follows from properties of "abstract root systems" in a real vector space (3, 14.7], (15, p.229]. 

29 If (x, x') is any positive definite inner product on X then (x, x1
) = I:wew (wx, wx') is a 

W-invariant positive definite inner product. 
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Return to the case of a reductive group where W is the Weyl group. It is conve
nient in the examples, but not necesary, to choose a W-invariant inner product on 
X= X(T) ®R. This inner product is not in general unique. It is unique up to scalar 
multiple in case W is the Weyl group of SLn, or Spn because W acts irreducibly on 
X in these cases. 

Example 4.13 Suppose that G = GLn, SLn, or Spn and that the f:i are as in 
Examples 4.10-4.12. if G = GLn or.·Spn then the £i are an R-basis for X and we 
may define an inner product on X by (c:i, f:J) = Oij, Kronecker delta. If G = SLn 
we must be careful because <:1 + · · · + en = 0. In this case there is a well defined 
inner product on X such that (ci,cj) = OiJ- ~·In all three cases, it is clear from 
the formulas for w E Win Examples 4.4-4.6 that the inner product is W-invariant. 

If we compare (38) with (39) we see that 

(40) 
2([3, a:) 
(a:, a:) = n/3,a E Z . 

Example 4.14 Let G = GLn. Use the notation of Example 4.7 and the inner 
product in Example 4.13. If a: = E:i - f:J, it follows from (39) that Saf:i = C:j, 

SaC:J = E:i, and Sack = f:k for k =/:- i, j. Thus the matrix for Sa E 0(4) with respect to 
the basis {<:1. ... , en} is the permutation matrix corresponding to the transposition 
(ij). The assertion (37) amounts in this case to the fact that the transpositions (ij) 
generate the symmetric group. If a:= E:i- c:1 and f3 = f:p- cq then (a:, a:) = 2 and 
the n/3,a in ( 40) are given by 

(41) 

Example 4.15 Let G = SLn· Use the notation of Example 4.8 and the inner prod
uct in Example 4.13. Although the inner product here is not the same as in GLn 
the bottom line is the same. If a:= E:i - f:J then again Saf:i = C:J, Saf:J = E:i, and 
Sack = Ek for k =/:- i, j. Since dimR X = n- 1, the matrix Sa E O(X) with respect to 
the basis {<:1. ... , C:n-d is not a permutation matrix. Nevertheless, the permutation 
in Sn which corresponds to sa is again (ij). The integers n/3,a are exactly as in the 
case GLn. 

Example 4.16 Let G = Spn where n = 2l. Use the notation of Example 4.9 and 
the inner product in Example 4.13. We compute the action of the sa E O(X) on 
the basis { <:1, ... , c:c} as well as the corresponding permutations 1r E C ~ Sn. If 
a:= f:i- f:J then (39) gives Saf:i = C:j, Saf:J = E:i, and Sack = f:k fork=/:- i,j. The 
matrix for sa is the permutation matrix corresponding to the transposition (ij). 
Remember here that 1 ~ i =/:- j ~ l so that sa E P,. The corresponding permutation 
in C is 1r = (ij)(l]). If a: = E:i + f:J then (39) gives SaC:£ = -f:j, Saf:J = -c:i, 

and Sack = f:k for k =/:- i,j. The corresponding permutation in C is 1r = (i])(lj). If 
a: = 2c:i then Saf:i = -E:i and Sack = f:k for k =1- i. The corresponding permutation in 
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.G is 1f = (ii). The permutation matrices of size l together with the diagonal matrices 
· diag(1, ... , -1, ... , 1) generate W when viewed as subgroup of GL(X) relative to 
ti the basis e1 , .•. , et. This is the assertion (37) in our present example. We omit the 
~~list of integers 2((3, a)/(a, a), but some of them are given later in (4.24). 

!}) Let X be a real vector space of finite dimension, with positive definite inner 
i; product. Let W C O(X) be a finite group generated by reflections. Say that 
~rW is crystallographic if it satisfies the condition (40), called the crystallographic 

restriction [16, 2.8-2.9). There are finite groups generated by reflections which are 
.• not crystallographic. For example if Pis a regular n-gon in the Euclidean plane R 2 

•.:. then the symmetry group W(P) is dihedral and hence generated by reflections, but 
... W(P) is crystallographic only for n E {3, 4, 6}. If P is one of the regular polytopes 

in R 3 then W(P) is generated by reflections, but W(P) is not crystallographic if P 
is the icosahedron or dodecahedron. In fact, a finite group generated by reflections 
is crystallographic if and only if it is the Weyl group of some reductive group. 30 

Now return to the context of roots in a reductive group. Since W permutes <I> 
and so:a = -a, it follows that if a E <I> then -a E <I>. We will decompose the set of 
roots as a disjoint union <I> = q>+ U q>- in such a way that (i) a E q>+ {::} -a E q>
and (ii) if a, (3 E q>+ and a + (3 E <I> then a + (3 E iJ!+. This may be done with an 
elementary geometric argument in the context of a real vector space X and finite 
subgroup of GL(X) generated by reflections [14, 4.1), [16, 1.3). However, in the 
context of reductive groups, we must relate the decomposition <I> = q>+ U q>- to the 
structure of the group G. This depends on the notion of a Borel subgroup, which 
has been suppressed so far in this exposition, but is used in the proof of Theorem 
4.1. 

Let G be a connected reductive group. A Borel subgroup of G is a maximal 
element B in the set of closed connected solvable subgroups of G. Then B is maximal 
in the set of solvable subgroups of G (15, Corollary 23.1.A). Borel subgroups exist 
and are uniquely determined up to conjugacy in G [3, Theorem 11.1), [15, Theorem 
21.3). 31 LetT be a maximal torus of G and let BT denote the set of Borel subgroups 
of G which include T. Then BT is finite, nonempty, and in fact [3, Proposition 11.19), 
[15, Proposition 24.1.A) 

(42) 

If B, B' E BT then B' = wBw-1 for some w E N and, for given B, the coset w = wT 
is uniquely determined by B' [3, Proposition 11.19), (15, Proposition 24.1.A). Since 
wB and Bw depend only on w we may write wE = wE and Ew = Ew. Thus the 
Borel subgroups which include T have the form wEw-1 for some unique wE W: 

30 It follows from ( 41) that the Weyl group of a reductive group is a crystallographic reflection 
group. For the converse, one must prove the existence of reductive groups. This can be done "case 
by case" using the classification of finite reflection groups. Such argument is of necessity long, since 
one must construct groups corresponding to the exceptional root systems E6, E7 , E 8 , F4 , G2 [15, 
33.6]. See [50, Chapter 12] for a case free argument. 

31 Borel subgroups may be defined in any connected algebraic group and are uniquely determined 
up to conjugacy [3, Theorem 11.1], [15, Theorem 21.3]. 
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(43) BT = {wBw-1 I wE W}. 

Let U = 'Ru(B) be the unipotent radical of B. Since B is solvable, U is the set 
of unipotent elements of B, and B may be decomposed as a semidirect product [3, 
Theorem 10.6(4)], [15, Theorems 19.3(b) and 19.5] 

(44) B ~·TU = T'Ru(B). 

Example 4.17 Let G = GLn and T = T n be as in Example 4.1. Then B = Bn is a 
Borel subgroup which includes T. We have remarked in Example 3.4 that 'Ru(Bn) = 
Un where Un is as in (13). Clearly Bn = TnUn. 

Example 4.18 Let G = SLn. Choose T = G n Tn as in Example 4.2. Then 
B = G n Bn is a Borel subgroup of d which includes T, and U = 'R.u(B) = G nUn. 

Example 4.19 Let G = Spn where n = 2l. Choose T = G n Tn as in Example 4.3. 
Define subgroups B 1 , B2 of G by 

B1 = { [ ~ ; ] I a EM, is symmetric }, 

Then B = B1B2 is a Borel subgroup of Spn which includes T, and U = 'Ru(B) =c 
BnUn. 

Let G be a connected reductive group, let T be a maximal torus, and let B.::) T 
be a Borel subgroup. There exists a unique Borel subgroup B- :::> T such that 
B n B- = T [3, Theorem 14.1], [15, Theorem 26.2.B). The Borel subgroups B,B
are said to be opposite. For example if G = GLn and B = Bn is the group of uppet 
triangular matrices then B- is the group B; of lower triangular matrices. Define 

{45) q;+(B) ={a E q; I Ua C B}, 

The· elements of q>+(B) are called positive roots relative to B; the elements of q;-(B) 
are called negative roots relative to B. In the rest of this paper we fix a Borel subgroup 
B :::> T and write q;+ = q>+(B) and q;- = q;-(B). Elements of q;+ are called positiv 
roots; elements of q;- are called negative roots. Then [3, Theorems 13.18(5)(a) and 
14.1.III] . 

(46) 

where the union is disjoint. The group X(T) may be given the structure of a totally. 
ordered abelian group such that q;+ is the set of positive elements in q; (3, Theorem 
13.18(5)(d)J, [15, 28.1]. Thus 

(47) a, {3 E q;+ and a+ {3 E q; => a+ {3 E q;+ . 
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~;Furthermore 

~'The groups Ua in the product may betaken in any order (3, Proposition 14.4], (15, 
~;Proposition 28.1]. 

1 Example 4.20 Let G = GLn. Let B be as in Example 4.17. If a = cj - c; 
~~then Ua C B precisely when i < j. Thus iJ?+ = {ci- c; I 1 :::; i < j :::; n} and 
~~- = {c;-ci 11:::; i < j:::; n}. Assertion (46) is clear. As for (47), if a= cj-cj E iJ?+ 
~and {3 = ck -cz E iJ?+ then i < j and k < l so a+ f3 = cj -£; +ck -cz E iJ? precisely 
twhen j = k, in whl.ch case a+ f3 = £i - cz E iJ?+ because i < l. Formula (48) · 
~bsserts in this case that every upper unitriangular matrix may be written in the 
B,form rrl<i<j<n(J + CijEij) for suitable Cij E K. The product may be taken in any 
forder. Once the order is fixed, the coefficients Cij are in fact uniquely determined. 
1.If G = SLn and B is as in Example 4.18, the conclusions are exactly as in GLn. 

i(,Example 4.21 Let G = Spn. Let B be as in Example 4.19. It follows from the 
j.ishape of the matrices in (26)-(28) and the list iJ? in Example 4.12 that 
l 
! .p+ = {ci- c; 11 :::; i < j :::; l} U {ci + c; 11 :::; i < j :::; l} U {2ci 11:::; i:::; l} . 

iAssertion ( 46) is clear. To verify ( 47), use (ci- c;) + (c;- ck) = (ci- ck), (ci- c;) + 
)i (ci + c;) = 2ci and (ci- c;) + 2c; = cj + c;. To verify (48) in this case, note that U 
il.\has a semidirect product decomposition u = ulu2 analogous to the decomposition 
~B = B1B2 in Example 4.19. · 
~l' 
i() We say that a positive root is a simple root if it cannot be written as a sum of 
llitwo positive roots (3, 14.7], (15, 27.3]. Let D. denote the set of simple roots. Then D. 
~',is a linearly independent subset of the real vector space X. Furthermore if a E iJ?+ 
!;: then a may be written uniquely as a Z-linear combination of elements in D. with 
~"non-negative coefficients (3, Corollary 14.8.1], 

f,:'Example 4.22 Let G = GLn with iJ?+ as in Example 4.20. Then 
fri: 
~:·.. D.= {c1- c2, c2- ca, ... , cn-1- en} . 

rThis set is clearly linearly independent. If o: = cj - c; E (]?+, so that· i < j, then 
~a= L:{;;~!(ck- ck+I) is the desired linear combination. If G = SLn the formulas 
fare exactly as in GLn. 

l; Example 4.23 Let G = Spn and let iJ?+ be as in Example 4.21. Then 
11'\:' 

,6. = {cl- €2, c2- €3, · .. , Cl-1- cz, 2cz} . 

The desired linear combinations may be found using the formulas (i) C:i - c:; = 
I:{;:i (c:k- C:k+I) for 1 :::; i < j < l-1, (ii) c:; + cz = (c;- c:z) + 2czfor 1 :::; j < l, (iii) 
2e; = (c:;-c:z)+(c;+c:z) for 1:::; j < l, (iv) cj+c; = (c:i-c:;)+2c:; for 1:::; i < j < Z: 
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It is understood in what follows that cf1 = <I1( G, T) is the set of roots of a reductive 
group, that fl. is the set of simple roots with respect to a chosen Borel subgroup ' 
B :::> T and that W = N/T is the Weyl group. We introduce the Cartan matrix, 
Coxeter diagram and Dynkin diagram. Let fl. = { a 1 , • • . , O!z} denote the set of 
simple roots. Thus l = dim :Eae~ Ra is the semisimple rank of G. The Cartan 
matrix of cf1 (5, 3.6), (15, p.230) is the l x l matrix with (i, j) entry 

(49) 

The ri;; are integers by (40). Clearly nii = 2. Clearly n;1 = 0 if and only if n;; = 0.' 
It happens that n;; E {0, -1, -2, -3} and that n;;n;; = max{ln;il, lni;l}. Thus if 
n;1 =f:. 0 then at least one of n;;, n;; is equal to -1. In view of (38), the Cartan matrix 
determines the action of WonT and hence on X(T). 

Example 4.24 If G = SLn with l = n -1 and A is as in (4.22), or G = Spn with 
n = 21 and D. is~ in (4.23), then the Cartan matrices are given by 

Cartan matrix 

SLn Spn 

2 -1 0 ... 0 0 2 -1 0 0 0 

-1 2 -1 0 0 -1 2 -1 0 0 

0 -1 2 0 0 0 -1 2 0 0 

0 0 0 .. . 2 -1 

0 0 0 ... -1 2 

0 0 0 2 -1 

0 0 0 -2 2 

The Dynkin diagram is a graph. with vertex set D. = { a 1 , •.. , az}, no loops, and. 
directed possibly multiple edges, defined as follows. Suppose i =f:. j. If n;; = 0 then 
nii = 0. The multiplicity of the edge connecting a; to a; is n;jn;;; if this number is 0 
it is understood that there is no edge. If (a;, a;) > ( a1, a1) then the edge is directed· 
from 0:; to Cl!j. If (a;, a;) = (a1, O!j) then the edge is undirected. These diagrams, 
with undirected edges and slightly different notation for the multiplicities (see below), 
were first introduced by Coxeter (8) in his enumeration of finite subgroups of GL1(R); 
generated by reflections; then Dynkin introduced them in the classification of simple 
Lie algebras over C [11, p.1). Their ancestry may be traced to Schla:fl.i who used a 
similar notation in his enumeration of the regular polytopes in R 1• 32 

32 The labeling ofm'l!ltiple edges in the Dynkin diagram exhibits the integers n;;n;;. The directed' 
edges exhibit then;; as well. Tits (52, p.2·4, p.243] was the first to use the directed diagrams;".:.: 
a un detail pres, celui utilise par Dynkin . . . ". Tits called them "Figures de Schllifli" following' a 
terminology introduced by Borel and de Siebenthal. Plus ~:a change, plus c'est la meme chose. 
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Example 4.25 The diagrams for SLn and Spn are 

o----·o- · · · -o----o o----o- · · · --o o 

0!!-1 

Now let's describe Coxeter's presentation of Was a Coxeter group, given in (53) 
below. Define integers mii for 1 5 i, j 5 l as follows. Let mii = 1. For i =f. j let mii 

. be the order of SiSj E W. Thus mij = mii· The l x l matrix with (i,j) entry equal 
to mii is called the· Coxeter matrix [4, n° 1.9]. 

Example 4.26 The Coxeter matrices for the Weyl groups of SLn and Spn are 

Coxeter :matrix 

SLn Spn 

1 3 2 2 2 1 3 2 2 2 

3 1 3 2 2 3 1 3 2 2 

2 3 1 2 2 2 3 1 2 2 

2 2 2 1 3 2 2 2 1 4 

2 2 2 3 1 2 2 2 4 1 

The connection between the Coxeter matrix and the Cartan matrix is given by 
the formula 

' The explicit values of the mii in terms of the niinii are given by the table 

(51) mi; 2 3 4 6 

niinii 0 1 2 3 

To get the Coxeter diagram from the Dynkin diagram proceed as follows: if i =f. j 
and niinii > 1, replace the multiple edge in the Dynkin diagram, and its arrow, by 
a single edge adorned with the integer mi;. Thus the Coxeter diagram and Dynkin 

.. diagram for SLn are identical and the Coxeter diagram for Spn is obtained from 
·the Dynkin diagram by replacing its unique multiple edge by o-L o . 
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Let s; =Sa; E O(X) be the reflection corresponding to O:i E 6.. Let 

(52) 

Then S generates W, as we have remarked in (37). The setS is called a set of Coxeter. 
generators of W. It depends on ~+ and hence on choice of the Borel subgroup B. 
The s; satisfy the relations 

(53) 

where [m;i] is the Coxeter matrix. It is a theorem of Coxeter that these relations 
(53) are a set of defining relations for W [8], [9, Theorem 64.26], [15, Theorem 29.4]. 

Example 4.27 Let W be the Weyl group of SLn· Then o:; = c; - c;+l for 1 $ i $ 
n -1. It follows from the formula for sa given in Example.4.15 that the permutation 
corresponding to the reflection s; under the isomorphism W ~ Sn is the transposition 
Ti = (i, i+ 1). These transpositions generate Sn. It was shown by E.H. Moore in 1897. 
that Sn has a presentation in terms of these transpositions with defining relations 

r~ • 1 1$i$n-1 

hri+l? = 1 1$i$n-2 

(r;ri )2 1 1$i<j-1$n-l. 

This is the presentation in (53) with S = { s1, ... , sn} and s; in place of r;. 

Let w E W. Since S generates W we may write w = sh · · · s;p where s;1 , •• • , s;, E . 
S. Define the length of w to be the least such p: 

(54) l(w) = min{p I w = s;, · · · s;p}. 

For example l(1) = 0 and l(s;) = 1. This length function appears in various parts 
of the theory of reductive groups, from combinatorics to cohomology. In general, if 
a group is given by generators and relations, it is hard to determine the length of a· 
group element as a word in the given set of generators. For the Weyl group we have 
the following combinatorial description of length due to Iwahori [17], [5, Theorem 
2.2.2]. If w E W let 

(55) 

be the set of positive roots mapped to negative roots by w. Then [17, Lemma 2.2], 
[9, Theorem 64.16(iii)] 

(56) l(w) = 1~;;;1. 
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xample 4.28 Let G = GLn. If o: E ~+ then o: = E:i - E:j where i < j. If w E W 
then wo: = c:,.i - E:trj where 1r E Sn is the corresponding permutation .. If wo: E ~

n 1ri > 1rj. Thus n(w) is the number of pairs (i,j) with 1 :5 i < j :5 nand 1ri > 1rj. 
is is the number of inversions in the permutation 1r. Thus l(w) is the number of 
ersions in the permutation 1r E Sn which corresponds to w. In particular, the 
rmutation 1r0 : 123 · · · n 1--t n · · · 321 has order 2 and is the unique permutation in 
with the maximum number of inversions. The corresponding Weyl group element 

w0 maps ~+ to ~- and is the unique element with this property. If B = Bn is our 
chosen Borel subgroup, then w0 Bw0 is the group B;;- of lower triangular matrices, 
the opposite Borel subgroup. 

The remarks in Example 4.28 are a special case of a general theorem about 
nite reflection groups: If X is a real vector space and W C GL(X) is a finite group 
enerated by reflections, then W contains a unique element w0 , called the opposition 
element, with the property w0~+ = ~- [5, Proposition 2.2.6], [9, Theorem 64.16(vi)], 
16, 1.8]. It follows from (56) that w0 is the unique element in W of maximal length, 
and that if w E W maps no positive root into a negative root then w = 1. Since 
if?- = -~+ we have w~~+ = ~+, sow~ maps no positive root into a negative root, 
and thus w~ = 1. Since w0~+ =~-,it follows from (36), (45) and (48) that 

(57) 

is the Borel subgroup opposite to our chosen Borel subgroup B. 

Let G be a connected reductive group. A subgroup of G is a parabqlic subgroup [3, 
Corollary 11.2], [15, 29.3] if it includes some Borel subgroup. A parabolic subgroup is 
dosed [3, 14.16], [15, 21.3] and connected [3, Theorem 11.16], [15, Corollary 23.l.B]. 
A parabolic subgroup is a standard parabolic subgroup [3, 14.17], [15, 30.1] if it 
includes our chosen Borel subgroup B. 

Example 4.29 Let G = GLn. A composition or ordered partition"{ of n, is a k
tuple b11 ... , "{k) of positive integers with "'t + · · · + "'k = n where 1 :5 k :5 n. The 
; are called the parts of "f· There are 2n-l compositions of n. Let P'Y be the group 
f all block diagonal matrices of the shape 

(58) I 
An A12 . . . Alk 

0 A22 ... A2k 
. . . . . . . . . 
0 0 Akk 

where Aii is a matrix of size "'i x "'i and Aii is invertible. Then P'Y 2 B so P'Y is 
.a standard parabolic subgroup of G. It is a consequence of Theorem 4.2 that each 
.standard parabolic subgroup has the form P'Y for some composition "' of n. Thus the 

apping 1 -+ P'Y is bijective from the set of compositions of n to the set of standard 
parabolic subgroups of G. In particular, G has 2n-l standard parabolic subgroups. 
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Let's examine, in the example G = GLn, the connection between the standard 
parabolic subgroups of G and certain subgroups of the Weyl group W. To avoid 
notational clutter, we agree to identify W with the symmetric group and with the· 
group of permutation matrices. Thus W = Sn C GLn =G. With this identification 
let W"~ = W n P"~. The elements of W"~ have the form diag(1r1 , .•. , ?rk) where 11"1 

is a permutation matrix of size li so that w"' ~ s"/1 X ••• X s"/h. Thus the groups 
W"', when viewed as groups of permutations, are the partition subgroups or Young 
subgroups of Sn. It is an elementary but important fact that 

(59) 

where B = Bn is the group of upper triangular matrices. Let's see why this is so. 
Let B- = B;:;- be the group of lower triangular matrices. Recall from linear algebra, 
that if a E Mn and the process of Gaussian elimination has no zero pivots, then a 
is the product of a lower triangular matrix and an upper triangular matrix. Thus if· 
g E G has no zero pivots then g E B-B. A generalization of this fact, which takes 
zero pivots into account, is the formula G = B-WB. This is sometimes called the 
Birkhoff decomposition of G. As in Example 4.28let 1r0 E W be the permutation with 
the maximum number ofinversions. Since 1r0 G = G, 1ro.W = Wand 1roB1r0 = B-, it 
follows from the Birkhoff decomposition that G = BWB. This is called the Bruhat 
decomposition of G, and is the desired formula (59) when 1 = (nJ has a single part 
The general formula may be deduced from this special case by a matrix calculation. 
For example suppose k = 2 and 1 = b1>12). Given Aii of size li x li with Aii 
invertible, and 1 ~ i ~ j ~ 2 we may use the Bruhat decomposition for matrices 
of size lt. 12 to write Aii = Bii1riBii' where Bii, Bii' are invertible upper triangular' 
matrices of size li and ?ri is a permutation matrix of size li· Then the equation 

(60) 

may be solved for a matrix B12 of size 11 x 12· 
To get the correct general formulation of these facts about G = GLn, let S be. 

the set of Coxeter generators for W as in Example 4.27. If I ~ S let WI be the 
subgroup of W generated by J. If 1 is a composition of n there exists a unique subset.·· 
I~ s such that WI= w"'. Thus I ....... BWIB is a bijection between subsets of s 
and standard parabolic subgroups of G = GLn. 

In 1962, J.Tits [53] introduced the notion of a group G with EN-pair. His intent, 
inspired by arguments of Chevalley [7, Theoreme 2], was to study certain properties 
of the parabolic subgroups of a reductive group from an axiomatic point of view, · 
The axioms are few and the consequences are many. The axioms concern a group 
G, two subgroups B,N and a set S of generators for N/B n N. The given data 
G, B, N, S together with the prescribed axioms are now called a Tits system [3, 
14.15], [9, 65.1], [1Q, 29.1]. The axioms are satisfied in case G is a reductive group, 
B is a Borel subgroup, N is the normalizer of a maximal torus T C B, and S is the 
set of Coxeter generators for the Weyl group W = N/T [3, 14.15), [15, 29.1]. They 
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,:have had profound impact on the theory of groups, in particular on the classification 
~of finite simple groups, and on geometry. They have also influenced tlie theory of 
rj:reductive monoids see for example (32], (43], (48], and Section 5 of this paper. 
\ Here are the axioms for a Tits system T = ( G, B, N, S). Let G be a group and 
~let B, N be two subgroups which generate· G. Let T = B n N. Assume that T <l N 
~'and that W := N fT is generated by a set S = { s1 , ••• , s1} of involutory elements, 
/:'assumed distinct. If w E N represents w E W we write wB = wB and Bw = Bw as 
rin (57). The group W is called the Weyl group ofT. Assume that 

'· (61} 
Axiom 1 : If s E S and w E W then sEw ~ BwB U BswB . 

Axiom2: If s E S then sBs =/=B. 

,f.Axiom 2 excludes, for example, the possibility that G = Sn, B = {1}, and N = Sn. 
~;:It takes some work to check Axiom 1 even in the prototype G = GLn, B = Bn, 
;\N = Nn [9, Theorem 65.10]. It is remarkable how much.folJows from these Axioms. 
~i For example: 

'l' Theorem 4.2 ([5, 8.3], [9, §65], [15, Theorem 29.3]) LetT= (G, B, N, S) be 
• a Tits system. If I ~ S let Wr be the subgroup of W generated by I. Then 
~· (1} Pr = BWrB is a group. 
~U2) Pr is equal to its normalizer in G. 
f (9} If I=/= J then Pr and PJ dre not conjugate in G; in particular Pr =/= PJ. 
~t (4) Pr n PJ = PrnJ· . 
~U5J The map I__... Pr is bijective from _!_he set of subsets of S to the set of subgroups 

·· of G which include B. 

Since the subgroups Pr are the standard parabolic subgroups of G, the subgroups 
r Wr are often called standard parabolic subgroups of W. Thus we have a one-to

one correspondence between standard parabolic subgroups Pr of G and standard 
parabolic subgroups Wr of W. The index set I is called the type of the parabolic 
subgroup Pr. It follows from Theorem 4.2(1) with I= S that 

(62} G = BWB = UweW BwB and BwB = Bw'B => w = w'. 

This double coset decomposition is called the Bruhat decomposition of G. As in (54) 
we define the length l(w) for w E W to be the least integer p such that w may be 
written as a word of length p in the generating set S. It follows from the axioms that 
if s E Sand wE W then l(sw) = l(w) ± 1 and [15, Lemma 29.3.A] 

(63} BsB. BwB = { BswB if l(sw) = l(w) + 1 
BswB U BwB if l(sw) = l(w)- 1 . 

We emphasize that Theorem 4.2 and formulas (62} and (63) apply to any reductive 
group G where G, B, N, S have their usual meaning. In this case Theorem 4.2 shows 
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that every standard parabolic subgroup of G, as defined prior to Example 4.29 has 
the form P1 for some subset I of the set S of Coxeter generators. In the context 
of reductive groups we often use the same index I for the corresponding subset 
{a E A I Sa E I} ofthe set of simple roots. If G = GLn the correspondence It-+ P1 
is given explicitly in Example 4.29. See (122) for a monoid analogue of (63). 

We have already remarked that a parabolic subgroup P of G is closed and con
nected. It is not in general reductive. It splits as a semidirect product 

(64) P = Lnu(P) 

\ . 
where L is a closed connected reductive subgroup called a Levi subgroup or Levi 
factor of P [3, 11.22, Corollary 14.19], [15, Theorem 30.2]. The Levi factor is a 
connected reductive group [3, 11.22]. It is not in general unique, but any two Levi 
factors are conjugate by an element of nu(P) [3, Proposition 14.21], [15, Theorem 
30.2]. 

Example 4.30 Let G = GLn and let P = P'Y be as inExample 4.29. Then 

I A12 Alk I Au 0 .. 
0 

nu(P) = { 0 I A2k 
}, L={ 

0 A22 ... 0 
} 

0 0 I 0 0 Akk 

where Aij lias size 'Yi x 'Yi. Although L is not uniquely determined, the L pictured 
here is the most natural choice. Note that L ~ GL'Y1 x · · · x GL'Yk" 

Two parabolic subgroups of a connected reductive group G are said to be opposite 
parabolic subgroups if their intersection is a Levi subgroup of both [3, 14.20]. This 
generalizes the notion of opposite Borel subgroups B, B-in which case B = Tnu(B) 
as in (44), B- = Tnu(B-) and BnB- =Tis the common Levi subgroup. If Pis a 
parabolic subgroup with Levi factor L there is a unique opposite parabolic subgroup 
p- with Levi fa.Ctor L [3, Proposition 14.21]. If P = P'Y is as in Example 4.29 then 
the group P:; consisting of transposes of elements in P'Y is an opposite parabolic 
subgroup with common Levi su]?group pictured in (4.30). · 

Now return to Example 3.6 and re-examine it in current terms. We have a group 
G.= GLn and an idempotent e = er in the Zariski closure M = G = Mn. Let 1 
be the composition 'Y = (r, n- r) of n. Then the right centralizer P(e) = P'Y of e in 
GLn is a maximal parabolic subgroup of GLn, and the left centralizer p-(e) = P; 
of e in GLn is also a maximal parabolic subgroup of GLn. These two parabolic 
subgroups are opposite. The common Levi subgroup is L(e) = P(e) n p-(e). It 
is this elementary observation which connects the idempotents in Mn to the group 
structure of GLn and allows one to build a theory of reductive monoids on the 
theory of reductive groups. 
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5. Reductive Monoids 

Let M be a reductive monoid with unit group G. Thus G is by definition a connected 
reductive group. In the theory of connected reductive groups, a main guiding princi
ple is to reduce problems, as far as possible, to a study of the Weyl group W. In the 
theory of reductive monoids, the analogous guiding principle is to reduce to a study 
of W and its action on E{T), where Tis a maximal torus. Since Tis conjugate to 
a subgroup of Tn [3, Theorem 8.5] we may assume that T ~ Tn. Thus T ~ Dn, the 
monoid of diagonal matrices. 

The group G acts on M by conjugation: a- gag- 1 for a EM and g E G. The 
set E(M) is stable under conjugation. The first main problem is to determine the 
G-orbits on E(M). This is simplified by Theorem 5.2 which shows that every G-orbit 
on E(M) meets E(T). Theorems 5.2 and 5.3 allow us to reduce the study of E(M) 
to that of W on E(T). Theorem 5.1 shows that it suffices to prove Theorem 5.2 in 
case G is solvable. Note that Theorem 5.1 and Theorem 5.2 concern an irreducible 
algebraic monoid M which is not assumed to be reductive. 

Theorem 5.1 ([23, Theorem 1.4), [31, Proposition 6.3]) Let M be an irredu
cible algebraic monoid with unit group G. Let B ~ G be a Borel subgroup of G. 
Then 

M = ugEG gBg-1. 

Theorem 5.2 ([23, Corollary 1.6), [31, Corollary 6.10]) Let M be an irredu
cible algebraic monoid with unit group G. LetT~ G be a maximal torus. Then 

E(M) = U
9
ea gE(T)g-1 

• 

Example 5.1 Suppose M = Mn so that G = GLn. Let B = Bn be the group of 
invertible upper triangular matrices, let T = Tn be the group of invertible diagonal 
matrices, and let Dn be the monoid of diagonal matrices. Theorem 5.1 asserts that 
every matrix is conjugate under GLn to an element of Bn. Theorem 5.2 asserts that 
every idempotent matrix is conjugate under GLn to an element of Dn. 

Assume now that M is a reductive monoid with group of units G. As in Section 4, 
choose a maximal torus T and Borel subgroup B of G with T C B. Let N = Na(T) 
be the normalizer ofT and let W be the Weyl group. If w E N and e E E(T), 
then wew-1 E T. If w = wT E W then wew-1 depends only on w so we may define 
wew-1 = wew-1 • Thus W acts, by conjugation, on E(T). 

Theorem 5.3 ([31, Theorem 6.25]) Let M be a reductive monoid. If e, f E E(T) 
are conjugate under G they are conjugate under W. 33 

Example 5.2 Suppose M = Mn, G = GLn and T = Tn. Suppose e, f E E(T). 
Write e = e1 and f = eJ as in Example 2.1 where I, J are subsets of {1, ... , n }. 
If e, f are conjugate under G then III = IJI. Choose a permutation 1r E Sn such 

33 This theorem is true for any irreducible algebraic monoid. The Weyl group W(G, T) is by 
definition Na(T)/Za(T); see the footnote which follows (32). 



328. LOUIS SOLOMON 

that 1r I = J. H w E W corresponds to 1r under the isomorphism W ::: Sn then 
f = wew-1 • 

In view of Theorems 5.2, 5.3 and 3.1 we have bijeCtions 

(65) G\MJG = U(M)- E(M)JG +-7 E(T)JW 

given by 

(66) GeG +-7 {geg- 1 I g E G} +-7 {wew- 1 I wE W} 

for e E E(T) where E(M)JG denotes the set of G-conjugacy classes in E(M) and 
E(T)/W denotes the set of W-conjugacy classes in E(T). This gives us an explicit 
description of the ..7-classes, alias G x G orbits, provided we can compute E(T) and 
the Weyl group action. 

In Example 2.3 we computed some idempotents in E(T) for a monoid M = 
M(p) defined by a representation p of SLm. At that time we did not have the 
terms "reductive group" and "maximal torus" at our disposal. Now we can put 
that computation in its proper context. It is a remarkable fact that if M is any 
reductive monoid with unit group G and T is a maximal torus of G then E(T) is 
anti-isomorphic, by a W-equivariant map, to the lattice of faces of a rational convex 
cone. If G = K* p(G0 ) where Go is a semisimple group and p: Go -4 GL(V) = GLn 
is a rational representation then the cone may be replaced by a rational convex 
polytope. 

To see how this comes about we need some general remarks about one-parameter 
subgroups of tori. Let G be a connected reductive group of rank r and let T be a 
maximal torus of G. A one-parameter subgroup ofT is a homomorphism .A : K* --+ T 
of algebraic groups [15, 16.1], [3, 8.6]. For example if a1 , ..• , an E Z then the map 
K* -4 Tn defined in (5) by t r+ diag(ta', ... , ta,.) is a one-parameter subgroup ofTn. 
Let X,.(T) denote the set of one-parameter subgroups ofT. Since Tis abelian, X.(T) 
has the structure of abelian group with product defined by (.AN)(t) = .A(t)N(t) for 
t E K*. The group X.(T) is free abelian of rank r = dim T. If Tl is a subtorus 
ofT there is a natural injection X.(T') ..__. X,.(T) which we view as inclusion. As 
with X (T), we often use additive notation and write .A + .A' rather than .>..>.'. Let 
X .. = X,.(T) ® R. We identify X.(T) with a Z-submodule of the real vector space 
X. via .>. = .>. ® 1. Then dimaX. = dim T. If X E X(T) and .>. E X,.(T) then 
x o .A : K* -> K* is a rational homomorphism and thus has the form t r+ ta for some 
a E Z and all t E K*. Write (x, .A) =a. Thus we have a Z-bilinear dual pairing [3, 
Proposition 8.6] 

(67) ( , ) x(T) x x.(T) -4 z 
defined by 

(68) (x o .A)(t) = t<x,>.) 
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x E X(T), A E X.(T) and t E K* This pairing extends to a nondegenerate 
R-bilinear pairing X x X. ~ R of vector spaces where X= X(T) ® R. Define a 

action of Won X,.(T) as follows. If w = wT with wE N(T) and A E X.(T) 

(wA)(t) = wA(t)w-1 

fortE K*. Then WA E X,.(T) and 

(wx, wA) = (x, A) 

for w E W, x E X(T) and A E X,.(T). The action of W on X,.(T) extends to an 
1~-LLllv•"'L action on X,. such that (70) holds for X E X and A E X,.. Let ZZ denote 
the set of row vectors over Z. 

Example 5.3 Suppose G = GLn and T = Tn· If a = (a1, ... , an) E ZZ define 
;.a E X,.(Tn) by 

t E K*. The map a~--> A8 is an isomorphism ZZ ~ X,.(Tn) of abelian groups. 
For 1 5 i 5 n define 1/i E X,.(Tn) by 1/i(t) = diag(1, ... , t, ... , 1) with tin the i-th 
position. Then Aa = TJf1 ···11~" and {1/1,··· ,1/n} is a basis for X.= X.(Tn) ® R. 

cj E X(Tn) be as in (9). Since cj('T/i(t)) = t6•; we have (cj, 1/i) = Dij· Thus 
{c:1, ... , en} and {111, ... , 1/n} are dual bases. The Weyl group actions on X(T) and 
X.(T) are given by wc1 = c1rj and W'T/i = 'Titri where 1r E Sn corresponds tow E W. 

In general we have a commutative diagram 

·where all the maps are inclusions. A rational character of T is a morphism T ~ 
Kx of algebraic monoids where Kx denotes the field K viewed as monoid under 
multiplication. The set X (T) of rational characters of T is a commutative monoid 
under multiplication. Restriction defines a monoid homomorphism X(T) ~ X(T) 
which is injective [31, p.80]. If x E X(T) extends to a character ofT, let x denote 
the unique extension. We have an injection 

where N is the set of non-negative integers and c; is the j-th coordinate function on 
Tn. It is tempting to write c1 rather than t:1 on the left side of (73) and view the 
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map (73) as inclusion, but it is in fact restriction. Let Xi denote the restriction of e; 
toT and let X.; denote the restriction of gi to.T. We have a commutative diagram 

X(Dn) -t X(T) 
(74) ! ! 

X(Tn) -t X(T) 

where all the maps are restrictions. We have already remarked that the vertical maps 
are injective. The horizontal map in the bottom row is surjective by (3, Proposition 
8.2(c)]. The horizontal map in the top row is also surjective; this is shown in the 
proof of Lemma 2.2 in (23]. The inclusion T ~ Tn thus provides us with a set 
{X.v ... , X.n} of generators for the monoid X(T) of characters ofT and we have an 
injection 

(75) X(T) = NX.1 + · ·· + NX.n -t Zx1 + · · · + Zxn = X(T). 

Since the coordinate ring of Dn is K(Dn] = K(g1 , ••• , gn] we see that the coordinate 
ring ofT is K[T] = K(X1 , •.. ,X.nl· Note that Nx1 + · · · +Nxn ~ X(T) is the set of 
characters ofT which may be extended to characters ofT. Define a cone u in X. by 

(76) u ={.A EX. I (x;,.A);::: 0 for 1::;; j::;; n}. 

The cone u is the key to the structure of E(T). To see why this might be so, suppose 
that a= (ab ... , an) E Z~ and let .A a be as in (71). H .A a E u then (x;, .A a) ;::: 0 for 
all j = 1, ... ,n so a EN~. Thus we may set t = 0 in diag(t,.1 , ••• , ta,. ). This gives 
an element ofT ~ Dn, which is suggestively written as .A(O) or limt-.o .A(t). Since 
the diagonal entries of .A(O) are 0 or 1 we have · 

{77) .A(O) =lim >.(t) E E(T) . 
t-+0 

This is the construction we used in Example 2.3. 
To proceed further, we need some elementary facts about convex polyhedral 

cones. Fulton (12, Section 1.2] gives a summary of these facts, with proofs, which is 
made to order for the present setup. Let M, N be free (additively written) abelian 
groups of rank r. Assume there is given a Z-bilinear dual pairing M x N --. Z. 
Imbed M ~ MR = M ® R, imbed N ~ NR = N ® R, and extend the pairing to a 
nondegenerate R-bilinear pairing MR x NR -t R. Let R + be the set of non-negative 
real numbers. A convex polyhedral cone in NR is a set of the form 

(78) 

where Vt. ... , v8 E NR are called generators of u. We usually omit "convex polyhe
dral" and simply say that u is a cone. Then 
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(79) uv = {x E MR I (x,>.);::: 0 for>. E u} 

is a cone in MR called the dual of u (12, 1.2.9]. We have (uv)v = u [12, 1.2.1]. Since 
we may interchange NR and MR in (78) and (79), it follows that if u is a cone in 
NR then there exist X1, ... , Xn E MR such that 

(80) u = { >. E NR I (x;, >.) ;::: 0 for 1 ~ j ~ n} . 

Let F( u) denote the set of faces of u partially ordered by inclusion. The poset F( u) 
is finite [12, 1.2.2]. If 7 E :F( u) then 7 is itself a cone (12, 1.2.2]. If 7, 7 1 E :F( u) 
then 7 n 7 1 E :F(u) (12, 1.2.3]. Thus F(u) is a finite lattice. The minimal element 
of F(u) is u n ( -u). A cone u is strongly convex if u n ( -u) = {0} or, equivalently, 
if uv spans MR [12, 1.2.13]. If u is strongly convex and different from {0} it has 
a minimal set {vi. ... , v8 } of generators which are unique up to multiplication by 
positive real numbers; the rays R+vi are the one-dimensional faces of u [12, 1.2.13]. 

A convex polyhedral cone u in NR is by definition rational if it has the form 
(80) where x1 , ... , Xn E M [12, p.12]. If u is rational then uv is rational [12, 
p.12]. If u is rational then it may be written in the form (78) where vi E N for 
i = 1, ... , s. Thus if u is rational then u = R+(u n N). A face of a rational cone 
is rational [12, p.13]. Let relint(u) denote the relative interior of u. If u is rational 
then relint(u) n N is non-empty. Thus, since a face of a rational cone is rational, 
relint(7) n N is non-empty for every 7 E :F(u). 

Henceforth we assume that M = X(T) and N = X,.(T) where Tis a maximal 
torus in a connected reductive group G. Thus MR =X and NR =X,. in our earlier 
notation. Let u be as in (76). Since u = (uv)v it follows from (76) that 

(81) 

IIi particular, we see that uv spans X sou is strongly convex and thus the minimal 
element of :F(u) is {0}. Suppose 7 E :F(u). Since Tis a rational cone the set relint(7)n 
X,.(T) is non-empty. Suppose that >.,N E relint(7) n X,.(T). If 1 ~ j ~ n then 
(x;,>.) > 0 if and only if (x;,>.1

) > 0. Thus >.(0) = >.1(0) depends only on 7. Let 
e.r E E(T) be the common value ofthe >.(0) as>. ranges over relint(7)nX,.(T). Note 
that TT ~ T so that T acts by multiplication on T. The following theorem describes 
the orbits for this action, and the orbit closures, in terms of :F(u). 34 

34 Theorem 5.4 is _part of the theory of toric varieties (18, Theorem 2] and T12, Section 3.1]. If 
the toric variety is T, the word "idempotent" is implicit, but not explicit in the general theory. 
In the early stages of his work on algebraic monoids Putcha (23], (31, Chapter 8] observed the 
connection between idempotents in T and rational convex polytopes; he proved what he needed 
from first principles. Renner [39, Chapter 4], (41, Section 3] remarked that the structure of E(T) 
follows from known facts about toric varieties. A reader who checks these references should note 
that our rr ~ X,.(T) ®Rand uY £; X(T) ® R agree with (18] and [12] but do not agree with (41, 
p.201] where rr ~ X(T) ® R means the dual cone. 
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Theorem 5.4 ([18, Theorem 2(c,d)]) LetT~ Tn be a torus and letxb ... ,Xn E 
X(T) be the restrictions of the coordinate functions on Tn toT. Let 

u = { ..\ E X. I (Xj, ..\) 2:: 0 for 1 :::; j :::; n} . 

If 7 E F(u) let eT E E(T) be the corresponding idempotent. Then (1} the map 
7 1-+ TeT is bijective from F(u) to the set ofT-orbits on T, and {2} if 7, 7

1 E :F(CJ) 
then 7 ~ 7 1 if and only if TeT 2 TeT'· 

It follows from (1) that each T-orbit on T contains an idempotent e. This idem
potent is unique. For suppose te E E(T) for some t E T. Since e is idempotent we 
have e:i(e) E {0, 1} for 1 :::; j :::; n. In either case e:i(te) = e:i(e) so te = e. Thus e .is 
unique. ~up pose that 7, 7 1 E F( u) and 7 ~ 7 1

• The set {a E T I aeT = a} is closed 
and includes TeT because eT is idempotent, so it includes TeT and hence contains 
eT' by (2). Thus eT'eT = eT' so that eT 2::, eT' in the partial order (3) on E(T). Thus 

Corollary 5.5 The map 7- eT is a lattice anti-isomorphism from F(u) to E(T). 

We can give a more explicit formula for eT. Choose ,\T E X.(T) n relint(7). Since 
AT(t) = diag(t<x".X~), ... , t<xn,.X~l), 

(82) eT = 2: Eii. 
(x; • .x~)=O. 

The vertex {0} of u corresponds to the idempotent 1 E E(T). The one-dimensional 
faces of u correspond to the maximal idempotents of E(T). Since every idempotent 
is a product of maximal idempotents, it suffices, j.n computing E(T), to find the 
idempotents corresponding to the one-dimensional faces of u. 

The group W permutes F(u) and F(uv). To see this, note that the inclusion map 
T - Tn is a representation ofT with weights Xl, ... , Xn where Xi is the restriction 
toT of the j-th coordinate function e:3 on Tn. It follows from (34) that W permutes 
{XI, ... ,xn}· Thus, from (81) we have Wuv = uv. If,\ E u and wE W then, by 
(76) and (70) we have (x;,w..\) = (w-1x;,..\) 2:: 0 sow..\ E u. Thus Wu = u. It 
follows that 

(83) 

Suppose 7 E F( u) and w E W. Write w = wT for some w E N and write eT = >.(0) 
for some ,\ E relint(7) n X.(T). Then ..\1 = wJ\w-1 E relint(w7) n X.(T). Since 
N(O) = ewT 

(84) 

Example 5.4 Suppose G = GLn and T = Tn as in Example (5.3). Then Xi= e;. 
The faces of u = R+TJl + · · · + R+TJn have the form 7J = L:iei N1Ji where I runs 
over the subsets of {1, ... , n }. Thus F(u) is isomorphic to the lattice of subsets of 
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{1, ... , n }. Since elements of X.(Tn) have the form 1Jr1 
• • ·1J~n with a; E N we have 

11 n X,.(T) = N111 + .. · + N1Jn in additive notation. If>.. E relint(rr) then, since 
relint(rr) nX .. (T) = {lliEI71t' I a; EN and a;> 0}, we have .A(O) = "L.~cgrEkk· 
Maximal idempotents in T correspond to one-dimensional faces R +711 , ... , R +1/n of 
11 and are thus given by 1J;(O) = "'B~c,c; Ekk· The Tn-orbit on Dn corresponding to 
the face rr is {"L.ktii t~cEkk I t~c E K*}. This orbit has closure {"L.~cgr t~cEkk I t~c E K}. 
The Weyl group action is given by permutation of coordinates. 

Assume until further notice that dim Z( G) = 1 and that 0 E M. These monoids 
are safd to be semisimple [38, p.313]. Renner [41] has classified the semisimple 
monoids · in the spirit of the classification of algebraic groups by root systems ~ 
[50, Chapters 11,12], under the additional hypothesis that M is a normal algebraic 
variety. The replacement for ~ is a combinatorial datum called a polyhedral root 
system (41, Definition 3.6] which is an abstraction for the triple (X(T), ~. X(T)). 
Our assumptions insure that 0 E E(T) and that the semisimple rank l of G is given 
by l = r- 1. 35 Let Z = Z(G) 0

• Write G1 = (G, G). Since G is reductive, Ql is 
semisimple and G = G' Z where G1 n Z is finite. Let T 1 = G1 n T. Since Z ~ T we 
have T = T 1Z where T 1 n z is finite. Thus dim T 1 =dim T- dim z = r -1 = l. 
Thus T 1 is a maximal torus of G1 and, since T 1nZ is finite, X,.(Z)nX,.(T') = {0}, in 
additive notation. Let N 1 = Nc' (T 1

). The inclusion N 1 C N induces an isomorphism 
W(G1,T') ~ W(G,T). 

Let X~= X,.(T1
) ® R. Then climaX.= 1 + dimaX~. Since X,.(T1

) c X,.(T) 
we have X~ ~ X •. Since dim Z(G) = 1 we may choose a non-trivial element ,\0 E 

X.(Z) ~ X,.(T). Then .Ao rf. X~ so 

(85) X,. = R,\0 E11 X~ . 
i 
'Since G' is semisimple we have G' = ( G1

, G1
) so that G1 ~ SLn. Thus, if N E 

x.(T1
) and t E K* then n;=l Xi(N(t)) = det N(t) = 1. Thus Ej=l (xj, N) = 0 for 

)./ E X,.(T1
). By R-linearity the same holds for >..' E X~. Suppose ,\ E X,.. Write 

,\ = r,\0 + >..1 with r E Rand ,\' E X~. The map f : ,\ f-+ r is an R-linear form on 
X. and we have Ej=1 (xj, .A) = f(.A) Ej=1 (Xi> .Ao). Since 0 E E(T) it follows from 
Theorem 5.4 that we may choose our ,\0 E X,.(Z) so that (xj, ,\0 ) > 0 for 1 ::; j ::; n 
and hence Ej=1 (Xj, .Ao) > 0. It follows from the definition of u that if ,\ E u then 
f(>..) 2::0 with equality if and only if>..= 0. Thus, if we set u(1) = {>.. E u If(>..)= 1} 
then u = R+u(1) is a cone over u(1). In Example 5.4 u(1) is a simplex with vertices 
at 1/1> ••• , 1Jn· In general, since u(1) is the convex hull of its intersections with the 
one-dimensional faces of u it is a rational polytope: its vertices are in X,.(T) ® Q. 36 

If A1 E X~ and I(XJ, N)l < 1 for all j then (XJ, .A0 + .>/) = 1 + (XJ, .>/) > 0 so that 
,\0 +A' E u(1). Thus dima u(1) = l so that dima u = l + 1 = r. Let F(u(1)) be the 
lattice of faces of u(1) including the empty face. It follows from Corollary 5.5 that 
there is a lattice anti-isomorphism F(u(1)) ~ E(T). 

Now consider the action of the Weyl group. Suppose w = wT E W where 
w E N = Nc(T). Then w normalizes T 1 because Ql <l G. Suppose ,\ E X*(T1

). 

35 In what follows we use the remarks about semisimple groups which precede Example 4.10. 
36 See [12, Section 1.5] for a discussion of rational polytopes in the present context. 
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Then (w.A)(t) = w.A(t)w-1 E T' fortE K* so that w.A E X,.(T'). Thus WX,.(T') = 
X,.(T'), so W X~ = X~ and the second summand in (85) is stable under W. Since 
>.0 (t) E Z(G) we have w.A0 (t)w-1 = .A0 (t) so that w.A0 = .A0 and the first summand 
in (85) is fixed by W. Thus W u(1) = u(1). The lattice anti-isomorphism between 
F(u(1)) and E(T) is thus W-equivariant. 

The hypothesis that 0 E M and dim Z(G) = 1 is satisfied in the following 
important special case. Let Go be a connected semisimple group of rank l and let 
p : Go -t GLn be a rational representation with finite kernel. Let G = K*p(Go) 
and let M = M(p) =G. Since Go and K* are connected, so is G. The group p(Go) 
is semisimple by .[3, Proposition 14.10.1(c)] so G is reductive. The rank of p(G0 ) is 
l because p has finite kernel. Since p(Go) is semisimple its center Z(p(Go)) is finite. 
Since Z(G) = K*Z(p(Go)) it follows that dim Z(G) = 1. In fact Z = {ti It E K*} 
so that we may choose .A0 (t) = diag(t, ... , t) fortE K". Let To be a maximal torus 
of G0 • If T', G' are as in the preceding paragraphs then T' = p(To) and G' = p(Go). 
Let No= Na0 (To). Then p(No) C N. The homomorphism W(Go,To)-+ W(G,T) 
defined by w0T0 H p(w0 )T for w0 E No is an isomorphism since p has finite kernel. 
In what follows we identify W(G0 ,To) = W(G,T) and let W denote either ofthese 
groups. With this identification we have w(p o 8) = p o ( w8) for w E W and 
8 E X,.(T0 ). This is the general construction (Go, p)...,... M(p) promised in Section 2, 
where we.chose Go= SLn and considered M(p) for various representations p. 

To compute u and u(1) in concrete cases choose >.0 , >.1, ... , >., E X,. (T) such that 

(86) 

where, as before, >.0 (t) = diag(t, ... , t). Such .Ai exist. Since dim T = r = l + 1 it 
follows that ).0 , >.1, · · · , >.1 are linearly independent over Z and hence over R when 
viewed in X •. If G = K*p(Go) we choose .A1, ... , >.1 as follows. Let 81, ... ,01 

be a Z-basis for x.(To). 37 Then To= {81(t1)···Bz(t,) I t1,··· ,tz E K*}. Define 
>.i = po8i. Then p(T0 ) = {>.1(t1) · · · .Az(tz) I h, ... , tz E K*} so the conditions in (86) 
are satisfied. We do not assume uniqueness of expression in (86) since this may not 
hold if G = K*p(G0 ). 38 In the rest of this section we distinguish row and column 
vectors over R. Let Rr = Rl+1 denote the space of column vectors with standard 
basis written e0 , e1. ... , ez. Let R~ = R;+z denote the space of row vectors with 
standard basis written e0,., eh, ... , ez. where ei• = eJ. We will see that choice of 
>.i as in (86) leads to vector space isomorphisms x H x* from X -+ Rr and (3 H {J. 
from R~-+ X,.. The notation is chosen so that (x,(J .. ) = (x*,(J) where the pairing 
on the left is given by (67) and the pairing on the right is the natural pairing of 
column and row vectors Rr x R~ -+ R; see (100). 

Since T ~ T n there exist ai = (an , . . . , ain) E Z~ for 0 :5 i :5 l such that 

(87) 

37 There is a natural choice for lh, ... , liz namely the co-roots e>Y, ... , e>Y as defined, for example, 
in [50, Lemma 9.1.5). If Go= SLm then I= m- 1 and e>r(t) = diag(l, ... , t, t- 1 , •.• , 1) where 
t, t- 1 are in positions i, i + 1. We do not define the co-roots here. 

38 This happens in the simplest example Go= SL2 with p(g) =g. 
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Note that ao = (1, ... , 1). Let 

(88) 

be the l x n integer matrix with rows a 1 , .•. , az. Since .'10 , -"1, •.. , -"z are linearly 
independent, so are ao, a1, ... , az. Thus the r x n matrix Ao with rows ao, a1, ... , a1 
has rank r. In particular, rank A= l. The general element ofT has the form 

(89) 

Thus Xj(Ai(t)) = ta;; fortE K*, so that (Xj, .Xi)= aij· If {3 = (bo, b1 , ... , bz) E z: = 
Z!+1 define {3 .. E X .. (T) by {3 .. = il~=o .X~'. The map {3 ~--> {3 .. is a homomorphism 
Z~ -+ X .. (T) of abelian groups. Extend this map to an R-Iinear map {3 ~--> {3. from 
R: -+ X •. In additive notation 

I 

(90) {3. = LbiAi 
i=O 

for {3 = (bo, b1, ... , b,) E R:. Define R-linear forms 6, ... , ~n on R~ by 

I 

(91) ~i({3) = (Xj,{3.) = Laijbi. 
i=O 

Define a rational convex polyhedral cone "' C R~ by 

(92) "' = {{3 E R~ I ~i ([3) ~ 0 for 1 :$ j :$ n} . 

Since {3 ~--> {3. is an isomorphism of vector spaces, it follows from (76) that it 
defines an isomorphism "' ~ o- of rational convex polyhedral cones. Let "1(1) = 
{(b0 , b1 , ••. , b,) E"' I bo = 1} be the preimage of o-(1) under the isomorphism. Then 
-y(l) c R~ is a rational convex polytope isomorphic to o-(1). 

Example 5.5 Let Go= Spn. Then T0 ::::: Go n Tn is a maximal torus of G0 • 39 Let 
G = K*G0 C GLn. Then G is a connected reductive group and T = K*T0 is a maxi
mal torus of G. The group G bears the same relation to Spn that GLn does to SLn. 
Recall from (24) that elements of To have the shape diag(t1, ... , t1, fi\ ... , t/1

) 

where n = 2l and t1, ... , t1 are arbitrary in K*. The group G has rank r = l + 1 and 

39 The change in notation from G, T in Example 4.3 to Go, To here is forced by the following 
definitions of G, T. 
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semisimple rank l. For 1 5 i 5 l define >.; E X,.(To) c X,.(T) by Ai = 7];7Ji+1
i where. 

1li is as in Example 5.3. Then T is given by (86). In the notation of (71) and (87) 
we have a;= e;.,. - el+i,• for 1 5 i 5 l. The l x n matrix A is given by 

1 0 ... 0 -1 0 0 

(93) A= 
0 1 ... 0 0 -1 0 

0 0 ... 1 0 0 -1 

The linear forms ~i : Z~ ---+ Z are given for 1 5 j 5 n by 

(94) ~i ((3) = bo + b; for 1 5 i 5 l 

~l+i(f3) = bo - b; for 1 5 i 5 l . 

To describe the cone 1, note that 1(1) is defined by the inequalities lb;l 5 1 for 
1 5 i 5 l and is thus a cube with 21 vertices at the points (3 = (1, ±1, ... , ±1) E Z~ .. 
Since the maximal idempotents in T are in one-to-one correspondence with the 1· 
dimensional faces of u it follows that E(T) has 21 maximal idempotents. If (3 = 
(1,b1, ... ,bz) is a vertex of1(1) then (3,.(t) = diag(t1H 1 , • • ·, tl+br, t 1-bi, ... ,t1-br). 

The corresponding maximal idempotent is 

(95) (3,.(0) = L Ejj 
jEI({J) 

where I(f3) = {1 ::; j 5 l I bi = -1} U {l + 1 5 j 5 n I bj-1 = +1}. For 
example if l = 3 and (b1 ,b2 ,b3) = (-1,+1, +1) then (3,.(0) = diag(1,t2 , t 2 , t2 , 1,1) so 
I((3) = {1, 5, 6} and (3,.(0) = E 11 + E5s + E 66 • The set E(T) may be described as 
follows. Say that a subset I s;; {1, ... , n} is admissible if j E I impl~es ] rJ. I where 
j ~---+ ] is the involutory permutation of {1, ... , n} introduced in Example 4.6. The 
sets I(f3) for (3 a vertex of 1(1), are the maximal admissible subsets of {1, ... ,n}. 
The map 

(96) I~---+ e1 := LEii 
jEI 

is bijective from admissible subsets of {1, ... , n} to E(T)-{1}. It remains to describe 
the Weyl group action on E(T). Use the notation in Examples 4.6 and 4.9. If 
w E W1 and 1r E Sn corresponds tow, there exists a subset I of {1, ... , l} such that 
7r = ll;e1 (ii). Then for 1 5 i 5 l we have w>.i = >.£1 if i E I and w>.; = >.; if i rJ. I. If . 
w E W2 and 1r E Sn corresponds tow then 1r{1, ... , l} s;; {1, ... , l} and the action 
of won X,.(T) is given by w>.; = >.1ri for 1::; i ::; l. Thus the action of W on X.(T) 
is like that on X(T). Since W centralizes the involution i ~---+ i it maps admissible . 
sets to admissible sets. The action of W on E(T) is given by we1w-1 = ewi· The 
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\;i group W acts transitively on faces of 17 of any given dimension. Thus the W -orbits 
!~on E(T), excluding the orbits of 0 and 1, are in one-to-one correspondence with the 
Bf set {1, ... , l}. The number of .7-classes in the reductive monoid M(p), excluding 
rt {0} and {1}, is thus l. The poset .7 is linearly ordered. 

~c It is sometimes convenient to work with the dual cone 17v C X. If r E F(17) define 
!1 a subset r• of X by 

!; (97) r* = {x E X I (x, >.) ~ 0 for >. E 17 and (x, >.) = 0 for >. E r} . 
! 

b. The map r r-> r* is a lattice anti-isomorphism :F(cr) -t F(crv) [12, 1.2.10] which 
is W-equivariant by (70). It follows from Corollary 5.5 that the map r* r-> er is a 
lattice isomorphism F(crv) -t E(T). Define Xo EX by Xo = ~(Xl + · · · + Xn) where 
Xi is the restriction of C:j toT. Thus, in multiplicative notation, x~ E X(T) is the 
determinant. Define a subspace X 1

· of X by X' = {x E X I (x, >.o) = 0}. Since 
dimR X 1 = l and (xo, >.o) = 1 we have 

(98) X=RxoEBX'. 

As in (85) the Weyl group fixes the first summand and stabilizes the second. If 
1 :::; j :::; n then (Xi - xo, >.0 ) = 1 - 1 = 0 so the decomposition of Xi according 
to (98) is Xi = xo + (Xi - xo). Since G' c:;;; SLn we have (xo, >.) = 0 for >. E X~. 
Thus X~={>. EX .. I (xo,>.) = 0}. The restriction of the pairing (, ) to X' x X~ 
is nondegenerate. If x E X write x = rxo + x' with r E R and x' E X'. The map 
f : x r-> r is an R-linear form on X. The argument which follows (85) shows that if we 
set 17v(1) = {x E 17v I f(x) = 1}, then crv(1) is stable under Wand uv = R+uv(1) 
is a cone over crv (1). Let x E X. By (81) we may write x = Ej=1 TJXi where 
Tj E R+. Then X= CE.i=l Tj)Xo + Ej=l ri(Xi- xo) so f(x) = E.i=l ri. Thus 
uv(1) = {l::j=1 TJXi I ri E R+ and Ej=1 ri = 1} is the convex hull of the Xi· 40 

Define an R-linear map X ~--> x* from X -t Rr by 

(99) 

Then x ~--> x* is an isomorphism of vector spaces. It follows from (90) and (99) that 

I 

(100) (x,/3 .. ) = Lbi(x,>.i) = (x*,(3) 
i=O 

for X E X and (3 E R,., where the pairing on the right is the natural pairing of 
column and row vectors Rr x R~ -t R. We may use the isomorphisms (90) and (99) 
to transport the action of Won X, X. to Rr,R:. Thus we have 

40 The X.i are the weights of the representation T '-+ Tn. Since To-+ p(To)-+ T where the first 
map is p and the second map is inclusion, there is a homomorphism 1r: X(T)-+ X(To) of abelian 
groups. The functions 1r o X.i are the weights of the representation p. Since the restriction of 1r to 
X(T) n X' is injective we may say, with slight abuse of terminology that uv (1) is the convex hull 
of the set <P(p) of weights of p; compare (41, Section 3]. 
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(101) w(x*) = (wx)*, (w/3). = w(/3,.) 

for x E X and f3 E R~. It follows from these formulas and (70) that 

(102) (w(x*), w/3) = (x*, /3) 

so that W respects the pairing on Rr x R~. To compute matrix representations 
using these actions note that if /3 = ei• then {3,. = Ai· Thus the matrix, say IJ(w),, 
for the action of w on R~ is precisely the matrix for its action on X. with respect ., 
to the basis >.0 , ••• , >.1• It follows from (102) that the matrix for the action of w 
on Rr is the contragredient 8(w-1 )T. The columns of A0 are xi, ... ,x~- Thus left 
multiplication of A0 by 8( w-1 ) T permutes the columns of A0 as w permutes the set • 
~(p) of weights. · 

We have already remarked that the polytope uv(1) is the convex hull of the set 
{x1 , ..• ,xn}· Thus its image, say Po C Rr, under the map x ~ x* is the convex 
hull of the columns of Ao and is thus isomorphic, by a translation, to the convex 
hull Pin R 1 of the columns of A. The Weyl group action on Po and on Pis given by, 
w ~ 8(w-1)T. The lattice anti-isomorphism :F(u)- .:F(uv) induces a lattice anti
isomorphism F(u(1)) - .:F(uv(1)) [12, p.24] and hence a lattice anti-isomorphism 
:F(u)- :F(P). We conclude from Corollary 5.5 and formula (82) that the map 

(103) F~ep := L Eii, . 
:xjEF 

is a lattice isomorphism .:F(Po)- E(T). Note that xj =(ali, ... ,azi)T is the j-th 
column of the matrix A. This is the form in which Putcha [23], [31, Chapter 8] 
proved Corollary 5.5. 

The polytopes u(1) and uv (1) are dual polytopes [12, p.24]. For example, if 
G = K*Spn where n = 2l and e1 , ••• , e, is the standard basis for R 1 then (93) shows' 
that the set of columns of A is { e1, ... , e~, -e1, ... , -e,}. The polytope P ~ uv(l). 
is thus the cross polytope, which is dual to the cube we found in Example 5.5. 

Example 5.6 Let's reconsider Example 2.3 in case m = 4 and complete t.he calcu
lation begun there. We will compute in detail, so that the reader may enjoy repro
ducing these calculations in other examples. Let Go = SL4 and let To = G0 n T4. • 

Let V = K 4 ® K 4 . Define p: Go - GL(V) by p(g)(v ® v1
) = gv ® (g T)-1v1

• De- • 
fine 81 , 82,83 E X,.(To) by 81 (t) = diag(t, t-1 , 1, 1), 82(t) = diag(1, t, r 1 , 1), 83(t) = 
diag(1,1,t,r1). The general element of T0 has the shape t 0 = B1 (t1 )82(t2)83(t3). 

Let>.;= p o 8; E X,.(p(T0 )) ~ X,(p(T)): The vectors vi® Vk where 1 ~ j,k::; 4, 
are a basis of weight vectors. We view p(To) ~ T 4 x T 4. Let f:Jk E X(T4 x T4) 

denote the coordinate functions on T4 x T4 and let Xik denote the restriction of. 
F:jk toT = K"p(To) or to p(To). Since to(vi ® vk) = (Xik o p)(to)(vj ® vk) the 
funCtions Xik o p E X(T0 ) are the weights of p. For example since p(t0 )( v1 ® v2 ) = 
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® t 01v2 = t0v1 ® (t1t2"1)-1v2 = t~t21 (vl ® v2) we have (X12 o p)(to) = tit21· 
(Xik o p)(t0 ) = tr1 t~2 t~3 for suitable integers ai = aiik· The list of weights is: 

j k a1 a2 a3 j k a1 a2 a3 

1 1 0 0 0 3 1 -1 -1 1 

1 2 2 -1 0 3 2 1 -2 1 

1 3 1 1 -1 3 3 0 0 0 

1 4 1 0 1 3 4 0 -1 2 

2 1 -2 1 0 4 1 -1 0 -1 

2 2 0 0 0 4 2 1 -1 -1 

2 3 -1 2 -1 4 3 0 1 -2 

2 4 -1 1 1 4 4 0 0 0 

The matrix A of size 3 x 16 has the vectors (a1 , a2 , a3 ) T as its columns. The polytope 
Pis the convex hull of these columns. The 12 nonzero columns are not the midpoints 
of the edges of a cube with vertices ±e1 ± e2 ± e3 that we found in Example 2.3. 
We haven't lost it though. For 1 :5 j =/= k :5 4 let e1k = e1 - ek E R 4 • The 
e;k lie in the hyperplane H = u:i=l Xiei I 2:i=l Xi = 0}. Map H --+ R3 by 
(x1,x2,x3,x4)T r-+ (x1- x2,x2 - x3,X3- x4)T; this is not the map 4> we used in 
Example 2.3. The eik map to the vectors (a1 , a2, a3)T soP is the cuboctahedron 
after all. 

We compute theW -conjugacy classes in E(T). Since the correspondence F(P) r> 

E(T) respects theW-action, we may compute the orbits for theW-action on vertices, 
edges, and faces of P . . The reader should look at the picture of the cuboctahedron 
given in Example 2.3. The symmetry group of the cube, and of the inscribed cuboc
tahedron, has order 48. The Weyl group W of SL4 has order 24, and is isomorphic 
as abstract group to the symmetric group on four letters. The group W has two 
inequivalent irreducible representations in R 3 , one as the group of rotations of the 
cube, the other as the group generated by reflections in the six symmetry planes of 
the cube which are different from the coordinate planes. Our representation of W in 
Example 2.3 is the one generated by reflections. Thus W is transitive on vertices of 
the cuboctahedron, has 2 orbits on edges, and has 3 orbits on faces of dimension 2, 
one orbit consisting of squares and two orbits consisting of triangles. We conclude 
that the number of W -congugacy classes of idempotents in E(T) is, excluding the 
classes {0}, {1}, equal to 1+2+3. In view of (65) this is the number of G x G orbits 
on M or the number of G orbits on E(M) excludi:ng {0}, {1}. 

Example 5.7 Let Go = SL4 and let T0 =Go n T 4 • Let Vp = 1\P K 4 be the p-th 
exterior power of K 4 • Thus Vi has basis {vi J1 :5 i 54}, V2 has basis {v1 A Vk J1 :5 
j < k :54}, and% has basis {vpfiVqAVr Jl :5 p < q < r :54}. Let V = V1 ®V2®V3. 
Then dim V = 96. Define fh, 82, 83 as in Example 5.6 and let >.i = p o Oi. The matrix 
A has size 3 x 96. It is hard to get a picture of P from this matrix. However, there 
is a trick we can use which is implicit in the computation of Example 5.6. Write 
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the elements of SL4 as diag(tl> t2 , t 3 , t 4 ) where t 1 t 2 t 3 t4 = 1. Ignore, for a moment, 
the restriction t 1t 2 t 3t 4 = 1, compute a congruent polytope in R 4 and return to the 
desired polytope in R 3 via the mapping (x1, x2, x3, x4) t-+ (x1 -x2, x2- xa, X3 -x4). 
The vector Vi has weight ti, the vector Vj 1\vk has weight tjtk and the vector vpAVqAvr 
has weight tptqtr. Thus Vi® (vj 1\vk) ® (vp Avq Avr) has weight titjtktptqtr. This gives 
us a matrix of size 4 x 96. If we write titjtktptqtr = t~t~t~t~ we :find that the only 
column vectors (a, b, c, d) T which occur in this matrix are gotten by permuting the 
components of a vector in the list: (3,2, 1, O)T, (3, 1, 1, 1)T, (2,2,2,0)T, (2,2, 1, 1)T. 
These all live in the hyperplane x1 + x2 + xa + X4 = 6. When we pass to the convex 
hull, only the vector (3, 2, 1, 0) T and its permutations survive. The polytope P is the 
convex hull of the 24 points which are permutations of (3, 2, 1, 0) T. This polytope is 
often called the permutohedron because its vertices correspond to permutations on 
4 letters. Here is a picture (Figure 5.1), adapted from [2, p. 136]. 

2031 

1302 

Figure 5.1. Permutohedron 

In this example W is transitive on vertices, has 3 orbits on edges, and 3 orbits 
on faces of dimension 2. Thus the number of .1-classes in the corresponding monoid 
M(p), excluding the classes {0}, {1}, is 1 + 3 + 3 = 23 - 1. If pis any representation 
of SL4 such that W is transitive on the vertices of the corresponding polytope P 
then the number of .1-classes, excluding the classes {0}, {1}, is at most 23 -1. The 
proper context for this fact lies in the notion of a canonical monoid for SL4 ; see [38], 
[35] and the remarks which follow Theorem 5.9. 

Now return to the general theory of a reductive monoid M with unit group G. We 
drop the assumption that dim Z(G) = 1 but, since some of the theorems we state 
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:require that 0 E M, we assume henceforth that 0 EM. Note that 0 E M(p) for any 
;representation p. Theorems 5.6 and 5.7 show how to recapture some of the standard 
':constructs in the theory of a reductive group, for example Borel subgroup, maximal 
itorus, parabolic subgroup, Levi factor, in terms of the idempotent set E(M). A 
;~chain of idempotents is a linearly ordered subset r = {e1 < ... < ek} of the poset 
~;E(M). If r is a chain of idempotents then there exists a maximal torus T of G such 
[:that r c T [31, Corollary 6.10]. 41 The length of a maxim3l chain in E(M) or E(T) 
::,is dim T [31, Theorem 6.20] which is also the length of a maximal chain in G\M/G 
' [31, Theorem 6.20]. If r ~ E(M), define the right and left centralizers P(r), p-(r) 

by 

{104) P(r) = neer P(e), p-(r) = neer p-(e) ' 

where P(e),P-(e) are as in {14). Define the centralizer Ca(r) by 

{105) Ca(r) = P(r) n p-(r) = neer Ca(e) . 

. Theorem 5.6 ([31, Theorem 7.1]) Let M be a reductive monoid. Let r be a 
maximal chain in E(M). Then Ca(r) is a maximal torus ofG and P(r),P-(r) are 

' a pair of opposite Borel subgroups relative to Ca(r). 

Every maximal torus and Borel subgroup of G can be obtained in this way [26, 
Theorem 4.5]. Thus the Borel subgroups and maximal tori in G may be recovered 
from E(M). How about the parabolic subgroups? 

Theorem 5. 7 ([26, Theorem 4.6], [27, Theorem 4]) Let M be a reductive mo
noid. Let r be a chain in E(M). Then P(r) and p-(r) are a pair of opposite 

.· parabolic subgroups with common Levi factor Ca(r). 

Every parabolic subgroup P of G has the form P = P(r) for some chain r C 

E(M) [30, Theorem 7.2]. 42 The simple statement of Theorem 5.7 contains implicit 
information. For example it says, by the definition (64) of Levi subgroup, that Ca(r) 
is a connected reductive group. In particular, ifr = {e} then Ca(e) is a connected 
reductive group and P(e), p-(e) are a pair of opposite parabolic subgroups. If r is 
a maximal chain then Theorem 5.7 reduces to Theorem 5.6. 

Example 5.8 Let M = Mn so that G = GLn· Let er E Dn be as in Exam
ple 3.6. Let 1 = (/1, ... ,{k) be a composition of n as in (4.29). Then r = 
{ e-yu e."fl +-y., ... , e-y1 +-y2+ .. +'Yk} is a chain of idempotents and P(r) is the parabolic 

. subgroup pictured in (58). The opposite parabolic subgroup p-(r) is the transpose 
· of P(r). The intersection Ca(r) = P(r) n p-(r) is the Levi subgroup pictured in 

Example 4.30. If r = { er} then we are back in Example 3.6. 

41 ]f r = { e} this is Theorem 5.2, which serves to start an induction. 
42 The proof uses the notion of cross section lattice, introduced· below, as well as an algebra

geometric result of Renner [39]. 
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Let M be a reductive monoid with unit group G and maximal torus T. It follows· 
from (66) that if A ~ E(T) represents the set of W-orbits on T then the map 
A-+ G\M/G defined bye~--+ GeG is bijective. Since both E(T) and G\M/G are 
partially ordered sets it is natural to ask if one can choose A so that the bijection 
respects the partial orders. This question leads to the following important definition 
[26, §6], [31, Definition 9.1]: 

Definition 3 A set A ~ E(T) is a cross section lattice if A is a set of representatives 
for theW-orbits on E(T) and the bijection A-+ G\M/G is order preserving. 

. Since G\M / G is a lattice so is A. It is not. clear that cross section lattices exist. In 
fact they do exist by a remarkable theorem of Putcha, which shows in addition that 
there is a bijection between the set of cross section lattices and the set BT of Borel .. 
subgroups of G which include T. Recall that if e E E(T) then the right centralizer 
P(e) is a parabolic subgroup of G. Since Tis commutative we have P(e)::) T. 

Theorem 5.8 ([30, Theorem 1.1], [31, Theorem 9.10]} If B E BT, define a . 
subset A(B) of E(T) by A(B) = {e E E(T) I P(e) 2 B}. The map B 1-t A(B) is 
bijective from BT to the set of cross section lattices in E(T). 

We may reconstruct the corresponding Borel subgroup from a given cross section 
lattice A according to the recipe B = neeA P(e). Since P(wew-1

) = wP(e)w-1 we 
have A( wBw-1 ) = wA(B)w-1 • It follows, in view of ( 43), that if B E BT is a fixed 
Borel subgroup then the map w -+ wA(B)w-1 is bijective from W to the set of all 
cross section lattices in E(T). 

Example 5.9 Suppose ·M = Mn, G = GLn and T = Tn. Let e E E(T). Then 
P( e) 2 Bn if and only if e E {eo, e1 , ... , en} with er as in Example 3.6. Thus the 
cross section lattice corresponding to the standard Borel subgroup Bn is A(Bn) = 
{ e0 , e1, ... , en} where eo = 0 and en = 1. If I ~ {1, ... , n} write e1 = Eiei Eii 

as in Example 2.1. Thus er = e{l, ... ,r}· Since we1w-1 = e11"1 where 1r E Sn is the 
permutation corresponding tow, we see that the cross section lattices in E(T) have 
the shape {ei0 ,eiuei2 , ••• ,e1n} where 0 = Io C I1 C I2 C ··· C In= {1, ... ,n} 
and IIkl = k. 

Theorem 5.8 allows us to describe the partial order in G\M/G in terms ofidem
potents which may be computed using the geometric method in {103). The partial 
order structure in G\M/G in Examples 5.5, 5.6, 5.7 is, omitting the orbits {0},{1}, 
given by: 

cuboctahedron cross poly.tope permutohedron 
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"\ Now fix a Borel subgroup B :J T and let A= A(B). If e E A then P(e) ;:2 B is a 
it~~standard parabolic subgroup and hence, by Theorem 4.2, has the form Pr for some 
~'!~ S, called the type of P(e). This gives a map 

~:,;:, 

ii(106) 
i~'' 

~(.called the type map, defined by .A( e)= type P(e). In fact [30, Lemma 2.4], [35, p.645] 
I• 

[. 
r: 
f)(107) 
)1 

type P(e) = {s E S I ses-1 = e}, 

the set of Coxeter generators which fix e. See [36, Section 2] and the references 
given there for more about the type map. In Example 5.9 the image of the type map 

:>consists, aside from S and 0, of the sets { s1, . .. , Sr-1, Sr+l, . .. ; Sn-d for 1 ::; r ::; 
n- 1. The corresponding parabolic subgroups are, in view of Theorem 4.2(b), the 
maximal parabolic subgroups given in Example 3.6. On the other hand, in Example 
5. 7 the type map .A : A ~ 28 is surjective, and is in fact bijective when restricted 
to A- {0}. Note in both examples that the type map is injective, and that W acts 
transitively on the set of vertices of P and hence acts transitively on the set of 
minimal nonzero idempotents of E(T). 

Theorem 5.9 ([41, Corollary 8.3.3], [31, Corollary 15.3]) Let M be a reduc
tive monoid. Then W acts transitively on the set of minimal nonzero idempotents of 
E(T) if and only if M has an irreducible idempotent separating representation p.43 

Monoids with the property of Theorem 5.9 are said to be .]-irreducible because 
transitivity of W on the set of minimal nonzero idempotents of E(T) is equivalent, 
in view of Theorem 65, to the assertion that M has a unique minimal non-zero .J
class. If M is .J-irreducible then dim Z(G) = 1 so that M is a semisimple monoid 
[31, Corollary 15.3], [41, Lemma 8.3.2]. Thus the remarks which follow 5.4 may be 
applied toM. If p: Go ~ GLn is an irreducible representation of a semisimple group 
Go, then the inclusion map M(p) ~ Mn is a faithful irreducible representation of 
M(p). Thus, if pis an irreducible representation of G0 then M(p) is a .]-irreducible 
monoid. All the examples we have given to illustrate the geometry of the cone u 
and the polytope P are .]-irreducible. If M is .]-irreducible and e, f E. E(M) then 
P(e) = P(f) if and only if eG = fG [37, Proposition 4.3]. Thus if M is .]-irreducible 
then the type map is injective. If M is .J-irreducible, there is an effective method 
for computing the type map [37, Corollary 4.11,Theorem 4.16] which by-passes the 
geometric arguments given earlier in this Section. This argument has been used to 
compute the posets A~ G\M/G if Go is a simple algebraic group, in case pis the 
adjoint representation, in case the highest weight of p is a fundamental weight, and 

43 A representation is idempotent separating if it is faithful on E(M). The condition that p be 
idempotent separating may be replaced by the condition that p is a finite morphism in the sense 
of algebraic geometry [41, Corollary 8.3.3]; the hypothesis that M is a normal variety is not used 
in the proof of [41, Lemma 8.3.2]. 
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in some other cases [37, Section 6]. 44 Hthe highest weight is fixed by no nonidentity 
element ofW, then the type map).: A-{0}-+ 28 is surjective and hence bijective a.s 
in Example 5.7. Monoids with this property play a special role in the representation 
theory of "finite monoids of Lie type"; see the remarks which follow Example .5.11 

· The Bruhat decomposition and Tits syf!tem in a reductive group G are central 
in the structure theory. They may be used to reduce many questions about G to 
questions about the Weyl group. Renner [43] found an analogous decomposition for 
reductive monoids with striking consequences. 45 Let M be a reductive monoid and 
let G, B :J T, N, W be as before. Let N be the Zariski closure of N in M. Then N 
is a monoid which normalizes T so R = N jT is a monoid. Thus 

(108) R = N /T :J N JT = W. 

Example 5.10 Let M = Mn. Then, as in Example 4.4, N consists of all monomial 
matrices, while N consists of matrices with at most one nonzero entry in each row and 
column. Thus R may be identified with the monoid of all zero-one matrices which 
have at most one entry equal to 1 in each row and column. This is a finite monoid 
isomorphic to the symmetric inverse semigroup In which consists, by definition, of 
all injective partial maps from {1, ... , n} -+ {1, ... , n }. It is sometimes useful, from 
a combinatorial point of view, to think of these matrices as placements of non
attacking rooks on an n x n board. In [48] R is called the rook monoid. The order 

of R is IRI = L:~=o (;)
2
r!. The group of units of In is the group Pn of permutation 

matrices. 

Theorem 5.10 Let M be a reductive monoid. Let A = A(B) be a cross section 
lattice for E(T) and let e E A. Then 
{1} R is a finite inverse monoid. 
{2} The group of units of R is W, and R = WE(R). 
{3} E(R) ~ E(T). 
(4) M = UpeR BpB, and BpB = Bp'B => p = p'. 
(5} If s E Sis a Coxeter generator then BsB · BpB ~ BspB U BpB. 
{6} GeG = UpeWew BpB. 
{7} If wo E W is the opposition element then Bw0 eB is open and dense in GeG. 

When Renner proved these facts, they were new even in case M = Mn(K); no: 
one had noticed the significance of the symmetric inverse semigroup for the structure 
theory of Mn(K), although it is easy to prove ( 4) using elementary row and column 
operations in this case: just note that for any field K a square matrix over K is 
equivalent to a rook matrix by elementary row and column operations in which rows 
are moved up and columns are moved to the right. As an analogue of the Weyl 

44 We have not defined "highest weight" or "fundamental weight" in this paper; see for example 
[15, Theorem 31.3]. If Go is a semsimple group and p : Go --> GLn is an irreducible representation 
with highest weight p, then the polytope 1' is the convex hull of the set W p,. This is shown, with 
slightly different formulation, in [41, Proposition 3.5]. 

45 Monoids corresponding to classical groups in their natural representations were first studied 
by Grigor'ev [13], who looked for an analogue of the Bruhat decomposition. 
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group, the Renner monoid R plays a central role in the theory of reductive monoids. 
Note that ( 4) may be viewed as an analogue of the Bruhat decomposition of G, that 
(5) gives M a structure like a Tits system, that (6) in case e = 1 is the Bruhat 
decomposition of G and that (7) in case e = 1 asserts the existence of Chevalley's 
"big cell" Bw0 B where wo is the longest element of W. The "big cell" should be 

in case G = GLn under a different name, since BwoB = w0B- B and 
the set B-B consists of the matrices for which the process of Gaussian elimination 
involves no zero pivots; see the remarks which follow (62). 

Let K be the algebraic closure of F q· The rest of this paper concerns those 
finite submonoids of Mn(K) which are fixed points under the Frobenius map u : 
Mn(K) -+ Mn(K) defined by u : [cij] ~--+ [cl1J. These monoids and more general 
fixed point monoids were introduced by Renner in [44]; see also [38, Section 4], 
[46]. To agree with Renner's paper in these Proceedings we change notation; this 
looks unnecessarily complicated to start but is ultimately simpler. Henceforth we 
write Mn(K) rather than Mn and let M ~ Mn(K) denote a reductive algebraic 
monoid with 0 such that uM = M. We let M ~{a EM I ua =a} denote the finite 
submonoid of fixed points. Thus, for example, if M = Mn(K) then M = Mn(Fq).46 

We call M a finite reductive monoid. The remarks in the following paragraph say, 
roughly, that many of the constructs in this paper descend from the reductive monoid 
M to the finite reductive monoid M. 

Let G be the group of units of M. According to Steinberg [51, Corollary 10.10] 
we may choose a Borel subgroup Band maximal torus T.. c B, both stable under u. 
Let N denote the normalizer ofT.. in Q.. Let W deno~e the Weyl group, let l1 denote 
the Renner monoid, and let A denote the cross section lattice defined in Theorem 
5.8. Let G = G n M denote the finite group of units of M, let B = B n M, let 
T = T.. n M, and let N = N n M. The Frobenius automorphism acts on W, l1 and 
/1. Let W, R, A denote the corresponding fixed point sets. Then R = B_, A = A and 
W = W ~ N/T [44], [46]. 47 We identify N/T = W. Then (G, B, N, S) is a Tits 
system with Weyl group W. There is a decomposition 

(109) M=BRB= U BpB 
pER 

analogous to the Bruhat decomposition G = Uwew BwB of the finite reductive 
group G. The union in (109) is disjoint and BpB = Bp'B implies p = p'. 

Example 5.11 If }If= Mn(K) ·then M = Mn(Fq), G = GLn(Fq), B is the group 
of invertible upper triangular mat~ices over F q, and T is the group of invertible 
diagonal matrices over F q. Here R is isomorphic to the symmetric inverse semigroup 
(rook monoid), W is isomorphic to the symmetric group Sn, and A is as in Example 
5.9. -

· 
46 Renner allows for a more general setup which includes, for example, monoid analogues of the 

finite unitary groups. His endomorphisms o· are c.nalogous to Steinberg's endomorphisms (51~ in 
the theory of reductive groupa. This setup is more subtle than the one we consider here. 

47 The simplicity of this statement depends on our assumption that d is the q-th power map; see 
[46, 3.3] for an example in which G is a finite unitary group. 
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There is a close connection between the modular representation theories of G and 
M. If G is any finite reductive group over F q, there exists [38, Section 4] a reductive 
monoid M, over the algebraically closure K ofF q such that (1) G(M) is a finite 
central extension of G and (2) the type map>.: A- {0}-+ 28 is an order preserving 
bijection. The finite monoid M has a central extension M whose representation 
theory over K is intimately related to the modular representation theory of G. 
In particular, [38, Theorem 2.2], every irreducible modular representation of M 
restricts to an irreducible representation of G and the number of extensions of a 
modular representation of G to M is determined explicitly in terms of the Curtis
Richen representation theory of G. See Renner's paper [47] in these Proceedings for 
an explicit statement and further references. 

Since the Bruhat decomposition is at the heart of the theory of finite reduc
tive groups, one might expect the same of Renner's decomposition (109) for finite 
reductive monoids. With this in mind, we sketch the analogue for a finite reduc
tive monoid M of Iwahori's double coset ring construction for G [9, §67], [17]. Let 
CM = E9aeM Ca be the monoid algebra, a finite dimensional associative algebra 
with identity which contains the group algebra CG. If X is any subset of M write 
[X] = L:aex a E ZM. Thus f = IBI-1 [B] E CG is the idempotent corresponding to 
the subgroup B. The Iwahori alg~bra 48 is by definition 

(110) 1ic(G,B) = t:CGt: = ffi C[BwB] . 
wEW 

It is semisimple because CG is semisimple. If we define 

(111) 
1 

Tw = jBj [BwB] 

then, on general group theoretic grounds [9, 11.30], 

(112) 1i(G,B) = ffi ZTw 
wEW 

is a ring. Iwahori studied this ring [17] because 1ic(G,B) controls the decompo
sition of the permutation representation of G on G /B. In particular, he found the 
multiplication table for the basis elements Tw [17, Corollary 4.2], [9, Theorem 67.2]: 

Theorem 5.11 Let G be a finite reductive group. The ring 1i(G, B) is generated by 
the T. for s E S. The multiplication of the T w is determined by the formulas 

48 This is usually called the Iwahori Heeke algebra or simply Heeke algebra; see [9, 11.22] and the 
Introduction to (48] for historical remarks on the terminology. See [9, §11] for the theory of Heeke 
algebras or double coset rings in the context of general representation theory of finite groups and 
(9, §§67,68] for these algebras in the context of finite groups with a Tits system. Iwahori [17] was 
the first to notice that the double coset ring of a finite reductive group G with respect to a Borel 
subgroup B has a remarkable structure. The examples he studied are the ones which have surfaced 
as "Heeke algebras" in other parts of mathematics. 
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TaTw = { T8 w if l(sw) = l(w) + 1 
qT8 w + (q -1)Tw if l(sw) = l(w)- 1 

s E Sand wE W. 

w t-t l(w) is the length function given by (54). If w = sit·· ·s1p where 
, ••. , Sip E S and l(w) = p, it follows from (113) that Tw = T.,, · · · T., . Thus, 

in view of (113), if w', w" E W we have TwTw' = L::w"EW Cw,w' ,w"Tw" where the 
cw,w',w" are polynomials in q with integer coefficients. 

Is there an analogous theorem for a reductive monoid M? If M is any finite 
monoid with group of units G, and B is a subgroup of G, then we may define a 
C-algebra 'Hc(M,B) by 

(114) 'Hc(M, B)= eC[M]t: = ffi C(D]21ic(G, B) 
D 

where D ranges over the B x B orbits on M. These orbits are the natural replacement 
for the double cosets. The algebra 'Hc(M, B) won't, in general, be semisimple. So 
let's suppose that M is a finite reductive monoid, and let G, B be as before. Then 
C[M] is semisimple and hence so is 'H.c(M, B). This is a theorem of Oknixiski and 
Putcha [20]. The proof is not easy; it uses the Harish-Chandra induction theory for 
characters of G. To gauge the depth of this result one should note that there are 
no general theorems about semisimplicity of monoid algebras which will prove the 
semisimplicity of C(M] in case M = Mn(F q); Kovacs [19] has argued this special 
case from first principles. Since C[M] is semisimple, so is 'Hc(M,B). What can 
we say about the structure of 1ic(M, B) in the direction of Iwahori's work for G? 

decomposition (109) gives 

'Hc(M,B) = E9 C[BpB]. 
pER 

Putcha (33], (36, Section 4] studied 'H.c(M, B) with remarkable results. Fix an 
orbit, alias .7-class, 0 E G\M/G and consider the local monoid M(O) = G U 
0 U {0} (35, p.638] where the product in M(O) of two elements of 0 is defined 
to be 0 if their product in M is not in 0. Since M(O) :::> G we may consider the 
monoid algebra 'Hc(M(O),B) :::> 1f.c(G,B). Putcha determined the structure of 
these algebras 'Hc(M(O), B), and, by piecing them together over the various orbits 
0, proved an isomorphism [33, Theorem 4.1] 

'Hc(M, B) ~ C(R] 

analogous to Tits' deformation theorem 'Hc(G,B) ~ C(W] in the theory of finite 
groups with a Tits system (9, Theorem 68.21]. The proof involves an interesting 
application of the Kazhdan-Lusztig "R-polynomials." 
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There is no known general theorem for finite monoids, like [9, Theorem 11.30] 
for finite groups, which guarantees the existence of constants av E Q corresponding. 
to B x B orbits Don M, such that EBD ZaD[D] is a ring. If M is a finite reductive 
monoid one may hope for special dispensation. Thus the question is: are there 
elements Tp = ap[BpB] with pER and ap E Q, and formulas analogous to those 
in (113), which show that the structure constants for the multiplication table in 
'He ( M, B) relative to the basis Tp are integers given by polynomials in q? The answer 
is "yes". To see how this comes about, we recall Iwahori's setup in 1-lc(G,B): 
The trivial representation g ~--> 1 fcir g E G of CG restricts to a representatioR 
ind: 'Hc(G,B)---+ C. The double coset BwB may be written in Chevalley normal 
form [9, 69. 7] 

(117) BwB = BwU;; 

where 

(118) 

with Ua as in (21) and<};;;= {a:: E <}+ I wa:: E <}-}as in (55). The groups U;; were 
. defined by Chevalley in [7, p.42]. The expression of an element of BwB as bwu with 
bE B, w E W, and u E U;; is unique. Thus, in view of (56) we have 

(119) IBwBI = IBiq'(w) 

where l(w) is the length function on W. Thus 

(120) ind(Tw) = ql(w) . 

We would like monoid analogues of (117)-(120). If we find them, we have a good 
shot at the structure of 1-l(M, B). To begin, we need a definition of length. In the 
case of reductive groups there are various ways to view the length function on W, 
all of them closely related: 

(Ll) Words: l(w) =min {p I w = s1 .•• Sp with Si E S} as in (54) . 

(L2) Roots: l(w) = 1~;;;1 as in (56). 

(L3) Geometry of G I B: l( w) = dim BwB I B = dim BwB -dim B is the dimension 
of a Bruhat cell; in this formulation we are in the context of algebraic groups over 
an algebraically closed ground field K. 

The monoid analogue of Iwahori's theorem (113) and of the deformation theorem 
(116) was proved in [48] in case M = Mn(F q ). The argument there, defines a length 
function p ~--> l(p) in the spirit of (Ll) and (L2). Each W x W orbit on R has 
its own length function. If the orbit is W · 1 · W then the length function agrees 
with the length function w ~--> l(w) on W. The construction depends on theset 
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II= {1, v, v2, ... , vn-l, vn = 0} where v = E12 + E23 + ... + En-l,n is a Jordan 
block. The set }/ is a cross section for G\M/G and for W\R/W; the elements 
of GviG have rank n- i. If p E WviW write p = wviw1 with w,w1 E W and 

l(p) = min(l(w) + l(w1
)) over all such expressions. Thus the element vi is the 

element of length zero in its W x W-orbit. The main combinatorial idea in 
is to find a substitute for Chevalley's two part partitions of the set of positive 

roots: those positive roots which change sign under a given element w E W and 
which don't. The corresponding partitions for p E R have five (some possibly 

parts. In view of later developments (49] these partitions are a piece of the 
theory. Renner (45] discovered the following marvelous fact, which proves 

the existence of a set analogous to}/~ Mn(Fq) in any reductive monoid. 

Theorem 5.12 Let M be a reductive monoid. 49 Let}/= N(B) = {v E R I Bv = 
vB}. The set}/ is a cross section for G\M/G as well as W\R/W. 

If M is the monoid of all matrices over any field, and B is the group of upper 
triangular matrices, and v = E12 + E23 + ... + En-l,n is a Jordan block then 
II= {1, v, ... , vn-l }. 

Renner used his set }/ to define length in the spirit of (L3) as follows. Suppose 
pER. Choose v E }/with p E WvW and define 

(121) l(p) =dim BpB- dim BvB . 

Thus the elements of }/ are, by definition, the elements of length zero. With this 
definition Renner (44] proved the monoid analogue of Tits' formulas (63) for the 
multiplication of double cosets, namely, 

(122) 
{ 

BpB if l(sp) = l(p) 

BsB · BpB = BspB if l(sp) = l(p) + 1 

BspB U BpB if l(sp) = l(p) -1 

where s E Sand p E R. These formulas agree with those in (48, Proposition 3.14] if 
M = Mn(Fq) which were proved using (L1) and (L2). The case l(sp) = l(p) where 
BsB · BpB = BpB is impossible for groups. It turns out that one can .also define 
length for the Renner monoid R of any reductive monoid M in the spirit of (L1) 
and (L2). One also has (L3) since there is a Chevalley normal form for the orbits 
BpB with pER which is analogous to (117) [49]. This leads, in particular, to the 
formula 

(123) IBpBI = leBelq1(P) 

49 In this theorem, and in (122) one may choose M to be a reductive monoid over an algebraically 
closed field K or the finite monoid of fixed points under the Frobenius map in case K is the algebraic 
closure of Fq. In (121) it is understood that the field is algebraically closed. 
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. where e E A is the idempotent in the .J-class, alias G x G orbit, of p. As in the 
case of groups the restriction of the trivial representation a ~--+ 1 for a E M of CM 
restricts to a representation ind : 'Hc(M, B) -+ C. Thus if we define 

(124) 
1 

Tp = IeBei [BpB] 

we have a rational multiple of the double coset sum [BpB] which satisfies the ana
logue of (120), namely 

(125) ind(Tp) = q1(P) • 

This leads to a theorem [49] on the Iwahori ring of a finite reductive monoid: 

Theorem 5.13 Let M be a finite reductive monoid. Define a free Z-module of rank 
IRI by 

'H(M, B) = EB ZTp • 

pER 

Then 'H(M, B) is a ring generated by the T 8 for s E S, and T., for v E .N. The 
multiplication table is determined by the formulas 

(126) 

and 

(127) 

if l(sp) = l(p) 

if l(sp) = l(p) + 1 

if l(sp) = l(p)- 1 

T. T _ ql(p)-l(vp)T, 
v p- vp 

for s E S, p E R, and v E .N. There are analogous formulas for right multiplication 
by T. and the T.,. 

The structure constants in (127) are integers because l(p) ?: l(vp) for all pER 
and v E .N. If M = Mn(F q) this inequality was proved in [48, Theorem 4.12). The 
author first proved Theorem 5.13 with 'H(M, B) replaced by 1iA(M, B)= ffipeR ATp 
where A is any (commutative) coefficient ring in which q is invertible. The obstacle 
to replacement of A by Z lay in the conjectured inequality l(p) ?: l(vp) for p E R 
and v E .N, which one needs to control the exponent in (127). The inequality was 
proved by Putcha in a letter to the author. 50 Putcha [34] described the irreducible 
representations of'Hc(M,B), and found anexplicit isomorphism 'Hc(M, B)~ C[R]. 

50 The author would like to express his thanks. 
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The theory developed by Putcha and Renner seems to me to be the beginning of a 
long story. There is much to be done, on "Heeke rings", on finite reductive monoids, 
on reductive monoids over more general coeffi.ci~nt rings, and over special ones like 
C. If you have seen this subject here for the first time, want to work on it, and come 
to it from outside the theory of reductive ·groups, my advice would be: compute 
one difficult example in great detail and bring to bear the part of mathematics (for 
example semigroup theory) that you know best. If you are already comfortable with 
reductive groups, keep in mind the diagram: 

M(=Mn) ..__.R(=In) 

u u 
G(=GLn) ..__. W(=Sn) 

Many aspects of the bottom row are well understood. Use what you know and work 
on the top. 
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