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Preface: Algebra and Geometry

Syzygy [from] Gr.
� � � � � 	

yoke, pair, copulation, conjunction

— Oxford English Dictionary (etymology)

Implicit in the name “algebraic geometry” is the relation between geometry and
equations. The qualitative study of systems of polynomial equations is the chief
subject of commutative algebra as well. But when we actually study a ring or
a variety, we often have to know a great deal about it before understanding its
equations. Conversely, given a system of equations, it can be extremely difficult
to analyze its qualitative properties, such as the geometry of the corresponding
variety. The theory of syzygies offers a microscope for looking at systems of
equations, and helps to make their subtle properties visible.

This book is concerned with the qualitative geometric theory of syzygies. It
describes geometric properties of a projective variety that correspond to the
numbers and degrees of its syzygies or to its having some structural property—
such as being determinantal, or having a free resolution with some particularly
simple structure. It is intended as a second course in algebraic geometry and
commutative algebra, such as I have taught at Brandeis University, the Institut
Poincaré in Paris, and the University of California at Berkeley.
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What Are Syzygies?

In algebraic geometry over a field K we study the geometry of varieties through
properties of the polynomial ring

S = K[x0, . . . , xr]

and its ideals. It turns out that to study ideals effectively we we also need to study
more general graded modules over S. The simplest way to describe a module is
by generators and relations. We may think of a set A ⊂ M of generators for an
S-module M as a map from a free S-module F = SA onto M , sending the basis
element of F corresponding to a generator m ∈ A to the element m ∈M.

Let M1 be the kernel of the map F → M ; it is called the module of syzygies
of M corresponding to the given choice of generators, and a syzygy of M is an
element of M1 —a linear relation, with coefficients in S, on the chosen generators.
When we give M by generators and relations, we are choosing generators for M
and generators for the module of syzygies of M.

The use of “syzygy” in this context seems to go back to Sylvester [1853].
The word entered the language of modern science in the seventeenth century,
with the same astronomical meaning it had in ancient Greek: the conjunction
or opposition of heavenly bodies. Its literal derivation is a yoking together, just
like “conjunction”, with which it is cognate.

If r = 0, so that we are working over the polynomial ring in one variable, the
module of syzygies is itself a free module, since over a principal ideal domain
every submodule of a free module is free. But when r > 0 it may be the case
that any set of generators of the module of syzygies has relations. To understand
them, we proceed as before: we choose a generating set of syzygies and use them
to define a map from a new free module, say F1, onto M1; equivalently, we give
a map φ1 : F1 → F whose image is M1. Continuing in this way we get a free
resolution of M, that is, a sequence of maps

· · · � F2
φ2� F1

φ1� F � M � 0,

where all the modules Fi are free and each map is a surjection onto the kernel
of the following map. The image Mi of φi is called the i-th module of syzygies of
M.

In projective geometry we treat S as a graded ring by giving each variable xi

degree 1, and we will be interested in the case where M is a finitely generated
graded S-module. In this case we can choose a minimal set of homogeneous
generators for M (that is, one with as few elements as possible), and we choose
the degrees of the generators of F so that the map F → M preserves degrees.
The syzygy module M1 is then a graded submodule of F , and Hilbert’s Basis
Theorem tells us that M1 is again finitely generated, so we may repeat the
procedure. Hilbert’s Syzygy Theorem tells us that the modules Mi are free as
soon as i ≥ r.

The free resolution of M appears to depend strongly on our initial choice of
generators for M, as well as the subsequent choices of generators of M1, and so
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on. But if M is a finitely generated graded module and we choose a minimal
set of generators for M , then M1 is, up to isomorphism, independent of the
minimal set of generators chosen. It follows that if we choose minimal sets of
generators at each stage in the construction of a free resolution we get a minimal
free resolution of M that is, up to isomorphism, independent of all the choices
made. Since, by the Hilbert Syzygy Theorem, Mi is free for i > r, we see that in
the minimal free resolution Fi = 0 for i > r+1. In this sense the minimal free
resolution is finite: it has length at most r+1. Moreover, any free resolution of
M can be derived from the minimal one in a simple way (see Section 1B).

The Geometric Content of Syzygies

The minimal free resolution of a module M is a good tool for extracting infor-
mation about M. For example, Hilbert’s motivation for his results just quoted
was to devise a simple formula for the dimension of the d-th graded component
of M as a function of d. He showed that the function d �→ dimK Md, now called
the Hilbert function of M, agrees for large d with a polynomial function of d.
The coefficients of this polynomial are among the most important invariants of
the module. If X ⊂ Pr is a curve, the Hilbert polynomial of the homogeneous
coordinate ring SX of X is

(deg X) d+(1−genusX),

whose coefficients deg X and 1−genusX give a topological classification of the
embedded curve. Hilbert originally studied free resolutions because their discrete
invariants, the graded Betti numbers, determine the Hilbert function (see Chapter
1).

But the graded Betti numbers contain more information than the Hilbert func-
tion. A typical example is the case of seven points in P3, described in Section 2C:
every set of 7 points in P3 in linearly general position has the same Hilbert func-
tion, but the graded Betti numbers of the ideal of the points tell us whether the
points lie on a rational normal curve.

Most of this book is concerned with examples one dimension higher: we study
the graded Betti numbers of the ideals of a projective curve, and relate them to
the geometric properties of the curve. To take just one example from those we
will explore, Green’s Conjecture (still open) says that the graded Betti numbers
of the ideal of a canonically embedded curve tell us the curve’s Clifford index
(most of the time this index is 2 less than the minimal degree of a map from the
curve to P1). This circle of ideas is described in Chapter 9.

Some work has been done on syzygies of higher-dimensional varieties too,
though this subject is less well-developed. Syzygies are important in the study
of embeddings of abelian varieties, and thus in the study of moduli of abelian
varieties (for example [Gross and Popescu 2001]). They currently play a part
in the study of surfaces of low codimension (for example [Decker and Schreyer
2000]), and other questions about surfaces (for example [Gallego and Purnapra-
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jna 1999]). They have also been used in the study of Calabi–Yau varieties (for
example [Gallego and Purnaprajna 1998]).

What Does Solving Linear Equations Mean?

A free resolution may be thought of as the result of fully solving a system of
linear equations with polynomial coefficients. To set the stage, consider a system
of linear equations AX = 0, where A is a p×q matrix of elements of K, which
we may think of as a linear transformation

F1 = Kq A� Kp = F0.

Suppose we find some solution vectors X1, . . . ,Xn. These vectors constitute a
complete solution to the equations if every solution vector can be expressed as
a linear combination of them. Elementary linear algebra shows that there are
complete solutions consisting of q−rankA independent vectors. Moreover, there
is a powerful test for completeness: A given set of solutions {Xi} is complete if
and only if it contains q−rankA independent vectors.

A set of solutions can be interpreted as the columns of a matrix X defining a
map X : F2 → F1 such that

F2
X� F1

A� F0

is a complex. The test for completeness says that this complex is exact if and
only if rankA+rankX = rankF1. If the solutions are linearly independent as
well as forming a complete system, we get an exact sequence

0→ F2
X� F1

A� F0.

Suppose now that the elements of A vary as polynomial functions of some
parameters x0, . . . , xr, and we need to find solution vectors whose entries also
vary as polynomial functions. Given a set X1, . . . ,Xn of vectors of polynomials
that are solutions to the equations AX = 0, we ask whether every solution can
be written as a linear combination of the Xi with polynomial coefficients. If so we
say that the set of solutions is complete. The solutions are once again elements
of the kernel of the map A : F1 = Sq → F0 = Sp, and a complete set of solutions
is a set of generators of the kernel. Thus Hilbert’s Basis Theorem implies that
there do exist finite complete sets of solutions. However, it might be that every
complete set of solutions is linearly dependent: the syzygy module M1 = kerA
is not free. Thus to understand the solutions we must compute the dependency
relations on them, and then the dependency relations on these. This is precisely
a free resolution of the cokernel of A. When we think of solving a system of linear
equations, we should think of the whole free resolution.

One reward for this point of view is a criterion analogous to the rank criterion
given above for the completeness of a set of solutions. We know no simple criterion
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for the completeness of a given set of solutions to a system of linear equations
over S, that is, for the exactness of a complex of free S-modules F2 → F1 → F0.
However, if we consider a whole free resolution, the situation is better: a complex

0 � Fm
φm� · · · φ2� F1

φ1� F0

of matrices of polynomial functions is exact if and only if the ranks ri of the φi

satisfy the conditions ri +ri−1 = rankFi, as in the case where S is a field, and
the set of points

{p ∈ Kr+1 | the evaluated matrix φi|x=p has rank < ri}
has codimension ≥ i for each i. (See Theorem 3.4.)

This criterion, from joint work with David Buchsbaum, was my first real result
about free resolutions. I’ve been hooked ever since.

Experiment and Computation

A qualitative understanding of equations makes algebraic geometry more acces-
sible to experiment: when it is possible to test geometric properties using their
equations, it becomes possible to make constructions and decide their structure
by computer. Sometimes unexpected patterns and regularities emerge and lead
to surprising conjectures. The experimental method is a useful addition to the
method of guessing new theorems by extrapolating from old ones. I personally
owe to experiment some of the theorems of which I’m proudest. Number the-
ory provides a good example of how this principle can operate: experiment is
much easier in number theory than in algebraic geometry, and this is one of
the reasons that number theory is so richly endowed with marvelous and dif-
ficult conjectures. The conjectures discovered by experiment can be trivial or
very difficult; they usually come with no pedigree suggesting methods for proof.
As in physics, chemistry or biology, there is art involved in inventing feasible
experiments that have useful answers.

A good example where experiments with syzygies were useful in algebraic
geometry is the study of surfaces of low degree in projective 4-space, as in work
of Aure, Decker, Hulek, Popescu and Ranestad [Aure et al. 1997]. Another is the
work on Fano manifolds such as that of of Schreyer [2001], or the applications
surveyed in [Decker and Schreyer 2001, Decker and Eisenbud 2002]. The idea,
roughly, is to deduce the form of the equations from the geometric properties
that the varieties are supposed to possess, guess at sets of equations with this
structure, and then prove that the guessed equations represent actual varieties.
Syzygies were also crucial in my work with Joe Harris on algebraic curves. Many
further examples of this sort could be given within algebraic geometry, and there
are still more examples in commutative algebra and other related areas, such as
those described in the Macaulay 2 Book [Decker and Eisenbud 2002].

Computation in algebraic geometry is itself an interesting field of study, not
covered in this book. It has developed a great deal in recent years, and there are
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now at least three powerful programs devoted to computation in commutative
algebra, algebraic geometry and singularities that are freely available: CoCoA,
Macaulay 2, and Singular.1 Despite these advances, it will always be easy to give
sets of equations that render our best algorithms and biggest machines useless,
so the qualitative theory remains essential.

A useful adjunct to this book would be a study of the construction of Gröbner
bases which underlies these tools, perhaps from [Eisenbud 1995, Chapter 15],
and the use of one of these computing platforms. The books [Greuel and Pfister
2002, Kreuzer and Robbiano 2000] and, for projective geometry, the forthcoming
book [Decker and Schreyer ≥ 2004], will be very helpful.

What’s In This Book?

The first chapter of this book is introductory: it explains the ideas of Hilbert
that give the definitive link between syzygies and the Hilbert function. This is
the origin of the modern theory of syzygies. This chapter also introduces the basic
discrete invariants of resolution, the graded Betti numbers, and the convenient
Betti diagrams for displaying them.

At this stage we still have no tools for showing that a given complex is a
resolution, and in Chapter 2 we remedy this lack with a simple but very effective
idea of Bayer, Peeva, and Sturmfels for describing some resolutions in terms of
labeled simplicial complexes. With this tool we prove the Hilbert Syzygy Theorem
and we also introduce Koszul homology. We then spend some time on the example
of seven points in P3, where we see a deep connection between syzygies and an
important invariant of the positions of the seven points.

In the next chapter we explore a case where we can say a great deal: sets
of points in P2. Here we characterize all possible resolutions and derive some
invariants of point sets from the structure of syzygies.

The following Chapter 4 introduces a basic invariant of the resolution, coarser
than the graded Betti numbers: the Castelnuovo–Mumford regularity. This is a
topic of central importance for the rest of the book, and a very active one for
research. The goal of Chapter 4, however, is modest: we show that in the setting
of sets of points in Pr the Castelnuovo–Mumford regularity is the degree needed
to interpolate any function as a polynomial function. We also explore different
characterizations of regularity, in terms of local or Zariski cohomology, and use
them to prove some basic results used later.

Chapter 5 is devoted to the most important result on Castelnuovo–Mumford
regularity to date: the theorem by Castelnuovo, Mattuck, Mumford, Gruson,
Lazarsfeld, and Peskine bounding the regularity of projective curves. The tech-
niques introduced here reappear many times later in the book.

1These software packages are freely available for many platforms, at cocoa.dima.unige.it,
www.math.uiuc.edu/Macaulay2 and www.singular.uni-kl.de, respectively. These web sites are

good sources of further information and references.
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The next chapter returns to examples. We develop enough material about
linear series to explain the free resolutions of all the curves of genus 0 and 1
in complete embeddings. This material can be generalized to deal with nice
embeddings of any hyperelliptic curve.

Chapter 7 is again devoted to a major result: Green’s Linear Syzygy theorem.
The proof involves us with exterior algebra constructions that can be organized
around the Bernstein–Gelfand–Gelfand correspondence, and we spend a section
at the end of Chapter 7 exploring this tool.

Chapter 8 is in many ways the culmination of the book. In it we describe (and
in most cases prove) the results that are the current state of knowledge of the
syzygies of the ideal of a curve embedded by a complete linear series of high
degree —that is, degree greater than twice the genus of the curve. Many new
techniques are needed, and many old ones resurface from earlier in the book.
The results directly generalize the picture, worked out much more explicitly, of
the embeddings of curves of genus 0 and 1. We also present the conjectures of
Green and Green–Lazarsfeld extending what we can prove.

No book on syzygies written at this time could omit a description of Green’s
conjecture, which has been a wellspring of ideas and motivation for the whole
area. This is treated in Chapter 9. However, in another sense the time is the
worst possible for writing about the conjecture, since major new results, recently
proven, are still unpublished. These results will leave the state of the problem
greatly advanced but still far from complete. It’s clear that another book will
have to be written some day. . .

Finally, I have included two appendices to help the reader: Appendix 1 ex-
plains local cohomology and its relation to sheaf cohomology, and Appendix 2
surveys, without proofs, the relevant commutative algebra. I can perhaps claim
(for the moment) to have written the longest exposition of commutative algebra
in [Eisenbud 1995]; with this second appendix I claim also to have written the
shortest!

Prerequisites

The ideal preparation for reading this book is a first course on algebraic geometry
(a little bit about curves and about the cohomology of sheaves on projective space
is plenty) and a first course on commutative algebra, with an emphasis on the
homological side of the field. Appendix 1 proves all that is needed about local
cohomology and a little more, while Appendix 2 may help the reader cope with
the commutative algebra required.

How Did This Book Come About?

This text originated in a course I gave at the Institut Poincaré in Paris, in 1994.
The course was presented in my imperfect French, but this flaw was corrected by
three of my auditors, Freddy Bonnin, Clément Caubel, and Hèléne Maugendre.
They wrote up notes and added a lot of polish.
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I have recently been working on a number of projects connected with the ex-
terior algebra, partly motivated by the work of Green described in Chapter 7.
This led me to offer a course on the subject again in the Fall of 2001, at the Uni-
versity of California, Berkeley. I rewrote the notes completely and added many
topics and results, including material about exterior algebras and the Bernstein–
Gelfand–Gelfand correspondence.

Other Books

Free resolutions appear in many places, and play an important role in books such
as [Eisenbud 1995], [Bruns and Herzog 1998], and [Miller and Sturmfels 2004].
The last is also an excellent reference for the theory of monomial and toric ideals
and their resolutions. There are at least two book-length treatments focusing
on them specifically, [Northcott 1976] and [Evans and Griffith 1985]. The books
[Cox et al. 1997] and [Schenck 2003] give gentle introductions to computational
algebraic geometry, with lots of use of free resolutions, and many other topics.
The notes [Eisenbud and Sidman 2004] could be used as an introduction to parts
of this book.

Thanks

I’ve worked on the things presented here with some wonderful mathematicians,
and I’ve had the good fortune to teach a group of PhD students and postdocs
who have taught me as much as I’ve taught them. I’m particularly grateful to
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Notation

Throughout the text K denotes an arbitrary field; S = K[x0, . . . , xr] denotes a
polynomial ring; and m = (x0, . . . , xr) ⊂ S denotes its homogeneous maximal
ideal. Sometimes when r is small we rename the variables and write, for example,
S = K[x, y, z].
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Free Resolutions and Hilbert Functions

A minimal free resolution is an invariant associated to a graded module over a
ring graded by the natural numbers N or by Nn. In this book we study minimal
free resolutions of finitely generated graded modules in the case where the ring
is a polynomial ring S = K[x0, . . . , xr] over a field K, graded by N with each
variable in degree 1. This study is motivated primarily by questions from pro-
jective geometry. The information provided by free resolutions is a refinement
of the information provided by the Hilbert polynomial and Hilbert function. In
this chapter we define all these objects and explain their relationships.

The Generation of Invariants

As all roads lead to Rome, so I find in my own case at least

that all algebraic inquiries, sooner or later, end at the Capitol of modern algebra,

over whose shining portal is inscribed The Theory of Invariants.

— J. J. Sylvester (1864)

In the second half of the nineteenth century, invariant theory stood at the center
of algebra. It originated in a desire to define properties of an equation, or of
a curve defined by an equation, that were invariant under some geometrically
defined set of transformations and that could be expressed in terms of a poly-
nomial function of the coefficients of the equation. The most classical example
is the discriminant of a polynomial in one variable. It is a polynomial function
of the coefficients that does not change under linear changes of variable and
whose vanishing is the condition for the polynomial to have multiple roots. This
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example had been studied since Leibniz’s work: it was part of the motivation
for his invention of matrix notation and determinants (first attested in a letter
to l’Hôpital of April 1693; see [Leibniz 1962, p. 239]). A host of new examples
had become important with the rise of complex projective plane geometry in the
early nineteenth century.

The general setting is easy to describe: If a group G acts by linear trans-
formations on a finite-dimensional vector space W over a field K, the action
extends uniquely to the ring S of polynomials whose variables are a basis for
W . The fundamental problem of invariant theory was to prove in good cases —
for example when K has characteristic zero and G is a finite group or a special
linear group—that the ring of invariant functions SG is finitely generated as a
K-algebra, that is, every invariant function can be expressed as a polynomial in
a finite generating set of invariant functions. This had been proved, in a number
of special cases, by explicitly finding finite sets of generators.

Enter Hilbert

The typical nineteenth-century paper on invariants was full of difficult com-
putations, and had as its goal to compute explicitly a finite set of invariants
generating all the invariants of a particular representation of a particular group.
David Hilbert changed this landscape forever with his papers [Hilbert 1978] or
[Hilbert 1970], the work that first brought him major recognition. He proved that
the ring of invariants is finitely generated for a wide class of groups, including
those his contemporaries were studying and many more. Most amazing, he did
this by an existential argument that avoided hard calculation. In fact, he did
not compute a single new invariant. An idea of his proof is given in [Eisenbud
1995, Chapter 1]. The really new ingredient was what is now called the Hilbert
Basis Theorem, which says that submodules of finitely generated S-modules are
finitely generated.

Hilbert studied syzygies in order to show that the generating function for the
number of invariants of each degree is a rational function [Hilbert 1993]. He also
showed that if I is a homogeneous ideal of the polynomial ring S, the “number
of independent linear conditions for a form of degree d in S to lie in I” is a
polynomial function of d [Hilbert 1970, p. 236]. (The problem of counting the
number of conditions had already been considered for some time; it arose both in
projective geometry and in invariant theory. A general statement of the problem,
with a clear understanding of the role of syzygies (but without the word yet—see
page x) is given by Cayley [1847], who also reviews some of the earlier literature
and the mistakes made in it. Like Hilbert, Cayley was interested in syzygies (and
higher syzygies too) because they let him count the number of forms in the ideal
generated by a given set of forms. He was well aware that the syzygies form
a module (in our sense). But unlike Hilbert, Cayley seems concerned with this
module only one degree at a time, not in its totality; for instance, he did not
raise the question of finite generation that is at the center of Hilbert’s work.)
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1A The Study of Syzygies

Our primary focus is on the homogeneous coordinate rings of projective varieties
and the modules over them, so we adapt our notation to this end. Recall that the
homogeneous coordinate ring of the projective r-space Pr = Pr

K
is the polynomial

ring S = K[x0, . . . , xr] in r+1 variables over a field K, with all variables of degree
1. Let M =

⊕
d∈Z

Md be a finitely generated graded S-module with d-th graded
component Md. Because M is finitely generated, each Md is a finite-dimensional
vector space, and we define the Hilbert function of M to be

HM (d) = dimK Md.

Hilbert had the idea of computing HM (d) by comparing M with free modules,
using a free resolution. For any graded module M, denote by M(a) the module
M shifted (or “twisted”) by a:

M(a)d = Ma+d.

(For instance, the free S-module of rank 1 generated by an element of degree a is
S(−a).) Given homogeneous elements mi ∈M of degree ai that generate M as an
S-module, we may define a map from the graded free module F0 =

⊕
i S(−ai)

onto M by sending the i-th generator to mi. (In this text a map of graded
modules means a degree-preserving map, and we need the shifts mi to make this
true.) Let M1 ⊂ F0 be the kernel of this map F0 → M. By the Hilbert Basis
Theorem, M1 is also a finitely generated module. The elements of M1 are called
syzygies on the generators mi, or simply syzygies of M .

Choosing finitely many homogeneous syzygies that generate M1, we may define
a map from a graded free module F1 to F0 with image M1. Continuing in this
way we construct a sequence of maps of graded free modules, called a graded free
resolution of M :

· · · � Fi
ϕi� Fi−1

� · · · � F1
ϕ1� F0.

It is an exact sequence of degree-0 maps between graded free modules such that
the cokernel of ϕ1 is M. Since the ϕi preserve degrees, we get an exact sequence
of finite-dimensional vector spaces by taking the degree d part of each module
in this sequence, which suggests writing

HM (d) =
∑

i

(−1)iHFi
(d).

This sum might be useless, or even meaningless, if it were infinite, but Hilbert
showed that it can be made finite.

Theorem 1.1 (Hilbert Syzygy Theorem). Any finitely generated graded S-
module M has a finite graded free resolution

0 � Fm
ϕm� Fm−1

� · · · � F1
ϕ1� F0.

Moreover , we may take m ≤ r+1, the number of variables in S.
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We will prove Theorem 1.1 in Section 2B.

As first examples we take, as did Hilbert, three complexes that form the be-
ginning of the most important, and simplest, family of free resolutions. They are
now called Koszul complexes:

K(x0) : 0 � S(−1)
(x0)� S

K(x0,x1) : 0 � S(−2)

(
x1

−x0

)
� S2(−1)

(x0 x1)� S

K(x0,x1,x2) : 0 � S(−3)

(
x0

x1

x2

)
� S3(−2)

(
0 x2 −x1

−x2 0 x0

x1 −x0 0

)
� S3(−1)

(x0 x1 x2)� S

The first of these is obviously a resolution of S/(x0). It is quite easy to prove
that the second is a resolution —see Exercise 1.1. It is also not hard to prove
directly that the third is a resolution, but we will do it with a technique developed
in the first half of Chapter 2.

The Hilbert Function Becomes Polynomial

From a free resolution of M we can compute the Hilbert function of M explicitly.

Corollary 1.2. Suppose that S = K[x0, . . . , xr] is a polynomial ring . If the
graded S-module M has finite free resolution

0 � Fm
ϕm� Fm−1

� · · · � F1
ϕ1� F0,

with each Fi a finitely generated free module Fi =
⊕

j S(−ai,j), then

HM (d) =
m∑

i=0

(−1)i
∑

j

(
r+d−ai,j

r

)
.

Proof. We have HM (d) =
∑m

i=0(−1)iHFi
(d), so it suffices to show that

HFi
(d) =

∑
j

(
r+d−ai,j

r

)
.

Decomposing Fi as a direct sum, it even suffices to show that HS(−a)(d) =(
r+d−a

r

)
. Shifting back, it suffices to show that HS(d) =

(
r+d

r

)
. This basic com-

binatorial identity may be proved quickly as follows: a monomial of degree d
is specified by the sequence of indices of its factors, which may be ordered to
make a weakly increasing sequence of d integers, each between 0 and r. For ex-
ample, we could specify x3

1x
2
3 by the sequence 1, 1, 1, 3, 3. Adding i to the i-th

element of the sequence, we get a d element subset of {1, . . . , r+d}, and there
are
(
r+d

d

)
=
(
r+d

r

)
of these.
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Corollary 1.3. There is a polynomial PM (d) (called the Hilbert polynomial
of M) such that , if M has free resolution as above, then PM (d) = HM (d) for
d ≥ maxi,j{ai,j−r}.
Proof. When d+r−a ≥ 0 we have(

d+r−a

r

)
=

(d+r−a)(d+r−1−a) · · · (d+1−a)
r!

,

which is a polynomial of degree r in d. Thus in the desired range all the terms
in the expression of HM (d) from Proposition 1.2 become polynomials.

Exercise 2.15 shows that the bound in Corollary 1.3 is not always sharp. We
will investigate the matter further in Chapter 4; see, for example, Theorem 4A.

1B Minimal Free Resolutions

Each finitely generated graded S-module has a minimal free resolution, which is
unique up to isomorphism. The degrees of the generators of its free modules not
only yield the Hilbert function, as would be true for any resolution, but form a
finer invariant, which is the subject of this book. In this section we give a careful
statement of the definition of minimality, and of the uniqueness theorem.

Naively, minimal free resolutions can be described as follows: Given a finitely
generated graded module M, choose a minimal set of homogeneous generators
mi. Map a graded free module F0 onto M by sending a basis for F0 to the set
of mi. Let M ′ be the kernel of the map F0 → M, and repeat the procedure,
starting with a minimal system of homogeneous generators of M ′. . . .

Most of the applications of minimal free resolutions are based on a property
that characterizes them in a different way, which we will adopt as the formal
definition. To state it we will use our standard notation m to denote the homo-
geneous maximal ideal (x0, . . . , xr) ⊂ S = K[x0, . . . , xr].

Definition. A complex of graded S-modules

· · · � Fi
δi� Fi−1

� · · ·
is called minimal if for each i the image of δi is contained in mFi−1.

Informally, we may say that a complex of free modules is minimal if its differ-
ential is represented by matrices with entries in the maximal ideal.

The relation between this and the naive idea of a minimal resolution is a conse-
quence of Nakayama’s Lemma. See [Eisenbud 1995, Section 4.1] for a discussion
and proof in the local case. Here is the lemma in the graded case:

Lemma 1.4 (Nakayama). Suppose M is a finitely generated graded S-module
and m1, . . . ,mn ∈M generate M/mM. Then m1, . . . ,mn generate M.
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Proof. Let M = M/
(∑

Smi

)
. If the mi generate M/mM then M/mM = 0 so

mM = M. If M �= 0, since M is finitely generated, there would be a nonzero
element of least degree in M ; this element could not be in mM. Thus M = 0, so
M is generated by the mi.

Corollary 1.5. A graded free resolution

F : · · · � Fi
δi� Fi−1

� · · ·
is minimal as a complex if and only if for each i the map δi takes a basis of Fi

to a minimal set of generators of the image of δi.

Proof. Consider the right exact sequence Fi+1 → Fi → im δi → 0. The complex
F is minimal if and only if, for each i, the induced map

δi+1 : Fi+1/mFi+1 → Fi/mFi

is zero. This holds if and only if the induced map Fi/mFi → (im δi)/m(im δi) is
an isomorphism. By Nakayama’s Lemma this occurs if and only if a basis of Fi

maps to a minimal set of generators of im δi.

Considering all the choices made in the construction, it is perhaps surprising
that minimal free resolutions are unique up to isomorphism:

Theorem 1.6. Let M be a finitely generated graded S-module. If F and G are
minimal graded free resolutions of M, then there is a graded isomorphism of
complexes F → G inducing the identity map on M. Any free resolution of M
contains the minimal free resolution as a direct summand .

Proof. See [Eisenbud 1995, Theorem 20.2].

We can construct a minimal free resolution from any resolution, proving the
second statement of Theorem 1.6 along the way. If F is a nonminimal complex of
free modules, a matrix representing some differential of F must contain a nonzero
element of degree 0. This corresponds to a free basis element of some Fi that
maps to an element of Fi−1 not contained in mFi−1. By Nakayama’s Lemma
this element of Fi−1 may be taken as a basis element. Thus we have found a
subcomplex of F of the form

G : 0 � S(−a)
c� S(−a) � 0

for a nonzero scalar c (such a thing is called a trivial complex) embedded in
F in such a way that F/G is again a free complex. Since G has no homology
at all, the long exact sequence in homology corresponding to the short exact
sequence of complexes 0 → G → F → F/G → 0 shows that the homology of
F/G is the same as that of F. In particular, if F is a free resolution of M, so is
F/G. Continuing in this way we eventually reach a minimal complex. If F was
a resolution of M, we have constructed the minimal free resolution.
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For us the most important aspect of the uniqueness of minimal free resolutions
is that, if F : · · · → F1 → F0 is the minimal free resolution of a finitely generated
graded S-module M, the number of generators of each degree required for the
free modules Fi depends only on M. The easiest way to state a precise result
is to use the functor Tor; see for example [Eisenbud 1995, Section 6.2] for an
introduction to this useful tool.

Proposition 1.7. If F : · · · → F1 → F0 is the minimal free resolution of a
finitely generated graded S-module M and K is the residue field S/m, then any
minimal set of homogeneous generators of Fi contains exactly dimK TorS

i (K,M)j

generators of degree j.

Proof. The vector space TorS
i (K,M)j is the degree j component of the graded

vector space that is the i-th homology of the complex K⊗SF. Since F is minimal,
the maps in K⊗S F are all zero, so TorS

i (K,M) = K⊗S Fi, and by Lemma 1.4
(Nakayama), TorS

i (K,M)j is the number of degree j generators that Fi requires.

Corollary 1.8. If M is a finitely generated graded S-module then the projective
dimension of M is equal to the length of the minimal free resolution.

Proof. The projective dimension is the minimal length of a projective resolution
of M, by definition. The minimal free resolution is a projective resolution, so one
inequality is obvious. To show that the length of the minimal free resolution is at
most the projective dimension, note that TorS

i (K,M) = 0 when i is greater than
the projective dimension of M. By Proposition 1.7 this implies that the minimal
free resolution has length less than i too.

If we allow the variables to have different degrees, HM (t) becomes, for large t,
a polynomial with coefficients that are periodic in t. See Exercise 1.5 for details.

Describing Resolutions: Betti Diagrams

We have seen above that the numerical invariants associated to free resolutions
suffice to describe Hilbert functions, and below we will see that the numerical
invariants of minimal free resolutions contain more information. Since we will be
dealing with them a lot, we will introduce a compact way to display them, called
a Betti diagram.

To begin with an example, suppose S = K[x0, x1, x2] is the homogeneous
coordinate ring of P2. Theorem 3.13 and Corollary 3.10 below imply that there
is a set X of 10 points in P2 whose homogeneous coordinate ring SX has free
resolution of the form

0 � S(−6)⊕S(−5) � S(−4)⊕S(−4)⊕S(−3) � S.

F2

��
F1

��
F0

��
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We will represent the numbers that appear by the Betti diagram

0 1 2

0 1 − −
1 − − −
2 − 1 −
3 − 2 1
4 − − 1

where the column labeled i describes the free module Fi.
In general, suppose that F is a free complex

F : 0→ Fs → · · · → Fm → · · · → F0

where Fi =
⊕

j S(−j)βi,j ; that is, Fi requires βi,j minimal generators of degree
j. The Betti diagram of F has the form

0 1 · · · s

i β0,i β1,i+1 · · · βs,i+s

i+1 β0,i+1 β1,i+2 · · · βs,i+s+1

· · · · · · · · · · · · · · ·
j β0,j β1,j+1 · · · βs,j+s

It consists of a table with s + 1 columns, labeled 0, 1, . . . , s, corresponding to
the free modules F0, . . . , Fs. It has rows labeled with consecutive integers corre-
sponding to degrees. (We sometimes omit the row and column labels when they
are clear from context.) The m-th column specifies the degrees of the generators
of Fm. Thus, for example, the row labels at the left of the diagram correspond
to the possible degrees of a generator of F0. For clarity we sometimes replace a
0 in the diagram by a “−” (as in the example given on the previous page) and
an indefinite value by a “∗”.

Note that the entry in the j-th row of the i-th column is βi,i+j rather than
βi,j . This choice will be explained below.

If F is the minimal free resolution of a module M, we refer to the Betti diagram
of F as the Betti diagram of M and the βm,d of F are called the graded Betti
numbers of M, sometimes written βm,d(M). In that case the graded vector space
Torm(M, K) is the homology of the complex F⊗F K. Since F is minimal, the
differentials in this complex are zero, so βm,d(M) = dimK(Torm(M, K)d).

Properties of the Graded Betti Numbers

For example, the number β0,j is the number of elements of degree j required
among the minimal generators of M. We will often consider the case where M
is the homogeneous coordinate ring SX of a (nonempty) projective variety X.
As an S-module SX is generated by the element 1, so we will have β0,0 = 1 and
β0,j = 0 for j �= 1.
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On the other hand, β1,j is the number of independent forms of degree j needed
to generate the ideal IX of X. If SX is not the zero ring (that is, X �= ∅), there
are no elements of the ideal of X in degree 0, so β1,0 = 0. This is the case
i = d = 0 of the following:

Proposition 1.9. Let {βi,j} be the graded Betti numbers of a finitely generated
S-module. If for a given i there is d such that βi,j = 0 for all j < d, then
βi+1,j+1 = 0 for all j < d.

Proof. Suppose that the minimal free resolution is · · · δ2� F1
δ1� F0. By

minimality any generator of Fi+1 must map to a nonzero element of the same
degree in mFi, the maximal homogeneous ideal times Fi. To say that βi,j = 0 for
all j < d means that all generators—and thus all nonzero elements —of Fi have
degree ≥ d. Thus all nonzero elements of mFi have degree ≥ d+1, so Fi+1 can
have generators only in degree ≥ d+1 and βi+1,j+1 = 0 for j < d as claimed.

Proposition 1.9 gives a first hint of why it is convenient to write the Betti
diagram in the form we have, with βi,i+j in the j-th row of the i-th column: it
says that if the i-th column of the Betti diagram has zeros above the j-th row,
then the (i+1)-st column also has zeros above the j-th row. This allows a more
compact display of Betti numbers than if we had written βi,j in the i-th column
and j-th row. A deeper reason for our choice will be clear from the description
of Castelnuovo–Mumford regularity in Chapter 4.

The Information in the Hilbert Function

The formula for the Hilbert function given in Corollary 1.2 has a convenient
expression in terms of graded Betti numbers.

Corollary 1.10. If {βi,j} are the graded Betti numbers of a finitely generated
S-module M, the alternating sums Bj =

∑
i≥0(−1)iβi,j determine the Hilbert

function of M via the formula

HM (d) =
∑

j

Bj

(
r+d−j

r

)
.

Moreover , the values of the Bj can be deduced inductively from the function
HM (d) via the formula

Bj = HM (j)−
∑

k: k<j

Bk

(
r+j−k

r

)
.

Proof. The first formula is simply a rearrangement of the formula in Corollary
1.2.

Conversely, to compute the Bj from the Hilbert function HM (d) we proceed
as follows. Since M is finitely generated there is a number j0 so that HM (d) = 0
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for d ≤ j0. It follows that β0,j = 0 for all j ≤ j0, and from Proposition 1.9 it
follows that if j ≤ j0 then βi,j = 0 for all i. Thus Bj = 0 for all j ≤ j0.

Inductively, we may assume that we know the value of Bk for k < j. Since(
r+j−k

r

)
= 0 when j < k, only the values of Bk with k ≤ j enter into the formula

for HM (j), and knowing HM (j) we can solve for Bj . Conveniently, Bj occurs
with coefficient

(
r
r

)
= 1, and we get the displayed formula.

1C Exercises

1. Suppose that f, g are polynomials (homogeneous or not) in S, neither of which
divides the other, and consider the complex

0 � S

(
g′

−f ′
)

� S2 (f g)� S,

where f ′ = f/h, g′ = g/h, and h is the greatest common divisor of f and g.
Proved that this is a free resolution. In particular, the projective dimension
of S/(f, g) is at most 2. If f and g are homogeneous and neither divides
the other, show that this is the minimal free resolution of S/(f, g), so that
the projective dimension of this module is exactly 2. Compute the twists
necessary to make this a graded free resolution.
This exercise is a hint of the connection between syzygies and unique fac-
torization, underlined by the famous theorem of Auslander and Buchsbaum
that regular local rings (those where every module has a finite free resolution)
are factorial. Indeed, refinements of the Auslander–Buchsbaum theorem by
MacRae [1965] and Buchsbaum–Eisenbud [1974]) show that a local or graded
ring is factorial if and only if the free resolution of any ideal generated by two
elements has the form above.

In the situation of classical invariant theory, Hilbert’s argument with syzy-
gies easily gives a nice expression for the number of invariants of each degree—
see [Hilbert 1993]. The situation is not quite as simple as the one studied in
the text because, although the ring of invariants is graded, its generators have
different degrees. Exercises 1.2–1.5 show how this can be handled. For these ex-
ercises we let T = K[z1, . . . , zn] be a graded polynomial ring whose variables
have degrees deg zi = αi ∈ N.

2. The most obvious generalization of Corollary 1.2 is false: Compute the Hilbert
function HT (d) of T in the case n = 2, α1 = 2, α2 = 3. Show that it is not
eventually equal to a polynomial function of d (compare with the result of
Exercise 1.5). Show that over the complex numbers this ring T is isomorphic
to the ring of invariants of the cyclic group of order 6 acting on the polynomial
ring C[x0, x1], where the generator acts by x0 �→ e2πi/2x0, x1 �→ e2πi/3x1.
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Now let M be a finitely generated graded T -module. Hilbert’s original argu-
ment for the Syzygy Theorem (or the modern one given in Section 2B) shows that
M has a finite graded free resolution as a T -module. Let ΨM (t) =

∑
d HM (d) td

be the generating function for the Hilbert function.

3. Two simple examples will make the possibilities clearer:
(a) Modules of finite length. Show that any Laurent polynomial can be writ-

ten as ΨM for suitable finitely generated M.
(b) Free modules. Suppose M = T , the free module of rank 1 generated by

an element of degree 0 (the unit element). Prove by induction on n that

ΨT (t) =
∞∑

e=0

teαnΨT ′(t) =
1

1− tαn
ΨT ′(t) =

1∏n
i=1(1− tαi)

,

where T ′ = K[z1, . . . , zn−1].
Deduce that if M =

∑N
i=−N T (−i)φi then

ΨM (t) =
N∑

i=−N

φiΨT (−i)(t) =
∑N

i=−N φit
i∏n

i=1(1− tαi)
.

4. Prove:

Theorem 1.11 (Hilbert). Let T = K[z1, . . . , zn], where deg zi = αi, and
let M be a graded T -module with finite free resolution

· · · �
∑

j

T (−j)β1,j �
∑

j

T (−j)β0,j .

Set φj =
∑

i(−1)iβi,j and set φM (t) = φ−N t−N + · · ·+φN tN . The Hilbert
series of M is given by the formula

ΨM (t) =
φM (t)∏n
1 (1− tαi)

;

in particular ΨM is a rational function.

5. Suppose T = K[z0, . . . , zr] is a graded polynomial ring with deg zi = αi ∈ N.
Use induction on r and the exact sequence

0→ T (−αr)
zr� T � T/(zr)→ 0

to show that the Hilbert function HT of T is, for large d, equal to a polynomial
with periodic coefficients: that is,

HT (d) = h0(d)dr +h1(d)dr−1 + · · ·
for some periodic functions hi(d) with values in Q, whose periods divide the
least common multiple of the αi. Using free resolutions, state and derive a
corresponding result for all finitely generated graded T -modules.
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Some infinite resolutions: Let R = S/I be a graded quotient of a polynomial
ring S = K[x0, . . . , xr]. Minimal free resolutions exist for R, but are generally not
finite. Much is known about what the resolutions look like in the case where R
is a complete intersection —that is, I is generated by a regular sequence— and
in a few other cases, but not in general. For surveys of some different areas, see
[Avramov 1998, Fröberg 1999]. Here are a few sample results about resolutions
of modules over a ring of the form R = S/I, where S is a graded polynomial ring
(or a regular local ring) and I is a principal ideal. Such rings are often called
hypersurface rings.

6. Let S = K[x0, . . . , xr], let I ⊂ S be a homogeneous ideal, and let R = S/I.
Use the Auslander–Buchsbaum–Serre characterization of regular local rings
(Theorem A2.19) to prove that there is a finite R-free resolution of K =
R/(x0, . . . , xr)R if and only if I is generated by linear forms.

7. Let R = K[t]/(tn). Use the structure theorem for modules over the principal
ideal domain K[t] to classify all finitely generated R-modules. Show that the
minimal free resolution of the module R/ta, for 0 < a < n, is

· · · ta

� R
tn−a

� R
ta

� · · · ta

� R.

8. Let R = S/(f), where f is a nonzero homogeneous form of positive degree.
Suppose that A and B are two n×n matrices whose nonzero entries have
positive degree in S, such that AB = f · I, where I is an n× n identity
matrix. Show that BA = f ·I as well. Such a pair of matrices A,B is called
a matrix factorization of f ; see [Eisenbud 1980]. Let

F : · · · A� Rn B� Rn A� · · · A� Rn,

where A := R⊗S A and B := R⊗S B , denote the reductions of A and B
modulo (f). Show that F is a minimal free resolution. (Hint: any element
that goes to 0 under A lifts to an element that goes to a multiple of f over
A.)

9. Suppose that M is a finitely generated R-module that has projective dimen-
sion 1 as an S-module. Show that the free resolution of M as an S-module
has the form

0 � Sn A� Sn � M � 0

for some n and some n×n matrix A. Show that there is an n×n matrix B
with AB = f ·I. Conclude that the free resolution of M as an R-module has
the form given in Exercise 1.8.

10. The ring R is Cohen–Macaulay, of depth r (Example A2.40). Use part 3
of Theorem A2.14, together with the Auslander–Buchsbaum Formula A2.13,
to show that if N is any finitely generated graded R-module, then the r-
th syzygy of M has depth r, and thus has projective dimension 1 as an
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S-module. Deduce that the free resolution of any finitely generated graded
module is periodic, of period at most 2, and that the periodic part of the
resolution comes from a matrix factorization.



2

First Examples of Free Resolutions

In this chapter we introduce a fundamental construction of resolutions based on
simplicial complexes. This construction gives free resolutions of monomial ideals,
but does not always yield minimal resolutions. It includes the Koszul complexes,
which we use to establish basic bounds on syzygies of all modules, including the
Hilbert Syzygy Theorem. We conclude the chapter with an example of a different
kind, showing how free resolutions capture the geometry of sets of seven points
in P3.

2A Monomial Ideals and Simplicial Complexes

We now introduce a beautiful method of writing down graded free resolutions
of monomial ideals due to Bayer, Peeva and Sturmfels [Bayer et al. 1998]. So
far we have used Z-gradings only, but we can think of the polynomial ring S
as Zr+1-graded, with xa0

0 · · ·xar
r having degree (a0, . . . , ar) ∈ Zr+1, and the free

resolutions we write down will also be Zr+1-graded. We begin by reviewing the
basics of the theory of finite simplicial complexes. For a more complete treatment,
see [Bruns and Herzog 1998].

Simplicial Complexes

A finite simplicial complex ∆ is a finite set N , called the set of vertices (or nodes)
of ∆, and a collection F of subsets of N , called the faces of ∆, such that if A ∈ F
is a face and B ⊂ A then B is also in F . Maximal faces are called facets.
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A simplex is a simplicial complex in which every subset of N is a face. For
any vertex set N we may form the void simplicial complex, which has no faces
at all. But if ∆ has any faces at all, then the empty set ∅ is necessarily a
face of ∆. By contrast, we call the simplicial complex whose only face is ∅ the
irrelevant simplicial complex on N . (The name comes from the Stanley–Reisner
correspondence, which associates to any simplicial complex ∆ with vertex set
N = {x0, . . . , xn} the square-free monomial ideal in S = K[x0, . . . , xr] whose
elements are the monomials with support equal to a non-face of ∆. Under this
correspondence the irrelevant simplicial complex corresponds to the irrelevant
ideal (x0, . . . , xr), while the void simplicial complex corresponds to the ideal (1).)

Any simplicial complex ∆ has a geometric realization, that is, a topological
space that is a union of simplices corresponding to the faces of ∆. It may be
constructed by realizing the set of vertices of ∆ as a linearly independent set in
a sufficiently large real vector space, and realizing each face of ∆ as the convex
hull of its vertex points; the realization of ∆ is then the union of these faces.

An orientation of a simplicial complex consists of an ordering of the vertices
of ∆. Thus a simplicial complex may have many orientations—this is not the
same as an orientation of the underlying topological space.

Labeling by Monomials

We will say that ∆ is labeled (by monomials of S) if there is a monomial of
S associated to each vertex of ∆. We then label each face A of ∆ by the least
common multiple of the labels of the vertices in A. We write mA for the monomial
that is the label of A. By convention the label of the empty face is m∅ = 1.

Let ∆ be an oriented labeled simplicial complex, and write I ⊂ S for the
ideal generated by the monomials mj = xαj labeling the vertices of ∆. We will
associate to ∆ a graded complex of free S-modules

C (∆) = C (∆;S) : · · · � Fi
δ� Fi−1

� · · · δ� F0,

where Fi is the free S-module whose basis consists of the set of faces of ∆ having
i elements, which is sometimes a resolution of S/I. The differential δ is given by
the formula

δA =
∑
n∈A

(−1)pos(n,A) mA

mA\n
(A\n),

where pos(n,A), the position of vertex n in A, is the number of elements pre-
ceding n in the ordering of A, and A \n denotes the face obtained from A by
removing n.

If ∆ is not void then F0 = S; the generator is the face of ∆ which is the
empty set. Further, the generators of F1 correspond to the vertices of ∆, and
each generator maps by δ to its labeling monomial, so

H0(C (∆)) = coker
(
F1

δ� S
)

= S/I.
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We set the degree of the basis element corresponding to the face A equal to
the exponent vector of the monomial that is the label of A. With respect to this
grading, the differential δ has degree 0, and C (∆) is a Zr+1-graded free complex.

For example we might take S = K and label all the vertices of ∆ with 1 ∈ K;
then C (∆; K) is, up to a shift in homological degree, the usual reduced chain
complex of ∆ with coefficients in S. Its homology is written Hi(∆; K) and is
called the reduced homology of ∆ with coefficients in S. The shift in homological
degree comes about as follows: the homological degree of a simplex in C (∆) is the
number of vertices in the simplex, which is one more than the dimension of the
simplex, so that Hi(∆; K) is the (i+1)-st homology of C (∆; K). If Hi(∆; K) = 0
for i ≥ −1, we say that ∆ is K-acyclic. (Since S is a free module over K, this is
the same as saying that Hi(∆;S) = 0 for i ≥ −1.)

The homology Hi(∆; K) and the homology Hi(C (∆;S)) are independent of
the orientation of ∆— in fact they depend only on the homotopy type of the
geometric realization of ∆ and the ring K or S. Thus we will often ignore orien-
tations.

Roughly speaking, we may say that the complex C (∆;S), for an arbitrary
labeling, is obtained by extending scalars from K to S and “homogenizing”
the formula for the differential of C (∆, K) with respect to the degrees of the
generators of the Fi defined for the S-labeling of ∆.

Example 2.1. Suppose that ∆ is the labeled simplicial complex

x0x1 x0x2 x1x2

x0x1x2 x0x1x2

with the orientation obtained by ordering the vertices from left to right. The
complex C (∆) is

0 � S2(−3)

⎛⎝−x2 0
x1 −x1

0 x0

⎞⎠
� S3(−2)

(x0x1 x0x2 x1x2 )� S.

This complex is represented by the Betti diagram

0 1 2

0 1 − −
1 − 3 2

As we shall soon see, the only homology of this complex is at the right-hand end,
where H0(C (∆)) = S/(x0x1, x0x2, x1x2), so the complex is a free resolution of
this S-module.
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If we took the same simplicial complex, but with the trivial labeling by 1’s,
we would get the complex

0 � S2

⎛⎝−1 0
1 −1
0 1

⎞⎠
� S3 ( 1 1 1 )� S,

represented by the Betti diagram

0 1 2

−2 − − 2
−1 − 3 −

0 1 − −

which has reduced homology 0 (with any coefficients), as the reader may easily
check.

We want a criterion that will tell us when C (∆) is a resolution of S/I; that
is, when Hi(C (∆)) = 0 for i > 0. To state it we need one more definition. If m
is any monomial, we write ∆m for the subcomplex consisting of those faces of
∆ whose labels divide m. For example, if m is not divisible by any of the vertex
labels, then ∆m is the empty simplicial complex, with no vertices and the single
face ∅. On the other hand, if m is divisible by all the labels of ∆, then ∆m = ∆.
Moreover, ∆m is equal to ∆LCM{mi|i∈I} for some subset ∆′ of the vertex set of ∆.

A full subcomplex of ∆ is a subcomplex of all the faces of ∆ that involve a
particular set of vertices. Note that all the subcomplexes ∆m are full.

Syzygies of Monomial Ideals

Theorem 2.2 (Bayer, Peeva, and Sturmfels). Let ∆ be a simplicial complex
labeled by monomials m1, . . . ,mt ∈ S, and let I = (m1, . . . ,mt) ⊂ S be the
ideal in S generated by the vertex labels. The complex C (∆) = C (∆;S) is a
free resolution of S/I if and only if the reduced simplicial homology Hi(∆m; K)
vanishes for every monomial m and every i ≥ 0. Moreover , C (∆) is a minimal
complex if and only if mA �= mA′ for every proper subface A′ of a face A.

By the remarks above, we can determine whether C (∆) is a resolution just by
checking the vanishing condition for monomials that are least common multiples
of sets of vertex labels.

Proof. Let C (∆) be the complex

C (∆) : · · · � Fi
δ� Fi−1

� · · · δ� F0.

It is clear that S/I is the cokernel of δ : F1 → F0. We will identify the homology
of C (∆) at Fi with a direct sum of copies of the vector spaces Hi(∆m; K).
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For each α ∈ Zr+1 we will compute the homology of the complex of vector
spaces

C (∆)α : · · · � (Fi)α
δ� (Fi−1)α

� · · · δ� (F0)α,

formed from the degree-α components of each free module Fi in C (∆). If any of
the components of α are negative then C (∆)α = 0, so of course the homology
vanishes in this degree.

Thus we may suppose α ∈ Nr+1. Set m = xα = xα0
0 · · ·xαr

r ∈ S. For each face
A of ∆, the complex C (∆) has a rank-one free summand S ·A which, as a vector
space, has basis {n·A | n ∈ S is a monomial}. The degree of n·A is the exponent
of nmA, where mA is the label of the face A. Thus for the degree α part of S ·A
we have

S ·Aα =
{

K ·(xα/mA) ·A if mA|m,
0 otherwise.

It follows that the complex C (∆)α has a K-basis corresponding bijectively to
the faces of ∆m. Using this correspondence we identify the terms of the complex
C (∆)α with the terms of the reduced chain complex of ∆m having coefficients in
K (up to a shift in homological degree as for the case, described above, where the
vertex labels are all 1). A moment’s consideration shows that the differentials of
these complexes agree.

Having identified C (∆)α with the reduced chain complex of ∆m, we see that
the complex C (∆) is a resolution of S/I if and only if Hi(∆m; K) = 0 for all
i ≥ 0, as required for the first statement.

For minimality, note that if A is an (i+1)-face and A′ an i-face of ∆, then the
component of the differential of C (∆) that maps S ·A to S ·A′ is 0 unless A′ ⊂ A,
in which case it is ±mA/mA′ . Thus C (∆) is minimal if and only if mA �= mA′

for all A′ ⊂ A, as required.

For more information about the complexes C (∆) and about a generalization
in which cell complexes replace simplicial complexes, see [Bayer et al. 1998] and
[Bayer and Sturmfels 1998].

Example 2.3. We continue with the ideal (x0x1, x0x2, x1x2) as above. For the
labeled simplicial complex ∆

x0x1 x0x2 x1x2

x0x1x2 x0x1x2

the distinct subcomplexes ∆′ of the form ∆m are the empty complex ∆1, the
complexes ∆x0x1 , ∆x0x2 , ∆x1x2 , each of which consists of a single point, and the
complex ∆ itself. As each of these is contractible, they have no higher reduced
homology, and we see that the complex C (∆) is the minimal free resolution of
S/(x0x1, x0x2, x1x2).

Any full subcomplex of a simplex is a simplex, and since the complexes ∆1,
∆x0x1 , ∆x0x2 , ∆x1x2 , and ∆ are all contractible, they have no reduced homology
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(with any coefficients). This idea gives a result first proved, in a different way,
by Diana Taylor [Eisenbud 1995, Exercise 17.11].

Corollary 2.4. Let I = (m1, . . . ,mn) ⊂ S be any monomial ideal , and let ∆
be a simplex with n vertices, labeled m1, . . . ,mn. The complex C (∆), called the
Taylor complex of m1, . . . ,mn, is a free resolution of S/I.

For an interesting consequence see Exercise 2.1.

Example 2.5. The Taylor complex is rarely minimal. For instance, taking

(m1,m2,m3) = (x0x1, x0x2, x1x2)

as in the example above, the Taylor complex is a nonminimal resolution with
Betti diagram

0 1 2 3

0 1 − − 1
1 − 3 3 −

Example 2.6. We may define the Koszul complex K(x0, . . . , xr) of x0, . . . , xr

to be the Taylor complex in the special case where the mi = xi are variables.
We have exhibited the smallest examples on page 4. By Theorem 2.2 the Koszul
complex is a minimal free resolution of the residue class field K = S/(x0, . . . , xr).

We can replace the variables x0, . . . , xr by any polynomials f0, . . . , fr to obtain
a complex we will write as K(f0, . . . , fr), the Koszul complex of the sequence
f0, . . . , fr. In fact, since the differentials have only Z coefficients, we could even
take the fi to be elements of an arbitrary commutative ring.

Under nice circumstances, for example when the fi are homogeneous elements
of positive degree in a graded ring, this complex is a resolution if and only if the
fi form a regular sequence. See Section A2F or [Eisenbud 1995, Theorem 17.6].

2B Bounds on Betti Numbers and Proof of Hilbert’s
Syzygy Theorem

We can use the Koszul complex and Theorem 2.2 to prove a sharpening of
Hilbert’s Syzygy Theorem 1.1, which is the vanishing statement in the following
proposition. We also get an alternate way to compute the graded Betti numbers.

Proposition 2.7. Let M be a graded module over S = K[x0, . . . , xr]. The graded
Betti number βi,j(M) is the dimension of the homology , at the term Mj−i ⊗∧i Kr+1, of the complex

0→Mj−(r+1)⊗
∧r+1 Kr+1 → · · ·

→Mj−i−1⊗
∧i+1 Kr+1 →Mj−i⊗

∧i Kr+1 →Mj−i+1⊗
∧i−1 Kr+1 →

· · · →Mj⊗
∧0 Kr+1 → 0.
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In particular we have βi,j(M) ≤ HM (j− i)
(
r+1

i

)
, so βi,j(M) = 0 if i > r+1.

See Exercise 2.5 for the relation of this to Corollary 1.10.

Proof. To simplify the notation, let βi,j = βi,j(M). By Proposition 1.7,

βi,j = dimK Tori(M, K)j .

Since K(x0, . . . , xr) is a free resolution of K, we may compute TorS
i (M, K)j as

the degree-j part of the homology of M⊗S K(x0, . . . , xr) at the term

M⊗S

∧i
Sr+1(−i) = M⊗K

∧i Kr+1(−i).

Decomposing M into its homogeneous components M = ⊕Mk, we see that the
degree-j part of M ⊗K

∧i Kr+1(−i) is Mj−i ⊗K

∧i Kr+1. The differentials of
M ⊗S K(x0, . . . , xr) preserve degrees, so the complex decomposes as a direct
sum of complexes of vector spaces of the form

Mj−i−1⊗K

∧i+1 Kr+1 � Mj−i⊗K

∧i Kr+1 � Mj−i+1⊗K

∧i−1 Kr+1.

This proves the first statement. The inequality on βi,j follows at once.

The upper bound given in Proposition 2.7 is achieved when mM = 0 (and
conversely—see Exercise 2.6). It is not hard to deduce a weak lower bound,
too (Exercise 2.7), but is often a very difficult problem, to determine the actual
range of possibilities, especially when the module M is supposed to come from
some geometric construction.

An example will illustrate some of the possible considerations. A true geometric
example, related to this one, will be given in the next section. Suppose that r = 2
and the Hilbert function of M has values

HM (j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if j < 0,
1 if j = 0,
3 if j = 1,
3 if j = 2,
0 if j > 2.

To fit with the way we write Betti diagrams, we represent the complexes in
Proposition 2.7 with maps going from right to left, and put the term Mj ⊗∧i Kr+1(−i) = Mj(−i)(

r+1
i ) (the term of degree i+ j) in row j and column i.

Because the differential has degree 0, it goes diagonally down and to the left.

M M⊗K ∧Kr(−1)

M0 K1 K3 K3 K1

↙ ↙ ↙
M1 K3 K9 K9 K3

↙ ↙ ↙
M2 K3 K9 K9 K3
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From this we see that the termwise maximal Betti diagram of a module with the
given Hilbert function, valid if the module structure of M is trivial, is

0 1 2 3

0 1 3 3 1
1 3 9 9 3
2 3 9 9 3

On the other hand, if the differential

di,j : Mj−i⊗
∧i K3 →Mj−i+1⊗

∧i−1 K3

has rank k, both βi,j and βi−1,j drop from this maximal value by k.
Other considerations come into play as well. For example, suppose that M

is a cyclic module (a module requiring only one generator), generated by M0.
Equivalently, β0,j = 0 for j �= 0. It follows that the differentials d1,1 and d1,2

have rank 3, so β1,1 = 0 and β1,2 ≤ 6. Since β1,1 = 0, Proposition 1.9 implies
that βi,i = 0 for all i ≥ 1. This means that the differential d2,2 has rank 3 and
the differential d3,3 has rank 1, so the maximal possible Betti numbers are

0 1 2 3

0 1 − − −
1 − 3 8 3
2 − 9 9 3

Whatever the ranks of the remaining differentials, we see that any Betti diagram
of a cyclic module with the given Hilbert function has the form

0 1 2 3

0 1 − − −
1 − 3 β2,3 β3,4

2 − 1+β2,3 6+β3,4 3

for some 0 ≤ β2,3 ≤ 8 and 0 ≤ β3,4 ≤ 3. For example, if all the remaining
differentials have maximal rank, the Betti diagram would be

0 1 2 3

0 1 − − −
1 − 3 − −
2 − 1 6 3

We will see in the next section that this diagram is realized as the Betti diagram
of the homogeneous coordinate ring of a general set of 7 points in P3 modulo a
nonzerodivisor of degree 1.

2C Geometry from Syzygies: Seven Points in P
3

We have seen above that if we know the graded Betti numbers of a graded
S-module, then we can compute the Hilbert function. In geometric situations,
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the graded Betti numbers often carry information beyond that of the Hilbert
function. Perhaps the most interesting current results in this direction center on
Green’s Conjecture described in Section 9B.

For a simpler example we consider the graded Betti numbers of the homoge-
neous coordinate ring of a set of 7 points in “linearly general position” (defined
below) in P3. We will meet a number of the ideas that occupy the next few
chapters. To save time we will allow ourselves to quote freely from material de-
veloped (independently of this discussion!) later in the text. The inexperienced
reader should feel free to look at the statements and skip the proofs in the rest
of this section until after having read through Chapter 6.

The Hilbert Polynomial and Function. . .

Any set X of 7 distinct points in P3 has Hilbert polynomial equal to the constant
7 (such things are discussed at the beginning of Chapter 4). However, not all
sets of 7 points in P3 have the same Hilbert function. For example, if X is not
contained in a plane then the Hilbert function H = HSX

(d) begins with the
values H(0) = 1, H(1) = 4, but if X is contained in a plane then H(1) < 4.

To avoid such degeneracy we will restrict our attention in the rest of this
section to 7-tuples of points that are in linearly general position. We say that
a set of points Y ⊂ Pr is in linearly general position if there are no more than
2 points of Y on any line, no more than 3 points on any 2-plane, . . . , no more
than r points in an r−1 plane. Thinking of the points as coming from vectors
in Kr+1, this means that every subset of at most r+1 of the vectors is linearly
independent. Of course if there are at least r+1 points, this is equivalent to say
simply that every subset of exactly r+1 of the vectors is linearly independent.

The condition that a set of points is in linearly general position arises fre-
quently. For example, the general hyperplane section of any irreducible curve
over a field of characteristic 0 is a set of points in linearly general position [Har-
ris 1980] and this is usually, though not always, true in characteristic p as well
[Rathmann 1987]. See Exercises 8.17–8.20.

It is not hard to show—the reader is invited to prove a more general fact
in Exercise 2.9— that the Hilbert function of any set X of 7 points in linearly
general position in P3 is given by the table

d 0 1 2 3 . . .

HSX
(d) 1 4 7 7 . . .

In particular, any set X of 7 points in linearly general position lies on exactly
3 =
(
3+2
2

)− 7 independent quadrics. These three quadrics cannot generate the
ideal: since S = K[x0, . . . , x3] has only four linear forms, the dimension of the
space of cubics in the ideal generated by the three quadrics is at most 4×3 = 12,
whereas there are

(
3+3
3

)−7 = 13 independent cubics in the ideal of X. Thus the
ideal of X requires at least one cubic generator in addition to the three quadrics.

One might worry that higher degree generators might be needed as well. The
ideal of 7 points on a line in P3, for example, is minimally generated by the
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two linear forms that generate the ideal of the line, together with any form of
degree 7 vanishing on the points but not on the line. But Theorem 4.2(c) tells
us that since the 7 points of X are in linearly general position the Castelnuovo–
Mumford regularity of SX (defined in Chapter 4) is 2, or equivalently, that the
Betti diagram of SX fits into 3 rows. Moreover, the ring SX is reduced and of
dimension 1 so it has depth 1. The Auslander–Buchsbaum Formula A2.15 shows
that the resolution will have length 3. Putting this together, and using Corollary
1.9 we see that the minimal free resolution of SX must have Betti diagram of
the form

0 1 2 3

0 1 − − −
1 − β1,2 β2,3 β3,4

2 − β1,3 β2,4 β3,5

where the βi,j that are not shown are zero. In particular, the ideal of X is
generated by quadrics and cubics.

Using Corollary 1.10 we compute successively β1,2 = 3, β1,3−β2,3 = 1, β2,4−
β3,4 = 6, β3,5 = 3, and the Betti diagram has the form

0 1 2 3

0 1 − − −
1 − 3 β2,3 β3,4

2 − 1+β2,3 6+β3,4 3

(This is the same diagram as at the end of the previous section. Here is the
connection: Extending the ground field if necessary to make it infinite, we could
use Lemma A2.3 and choose a linear form x ∈ S that is a nonzerodivisor on SX .
By Lemma 3.15 the graded Betti numbers of SX/xSX as an S/xS-module are
the same as those of SX as an S-module. Using our knowledge of the Hilbert
function of SX and the exactness of the sequence

0 � SX(−1)
x� SX

� SX/xSx
� 0,

we see that the cyclic (S/xS)-module SX/xSx has Hilbert function with values
1, 3, 3. This is what we used in Section 2B.)

. . . and Other Information in the Resolution

We see that even in this simple case the Hilbert function does not determine the
βi,j , and indeed they can take different values. It turns out that the difference
reflects a fundamental geometric distinction between different sets X of 7 points
in linearly general position in P3: whether or not X lies on a curve of degree 3.

Up to linear automorphisms of P3 there is only one irreducible curve of degree
3 not contained in a plane. This twisted cubic is one of the rational normal
curves studied in Chapter 6. Any 6 points in linearly general position in P3 lie
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on a unique twisted cubic (see Exercise 6.5). But for a twisted cubic to pass
through 7 points, the seventh must lie on the twisted cubic determined by the
first 6. Thus most sets of seven points do not lie on any twisted cubic.

7′7

6

5 4

3

2

1
?

z}|{

Theorem 2.8. Let X be a set of 7 points in linearly general position in P3. There
are just two distinct Betti diagrams possible for the homogeneous coordinate ring
SX :

0 1 2 3

0 1 − − −
1 − 3 − −
2 − 1 6 3

and

0 1 2 3

0 1 − − −
1 − 3 2 −
2 − 3 6 3

In the first case the points do not lie on any curve of degree 3. In the second case,
the ideal J generated by the quadrics containing X is the ideal of the unique curve
of degree 3 containing X, which is irreducible.

Proof. Let q0, q1, q2 be three quadratic forms that span the degree 2 part of
I := IX . A linear syzygy of the qi is a vector (a0, a1, a2) of linear forms with∑2

i=0 aiqi = 0. We will focus on the number of independent linear syzygies, which
is β2,3.

If β2,3 = 0, Proposition 1.9 implies that β3,4 = 0 and the computation of the
differences of the βi,j above shows that the Betti diagram of SX = S/I is the
first of the two given tables. As we shall see in Chapter 6, any irreducible curve of
degree ≤ 2 lies in a plane. Since the points of X are in linearly general position,
they are not contained in the union of a line and a plane, or the union of 3 lines,
so any degree 3 curve containing X is irreducible. Further, if C is an irreducible
degree 3 curve in P3, not contained in a plane, then the C is a twisted cubic,
and the ideal of C is generated by three quadrics, which have 2 linear syzygies.
Thus in the case where X is contained in a degree 3 curve we have β2,3 ≥ 2.

Now suppose β2,3 > 0, so that there is a nonzero linear syzygy
∑2

i=0 aiqi = 0. If
the ai were linearly dependent then we could rewrite this relation as a′

1q
′
1+a′

2q
′
2 =

0 for some independendent quadrics q′1 and q′2 in I. By unique factorization, the
linear form a′

1 would divide q′2; say q′2 = a′
1b. Thus X would be contained in the
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union of the planes a′
1 = 0 and b = 0, and one of these planes would contain

four points of X, contradicting our hypothesis. Therefore a0, a1, a2 are linearly
independent linear forms.

Changing coordinates on P3 we can harmlessly assume that ai = xi. We can
then read the relation

∑
xiqi = 0 as a syzygy on the xi. But from the exactness

of the Koszul complex (see for example Theorem 2.2 as applied in Example 2.6),
we know that all the syzygies of x0, x1, x2 are given by the columns of the matrix⎛⎝ 0 x2 −x1

−x2 0 x0

x1 −x0 0

⎞⎠ ,

and thus we must have⎛⎝ q0

q1

q2

⎞⎠ =

⎛⎝ 0 x2 −x1

−x2 0 x0

x1 −x0 0

⎞⎠⎛⎝ b0

b1

b2

⎞⎠
for some linear forms bi. Another way to express this equation is to say that qi

is (−1)i times the determinant of the 2×2 matrix formed by omitting the i-th
column of the matrix

M =
(

x0 x1 x2

b0 b1 b2

)
,

where the columns are numbered 0, 1, 2. The two rows of M are independent
because the qi, the minors, are nonzero. (Throughout this book we will follow
the convention that a minor of a matrix is a subdeterminant times an appropriate
sign.)

We claim that both rows of M give relations on the qi. The vector (x0, x1, x2)
is a syzygy by virtue of our choice of coordinates. To see that (b0, b1, b2) is also
a syzygy, note that the Laplace expansion of

det

⎛⎝x0 x1 x2

b0 b1 b2

b0 b1 b2

⎞⎠
is
∑

i biqi. However, this 3×3 matrix has a repeated row, so the determinant is
0, showing that

∑
i biqi = 0. Since the two rows of M are linearly independent,

we see that the qi have (at least) 2 independent syzygies with linear forms as
coefficients.

The ideal (q0, q1, q2) ⊂ I that is generated by the minors of M is unchanged
if we replace M by a matrix PMQ, where P and Q are invertible matrices of
scalars. It follows that matrices of the form PMQ cannot have any entries equal
to zero. This shows that M is 1-generic in the sense of Chapter 6, and it follows
from Theorem 6.4 that the ideal J = (q0, q1, q2) ⊂ I is prime and of codimension
2—that is, J defines an irreducible curve C containing X in P3.
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From Theorem 3.2 it follows that a free resolution of SC may be written as

0→ S2(−3)

⎛⎝x0 b0

x1 b1

x2 b2

⎞⎠
� S3(−2)

(q0 q1 q2 )� S � SC
� 0.

From the resolution of SC we can also compute its Hilbert function:

HSC
(d) =

(
3+d
3

)−3
(
3+d−2

3

)
+2
(
3+d−3

3

)
= 3d+1 for d ≥ 0.

Thus the Hilbert polynomial of the curve is 3d+1. It follows that C is a cubic
curve—see [Hartshorne 1977, Prop. I.7.6], for example.

It may be surprising that in Theorem 2.8 the only possibilities for β2,3 are 0
and 2, and that β3,4 is always 0. These restrictions are removed, however, if one
looks at sets of 7 points that are not in linearly general position though they
have the same Hilbert function as a set of points in linearly general position;
some examples are given in Exercises 2.11–2.12.

2D Exercises

1. Suppose that m1, . . . ,mn are monomials in S. Show that the projective di-
mension of S/(m1, . . . ,mn) is at most n. No such principle holds for arbitrary
homogeneous polynomials; see Exercise 2.4.

2. Let 0 ≤ n ≤ r. Show that if M is a graded S-module which contains a
submodule isomorphic to S/(x0, . . . , xn) (so that (x0, . . . , xn) is an associated
prime of M) then the projective dimension of M is at least n+1. If n+1 is
equal to the number of variables in S, show that this condition is necessary as
well as sufficient. (Hint: For the last statement, use the Auslander–Buchsbaum
theorem, Theorem A2.15.)

3. Consider the ideal I = (x0, x1)∩(x2, x3) of two skew lines in P3:

Prove that I = (x0x2, x0x3, x1x2, x1x3), and compute the minimal free res-
olution of S/I. In particular, show that S/I has projective dimension 3 even
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though its associated primes are precisely (x0, x1) and (x2, x3), which have
height only 2. Thus the principle of Exercise 2.2 can’t be extended to give
the projective dimension in general.

4. Show that the ideal J = (x0x2−x1x3, x0x3, x1x2) defines the union of two
(reduced) lines in P3, but is not equal to the saturated ideal of the two
lines. Conclude that the projective dimension of S/J is 4 (you might use
the Auslander–Buchsbaum formula, Theorem A2.15). In fact, three-generator
ideals can have any projective dimension; see [Bruns 1976] or [Evans and
Griffith 1985, Corollary 3.13].

5. Let M be a finitely generated graded S-module and let Bj =
∑

i(−1)iβi,j(M).
Show from Proposition 2.7 that

Bj =
∑

i

(−1)iHM (j− i)
(

r+1
i

)
.

This is another form of the formula in Corollary 1.10.

6. Show that if M is a graded S module, then

β0,j(M) = HM (j) for all j

if and only if mM = 0.

7. If M is a graded S-module, show that

βi,j(M) ≥ HM (j− i)
(

r+1
i

)
−HM (j− i+1)

(
r+1
i−1

)
−HM (j− i−1)

(
r+1
i+1

)
.

8. Prove that the complex

0→ S2(−3)

⎛⎝x0 x1

x1 x2

x2 x3

⎞⎠
� S3(−2)

(x1x3−x2
2 −x0x3 +x1x2 x0x2−x2

1 )� S

is indeed a resolution of the homogeneous coordinate ring SC of the twisted
cubic curve C, by the following steps:
(a) Identify SC with the subring of K[s, t] consisting of those graded com-

ponents whose degree is divisible by 3. Show in this way that HSC
(d) =

3d+1 for d ≥ 0.
(b) Compute the Hilbert functions of the terms S, S3(−2), and S2(−3). Show

that their alternating sum HS−HS3(−2)+HS2(−3) is equal to the Hilbert
function HSC

.
(c) Show that the map

S2(−3)

⎛⎝x0 x1

x1 x2

x2 x3

⎞⎠
� S3(−2)
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is a monomorphism. As a first step you might prove that it becomes a
monomorphism when the polynomial ring S is replaced by its quotient
field, the field of rational functions.

(d) Show that the results in parts (b) and (c) together imply that the complex
exhibited above is a free resolution of SC .

9. Let X be a set of n ≤ 2r+1 points in Pr in linearly general position. Show that
X imposes independent conditions on quadrics: that is, show that the space
of quadratic forms vanishing on X is

(
r+2
2

)−n dimensional. (It is enough to
show that for each p ∈ X there is a quadric not vanishing on p but vanishing
at all the other points of X.) Use this to show that X imposes independent
conditions on forms of degree≥ 2. The same idea can be used to show that any
n ≤ dr+1 points in linearly general position impose independent conditions
on forms of degree d.

Deduce the correctness of the Hilbert function for 7 points in linearly
general position given by the table in Section 2C.

10. The sufficient condition of Exercise 2.9 is far from necessary. One way to
sharpen it is to use Edmonds’ Theorem [1965], which is the following beautiful
and nontrivial theorem in linear algebra (see [Graham et al. 1995, Chapter
11, Theorem 3.9] for an exposition):

Theorem 2.9. Let v1, . . . , vds be vectors in an s-dimensional vector space.
The list (v1, . . . , vds) can be written as the union of d bases if and only if no
dk+1 of the vectors vi lie in a k-dimensional subspace, for every k.

Now suppose that Γ is a set of at most 2r+1 points in Pr, and, for all k <
r, each set of 2k+1 points of Γ spans at least a (k+1)-plane. Use Edmonds’
Theorem to show that Γ imposes independent conditions on quadrics in Pr

(Hint: You can apply Edmonds’ Theorem to the set obtained by counting one
of the points of Γ twice.)

11. Show that if X is a set of 7 points in P3 with 6 points on a plane, but not
on any conic curve in that plane, while the seventh point does not line in the
plane, then X imposes independent conditions on forms of degree ≥ 2 and
β2,3 = 3.

12. Let Λ ⊂ P3 be a plane, and let D ⊂ Λ be an irreducible conic. Choose points
p1, p2 /∈ Λ such that the line joining p1 and p2 does not meet D. Show that
if X is a set of 7 points in P3 consisting of p1, p2 and 5 points on D, then X
imposes independent conditions on forms of degree ≥ 2 and β2,3 = 1. (Hint:
To show that β2,3 ≥ 1, find a pair of reducible quadrics in the ideal having a
common component. To show that β2,3 ≤ 1, show that the quadrics through
the points are the same as the quadrics containing D and the two points.
There is, up to automorphisms of P3, only one configuration consisting of a
conic and two points in P3 such that the line though the two points does
not meet the conic. You might produce such a configuration explicitly and
compute the quadrics and their syzygies.)
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13. Show that the labeled simplicial complex
x1x2

x0x2

x0x1 x2x3

gives a nonminimal free resolution of the monomial ideal

(x0x1, x0x2, x1x2, x2x3).

Use this to prove that the Betti diagram of a minimal free resolution is

0 1 2 3

0 1 − − −
1 − 4 4 1

14. Use the Betti diagram in Exercise 2.13 to show that the minimal free reso-
lution of (x0x1, x0x2, x1x2, x2x3) cannot be written as C (∆) for any labeled
simplicial complex ∆. (It can be written as the free complex coming from a
certain topological cell complex; for this generalization see [Bayer and Sturm-
fels 1998].)

15. Show the ideal
I = (x3, x2y, x2z, y3) ⊂ S = K[x, y, z]

has minimal free resolution C (∆), where ∆ is the labeled simplicial complex

z3

x3

x2y

x2z

Compute the Betti diagram, the Hilbert function, and the Hilbert polynomial
of S/I, and show that in this case the bound given in Corollary 1.3 is not
sharp. Can you see this from the Betti diagram?
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The first case in which the relation of syzygies and geometry becomes clear, and
the one in which it is best understood, is the case where the geometric objects are
finite sets of points in P2. We will devote this chapter to such sets. (The reader
who knows about schemes, for example at the level of the first two chapters of
[Eisenbud and Harris 2000], will see that exactly the same considerations apply
to finite schemes in P2.) Of course the only intrinsic geometry of a set of points
is the number of points, and we will see that this is the data present in the
Hilbert polynomial. But a set of points embedded in projective space has plenty
of extrinsic geometry. For example, it is interesting to ask what sorts of curves a
given set of points lies on, or to ask about the geometry of the dual hyperplane
arrangement (see [Orlik and Terao 1992]), or about the embedding of the “Gale
transform” of the points (see [Eisenbud and Popescu 1999]). All of these things
have some connections with syzygies.

Besides being a good model problem, the case of points in P2 arises directly
in considering the plane sections of varieties of codimension 2, such as the very
classical examples of curves in P3 and surfaces in P4. For example, a knowledge
of the possible Hilbert functions of sets of points in “uniform position” is the key
ingredient in “Castelnuovo Theory”, which treats the possible genera of curves
in P3 and related problems.

Despite this wealth of related topics, the goal of this chapter is modest: We will
characterize the Betti diagrams of the possible minimal graded free resolutions
of ideals of forms vanishing on sets of points in P2, and begin to relate these
discrete invariants to geometry in simple cases.

Throughout this chapter, S will denote the graded ring K[x0, x1, x2]. All the
S-modules we consider will be finitely generated and graded. Such a module
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admits a minimal free resolution, unique up to isomorphism. By Corollary 1.8,
its length is equal to the module’s projective dimension.

3A The Ideal of a Finite Set of Points

The simplest ideals are principal ideals. As a module, such an ideal is free. The
next simplest case is perhaps that of an ideal having a free resolution of length
1, and we will see that the ideal of forms vanishing on any finite set of points in
P2 has this property.

We will write pd I for the projective dimension of I. By the depth of a graded
ring, we mean the grade of the irrelevant ideal— that is, the length of a maximal
regular sequence of homogeneous elements of positive degree. (The homogeneous
case is very similar to the local case; for example, all maximal regular sequences
have the same length in the homogeneous case as in the local case, and the
local proofs can be modified to work in the homogeneous case. For a systematic
treatement see [Goto and Watanabe 1978a; 1978b].)

Proposition 3.1. If I ⊂ S is the homogeneous ideal of a finite set of points in
P2, then I has a free resolution of length 1.

Proof. Suppose I = I(X), the ideal of forms vanishing on the finite set X ⊂ P2.
By the Auslander–Buchsbaum Formula (Theorem A2.15) we have

pd S/I = depthS−depthS/I.

But depth S/I ≤ dimS/I = 1. The ideal I is the intersection of the prime ideals
of forms vanishing at the individual points of X, so the maximal homogeneous
ideal m of S is not associated to I. This implies that depthS/I > 0. Also, the
depth of S is 3 (the variables form a maximal homogeneous regular sequence).
Thus pd S/I = 3−1 = 2, whence pd I = 1, as I is the first module of syzygies
in a free resolution of S/I.

It turns out that ideals with a free resolution of length 1 are determinantal
(see Appendix A2G for some results about determinantal ideals.) This result was
discovered by Hilbert in a special case and by Burch in general.

The Hilbert–Burch Theorem

In what follows, we shall work over an arbitrary Noetherian ring R. (Even more
general results are possible; see for example [Northcott 1976].) For any matrix
M with entries in R we write It(M) for the ideal generated by the t×t subdeter-
minants of M The length of a maximal regular sequence in an ideal I is written
grade I.
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Theorem 3.2 (Hilbert–Burch). Suppose that an ideal I in a Noetherian ring
R admits a free resolution of length 1:

0 � F
M� G � I � 0.

If the rank of the free module F is t, then the rank of G is t+1, and there exists
a nonzerodivisor a such that I = aIt(M). Regarding M as a matrix with respect
to given bases of F and G, the generator of I that is the image of the i-th basis
vector of G is ±a times the determinant of the submatrix of M formed from all
except the i-th row . Moreover , the grade of It(M) is 2.

Conversely , given a nonzerodivisor a of R and given a (t+1)× t matrix M
with entries in R such that grade It(M) ≥ 2, the ideal I = aIt(M) admits a
free resolution of length one as above. The ideal I has grade 2 if and only if the
element a is a unit .

In view of the signs that appear in front of the determinants, we define the
i-th minor of M to be (−1)i detM ′

i , where M ′
i is the matrix M ′ with the i-th

row omitted. We can then say that the generator of I that is the image of the
i-th basis vector of G is a times the i-th minor of M.

We postpone the proof in order to state a general result describing free reso-
lutions. If ϕ is a map of free R-modules, we write rank(ϕ) for the rank (that is,
the largest size of a nonvanishing minor) and I(ϕ) for the determinantal ideal
Irank(ϕ)(ϕ). For any map ϕ of free modules we make the convention that I0(ϕ) =
R. In particular, if ϕ is the zero map, the rank of ϕ is 0, so I(ϕ) = I0(ϕ) = R.
We also take depth(R,R) =∞, so that grade I(ϕ) =∞ if I(φ) = R.

Theorem 3.3 (Buchsbaum–Eisenbud). A complex of free modules

F : 0 � Fm
ϕm� Fm−1

� · · · � F1
ϕ1� F0

over a Noetherian ring R is exact if and only if

rankϕi+1 +rankϕi = rankFi and depth I(ϕi) ≥ i for every i.

For a proof see [Eisenbud 1995, Theorem 20.9]. It is crucial that the complex
begin with a zero on the left; no similar result is known without such hypotheses.

In the special case where R is a polynomial ring R = K[x0, . . . , xr] and K
is algebraically closed, Theorem 3.3 has a simple geometric interpretation. We
think of R as a ring of functions on Kr+1 (in the graded case we could work with
Pr instead). If p ∈ Kr+1, we write I(p) for the ideal of functions vanishing at p,
and we write

F(p) : 0 � Fm(p)
ϕm(p)� · · · ϕ1(p)� F0(p)

for the result of tensoring F with the residue field κ(p) := R/I(p), regarded as a
complex of finite-dimensional vector spaces over κ(p). A matrix for the map ϕi(p)
is obtained by evaluating a matrix for the map ϕi at p. Theorem 3.3 expresses
the relation between the exactness of the complex of free modules F and the
exactness of the complexes of vector spaces F(p).
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Corollary 3.4. Let

F : 0 � Fm
ϕm� Fm−1

� · · · � F1
ϕ1� F0

be a complex of free modules over the polynomial ring S = K[x0, . . . , xr], where
K is an algebraically closed field . Let Xi ⊂ Kr+1 be the set of points p such that
the evaluated complex F(p) is not exact at Fi(p). The complex F is exact if and
only if, for every i, the set Xi is empty or codimXi ≥ i.

Proof. Set ri = rankFi− rankFi+1 + . . .± rankFm. Theorem 3.3 implies that F
is exact if and only if grade Iri

(ϕi) ≥ i for each i ≥ 1. First, if F is exact then
by descending induction we see from condition 1 of the theorem that rankϕi =
ri for every i, and then the condition grade Iri

(ϕi) ≥ i is just condition 2 of
Theorem 3.3.

Conversely, suppose that grade Iri
(ϕi) ≥ i. It follows that rankϕi ≥ ri for each

i. Tensoring with the quotient field of R we see that rankϕi+1+rankϕi ≤ rankFi

in any case. Using this and the previous inequality, we see by descending induc-
tion that in fact rankϕi = ri for every i, so conditions 1 and 2 of Theorem 3.3
are satisfied.

Now let
Yi = {p ∈ Kr+1 | rankϕi(p) < ri}.

Thus Yi is the algebraic set defined by the ideal Iri
(ϕi). Since the polynomial

ring S is Cohen–Macaulay (Theorem A2.33) the grade of Iri
(ϕi) is equal to the

codimension of this ideal, which is the same as the codimension of Yi. It follows
that F is exact if and only if the codimension of Yi in Kr+1 is at least i for each
i ≥ 1.

On the other hand, the complex of finite-dimensional K-vector spaces F(p) is
exact at Fj(p) if and only if rankϕj+1(p)+rank ϕj(p) = rankFj(p). Since F(p) is
a complex, this is the same as saying that rankϕj+1(p)+rankϕj(p) ≥ rankFj(p).
This is true for all j ≥ i if and only if rankϕj(p) ≥ rj for all j ≥ i. Thus F(p) is
exact at Fj(p) for all j ≥ i if and only if p /∈ ⋃j≥i Yj .

The codimension of
⋃

j≥i Yj is the minimum of the codimensions of the Yj for
j ≥ i. Thus codim

⋃
j≥i Yj ≥ i for all i if and only if codimYi ≥ i for all i. Thus

F satisfies the condition of the Corollary if and only if F is exact.

Example 3.5. To illustrate these results, we return to the example in Exer-
cise 2.8 and consider the complex

F : 0→ S2(−3)

ϕ2=

⎛⎝x0 x1

x1 x2

x2 x3

⎞⎠
� S3(−2)

ϕ1=(x1x3−x2
2 −x0x3+x1x2 x0x2−x2

1)� S.

In the notation of the proof of Corollary 3.4 we have r2 = 2, r1 = 1. Further,
the entries of ϕ1 are the 2×2 minors of ϕ2, as in Theorem 3.2 with a = 1. In
particular Y1 = Y2 and X1 = X2. Thus Corollary 3.4 asserts that F is exact if
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and only if codimX2 ≥ 2. But X2 consists of the points p where ϕ2 fails to be
a monomorphism—that is, where rank(ϕ(p)) ≤ 1. If p = (p0, . . . , p3) ∈ X2 and
p0 = 0 we see, by inspecting the matrix ϕ2, that p1 = p2 = 0, so p = (0, 0, 0, p3).
Such points form a set of codimension 3 in K4. On the other hand, if p ∈ X2

and p0 �= 0 we see, again by inspecting the matrix ϕ2, that p2 = (p1/p0)2 and
p3 = (p1/p0)3. Thus p is determined by the two parameters p0, p1, and the set
of such p has codimension at least 4−2 = 2. In particular X2, the union of these
two sets, has codimension at least 2, so F is exact by Corollary 3.4.

In this example all the ideals are homogeneous, and the projective algebraic
set X2 is in fact the twisted cubic curve.

A consequence of Theorem 3.2 in the general case is that any ideal with a free
resolution of length 1 contains a nonzerodivisor. Theorem 3.3 allows us to prove
a more general result of Auslander and Buchsbaum:

Corollary 3.6 (Auslander–Buchsbaum). An ideal I that has a finite free
resolution contains a nonzerodivisor .

In the nongraded, nonlocal case, having a finite projective resolution (finite
projective dimension) would not be enough; for example, if k is a field, the ideal
k×{0} ⊂ k×k is projective but does not contain a nonzerodivisor.

Proof. In the free resolution

0 � Fn
ϕn� · · · ϕ2� F1

ϕ1� R � R/I � 0

the ideal I(ϕ1) is exactly I. By Theorem 3.3 it has grade at least 1.

The proof of Theorem 3.2 depends on an identity:

Lemma 3.7. If M is a (t+1)×t matrix over a commutative ring R, and a ∈ R,
the composition

Rt M� Rt+1 ∆� R

is zero, where the map ∆ is given by the matrix ∆ = (a∆1, . . . , a∆t+1), the
element ∆i being the t× t minor of M omitting the i-th row (remember that
by definition this minor is (−1)i times the determinant of the corresponding
submatrix).

Proof. Write ai,j for the (i, j) entry of M. The i-th entry of the composite map
∆M is a

∑
j ∆jai,j , that is, a times the Laplace expansion of the determinant of

the (t+1)×(t+1) matrix obtained from M by repeating the i-th column. Since
any matrix with a repeated column has determinant zero, we get ∆M = 0.

Proof of Theorem 3.2. We prove the last statement first: suppose that the grade
of It(M) is at least 2 and a is a nonzerodivisor. It follows that the rank of M is
t, so that I(M) = It(M), and the rank of ∆ is 1. Thus I(∆) = I1(∆) = aI(M)
and the grade of I(∆) is at least 1. By Theorem 3.3,

0 � F
M� G � I � 0
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is the resolution of I = aI(M), as required.
We now turn to the first part of Theorem 3.2. Using the inclusion of the ideal

I in R, we see that there is a free resolution of R/I of the form

0 � F
M� G

A� R.

Since A is nonzero it has rank 1, and it follows from Theorem 3.3 that the rank
of M must be t, and the rank of G must be t+1. The grade of I(M) = It(M) is
at least 2. Theorem A2.54 shows that the codimension of the ideal of t×t minors
of a (t+ 1)× t matrix is at most 2. By Theorem A2.11 the codimension is an
upper bound for the grade, so grade I(M) = 2. Write ∆ = (∆1, . . . ,∆t+1), for
the 1× (t+1) matrix whose entries ∆i are the minors of M as in Lemma 3.7.
Writing −∗ for HomR(−, R), it follows from Theorem 3.3 that the sequence

F ∗ �M∗
G∗ �∆∗

R � 0,

which is a complex by Lemma 3.7, is exact. On the other hand, the image of the
map A∗ is contained in the kernel of M ∗, so that there is a map a : R→ R such
that the diagram

F ∗ �M∗
G∗ �A∗

R

F ∗

�����
�M∗

G∗

�����
�∆∗

R

a
�

.........

commutes. The map a is represented by a 1×1 matrix whose entry we also call
a. By Corollary 3.6, the ideal I contains a nonzerodivisor. But from the diagram
above we see that I = aIt(M) is contained in (a), so a must be a nonzerodivisor.

As It(M) has grade 2, the ideal I = aIt(M) has grade 2 if and only if a is a
unit. With Theorem 3.3 this completes the proof.

Invariants of the Resolution

The Hilbert–Burch Theorem just described allows us to exhibit some interesting
numerical invariants of a set X of points in P2. Throughout this section we
will write I = IX ⊂ S for the homogeneous ideal of X, and SX = S/IX for
the homogeneous coordinate ring of X. By Proposition 3.1 the ideal IX has
projective dimension 1, and thus SX has projective dimension 2. Suppose that
the minimal graded free resolution of SX has the form

F : 0 � F
M� G � S,

where G is a free module of rank t+1. By Theorem 3.2, the rank of F is t.
We can exhibit the numerical invariants of this situation either by using the

degrees of the generators of the free modules or the degrees of the entries of
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the matrix M. We write the graded free modules G and F in the form G =⊕t+1
1 S(−ai) and F =

⊕t
1 S(−bi), where, as always, S(−a) denotes the free

module of rank 1 with generator in degree a. The ai are thus the degrees of
the minimal generators of I. The degree of the (i, j) entry of the matrix M is
then bj−ai. As we shall soon see, the degrees of the entries on the two principal
diagonals of M determine all the other invariants. We write ei = bi − ai and
fi = bi−ai+1 for these degrees.

To make the data unique, we assume that the bases are ordered so that a1 ≥
· · · ≥ at+1 and b1 ≥ · · · ≥ bt or, equivalently, so that fi ≥ ei and fi ≥ ei+1. Since
the generators of G correspond to rows of M and the generators of F correspond
to columns of M, and the ei and fi are degrees of entries of M, we can exhibit
the data schematically as follows:

⎛⎜⎜⎜⎜⎜⎝

b1 b2 · · · bt

a1 e1 ∗ · · · ∗
a2 f1 e2 · · · ∗
...

...
. . . . . .

...
at ∗ · · · ft−1 et

at+1 ∗ · · · ∗ ft

⎞⎟⎟⎟⎟⎟⎠
The case of 8 general points in P2 is illustrated by the following figure. The ideal
of the 8 points is generated by two cubics and a quartic (in gray); the degree
matrix is

⎛⎝
b1 = 5 b2 = 5

a1 = 4 e1 = 1
a2 = 3 f1 = 2 e2 = 2
a3 = 3 f2 = 2

⎞⎠,

e1f1 +e1f2 +e2f2 = 8.

Since minimal free resolutions are unique up to isomorphism, the integers
ai, bi, ei, fi are invariants of the set of points X. They are not arbitary, however,
but are determined (for example) by the ei and fi. The next proposition gives
these relations. We shall see at the very end of this chapter that Proposition 3.8
gives all the restrictions on these invariants, so that it describes the numerical
characteristics of all possible free resolutions of sets of points.
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Proposition 3.8. If

F : 0 �
t∑
1

S(−bi)
M�

t+1∑
1

S(−ai) � S,

is a minimal graded free resolution of S/I, with bases ordered as above, and ei, fi

denote the degrees of the entries on the principal diagonals of M, the following
statements hold for all i.

1. ei ≥ 1 and fi ≥ 1.
2. ai =

∑
j<i ej +

∑
j≥i fj .

3. bi = ai +ei for i = 1, . . . , t and
∑t

1 bi =
∑t+1

1 ai.

If the bases are ordered so that a1 ≥ · · · ≥ at+1 and b1 ≥ · · · ≥ bt then in addition

4. fi ≥ ei, fi ≥ ei+1.

This gives an upper bound on the minimal number of generators of the ideal of
a set of points that are known to lie on a curve of given degree. Burch’s motivation
in proving her version of the Hilbert–Burch theorem was to generalize this bound,
which was known independently.

Corollary 3.9. If I is the homogeneous ideal of a set of points in P2 lying on a
curve of degree d, then I can be generated by d+1 elements.

Proof. If t+1 is the minimal number of generators of I then, by Proposition 3.8,
the degree ai of the i-th minimal generator is the sum of t numbers that are each
at least 1, so t ≤ ai. Since I contains a form of degree d we must have ai ≤ d for
some i.

Hilbert’s method for computing the Hilbert function, described in Chapter 1,
allows us to compute the Hilbert function and polynomial of SX in terms of the
ei and fi. As we will see in Section 4A, HX(d) is constant for large d, and its value
is the number of points in X, usually called the degree of X and written deg X. If
X were the complete intersection of a curve of degree e with a curve of degree f ,
then in the notation of Proposition 3.8 we would have t = 1, e1 = e, f1 = f , and
by Bézout’s Theorem the degree of X would be ef = e1f1. The following is the
generalization to arbitrary t, discovered by Ciliberto, Geramita, and Orrechia
[Ciliberto et al. 1986]. For the generalization to determinantal varieties of higher
codimension see [Herzog and Trung 1992, Corollary 6.5].

Corollary 3.10. If X is a finite set of points in P2 then, with notation as above,

deg X =
∑
i≤j

eifj .

The proof is straightforward calculation from Proposition 3.8, and we leave it
and a related formula to the reader in Exercise 3.15.
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Proof of Proposition 3.8. Since I has codimension 2 and S is a polynomial ring
(and thus Cohen–Macaulay) I has grade 2. It follows that the nonzerodivisor a
that is associated to the resolution F as in Theorem 3.2 is a unit. Again because
S is a polynomial ring this unit must be a scalar. Thus the ai are the degrees of
the minors of M.

We may assume that the bases are ordered as in the last statement of the
Proposition. We first show that the ei (and thus also, by our ordering conventions,
the fi) are at least 1. Write mi,j for the (i, j) entry of M. By the minimality of
F, no mi,j can be a nonzero constant, so that if ei ≤ 0 then mi,i = 0. Moreover
if p ≤ i and q ≥ i then

deg mp,q = bq−ap ≤ bi−ai = ei,

by our ordering of the bases. If ei ≤ 0 then mp,q = 0 for all (p, q) in this range,
as in the following diagram, where t = 4 and we assume e3 ≤ 0:

M =

⎛⎜⎜⎜⎜⎝
∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎠ .

We see by calculation that the determinant of the upper t× t submatrix of M
vanishes. By Theorem 3.2 this determinant is a minimal generator of I, and this
is a contradiction.

The identity ai =
∑

j<i ej +
∑

j≥i fj again follows from Theorem 3.2, since ai

is the degree of the determinant ∆i of the submatrix of M omitting the i-th row,
and one term in the expansion of this determinant is∏

j<i

mj,j ·
∏
j≥i

mj+1,j .

Since ei = bi−ai. we get

t∑
1

bi =
t∑
1

ai +
t∑
1

ei =
t+1∑
1

ai.

3B Examples

Example 3.11 (Points on a conic). We illustrate the theory above, in partic-
ular Corollary 3.9, by discussing the possible resolutions of a set of points lying
on an irreducible conic.

1
2 3

· · ·
d

1

2

3
. . .

d
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For the easy case of points on a line, and the more complicated case of points
on a reducible conic, see Exercises 3.1 and 3.3–3.6 below.

Suppose that the point set X ⊂ P2 does not lie on any line, but does lie on
some conic, defined by a quadratic form q. In the notation of Proposition 3.8 we
have at+1 = 2. Since at+1 =

∑t
1 ei, it follows from Proposition 3.8 that either

t = 1 and e1 = 2 or else t = 2 and e1 = e2 = 1.

1. If t = 1 then X is a complete intersection of the conic with a curve of degree
a1 = d defined by a form g. By our formula (or Bézout’s Theorem), the degree
of X is 2d. Note in particular that it is even. We have b1 = d+2, and the
resolution takes the following form (see also Theorem A2.48):

S(−2)

����g � ����
q

�
0 � S(−d−2) ⊕ S � SX

����−q � ����

g

�

S(−d)

In the case d = 2 the Betti diagram of this resolution is

0 1 2

0 1 − −
1 − 2 −
2 − − 1

while for larger d it takes the form

0 1 2

0 1 − −
1 − 1 −
2 − − −
...

...
...

...
d−2 − − −
d−1 − 1 −

d − − 1

2. The other possibility is that t = 2 and e1 = e2 = 1. We will treat only the
case where the conic q = 0 is irreducible, and leave the reducible case to the
reader in Exercises 3.3–3.6 at the end of the chapter. By Proposition 3.8 the
resolution has the form

0 � S(−1−f1−f2)⊕S(−2−f2)
M� S(−f1−f2)⊕S(−1−f2)⊕S(−2) � S,

where we assume that f1 ≥ e1 = 1, f1 ≥ e2 = 1, and f2 ≥ e2 = 1 as usual. If
there are two quadratic generators, we further assume that the last generator
is q.
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By Theorem 3.2, q is (a multiple of) the determinant of the 2×2 matrix M ′

formed from the first two rows of M. Because q is irreducible, all four entries of
the upper 2×2 submatrix of M must be nonzero. The upper right entry of M
has degree e1+e2−f1 ≤ 1. If it were of degree 0, by the supposed minimality
of the resolution it would itself be 0, contradicting the irreducibility of q.
Thus e1 + e2− f1 = 1, so f1 = 1. By our hypothesis a3 = 2, and it follows
from Proposition 3.8 that a1 = a2 = 1+f2, b1 = b2 = 2+f2. We deduce that
the resolution has the form

0 � S(−2−f2)2
M� S(−1−f2)2⊕S(−2) � S.

If f2 = 1 the Betti diagram is

0 1 2

0 1 − −
1 − 3 2

while if f2 > 1 it has the form

0 1 2

0 1 − −
1 − 1 −
2 − − −
...

...
...

...
f2−1 − − −

f2 − 2 2

Applying the formula of Corollary 3.10 we get deg X = 2f2+1. In particular,
we can distinguish this case from the complete intersection case by the fact
that the number of points is odd.

Example 3.12 (Four noncolinear points). Any 5 points lie on a conic, since
the quadratic forms in 3 variables form a five-dimensional vector space, and
vanishing at a point is one linear condition, so there is a nonzero quadratic form
vanishing at any 5 points. Thus we can use the ideas of the previous subsection to
describe the possible resolutions for up to 5 points. One set of three noncolinear
points in P2 is like another, so we treat the case of a set X = {p1, . . . , p4} of
four noncolinear points, the first case where geometry enters. (For the case of 3
points see Exercise 3.2.)

Since there is a six-dimensional vector space of quadratic forms on P2, and
the condition of vanishing at a point is a single linear condition, there must be
at least two distinct conics containing X.

First suppose that no three of the points lie on a line. It follows that X is
contained in the following two conics, each a union of two lines:

C1 = p1, p2∪p3, p4 C2 = p1, p3∪p2, p4.
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In this case, X is the complete intersection of C1 and C2, and we have the Betti
diagram

0 1 2

0 1 − −
1 − 2 −
2 − − 1

The two conics are two pairs of lines containing the four points.

On the other hand, suppose that three of the points, say p1, p2, p3 lie on a
line L. Let L1 and L2 be lines through p4 that do not contain any of the points
p1, p2, p3. (See figure on the next page.) It follows that X lies on the two conics

C1 = L∪L1 C2 = L∪L2,

and the intersection of these two conics contains the whole line L. Thus X is not
the complete intersection of these two conics containing it, so by Corollary 3.9
the ideal of X requires exactly 3 generators. From Propositions 3.8 and 3.10 it
follows that

e1 = e2 = 1, f1 = 2, f2 = 1,

and the ideal I of X is generated by the quadrics defining C1 and C2 together
with a cubic equation.

The Betti diagram will be

0 1 2

0 1 − −
1 − 2 1
2 − 1 1

3C The Existence of Sets of Points with Given
Invariants

This section is devoted to a proof of a converse of Proposition 3.8, which we now
state.
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p3

p2

p1

p4L

L1

L2

Four points, three on a line, are the intersection

of two conics (here L∪L1 and L∪L2) and a cubic.

Theorem 3.13. If the ground field K is infinite and ei, fi ≥ 1, for i = 1, . . . , t,
are integers, there is a set of points X ⊂ P2 such that SX has a minimal free
resolution whose second map has diagonal degrees ei and fi as in Proposition 3.8.

The proof is in two parts. First we show that there is a monomial ideal J ⊂
K[x, y] (that is, an ideal generated by monomials in the variables), containing
a power of x and a power of y, whose free resolution has the corresponding
invariants. This step is rather easy. Then, given any such monomial ideal J we
will show how to produce a set of distinct points in P2 whose defining ideal I
has free resolution with the same numerical invariants as that of J .

The second step, including Theorem 3.16, is part of a much more general
theory, sometimes called the polarization of monomial ideals. We sketch its fun-
damentals in the exercises at the end of this chapter.

Proposition 3.14. Let S = K[x, y] and let e1, . . . , et and f1, . . . , ft be positive
integers. For i = 1, . . . , t+1 set

mi =
∏
j<i

xej

∏
j≥i

yfj ,

and let I = (m1, . . . ,mt+1) ⊂ S be the monomial ideal generated by these prod-
ucts. Define ai and bi by the formulas of Proposition 3.8. The ring S/I has
minimal free resolution

0 �
t∑

i=1

S(−bi)
M�

t+1∑
i=1

S(−ai) � S � S/I → 0
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where

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xe1 0 0 · · · 0 0
yf1 xe2 0 · · · 0 0
0 yf2 xe3 · · · 0 0
0 0 yf3 . . . 0 0
...

...
...

. . . . . .
...

0 0 0 · · · yft−1 xet

0 0 0 · · · 0 yft

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the generator of S(−ai) maps to ±mi ∈ S.

Proof. It is easy to see that mi is the determinant of the submatrix of M omitting
the i-th row. Thus by Theorem 3.2 it suffices to show that the ideal of maximal
minors of M has grade at least 2. But this ideal contains

∏t
i=1 xei and

∏t
i=1 yfi .

As background to the second part of the theorem’s demonstration, we will
prove general results that allow us to manufacture a reduced algebraic set having
ideal with the same Betti diagram as any given monomial ideal, as long as the
ground field K is infinite. This treatment follows Geramita, Gregory and Roberts
[Geramita et al. 1986].

Here is the tool we will use to show that the two resolutions have the same
Betti diagram:

Lemma 3.15. Let R be a ring . If M is an R-module and y ∈ R is a nonze-
rodivisor both on R and on M, then any free resolution of M over R reduces
modulo (y) to a free resolution of M/yM over R/(y). If , in addition, R is a
graded polynomial ring , M is a graded module, and y is a linear form, then the
Betti diagram of M (over R) is the same as the Betti diagram of M/yM (over
the graded polynomial ring R/(y).)

Proof. Let F : · · · → F1 → F0 be a free resolution of M. We must show that
F/yF = R/(y)⊗R F, which is obviously a free complex of R/(y)-modules, is ac-
tually a free resolution —that is, its homology is trivial except at F0, where it is
M/yM. The homology of F/yF = R/(y)⊗R F is by definition TorR

∗ (R/(y),M).
Because y is a nonzerodivisor on R, the complex 0→ R

y� R→ R/(y)→ 0 is
exact, and it is thus a free resolution of R/(y). We can use this free resolution in-
stead of the other to compute Tor (see [Eisenbud 1995, p. 674], for example), and
we see that TorR

∗ (R/(y),M) is the homology of the sequence 0 � M
y� M .

Since y is a nonzerodivisor on M, the homology is just M/yM in degree 0, as
required.

We now return to the construction of sets of points. If K is infinite we can
choose r embeddings (of sets) ηi : N ↪→ K. (If K has characteristic 0, we could
choose all ηi equal to the natural embedding ηi(n) = n ∈ Z ⊂ K, but any
assignment of distinct ηi(n) ∈ K will do. In general we could choose all ηi to
be equal, but the extra flexibility will be useful in the proof.) We use the ηi



3C Existence of Sets of Points with Given Invariants 45

to embed Nr, regarded as the set of monomials of K[x1, . . . , xr], into PK
r: if

m = xp1
1 · · ·xpr

r we set η(m) = (1, η1(p1), . . . , ηr(pr)), and we set

fm =
r∏

i=1

pi−1∏
j=0

(xi−ηi(j)x0).

Note in particular that fm ≡ m mod (x0); we maintain this notation throughout
this section. We think of fm as the result of replacing the powers of each xi in
m by products of the distinct linear forms xi−ηi(j)x0.

Theorem 3.16. Let K be an infinite field , with an embedding Nr ⊂ PK
r as

above, and let J be a monomial ideal in K[x1, . . . , xr]. Let XJ ⊂ Pr be the set

XJ = {p ∈ Nr ⊂ Pr | xp /∈ J}.
The ideal IXJ

⊂ S = K[x0, . . . , xr] has the same Betti diagram as J ; in fact x0 is
a nonzerodivisor modulo IXJ

, and J ≡ IXJ
mod (x0). Moreover , IXJ

is generated
by the forms fm, where m runs over a set of monomial generators for J .

Before we give the proof, two examples will clarify the result:

Example 3.17. In the case of a monomial ideal J in K[x1, . . . , xr] that contains
a power of each variable xi, such as the ones in K[x, y] described in Proposi-
tion 3.14, the set XJ is finite. Thus Theorem 3.16 and Proposition 3.14 together
yield the existence of sets of points in P2 whose free resolution has arbitrary
invariants satisfying Proposition 3.8. For example, the Betti diagram

0 1 2

0 1 − −
1 − − −
2 − 1 −
3 − 2 1
4 − − 1

corresponds to invariants (e1, e2) = (2, 1) and (f1, f2) = (2, 2), and monomial
ideal J = (y4, x2y2, x3), where we have replaced x1 by x and x2 by y to simplify
notation. We will also replace x0 by z. Assuming, for simplicity, that K has
characteristic 0 and that ηi(n) = n for all i, the set of points XJ in the affine
plane z = 1 looks like this:

Its ideal is generated by the polynomials

y(y−1)(y−2)(y−3), x(x−1)y(y−1)y, x(x−1)(x−2).
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As a set of points in projective space, it has ideal IXJ
⊂ K[z, x, y] generated by

the homogenizations

fy4 = y(y−z)(y−2z)(y−3z),
fx2y2 = x(x−z)y(y−z),

fx4 = x(x−z)(x−2z).

Example 3.18. Now suppose that J does not contain any power of x ( = x1).
There are infinitely many isolated points in XJ , corresponding to the elements
1, x, x2, . . . /∈ J . Thus XJ is not itself an algebraic set. Its Zariski closure (the
smallest algebraic set containing it) is a union of planes, as we shall see. For
example, if J = (x2y, xy2, x3), here are XJ and its Zariski closure:

. . .

For the proof of Theorem 3.16 we will use the following basic properties of the
forms fm.

Lemma 3.19. Let K be an infinite field , and let the notation be as above.

1. If f ∈ S is a form of degree ≤ d that vanishes on η(m) ∈ Pr for every
monomial m with deg m ≤ d, then f = 0.

2. fm(η(m)) �= 0.

3. fm(η(n)) = 0 if m �= n and deg n ≤ deg m.

Proof. 1. We induct on the degree d ≥ 0 and the dimension r ≥ 1. The cases in
which d = 0 or r = 1 are easy.

For any form f of degree d we may write f = (xr−ηr(0)x0)q+g, where q ∈ S
is a form of degree d− 1 and g ∈ K[x0, ..., xr−1] is a form of degree ≤ d not
involving xr. Suppose that f vanishes on η(m) = (1, η1(p1), . . . , ηr(pr)) for every
monomial m = xp1

1 . . . xpr
r of degree ≤ d. The linear form xr−ηr(0)x0 vanishes

on η(m) if and only if ηr(pr) = ηr(0), that is, pr = 0. This means that m is not
divisible by xr. Thus g vanishes on η(m) for all monomials m of degree ≤ d that
are not divisible by xr. It follows by induction on r that g = 0.

Since g = 0, the form q vanishes on η(xrn) for all monomials n of degree
≤ d− 1. If we define new embeddings η′

i by the formula η′
i = ηi for i < r

but η′
r(p) = ηr(p+1), and let η′ be the corresponding embedding of the set of

monomials, then q vanishes on η′(n) for all monomials n of degree at most d−1.
By induction on d, we have q = 0, whence f = 0 as required.

2. This follows at once from the fact that η : N → K is injective.
3. Write m = xp1

1 . . . xpr
r and n = xq1

1 . . . xqr
r . Since deg n ≤ deg m we have

qi < pi for some i. It follows that fm(η(n)) = 0.

Proof of Theorem 3.16. Let I be the ideal generated by {fm} where m ranges
over a set of monomial generators of J . We first prove that I = IXJ

.
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For every pair of monomials m ∈ J, n /∈ J one of the exponents of n is strictly
less than the corresponding exponent of m. It follows immediately that I ⊂ IXJ

.
For the other inclusion, let f ∈ IXJ

be any form of degree d. Suppose that for
some e ≤ d the form f vanishes on all the points η(n) for deg n < e, but not on
some η(m) with deg m = e. By parts 2 and 3 of Lemma 3.19 we can subtract
a multiple of xd−e

0 fm from f to get a new form of degree d vanishing on η(m)
in addition to all the points η(m′) where either deg m′ < e or deg m′ = e and
f(η(m′)) = 0. Proceeding in this way, we see that f differs from an element of I
by a form g of degree d that vanishes on η(m) for every monomial m of degree
≤ d. By part 1 of Lemma 3.19 we have g = 0, so f ∈ I. This proves that I = IXJ

.
Since none of the points η(m) lies in the hyperplane x0 = 0, we see that x0

is a nonzerodivisor modulo IXJ
. On the other hand it is clear from the form

of the given generators that I ∼= J mod (x0). Applying Lemma 3.15 below we
see that a (minimal) resolution of I over S reduces modulo x0 to a (minimal)
free resolution of J over K[x1, . . . , xr]; in particular the Betti diagrams are the
same.

3D Exercises

1. Let X be a set of d points on a line in P2. Use Corollary 3.9 to show that the
ideal IX can be generated by two elements, the linear form defining the line
and one more form g, of degree a1 = d. Compute the Betti diagram of SX .

2. By a change of coordinates, any three noncolinear points can be taken to be
the points x = y = 0, x = z = 0, and y = z = 0. Let X be this set of points.
Show that X lies on a smooth conic and deduce that its ideal IX must have
3 quadratic generators. Prove that IX = (yz, xz, xy). By Proposition 3.8 the
matrix M of syzygies must have linear entries; show that it is⎛⎝ x 0

−y y
0 −z

⎞⎠ .

The three pairs of lines span the space of conics through the three points.
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In Exercises 3.3 to 3.6 we invite the reader to treat the case where the conic
in part 2 (where t = z) of Example 3.11 is reducible, that is, its equation is a
product of linear forms. Changing coordinates, we may assume that the linear
forms are x and y. The following exercises all refer to a finite set (or, in the last
exercise, scheme) of points lying on the union of the lines x = 0 and y = 0, and
its free resolution. We use the notation of pages 36–37. We write a for the point
with coordinates (0, 0, 1) where the two lines meet.

3. Show that the number of points is f1 +2f2, which may be even or odd.

4. Suppose that M ′ : F → G1 is a map of homogeneous free modules over the
ring S = K[x, y, z], and that the determinant of M ′ is xy. Show that with a
suitable choice of the generators of F and G1, and possibly replacing z by a
linear form z′ in x, y, z, the map M ′ can be represented by a matrix of the
form (

xy 0
0 1

)
or
(

x 0
0 y

)
or
(

x 0
z′f y

)
for some integer f ≥ 0.

5. Deduce that the matrix M occuring in the free resolution of the ideal of X
can be reduced to the form

M =

⎛⎝ x 0
zf1 y

p(y, z) q(x, z)

⎞⎠ ,

where p and q are homogeneous forms of degrees f1+f2−1 and f2 respectively.
Show that X does contains the point a if and only if q(x, z) is divisible by x.

6. Supposing that X does not contain the point a, show that X contains precisely
f2 points on the line y = 0 and f1 +f2 points on the line x = 0.

7. Consider the local ring R = k[x, y](x,y), and let I ⊂ R be an ideal containing
xy such that R/I is a finite-dimensional k vector space. Show that (possibly
after a change of variable) I = (xy, xs, yt) or I = (xy, xs +yt). Show that

dimk R/(xy, xs, yt) = s+ t−1; dimk R/(xy, xs +yt) = s+ t.

Regarding R as the local ring of a point in P2, we may think of this as giving
a classfication of all the schemes lying on the union of two lines and supported
at the intersection point of the lines.

8. (For those who know about schemes) In the general case of a set of points
on a reducible conic, find invariants of the matrix M (after row and column
transformations) that determine the length of the part of X concentrated at
the point a and the parts on each of the lines x = 0 and y = 0 away from the
point a.
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9. Let u ≥ 1 be an integer, and suppose that K is an infinite field. Show that
any sufficiently general set X of

(
u+1

2

)
points in P2 has free resolution of the

form
0 � Su(−u−1)

M� Su+1(−u) � S;

that is, the equations of X are the minors of a (u+1)×u matrix of linear
forms.

Exercises 3.10–3.14 explain when we can apply the technique of Theo-
rem 3.16 to the set X ⊂ Pr. As an application, we produce very special sets
of points with the same Betti diagrams as general sets of points.

10. (Monomial ideals and partitions.) Suppose that J ⊂ K[x1, x2] is a monomial
ideal such that dimK K[x1, x2]/J = d < ∞. For each i, let σi be the number
of monomials of the form xi

1x
j
2 not in J . Similarly, for each j let τj be the

number of monomials of the form xi
1x

j
2 not in J .

(a) Show that σ is a partition of d, in the sense that

σ0 ≥ σ1 ≥ · · · ≥ 0 and
∑
w

σw = d.

(b) Show that the function J �→ σ is a one-to-one correspondence between
monomial ideals J with dimK K[x1, x2]/J = d and partitions of d.

(c) Show that σ and τ are dual partitions in the sense that σw is the number
of integers v such that τv = w, and conversely.

11. Now suppose that U, V are finite subsets of K, and identify U ×V with its
image in K2 ⊂ P2

K
. Let X ⊂ P2 be a finite subset of U ×V . For i ∈ U and

j ∈ V , let gi be the number of points of X in {i}× V , and let hj be the
number of points of X in U×{j}.

Write σ = (σ0, σ1, . . .) with σ0 ≥ σ1 ≥ · · · for the sequence of nonzero
numbers gi, written in decreasing order, and similarly for τ and hj . Show that
if σ and τ are dual partitions, and J is the monomial ideal corresponding to
σ as in Exercise 3.10, then the Betti diagram of SX is the same as that of
K[x1, x2]/J . (Hint: You can use Theorem 3.16.)

12. (Gaeta.) Suppose d ≥ 0 is an integer, and let t, s be the coordinates of d in
the diagram

0 1 2 3 4
t

0

1

2

3

4

s

0 1 3 6 10

2 4 7 11

5 8 12

9 13

14
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Algebraically speaking, s, t are the unique nonnegative integers such that

d =
(

s+ t+1
2

)
+s, or equivalently d =

(
s+ t+2

2

)
− t−1.

(a) Use Theorem 3.16 to show that there is a set of d points X ⊂ P2 with
Betti diagram

0 1 2

0 1 − −
1 − − −
...

...
...

...
− − −

s+t−1 − t+1 t−s
s+t − − s

or

0 1 2

0 1 − −
1 − − −
...

...
...

...
− − −

s+t−1 − t+1 −
s+t − s−t s

according as s ≤ t or t ≤ s. (This was proved by Gaeta [1951] using the
technique of linkage; see [Eisenbud 1995, Section 21.10] for the definition
of linkage and modern references.)

(b) Let MX be the presentation matrix for the ideal of a set of points X as
above. Show that if s ≤ t then MX has t + 1 rows, with s columns of
quadrics followed by t−s columns of linear forms; while if t ≤ s then MX

has s+1 rows, with s− t rows of linear forms followed by t+1 rows of
quadrics.

(c) (The Gaeta set.) Suppose that K has characteristic 0. Define the Gaeta
set of d points to be the set of points in the affine plane with labels
1, 2, . . . , d in the picture above, regarded as a set of points in P2. Show
that if X is the Gaeta set of d points, then the Betti diagram of SX has
the form given in part (a). (Hint: Theorem 3.16 can still be used.)

(d) Find the smallest d such that the d points 0, 1, . . . , d−1 have a different
Hilbert function than the d points 1, 2, . . . , d in the diagram above.

13. Although the Gaeta set X (part (c) of preceding exercise) is quite special—
for example, it is usually not in linearly general position—show that the free
resolution of SX as above has the same Betti diagram as that of the generic
set of d points. (Saying that “the generic set of d points in P2” has a certain
property is saying that this property is shared by all d-tuples of points in
some open dense set of (P2)d.) One way to prove this is to follow these steps.
Let Y be the generic set of d points.

(a) Show that the generic set of points Y has Hilbert function HSY
(n) =

min{HS(n), d}, and that this is the same as for the Gaeta set.
(b) Deduce that with s, t defined as above, the ideal IY of Y does not contain

any form of degree < s+ t, and contains exactly t+1 independent forms
of degree s+t; and that IY requires at least (s−t)+ generators of degree
s+t+1, where (s−t)+ denotes max{0, s−t}, the “positive part” of s−t.



3D Exercises 51

(c) Show that the fact that the ideal of the Gaeta set requires only (s− t)+

generators of degree s+t+1, and none of higher degree, implies that the
same is true for an open (and thus dense) set of sets of points with d
elements, and thus is true for Y .

(d) Conclude that the resolution of SX has the same Betti diagram as that
of SY .

Despite quite a lot of work we do not know how to describe the free resolution
of a general set of d points in Pr. It would be natural to conjecture that the
resolution is the “simplest possible, compatible with the Hilbert function”, as
in the case above, and this is known to be true for r ≤ 4. On the other hand
it fails in general; the simplest case, discovered by Schreyer, is for 11 points
in P6, and many other examples are known. See Eisenbud, Popescu, Schreyer
and Walter [Eisenbud et al. 2002] for a recent account.

14. (Geramita, Gregory, and Roberts [Geramita et al. 1986]) Suppose that J ⊂
K[x1, . . . , xr] is a monomial ideal, and that the cardinality of K is q. Suppose
further that no variable xi appears to a power higher than q in a mono-
mial minimal generator of J . Show that there is a radical ideal I ⊂ S =
K[x0, . . . , xr] such that x0 is a nonzerodivisor modulo I and J ∼= I mod (x0).
(Hint: Although XJ may not make any sense over K, the generators of IXJ

defined in Theorem 3.16 can be defined in S. Show that they generate a
radical ideal.)

15. (Degree formulas.) We will continue to assume that X ⊂ P2 is a finite set
of points, and to use the notation for the free resolution of SX developed in
Proposition 3.8.

Show that

HX(d) = HS(d)−
t+1∑
i=1

HS(d−ai)+
t∑

i=1

HS(d−bi)

=
(

d+2
2

)
−

t+1∑
i=1

(
d−ai +2

2

)
+

t∑
i=1

(
d−bi +2

2

)
and

PX(d) =
(d+2)(d+1)

2
−

t+1∑
i=1

(d−ai +2)(d−ai +1)
2

+
t∑

i=1

(d−bi +2)(d−bi +1)
2

.

Deduce that in PX(d) the terms of degree ≥ 1 in d all cancel. (This can also
be deduced from the fact that the degree of PX is the dimension of X.) Prove
that

PX(0) =
1
2

( t∑
i=1

b2
i −

t+1∑
i=1

a2
i

)
=
∑
i≤j

eifj .



52 3. Points in P
2

In Chapter 4 we will see that PX(0) = deg X.

16. (Sturmfels.) Those who know about Gröbner bases (see [Eisenbud 1995,
Chapter 15], for instance) may show that, with respect to a suitable term
order, the ideal IXJ

constructed in Theorem 3.16 has initial ideal J .

Monomial ideals. This beautiful theory is one of the main links between
commutative algebra and combinatorics, and has been strongly developed in
recent years. We invite the reader to work out some of this theory in Exer-
cises 3.17–3.24. These results only scratch the surface. For more information see
[Eisenbud 1995, Section 15.1 and Exercises 15.1–15.6] and [Miller and Sturmfels
2004].

17. (Ideal membership for monomial ideals.) Show that if J = (m1, . . . ,mg) ⊂
T = K[x1, . . . , xn] is the ideal generated by monomials m1, . . . ,mg then a
polynomial p belongs to J if and only if each term of p is divisible by one of
the mi.

18. (Intersections and quotients of monomial ideals.) Let I = (m1, . . . ,ms), J =
(n1, . . . , nt) be two monomial ideals. Show that

I∩J = ({LCM(mi, nj) | i = 1 . . . s, j = 1, . . . , t})

and
(I : J) =

⋂
j=1...,t({mi : nj | i = 1 . . . s}),

where we write m : n for the “quotient” monomial p = LCM(m,n)/n, so that
(m) : (n) = (p).

19. (Decomposing a monomial ideal.) Let J = (m1, . . . ,mt) ⊂ T = K[x1, . . . , xn]
be a monomial ideal. If mt = ab where a and b are monomials with no common
divisor, show that

(m1, . . . ,mt) = (m1, . . . ,mt−1, a) ∩ (m1, . . . ,mt−1, b).
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20. Use the preceding exercise to decompose the ideal (x2, xy, y3) into the sim-
plest pieces you can.

21. The only monomial ideals that cannot be decomposed by the technique of
Exercise 3.19 are those generated by powers of the variables. Let

Jα = (xα1
1 , xα2

2 , . . . , xαn
n )

where we allow some of the αi to be∞ and make the convention that x∞
i = 0.

Set N∗ = Z∪{∞}. Now show that any monomial ideal J may be written as
J =
⋂

α∈A Jα for some finite set A ⊂ Nn
∗ . The ideal Jα is Pα := ({xi | αi �=

∞})-primary. Deduce that the variety corresponding to any associated prime
of a monomial ideal J is a plane of some dimension.

22. If P is a prime ideal, show that the intersection of finitely many P -primary
ideals is P -primary. Use the preceding exercise to find an irredundant primary
decomposition, and the associated primes, of I = (x2, yz, xz, y2z, yz2, z4).
(Note that the decomposition produced by applying Exercise 3.19 may pro-
duce redundant components, and also may produce several irreducible com-
ponents corresponding to the same associated prime.)

23. We say that an ideal J is reduced if it is equal to its own radical; that is, if
pn ∈ J implies p ∈ J for any ring element p. An obvious necessary condition
for a monomial ideal to be reduced is that it is square-free in the sense that
none of its minimal generators is divisible by the square of a variable. Prove
that this condition is also sufficient.

24. (Polarization and Hartshorne’s proof of Theorem 3.16.) An older method
of proving Theorem 3.16, found in [Hartshorne 1966], uses a process called
polarization. If m = xa1

1 xa2
2 . . . xan

n is a monomial, the polarization of m is a
monomial (in a larger polynomial ring) obtained by replacing each power xai

i

by a product of ai distinct new variables P (xai
i ) = xi,1 . . . xi,ai

. Thus

P (m) =
∏

i

∏
j

xij ∈ K[x1,1, . . . , xn,an
].

Similarly, if J = (m1, . . . ,mt) ⊂ T = K[x1, . . . , xn] is a monomial ideal, then
we define the polarization P (J) as the ideal generated by P (m1), . . . , P (mt)
in a polynomial ring T = K[x1,1, . . .] large enough to form all the P (mi). For
example, if J = (x2

1, x1x
2
2) ⊂ K[x1, x2] then

P (J) = (x1,1x1,2, x1,1x2,1x2,2) ⊂ K[x1,1, x1,2, x2,1, x2,2].

(a) Show that P (J) is square-free and that if xi,j+1 divides a polarized mono-
mial P (m), then xi,j divides P (m). Let L be the ideal of T generated by
all the differences xi,j−xi,k. Note that T/L � S, and that the image of
P (J) in S is J . Prove that a minimal set of generators for L is a regular
sequence modulo P (J). Conclude that the Betti diagram of P (J) is equal
to the Betti diagram of J .
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(b) Suppose the ground field K is infinite and J is a monomial ideal in
K[x1, x2] containing a power of each variable, with polarization P (J) ⊂
K[x0, . . . , xr]. Show that for a general set of r−2 linear forms y3, . . . , yr

in the xi the ideal P (J)+(y3, . . . , yr)/(y3, . . . , yr) is reduced and defines
a set of points in the 2-plane defined by y3 = 0, . . . , yr = 0. Show that
the ideal I of this set of points has the same Betti diagram as J .
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Castelnuovo–Mumford Regularity

4A Definition and First Applications

The Castelnuovo–Mumford regularity, or simply regularity, of an ideal in S is an
important measure of how complicated the ideal is. A first approximation is the
maximum degree of a generator the ideal requires; the actual definition involves
the syzygies as well. Regularity is actually a property of a complex, defined as
follows.

Let S = K[x0, . . . , xr] and let

F : · · · � Fi
� Fi−1

� · · ·

be a graded complex of free S-modules, with Fi =
∑

j S(−ai,j). The regularity of
F is the supremum of the numbers ai,j−i. The regularity of a finitely generated
graded S-module M is the regularity of a minimal graded free resolution of M.
We will write reg M for this number. The most important special case gets its
own terminology: if X ⊂ Pr

K
is a projective variety or scheme and IX is its ideal,

then reg I is called the regularity of X, or reg X.
For example, if M is free, the regularity of M is the supremum of the degrees of

a set of homogeneous minimal generators of M. In general, the regularity of M is
an upper bound for the largest degree of a minimal generator of M, which is the
supremum of the numbers a0,j−0. Assuming that M is generated by elements
of degree 0, the regularity of M is the index of the last nonzero row in the
Betti diagram of M. Thus, in Example 3.17, the regularity of the homogeneous
coordinates ring of the points is 4.
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The power of the notion of regularity comes from an alternate description, in
terms of cohomology, which might seem to have little to do with free resolutions.
Historically, the cohomological interpretation came first. David Mumford defined
the regularity of a coherent sheaf on projective space in order to generalize a
classic argument of Castelnuovo. Mumford’s definition is given in terms of sheaf
cohomology; see Section 4D below. The definition for modules, which extends
that for sheaves, and the equivalence with the condition on the resolution used
as a definition above, come from [Eisenbud and Goto 1984]. In most cases the
regularity of a sheaf, in the sense of Mumford, is equal to the regularity of the
graded module of its twisted global sections.

To give the reader a sense of how regularity is used, we postpone the technical
treatment to describe two applications.

The Interpolation Problem

We begin with a classic problem. It is not hard to show that if X is a finite set
of points in Ar = Ar

K
, all functions from X to K are induced by polynomials.

Indeed, if X has n points, polynomials of degree at most n− 1 suffice. To see
this, let X = {p1, . . . , pn} and assume for simplicity that the field K is infinite
(we will soon see that this is unnecessary). Using this assumption we can choose
an affine hyperplane passing through pi but not through any of the other pj . Let
�i be a linear function vanishing on this hyperplane: that is, a linear function on
Ar such that �i(pi) = 0 but �i(pj) �= 0 for all j �= i. If we set Qi =

∏
j �=i �j , the

polynomial
n∑

i=1

ai

Qi(pi)
Qi

takes the value ai at the point pi for any desired values ai ∈ K.
The polynomials Qi have degree n−1. Can we find polynomials of strictly lower

degree that give the same functions on X? Generally not: a polynomial of degree
less than n−1 that vanishes at n−1 points on a line vanishes on the entire line,
so if all the points of X lie on a line, the lowest possible degree is n−1. On the
other hand, if we consider the set of three noncolinear points {(0, 0), (0, 1), (1, 0)}
in the plane with coordinates x, y, the linear function a(1−x−y)+ by + cx takes
arbitrary values a, b, c at the three points, showing that degree 1 polynomials
suffice in this case although 1 < n−1 = 2. This suggests the following problem.

Interpolation Problem. Given a finite set of points X in Ar, what is the small-
est degree d such that every function X → K can be realized as the restriction
from Ar of a polynomial function of degree at most d?

The problem has nothing to do with free resolutions; but its solution lies in
the regularity.

Theorem 4.1. Let X ⊂ Ar ⊂ Pr be a finite collection of points, and let SX

be the homogeneous coordinate ring of X as a subset of Pr. The interpolation
degree of X is equal to reg SX , the regularity of SX .



4A Definition and First Applications 57

The proof comes in Section 4B. As we shall see there, the interpolation problem
is related to the question of when the Hilbert function of a module becomes equal
to the Hilbert polynomial.

When Does the Hilbert Function Become a Polynomial?

As a second illustration of how the regularity is used, we consider the Hilbert
polynomial. Recall that HM (d) = dimK Md is the Hilbert function of M, and
that it is equal to a polynomial function PM (d) for large d. How large does d
have to be for HM (d) = PM (d)? We will show that the regularity of M provides
a bound, which is sharp in the case of a Cohen–Macaulay module.

Recall that a graded S-module is said to be Cohen–Macaulay if its depth is
equal to its dimension. For any finite set of points X ⊂ Pr we have depthSX =
1 = dimSX , so SX is a Cohen–Macaulay module.

Theorem 4.2. Let M be a finitely generated graded module over the polynomial
ring S = K[x0, . . . , xr].

1. The Hilbert function HM (d) agrees with the Hilbert polynomial PM (d) for
d ≥ reg M +1.

2. More precisely , if M is a module of projective dimension δ, then HM (d) =
PM (d) for d ≥ reg M +δ−r.

3. If X ⊂ Pr is a nonempty set of points and M = SX , then HM (d) = PM (d)
if and only if d ≥ reg M. In general , if M is a Cohen–Macaulay module the
bound in part 2 is sharp.

Proof. Part 1 follows at once from part 2 and the Hilbert Syzygy Theorem
(Theorem 1.1), which shows that δ ≤ r+1. To prove part 2, consider the minimal
graded free resolution of M. By assumption, it has the form

0 �
∑

j

S(−aδ,j) � · · · �
∑

j

S(−a0,j) � M � 0,

and in these terms reg M = maxi,j(ai,j− i).
We can compute the Hilbert function or polynomial of M by taking the al-

ternating sum of the Hilbert functions or polynomials of the free modules in the
resolution of M. In this way we obtain the expressions

HM (d) =
∑
i, j

(−1)i

(
d−ai,j +r

r

)
,

PM (d) =
∑
i, j

(−1)i (d−ai,j +r)(d−ai,j +r−1) · · · (d−ai,j +1)
r!

.

where i runs from 0 to δ. This expansion for PM is the expression for HM with
each binomial coefficient replaced by the polynomial to which it is eventually
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equal. In fact the binomial coefficient
(
d−a+r

r

)
has the same value as the polyno-

mial
(d−a+r)(d−a+r−1) · · · (d−a+1)/r!

for all d ≥ a−r. Thus from d ≥ reg M +δ−r we get d ≥ ai,j−i+δ−r ≥ ai,j−r
for each ai,j with i ≤ δ. For such d, each term in the expression of the Hilbert
function is equal to the corresponding term in the expression of the Hilbert
polynomial, proving part 2.

Half of part 3 follows from part 2: The ideal defining X is reduced, and thus
SX is of depth ≥ 1 so, by the Auslander–Buchsbaum formula (Theorem A2.15),
the projective dimension of SX is r. Thus by part 2, the Hilbert function and
polynomial coincide for d ≥ reg SX . The converse, and the more general fact
about Cohen–Macaulay modules, is more delicate. Again, we will complete the
proof in Section 4B, after developing some general theory. A different, more
direct proof is sketched in Exercises 4.8–4.10.

4B Characterizations of Regularity: Cohomology

Perhaps the most important characterization of the regularity is cohomological.
One way to state it is that the regularity of a module M can be determined from
the homology of the complex Hom(F, S), where F is a free resolution of M. This
homology is actually dual to the local cohomology of M. We will formulate the
results in terms of local cohomology. The reader not already familiar with this
notion which, in the case we will require, is a simple extension of the notion of
the (Zariski) cohomology of sheaves, should probably take time out to browse
at least the first sections of Appendix 1 (through Corollary A1.12). The explicit
use of local cohomology can be eliminated —by local duality, many statements
about local cohomology can be turned into statements about Ext modules. For
a treatment with this flavor see [Eisenbud 1995, Section 20.5]. We follow the
convention that the maximum of the empty set is −∞.

Theorem 4.3. Let M be a finitely generated graded S-module and let d be an
integer . The following conditions are equivalent :

1. d ≥ reg M.
2. d ≥ max{e | Hi

m(M)e �= 0 }+ i for all i ≥ 0.
3. d ≥ max{e | H0

m(M)e �= 0}; and Hi
m(M)d−i+1 = 0 for all i > 0.

The proof of this result will occupy most of this section. Before beginning it,
we illustrate with four corollaries.

Corollary 4.4. If M is a graded S-module of finite length, then

reg M = max{d |Md �= 0}.
Proof. H0

m(M) = M and all the higher cohomology of M vanishes by by Corol-
lary A1.5.
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Corollary 4.4 suggests a convenient reformulation of the definition and of a
(slightly weaker) formulation of Theorem 4.3. We first extend the result of the
Corollary with a definition: If M =

⊕
Md is an Artinian graded S-module, then

reg M := max{d |Md �= 0}.
This does not conflict with our previous definition because an Artinian module
that is finitely generated over a Noetherian ring is of finite length. The local
cohomology modules of any finitely generated graded module are graded Artinian
modules by local duality, Theorem A1.9. Thus the following formulas make sense:

Corollary 4.5. With the preceding notation,

reg M = max
i

reg Tori(M, K)− i = max
j

reg Hj
m(M)+j.

There is also a term-by-term comparison,

reg Hj
m(M)+j ≤ reg Torr+1−j(M, K)−(r+1−j) for each j,

as we invite the reader to prove in Exercise 4.12.

Proof. The formula reg M = maxj reg Hj
m(M) + j is part of Theorem 4.3. For

the rest, let F : · · · → Fi → · · · be the minimal free resolution of M, with
Fi =

∑
j S(−aij). The module Tori(M, K) = Fi/mFi is a finitely generated

graded vector space, thus a module of finite length. By Nakayama’s Lemma, the
numbers ai,j , which are the degrees of the generators of Fi, are also the degrees
of the nonzero elements of Tori(M, K). Thus reg Tori(M, K)−i = maxj{ai,j}−i
and the first equality follows.

It follows from Corollary 4.4 that the regularity of a module M of finite length
is a property that has nothing to do with the S-module structure of M —it
would be the same if we replaced S by K. Theorem 4.3 allows us to prove a
similar independence for any finitely generated module. To express the result,
we write regS M to denote the regularity of M considered as an S-module.

Corollary 4.6. Let M be a finitely generated graded S-module, and let S ′ → S
be a homomorphism of graded rings generated by degree 1 elements. If M is also
a finitely generated S′-module, then regS M = regS′ M.

Proof of Corollary 4.6. The statement of finite generation is equivalent to the
statement that the maximal ideal of S is nilpotent modulo the ideal generated
by the maximal ideal of S ′ and the annihilator of M. By Corollary A1.8 the local
cohomology of M with respect to the maximal ideal of S ′ is thus the same as
that with respect to the maximal ideal of S, so Theorem 4.3 gives the same value
for the regularity in either case.

Theorem 4.3 allows us to complete the proof of part 3 of Theorem 4.2. We
first do the case of points.
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Corollary 4.7. If X is a set of n points in Pr then the regularity of SX is the
smallest integer d such that the space of forms vanishing on the points X has
codimension n in the space of forms of degree d.

Proof. The ring SX has depth at least 1 because it is reduced, so H0
m(SX) = 0.

Further, since dimSX = 1 we have Hi
m(SX) = 0 for i > 1 by Proposition A1.16.

Using Theorem 4.3, we see that the regularity is the smallest integer d such
that H1

m(SX)d = 0. On the other hand, by Proposition A1.11, there is an exact
sequence

0 � H0
m(SX) � SX

�
⊕

d

H0(OX(d)) � H1
mSX

� 0.

Since X is just a finite set of points, it is isomorphic to an affine variety, and
every line bundle on X is trivial. Thus for every d the sheaf OX(d) ∼= OX , a
sheaf whose sections are the locally polynomial functions on X. This is just KX ,
a vector space of dimension n. Thus (H1

mSX)d = 0 if and only if (SX)d = (S/IX)d

has dimension n as a vector space, or equivalently, the space of forms (IX)d of
degree d that vanish on X has codimension n.

Corollary 4.8. Let M be a finitely generated graded Cohen–Macaulay S-module.
If s is the smallest number such that HM (d) = PM (d) for all d ≥ s, then s =
1−depthM +reg M.

Proof. Since M is Cohen–Macaulay we have dimM = depthM , so Proposi-
tion A1.16 shows that the only local cohomology module of M that is nonzero is
Hdepth M

m M. Given this, there can be no cancellation in the formula of Corollary
A1.15. Thus s is the smallest number such that Hdepth M (M)d = 0 for all d ≥ s,
and Corollary 4.8 follows by Theorem 4.3.

See Exercise 4.6 for an example showing that the Cohen–Macaulay hypothesis
is necessary, and Exercise 4.9 for a proof that gives some additional information.

It will be convenient to introduce a temporary definition. We call a module
weakly d-regular if Hi

m(M)d−i+1 = 0 for every i > 0, and d-regular if in addition
d ≥ reg H0

m(M). In this language, Theorem 4.3 asserts that M is d-regular if and
only if reg M ≤ d.

Proof of Theorem 4.3. For the implication 1 ⇒ 2 we do induction on the pro-
jective dimension of M. If M =

⊕
S(−aj) is a graded free module, this is easy:

reg M = maxj aj by definition, and the computation of local cohomology in
Corollary A1.6 shows that M is d-regular if and only if ai ≤ d for all i.

Next suppose that d ≥ reg M and the minimal free resolution of M begins

· · · � L1
ϕ1� L0

� M � 0.

Let M ′ = im ϕ1 be the first syzygy module of M. By the definition of regularity,
reg M ′ ≤ 1+reg M. By induction on projective dimension, we may assume that
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M ′ is (d+1)-regular; in fact, since e ≥ reg M for every e ≥ d we may assume that
M ′ is e+1-regular for every e ≥ d. The long exact sequence in local cohomology

· · · � Hi
m(L0) � Hi

m(M) � Hi+1
m (M ′) � · · ·

yields exact sequences in each degree, and shows that M is e-regular for every
e ≥ d. This is condition 2.

The implication 2 ⇒ 3 is obvious, but 3 ⇒ 1 requires some preparation. For
x ∈ R we set

(0 :M x) = {m ∈M | xm = 0} = ker(M
x� M).

This is a submodule of M that is zero when x is a nonzerodivisor (that is, a
regular element) on M. When (0 :M x) has finite length, we say that x is almost
regular on M.

Lemma 4.9. Let M be a finitely generated graded S-module, and suppose that
K is infinite. If x is a sufficiently general linear form, then x is almost regular
on M.

The meaning of the conclusion is that the set of linear forms x for which
(0 :M x) is of finite length contains the complement of some proper algebraic
subset of the space S1. The same argument would work for forms of any degree d.

Proof. The module (0 :M x) has finite length if the radical of the annihilator of
(0 :M x) is the maximal homogeneous ideal m, or equivalently, if the annihilator
of (0 :M x) is not contained in any prime ideal P �= m. This is equivalent to
the condition that for all primes P �= m, the localization (0 :M x)P = 0 or
equivalently that x is a nonzerodivisor on the localized module MP . For this
it suffices that x not be contained in any associated prime ideal of M except
possibly m.

Each prime ideal P of S other than m intersects S1 in a proper subspace, since
otherwise P ⊃ m, whence m = P . Since there are only finitely many associated
prime ideals of M, an element x ∈ S1 has the desired property if it is outside a
certain finite union of proper subspaces.

Proposition 4.10. Suppose that M is a finitely generated graded S-module, and
suppose that x is almost regular on M .

1. If M is weakly d-regular , M/xM is weakly d-regular .
2. If M is (weakly) d-regular , M is (weakly) (d+1)-regular .
3. M is d-regular if and only if M/xM is d-regular and H0

m(M) is d-regular .

Here is a consequence that seems surprising from the free resolution point of
view.

Corollary 4.11. If a linear form x is almost regular on M , then

reg M = max{reg H0
m(M), reg M/xM} = max{reg(0 :M x), reg M/xM}.
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Proof. The first equality follows at once from Theorem 4.3 and part 3 of the
proposition. For the second, note that (0 :M x) ⊂ H0

m(M), so reg(0 :M x) ≤
reg H0

m(M). On the other hand, if f ∈ H0
m(M) is a nonzero element of (maximal)

degree reg H0
m(M), then xf = 0, giving the opposite inequality.

Proof of Proposition 4.10. Part 1. We set M = M/(0 :M x). Using Corollary
A1.5 and the long exact sequence of local cohomology we obtain Hi

m(M) =
Hi

m(M) for every i > 0.
Consider the exact sequence

0 � (M)(−1)
x� M � M/xM � 0, (∗)

where the left-hand map is induced by multiplication with x. The associated
long exact sequence in local cohomology contains the sequence

Hi
m(M)d+1−i → Hi

m(M/xM)d+1−i → Hi+1
m (M(−1))d+1−i.

By definition Hi+1
m ((M)(−1))d+1−i � Hi+1

m (M)d−i. If M is weakly d-regular then
the modules on the left and right vanish for every i ≥ 1. Thus the module in the
middle vanishes too, proving that M/xM is weakly d-regular.
Part 2. Suppose M is weakly d-regular. To prove that M is weakly d+1-regular
we do induction on dimM. If dimM = 0, then Hi

m(M) = 0 for all i ≥ 1 by
Corollary A1.5, so M is weakly e-regular for all e and there is nothing to prove.

Now suppose that dimM > 0. Since

(0 :M x) = kerM
x� M

has finite length, the Hilbert polynomial of M/xM is the first difference of
the Hilbert polynomial of M. From Theorem A2.11 we deduce dimM/xM =
dimM−1. We know from part 1 that M/xM is weakly d-regular. It follows from
our inductive hypothesis that M/xM is weakly d+1-regular.

From the exact sequence (∗) we get an exact sequence

Hi
m(M(−1))(d+1)−i+1

� Hi
m(M)(d+1)−i+1

� Hi
m(M/xM)(d+1)−i+1.

For i ≥ 1, we have Hi
m(M(−1)) = Hi

m(M), and since M is weakly d-regular the
left-hand term vanishes. The right-hand term is zero because M/xM is weakly
d+1-regular. Thus M is weakly d+1-regular as asserted.

If M is d-regular then as before M is weakly (d + 1)-regular; and since the
extra condition on H0

m(M) for (d+1)-regularity is included in the corresponding
condition for d-regularity, we see that M is actually (d+1) regular as well.
Part 3. Suppose first that M is d-regular. The condition that H0

m(M)e = 0 for all
e > d is part of the definition of d-regularity, so it suffices to show that M/xM
is d-regular. Since we already know that M/xM is weakly d-regular, it remains
to show that if e > d then H0

m(M/xM)e = 0. Using the sequence (∗) once more
we get the exact sequence

H0
m(M)e → H0

m(M/xM)e → H1
m(M(−1))e.
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The left-hand term is 0 by hypothesis. The right-hand term equals H1
m(M)e−1.

From part 2 we see that M is weakly e-regular, so the right-hand term is 0. Thus
H0

m(M/xM)e = 0 as required.
Suppose conversely that H0

m(M)e = 0 for e > d and that M/xM is d-regular.
To show that M is d-regular, it suffices to show that Hi

m(M)d−i+1 = 0 for i ≥ 1.
From the exact sequence (∗) we derive, for each e, an exact sequence

Hi−1
m (M/xM)e+1

� Hi
m(M)e

αe� Hi
m(M)e+1.

Since M/xM is d-regular, part 2 shows it is e-regular for e ≥ d. Thus the left-
hand term vanishes for e ≥ d−i+1, so αe is a monomorphism. From Hi

m(M) ∼=
Hi

m(M) we thus get an infinite sequence of monomorphisms

Hi
m(M)d−i+1

� Hi
m(M)d−i+2

� Hi
m(M)d−i+3

� · · · ,
induced by multiplication by x on Hi

m(M). But by Proposition A1.1 every ele-
ment of Hi

m(M) is annihilated by some power of x, so Hi
m(M)d−i+1 itself is 0, as

required.

We now complete the proof of Theorem 4.3. Assuming that M is d-regular, it
remains to show that d ≥ reg M. Since extension of our base field commutes with
the formation of local cohomology, these conditions are independent of such an
extension, and we may assume for the proof that K is infinite.

Suppose that the minimal free resolution of M has the form

· · · � L1
ϕ1� L0

� M � 0.

To show that the generators of the free module L0 are all of degree ≤ d we must
show that M is generated by elements of degrees ≤ d. For this purpose we induct
on dimM. If dimM = 0 the result is easy: M has finite length, so by d-regularity
Me = H0

m(M)e = 0 for e > d.
Set M := M/H0

m(M). From the short exact sequence

0 � H0
m(M) � M � M � 0,

we see that it suffices to prove that both H0
m(M) and M are generated in degrees

at most d. For H0
m(M) this is easy, since H0

m(M)e = 0 for e > d.
By Lemma 4.9 we may choose a linear form x that is a nonzerodivisor on M .

By Proposition 4.10 we see that M/xM is d-regular. As dimM/xM < dimM ,
the induction shows that M/xM , and thus M/mM , are generated by elements of
degrees ≤ d. Nakayama’s Lemma allows us to conclude that M is also generated
by elements of degrees ≤ d.

If M is free, this concludes the argument. Otherwise, we induct on the projec-
tive dimension of M. Let M ′ = im ϕ1 be the first syzygy module of M. The long
exact sequence in local cohomology coming from the exact sequence

0 � M ′ � L0
� M � 0
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shows that M ′ is d+1-regular. By induction reg M ′ ≤ d+1; that is, the part
of the resolution of M that starts from L1 satisfies exactly the conditions that
make reg M ≤ d.

Solution of the Interpolation Problem

The first step in solving the interpolation problem is to reformulate the ques-
tion solely in terms of projective geometry. To do this we first have to get away
from the language of functions. A homogeneous form F ∈ S does not define a
function with a value at a point p = (p0, . . . , pr) ∈ Pr: for we could also write
p = (λp0, . . . , λpr) for any nonzero λ, but if deg F = d then F (λp0, . . . , λpr) =
λdF (p0, . . . , pr) which may not be equal to F (p0, . . . , pq). But the trouble disap-
pears if F (p0, . . . , pr) = 0, so it does make sense to speak of a homogeneous form
vanishing at a point. This is a linear condition on the coefficients of the form
(Reason: choose homogeneous coordinates for the point and substitute them into
the monomials in the form, to get a value for each monomial. The linear com-
bination of the coefficients given by these values is zero if and only if the form
vanishes at the point.) We will say that X imposes independent conditions on
the forms of degree d if the linear conditions associated to the distinct points of
X are independent, or equivalently if we can find a form vanishing at any one of
the points without vanishing at the others. In this language, Corollary 4.7 asserts
that the regularity of SX is equal to the smallest degree d such that X imposes
independent conditions on forms of degree d. The following result completes the
proof of Theorem 4.1.

Proposition 4.12. A finite set of points X ⊂ Ar ⊂ Pr imposes independent
conditions on forms of degree d in Pr if and only if every function on the points
is the restriction of a polynomial of degree ≤ d on Ar.

Proof. We think of Ar ⊂ Pr as the complement of the hyperplane x0 = 0. If
the points impose independent conditions on forms of degree d then we can
find a form Fi(x0, . . . , xr) of degree d vanishing on pj for exactly those j �= i.
The polynomial fi(x1, . . . , xr) = Fi(1, x1, . . . , xr) has degree ≤ d and the same
vanishing/nonvanishing property, so the function

∑
i(ai/fi(pi))fi takes values ai

on pi for any desired ai.
Conversely, if every function on X is induced by a polynomial of degree ≤ d

on Ar, then for each i there is a function fi of degree ≤ d that vanishes at pj for
j �= i but does not vanish at pi. The degree d homogenization Fi(x0, . . . , xr) =
xd

0fi(x1/x0, . . . , xr/x0) has corresponding vanishing properties. The existence
of the Fi shows that the points pi impose independent conditions on forms of
degree d.

The maximal number of independent linear equations in a certain set of lin-
ear equations— the rank of the system of equations—does not change when
we extend the field, so Proposition 4.12 shows that the interpolation degree is
independent of field extensions.
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l1 = 0

l2 = 0l4 = 0

l3 = 0

p1

p2

p3

p4

p5
p6

Every function {p1, . . . , p6} → R is the restriction of a quadratic polynomial.

4C The Regularity of a Cohen–Macaulay Module

In the special case of Proposition 4.10 where x is a regular element, H0
m(M)

must vanish, so part 3 of the proposition together with Theorem 4.3 says that
reg M/xM = reg M. This special case admits a simple proof without cohomology.

Corollary 4.13. Suppose that M is a finitely generated graded S-module. If x
is a linear form in S that is a nonzerodivisor on M then reg M = reg M/xM.

Proof. Let F be the minimal free resolution of M. From the free resolution

G : 0 � S(−1)
x� S

of S/(x), we can compute Tor∗(M,S/(x)). Since x is a nonzerodivisor on M, the
sequence 0→M(−1)→M obtained by tensoring M with G has homology

Tor0(M,S/(x)) = M/xM ; Tori(M,S/(x)) = 0

for i > 0. We can also compute Tor as the homology of the free complex F⊗G, so
we see that F⊗G is the minimal free resolution of M/xM. The i-th free module
in F⊗G is Fi⊕Fi−1(−1), so reg M/xM = reg M.

We can apply this to get another means of computing the regularity in the
Cohen–Macaulay case.

Proposition 4.14. Let M be a finitely generated Cohen–Macaulay graded S-
module, and let y1, . . . , yt be a maximal M-regular sequence of linear forms. The
regularity of M is the largest d such that (M/(y1, . . . , yt)M)d �= 0.
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Proof. Because M is Cohen–Macaulay we have dimM/(y1, . . . , yt)M = 0. With
Corollary 4.13, this allows us to reduce the statement to the zero-dimensional
case. But if dimM = 0 the result follows at once from Theorem 4.3.

As a consequence, we can give a general inequality on the regularity of the
homogeneous coordinate ring of an algebraic set X that strengthens the compu-
tation done at the beginning of Section 4A—so long as SX is Cohen–Macaulay.

Corollary 4.15. Suppose that X ⊂ Pr is not contained in any hyperplane. If
SX is Cohen–Macaulay , then reg SX ≤ deg X−codimX.

Proof. Let t = dim X, so that the dimension of SX as a module is t+1. We may
harmlessly extend the ground field and assume that it is algebraically closed, and
in particular infinite. Thus we may assume that a sufficiently general sequence
of linear forms y0, . . . , yt is a regular sequence in any order on SX . Set SX =
SX/(y0, . . . , yt). Since X is not contained in a hyperplane, we have dimK(SX)1 =
r+1, and thus dimK(SX)1 = r−t = codimX. If the regularity of SX is d, then by
Proposition 4.14 we have HSX

(d) �= 0. Because SX is generated as an S-module
in degree 0, this implies that HSX

(e) �= 0 for all 0 ≤ e ≤ d. On the other hand,
deg X is the number of points in which X meets the linear space defined by
y1 = · · · = yt = 0. By induction, using the exact sequence

0→ SX/(y1, . . . , yt)(−1)
y0� SX/(y1, . . . , yt) � SX → 0,

we see that HSX/(y1,...,yt)(d) =
∑d

e=0 HSX
(e). For large d the polynomials of de-

gree d induce all possible functions on the set X∩L, so deg X = HSX/(y1,...,yt)(l).
It follows that for large d

deg X =
d∑

e=0

HSX
(e) ≥ 1+(codimX)+(reg X−1)

since there are at least reg X − 1 more nonzero values of HSX
(e) �= 0 for e =

2, . . . , d. This gives reg X ≤ deg X−codimX as required.

In the most general case, the regularity can be very large. Consider the case
of a module of the form M = S/I. Gröbner basis methods give a general bound
for the regularity of M in terms of the degrees of generators of I and the number
of variables, but these bounds are doubly exponential in the number of vari-
ables. Moreover, there are examples of ideals I such that the regularity of S/I
really is doubly exponential in r (see [Bayer and Stillman 1988] and [Koh 1998]).
(Notwithstanding, I know few examples in small numbers of variables of ideals I
where reg S/I is much bigger than the sum of the degree of the generators of I.
Perhaps the best is due to Caviglia [2004], who has proved that if S = K[s, t, u, v]
and d > 1 then

I = (sd, td, sud−1− tvd−1) ⊂ K[s, t, u, v]

has reg S/I = d2−2. It would be interesting to have more and stronger examples
with high regularity.)
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In contrast with the situation of general ideals, prime ideals seem to behave
very well. For example, in Chapter 5.1 we will prove a theorem of Gruson, Lazars-
feld, and Peskine to the effect that if K is algebraically closed and X is an irre-
ducible (reduced) curve in projective space, not contained in a hyperplane then
again reg SX ≤ deg X−codimX, even if SX is not Cohen–Macaulay, and we will
discuss some conjectural extensions of this result.

4D The Regularity of a Coherent Sheaf

Mumford originally defined a coherent sheaf F on Pr to be d-regular if

HiF (d− i) = 0 for every i ≥ 1

(see [Mumford 1966, Lecture 14].) When F is a sheaf, we will write reg F for
the least number d such that F is d-regular (or −∞ if F is d-regular for every
d.) The connection with our previous notion is the following:

Proposition 4.16. Let M be a finitely generated graded S-module, and let M̃
be the coherent sheaf on Pr

K
that it defines. The module M is d-regular if and

only if

1. M̃ is d-regular ;
2. H0

m(M)e = 0 for every e > d; and
3. the canonical map Md → H0(M̃(d)) is surjective.

In particular, reg M ≥ reg M̃ always, with equality if M =
⊕

d H0(F (d)).

Proof. By Proposition A1.12, Hi
m(M)e = Hi−1(M̃(e)) for all i ≥ 2. Thus M is

d-regular if and only if it fulfills conditions 1, 2, and

3′. H1
m(M)e = 0 for all e ≥ d.

The exact sequence of Proposition A1.12 shows that conditions 3′ and 3 are
equivalent.

We can give a corresponding result starting with the sheaf. Suppose F is a
nonzero coherent sheaf on Pr

K
. The S-module Γ∗(F ) :=

⊕
e∈Z H0(F (e)) is not

necessarily finitely generated (the problem comes about if F has 0-dimensional
associated points); but for every e0 its truncation

Γ≥e0(F ) :=
⊕
e≥e0

H0(F (e))

is a finitely generated S-module. We can compare its regularity with that of F .

Corollary 4.17. For a coherent sheaf F on Pr
K
,

reg Γ≥e0(F ) = max(reg F , e0).
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Proof. Suppose first that M := Γ≥e0(F ) is d-regular. The sheaf associated to
M is F . Proposition A1.12 shows that F is d-regular. Since M is d-regular it
is generated in degrees ≤ d. If d < e0 then M = 0, contradicting our hypothesis
F �= 0. Thus d ≥ e0.

It remains to show that if F is d-regular and d ≥ e0, then M is d-regular. We
again want to apply Proposition A1.12. Conditions 1 and 3 are clearly satisfied,
while 2 follows from Proposition A1.12.

It is now easy to give the analogue for sheaves of Proposition 4.10. The first
statement is one of the key results in the theory.

Corollary 4.18. If F is a d-regular coherent sheaf on Pr then F (d) is generated
by global sections. Moreover , F is e-regular for every e ≥ d.

Proof. The module M = Γ≥d(F ) is d-regular by Corollary 4.17, and thus it is
generated by its elements of degree d, that is to say, by H0F (d). Since M̃ = F ,
the first conclusion follows.

By Proposition 4.10 M is e-regular for e ≥ d. Using Corollary 4.17 again we
see that F is e-regular.

4E Exercises

1. For a set of points X in P2, with notation ei, fi as in Proposition 3.8, show
that reg SX = e1 +

∑
i fi−2. Use this to compute the possible regularities of

all sets of 10 points in P2.

2. Suppose that
0→M ′ →M →M ′′ → 0

is an exact sequence of finitely generated graded S-modules. Show that
(a) reg M ′ ≤ max{reg M, reg M ′′−1};
(b) reg M ≤ max{reg M ′, reg M ′′};
(c) reg M ′′ ≤ max{reg M, reg M ′+1}.

3. Suppose X ⊂ Pr is a projective scheme and r > 0. Show that reg IX =
reg IX = 1+reg OX = 1+reg SX .

4. We say that a variety in a projective space is nondegenerate if it is not con-
tained in any hyperplane. Correspondingly, we say that a homogeneous ideal
is nondegenerate if it does not contain a linear form. Most questions about
the free resolutions of ideals can be reduced to the nondegenerate case, just
as can most questions about varieties in projective space. Here is the basic
idea:
(a) Show that if I ⊂ S is a homogeneous ideal in a polynomial ring con-

taining linearly independent linear forms �0, . . . , �t, there are linear forms
�t+1, . . . , �r such that {�0, . . . , �t, �t+1, . . . , �r} is a basis for S1, and such
that I may be written in the form I = JS + (�1, . . . , �t) where J is a
homogeneous ideal in the smaller polynomial ring R = K[�t+1, . . . , �r].
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(b) Show that the minimal S-free resolution of JS is obtained from the min-
imal R-free resolution of J by tensoring with S. Thus they have the same
graded Betti numbers.

(c) Show that the minimal S-free resolution of S/I is obtained from the
minimal S-free resolution of S/JS by tensoring with the Koszul complex
on �0, . . . , �t. Deduce that the regularity of S/I is the same as that of
R/J .

5. Suppose that M is a finitely generated graded Cohen–Macaulay S-module,
with minimal free resolution

0→ Fc → · · · → F1 → F0,

and write Fi =
⊕

S(−j)βi,j as usual. Show that

reg M = max{j | βc,j �= 0}−c;

that is, the regularity of M is measured “at the end of the resolution” in the
Cohen–Macaulay case. Find an example of a module for which the regularity
cannot be measured just “at the end of the resolution.”

6. Find an example showing that Corollary 4.8 may fail if we do not assume that
M is Cohen–Macaulay. (If this is too easy, find an example with M = S/I
for some ideal I.)

7. Show that if X consists of d distinct point in Pr then the regularity of SX is
bounded below by the smallest integer s such that d ≤ (r+s

r

)
. Show that this

bound is attained by the general set of d points.

8. Recall that the generating function of the Hilbert function of a (finitely gen-
erated graded) module M is ΨM (t) =

∑∞
−∞ HM (d)td, and that by Theorem

1.11 (with all xi of degree 1) it can be written as a rational φM (t)/(1−t)r+1.
Show that if dimM < r+1 then 1− t divides the numerator; more precisely,
we can write

ΨM (t) =
φ′

M (t)
(1− t)dim M

.

for some Laurent polynomial φ′
M, and this numerator and denominator are

relatively prime.

9. With notation as in the previous exercise, suppose M is a Cohen–Macaulay
S-module, and let y0, . . . , ys be a maximal M -regular sequence of linear forms,
so that M ′ = M/(y0, . . . , ys) has finite length. Let ΨM ′ =

∑
HM ′(d)td be the

generating function of the Hilbert function of M ′, so that ΨM ′ is a polynomial
with positive coefficients in t and t−1. Show that

ΨM (t) =
ΨM ′(t)

(1− t)dim M
.
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In the notation of Exercise 4.8 φ′
M = ΨM ′ . Deduce that

HM (d) =
∑
e≤d

(
dim M +d

dimM

)
HM ′(d−e).

10. Use Proposition 4.14 and the result of Exercise 4.9 to give a direct proof of
Theorem 4.3.2.

11. Find an example of a finitely generated graded S-module M such that φ′
M (t)

does not have positive coefficients.

12. Use local duality to refine Corollary 4.5 by showing that for each j we have

reg Hj
m(M)+j ≤ reg Torr+1−j(M, K)−(r+1−j).

13. (The basepoint-free pencil trick.) Here is the idea of Castelnuovo that led
Mumford to define what we call Castelnuovo–Mumford regularity: Suppose
that L is a line bundle on a curve X ⊂ Pr over an infinite field, and suppose
and that L is basepoint-free. Show that we may choose 2 sections σ1, σ2 of
L which together form a basepoint-free pencil— that is, V := 〈σ1, σ2〉 is a
two-dimensional subspace of H0(L ) which generates L locally everywhere.
Show that the Koszul complex of σ1, σ2

K : 0→ L −2 → L −1⊕L −1 → L → 0

is exact, and remains exact when tensored with any sheaf.
Now let F be a coherent sheaf on X with H1F = 0 (or, as we might

say now, such that the Castelnuovo–Mumford regularity of F is at most
−1.) Use the sequence K above to show that the multiplication map map
V ⊗F → L ⊗F induces a surjection V ⊗H0F → H0(L ⊗F ).

Suppose that X is embedded in Pr as a curve of degree d ≥ 2g+1, where
g is the genus of X. Use the argument above to show that

H0(OX(1))⊗H0(OX(n))→ H0(OX(n+1))

is surjective for n ≥ 1. This result is a special case of what is proved in
Theorem 8.1.

14. Suppose that X ⊂ Pr is a projective scheme. We say that X is d-normal if
the restriction map

H0(OPr (d))→ H0(OX(d))

is surjective. We say that X is d-regular if IX is d-regular.
(a) Show that X is d-normal if and only if H1(IX(d)) = 0.
(b) Let x ∈ S1 be a linear form that is almost regular on SX , and let H ⊂ Pr

be the hyperplane defined by the vanishing of x. Show that X is d-regular
if and only if H∩X is d-regular and X is (d−1)-normal.
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15. Surprisingly few general bounds on the regularity of ideals are known. As we
have seen, if X is the union of n points on a line, then reg SX = n−1. The
following result [Derksen and Sidman 2002] shows (in the case I0 = (0)) that
this is in some sense the worst case: no matter what the dimensions, the ideal
of the union of n planes in Pr has regularity at most n. Here is the algebraic
form of the result. The extra generality is used for an induction.

Theorem 4.19. Suppose I0, . . . , In are ideals generated by spaces of linear
forms in S. Then, for n ≥ 1, the regularity of I = I0 +

⋂n
1 Ij is at most n.

Prove this result by induction on dimS/I0, the case dimS/I0 = 0 being
trivial.
(a) Show that it is equivalent to prove that reg S/I = n−1.
(b) Reduce to the case where I0 + I1 + · · ·+ In = m and the ground field is

infinite.
(c) Use Corollary 4.11 to reduce the problem to proving reg H0

m(S/I) ≤ n−1;
that is, reduce to showing that if f is an element of degree at least n in
H0

m(S/I) then f = 0.
(d) Let x be a general linear form in S. Show that f = xf ′ for some f ′ of

degree n−1 in S/I. Use the fact that x is general to show that the image
of f ′ is in H0

m

(
S/
(
I0 +
⋂

j �=i Ij

))
for i = 1, . . . , n. Conclude by induction

on n that the image of f ′ is zero in

S/
(
I0 +
⋂

j �=i Ij

)
.

(e) Use part (b) to write x =
∑

xi for linear forms xi ∈ Ii. Now show that
f = xf ′ ∈ I.

Putting Theorem 4.19 together with Conjecture 5.2, that the regularity is
bounded (roughly) by the degree in the irreducible case, one might be tempted
to guess that the regularity of an algebraic set would be bounded by the sum
of the degrees of its components. This is false: Daniel Giaimo [2004] has given
a series of examples of algebraic sets Xr = Lr∪Yr ⊂ Pr, where Lr is a linear
subspace and Yr is a reduced, irreducible complete intersection of the same
dimension as Lr, but reg Xr is exponential in the degree of Xr (and doubly
exponential in r).



5

The Regularity of Projective Curves

This chapter is devoted to a theorem of Gruson, Lazarsfeld and Peskine [Gruson
et al. 1983] giving an optimal upper bound for the regularity of a projective curve
in terms of its degree. The result had been proven for smooth curves in P3 by
Castelnuovo [1893].

Theorem 5.1 (Gruson–Lazarsfeld–Peskine). Suppose K is an algebraically
closed field . If X ⊂ Pr

K
is a reduced and irreducible curve, not contained in a

hyperplane, then reg SX ≤ deg X−r+1, and thus reg IX ≤ deg X−r+2.

In particular, Theorem 5.1 implies that the degrees of the polynomials needed
to generate IX are bounded by deg X−r+2. If the field K is the complex numbers,
the degree of X may be thought of as the homology class of X in H2(Pr; K) = Z,
so the bound given depends only on the topology of the embedding of X.

5A A General Regularity Conjecture

We have seen in Corollary 4.15 that if X ⊂ Pr is arithmetically Cohen–Macaulay
(that is, if SX is a Cohen–Macaulay ring) and nondegenerate (that is, not con-
tained in a hyperplane), then reg SX ≤ deg X−codimX, which gives deg X−r+1
in the case of curves. This suggests that some version of Theorem 5.1 could hold
much more generally. However, this bound can fail for schemes that are not arith-
metically Cohen–Macaulay, even in the case of curves; the simplest example is
where X is the union of two disjoint lines in P3 (see Exercise 5.2). The result
can also fail when X is not reduced or the ground field is not algebraically closed
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X Y

X is 2-regular but Y is not.

(see Exercises 5.3 and 5.4). And it is not enough to assume that the scheme is
reduced and connected, since the cone over a disconnected set is connected and
has the same codimension and regularity.

A possible way around these examples is to insist that X be reduced, and
connected in codimension 1, meaning that X is pure-dimensional and cannot be
disconnected by removing any algebraic subset of codimension 2.

Conjecture 5.2. [Eisenbud and Goto 1984] If K is algebraically closed and
X ⊂ Pr

K be a nondegenerate algebraic set that is connected in codimension 1,
then

reg(SX) ≤ deg X−codimX.

For example, in dimension 1 the conjecture just says that the bound should
hold for connected reduced curves. This was recently proved in [Giaimo 2003].
In addition to the Cohen–Macaulay and one-dimensional cases, the conjecture
is known to hold for smooth surfaces in characteristic 0 [Lazarsfeld 1987], arith-
metically Buchsbaum surfaces [Stückrad and Vogel 1987] and toric varieties of
low codimension [Peeva and Sturmfels 1998]. Somewhat weaker results are known
more generally; see [Kwak 1998] and [Kwak 2000] for the best current results and
[Bayer and Mumford 1993] for a survey.

Of course for the conjecture to have a chance, the number deg X− codimX
must at least be nonnegative. The next proposition establishes this inequality.
The examples in Exercises 5.2–5.4 show that the hypotheses are necessary.

Proposition 5.3. Suppose that K is algebraically closed . If X is a nondegenerate
algebraic set in Pr = Pr

K
and X is connected in codimension 1, then deg X ≥

1+codimX.

To understand the bound, set c = codimX and let p1, . . . , pc+1 be general
points on X. Since X is nondegenerate, these points can be chosen to span a
plane L of dimension c. The degree of X is the number of points in which X
meets a general c-plane, and it is clear that L meets X in at least c points. The
problem with this argument is that L might, a priori, meet X in a set of positive
dimension, and this can indeed happen without some extra hypothesis, such as
“connected in codimension 1”.

As you may see using the ideas of Corollary 4.15, the conclusion of Proposition
5.3 also holds for any scheme X ⊂ Pr such that SX is Cohen–Macaulay.
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Proof. We do induction on the dimension of X. If dimX = 0, then X cannot span
Pr unless it contains at least r+1 points; that is, deg X ≥ 1+r = 1+codim X.
If dimX > 0 we consider a general hyperplane section Y = H∩X ⊂ H = Pr−1.
The degree and codimension of Y agree with those for X. Further, since H was
general, Bertini’s Theorem [Hartshorne 1977, p. 179] tells us that Y is reduced.
It remains to show that Y is connected in codimension 1 and nondegenerate.

The condition that X is pure-dimensional and connected in codimension 1 can
be reinterpreted as saying that the irreducible components of X can be ordered,
say X1,X2, . . . in such a way that if i > 1 then Xi meets some Xj , with j < i,
in a set of codimension 1 in each. This condition is inherited by X ∩H so long
as the H does not contain any of the Xi or Xi∩Xj .

For nondegeneracy we need only the condition that X is connected. Lemma
5.4 completes the proof.

Lemma 5.4. If K is algebraically closed and X is a connected algebraic set in
Pr = Pr

K
, not contained in any hyperplane, then for every hyperplane in Pr the

scheme X∩H is nondegenerate in H.

For those who prefer not to deal with schemes: the general hyperplane section
of any algebraic set is reduced, and thus can be again considered an algebraic
set. So scheme theory can be avoided at the expense of taking general hyperplane
sections.

Proof. Let x be the linear form defining H. There is a commutative diagram
with exact rows

0 � H0(OPr)
x� H0(OPr (1)) � H0(OH(1)) � H1(OPr )

0 � H0(OX)
�

x� H0(OX(1))
�

� H0(OX∩H(1))
�

� · · ·
The hypotheses that X is connected and projective, together with the hypothesis
that K is algebraically closed, imply that the only regular functions defined ev-
erywhere on X are constant; that is, H0(OX) = K, so the left-hand vertical map
is surjective (in fact, an isomorphism). The statement that X is nondegenerate
means that the middle vertical map is injective. Using the fact that H1(OPr ) = 0,
the Snake Lemma shows that the right-hand vertical map is injective, so X∩H
is nondegenerate.

5B Proof of the Gruson–Lazarsfeld–Peskine Theorem

Here is a summary of the proof: We will find a complex that is almost a resolution
of an ideal that is almost the ideal IX of X. Miraculously, this will establish the
regularity of IX .
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More explicitly, we will find a module F over SX which is similar to SX but
admits a free presentation by a matrix of linear forms ψ, and such that the
Eagon–Northcott complex associated with the ideal of maximal minors of ψ is
nearly a resolution of IX . We will then prove that the regularity of this Eagon–
Northcott complex is a bound for the regularity of IX . The module F will come
from a line bundle on the normalization of the curve X. From the cohomological
properties of the line bundle we will be able to control the properties of the
module.

Still more explicitly, let π : C → X ⊂ Pr
K

be the normalization of X. Let A
be an invertible sheaf on C and let F = π∗A . The sheaf F is locally isomorphic
to OX except at the finitely many points where π fails to be an isomorphism.
Let F =

⊕
n≥0 H0F (n), and let

L1
ψ� L0

� F

be a minimal free presentation of F . We write I(ψ) for the ideal generated by
the rankL0-sized minors (subdeterminants) of a matrix representing ψ; this is
the 0-th Fitting ideal of F . We will use three facts about Fitting ideals presented
in Section A2G (page 220): they do not depend on the free presentations used
to define them; they commute with localization; and the 0-th Fitting ideal of
a module is contained in the annihilator of the module. Write I (ψ) for the
sheafification of the Fitting ideal (which is also the sheaf of Fitting ideals of the
sheaf A , by our remark on localization). This sheaf is useful to us because of
the last statement of the following result.

Proposition 5.5. With notation above, I (ψ) ⊆ IX . The quotient IX/I (ψ)
is supported on a finite set of points in Pr, and reg I(ψ) ≥ reg IX .

Proof. The 0-th Fitting ideal of a module is quite generally contained in the
annihilator of the module. The construction of the Fitting ideal commutes with
localization (see [Eisenbud 1995, Corollary 20.5] or Section A2G.) At any point
p ∈ Pr such that π is an isomorphism we have (π∗A)p

∼= (OX)p, where the
subscript denotes the stalk at the point p. Since the Fitting ideal of SX is IX ,
we see that (IX)p = I (ψ)p. Since X is reduced and one-dimensional, the map
π is an isomorphism except at finitely many points.

Consider the exact sequence

0 � I (ψ) � IX
� IX/I (ψ) � 0.

Since IX/I (ψ) is supported on a finite set, we have H1(IX(d)/I (ψ)(d)) = 0
for every d. From the long exact sequence in cohomology we see that H1(IX(d))
is a quotient of H1(I (ψ)(d)), while Hi(IX(d)) = Hi(I (ψ)(d)) for i > 1. In
particular, reg I (ψ) ≥ reg IX . Since IX is saturated, we obtain reg I(ψ) ≥
reg IX as well.

Thus it suffices to find a line bundle A on C such that the regularity of I (ψ)
is low enough. We will show that when F has a linear presentation, as defined



5B Proof of the Gruson–Lazarsfeld–Peskine Theorem 77

below, the regularity of this Fitting ideal is bounded by the dimension of H0(F ).
We begin with a criterion for linear presentation.

Linear Presentations

The main results in this section were proved by Green [1984a; 1984b; 1989] in
his exploration of Koszul cohomology.

If F is any finitely generated graded S module, we say that F has a linear
presentation if, in the minimal free resolution

· · · � L1
ϕ1� L0

� F � 0,

we have Li =
⊕

S(−i) for i = 0, 1. This signifies that F is generated by elements
of degree 0 and the map ϕ1 can be represented by a matrix of linear forms.

The condition of having a linear presentation implies that the homogeneous
components Fd are 0 for d < 0. Note that if F is any module with Fd = 0
for d < 0, and L1 → L0 is a minimal free presentation, then the free module
L0 is generated in degrees ≥ 0. By Nakayama’s lemma the kernel of L0 → F
is contained in the homogeneous maximal ideal times L0 so it is generated in
degrees ≥ 1, and it follows from minimality that L1 is generated in degrees ≥ 1.
Thus a module F generated in degrees ≥ 0 has a linear presentation if and only
if Li requires no generators of degree > i for i = 0, 1—we do not have to worry
about generators of too low degree.

In the following results we will make use of the tautological rank-r subbundle
M on P := Pr

K
. It is defined as the subsheaf of Or+1

P
that fits into the exact

sequence

0 � M � Or+1
P

(x0 ··· xr)� OP(1) � 0,

where x0, . . . , xr generate the linear forms on P. This subsheaf is a subbundle
(that is, locally a direct summand, and in particular locally free) because, locally
at each point of Pr, at least one of the xi is a unit. (The bundle M may be
identified with the twist ΩP(1) of the cotangent sheaf Ω = ΩP ; see for example
[Eisenbud 1995, Section 17.5]. We will not need this fact.)

The result that we need for the proof of Theorem 5.1 is:

Theorem 5.6. Let F be a coherent sheaf on P = Pr
K

with r ≥ 2 and let M be
the tautological rank-r subbundle on P. If the support of F has dimension ≤ 1
and

H1
(∧2 M ⊗F

)
= 0,

the graded S-module F :=
⊕

n≥0 H0F (n) has a linear free presentation.

Before giving the proof we explain how the exterior powers of M arise in the
context of syzygies. Set S = K[x0, . . . , xr] and let

K : 0 � Kr+1
� · · · � K0



78 5. The Regularity of Projective Curves

be the minimal free resolution of the residue field K = S/(x0, . . . , xr) as an
S-module. By Theorem A2.50 we may identify K with the dual of the Koszul
complex of x = (x0, . . . , xr) ∈ (Sr+1)∗ (as ungraded modules). To make the
grading correct, so that the copy of K that is resolved is concentrated in degree
0, we must set Ki =

∧i(
Sr+1(−1)

)
=
(∧i

Sr+1
)
(−i), so that the complex begins

with the terms

K : · · · ϕ3� (
∧2

Sr+1)(−2)
ϕ2� Sr+1(−1)

ϕ1=(x0 ··· xr)� S.

Let Mi = (kerϕi)(i), that is, the module ker ϕi shifted so that it is a submodule
of the free module

∧i−1
Sr+1 generated in degree 0. For example, the tautological

subbundle M ⊂ Or+1
Pr on projective space is the sheafification of M1. We need

the following generalization of this remark.

Proposition 5.7. With notation as above, the i-th exterior power
∧i M of the

tautological subbundle on Pr is the sheafification of Mi.

This result is only true at the sheaf level:
∧i

M1 is not isomorphic to Mi.

Proof. Locally at any point of Pr at least one of the xi is invertible, so the
sheafification of the Koszul complex is split exact. Thus the sheafifications of all
the Mi are vector bundles, and it suffices to show that (M̃i)∗ ∼= (

∧i M )∗. Since
Hom is left exact, the module Mi is the dual of the module Ni = (cokerϕ∗

i )(−i).
Being a vector bundle, Ñi is reflexive, so M̃∗

i = Ñi. Thus it suffices to show that
Ni
∼= ∧i

N1 (it would be enough to prove this for the associated sheaves, but in
this case it is true for the modules themselves.)

As described above, the complex K is the dual of the Koszul complex of
the element x = (x0, . . . , xr) ∈ (Sr+1)∗(1). By the description in Section A2F
(page 217), the map ϕ∗

i :
∧i−1((Sr+1)∗(1))→ ∧i((Sr+1)∗(1)) is given by exterior

multiplication with x. But the exterior algebra functor is right exact. Thus from

N1 =
(Sr+1)∗(1)

Sx

we deduce that ∧
N1 =

∧(
(Sr+1)∗(1)

)
x∧(∧Sr+1

)∗(1))
as graded algebras. In particular

∧i
N1 =

∧i((Sr+1)∗(1)
)

x∧(∧i−1(Sr+1)∗(1)
) = coker(ϕi)∗

as required.

With this preamble, we can state the general connection between syzygies and
the sort of cohomology groups that appear in Theorem 5.6:
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Theorem 5.8. Let F be a coherent sheaf on Pr
K
, and set F =

⊕
n≥0 H0F (n).

Let M be the tautological rank-r subbundle on P. If d ≥ i+1 then there is an
exact sequence

0 � TorS
i (F, K)d

� H1
(∧i+1M ⊗F (d− i−1)

) α�

α� H1
(∧i+1 Or+1

P
⊗F (d− i−1)

)
,

where the map α is induced by the inclusion M ⊂ Or+1
P

.

Proof. The vector space TorS
i (F, K) can be computed as the homology of the

sequence obtained by tensoring the Koszul complex, which is a free resolution of
K, with F . In particular, TorS

i (F, K)d is the homology of of the sequence(∧i+1
Sr+1(−i−1)⊗F

)
d
→ (∧i

Sr+1(−i)⊗F
)
d
→ (∧i−1

Sr+1(−i+1)⊗F
)
d
.

For any t the module
∧t

Sr+1(−t)⊗F is just a sum of copies of F (−t), and thus
if d ≥ t, so that Fd−t = H0F (d− t), then(∧t

Sr+1(−t)⊗F
)
d

=
(∧t

Sr+1⊗F
)
d−t

= H0
(∧t Or+1

P
⊗F (d− t)

)
.

For this reason we can compute Tor through sheaf cohomology. Since the sheafi-
fication of K is locally split, it remains exact when tensored by any sheaf, for
example F (d). With notation as in Proposition 5.7 we get short exact sequences

0→ ∧t M⊗F (d−t)→ ∧t Or+1
P
⊗F (d−t)→ ∧t−1 M⊗F (d−t+1)→ 0 (5.1)

that fit into a diagram

· · · � ∧i+1 Or+1
P
⊗F (d−i−1) � ∧i Or+1

P
⊗F (d−i) � · · ·

�
�	 



� �
�	 



�∧i+1 M ⊗F (d−i−1)
∧i M ⊗F (d−i)




� �

�	 


� �

�	
0 0 0 0

where every left-to-right path is exact. It follows that TorS
i (F, K)d is the cokernel

of the diagonal map

H0
(∧i+1 Or+1

P
⊗F (d− i−1)

) � H0
(∧i M ⊗F (d− i)

)
.

The long exact sequence in cohomology associated to the sequence 5.1 now gives
the desired result.

Proof of Theorem 5.6. Let

L : · · · � L1
ϕ1� L0

� F � 0
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be the minimal free resolution of F . By the definition of F the free module L0

has no generators of degrees ≤ 0. As we saw at the beginning of this section, this
implies that L1 has no generators of degrees < 1.

Since H1(
∧2 M ⊗F ) = 0 and

∧2 M ⊗F has support of dimension at most
1, it has no higher cohomology and is thus a 1-regular sheaf. It follows that this
sheaf is s-regular for all s ≥ 2 as well, so that

H1
(∧2 M ⊗F (t)

)
= 0

for all t ≥ 0. By Theorem 5.8 we have TorS
1 (F, K)d = 0 for all d ≥ 2. We can

compute this Tor as the homology of the complex L⊗K. As L is minimal, the
complex L⊗K has differentials equal to 0, so TorS

i (F, K) = Li⊗K. In particular,
L1 has no generators of degrees ≥ 2.

Being a torsion S-module, F has no free summands, so for any summand L′
0

of L0 the composite map L1 → L0 → L′
0 is nonzero. From this and the fact that

L1 is generated in degree 1 it follows that L0 can have no generator of degree
≥ 1. By construction, F is generated in degrees ≥ 0 so L0 is actually generated
in degree 0, completing the proof.

Regularity and the Eagon–Northcott Complex

To bound the regularity of the Fitting ideal of the sheaf π∗A that will occur in
the proof of Theorem 5.1 we will use the following generalization of the argument
at the beginning of the proof of Theorem 4.3.

Lemma 5.9. Let

E : 0→ Et
ϕt� Et−1

� · · · � E1
ϕ1� E0

be a complex of sheaves on Pr, and let d be an integer . Suppose that for i > 0
the homology of E is supported in dimension ≤ 1. If reg Es ≤ d+s for every s,
then reg cokerϕ1 ≤ d and reg imϕ1 ≤ d+1.

Proof. We induct on t, the case t = 0 (where ϕ1 : 0 → E0 is the 0 map) being
immediate. From the long exact sequence in cohomology coming from the short
exact sequence

0 � imϕ1
� E0

� cokerϕ1
� 0

we see that the regularity bound for imϕ1 implies the one for cokerϕ1.
Since the homology H1(E) is supported in dimension at most 1, we have

Hi(H1(E)(s)) = 0 for all i > 1. Thus the long exact sequence in cohomology
coming from the short exact sequence

0 � H1(E) � cokerϕ2
� im ϕ1

� 0

gives surjections Hi(cokerφ2(s)) → Hi(im φi(s)) for all i > 0 and all s, showing
that reg imϕ1 ≤ reg cokerϕ2. By induction, we have reg cokerφ2 ≤ d+1, and
we are done.
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From Lemma 5.9 we derive a general bound on the regularity of Fitting ideals:

Corollary 5.10. Suppose ϕ : F1 → F0 is a map of vector bundles on Pr with
F1 =

⊕n
i=1 OPr(−1) and F0 =

⊕h
i=1 OPr . If the ideal sheaf Ih(ϕ) generated by

the h×h minors of ϕ defines a scheme of dimension ≤ 1, then

reg Ih(ϕ) ≤ h.

Proof. We apply Lemma 5.9 to the Eagon–Northcott complex E = EN(ϕ) of ϕ
(see Section A2H). The zeroth term of the complex is isomorphic to OPr , while
for s > 0 the s-th term is isomorphic to

Es = (Syms−1 F0)∗⊗
∧h+s−1 F1⊗

∧h F ∗
0 .

This sheaf is a direct sum of copies of OPr (−h− s+1). Thus it has regularity
h+s−1, so we may take d = h−1 in Lemma 5.9 and the result follows.

The following Theorem, a combination of Corollary 5.10 with Theorem 5.6,
summarizes our progress. For any sheaf F , we set h0(F ) = dimK H0(F ).

Theorem 5.11. Let X ⊂ Pr
K

be a reduced irreducible curve with r ≥ 3. Let F
be a coherent sheaf on X which is locally free of rank 1 except at finitely many
points of X, and let M be the tautological rank-r subbundle on Pr

K
. If

H1
(∧2 M ⊗F

)
= 0

then reg IX ≤ h0F .

Proof. By Theorem 5.6 the module F =
⊕

n≥0 H0(F (n)) has a linear presen-
tation matrix; in particular, F is the cokernel of a matrix ϕ : On

Pr(−1) → Oh
Pr .

Applying Corollary 5.10 we see that reg Ih(ϕ) ≤ h0F . But by Proposition 5.5
we have reg IX ≤ reg Ih(ϕ).

Even without further machinery, Theorem 5.11 is quite powerful. See Exercise
5.7 for a combinatorial statement proved by S. Lvovsky using it, for which I
don’t know a combinatorial proof.

Filtering the Restricted Tautological Bundle

With this reduction of the problem in hand, we can find the solution by working
on the normalization π : C → X of X. If A is a line bundle on C then F = π∗A
is locally free except at the finitely many points where X is singular, and

H1
(∧2 M ⊗π∗A

)
= H1

(
π∗∧2 M ⊗A

)
= H1

(∧2
π∗M ⊗A

)
.

On the other hand, since π is a finite map we have h0π∗A = h0A . It thus suffices
to investigate the bundle π∗M and to find a line bundle A on C such that the
cohomology above vanishes and h0A is small enough.

We need three facts about π∗M . This is where we use the hypotheses on the
curve X in Theorem 5.1.
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Proposition 5.12. Let K be an algebraically closed field , and let X ⊂ Pr
K

be
a nondegenerate, reduced and irreducible curve. Suppose that π : C → Pr is a
map from a reduced and irreducible curve C onto X, and that π : C → X is
birational . If M denotes the tautological subbundle on Pr, then

1. π∗M is contained in a direct sum of copies of OC ;
2. H0(π∗M ) = 0; and
3. deg π∗M = −deg X.

Proof. Since any exact sequence of vector bundles is locally split, we can pull
back the defining sequence

0→M → Or+1
Pr → OPr(1)→ 0

to get an exact sequence

0→ π∗M → Or+1
C → L → 0,

where we have written L for the line bundle π∗OPr(1). This proves part 1.
Using the sequence above, it suffices in order to prove part 2 to show that the

map on cohomology
H0(Or+1

C )→ H0(L )

is a monomorphism. Since π is finite, we can compute the cohomology after
pushing forward to X. Since X is reduced and irreducible and K is algebraically
closed we have H0OX = K, generated by the constant section 1. For the same
reason K = H0OC = H0(π∗OC) is also generated by 1. The map OX(1) →
π∗L = π∗π∗OX(1) looks locally like the injection of OX into OC , so it is a
monomorphism. Thus the induced map H0OX(1) → H0L is a monomorphism,
and it suffices to show that the map on cohomology

H0(Or+1
X )→ H0(OX(1))

coming from the embedding of X in Pr is a monomorphism. This is the restriction
to X of the map

H0(Or+1
Pr )→ H0(OPr (1))

sending the generators of Or+1
Pr to linear forms on Pr. Since X is nondegenerate,

no nonzero linear form vanishes on X, so the displayed maps are all monomor-
phisms.

Finally, we must prove that deg π∗M = −deg X. The bundle M has rank r,
and so does its pullback π∗M . The degree of the latter is, by definition, the
degree of its highest nonvanishing exterior power,

∧r
π∗M = π∗∧r M . From

the exact sequence defining M we see that
∧r M ∼= OPr (−1), and it follows that

π∗∧r M = π∗OX(−1) has degree −deg X.

Any vector bundle on a smooth curve can be filtered by a sequence of subbun-
dles in such a way that the successive quotients are line bundles (Exercise 5.8).
Using Proposition 5.12 we can find a special filtration.
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Proposition 5.13. Let N be a vector bundle on a smooth curve C over an
algebraically closed field K. If N is contained in a direct sum of copies of OC

and h0N = 0 then N has a filtration

N = N1 ⊃ · · · ⊃ Nr+1 = 0,

such that Li := Ni/Ni+1 is a line bundle of strictly negative degree.

Proof. We will find an epimorphism N → L1 from N to a line bundle L1 of
negative degree. Given such a map, the kernel N ′ ⊂ N automatically satisfies
the hypotheses of the proposition, and thus by induction N has a filtration of
the desired type.

By hypothesis there is an embedding N ↪→ On
C for some n. We claim that

we can take n = rankN . For simplicity, set r = rankN . Tensoring the given
inclusion with the field K of rational functions on C, we get a map of K-vector
spaces Kr ∼= K⊗N → K⊗On

C = Kn. Since this map is a monomorphism, one
of its r×r minors must be nonzero. Thus we can factor out a subset of n−r of the
given basis elements of Kn and get a monomorphism Kr ∼= K⊗N → K⊗Or

C =
Kr. Since N is torsion free, the corresponding projection of On

C → Or
C gives a

composite monomorphism α : N ↪→ Or
C as claimed.

Since N has no global sections, the map α cannot be an isomorphism. Since
the rank of N is r, the cokernel of α is torsion; that is, it has finite support.
Let p be a point of its support. Since we have assumed that K is algebraically
closed, the residue class field κ(p) is K. We may choose an epimorphism from
Or

C/N → Op, the skyscraper sheaf at p. Since Or
C is generated by its global

sections, the image of the global sections of Or
C generate the sheaf Op, and thus

the map Kr = H0(Or
C)→ H0(Op) = K is onto, and its kernel has dimension r−1.

Any subspace of H0(Or
C) generates a direct summand, so we get a summand O r−1

C

of Or
C which maps to a proper subsheaf of Or

C/N . The map Or
C → Op factors

through the quotient Or
C/Or−1

C = OC , as in the diagram

Or−1
C

�
�

�
�

�	
N

α � Or
C

�
� On

C/N

�
�

�
�

�
β

	
OC

�
�� Op

�

The composite map N → Op is zero, so β : N → Or
C → OC is not an epimor-

phism. Thus the ideal sheaf L1 = β(N ) is properly contained in OC . It defines a
nonempty finite subscheme Y of C, so deg L1 = −deg Y < 0. Since C is smooth,
L1 is a line bundle, and we are done.
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Multilinear algebra gives us a corresponding filtration for the exterior square.

Proposition 5.14. If N is a vector bundle on a variety V which has a filtration

N = N1 ⊃ · · · ⊃ Nr ⊃ Nr+1 = 0,

such that the successive quotients Li := Ni/Ni+1 are line bundles, then
∧2 N

has a similar filtration whose successive quotients are the line bundles Li⊗Lj

with 1 ≤ i < j ≤ r.

Proof. We induct on r, the rank of N . If r = 1 then
∧2 N = 0, and we are

done. From the exact sequence

0→ Nr → N → N /Nr → 0,

and the right exactness of the exterior algebra functor we deduce that∧
(N /Nr) =

∧
N /
(
Nr ∧

∧
N
)

as graded algebras. In degree 2 this gives a right exact sequence

N ⊗Nr →
2∧

N →
2∧

(N /Nr)→ 0.

Since Nr is a line bundle, the left-hand map kills Nr ⊗Nr, and thus factors
through N /Nr⊗Nr. The induced map N /Nr⊗Nr →

∧2 N is a monomor-
phism because

rank(N /(Nr⊗Nr)) = (r−1) ·1 = r−1

is the same as the difference of the ranks of the right-hand bundles,

r−1 =
(

r

2

)
−
(

r−1
2

)
.

Thus we can construct a filtration of
∧2N by combining a filtration of

(N /Nr)⊗Nr

with a filtration of
∧2(N/Nr). The subbundles (Ni/Nr)⊗Nr ⊂ (N /Nr)⊗Nr

give a filtration of N /Nr with successive quotients Li⊗Lr = Nr for i < r.
By induction on the rank of N , the bundle

∧2(N/Nr) has a filtration with
subquotients Li⊗Lj , completing the argument.

General Line Bundles

To complete the proof of Theorem 5.1 we will use a general result about line
bundles on curves:

Proposition 5.15. Let C be a smooth curve of genus g over an algebraically
closed field . If B is a general line bundle of degree ≥ g−1 then h1B = 0.



5C Exercises 85

To understand the statement, the reader needs to know that the set Picd(C) of
isomorphism classes of line bundles of degree d on C form an irreducible variety,
called the Picard variety. The statement of the proposition is shorthand for the
statement that the set of line bundles B of degree g− 1 that have vanishing
cohomology is an open dense subset of this variety.

We will need this Proposition and related results in Chapter 8, Lemma 8.5
and we postpone the proof until then.

Proof of Theorem 5.1. Set d = deg X. By Propositions 5.12–5.14, the bundle∧2
π∗M can be filtered in such a way that the successive quotients are the

tensor products Li⊗Lj of two line bundles, each of strictly negative degree.
To achieve the vanishing of H1(

∧2
M ⊗A ) it suffices to choose A such that

h1(Li⊗Lj⊗A ) = 0 for all i, j. By Proposition 5.15, it is enough to choose A
general and of degree e such that deg(Li⊗Lj⊗A ) = deg Li+deg Lj +e ≥ g−1
for every i and j.

Again by Proposition 5.12 we have −d = deg π∗M =
∑

i deg Li. Since the
deg Li are negative integers,

deg Li +deg Lj = −d−
∑

k �=i,j

deg Lk ≥ −d−r+2,

and it suffices to take e = g−1+d−r+2. In sum, we have shown that if A is
general of degree g−1+d− r +2 then reg IX ≤ h0A . By the Riemann–Roch
theorem we have h0A = h1A +d−r+2. By Proposition 5.3, d ≥ r, so deg A ≥
g+1, and Proposition 5.15 implies that h1A = 0. Thus reg IX ≤ h0A = d−r+2,
completing the proof.

As we shall see in the next chapter, the bound we have obtained is sometimes
optimal. But the examples that we know in which this happens are very special—
rational and elliptic curves. Are there better bounds if we take into account more
about the curve? At any rate, we shall see in Corollary 8.2 that there are much
better bounds for curves embedded by complete series of high degree. (Exercise
8.5 gives a weak form of this for varieties, even schemes, of any dimension.)

5C Exercises

1. Show that if the curve X ⊂ Pr has an n-secant line (that is, a line that
meets the curve in n points) then reg IX ≥ n. Deduce that that there are
nondegenerate smooth rational curves X in P3 of any degree d ≥ 3 with
reg SX = deg X−codimX. (Hint: consider curves on quadric surfaces.)

2. Show that if X is the union of 2 disjoint lines in P3, or a conic contained in
a plane in P3, then 2 = reg IX > deg X−codimX +1.

3. Let Xd be the scheme in P3 given by the equations

x2
0, x0x1, x2

1, x0x
d
2−x1x

d
3.
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Show that Xd is one-dimensional, irreducible, and not contained in a hyper-
plane. Show that the degree of Xd is 2 but the regularity of SXd

is ≥ d. In
case K is the field of complex numbers, the scheme Xd can be visualized as
follows: It lies in the first infinitesimal neighborhood, defined by the ideal
(x2

0, x0x1, x
2
1), of the line X defined by x0 = x1 = 0, which has affine coordi-

nate x2/x3. In this sense Xd can be thought of as a subscheme of the normal
bundle of X in P3. Identifying the normal bundle with X×K2 the scheme Xd

meets each p×K2 = K2 as a line through the origin of K2, and is identified
by its slope x0/x1 = (x2/x3)d. Thus for example if we restrict to values of
x2/x3 in the unit circle, we see that Xd is a ribbon with d twists:

4. Consider the reduced irreducible one-dimensional subscheme X of the real
projective space P3

R
defined by the equations

x2
0−x2

1, x2
2−x2

3, x3x0−x1x2, x0x2−x1x3.

Show that deg X = 2 and reg SX > deg X − codimX, so the conclusion of
Theorem 5.1 does not hold for X. Show that after a ground field extension X
becomes the union of two disjoint lines. Hint: consider the rows of the matrix(

x0 + ix1 x2− ix3

x2 + ix3 x0− ix1

)
.

5. Show that Proposition 5.7 is only true on the sheaf level; the i-th syzygy
module of K itself is not isomorphic to a twist of the i-th exterior power
of the first one. (Hint: Consider the number of generators of each module,
which can be deduced from Nakayama’s Lemma and the right exactness of
the exterior algebra functor; see [Eisenbud 1995, Proposition A2.1].)

6. Generalizing Corollary 5.10, suppose ϕ : F1 → F0 is a map of vector bundles
on Pr with F1 =

⊕n
i=1 OPr(−bi) and F0 =

⊕h
i=1 OPr(−ai). Suppose that

min aj < min bj (as would be the case if ϕ were a minimal presentation of a
coherent sheaf.) Show that if the ideal sheaf Ih(ϕ) generated by the h×h
minors of ϕ defines a scheme of dimension ≤ 1, then

reg Ih ≤
∑

bi−
∑

ai−(n−h)(1+min
i

ai)
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7. The monomial curve in Pr with exponents a1 ≤ a2 ≤ · · · ≤ ar−1 is the curve
X ⊂ Pr of degree d = ar parametrized by

φ : P1 � (s, t) �→ (sd, sd−a1ta1 , . . . , sd−ar−1 tar−1 , td).

Set a0 = 0, ar = d, and for i = 1, . . . , r set αi = ai−ai−1. With notation as
in Theorem 5.11, show that

φ∗(M ) =
⊕
i �=j

OP1(−αi−αj).

Now use Theorem 5.11 to show that the regularity of IX is at most maxi �=j αi+
αj . This exercise is taken from [L’vovsky 1996].

8. Let C be a smooth curve, and let E be a vector bundle. Let F be any coherent
subsheaf of E , and denote by F ′ ⊂ E the preimage of the torsion subsheaf
of E /F . Show that F ′ is a subbundle of E ; that is, both F ′ and E /F ′

are vector bundles. Show that rankF ′ = rankF . Show that any bundle has
subsheaves of rank 1. Conclude that E has a filtration by subbundles.
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Linear Series and 1-Generic Matrices

In this chapter we introduce two techniques useful for describing embeddings of
curves and other varieties: linear series and the 1-generic matrices they give rise
to. By way of illustration we treat in detail the free resolutions of ideals of curves
of genus 0 and 1 in their “nicest” embeddings.

In the case of genus-0 curves we are looking at embeddings of degree at least 1;
in the case of genus-1 curves we are looking at embeddings of degree at least 3. It
turns out that the technique of this chapter gives very explicit information about
the resolutions of ideal of any hyperelliptic curves of any genus g embedded by
complete linear series of degree at least 2g + 1. We will see in Chapter 8 that
some qualitative aspects extend to all curves in such “high-degree” embeddings.

The specific constructions for elliptic curves made in the last part of this chap-
ter are rather complex, and involve the theory of divisors on a ruled surface, which
we will not need later in this book. The qualitative properties of these curves that
we deduce from the resolutions we construct, such as the Castelnuovo–Mumford
regularity, can be seen with much less work from the general theory to be devel-
oped later. I felt that it was worth including the most explicit treatment I could
for these resolutions, but the reader may skim the material from Proposition 6.19
to Theorem 6.26, and return to detailed reading in Chapter 7 without missing
anything needed in the rest of the book.

For simplicity we suppose throughout this chapter that K is an algebraically
closed field and we work with projective varieties, that is, irreducible algebraic
subsets of a projective space Pr.
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6A Rational Normal Curves

Consider first the plane conics. One such conic— we will call it the standard
conic in P2 with respect to coordinates x0, x1, x2 —is the curve with equation
x0x2−x2

1 = 0. It is the image of the map P1 → P2 defined by

(s, t) �→ (s2, st, t2).

Any irreducible conic is obtained from this one by an automorphism—that is,
a linear change of coordinates—of P2.

Analogously, we consider the curve X ∈ Pr that is the image of the map
P1 νr� Pr defined by

(s, t) �→ (sr, sr−1t, . . . , str−1, tr).

We call X the standard rational normal curve in Pr. By a rational normal curve
in Pr we will mean any curve obtained from this standard one by an automor-
phism—a linear change of coordinates—of Pr. Being an image of P1, a rational
normal curve is irreducible. In fact, the map νr is an embedding, so X ∼= P1 is
a smooth rational (genus 0) curve. Because the monomials sr, sr−1t, . . . , tr are
linearly independent, it is nondegenerate, that is, not contained in a hyperplane.
The intersection of X with the hyperplane

∑
aixi = 0 is the set of nontrivial

solutions of the homogeneous equation∑
ais

r−iti.

Up to scalars there are (with multiplicity) r such solutions, so that X has degree
r. We will soon see (Theorem 6.8) that any irreducible, nondegenerate curve of
degree r in Pr is a rational normal curve in Pr.

In algebraic terms, the standard rational normal curve X is the variety whose
ideal is the kernel of the ring homomorphism

α : S = K[x0, . . . , xr]→ K[s, t]

sending xi to sr−iti. Since K[s, t] is a domain, this ideal is prime. Since K[s, t]
is generated as a module over the ring α(S) ⊂ K[s, t] by the the finitely many
monomials in K[s, t] of degree < r, we see that dimα(S) = 2. This is the algebraic
counterpart of the statement that X is an irreducible curve.

The defining equation x0x2 − x2
1 of the standard conic can be written in a

simple way as a determinant:

x0x2−x2
1 = det

(
x0 x1

x1 x2

)
.

This whole chapter concerns the systematic understanding and exploitation of
such determinants!
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6A.1 Where’d That Matrix Come From?

If we replace the variables x0, x1, x2 in the matrix above by their images s2, st, t2

under ν2 we get the interior of the “multiplication table”

s t

s s2 st
t st t2

The determinant of M goes to zero under the homomorphism α because (s2)(t2)
equals (st)(st), by associativity and commutativity.

To generalize this to the rational normal curve of degree r we may take any d
with 1 ≤ d < r and write the multiplication table

sr−d sr−d−1t . . . tr−d

sd sr sr−1t . . . sdtr−d

sd−1t sr−1t sr−2t2 . . . sd−1tr−d+1

...
...

...
...

...
td sr−dtd sr−d−1td+1 . . . tr

Substituting xi for sr−iti we see that the 2×2 minors of the (d+1)×(r−d+1)
matrix

Mr,d =

⎛⎜⎜⎝
x0 x1 · · · xr−d

x1 x2 · · · xr−d+1

...
...

. . .
...

xd xd+1 · · · xr

⎞⎟⎟⎠
vanish on X. Arthur Cayley called the matrices Mr,d catalecticant matrices (see
Exercises 6.2 and 6.3 for the explanation), and we will follow this terminology.
They are also called generic Hankel matrices; a Hankel matrix is any matrix
whose antidiagonals are constant.

Generalizing the result that the quadratic form q = detM2,1 generates the
ideal of the conic in the case r = 2, we now prove:

Proposition 6.1. The ideal I ⊂ S = K[x0, . . . , xr] of the rational normal curve
X ⊂ Pr of degree r is generated by the 2×2 minors of the matrix

Mr,1 =
(

x0 · · · xr−1

x1 · · · xr

)
.

Proof. Consider the homogeneous coordinate ring SX = S/I which is the image
of the homomorphism

α : S → K[s, t]; xi �→ sr−iti.

The homogeneous component (S/I)d is equal to K[s, t]rd, which has dimension
rd+1.
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On the other hand, let J ⊂ I be the ideal of 2× 2 minors of Mr,1, so S/I
is a homomorphic image of S/J . To prove I = J it thus suffices to show that
dim(S/J)d ≤ rd+1 for all d.

We have xixj ≡ xi−1xj+1 mod (J) as long as i− 1 ≥ 0 and j + 1 ≤ r.
Thus, modulo J , any monomial of degree d is congruent either to xa

0xd−a
r , with

0 ≤ a ≤ d, or to xa
0xix

d−1−a
r with 0 ≤ a ≤ d−1 and 1 ≤ i ≤ r−1. There are

d+ 1 monomials of the first kind and d(r− 1) of the second, so dim(S/J)d ≤
(d+1)+d(r−1) = rd+1 as required.

By using the (much harder!) Theorem 5.1 we could have simplified the proof a
little: Since the degree of the rational normal curve is r, Theorem 5.1 shows that
reg I ≤ 2, and in particular I is generated by quadratic forms. Thus it suffices to
show that comparing the degree-2 part of J and I we have dimJ2 ≥ dim(I)2. This
reduces the proof to showing that the minors of M1,r are linearly independent;
one could do this as in the proof above, or using the result of Exercise 6.7.

Corollary 6.2. The minimal free resolution of the homogeneous coordinate ring
SX of the rational normal curve X of degree r in Pr is given by the Eagon–
Northcott complex of the matrix Mr,1,

EN(Mr,1) : 0 � (Symr−2 S2)∗⊗∧r
Sr � . . .

� (S2)∗⊗∧3
Sr � ∧2

Sr

∧2
Mr,1� ∧2

S2

(see Theorem A2.60). It has Betti diagram

0 1 2 · · · r−1
0 1 − − · · · −
1 − (

r
2

)
2
(
r
3

) · · · (r−1)
(
r
r

)
= r−1

In particular , SX is a Cohen–Macaulay ring .

Proof. The codimension of X ⊂ Pr, and thus of I ⊂ S, is r−1, which is equal
to the codimension of the ideal of 2×2 minors of a generic 2× r matrix. Thus
by Theorem A2.60 the Eagon–Northcott complex is exact. The entries of Mr,1

are of degree 1. From the construction of the Eagon–Northcott complex given in
Section A2H we see that the Eagon–Northcott complex is minimal. In particular,
the Betti diagram is as claimed. The length of EN(Mr,1) is r−1, the codimension
of X, so SX is Cohen–Macaulay by the Auslander–Buchsbaum Theorem (A2.15).

6B 1-Generic Matrices

To describe some of what is special about the matrices Mr,d we introduce some
terminology: If M is a matrix of linear forms with rows �i = (�i,1, . . . , �i,n) then
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a generalized row of M is by definition a row∑
i

λi�i =
(∑

i

λi�i,1 , . . . ,
∑

i

λi�i,n

)
,

that is, a scalar linear combination of the rows of M , with coefficients λi ∈ K
that are not all zero. We similarly define generalized columns of M . In the same
spirit, a generalized entry of M is a nonzero linear combination of the entries
of some generalized row of M or, equivalently, a nonzero linear combination of
the entries of some generalized column of M . We will say that M is 1-generic if
every generalized entry of M is nonzero. This is the same as saying that every
generalized row (or column) of M consists of linearly independent linear forms.

Proposition 6.3. For each 0 < d < r the matrix Mr,d is 1-generic.

Proof. A nonzero linear combination of the columns of the multiplication table
corresponds to a nonzero form of degree r−d in s and t, and, similarly, a nonzero
linear combination of the rows corresponds to a nonzero form of degree d. A
generalized entry of Mr,d corresponds to a product of such nonzero forms, and
so is nonzero.

The same argument would work for a matrix made from part of the multi-
plication table of any graded domain; we shall further generalize and apply this
idea later.

Determinantal ideals of 1-generic matrices have many remarkable properties.
See [Room 1938] for a classical account and [Eisenbud 1988] for a modern treat-
ment. In particular, they satisfy a generalization of Proposition 6.1 and Corollary
6.2.

Theorem 6.4. If M is a 1-generic matrix of linear forms in S = K[x0, . . . , xr],
of size p× q with p ≤ q, over an algebraically closed field K, then the ideal
Ip(M) generated by the maximal minors of M is prime of codimension q−p+1;
in particular , its free resolution is given by an Eagon–Northcott complex , and
S/Ip(M) is a Cohen–Macaulay domain.

Note that q−p+1 is the codimension of the ideal of p×p minors of the generic
matrix (Theorem A2.54).

Proof. Set I = Ip(M). We first show that codim I = q− p+1; equivalently, if
X is the projective algebraic set defined by I, we will show that the dimension
of X is r− (q−p+1). By Theorem A2.54 the codimension of I cannot be any
greater than q−p+1, so it suffices to show that dimX ≤ r−(q−p+1).

Let a ∈ Pr be a point with homogeneous coordinates a0, . . . , ar. The point a
lies in X if and only if the rows of M become linearly dependent when evaluated
at a. This is equivalent to saying that some generalized row vanishes at a, so X
is the union of the zero loci of the generalized rows of M . As M is 1-generic,
each generalized row has zero locus equal to a linear subspace of Pr of dimension
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precisely r− q. A generalized row is determined by an element of the vector
space Kp of linear combinations of rows. Two generalized rows have the same
zero locus if they differ by a scalar, so X is the union of a family of linear spaces
of dimension r− q, parametrized by a projective space Pp−1. Thus dimX ≤
(r−q)+(p−1) = r−(q−p+1). More formally, we could define

X ′ = {(y, a) ∈ Pp−1×Pr | Ry vanishes at a},
where Ry denotes the generalized row corresponding to the parameter value y.
The set X ′ fibers over Pp−1 with fibers isomorphic to Pr−q so

dimX ′ = (r−q)+(p−1) = r−(q−p+1).

Also, the projection of X ′ to Pr carries X ′ onto X, so dimX ≤ dimX ′.
A projective algebraic set, such as X ′, which is fibered over an irreducible

base with irreducible equidimensional fibers is irreducible; see [Eisenbud 1995,
Exercise 14.3]. It follows that the image X is also irreducible. This proves that
the radical of Ip(M) is prime.

From the codimension statement, and the Cohen–Macaulay property of S,
it follows that the Eagon–Northcott complex associated to M is a free resolu-
tion of S/I, and we see that the projective dimension of S/I is q− p + 1. By
the Auslander–Buchsbaum Formula (Theorem A2.15) the ring S/I is Cohen–
Macaulay.

It remains to show that I itself is prime. From the fact that S/I is Cohen–
Macaulay, it follows that all the associated primes of I are minimal, and have
codimension precisely q− p+1. Since the radical of I is prime, we see that in
fact I is a primary ideal.

The submatrix M1 of M consisting of the first p−1 rows is also 1-generic so,
by what we have already proved, the ideal Ip−1(M1) has codimension q−p. Thus
some (p− 1)× (p− 1) minor ∆ of M1 does not vanish identically on X. Since
X is the union of the zero loci of the generalized rows of M , there is even a
generalized row whose elements generate an ideal that does not contain ∆. This
generalized row cannot be in the span of the first p−1 rows alone, so we may
replace the last row of M by this row without changing the ideal of minors of M ,
and we may assume that ∆ /∈ Q := (xp,1, . . . , xp,q). On the other hand, since we
can expand any p×p minor of M along its last row, we see that I is contained
in Q.

Since the ideal Q is generated by a sequence of linear forms, it is prime. Since
we have seen that I is primary, it suffices to show that ISQ is prime, where SQ

denotes the local ring of S at Q. Since ∆ becomes a unit in SQ we may make
an SQ-linear invertible transformation of the columns of M to bring M into the
form

M ′ =

⎛⎜⎜⎜⎜⎝
1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 . . . 0
x′

p,1 x′
p,2 . . . x′

p,p−1 x′
p,p . . . x′

p,q

⎞⎟⎟⎟⎟⎠ ,
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where x′
p,1, . . . , x

′
p,q is the result of applying an invertible SQ-linear transforma-

tion to xp,1, . . . , xp,q, and the (p−1)×(p−1) matrix in the upper left-hand corner
is the identity. It follows that ISQ = (x′

p,p, . . . , x
′
p,q)SQ.

Since xp,1, . . . , xp,q are linearly independent modulo Q2SQ, so are x′
p,1, . . . , x

′
p,q .

It follows that SQ/(x′
p,p, . . . , x

′
p,q) = SQ/ISQ is a regular local ring and thus a

domain (see [Eisenbud 1995, Corollary 10.14]). This shows that ISQ is prime.

Theorem 6.4 gives another proof of Proposition 6.1; see Exercise 6.4.

6C Linear Series

We can extend these ideas to give a description of certain embeddings of genus-1
curves. At least over the complex numbers, this could be done very explicitly,
replacing monomials by doubly periodic functions. Instead, we approach the
problem algebraically, using the general notion of linear series. For simplicity,
we continue to suppose that the curves and other algebraic sets we consider are
irreducible, and that the ground field K is algebraically closed.

A linear series (L , V, α) on a variety X over K consists of a line bundle L
on X, a finite dimensional K-vector space V and a nonzero homomorphism α :
V → H0L . We define the (projective) dimension of the series to be (dimK V )−1.
The linear series is nondegenerate if α is injective; in this case we think of V as a
subspace of H0(L ), and write (L , V ) for the linear series. Frequently we consider
a linear series where the space V is the space H0(L ) and α is the identity. We
call this the complete linear series defined by L , and denote it by |L |.

One can think of a linear series as a family of divisors on X parametrized by
the nonzero elements of V : corresponding to v ∈ V is the divisor which is the zero
locus of the section α(v) ∈ H0(L ). Since the divisor corresponding to v is the
same as that corresponding to a multiple rv with 0 �= r ∈ K, the family of divisors
is really parametrized by the projective space of one-dimensional subspaces of
V , which we think of as the projective space P(V ∗). The simplest kind of linear
series is the “hyperplane series” arising from a projective embedding X ⊂ P(V ).
It consists of the family of divisors that are hyperplane sections of X; more
formally this series is (OX(1), V, α) where OX(1) is the line bundle OP(V )(1)
restricted to X and

α : V = H0(OP(V )(1))→ H0(OX(1))

is the restriction mapping. This series is nondegenerate in the sense above if
and only if X is nondegenerate in P(V ) (that is, X is not contained in any
hyperplane).

For example, if X ∼= P1 is embedded in Pr as the rational normal curve of
degree r, the hyperplane series is the complete linear series

|OP1(r)| = (OP1(r),H0(OP1(r)), id
)
,
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where id is the identity map.
Not all linear series arise as the linear series of hyperplane sections of an

embedded variety. For example, given p ∈ P2, we may describe the linear series
on P2 of conics through p as follows: Let L = OP2(2). The global sections of
L correspond to quadratic forms in three variables. Taking coordinates x, y, z,
we choose p to be the point (0, 0, 1), and we take V to be the vector space of
quadratic forms vanishing at p:

V = 〈x2, xy, xz, y2, yz〉.
We call p a basepoint of the series L , V ). In general we define a basepoint of a
linear series to be a point in the zero loci of all the sections in α(V ) ⊂ H0(L ).
Equivalently, this is a point at which the sections of α(V ) fail to generate L ;
or, again, it is a point contained in all the divisors in the series. In the example
above, p is the only basepoint. The linear series is called basepoint-free if it has no
basepoints. The hyperplane series of any variety in Pr is basepoint-free because
there is a hyperplane missing any given point.

Recall that a rational map from a variety X to a variety Y is a morphism
defined on an open dense subset U ⊂ X. A nontrivial linear series L = (L , V, α)
always gives rise to a rational map from X to P(V ). Let U be the set of points
of X that are not basepoints of the series, and let ΦL : U → P(V ) be the
map associating a point p to the hyperplane in V of sections v ∈ V such that
α(v)(p) = 0. If L is basepoint-free, we get a morphism defined on all of X.

To justify these statements we introduce coordinates. Choose a basis x0, . . . , xr

of V and regard the xi as homogeneous coordinates on P(V ) ∼= Pr. Given q ∈
X, suppose that the global section α(xj) generates L locally near q. There
is a morphism from the open set Uj ⊂ X where α(xj) �= 0 to the open set
xj �= 0 in P(V ) corresponding to the ring homomorphism K[x0/xj , . . . , xr/xj ]→
OX(U) sending xi/xj �→ ϕ(xi)/ϕ(xj). These morphisms glue together to form
a morphism, from X minus the basepoint locus of L, to P(V ). See [Hartshorne
1977, Section II.7] or [Eisenbud and Harris 2000, Section 3.2.5] for more details.

For example, we could have defined a rational normal curve in Pr to be the
image of P1 by the complete linear series |OP1(r)| = (OP1(r),H0(OP1(r)), id)
together with an identification of Pr and P(V ) — that is, a choice of basis of V .

On the other hand, the series of plane conics with a basepoint at p = (0, 0, 1)
above corresponds to the rational map from P2 to P4 sending a point (a, b, c)
other than p to (a2, ab, ac, b2, bc). This map cannot be extended to a morphism
on all of P2.

If Λ ⊂ Ps is a linear space of codimension r + 1, the linear projection πΛ

from Ps to Pr with center Λ is the rational map from Ps to Pr corresponding to
the linear series of hyperplanes in Ps containing Λ. The next result shows that
complete series are those not obtained in a nontrivial way by linear projection.

Proposition 6.5. Let L = (L , V, α) be a basepoint-free linear series on a variety
X. The linear series L is nondegenerate (that is, the map α is injective) if and
only if φL(X) ⊂ P(V ) is nondegenerate. The map α is surjective if and only if
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φL does not factor as the composition of a morphism from X to a nondegenerate
variety in a projective space Ps and a linear projection πΛ, where Λ is a linear
space not meeting the image of X in Ps.

Proof. A linear form on P(V ) that vanishes on φL(X) is precisely an element of
kerα, which proves the first statement. For the second, note that if φL factors
through a morphism ψ : X → Ps and a linear projection πΛ to Pr, where Λ
does not meet ψ(X), then the pullback of OPr(1) to ψ(X) is OPs(1)|ψ(X), so
ψ∗(OPs(1)) = φ∗

L(OPr (1)) = L . If ψ(X) is nondegenerate, then H0(L ) is at
least (s+1)-dimensional, so α cannot be onto. Conversely, if α is not onto, we
can obtain a factorization as above where ψ is defined by the complete linear
series |L |. The plane Λ is defined by the vanishing of all the forms in α(V ), and
does not meet X because L is basepoint-free.

A variety embedded by a complete linear series is said to be linearly normal.
In Corollary A1.13 it is shown that if X ⊂ Pr is a variety, the homogeneous
coordinate ring SX has depth 2 if and only if SX → ⊕d∈Z

H0(OX(d)) is an
isormorphism. We can restate this condition by saying that, for every d, the
linear series (OX(d),H0(OPr(d)), αd) is complete, where

αd : H0(OPr (d))→ H0(OX(d))

is the restriction map. Using Theorem A2.28 we see that if X is normal and of
dimension ≥ 1 (so that SX is locally normal at any homogeneous ideal except the
irrelevant ideal, which has codimension ≥ 2), then this condition is equivalent
to saying that SX is a normal ring. Thus the condition that X ⊂ Pr is linearly
normal is the “degree-1 part” of the condition for the normality of SX .

Ampleness

The linear series that interest us the most are those that provide embeddings.
In general, a line bundle L is called very ample if |L | is basepoint-free and the
morphism corresponding to |L | is an embedding of X in the projective space
P(H0(L)). (The term ample is used for a line bundle for which some power is
very ample.) In case X is a smooth variety over an algebraically closed field there
is a simple criterion, which we recall here in the case of curves from [Hartshorne
1977, IV.3.1(b)].

Theorem 6.6. Let X be a smooth curve over an algebraically closed field . A
line bundle L on X is very ample if and only if

h0(L (−p−q)) = h0(L )−2

for every pair of points p, q ∈ X.

That is, L is very ample if and only if any two points of X (possibly equal to
one another) impose independent conditions on the complete series |L |.
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Combining this theorem with the Riemann–Roch formula, we easily prove that
any line bundle of high degree is very ample. In what follows we write L (D),
where D is a divisor, for the line bundle L ⊗OX(D).

Corollary 6.7. If X is a smooth curve of genus g, any line bundle of degree
≥ 2g+1 on X is very ample. If g = 0 or g = 1, the converse is also true.

Proof. For any points p, q ∈ X, deg L (−p− q) > 2g− 2 = deg ωX , so L and
L (−p−q) are both nonspecial. Applying the Riemann Roch formula to each of
these bundles we get

h0(L (−p−q)) = deg L −2−g+1 = h0(L )−2.

as reqired by Theorem 6.6.
Any very ample line bundle must have positive degree, so the converse is

immediate for g = 0. For g = 1, we note that, by Riemann–Roch, h0(L ) = deg L
as long as L has positive degree. Thus a linear series of degree 1 must map X to
a point, and a linear series of degree 2 can at best map X to P1. Since X �= P1,
such a map is not very ample.

The language of linear series is convenient for the following characterization:

Theorem 6.8. Any nondegenerate curve X ⊂ Pr of degree r is a rational normal
curve.

Proof. Suppose that the embedding is given by the linear series L = (L , V, α)
on the curve X, so that L is the restriction to X of OPr(1) and deg L = r. As
X is nondegenerate, Lemma 6.5 shows that h0(L ) ≥ r+1.

We first prove that the existence of a line bundle L on X with deg L ≥ 1 and
h0(L ) ≥ 1+deg L implies that X ∼= P1. To see this we do induction on deg L .

If deg L = 1 we have deg L (−p−q) = −1 for any points p, q ∈ X, whence

h0(L (−p−q)) = 0 ≤ h0(L )−2.

In fact, we must have equality, since vanishing at two points can impose at
most two independent linear conditions. Thus L is very ample and provides an
isomorphism from X to P1.

If, on the other hand, deg L > 1, we choose a smooth point p of X, and
consider the line bundle L (−p), which has degree deg L (−p) = deg L − 1.
Since the condition of vanishing at p is (at most) one linear condition on the
sections of L , we see that h0(L (−p)) ≥ h0(L )−1, so L (−p) satisfies the same
hypotheses as L .

Returning to the hypotheses of the theorem, we conclude that X ∼= P1. There
is only one line bundle on P1 of each degree, so L ∼= OP1(r). It follows that
h0(L ) = 1+r. Thus the embedding is given by the complete linear series

∣∣OP1(r)
∣∣

and X is a rational normal curve.

Corollary 6.9. (a) If X is a nondegenerate curve of degree r in Pr, then the
ideal of X is generated by the 2× 2 minors of a 1-generic, 2× r matrix of
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linear forms and the minimal free resolution of SX is the Eagon–Northcott
complex of this matrix . In particular , SX is Cohen–Macaulay .

(b) Conversely , if M is a 1-generic 2×r matrix of linear forms in r+1 variables,
then the 2×2 minors of M generate the ideal of a rational normal curve.

Proof. (a) By Theorem 6.8, a nondegenerate curve of degree r in Pr is, up to
change of coordinates, the standard rational normal curve. The desired matrix
and resolution can be obtained by applying the same change of coordinates to
the matrix Mr,1.
(b) By Theorem 6.4 the ideal P of minors is prime of codimension r−1, and thus
defines a nondegenerate irreducible curve C in Pr. Its resolution is the Eagon–
Northcott complex, as would be the case for the ideal defining the standard
rational normal curve X. Since the Hilbert polynomials of C and X can be
computed from their graded Betti numbers, these Hilbert polynomials are equal;
in particular C has the same degree, r, as X, and Theorem 6.8 completes the
proof.

In fact any 1-generic 2× r matrix of linear forms in r + 1 variables can be
reduced to Mr,1 by row, column, and coordinate changes; see Exercise 6.6.

Matrices from Pairs of Linear Series

We have seen that the matrices produced from the multiplication table of the
ring K[s, t] play a major role in the theory of the rational normal curve. Using
linear series we can extend this idea to more general varieties.

Suppose that X ⊂ Pr is a variety embedded by the complete linear series |L |
corresponding to some line bundle L . Set V = H0(L ), the space of linear forms
on Pr. Suppose that we can factorize L as L = L1⊗L2 for some line bundles
L1 and L2. Choose ordered bases y1 . . . ym ∈ H0(L1) and z1 . . . zn ∈ H0(L2),
and let

M(L1,L2)

be the matrix of linear forms on P(V ) whose (i, j) element is the section yi⊗zj ∈
V = H0(L ). (Of course this matrix is only interesting when it has at least two
rows and two columns, that is, h0L1 ≥ 2 and h0L2 ≥ 2.) Each generalized row
of M(L1,L2) has entries y⊗ z1, . . . , y⊗ zn for some section 0 �= y ∈ H0(L1),
and a generalized entry of this row will have the form y⊗ z for some section
0 �= z ∈ H0(L2).

Proposition 6.10. If X is a variety and L1,L2 are line bundles on X, then
the matrix M(L1,L2) is 1-generic, and its 2×2 minors vanish on X.

Proof. With notation as above, a generalized element of M may be written
x = y⊗z where y, z are sections of L1,L2 respectively. If p ∈ X we may identify
L1 and L2 with OX in a neighborhood of p and write x = yz. Since OX,p is
an integral domain, x vanishes at p if and only if at least one of y and z vanish
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at p. Since X is irreducible, X is not the union of the zero loci of a nonzero y
and a nonzero z, so no section y⊗z can vanish identically. This shows that M
is 1-generic. On the other hand, any 2×2 minor of M may be written as

(y⊗z)(y′⊗z′) − (y⊗z′)(y′⊗z) ∈ H0(L )

for sections y, y′ ∈ H0(L1) and z, z′ ∈ H0(L2). Locally near a point p of X we
may identify L1,L2 and L with OX,p and this expression becomes (yz)(y′z′)−
(yz′)(y′z) which is 0 because OX,p is commutative and associative.

It seems that if both the line bundles L1 and L2 are “sufficiently positive”
then the homogeneous ideal of X is generated by the 2×2 minors of M(L1,L2).
For example, we have seen that in the case where X is P1 it suffices that the
bundles each have degree at least 1. For an easy example generalizing the case
of rational normal curves see Exercise 6.10; for more results in this direction see
[Eisenbud et al. 1988]. For less positive bundles, the 2×2 minors of M(L1,L2)
may still define an interesting variety containing X, as in Section 6D.

Using the idea introduced in the proof of Theorem 6.4 we can describe the
geometry of the locus defined by the maximal minors of M(L1,L2) in more
detail. Interchanging L1 and L2 if necessary we may suppose that n = h0L2 >
h0L1 = m so M(L1,L2) has more columns than rows. If y =

∑
riyi ∈ H0(L1)

is a section, we write �y for the generalized row indexed by y. The maximal
minors of M(L1,L2) vanish at a point p ∈ Pr if and only if some row �y consists
of linear forms vanishing at p; that is,

V
(
Im(M(L1,L2)

)
=
⋃

y V (�y). (∗)
The important point is that we can identify the linear spaces V (�y) geometrically.

Proposition 6.11. Suppose X ⊂ Pr is embedded by a complete linear series, and
assume that the hyperplane bundle L = OX(1) decomposes as the tensor product
of two line bundles, L = L1⊗L2. For each y ∈ H0L1 we have V (�y) = Dy,
the linear span of Dy.

Recall that the linear span of a divisor D on X ⊂ Pr is the smallest linear
subspace of Pr containing D.

Proof. The linear span of Dy is the interesection of all the hyperplanes containing
Dy, so we must show that the linear forms appearing in the row �y span the space
of all linear forms vanishing on Dy. It is clear that every entry y⊗zi of this row
does in fact vanish where y vanishes.

Moreover, if x ∈ H0L is any section vanishing on Dy, and E is the divisor of
x, then OX(E−D)⊗OX(D) = L , and multiplying by OX(−D) = L −1

1 we see
that OX(E−D) = L2. Thus the divisor E−D is represented by a section z of
L2, and x = y⊗z up to a scalar, since both vanish on the same divisor.

Note that V (�y) and Dy do not change if we change y by a nonzero scalar
multiple. Thus when we write Dy we may think of y as an element of Pm−1. We
can summarize the results of this section, in their most important special case,
as follows.
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Corollary 6.12. Suppose that X ⊂ Pr is embedded by the complete linear series
|L | and that L1,L2 are line bundles on X such that L = L1⊗L2. Suppose
that h0L1 = m ≤ h0L2. If y ∈ H0L1, write Dy for the corresponding divisor . If
Dy denotes the linear span of Dy, the variety defined by the maximal minors of
M(L1,L2) is

Y = V
(
Im(M(L1,L2))

)
=
⋃

y∈Pm−1 Dy.

We may illustrate Corollary 6.12 with the example of the rational normal
curve. Let X = P1 and let L1 = OP1(1),L2 = OP1(r−1) so that

M(L1,L2) = Mr,1 =
(

x0 x1 . . . xr−1

x1 x2 . . . xr.

)
The generalized row corresponding to an element y = (y1, y2) ∈ P1 has the form

�y = (y0x0 +y1x1, y0x1 +y1x2, . . . , y0xr−1 +y1xr).

The linear space V (�y) is thus the set of solutions of the linear equations

y0x0 +y1x1 = 0,

y0x1 +y1x2 = 0,

. . . . .
y0xr−1 +y1xr = 0.

Since these r equations are linearly independent, V (�y) is a single point. Solving
the equations, we see that this point has coordinates xi = (−y0/y1)ix0. Taking
y0 = 1, x0 = sr, y1 = −s/t we obtain the usual parametrization xi = sr−iti of
the rational normal curve.

Linear Subcomplexes and Mapping Cones

We have seen that if X is embedded by the complete linear series |L | and if
L = L1⊗L2 is a factorization, then by Theorem 6.4 and Proposition 6.10 the
ideal I = IX of X contains the ideal of 2× 2 minors of the 1-generic matrix
M = M(L1,L2). This has an important consequence for the free resolution of
M .

Proposition 6.13. Suppose that X ⊂ Pr is a variety embedded by a complete
linear series |L |, and that L = L1⊗L2 for some line bundles L1,L2 on X.
Let M ′ be a 2×h0(L2) submatrix of M(L1,L2), and let J be the ideal generated
by the 2×2 minors of M ′. If F : · · · → F0 → IX is a minimal free resolution
and E : · · · → E0 → J denotes the Eagon–Northcott complex of M ′, then E is a
subcomplex of F in such a way that Fi = Ei⊕Gi for every i.

Proof. Choose any map α : E → F lifting the inclusion J ⊂ I = IX . We will
show by induction that αi : Ei → Fi is a split inclusion for every i ≥ 0. Write
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δ for the differentials—both of E and of F. Write P = (x0, . . . , xr) for the
homogeneous maximal ideal of S. It suffices to show that if e ∈ Ei but e /∈ PEi

(so that e is a minimal generator) then αi(e) /∈ PFi.
Suppose on the contrary that αie ∈ PFi. If i = 0, we see that δe must be in

PI∩J . But the Eagon–Northcott complex EN(M ′) is a minimal free resolution,
so δe is a nonzero quadratic form. As X is nondegenerate the ideal I = IX does
not contain any linear form, so we cannot have e ∈ PI.

Now suppose i > 0, and assume by induction that αi−1 maps Ei−1 isomor-
phically to a summand of Fi−1. Since F is a minimal free resolution the relation
αi ∈ PFi implies that

αi−1δe = δαie ∈ P 2Fi−1,

where δ is the differential of EN(M ′). However, the coefficients in the differential
of the Eagon–Northcott complex are all linear forms. As EN(M ′) is a minimal
free resolution we have δe �= 0, so δe /∈ P 2Ei−1, a contradiction since Ei−1 is
mapped by αi−1 isomorphically to a summand of Fi−1.

You can verify that the idea just used applies more generally when one has a
linear complex that is minimal in an appropriate sense and maps to the “least
degree part” of a free resolution. We will pursue linear complexes further in the
next chapter.

Proposition 6.13 is typically applied when L1 has just two sections —other-
wise, to choose the 2×n submatrix M ′ one effectively throws away some sections,
losing some information. It would be very interesting to have a systematic way
of exploiting the existence of further sections, or more generally of exploiting the
presence of many difference choices of factorization L = L1⊗L2 with a choice
of two sections of L1. In the next section we will see a case where we have in
fact many such factorizations, but our analysis ignores the fact. See, however,
[Kempf 1989] for an interesting case where the presence of multiple factorizations
is successfully exploited.

The situation produced by Proposition 6.13 allows us to split the analysis of
the resolution into two parts. Here is the general setup, which we will apply to
a certain family of curves in the next section.

Proposition 6.14. Let F : · · · → F0 be a free complex with differential δ, and let
E : · · · → E0 be a free subcomplex , with quotient complex G = F/E : · · · → G0.
If Ei is a direct summand of Fi for each i, then F is the mapping cone of the
map α : G[−1]→ E whose i-th component is the composite

Gi+1 ⊂ Gi+1⊕Ei+1 = Fi+1
δ� Fi = Gi⊕Ei

� Ei.

Proof. Immediate from the definitions.

To reverse the process and construct F as a mapping cone, we need a differ-
ent way of specifying the map from G[−1] to E. In our situation the following
observation is convenient. We leave to the reader the easy formalization for the
most general case.
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Proposition 6.15. Suppose that J ⊂ I are ideals of S. Let G : · · · → G0 be a
free resolution of I/J as an S-module. Let E : · · · → E1 → S be a free resolution
of S/J . If α : G→ E is a map of complexes lifting the inclusion I/J → S/J , then
the mapping cone, F, of α is a free resolution of S/I. If matrices representing
the maps αi : Gi → Ei have all nonzero entries of positive degree, and if both E
and G are minimal resolutions, then F is also a minimal resolution.

Proof. Denoting the mapping cylinder of α by F, we have an exact sequence
0 → E → F → G[−1] → 0. Since G and E have no homology except at the
right-hand end, we see from the long exact sequence in homology that HiF = 0
for i ≥ 2. The end of this sequence has the form

· · · � H1E � H1F � I/J � S/J � H0F � 0,

where the map I/J → S/J is the inclusion. It follows that H1F = 0 and F :
· · · → F1 → S = F0 is a resolution of S/I.

6D Elliptic Normal Curves

Let X be a smooth, irreducible curve of genus 1, let L be a very ample line
bundle on X, and let d be the degree of L . By Corollary 6.7, d ≥ 3, and by the
Riemann–Roch formula, h0(L ) = d. Thus the complete linear series |L | embeds
X as a curve of degree d in Pr = Pd−1. We will call such an embedded curve an
elliptic normal curve of degree d. (Strictly speaking, an elliptic curve is a smooth
projective curve of genus 1 with a chosen point, made into an algebraic group
in such a way that the chosen point is the origin. We will not need the chosen
point for what we are doing, and we will accordingly not distinguish between an
elliptic curve and a curve of genus 1.)

In this section we will use the ideas introduced above to study the minimal
free resolution F of SX , where X ⊂ Pr is an elliptic normal curve of degree d.
Specifically, we will show that F is built up as a mapping cone from an Eagon–
Northcott complex E and its dual, appropriately shifted and twisted. Further,
we shall see that SX is always Cohen–Macaulay, and of regularity 3.

The cases with d ≤ 4 are easy and somewhat degenerate, so we will deal with
them separately. If d = 3, then X is embedded as a cubic in P2, so the resolution
has Betti diagram

0 1

0 1 −
1 − −
2 − 1

In this case the Eagon–Northcott complex in question would be that of the 2×2
minors of a 2×1 matrix —and thus isn’t visible at all.

Next suppose d = 4. By the Riemann–Roch formula we have

h0(L 2) = 8−g+1 = 8,
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while, since r = 3, the space of quadratic forms on Pr has dimension dimS2 = 10.
It follows that the ideal IX of X contains at least 2 linearly independent quadratic
forms, Q1, Q2. If Q1 were reducible then the quadric it defines would be the
union of two planes. Since X is irreducible, X would have to lie entirely on one
of them. But by hypothesis X is embedded by the complete series |L |, so X is
nondegenerate in P3. Thus Q1 is irreducible, and S/(Q1) is a domain.

It follows that Q1, Q2 form a regular sequence. The complete intersection of
the two quadrics corresponding to Q1 and Q2 has degree 4 by Bézout’s Theorem,
and it contains the degree 4 curve X, so it is equal to X. Since any complete
intersection is unmixed (see Theorem A2.36), the ideal IX is equal to (Q1, Q2).
Since these forms are relatively prime, the free resolution of SX has the form

0 � S(−4)

(
Q2

−Q1

)
� S2(−2)

(Q1, Q2 )� S,

with Betti diagram

0 1 2

0 1 −
1 − 2 −
2 − − 1

In this case the Eagon–Northcott complex in question is that of the 2×2 minors
of a 2×2 matrix. It has the form

0 � S(−2)
Q1� S.

In both these cases, the reader can see from the Betti diagrams that SX is Cohen–
Macaulay of regularity 3 as promised. Henceforward, we will freely assume that
d ≥ 5 whenever it makes a difference.

To continue our analysis, it is helpful to identify the surface Y . Let D be a divi-
sor consisting of 2 points on X. We have h0(OX(D)) = 2 and h0(L (−D)) = d−2,
so from the theory of the previous section we see that M = M(OX(D),L (−D))
is a 2× (d− 2) matrix of linear forms on Pr that is 1-generic, and the ideal J
of 2× 2 minors of M is contained in the ideal of X. Moreover, we know from
Theorem 6.4 that J is a prime ideal of codimension equal to (d−2)−2+1 = r−2;
that is, J = IY is the homogeneous ideal of an irreducible surface Y contain-
ing X. The surface Y is the union of the lines spanned by the divisors linearly
equivalent to D in X. Since Y is a surface, X is a divisor on Y .

We can now apply Proposition 6.13 and Proposition 6.15 to construct the free
resolution of I from the Eagon–Northcott resolution of J and a resolution of
I/J . To this end we must identify I/J . We will show that it is a line bundle on
Y .

Although it is not hard to continue this analysis in general, the situation is
slightly simpler when D = 2p and L = OX(dp) for some point p ∈ X. This case
will suffice for the analysis of any elliptic normal curve because of the following:
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Theorem 6.16. If L is a line bundle of degree k on a smooth projective curve
of genus 1 over an algebraically closed field , then L = OX(kp) for some point
p ∈ X.

Proof. The result follows from the construction of a group law on X: Choose
a point q ∈ X to act as the identity. By the Riemann–Roch Theorem, any
line bundle of degree 1 on X has a unique section, so there is a one-to-one
correspondence between the group of divisor classes of degree 0 on X and X
itself, taking a divisor class D to the unique point where the global section of
OX(q+D) vanishes, and taking a point p ∈ X to the class of p−q. This makes
X into an algebraic group.

Multiplication by k is a nonconstant map of projective curves X → X, and is
thus surjective. It follows that there is a divisor p−q such that D−kq ∼ k(p−q),
and thus D ∼ kp as claimed.

Returning to our elliptic normal curve X embedded by |L |, we see from The-
orem 6.16 that we may write L = OX(dp) for some p ∈ X, and we choose
D = 2p. To make the matrix M(OX(2p),OX((d−2)p)) explicit, we choose bases
of the global sections of OX(dp) and OX(2p).

In general the global sections of OX(kp) may be thought of as rational func-
tions on X having no poles except at p, and a pole of order at most k at p.
Thus there is a sequence of inclusions K = H0OX ⊆ H0OX(p) ⊆ H0OX(2p) ⊆
· · · ⊆ H0OX(kp) ⊆ · · ·. Moreover, we have seen that h0OX(kP ) = k for k ≥ 1.
It follows that 1 ∈ H0(OX) = H0(OX(p) may be considered as a basis of either
of these spaces. But there is a new section σ ∈ H0(OX(2p)), with a pole at p of
order exactly 2, and in addition to 1 and σ a section τ ∈ H0(OX(3p)) with order
exactly 3. The function σ2 has a pole of order 4, and continuing in this way we
get:

Proposition 6.17. If p is a point of the smooth projective curve X of genus 1
and d ≥ 1 is an integer , the rational functions σa for 0 ≤ a ≤ d/2 and σaτ , for
0 ≤ a ≤ (d−3)/2, form a basis of H0(OX(d)).

Proof. The function σaτ b has pole of order 2a+3b at p, so the given functions are
all sections, and are linearly independent. Since the dimension of H0(OX(dp))
is d = 1+ �d/2�+ �(d− 1)/2� = (1+ �d/2�)+ (1+ �(d− 3)/2�), the number of
sections given, this suffices.

Corollary 6.18. Let X be an elliptic curve, and let p ∈ X be a point . If d ≥ 2
and e ≥ 3 are integers, the multiplication map

H0(OX(dp))⊗H0(OX(ep))→ H0(OX((d+e)p)

is surjective. In particular , if L is a line bundle on X of degree ≥ 3, and X ⊂ Pr

is embedded by the complete linear series |L |, then SX is Cohen–Macaulay and
normal .
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We will see Corollaries 8.2 and 8.4 that the regularity of SX (which is 2) can
be deduced easily from Corollary 6.18. In this chapter we will deduce it from an
explicit free resolution.

Proof. The sections of H0(OX(dp)) exhibited in Proposition 6.17 include sections
with every vanishing order at p from 0 to d except for 1, and similarly for
H0(OX(dp)). When we multiply sections we add their vanishing orders at p, so
the image of the multiplication map contains sections with every vanishing order
from 0 to d+e except 1, a total of d+e distinct orders. These elements must be
linearly independent, so they span the d+e-dimensional space H0(OX((d+e)p).

For the second statement we may first extend the ground field if necessary until
it is algebraically closed, and then use Theorem 6.16 to rewrite L as OX(dp) for
some d ≥ 3. From the first part of the Corollary we see that the multiplication
map

H0OX(d)⊗H0OX(md)→ H0OX((m+1)d)

is surjective for every m ≥ 0. From Corollary A1.13 we see that SX has depth 2.
Since SX is a two-dimensional ring, this implies in particular that it is Cohen–
Macaulay.

For example, consider an elliptic normal cubic X ⊂ P2. By Theorem 6.16 the
embedding is by a complete linear series |OX(3p)| for some point p ∈ X. Let
S = K[x0, x1, x2] → SX =

⊕
n H0(OX(3np) be the map sending x0 to 1, x1 to

σ and x2 to τ . By Corollary 6.18 this map is a surjection. To find its kernel, the
equation of the curve, consider H0(OX(6p)), the first space for which we can write
down an “extra” section τ 2. We see that there must be a linear relation among 1,
σ, σ2, σ3, τ , στ and τ2, and since σ3 and τ2 are the only two sections on this list
with a triple pole at p, each must appear with a nonzero coefficient. From this we
get an equation of the form τ 2 = f(σ)+τg(σ), where f is a polynomial of degree
3 and g a polynomial of degree ≤ 1. This is the affine equation of the embedding
of the open subset X\{p} of X in A2 with coordinates σ, τ corresponding to the
linear series |OX(3p)|. Homogenizing, we get an equation of the form

x0x
2
2 = F (x0, x1)+x0x2G(x0, x1),

where F and G are the homogenizations of f and g respectively. Since 3p is a
hyperplane section, the point p goes to a flex point of X, and the line at infinity is
the flex tangent. When the characteristic of K is not 2 or 3, further simplification
yields the Weierstrass normal form y2 = x3 + ax+ b for the equation in affine
coordinates.

In general, the table giving the multiplication between the sections of OX(2p),
and the sections of OX((d−2)p), with the choice of bases above, can be written
as

1 σ . . . σn−1 τ στ . . . σm−1τ

1 1 σ . . . σn−1 τ στ . . . σm−1τ
σ σ σ2 . . . σn στ σ2τ . . . σmτ,
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where n = �d/2� and m = �(d− 3)/2�, so that (m+1)+ (n+1) = r +1 = d.
Taking xi to be the linear form on Pr corresponding to σi and yj to be the linear
form corresponding to σjτ , the matrix M = M(OX(2p),OX((d−2)p) takes the
form

M =
(

x0 x1 · · · xn−1

x1 x2 · · · xn

∣∣∣ y0 y1 · · · ym−1

y1 y2 · · · ym

)
,

where the vertical line indicates the division of M into two parts, which we will
call M ′ and M ′′. The reader should recognize the matrices M ′ and M ′′ from
Section 6A: their ideals of 2×2 minors define rational normal curves X ′ and X ′′

of degrees n and m in the disjoint subspaces L′ defined by y0 = · · · = ym and
L′′ defined by x0 = · · · = xn respectively.

Let Y be the vanishing locus of the 2×2 minors of M , the union of the lin-
ear spaces defined by the vanishing of the generalized rows of M . Since M is
1-generic each generalized row consists of
linearly independent linear forms —that
is, its vanishing locus is a line. Moreover,
the intersection of the line with the sub-
space Lx is the the point on the rational
normal curve in that space given by the
vanishing of the corresponding generalized
row of M ′, and similarly for Ly. Thus M
defines an isomorphism α : X ′ → X ′′, and
in terms of this isomorphism the surface Y
is the union of the lines joining p ∈ X ′ to
α(p) ∈ X ′′. Such a surface is called a ra-
tional normal scroll; the name is justified
by the picture on the right:

• •
�

�

�

�
���

Dλ

X�����

X ′ X ′′

Y �����

��� ���

In the simplest interesting case, r = 3, we get m = 2 and n = 0 so

M =
(

x0 x1

x1 x2

)
.

In this case Y is the cone in P3 over the irreducible conic x0x2 = x2
1 in P2, and

the lines F are the lines through the vertex on this cone. When r ≥ 4, however,
we will show that Y is smooth.

Proposition 6.19. Suppose that d ≥ 5, or equivalently that r ≥ 4. The surface
Y defined by the 2×2 minors of the matrix M

(
OX(2p),OX((d−2)p)

)
is smooth.

Proof. As we have already seen, Y is the union of the lines defined by the gener-
alized rows of the matrix M

(
OX(2p),OX((d−2)p)

)
. To see that no two of these

lines can intersect, note that any two distinct generalized rows span the space
of all generalized rows, and thus any two generalized rows contain linear forms
that span the space of all linear forms on Pr. It follows that the set on which
the linear forms in both generalized rows vanish is the empty set.
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We can parametrize Y on the open set where x0 �= 0 as the image of A2 by
the map sending f : (t, u) �→ (1, t, . . . , tm, u, ut, . . . , utn). The differential of f
is nowhere vanishing, so f is an immersion. It is one-to-one because, from our
previous argument, the lines t = c1 and t = c2 are distinct for any distinct
constants c1, c2. A similar argument applies to the open set ym �= 0, and these
two sets cover Y .

One can classify the 1-generic matrices of size 2×m completely using the
classification of matrix pencils due to Kronecker and Weierstrass. The result
shows that the varieties defined by the 2× 2 minors of such a matrix are all
rational normal scrolls of some dimension; for example, if such a variety is of
dimension 1 then it is a rational normal curve. See [Eisenbud and Harris 1987]
for details and many more properties of these interesting and ubiquitous varieties.

To identify X as a divisor, we use a description of the Picard group and
intersection form of Y .

Proposition 6.20. Let Y be the surface defined in Proposition 6.19. The divisor
class group of Y is

PicY = ZH⊕ZF,

where H is the class of a hyperplane section and F is the class of a line defined
by the vanishing of one of the rows of the matrix M(OX(D),L (−D)) used to
define Y . The intersection numbers of these classes are F ·F = 0, F ·H = 1, and
H ·H = r−1.

Proof. The intersection numbers are easy to compute: We have F ·F = 0 because
two fibers of the map to P1 (defined by the vanishing of the generalized rows
of M) do not meet, and F ·H = 1 because F is a line, which meets a general
hyperplane transversely in a single point. Since Y is a surface the number H ·H
is just the degree of the surface.

Modulo the polynomial xm+1−y0, the matrix M becomes the matrix whose
2×2 minors define the rational normal curve of degree m+n+2 = r−1. Thus
the hyperplane section of Y is this rational normal curve, and the degree of Y
is also r−1. The fact that the intersection matrix(

0 1
1 r−1

)
that we have just computed has rank 2 shows that the divisor classes of F and
H are linearly independent. The proof that they generate the group is outlined
in Exercise 6.8.

We can now identify a divisor by computing its intersection numbers with the
classes H and F :

Proposition 6.21. In the basis introduced above, the divisor class of X on the
surface Y is 2H−(r−3)F .
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Proof. By Proposition 6.20 we can write the class of X as [X] = aH + bF for
some integers a, b. From the form of the intersection matrix we see that a = X.F
and b = X.H− (r−1)a. Since the lines F on the surface are the linear spans of
divisors on X that are linearly equivalent to D, and thus of degree 2, we have
a = 2. On the other hand X.H is the degree of X as a curve in Pr, that is, r+1.
Thus b = r+1−(r−1)2 = −(r−3).

By this proposition, the sheaf of ideals Ĩ/J = IX/Y defining X in Y is the
sheaf

Ĩ/J = OY ((r−3)F −2H) = OY ((r−3)F )(−2)

and thus the homogeneous ideal I/J of X in Y is, up to a shift of grading,⊕
n≥0

H0OY ((r−3)F )(n).

Here is a first step toward identifying this module and its free resolution.

Proposition 6.22. The cokernel K of the matrix

M = M(OX(2p), OX((r−1)p))

has associated sheaf on Pr equal to K̃ = OY (F ).

Proof. Let K̃ be the sheaf on Pr that is associated to the module K. We will
first show that K̃ is an invertible sheaf on Y . The entries of the matrix M span
all the linear forms on Pr so locally at any point p ∈ Pr one of them is invertible,
and we may apply the following result.

Lemma 6.23. If N is a 2×n matrix over a ring R and M has one invertible
entry , the cokernel of N is isomorphic to R modulo the 2×2 minors of N .

Proof. Using row and column operations we may put N into the form

N ′ =
(

1 0 . . . 0
0 r2 . . . rn

)
for some ri ∈ R. The result is obvious for this N ′, which has the same cokernel
and same ideal of minors as N .

Continuing the proof of Proposition 6.22, we note that the module K is
generated by degree 0 elements e1, e2 with relations xie1 + xi+1e2 = 0 and
yie1 + yi+1e2 = 0. The elements ei determine sections σi of K̃. Thus if p ∈ Y
is a point where some linear form in the second row of M is nonzero, then σ1

generates K̃ locally at p. As the second row vanishes precisely on the fiber F ,
this shows that the zero locus of σ1 is contained in F .

Conversely, suppose p ∈ F so that the second row of M vanishes at p. Since the
linear forms in M span the space of all linear forms on Pr, one of the linear forms
in the first row of M is nonzero at p. Locally at p this means m1σ1+m2σ2 = 0 in
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K̃p where m1 is a unit in OY,p, the local ring of Y at p, and m2 is in the maximal
ideal mY,p ⊂ OY,p. Dividing by m1 we see that σ1 ∈ mY,pK̃p. Since mY,p is the
set of functions vanishing at p, we see that σ1 vanishes at p when considered as a
section of a line bundle. Since this holds at all p ∈ F we obtain K̃ = OY (F ).

To apply Proposition 6.21, we wish to find a free resolution (as S-module)
of the ideal IX/Y ⊂ S/IY , that is, of the module of twisted global sections
of the sheaf OY ((r− 3)F )(−2). This sheaf is the sheafification of the module
K⊗(r−3)(−2), but one can show that for r ≥ 5 this module has depth 0, so it
differs from the module of twisted global sections. A better module— in this case
the right one— is given by the symmetric power.

Proposition 6.24. Let L be an S-module. If the sheaf L = L̃ on Pr is locally
generated by at most one element , then the sheafification L ⊗k of L⊗k is also the
sheafification of Symk L. In particular , this is the case when L is a line bundle
on some subvariety Y ⊂ Pr.

Proof. Since the formation of tensor powers and symmetric powers commutes
with localization, and with taking degree 0 parts, it suffices to do the case where
L is a module over a ring R such that L is generated by at most one element. In
this case, L ∼= R/I for some ideal I. If ri are elements of R/I then

r1⊗r2 = r1r2(1⊗1) = r2⊗r1 ∈ R/I⊗R/I.

Since Sym2 L is obtained from L⊗L by factoring out the submodule generated
by elements of the form r1⊗r2−r2⊗r1, we see that L⊗L = Sym2 L. The same
argument works for products with k factors.

We return to the module K = cokerM , and study Symr−3 K.

Proposition 6.25. With notation as above,
⊕

d H0(L ⊗(r−3)(d)) = Symr−3 K
as S-modules. The free resolution of these modules is, up to a shift of degree,
given by the dual of the Eagon–Northcott complex of M .

Proof. We use the exact sequence of Corollary A1.12,

0→ H0
m(Symr−3 K)→ Symr−3 K →

⊕
d

H0(L (d))→ H1
m(Symr−3 K)→ 0.

Thus we want to show that H0
m(Symr−3 K) = H1

m(Symr−3 K) = 0. By Proposi-
tion A1.16 it suffices to prove that the depth of K is at least 2. Equivalently, by
the Auslander–Buchsbaum Formula A2.15 it suffices to show that the projective
dimension of Symr−3 K is at most r−1.

From the presentation Sr−1(−1)
ϕ� S2 → K → 0, we can derive a presen-

tation

Sr−1⊗Symr−4 S2(−1)
ϕ⊗1� Symr−3 S2 � Symr−3 K → 0;
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see [Eisenbud 1995, Proposition A2.2d]. This map is, up to some identifications
and a twist, the dual of the last map in the Eagon–Northcott complex associated
to Mµ, namely

0→ (Symr−3 S2)∗⊗∧r−1
Sr−1(−r+1)→ (Symr−4 S2)∗⊗∧r−2

Sr−1(−r+2).

To see this we use the isomorphisms
∧i

Sr−1 � (
∧r−1−i

Sr−1)∗ (which depend
on an “orientation”, that is, a choice of basis element for

∧r−1
Sr−1). Since the

Eagon–Northcott complex is a free resolution of the Cohen–Macaulay S-module
S/I, its dual is again a free resolution, so we see that the module Symr−3 K is
also of projective dimension r−1.

By Proposition 6.15, there is an S-free resolution of the homogeneous coor-
dinate ring S/I of the elliptic normal curve X obtained as a mapping cone of
the Eagon–Northcott complex of the matrix M , which is a resolution of J , and
the resolution of the module I/J . The proof of Proposition 6.25 shows that the
dual of the Eagon–Northcott complex, appropriately shifted, is a resolution of
Symr−3 K, while I/J ∼= Symr−3 K(−2). Thus the free resolution of I/J is iso-
morphic to the dual of the Eagon–Northcott complex with a different shift in
degrees. Using an orientation as above, it may be written as

0→ (
∧2

S2)∗(−r−1) � (
∧2

Sr−1)∗(−r+1) � · · ·
· · · � Sr−1⊗Symr−4 S2(−3)

ϕ⊗1� Symr−3 S2(−2).

The resolution constructed this way is minimal:

Theorem 6.26. The minimal free resolution of an elliptic normal curve in Pr

has the form

0 � Symr−3(S
2)∗⊗∧r−1

Sr−1(−r+1) � · · ·

�
���

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

0
⊕ ⊕

��
��∧2(S2)∗(−r−1) � ∧2(Sr−1)∗(−r+1) � · · ·

· · · � (S2)∗⊗∧3
Sr−1(−3) � ∧2

Sr−1(−2)

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�� ��

��⊕ ⊕
S→ SX → 0.

�
���

· · · � (Sr−1)∗⊗Symr−4 S2(−3) � Symr−3 S2(−2)
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It has Betti diagram of the form

0 1 2 . . . r−2 r−1

0 1 0 0 · · · 0 0
1 0 b1 b2 . . . br−2 0
2 0 0 0 . . . 0 1

with

bi = i

(
r−1
i+1

)
+(r− i−1)

(
r−1
i−1

)
.

In particular , reg X = 3.

The terms of the resolution are symmetric about the middle. A closer analysis
shows that the i-th map in the resolution can be taken to be the dual of the
(r−1− i)-th map, and if r ∼= 0 (mod 4) then the middle map can be chosen to
be skew symmetric, while if r ∼= 2 (mod 4) then the middle map can be chosen
to be symmetric. See [Buchsbaum and Eisenbud 1977] for the beginning of this
theory.

Proof. We have already shown that the given complex is a resolution. Each map
in the complex goes from a free module generated in one degree to a free module
generated in a lower degree. Thus the differentials are represented by matrices
of elements of strictly positive degree, and the complex is minimal. Given this,
the value for the regularity follows by inspection.

The regularity statement says that for an elliptic normal curve X (degree
d = r +1 and codimension c = r−1) in Pr the regularity of the homogeneous
coordinate ring SX is precisely d− c = 2. By the Gruson–Lazarsfeld–Peskine
Theorem (5.1), this is the largest possible regularity. We shall see in the next
chapter that linearly normal curves of high degree compared to their genus always
have regularity 3, which is less than the Gruson–Lazarsfeld–Peskine bound when
the genus is greater than 1.

The methods used here apply, and give information about the resolution, for
a larger class of divisors on rational normal scrolls. The simplest application
is to give the resolution of the ideal of any set of points lying on a rational
normal curve in Pr. It also works for high degree embeddings of hyperelliptic
curves (in the sense of Chapter 8, trigonal curves of any genus in their canonical
embeddings, and many other interesting varieties. See [Eisenbud 1995, end of
appendix A2] for an algebraic treatment with further references.

Another way to generalize elliptic curves is by considering abelian varieties.
The syzygies of abelian varieties are much less well understood and offer fasci-
nating problems. For the state of the art as this book was written see [Rubei
2001] and the references there.
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6E Exercises

The catalecticant matrix. (The results of Exercises 1 and 2 were proved by a dif-
ferent method, requiring characteristic 0, in [Gruson and Peskine 1982], following
the observation by T. G. Room [1938] that these relations held set-theoretically.
The simple proof in full generality sketched here was discovered by Conca [1998].)

1. Prove that Ie(Mr,d) = Ie(Mr,e−1) for all d with e ≤ d+1 and e ≤ r−d+1 and
thus the ideal Ie(Mr,d) is prime of codimension r−2e+1, with free resolution
given by the Eagon–Northcott complex associated to Mr,e−1. In particular,
the ideal of the rational normal curve may be written as I2(Mr,e) for any
e ≤ r−d. You might follow these steps:
(a) Using the fact that the transpose of Mr,d is Mr,r−d, reduce the problem

to proving Ie(Mr,d) ⊂ Ie(Mr,d+1) for e−1 ≤ d < d+1 ≤ r−e+1.
(b) If a = (a1, . . . , as) with 0 ≤ a1, . . . , as and b = (b1, . . . , bs) with 0 ≤

b1, . . . , bs with ai+bj ≤ r for every i, j, then we write [a, b] for the deter-
minant of the submatrix involving rows a1, . . . , as and columns b1, . . . , bs

of the triangular array

x0 x1 . . . xr−1 xr

x1 x2 . . . xr
...

...
xr−1 xr

xr

.

Let e be the vector of length s equal to (1, . . . , 1). Prove that [a+e, b] =
[a, b+e] whenever this makes sense.

(c) Generalize the previous identity as follows: for I ⊂ {1, . . . , s} write #I
for the cardinality of I, and write e(I) for the characteristic vector of I,
which has a 1 in the i-th place if and only if i ∈ I. Show that for each k
between 1 and s we have∑

#I=k

[a+e(I), b] =
∑

#J=k

[a, b+e(J)].

(Hint: Expand each minor [a + e(I), b] on the left-hand side along the
collection of rows indexed by I, as

[a+e(I), b] =
∑

#J=k

±1
[
aI +e(I)I , bJ

] [
aIc +e(Ic)I , bJc

]
,

where |I| =∑i∈I i, the superscript c denotes complements and aI denotes
the subvector involving only the indices in I. Expand the right-hand side
similarly using along the set of columns from J , and check that the two
expressions are the same.)
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2. Let M be any matrix of linear forms in S. We can think of M as defining a
linear space of matrices parametrized by Kr+1 by associating to each point
p in Kr+1 the scalar matrix M(p) whose entries are obtained by evaluating
the entries of M at p. A property of a matrix that does not change when the
matrix is multiplied by a scalar then corresponds to a subset of Pr, namely
the set of points p such that M(p) has the given property, and these are often
algebraic sets. For example the locus of points p where M(p) has rank at most
k is the algebraic set defined by the (k+1)×(k+1) minors of M .

(a) From the fact that the sum of k rank 1 matrices has rank at most k, show
that the locus where M(p) has rank ≤ k contains the k-secant locus of
the locus where M(p) has rank at most 1. (The k-secant locus of a set
X ⊂ Pr is the closure of the union of all linear spans of k-point sets in
X.)

(b) If M = Mr,d is the catalecticant matrix, show that the rank k locus of M
is actually equal to the k-secant locus of the rational normal curve X ⊂ Pr

of degree r as follows: First show that two generic k-secant planes with
k < r/2 cannot meet (if they did they would span a 2k-secant (2k−2)-
plane, whereas any set of d points on X spans a d− 1-plane as long as
d ≤ r.) Use this to compute the dimension of the k-secant locus. Use
Exercise 6.1 above, together with Theorem 6.4, to show that the ideal of
(e+1)× (e+1) minors of Mr,d is the defining ideal of the e-secant locus
of X.

3. We can identify Pr with the set of polynomials of degree r in 2 variables, up
to scalar. Show (in characteristic 0) that the points of the rational normal
curve may be identified with the set of r-th powers of linear forms, and a
sufficiently general point of the k-secant locus may thus be identified with
the set of polynomials that can be written as a sum of just k pure r-th
powers. The general problem of writing a form as a sum of powers is called
Waring’s problem. See, for example, [Geramita 1996], and [Ranestad and
Schreyer 2000] for more information.

4. Use Theorem 6.4 to reprove Proposition 6.1 by comparing the codimensions
of the (necessarily prime) ideal generated by the minors and the prime ideal
defining the curve.

5. Let X = {p1, . . . , pr+3} ⊂ Pr be a set of r + 3 points in linearly general
position. Show that there is a unique rational normal curve in Pr containing
X, perhaps as follows:

(a) Existence. We will use Corollary 6.9. We look for a 1-generic matrix of
linear forms

M =
(

a0 . . . ar−1

b0 . . . br−1

)
whose minors all vanish on X. We choose a linear form ai that vanishes
on p1, . . . , p̂i, . . . , pn, pn+1, and also a linear form bi that vanishes on



6E Exercises 115

p1, . . . , p̂i, . . . , pn, pn+3. These forms are unique up to scalars, so we may
normalize them to make all the rational functions ai/bi take the value 1
at pn+2. Show that with these choices the matrix M is 1-generic and that
its minors vanish at all the points of X.

For example, let X be the set of r+3 points pi with homogeneous
coordinates given by the rows of the matrix⎛⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1
1 1 . . . 1
t0 t1 . . . tr

⎞⎟⎟⎟⎟⎟⎟⎠ .

Show that these points are in linearly general position if and only if the
ti ∈ K are all nonzero and are pairwise distinct, and that any set of r+3
points in linearly general position can we written this way in suitable
coordinates. Show that the 2×2 minors of the matrix

M =

⎛⎝ x0 . . . xr−1

tnx0− t0xn

tn− t0
. . .

tnxn−1− tn−1xn

tn− tn−1

⎞⎠
generate the ideal of a rational normal curve containing these points. See
[Griffiths and Harris 1978, p. 530] for a more classical argument, and
[Harris 1995] for further information.

(b) Uniqueness. Suppose that C1, C2 are distinct rational normal curves con-
taining X. Show by induction on r that the projections of these curves
from pr+3 into Pr−1 are equal. In general, suppose that C1, C2 are two
rational normal curves through pr+3 that project to the same curve in
Pr−1, so that C1, C2 both lie on the cone F over a rational normal curve
in Pr−1.

Let F ′ be the surface obtained by blowing up this cone at pr+3, let
E ⊂ F ′ be the exceptional divisor, a curve of self-intersection −r+1, and
let R′ ⊂ F ′ be the preimage of a ruling of the cone F . (See figure on next
page.) See for example [Hartshorne 1977, Section V.2] for information
about such surfaces, and [Eisenbud and Harris 2000, Section VI.2] for
information about blowups in general.

Show that F ′ is a minimal rational surface, ruled by lines linearly
equivalent to R′, and E.E = −r + 1. Let C ′

1, C
′
2 ⊂ F ′ be the strict

transforms of C1, C2. Compute the intersection numbers C ′
i.E and C ′

i.R,
and conclude that C ′

i ∼ E+rR so C ′
1.C

′
2 = r+1. Deduce that the number

of distinct points in C1∩C2 is at most r+2, so that C1∩C2 cannot contain
X, a contradiction.
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F F ′

E

R

FIGURE 6.1. (See Exercise 5b.) Two rational normal curves in P
r meet in at most r+2

points. The picture on the left shows two twisted cubics in P
3, lying on a quadric cone

F , while the picture on the right shows the strict transforms of these curves, lying on
the surface F ′ obtained by blowing up the cone at the vertex. The horizontal line E
represents the exceptional divisor, while the vertical line R is the strict transform of a
line on the cone, which is a ruling of the ruled surface F ′.

6. Let M be a 1-generic 2×r matrix of linear forms on Pr, and let X ∼= P1 be
the rational normal curve defined by the 2× 2 minors of M . Suppose that
M ′ is any other 1-generic 2× r matrix of linear forms on Pr whose minors
are contained in the ideal of X. Show that the sheaf associated to the S-
module coker M is isomorphic to the line bundle OX(p) for any point p ∈ X,
and that M is a minimal free presentation of this module. Deduce from the
uniqueness of minimal free resolutions that M and M ′ differ by invertible row
and column transformations and a change of variable.

7. (For those who know about Gröbner bases.) Let < be the reverse lexicographic
order on the monomials of S with x0 < · · · < xr. For 1 ≤ e ≤ d+1 ≤ r show
that the initial ideal, with respect to the order <, of the ideal Ie(Mr,d), is
the ideal (xe−1, . . . , xr−e)e. This gives another proof of the formula for the
codimension of Ie(Mr,d) above, and also for the vector space dimension of the
degree e component of Ie(Mr,d). Use this and Theorem 5.1 to give another
proof of the fact that I2(Mr,1) is the ideal of the rational normal curve.

8. With notation as in Proposition 6.22, show that the two sections OY (F )
corresponding to generators of cokerM define a morphism π of Y to P1. The
fibers are the linear spaces defined by rows of M , thus projective spaces,
and Y is a projective space bundle; in fact, Y = Proj(π∗(OY (1))) (we could
show this is OP1(m)⊕OP1(n).) From [Hartshorne 1977, V.2.3] it follows that
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Pic(Y ) = Z⊕π∗ Pic(P1) = Z⊕Z. Since the determinant of the intersection
form on the sublattice spanned by F and H is 1, these two elements must be
a basis.

9. (For those who know about schemes.) Generalize Theorem 6.6 as follows: Let
X be a smooth projective variety over an algebraically closed field and let
L = (L , V, α) be a linear series on X. Show that L is very ample if, for each
finite subscheme Y of length 2 in X, the space of sections in α(V ) vanishing
on Y has codimension 2 in α(V ).

10. Here is the easiest case of the (vague) principle that embeddings of varieties
by sufficiently positive bundles are often defined by ideals of 2× 2 minors:
Suppose that the homogeneous ideal I of X in Pr is generated by equations
of degrees ≤ d, and let Ye be the image of X in P(H0(OX(e))) under the
complete series |OX(e)|. Choose e ≥ d, and let e1 ≥ 1 and e2 ≥ 1 be integers
with e1 +e2 = e. Show that the ideal of Ye is generated by the 2×2 minors
of M(OX(e1),OX(e2). (Hint: Start with the case X = Pr.)

11. Theorem 6.8 shows that any nondegenerate, reduced irreducible curve of de-
gree r in Pr is equivalent by a linear automorphism to the rational normal
curve (we usually say: is a rational normal curve.) One can be almost as
explicit about curves of degree r + 1. Use the Riemann–Roch theorem and
Clifford’s theorem [Hartshorne 1977, Theorem IV.5.4] to prove:

Proposition 6.27. If X is a nondegenerate reduced irreducible curve of de-
gree r+1 in Pr over an algebraically closed field , then X is either
• a smooth elliptic normal curve,
• a rational curve with one double point (also of arithmetic genus 1), or
• a smooth rational curve.

Moreover , up to linear transformations of Pr each singular curve (type 2) is
equivalent to the image of one of the two maps

P1 � (s, t) �→ (sr+1, sr−1t, sr−2t2, . . . , tr+1) ∈ Pr, or

P1 � (s, t) �→ (sr+1 + tr+1, st ·sr−2t, st ·sr−3t2, . . . , st · tr−1) ∈ Pr.

Unlike for the singular case there are moduli for the embeddings of a
smooth rational curve of degree r +1 (third case in the proposition above),
and several different Betti diagrams can appear. However, in all of these
cases, the curve lies on a rational normal scroll and its free resolution can
be analyzed in the manner of the elliptic normal curves (see [Eisenbud and
Harris 1987] for further information.)
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Linear Complexes and the Linear Syzygy
Theorem

Minimal free resolutions are built out of linear complexes, and in this chapter we
study a canonical linear subcomplex (the linear strand) of a free resolution. We
start with an elementary version of the Bernstein–Gelfand–Gelfand correspon-
dence (BGG) and use it to prove Green’s Linear Syzygy Theorem. In brief, BGG
allows us to translate statements about linear complexes over a polynomial ring
S into statements about modules over an exterior algebra E. The Linear Syzygy
Theorem bounds the length of the linear part of the minimal free resolution of
a graded S-module M . Its translation is that a certain E-module is annihilated
by a particular power of the maximal ideal. This is proved with a variant of Fit-
ting’s Lemma, which gives a general way of producing elements that annihilate
a module.

The proof presented here is a simplification of that in Green’s original paper
[Green 1999]. Our presentation is influenced by the ideas of [Eisenbud et al.
2003a] and [Eisenbud and Weyman 2003]. In Chapter 8 we will apply the Linear
Syzygy Theorem to the ideals of curves in Pr.

The last section of the chapter surveys some other aspects of BGG, including
the connection between Tate resolutions and the cohomology of sheaves.

Throughout this chapter, we denote the polynomial ring in r+1 variables by
S = K[x0, . . . , xr]. We write W = S1 for the space of linear forms, and V or
Ŵ for its dual HomK(W, K). (In this chapter we will use ̂ to denote the vector
space dual HomK(−, K), reserving ∗ for the dual of a module over a larger ring.)

We let E =
∧

V be the exterior algebra of V .
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7A Linear Syzygies

The Linear Strand of a Complex

One natural way to study the minimal resolution of a graded S-module is as an
iterated extension of a sequence of linear complexes. In general, suppose that

G : · · · � Gi
di� Gi−1

� · · ·
is a complex of graded free S-modules, whose i-th term Gi is generated in degrees
≥ i, and suppose, moreover that G is minimal in the sense that di(Gi) ⊂WGi−1

(for example G might be a minimal free resolution, or a free sub- or quotient-
complex of a minimal free resolution of a module generated in degrees ≥ 0.) Let
Fi ⊂ Gi be the submodule generated by all elements of degree precisely i. Since i
is the minimal degree of generators of Gi, the submodule Fi is free. Since di(Fi)
is generated in degree i and is contained in WGi−1, it must in fact be contained
in WFi−1. In particular the Fi form a free subcomplex F ⊂ G, called the linear
strand of G. The Betti diagram of F is simply the 0-th row of the Betti diagram
of G. The linear strand sometimes isolates interesting information about G.

For an arbitrary free complex G, we define the linear strand to the be the
linear strand of the complex G(i) where i = sup {reg Gj− j}, the least twist so
that G(i) satisfies the condition that the j-th free module is generated in degrees
≥ j. (The case where G is infinite and the supremum is infinity will not concern
us.)

Since F is a subcomplex of G we can factor it out and start again with the
quotient complex G/F. The linear strand of G/F(1), shifted by −1, is called the
second linear strand of G. Continuing in this way we produce a series of linear
strands, and we see that G is built up from them as an iterated extension. The
Betti diagram of the i-th linear strand is the i-th row of the Betti diagram of G.

For example Theorem 3.16 shows that there is a set X of 9 points in P2 whose
ideal I = IX has minimal free resolution G with Betti diagram

0 1

3 2 1
4 1 −
5 − 1

From this Betti diagram we see that the ideal of X is generated by two cubics
and a quartic and that its syzygy matrix has the form

d =

⎛⎝ q 0
f1 �1
f2 �2

⎞⎠ ,

where q has degree 2, the �i are linear forms and the fi have degree 3.
Let p be the intersection of the lines L1 and L2 defined by �1 and �2. We claim

that p is a point and that the nine points consist of p together with the 8 points
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G

Q

L2

L1

p

Nine points whose ideal is generated by two cubics and a quartic,

the equations of the curves Q∪L1, Q∪L2, and G.

of intersection of the conic Q and the quartic G defined by q and by

g = det
(

f1 �1
f2 �2

)
respectively (counted with appropriate multiplicities).

Indeed, the Hilbert–Burch Theorem 3.2 shows that I is minimally generated
by the 2×2 minors �1q, �2q, and g of the matrix d, so �1 and �2 must be linearly
independent. At the point p both �1 and �2 vanish, so all the forms in the ideal
of X vanish, whence p ∈ X. Away from p, the equations �1q = 0, �2q = 0 imply
q = 0, so the other points of X are in Q∩G as required.

On the other hand, the Betti diagram of the linear strand of the resolution G
of I is

0 1
3 2 1

and the matrix representing its differential is

d|F =
(

�1
�2

)
.

Thus the linear strand of the resolution captures a subtle fact: a set of 9 distinct
points in P2 with resolution as above contains a distinguished point. In this case
the second and third linear strands of G have trivial differential; the remaining
information about the maps of G is in the extension data.



122 7. Linear Complexes and the Linear Syzygy Theorem

Green’s Linear Syzygy Theorem

The length of the minimal free resolution of a module M , that is, its projective
dimension, is a fundamental invariant. One may hope that the length of the
linear strand of a resolution will also prove interesting, and in many examples it
does.

The following result of Mark Green gives a useful bound in terms of a simple
property of the rank-1 linear relations of M , that is, the elements of the algebraic
set R(M) ⊂W ⊗M0 defined by

R(M) := {w⊗m ∈W ⊗M0 | wm = 0 in M1}.
One can also define linear syzygies of higher rank, and there are many interesting
open questions about them; see [Eisenbud and Koh 1991], where the set R(M)
just defined is called R1(M).

Theorem 7.1 (Green’s Linear Syzygy Theorem). Let S = K[x0, . . . , xr]
and let M be a graded S-module with Mi = 0 for i < 0 and M0 �= 0. The length
n of the linear strand of the minimal free resolution of M satisfies

n ≤ max
(
dimM0−1, dimR(M)

)
.

See Exercise 7.3 for a way to see the maximum as the dimension of a single
natural object.

We postpone the proof, which will occupy most of this chapter, to study some
special cases. First, we give examples illustrating that either term in the max of
the theorem can be achieved.

Example 7.2. Consider first the Koszul complex

K(x1, . . . , xn) : 0→ S(−n)→ · · · → S(−1)n → S → 0,

which is the resolution of S/(x1, . . . , xn). It is linear, and has length n. We have
dimM0 = dim K = 1, but the variety R is all of W ⊗M0 = W ⊗K, which has
dimension precisely n.

Example 7.3. For the other possibility, let r = n+2 and consider the 2×(n+2)
matrix

N =
(

x0 · · · xr−1

x1 · · · xr

)
whose minors define the rational normal curve in Pr, or more generally any
2×(n+2) 1-generic matrix of linear forms

N =
(

�1,1 · · · �1,n+2

�2,1 · · · �2,n+2

)
.

It follows from Theorem 6.4 that the ideal I = I2(N) has codimension n + 1,
the largest possible value. In this case we know from Theorem A2.60 that the
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minimal free resolution of S/I is the Eagon–Northcott complex of N ,

EN(N) : 0 � ̂Symn S2⊗∧n+2
Sn+2(−n−2) � · · ·

� ̂Sym0 S2⊗∧2
Sn+2(−2)

∧2N� ∧2
S2 � 0,

with Betti diagram

0 1 · · · n+1

0 1 − · · · −
1 −

(
n+2

2

)
· · · n+1

The dual of EN(N) is a free resolution of a module ω; see Theorem A2.60.
(This module is, up to a shift of degrees, the canonical module of S/I, though
we shall not need this here; see [Bruns and Herzog 1998, Chapter 3].) Let G be
the dual of EN(N), so that G has Betti diagram

0 · · · n n+1

−n−2 n+1 · · ·
(
n+2

2

)
−

−n−1 − · · · − 1

We see that the linear part of G has length n. The module ω requires n + 1
generators, so equality holds with the first term of the max in Theorem 7.1. In
this case we claim that R(ω) = 0 (see also Exercise 7.4).

To see this, note first that ω = Extn+1
S (S/I, S) is annihilated by I. If a nonzero

element m ∈ ω were annihilated by a nonzero linear form x then it would be
annihilated by I+(x). By Theorem 6.4 I is a prime ideal of codimension n+1, so
I+(x) has codimension greater than n+1. It follows that some associated prime
(= maximal annihilator of an element) of ω would have codimension greater than
n+1, and thus ω would have projective dimension greater than n+1 by Theorem
A2.16. Since we have exhibited a resolution length n+1, this is a contradiction.

The phenomenon we saw in the second example is the one we will apply in
the next chapter. Here is a way of codifying it.

Corollary 7.4. Let X ⊂ Pr be a reduced , irreducible variety that is not contained
in a hyperplane, let E be a vector bundle on X, and let M ⊂⊕i≥0 H0E (i) be a
submodule of the S-module of nonnegatively twisted global sections. If M0 �= 0,
the linear strand of the minimal free resolution of M , as an S-module, has length
at most dimM−1.

Proof. Let R(M) ⊂ M0⊗W be the variety defined in 7.1. If w ∈ W and m ∈
M0 = H0E with wm = 0 then X would be the union of the subvariety of X
defined by the vanishing of w and the subvariety of X defined by the vanishing
of m. Since X is irreducible and not contained in any hyperplane, this can only
happen if w = 0 or m = 0. Thus R(M) = 0, and Theorem 7.1 gives the result.

The history is this: Corollary 7.4 was proved in [Green 1984a]. In trying to
understand and extend it algebraically, Eisenbud, Koh and Stillman were lead
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to conjecture the truth of the Theorem 7.1, as well as some stronger results in
this direction [Eisenbud and Koh 1991]. Green [1999] proved the given form; as
of this writing the stronger statements are still open.

7B The Bernstein–Gelfand–Gelfand Correspondence

Graded Modules and Linear Free Complexes

Recall that V = Ŵ denotes the vector space dual to W , and E =
∧

V denotes
the exterior algebra. If e0, . . . , er is a dual basis to x0, . . . , xr then e2

i = 0, eiej =
−ejei, and the algebra E has a vector space basis consisting of the square-free
monomials in the ei. Since we think of elements of W as having degree 1, we will
think of elements of V as having degree −1.

Although E is not commutative, it is skew-commutative (or strictly commu-
tative): that is, homogeneous elements e, f ∈ E satisfy ef = (−1)deg e deg ffe,
and E behaves like a commutative local ring in many respects. For example, any
one-sided ideal is automatically a two-sided ideal. The algebra E has a unique
maximal ideal, generated by the basis e0, . . . , er of V ; we will denote this ideal
by (V ). The analogue of Nakayama’s Lemma is almost trivially satisfied (and
even works for modules that are not finitely generated, since (V ) is nilpotent).
It follows for example that any graded E-module P has unique (up to isomor-
phism) minimal free graded resolution F, and that TorE(P, K) = F⊗E K as
graded vector spaces. The same proofs work as in the commutative case.

Also, just as in the commutative case, any graded left E-module P can be
naturally regarded as a graded right E-module, but we must be careful with the
signs: if p ∈ P and e ∈ E are homogeneous elements then pe = (−1)deg p deg eep.
We will work throughout with left E-modules.

An example where this change-of-sides is important comes from duality. If
P =

⊕
Pi is a finitely generated left-E-module, then the vector space dual

P̂ :=
⊕

P̂i, where P̂i := HomK(Pi, K), is naturally a right E-module, where the
product φ ·e is the functional defined by (φ ·e)(p) = φ(ep) for φ ∈ P̂i, e ∈ E−j ,

and p ∈ Pi+j . As a graded left module, with (P̂ )−i = P̂i in degree −i, we have

(eφ)(p) = (−1)deg e deg φ(φe)(p) = (−1)deg e deg φφ(ep).

Let P be any graded E-module. We will make S⊗K P into a complex of graded
free S-modules,

L(P ) : · · · � S⊗K Pi
di� S⊗K Pi−1

� · · ·
1⊗p �

∑
xi⊗eip
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where the term S⊗Pi
∼= S(−i)dim Pi is in homological degree i, and is generated

in degree i as well. The identity

di−1dip =
∑

j

∑
i

xjxi⊗ejeip =
∑
i≤j

xjxi⊗(ejei +eiej)p = 0

follows from the associative and commutative laws for the E-module structure
of P . Thus L(P ) is a linear free complex.

If we choose bases {ps} and {p′t} for Pi and Pi−1 respectively we can represent
the differential di as a matrix, and it will be a matrix of linear forms: writing
emps =

∑
t cm,s,tp

′
t the matrix of di has (t, s)-entry equal to the linear form∑

m cm,s,txm.
It is easy to see that L is actually a functor from the category of graded E-

modules to the category of linear free complexes of S-modules. Even more is
true.

Proposition 7.5. The functor L is an equivalence from the category of graded
E-modules to the category of linear free complexes of S-modules.

Proof. We show how to define the inverse, leaving to the reader the routine
verification that it is the inverse. For each e ∈ V = Hom(W, K), and any vector
space P there is a unique linear map e : W ⊗P → P satisfying e(x⊗p) = e(x)p.
If now

· · · � S⊗K Pi
di� S⊗K Pi−1

� · · ·
is a linear free complex of S-modules, then d(Pi) ⊂ W ⊗Pi−1 so we can define
a multiplication V ⊗K Pi → Pi−1 by e⊗p �→ e(d(p)). Direct computation shows
that the associative and anti-commutative laws for this multiplication follow
from the identity di−1di = 0. (See Exercise 7.9 for a basis-free approach to this
computation.)

Example 7.6. Take P = E, the free module of rank 1. The complex L(E) has
the form

L(E) : 0→ S⊗K → S⊗V → · · · → S⊗∧r
V → S⊗∧r+1

V → 0,

since
∧r+2

V = 0. The differential takes s⊗ f to
∑

xis⊗ eif . This is one way
to write the Koszul complex of x0, . . . , xr, though we must shift the degrees to
regard

∧r+1
V ∼= S as being in homological degree 0 and as being generated in

degree 0 if we wish to have a graded resolution of K (see [Eisenbud 1995, Section
17.4]). Usually the Koszul complex is written as the dual of this complex:

K(x0, . . . , xr) = HomS(L(E), S) :

0→ ∧r+1
W ⊗K → S⊗∧r

W → · · · → S⊗∧1
W → S⊗K → 0,

where we have exploited the identifications
∧k

W = HomK(
∧k

V, K) coming
from the identification W = HomK(V, K). It is useful to note that

HomS(L(E), S) = L(HomK(E, K)) = L(Ê)
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(and more generally L(P̂ ) = HomS(L(P ), S) for any graded E-module P , as the
reader is asked to verify in Exercise 7.7. From Theorem 7.5 and the fact that
the Koszul complex is isomorphic to its own dual, it now follows that Ê ∼= E as
E-modules. For a more direct proof, see Exercise 7.6.

There are other ways of treating linear complexes and the linear strand besides
BGG. One approach is given by [Eisenbud et al. 1981]. Another is the Koszul
homology approach of Green —see, for example, [Green 1989]. The method we
follow here is implicit in the original paper of Bernstein, Gelfand, and Gelfand
[Bernstein et al. 1978] and was made explicit by Eisenbud, Fløystad, and Schreyer
[Eisenbud et al. 2003a].

What It Means to Be the Linear Strand of a Resolution

We see from Proposition 7.5 that there must be a dictionary between properties
of linear free complexes over S and properties of graded E-modules. When is
L(P ) a minimal free resolution? When is it a subcomplex of a minimal resolu-
tion? When is it the whole linear strand of a resolution? It turns out that these
properties are most conveniently characterized in terms of the dual E-module
P̂ introduced above. For simplicity we normalize and assume that L(P ) has no
terms of negative homological degree, or equivalently that Pi = 0 for i < 0. For
the proof of Green’s Theorem 7.1 we will use part 3 of the following dictionary.

Theorem 7.7 (Dictionary Theorem). Let P be a finitely generated , graded
E-module with no component of negative degree, and let

F = L(P ) : · · · d2� S⊗K P1
d1� S⊗K P0

� 0

be the corresponding finite linear free complex of S-modules.

1. F is a free resolution (of coker d1) if and only if P̂ is generated in degree 0
and has a linear free resolution.

2. F is a subcomplex of the minimal free resolution of coker d1 if and only if P̂
is generated in degree 0.

3. F is the linear strand of the free resolution of coker d1 if and only if P̂ is lin-
early presented (that is, P̂ is generated in degree 0 and has relations generated
in degree −1.)

In Example 7.6 above we saw that L(E) and L(Ê) are both linear free res-
olutions. By part 1 of Theorem 7.7, this statement is equivalent to saying that
both E and Ê have linear free resolutions as E-modules. Since E is itself free,
and Ê ∼= E, this is indeed satisfied.

We will deduce Theorem 7.7 from a more technical result expressing the graded
components of the homology of L(P ) in terms of homological invariants of P̂ .

Theorem 7.8. Let P be a finitely generated graded module over the exterior
algebra E. For any integers i ≥ 0 and k the vector space Hk(L(P ))i+k is dual to
TorE

i (P̂ , K)−i−k.
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We postpone the proof of Theorem 7.8 until the end of this section.

Proof of Theorem 7.7 from Theorem 7.8. Let P be a finitely generated graded
E-module such that Pi = 0 for i < 0 as in Theorem 7.7, and set M = coker d1 =
H0(L(P )).

The module P̂ is generated in degree 0 and has a linear free resolution if and
only if TorE

i (P̂ , K)−i−k = 0 for k �= 0. By Theorem 7.8 this occurs if and only
if L(P ) has vanishing homology except at the 0-th step; that is, L(P ) is a free
resolution of M . This proves part 1.

For part 2, note that P̂ is generated as an E-module in degree 0 if and only if

TorE
0 (P̂ , K)−k = 0

for k �= 0. By Theorem 7.8 this means that Hk(L(P ))k = 0 for k �= 0. Since
L(P )k+1 is generated in degree −k−1, this vanishing is equivalent to the state-
ment that, for every k, the map of Pk to the kernel of W⊗Pk−1 → S2(W )⊗Pk−2

is a monomorphism.
Suppose that

L(P )≤k−1 : S⊗Pk−1 → S⊗Pk−2 → · · ·
is a subcomplex of the minimal free resolution G of M (this is certainly true
for k = 1). In order for L(P )≤k to be a subcomplex of G, it is necessary and
sufficient that 1⊗Pk ⊂ S⊗Pk maps monomorphically to the linear relations in
kerS⊗Pk−1 → S⊗Pk−2, and this is the same condition as above. This proves 2.

For part 3, notice that P̂ is linearly presented if, in addition to being generated
in degree 0, it satisfies TorE

1 (P̂ , K)−1−k = 0 for k �= 0. By Theorem 7.8 this
additional condition is equivalent to the statement that Hk(L(P ))1+k = 0 for
all k, or in other words that the image of Pk generates the linear relations in
kerS⊗Pk−1 → S⊗Pk−2, making L(P ) the linear part of the minimal resolution
of M .

To prove Theorem 7.8 we will compute TorE(P̂ , K) using the Cartan complex,
which we will show to be the minimal free resolution of K as an E-module. Define
Ŝ to be the S-module

Ŝ :=
⊕

HomK(Si, K) =
⊕

i Ŝi.

We regard Ŝi as a graded vector space concentrated in degree −i. The Cartan
resolution is an infinite complex of the form

C : · · · d2� E⊗K Ŝ1
d1� E⊗K Ŝ0,

where the free E-module E⊗K Ŝi, which is generated in degree −i, has homo-
logical degree i.

To define the differential di : E ⊗ Ŝi → E ⊗ Ŝi−1 we regard Ŝ as a graded
S-module, taking multiplication by s ∈ S to be the dual of the multiplication on
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S, and we choose dual bases {ej} and {wj} of V and W . If p ∈ E and f ∈ Ŝi,
we set

di(p⊗f) =
∑

j

pej⊗wjf ∈ E⊗ Ŝi−1. (∗)

It is easy to check directly that di−1di = 0, so that C is a complex of free
E-modules, and that di is independent of the choice of dual bases; as with the
differential of the Koszul complex, this occurs because the differential is really
right multiplication by the element

∑
j ej ⊗wj ∈ E⊗S, and this well-defined

element squares to zero.

Proposition 7.9. If P is a finitely generated graded E-module then, for any
integers i, k the vector space Hi(P ⊗E C)−i−k is dual to Hk(L(P̂ ))i+k.

Proof. The i-th term of P ⊗E C is

P ⊗E E⊗K Ŝi = P ⊗K Ŝi,

and the differential P ⊗E di is expressed by the formula (∗) above (but now we
take pi ∈ P ). We will continue to denote it di. Taking graded components we
see that Hi(P ⊗E C)−i−k is the homology of the sequence of vector spaces

P−k+1⊗ Ŝi+1
di+1� P−k⊗ Ŝi

di� P−k−1⊗ Ŝi−1.

Its dual is the homology of the dual sequence

P̂k−1⊗Si+1
�d̂i+1

P̂k⊗Si
�d̂i

P̂k+1⊗Si−1

which is the component of degree i + k of the complex L(P̂ ) at homological
degree k.

Corollary 7.10. The Cartan complex C is the minimal E-free resolution of the
residue field K = E/(V ).

Proof. By the Proposition, it suffices to show that H0(L(Ê)) = K in degree 0,
while Hk(L(Ê)) = 0 for k > 0; that is, L(Ê) is a free resolution of K as an S-
module. But we have already seen that L(Ê) is the Koszul complex, the minimal
free resolution of K, as required.

Proof of Theorem 7.8. By Corollary 7.10, TorE
i (P̂ , K)−i−k = Hi(P̂ ⊗E C)−i−k.

By Proposition 7.9, Hi(P̂ ⊗E C)−i−k is dual to Hk(L(P ))i+k.

Identifying the Linear Strand

Given a graded S-module M we can use part 3 of the Dictionary Theorem to
identify the E-module Q such that L (Q̂) is the linear strand of the minimal free
resolution of M . If we shift grading so that M “begins” in degree 0, the result
is the following:
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Corollary 7.11. Let M =
∑

i≥0 Mi be a graded S-module with M0 �= 0. The
linear strand of the minimal free resolution of M as an S-module is L(Q̂), where
Q is the E-module with free presentation

E⊗M̂1
α� E⊗M̂0

� Q � 0

where the map α is defined on the generators 1⊗M̂1 = M̂1 by the condition that

α|M̂1 : M̂1 → V ⊗M̂0

is the dual of the multiplication map µ : W ⊗M0 →M1.

Proof. By Proposition 7.5 we may write the linear part of the resolution of M
as L(P ) for some E-module P , so

L(P ) : · · · � S⊗P1
� S⊗P0

� M.

It follows that P0 = M0, and P1 = kerµ : W ⊗M0 → M1, that is, P1 = R.
Dualizing, we get a right-exact sequence M̂1 → V ⊗ M̂0 → R̂ → 0; that is,
the image of M̂1 generates the linear relations on Q = P̂ = · · · ⊕ R̂⊕ M̂ . By
part 3 of Theorem 7.7, Q is linearly presented, so α is the presentation map as
claimed.

Using Corollary 7.11 we can explain the relationship between the linear strand
of the free resolution of a module M over the polynomial ring S = Sym W
and the linear strand of the resolution of M when viewed, by “restriction of
scalars”, as a module M ′ over a smaller polynomial ring S ′ = SymW ′ for a
subspace W ′ ⊂ W . Write V ′ = W ′⊥ ⊂ V = Ŵ for the annihilator of W ′, and
let E′ = E/(V ′) =

∧
(V/V ′), so that E′ =

∧
Ŵ ′.

Corollary 7.12. With notation as above, the linear part of the S ′-free resolution
of M ′ is L(P ′), where P ′ is the E′-module {p ∈ P | V ′p = 0}.
Proof. The dual of the multiplication map µ′ : W ′⊗M0 →M1 is the induced map
M̂1 → (V/V ′)⊗M̂0, and the associated map of free modules E ′⊗M̂1 → E′⊗M̂0

is obtained by tensoring the one for M with E ′. Its cokernel is Q′ = Q/V ′Q.
By Corollary 7.11 the linear part of the S ′-free resolution of M ′ is L(P ′), where
P ′ = Q̂′ is the set of elements of Q̂ annihilating V ′Q. This is the same as the set
of elements of Q̂ annihilated by V ′.

One concrete application is to give a bound on the length of the linear part
that will be useful in the proof of Green’s Theorem.

Corollary 7.13. With notation as in Corollary 7.12, suppose that the codimen-
sion of W ′ in W is c. If the length of the linear strand of the minimal free
resolution of M as an S′ module is n, then the length of the linear strand of the
minimal free resolution of M is at most n+c.
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Proof. By an obvious induction, it suffices to do the case c = 1. Write the linear
strand of the minimal S-free resolution of M as L(P ) for some E-module P .
Suppose that W ′ is spanned by e ∈ V , so that P ′ = {p ∈ P | ep = 0} ⊃ eP .
Because the degree of e is −1, there is a left exact sequence

0 � P ′ � P
e� P (−1).

The image of the right-hand map is inside P ′(−1). Thus if P ′
i = 0 for i > n then

Pi = 0 for i > n+1 as required.

7C Exterior Minors and Annihilators

From Theorem 7.7 we see that the problem of bounding the length of the linear
part of a free resolution over S is the same as the problem of bounding the num-
ber of nonzero components of a finitely generated E-module P that is linearly
presented. Since P is generated in a single degree, the number of nonzero com-
ponents is ≤ n if and only if (V )nP = 0. Because of this, the proof of Theorem
7.1 depends on being able to estimate the annihilator of an E-module.

Over a commutative ring such as S we could do this with Fitting’s Lemma,
which says that if a module M has free presentation

φ : Sm φ� Sd � M � 0

then the d× d minors of φ annihilate M (see Section A2G on page 220.) The
good properties of minors depend very much on the commutativity of S, so this
technique cannot simply be transplanted to the case of an E-module. But Green
discovered a remarkable analogue, the exterior minors, that works in the case of
a matrix of linear forms over an exterior algebra. (The case of a matrix of forms
of arbitrary degrees is treated in [Eisenbud and Weyman 2003].) We will first
give an elementary description, then a more technical one that will allow us to
connect the theory with that of ordinary minors.

It is instructive to look first at the case m = 1. Consider an E-module P with
linear presentation

E(1)

⎛⎝ e1
...
ed

⎞⎠
� Ed � P � 0.

where the ei ∈ V are arbitrary. We claim that (e1∧· · ·∧ed)P = 0. Indeed, if the
basis of Ed maps to generators p1, . . . , pd ∈ P , so that

∑
i eipi = 0, then

(e1∧· · ·∧ed)pi = ±(e1∧· · ·∧ei−1∧ei+1∧· · ·∧ed)∧eipi

= ∓(e1∧· · ·∧ei−1∧ei+1∧· · ·∧ed)
∑
j �=i

ejpi = 0,

since e2
j = 0 for all j.
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When the presentation matrix φ has many columns, it follows that the product
of the elements in any one of the columns of φ is in the annihilator of P , and
the same goes for the elements of any generalized column of φ— that is, of any
column that is a scalar linear combination of the columns of φ. These products
are particular examples of exterior minors. We shall see in Corollary 7.16 that
all the exterior minors are linear combinations of exterior minors of this type, at
least over an infinite field

In general, suppose that φ is a p×q matrix with entries ei,j ∈ V ⊂ E. Given a
collection of columns numbered c1, . . . , ck, with multiplicities n1, . . . , nk adding
up to d, and any collection of d rows r1, . . . rd, we will define an d×d exterior
minor

φ
[
r1, . . . , rd | c(n1)

1 , . . . , c
(nk)
k

] ∈ ∧d
V

to be the sum of all products of the form er1,j1∧· · ·∧erd,jd
where precisely ni of

the numbers js are equal to ci.
For example, if the multiplicities ni are all equal to 1, the exterior minor is the

permanent of the d×d submatrix of φ with the given rows and columns. On the
other hand, if we take a single column with multiplicity d, then φ

[
r1, . . . , rd | c(d)

1

]
is the product of d entries of column number c1, as above.

With general multiplicities, but in characteristic zero,

φ
[
r1, . . . , rd | c(n1)

1 · · · c(nk)
k

]
is the permanent of the d×d matrix whose columns include ni copies of ci, divided
by the product n1! · · ·nk!. (The permanent of a d×d matrix with entries xij is
the sum, over all permutations σ on d indices, of the products

∏d
i=1 xi,σi

— the
same products that appear in the determinant, but not multiplied by alternating
signs.) If we think of the rows and columns as being vectors in V , the exterior
minor is alternating in the rows and symmetric in the columns. We have chosen
the notation i(ni) to suggest a divided power; see for example [Eisenbud 1995,
Appendix 2].

Description by Multilinear Algebra

We next give an invariant treatment, which also relates the exterior minors of φ
to the ordinary minors of a closely related map φ′.

We first write the transpose φ∗ : Ep(1) → Eq of φ without using bases as a
map φ∗ : E⊗K A→ E⊗K B where A and B are vector spaces of dimensions p and
q generated in degrees −1 and 0, respectively. Thus the rows of φ (columns of
φ∗) correspond to elements of A while the columns of φ (rows of φ∗) correspond
to elements of B̂.

The map φ∗ (and with it φ) is determined by its restriction to the generating
set A = 1⊗A ⊂ E⊗A, and the image of A is contained in V ⊗B. Let

ψ : A→ V ⊗B,
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be the restriction of φ∗. We can recover φ from ψ; explicitly,

φ′ :
∧

V ⊗ B̂ � ∧
V ⊗ Â

1⊗ b̂ �
∑

i

vi⊗(v̂i⊗ b̂)◦ψ,

where {vi} and {v̂i} are dual bases of V and V̂ .
Taking the d-th exterior power of ψ, we get a map∧d

ψ :
∧d

A→ ∧d(V ⊗B).

Because any element x ∈ V ⊗B ⊂ (
∧

V )⊗Sym B satisfies x2 = 0, the identity
map on V ⊗B extends uniquely to an algebra map

∧
(V ⊗B)→ (

∧
V )⊗SymB.

The degree-d component m of this map is given by∧d(V ⊗B)
m� ∧d

V ⊗Symd B

(v1⊗b1)∧· · ·∧(v1⊗bd) � (v1∧· · ·∧vd)⊗(b1 · · · · ·bd).

We will see that m◦∧d
ψ may be regarded as the matrix of exterior minors of φ,

so to speak.
On the other hand, we could equally consider ψ as specifying a map of free

modules in which “variables” are elements of B, and columns correspond to
elements of V̂ , with rows corresponding to elements of A as before. This could
in fact be done over any algebra containing the vector space B. We take the
algebra to be the new polynomial ring SymB and define

φ′ : SymB⊗ V̂ � SymB⊗ Â

1⊗ v̂ �
∑

i

bi⊗(v̂⊗ b̂i)◦ψ,

where {bi} and {b̂i} are dual bases of B and B̂.
If a1, . . . , ad ∈ A and v̂1, . . . , v̂d ∈ V̂ , we write

φ′(a1, . . . , ad | v̂1 . . . v̂d) ∈ Symd B

for the d×d minor of φ′ involving the rows corresponding to a1, . . . , ad and the
columns corresponding to v1, . . . , vd.

We will similarly extend our previous notation φ
[
r1, . . . , rd | c(n1)

1 , . . . , c
(nk)
k

]
to

allow the ri to be elements of A and to allow the ci to be elements of B̂ instead
of row and column numbers.

We can now show that the map m◦∧d
ψ expresses both the exterior minors

of φ and the ordinary minors of φ′.

Proposition 7.14. With notation as above, let {v0, . . . , vr} and {v̂0, . . . , v̂r} be
dual bases for V and V̂ , and let {b1, . . . , bq} and {b̂1, . . . , b̂q} be dual bases for B
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and B̂. The map m◦∧d
ψ is given by the formulas

m◦∧d
ψ(a1∧· · ·∧ad) =

∑
0≤i1<···<id≤r

vi1 ∧· · ·∧vid
⊗ φ′( a1, . . . , ad | v̂i1 , . . . , v̂id

)

=
∑

1≤i1≤...≤ik≤q∑
nj=d, 0<nj

φ
[
a1, . . . , ad | b̂(n1)

i1
· · · b̂(nk)

ik

] ⊗ bn1
i1
· · · bnk

ik

Proof. Let ψ(at) =
∑

i,j ci,j,tvi⊗ bj with coefficients ci,j,t ∈ K. Let G be the
symmetric group on {1, . . . , d}.

For the first equality, set �i,t =
∑

j ci,j,tbj ∈ B = Sym1 B, so that (φ′)∗ has
(i, t)-entry equal to �i,t and ψ(at) =

∑
i vi⊗�i,t. We have

m◦∧d
ψ(a1∧· · ·∧ad) = m

(∑
i

(vi⊗�i,1) ∧ · · · ∧
∑

i

(vi⊗�i,d)
)

= m

( ∑
0≤i1,...,id≤r

(vi1⊗�i1,1)∧· · ·∧(vid
⊗�id,d)

)
=

∑
0≤i1,...,id≤r

vi1 ∧· · ·∧vid
⊗�i1,1 · · · �id,d.

Gathering the terms corresponding to each (unordered) set of indices {i1, . . . , id},
we see that this sum is equal to the first required expression:∑
0≤i1<···<id≤r σ∈G

vi1 ∧· · ·∧vid
⊗(signσ)�iσ(1),1 · · · �iσ(d),d

=
∑

0≤i1<···<id≤r

vi1 ∧· · ·∧vid
⊗φ′(a1, . . . , ad | v̂i1 , . . . , v̂id

).

The proof that m ◦∧d
ψ(a1 ∧ · · · ∧ ad) is given by the second expression is

completely parallel once we write mj,t =
∑

i ci,j,tvi ∈ V =
∧1(V ), so that (φ)∗

has (j, t)-entry equal to mj,t and ψ(at) =
∑

j mj,t⊗bj .

How to Handle Exterior Minors

Here are some results that illustrate the usefulness of Proposition 7.14.

Corollary 7.15. With the notation above, the span of the d×d exterior minors
of φ is the image of a map

md :
∧d

A⊗ ̂Symd B →
d∧

V

that depends only on φ as a map of free modules, and not on the matrix chosen.
In particular , if v1, . . . , vd are the elements of any generalized column of φ, then
v1∧· · ·∧vd is in this span.
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Proof. The map md is defined by saying that it sends a⊗g ∈ ∧d
A⊗ ̂Symd B to

(1⊗g)
(
m◦∧d

ψ(a)
)
.

Since we can replace one of the columns of φ by a generalized column without
changing the map of free modules, the second statement follows from our original
description of the exterior minors.

Corollary 7.15 suggests a different approach to the the exterior minors. In
particular, if we take V = A⊗ B̂ and if φ is the generic matrix of linear forms
over the ring E, then the span of the d× d exterior minors of φ is invariant
under the product of linear groups GL(A)×GL(B), and is the (unique) invariant
submodule of

∧
(A⊗B) isomorphic to

∧d
A⊗ ̂Symd B. For further information

see [Eisenbud and Weyman 2003].

Corollary 7.16. If K is an infinite field and φ is a d×m matrix of linear forms
over E, then the vector space generated by all the d×d exterior minors of φ is
in fact generated by all elements of the form e1∧· · ·∧ed, where e1, . . . , ed are the
elements of a generalized column of φ.

Proof. A (generalized) column of φ corresponds to an element b̂ : B → K. Such
an element induces a map SymB → Sym K = K[x], and thus for every d it
induces a map Symd B → K · xd = K that we will call b̂(d). This notation is
compatible with our previous notation because

φ
[
a1, . . . , ad|b̂(d)

]
= e1∧· · ·∧ed = m

(
a1∧· · ·∧ad⊗ b̂(d)

)
.

By Corollary 7.15 the span of the exterior minors of φ is the image of

md :
∧d

A⊗ ̂Symd B → ∧d
V.

Thus to show that the special exterior minors that are products of the elements
in a generalized column span all the exterior minors, it suffices to show that
the elements b̂(d) span ̂Symd B. Equivalently, it suffices to show that there is no
element in the intersection of the kernels of the projections b̂(d) : Symd B → K.
But this kernel is the degree d part of the ideal generated by the kernel of b̂. If we
think of this ideal as the ideal of the point in projective space P(B) corresponding
to b̂, the desired result follows because the only polynomial that vanishes on all
the points of a projective space over an infinite field is the zero polynomial.

The next two corollaries are the keys to the proof of the Linear Syzygy Theo-
rem to be given in the next section.

Corollary 7.17. (Exterior Fitting Lemma) If φ is a d×m matrix of linear
forms over the exterior algebra E then the cokernel of φ is annihilated by the
exterior minors of φ.
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Proof. We may harmlessly extend the field K, and thus we may suppose that K
is infinite. By Corollary 7.16 it suffices to prove the result for the special exterior
minors that are products of the elements in generalized columns. The proof in
this case is given at the beginning of Section 7C.

Corollary 7.18. Let φ : E⊗ B̂ → E⊗ Â and φ′ : SymB⊗ V̂ → SymB⊗ Â be
maps of free modules coming from a single map of vector spaces ψ : A→ V ⊗B
as above. If dimK A = d, then the dimension of the span of the d× d exterior
minors of φ is the same as the dimension of the span of the (ordinary) d× d
minors of φ′.

Proof. Let a1, . . . , ad be a basis of A. The element

f = m◦∧d
ψ(a1∧· · ·∧ad) ∈

∧d
V ⊗Symd B

may be regarded as a map
∧̂d

V → Symd B or as a map ̂Symd B → ∧d
V . These

maps are dual to one another, and thus have the same rank. By Proposition 7.14
the image of the first is the span of the ordinary minors of φ′, while the image
of the second is the span of the exterior minors of φ.

7D Proof of the Linear Syzygy Theorem

We now turn to the proof of the Linear Syzygy Theorem 7.1 itself. Let M =
M0⊕M1⊕· · · be an S-module with M0 �= 0, and let m0 = dimM0. We must
show that the length of the linear strand of the minimal free resolution of M is
at most max(m0−1,dimR), where R = {w⊗a ∈ W ⊗M0 | wa = 0}. We may
harmlessly extend the ground field if necessary and assume that K is algebraically
closed.

Suppose first that dimR ≤ m0−1. In this case we must show that the length
of the linear strand is ≤ m0−1. From Theorem 7.5 and Corollary 7.11 we know
that the linear strand has the form L(P ), where P = Q̂ and

Q = coker
(
E⊗M̂1

α� E⊗M̂0

)
.

Here α is the dual of the multiplication map µ : W ⊗M0 → M1. Since Q is
generated in degree 0, it will suffice to show that Q is annihilated by (V )m0 , and
by Corollary 7.17 it suffices in turn to show that the m0×m0 exterior minors of
α span all of Em0 , a space of dimension

(
r+1
m0

)
.

By Corollary 7.18, the dimension of the span of the exterior minors of α is the
same as the dimension of the span of the ordinary m0×m0 minors of the map
of SymM1-modules

φ′ : SymM1⊗W → SymM1⊗M̂0

corresponding to the map W → M1 ⊗ M̂0 adjoint to the multiplication map
W ⊗M0 →M1.
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Perhaps the reader is by now lost in the snow of dualizations, so it may help to
remark that φ′ is represented by an m0×(r+1) matrix whose rows are indexed
by a basis of M0 and whose columns indexed by a basis of W . The entry of this
matrix corresponding to m ∈M0 and w ∈W is simply the element wm ∈M1. It
suffices to prove that the m0×m0 minors of φ′ span a linear space of dimension(
r+1
m0

)
—that is, these minors are linearly independent.

Using the Eagon–Northcott complex as in Corollary A2.61 it is enough to
show that the m0×m0 minors of φ′ vanish only in codimension r+1−m0+1 =
r+2−m0. The vanishing locus of these minors is the union of the loci where the
generalized rows of φ′ vanish, so we consider these rows. Let Be ⊂M0 be the set of
elements m such that the corresponding generalized row vanishes in codimension
e. This means that m is annihilated by an r+1−e dimensional space Wm ⊂W .
The tensors w⊗m with w ∈ Wm and m ∈ Be form a dimBe +(r+1−e)−1 =
dimBe + r − e-dimensional family in R. By hypothesis, dimR ≤ m0 − 1, so
dimBe ≤ m0−1−(r−e) = m0−r+e−1.

Two elements of Be that differ by a scalar correspond to rows with the same
vanishing locus. Thus the union of the vanishing loci of the generalized rows
corresponding to elements of Be has codimension at least e− (dim Be − 1) ≥
r +2−m0. Since this is true for each e, the union of the Be, which is the set
defined by the m0×m0 minors of φ′, has codimension at least r + 2−m0, as
required. This completes the proof in the case dimR ≤ m0−1.

Finally, suppose that dimR ≥ m0. By induction and the proof above, we may
assume that the Theorem has been proved for all modules with the same value
of m0 but smaller dimR.

The affine variety R is a union of lines through the origin in the vector space
W⊗M0. Let R be the corresponding projective variety in P(Ŵ ⊗M0). The set of
pure tensors w⊗a corresponds to the Segre embedding of P(Ŵ )×P(M̂0), so R
is contained in this product. Each hyperplane W ′ ⊂W corresponds to a divisor

P(Ŵ ′)×P(M̂0) ⊂ P(Ŵ )×P(M̂0),

and the intersection of all such divisors is empty. Thus we can find a hyperplane
W ′ such that dimR∩(P(Ŵ ′)×P(M0)

) ≤ dimR−1.
Let M ′ be the S′ = SymW ′-module obtained from M by restriction of scalars.

By Corollary 7.13, the length of the linear strand of the minimal free resolution
of M ′ is shorter than that of M by at most 1. By induction Theorem 7.1 is true
for M ′, whence it is also true for M .

7E More about the Exterior Algebra and BGG

In this section we will go a little further into the the module theory over the exte-
rior algebra E =

∧
V and then explain some more about the Bernstein–Gelfand–

Gelfand correspondence. Our approach to the latter is based on [Eisenbud et al.
2003a].
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The Gorenstein Property and Tate Resolutions

We have already introduced the duality functor P �→ P̂ = HomK(P, K) for
finitely generated E-modules. Since K is a field the duality functor P �→ P̂
is exact, so it takes projective modules to injective modules. Just as in the
commutative local case, Nakayama’s Lemma implies that every projective E-
module is free (even the nonfinitely generated modules are easy here because
the maximal ideal (V ) of E is nilpotent). It follows that every finitely generated
injective E-module is a direct sum of copies of the module Ê. We gave an ad hoc
proof, based on the self-duality of the Koszul complex, that Ê ∼= E as E-modules,
but the isomorphism is noncanonical and does not preserve the grading. Here is
a more precise statement, with an independent proof; note that by Theorem 7.5
it implies the self-duality of the Koszul complex.

Proposition 7.19 (Gorenstein property). The rank 1 free E-module E has
a unique minimal nonzero ideal , and is injective as an E-module. Thus it is an
injective envelope of the simple E-module and is isomorphic to Ê as an E-module
(with a shift in grading .) Moreover , Ê ∼= E⊗K

∧r+1
W canonically .

Proof. In fact the minimal nonzero ideal is the one-dimensional vector space∧r+1
V = Er, generated by the product of the elements of any basis of V . To

see this, we show that any nonzero element of E generates an ideal containing∧r+1
V . If e is a nonzero element of E we can write e = a ·ei1ei2 · · · eit

+e′ with
respect to a basis ei of V , where 0 �= a ∈ K, i1 < · · · < it, and e′ consists of other
monomials of degree t as well (perhaps) as monomials of degree exceeding t. Let
J be the complement of i1, . . . , it in 0, . . . , r. It follows that every monomial of
e′ is divisible by one of the elements ej with j ∈ J , so

e ·
∏
j∈J

ej = ±a ·e0 · · · er

is a generator of
∧r+1

V , as required.
From this we see that Ê is generated by the one-dimensional vector space∧̂r+1

V =
∧r+1

W , so there is a canonical surjection E⊗∧r+1
W → Ê. Since

E and Ê have the same dimension, this surjection is an isomorphism. It follows
that E is injective, so E is the injective envelope of its submodule (

∧r+1
V ).

As a consequence we can give another view of the duality functor P �→ P̂ for
finitely generated E-modules:

Corollary 7.20. There is a natural isomorphism P̂ ∼= HomE(P,E)⊗∧r+1
W .

In particular , HomE(−, E) is an exact functor .

Proof. Since E ⊗− is left adjoint to the forgetful functor from E-modules to
K-modules we have

HomK(P, K) = HomE(E⊗K P, K) = HomE(P,HomK(E, K)) = HomE(P, Ê),
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and by the Gorenstein property (Proposition 7.19) HomE(P, Ê) = HomE(P,E)⊗∧r+1
W .

The last statement follows from this (or directly from the fact that E is injec-
tive as an E-module.)

Over any ring we can combine a projective resolution F and an injective res-
olution I of a module P into a Tate resolution:

· · · � F1
� F0

� I0
� I1

� · · ·
�	 
�

P


� �	
0 0

Over a ring like E the Ij are also free. In fact, we may take F to be a minimal
free resolution and I to be the dual of a minimal free resolution of P̂ , and we get
a unique minimal Tate resolution, a doubly infinite exact free complex as above
where the image of the 0-th differential is isomorphic to P .

For example, if we take P = E/(V ) = K to be the residue field of E, then
we already know that the minimal free resolution of P is the Cartan resolution.
Since P is self-dual, the minimal injective resolution is the dual of the Cartan
resolution, and the Tate resolution has the form

� E⊗ ̂Sym2 W � E⊗Ŵ � E � Ê � Ê⊗W � Ê⊗Sym2 W �

�	 
�
K


� �	
0 0

The sum of the terms on the right is Ê ⊗S; we shall see in the next section
that this is not an accident. Tate resolutions over E appear rather naturally in
algebraic geometry.

It is not hard to show that Gröbner basis methods apply to the exterior algebra
just as to the commutative polynomial ring (in fact, there are some advantages to
computation that come from the finite dimensionality of E.) Thus it is possible
to compute Tate resolutions—or at least bounded portions of them — explicitly
in a program such as Macaulay 2 [Grayson and Stillman 1993–].

Where BGG Leads

The Bernstein–Gelfand–Gelfand correspondence was stated in [Bernstein et al.
1978] as an equivalence between the derived categories of bounded complexes
of finitely generated graded S-modules and graded E-modules, or between the
bounded derived categories of coherent sheaves on Pr and the graded E-modules
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modulo free modules. A different way of describing this equivalence was discov-
ered at the same time in [Bĕılinson 1978]. Both these papers were inspired by a
lecture of Manin. BGG was the first appearance of the “derived equivalences”
between various module and sheaf categories that now play an important role in
representation theory (for example [Ringel 1984]), algebraic geometry (for exam-
ple [Bridgeland 2002]) and mathematical physics (for example [Polishchuk and
Zaslow 1998]). Here we will explain a little more about the BGG equivalence,
and describe one of its recent applications.

The functor L from graded E-modules to linear free complexes of S-modules
has a version R that goes “the other way” from graded S-modules to linear free
E complexes: it takes a graded S-module M = ⊕Mi to the complex

R(M) : · · · � Ê⊗K Mi
� Ê⊗K Mi−1

� · · ·
f⊗m �

∑
i

fei⊗xim,

where {xi} and {ei} are dual bases of W and V . We think of Mi as being a vector
space concentrated in degree i, and the term Ê⊗Mi as being in cohomological
degree i (≡ homological degree −i). For any vector space N we have Ê⊗K N =
HomK(E,N), so thinking of R(M) as a differential graded E-module, we could
simply write R(M) = HomK(E,M), just as we can write L(P ) = S⊗K P .

This suggests that the two functors might somehow be adjoint. However, they
do not even go between the same pair of categories! To repair this, we extend the
functor L from the category of modules to the category of complexes: If · · · →
A→ B → · · · is a complex of graded S-modules, then · · · → L(A)→ L(B)→ · · ·
is naturally a double complex, and we can take its total complex to get a complex
of S-modules. Thus L goes from the category of complexes of E-modules to the
category of complexes of S-modules. Similarly, R may be extended to a functor
going the other way. These two functors are adjoint. Moreover, they pass to the
derived categories and are inverse equivalences there. See for example [Gelfand
and Manin 2003].

We will not pursue this line of development further. Instead we want to point
out a source of interesting Tate resolutions connected with the functor R. An
argument similar to the proof of Theorem 7.8 (see also Exercise 7.10) yields:

Proposition 7.21. If M is a graded S-module, the homology of the complex
R(M) is

Hj(R(M))i+j = Tori(K,M)i+j .

This shows in particular that R(M) is exact far out to the right. The key
invariant is, once again, the Castelnuovo–Mumford regularity of M :

Corollary 7.22. reg M ≤ d if and only if Hi(M) = 0 for all i > d.

Proof. The condition reg M = d means that Tori(K,M)i+j = 0 for j > d.
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Now suppose that M is a finitely generated graded S-module of regularity n.
By Corollary 7.22 the free complex

· · · � 0 � Ê⊗Mn
dn

� Ê⊗Mn+1
dn+1

� · · ·

is exact except at Ê⊗Mn.
We will truncate this complex at Ê⊗Mn+1 and then adjoin a minimal free

resolution of ker dn+1. The result is a Tate resolution

T(M) : · · ·T n−1 � Tn � Ê⊗Mn+1
dn+1

� · · · .

The truncation at Mn+1 is necessary in order to ensure minimality (as we will
see in the proof of the Proposition 7.23.)

The resolution T(M) obviously depends only on the truncation M≥n+1, but
even more is true:

Proposition 7.23. Let F be a coherent sheaf on Pr, and let M be a finitely
generated graded S-module whose sheafification is F . The Tate resolution T(M)
depends, up to noncanonical isomorphism, only on the sheaf F .

Proof. The sheaf F determines M up to finite truncation, so it suffices to show
that if m ≥ n = reg M then the Tate resolution

T(M≥m) : · · ·T ′m−1 � T ′m � Ê⊗Mm+1
dm+1

� · · · .

is isomorphic to T(M). By the definition of T(M≥m) and the uniqueness of
minimal resolutions, it suffices to show that

Ê⊗Mn+1
� · · · dm−1

� Ê⊗Mm (∗)

is the beginning of a minimal free resolution of coker dm−1 = ker dm+1. By
Corollary 7.22 it is at least a resolution, and this would be so even if we extended
it one more step to Ê⊗Mn. But the differentials in the complex

Ê⊗Mn
dn� · · · dm−1

� Ê⊗Mm

are all minimal (their matrices have entries of degree 1), so for all i > n the
module Ê⊗Mi is the minimal free cover of ker di+1.

Henceforward, when F is a coherent sheaf on Pr, we will write T(F ) for the
Tate resolution T(M) associated with any finitely generated S-module having
sheafification F , and call it the Tate resolution of F .

For example, let X be the standard twisted cubic curve in P3 with struc-
ture sheaf OX and homogeneous coordinate ring SX . To simplify notation write
a, b, c, d for the homogeneous coordinates of P3, instead of x0, . . . x3. We have
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reg SX ≤ 1 by Gruson–Lazarsfeld–Peskine (Theorem 5.1), and in fact the reso-
lution is the Eagon–Northcott complex of(

a b c
b c d

)
with Betti diagram

0 1 2

0 1 − −
1 − 3 2

so reg SX = 1. The values of the Hilbert function HSX
(n) are 1, 4, 7, . . ., and

R(SX) is the complex

Ê

⎛⎜⎝
a
b
c
d

⎞⎟⎠
� Ê4(−1)

d2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0
b a 0 0
c b a 0
d c b a
0 d c b
0 0 d c
0 0 0 d

⎞⎟⎟⎟⎟⎟⎟⎟⎠
� Ê7(−2) � · · · .

Corollary 7.22 shows that R(SX) is not exact at

Ê4(−1) = Ê⊗(SX)1,

but we can see this in a more primitive way. It suffices to show that R̂(SX) is
not exact at E4(1). But the first map in R̂(SX) is the same as the first map in
the Cartan resolution R̂(S), while the second map has source E7(2) instead of
the

E⊗Sym2 W = E10(2)

that occurs in the Cartan resolution. Since the Cartan resolution is minimal, this
proves the inexactness.

It turns out that ker d2 has three minimal generators: the given linear one and
two more, which have quadratic coefficients. The map d1 of the Tate resolution
may be represented by the matrix

d1 =

⎛⎜⎝
a 0 0
b ad ac
c bd bc+ad
d cd bd

⎞⎟⎠ .

(It is obvious that the columns of this matrix are in the kernel, and that no two
of them could generate it; to prove that they actually generate it requires either
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an (easy) computation with Gröbner bases or an application of Theorem 7.24
below.) The rest of the Tate resolution of OX has the form

Ê

⎛⎜⎝
a
b
c
d

⎞⎟⎠
� Ê4(−1)

d2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0
b a 0 0
c b a 0
d c b a
0 d c b
0 0 d c
0 0 0 d

⎞⎟⎟⎟⎟⎟⎟⎟⎠
� Ê7(−2) �

� Ê8(3)

⎛⎜⎜⎜⎝
d c b a 0 0 0 0
0 d c b a 0 0 0
0 0 d c b a 0 0
0 0 0 d c b a 0
0 0 0 0 d c b a

⎞⎟⎟⎟⎠
� Ê5(2)

⎛⎝d c b a 0
0 d c b a
0 0 da ca ba

⎞⎠
� Ê⊕Ê2(1)

d1
�

The reader with a background in algebraic geometry may have noticed that the
ranks of the free modules with generators in various degrees in the Tate resolution
of OX are precisely the numbers hi(OX(n)), as suggested in this table:

n −3 −2 −1 0 1 2
h1OX(n) 8 5 2 0 0 0
h0OX(n) 0 0 0 1 4 7

The terms of the Tate resolution are reflected in the pairs of numbers on the
diagonals of this table: for example, Ê⊕Ê2(1) corresponds to the terms 2 (upper
row) and 1 (lower row).

Here is the general result:

Theorem 7.24. Let F be a coherent sheaf on Pr. The free module T i in coho-
mological degree i of the Tate resolution T(F ) is

T i =
⊕

j

Ê⊗Hj(F (i−j)),

where Hj(F (i−j)) is regarded as a vector space concentrated in degree i−j.

For the proof we refer to [Eisenbud et al. 2003a]. For further applications see
[Eisenbud et al. 2003b], and for an exposition emphasizing how to use these
techniques in computation see [Decker and Eisenbud 2002]. We close this section
by interpreting Theorem 7.24 in the case of the Tate resolution of the residue
field, the Cartan resolution.

We claim that the Tate resolution of K = E/(V ) derived above by putting the
Cartan resolution together with its dual is precisely the Tate resolution of the
sheaf OPr . In fact, S is a module whose sheafification is OPr , and the regularity
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of S (as an S-module) is 0, so from Corollary 7.22 we can deduce again what we
already knew: the dual

R(S) : Ê � Ê⊗W � Ê⊗Sym2 W � · · ·
of the Cartan resolution is exact starting from Ê⊗W . Since Ê is a minimal cover
of the next map, we may complete it to a Tate resolution T(OPr) by adjoining
a minimal free resolution of the kernel K of Ê → Ê⊗W . This gives us the Tate
resolution of K as claimed.

Comparing the free modules T i with Theorem 7.24 we deduce the well-known
formula

HiOPr (n) =

⎧⎨⎩
Symn W if i = 0,
0 if 0 < i < r,

̂Symn−r−1 W, if i = r.

See [Hartshorne 1977, III.3.1], and also Corollary A1.6.

7F Exercises

1. Let F be a finitely generated free graded module. Show that, for any i, the
submodule of F generated by all elements of degree ≤ i is free.

2. Let F : · · · � Fi
φi� Fi−1

� · · · be the linear strand of a minimal
free resolution. Show that when Fi is nonzero, no generalized column of φi

can have all entries equal to zero.

3. With hypotheses as in the Linear Syzygy Theorem 7.1, let

A = {(w,m) ∈W ×P(M∗
0 ) | wm = 0},

where m denotes the one-dimensional subspace spanned by a nonzero element
m ∈M0.

Show that the statement of Theorem 7.1 is equivalent to the statement
that the length of the linear strand of the free resolution of M is ≤ dimA.

4. Consider Example 7.3. Show that if the linear forms �i,j span all of W , then
the variety X defined by the minors of N is nondegenerate. Since N is 1-
generic, the module ω is the module of twisted global sections of a line bundle,
so the hypotheses of Corollary 7.4 apply.

5. Show that over any local Artinian ring, any free submodule of a free module
is a summand. Deduce that the only modules of finite projective dimension
are the free modules. Over the exterior algebra, show that any free submodule
of any module is a summand.

6. Though E is a noncommutative ring, it is so close to commutative that com-
mutative proofs can usually be used almost unchanged. Following the ideas at
the beginning of [Eisenbud 1995, Chapter 21], give a direct proof that Ê ∼= E
as E-modules.
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7. Show that L(P̂ ) = HomS(L(P ), S) as complexes.

8. Let e ∈ E be an element of degree −1. Show that the periodic complex

· · · e� E
e� E

e� E
e� · · ·

is exact. In fact, it is the Tate resolution of a rather familiar sheaf. What is
the sheaf?

9. Here is a basis free approach to the equivalence in Proposition 7.5.
(a) If V is finite-dimensional vector space and Pi, Pi−1 are any vector spaces

over K, show that there is a natural isomorphism

HomK(V ⊗Pi, Pi−1) ∼= HomK(Pi,W ⊗Pi−1),

where W is the dual of V , taking a map µ : V ⊗Pi → Pi−1 to the map

d : Pi →W ⊗Pi−1; d(p) =
∑

i

xi⊗µ(ei⊗p).

Maps that correspond under this isomorphism are said to be adjoint to
one another.

(b) Suppose that µi : V ⊗Pi → Pi−1 and µi−1 : V ⊗Pi−1 → Pi−2 are adjoint
to di and di−1, and write s : W⊗W → Sym2 W for the natural projection.
Show that Pi⊕Pi−1⊕Pi−2 is an E =

∧
V -module (the associative and

anti-commutative laws hold) if and only if the map V ⊗V ⊗Pi → Pi−2

factors through the natural projection V ⊗V ⊗Pi →
∧2

V ⊗Pi.
(c) Show that the maps

S⊗Pi
� S⊗Pi−1

� S⊗Pi−2

induced by di and di−1 compose to zero if and only if the composite map

Pi
di� W ⊗Pi−1

1⊗di−1� W ⊗W ⊗Pi−2
s⊗1� Sym2 W ⊗Pi−2

is zero.
(d) Show that the composite map

Pi
di� W ⊗Pi−1

1⊗di−1� W ⊗W ⊗Pi−2
s⊗1� Sym2 W ⊗Pi−2

is adjoint to the composite map

(Sym2 W )∗⊗Pi
s∗
� W ∗⊗W ∗⊗Pi

1⊗µi� W ∗⊗Pi−1
µi−1� Pi−2.

Deduce that the first of these maps is 0 if and only if the second is zero
if and only if the map

W ∗⊗W ∗⊗Pi
1⊗µi� W ∗⊗Pi−1

µi−1� Pi−2

factors through
∧2(V )⊗Pi.

(e) Deduce Proposition 7.5.

10. Prove Proposition 7.21 by examining the sequence of vector spaces whose
homology is Hi(R(M))i+j , as in Theorem 7.8.
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Curves of High Degree

Let X be a curve of genus g. We know from Corollary 6.7 that any line bundle
of degree at least 2g+1 on X is very ample. By an embedding of high degree we
will mean any embedding of X by a complete linear series of degree d ≥ 2g+1,
and by a curve of high degree we mean the image of such an embedding.

In Chapter 6 we gave an account of the free resolutions of curves of genus 0
and 1, embedded by complete linear series, constructing them rather explicitly.
For curves of genus g = 0, we had embeddings of any degree ≥ 1. For curves of
genus g = 1, only linear series of degree ≥ 3 could be very ample, so these were
all curves of high degree. In this chapter we will see that many features of the
free resolutions we computed for curves of genus 0 and 1 are shared by all curves
of high degree.

To study these matters we will introduce some techniques that play a central
role in current research: the restricted tautological subbundle, Koszul cohomol-
ogy, the property Np and the strands of the resolution. We will see that the form
of the free resolution is related to special varieties containing X, and also to
special sets of points on the curve in its embedding.

For simplicity we will use the word curve to mean a smooth irreducible one-
dimensional variety over an algebraically closed field K, though the sophisticated
reader will see that many of the results can be extended to Gorenstein one-
dimensional subschemes over any field. Recall that the canonical sheaf ωX of
a curve X is the sheaf of differential forms associated to the cotangent bundle
of X. If X is embedded in some projective space Pr, it is convenient to use a
different characterization: ωX is the sheaf associated to the module

Extr−1
S (SX , S(−r−1)).
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For this and much more about canonical sheaves, see [Altman and Kleiman 1970].
We will denote by KX the (class of) a canonical divisor— the divisor of a section
of ωX .

8A The Cohen–Macaulay Property

Theorem 8.1. Let X ⊂ Pr be a smooth irreducible curve of arithmetic genus
g over an algebraically closed field K, embedded by a complete linear series as
a curve of degree d. If d ≥ 2g +1, then the homogeneous coordinate ring SX is
Cohen–Macaulay .

This result first appeared in [Castelnuovo 1893]; subsequent proofs were pub-
lished in [Mattuck 1961], [Mumford 1970] ,and [Green and Lazarsfeld 1985]. Here
we follow a method of Green and Lazarsfeld because it works in all characteris-
tics and generalizes easily to singular curves. In Exercises 8.16–8.20 we give an
attractive geometric argument that works most smoothly in characteristic 0.

Before giving the proof, we deduce the Castelnuovo–Mumford regularity and
Hilbert function of SX :

Corollary 8.2. Let X ⊂ Pr be an irreducible smooth curve of genus g over an
algebraically closed field K, embedded by a complete linear series as a curve of
degree d ≥ 2g+1. If g = 0 then reg SX = 1; otherwise reg SX = 2.

Proof of Corollary 8.2. Since SX is Cohen–Macaulay of dimension 2 we have
H0

m(SX) = H1
m(SX) = 0, so SX is m-regular if and only if H2

m(SX)m−1 = 0. By
Corollary A1.12 this is equivalent to the condition that H1OX(m−1) = 0. Serre
duality says that H1(OX(m−1)) is dual to H0(KX(−m+1)), where KX is the
canonical divisor of X. Since the degree of OX(1) = L is at least 2g+1, we have
deg KX(−1) ≤ 2g−2−(2g+1) < 0. Thus H0(KX(−1)) = 0, and SX is 2-regular.
On the other hand SX is 1-regular if and only if h1(OX) = 0. Since h1(OX) = g,
this concludes the proof.

Classically, the Cohen–Macaulay property of SX was described as a condition
on linear series. The degree n part of the homogeneous coordinate ring (SX)n of
X is the image of H0OPr(n) in H0OX(n). Thus the linear series (OX(n), (SX)n)
may be described as the linear series cut out by hypersurfaces of degree n on X.
We may compare it to the complete series (OX(n),H0OX(n)). To prove Theorem
8.1 we will use the following criterion.

Proposition 8.3. Let X be a curve in Pr. The homogeneous coordinate ring
SX of X is Cohen–Macaulay if and only if the series of hypersurfaces of degree
n in Pr is complete for every n; that is, the natural monomorphism

SX →
⊕

n

H0OX(n)

is an isomorphism.
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Proof. The ring SX has dimension 2, so it is Cohen–Macaulay if and only if it
has has depth 2. By Proposition A1.16 this is the case if and only if H0

mSX =
0 = H1

mSX . Since SX has no nilpotent elements we have H0
mSX = 0 in any case.

The conclusion of the proposition follows from the exactness of the sequence

0 � H0
mSX

� SX
�
⊕

n

H0OX(n) � H1
mSX

� 0

and from Corollary A1.12.

Corollary 8.4. Let X ⊂ Pr be a smooth irreducible curve of arithmetic genus
g over an algebraically closed field K, embedded by a complete linear series as
a curve of degree d = 2g +1+p ≥ 2g +1. If x, y are linear forms of S that do
not vanish simultaneously anywhere on X, the Hilbert functions of SX , SX/xSX

and SX/(x, y)SX are as follows:

HM (n) :

n M = SX/(x, y)SX SX/xSX SX

0 1 1 1
1 d−g+1 d−g g+p
2 2d−g+1 d g
3 3d−g+1 d 0
...

...
...

...
n nd−g+1 d 0

In particular , if Γ = H∩X is a hyperplane section of X consisting of d distinct
points, the points of Γ impose independent linear conditions on forms of degree
≥ 2, and the “last” graded Betti number of X is βr−1,r+1(SX) = g.

Proof. By Theorem 8.1 and Proposition 8.3 we have (SX)n = H0(OX(n)). Fur-
thermore, H1OX(n) = 0 for n > 0 because d ≥ 2g−2. For M = SX , the value
HM (n) is thus given by the Riemann–Roch formula,

HM (n) = h0OX(n) = h0OX(n)−h1OX(n)
= deg OX(n)−g+1 = dn−g+1.

These are the values in the left-hand column of the table. Since SX is Cohen–
Macaulay, the elements x, y for a regular sequence on SX and we get short exact
sequences

0 � SX(−1) � SX
� SX/xSX

� 0,

0 � (SX/xSX)(−1) � (SX/xSX) � SX/(x, y)SX
� 0.

From these we see that the Hilbert functions of SX/xSX and SX/(x, y)SX can
be obtained from that of SX by taking first and second differences, giving the
rest of the values in the table.

If a hyperplane H has equation x = 0, then for any variety Y the homogeneous
ideal of the hyperplane section H∩Y is the saturation of the homogeneous ideal
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IY +(x) defining SY /xSY . Since SX is Cohen–Macaulay, SX/xSX has depth 1,
and the ideal IX +(x) is already saturated. Thus the homogeneous coordinate
ring SH∩X is equal to SX/xSX . To say that the points of Γ = H ∩X impose d
linearly independent conditions on quadrics means that for M = SH∩X we have
HM (2) = d, and the second column of the table shows that this is so.

Finally, to compute the “last” graded Betti number, we use the idea of Section
2B. If x, y ∈ S1 form a regular sequence on SX as above, then by Lemma 3.15
graded Betti numbers of SX , as a module over S, variables are the same as those
of SX/(x, y)SX , as a module over S/(x, y)S. The last column of the table gives
us the Hilbert function of SX/(x, y)SX . By Proposition 2.7, βr−1,r+1(SX) is the
dimension of the homology of the complex 0 � Kg � 0, which is obviously g.

In fact, if X is a linearly normal curve and the points of a hyperplane section
of X impose independent conditions on quadrics, then SX is Cohen–Macaulay
(Exercise 8.16). The alternate proof given in the Exercises relies on this.

Proof of Theorem 8.1. We will use the criterion in Proposition 8.3, and check
that for each n the map αn : (SX)n → H0OX(n) is surjective. Any effective
divisor has nonnegative degree, so for n < 0 we have H0OX(n) = 0 (see Exercise
8.6 for a generalization). Since the curve X in Theorem 8.1 is projective and
connected, H0(OX) consists of the constant functions [Hartshorne 1977, Theo-
rem I.3.4(a)]. Thus α0 is an isomorphism, while α1 is an isomorphism by our
assumption that X is embedded by a complete linear series.

We now do induction and prove the surjectivity of αn+1 given the surjectivity
of αn with n ≥ 1. There is a commutative diagram

(SX)1⊗(SX)n
α1⊗αn� H0OX(1)⊗H0OX(n)

(SX)n+1

� αn+1 � H0OX(n+1).

µn

�

Since αn is surjective, so is α1⊗αn. Thus it suffices to show that µn is surjective
for each n ≥ 1.

For n ≥ 2 the surjectivity can be proved by the “basepoint-free pencil trick”
of Castelnuovo; see Exercise 4.13. This is presumably the origin of the idea of
Castelnuovo–Mumford regularity. For the case n = 1 we need a new tool, which
in fact works in all cases.

8A.1 The Restricted Tautological Bundle

For simplicity we return to the notation L = OX(1). The map µn is the map
on cohomology induced by the multiplication map of sheaves H0(L )⊗K L n →
L n+1 where L n means L ⊗ · · ·⊗L with n factors). Thus µn is the map on
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cohomology induced by the tensor product of the identity map on L n with the
multiplication map H0(L )⊗K OX → L . We set

MX = ker
(
H0(L )⊗K OX → L

)
.

Thus MX is the restriction to X of the tautological subbundle on Pr (see page
77).

Tensoring with L n we obtain an exact sequence

0→MX⊗L n → H0(L )⊗K L n → L n+1 → 0.

Taking cohomology, we see that the surjectivity of the map µn would follow from
the vanishing of H1(MX⊗L n). We will prove this vanishing by analyzing MX .

We first generalize. For any sheaf F on X we define

MF = ker
(
H0(F )⊗K OX → F

)
,

so that MX = ML . Thus we have a tautological left exact sequence

εF : 0→MF → H0F ⊗OX → F → 0.

which is right exact if and only if F is generated by global sections. This con-
struction is functorial in F . For any effective divisor D ⊂ X, the short exact
sequence

0→ L (−D)→ L → L |D → 0

gives rise to a diagram (whose rows and columns may not be exact!)

0 0 0

0 � ML (−D)

�
� H0L (−D)⊗K OX

�
� L (−D)

�
� 0

0 � ML

�
� H0L ⊗K OX

�
� L

�
� 0

0 � ML |D
�

� H0(L |D)⊗K OX

�
� L |D

�
� 0

0
�

0
�

0.
�

(∗)

Whenever we can prove that the left-hand column is exact and analyze the
sheaves ML (−D) and ML |D we will get useful information about MX = ML .

We will do exactly that for the case where D is the sum of d− g−1 general
points of X. For this we need some deeper property of linear series, expressed in
part 6 of the following Lemma. Parts 1–3 will be used in the proof of part 6. We
will leave parts 4 and 5, which we will not use, for the reader’s practice (Exercise
8.11).
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Theorem 8.5. Suppose that X is a smooth curve of arithmetic genus g over an
algebraically closed field , and let d be an integer .

1. If d ≥ g−1 then the set of line bundles L ′ ∈ Picd(X) with h1L ′ = 0 is open
and dense.

2. If L ′ is any line bundle of degree ≥ g then L ′ = OX(D) for some effective
divisor D on X.

3. If L ′ is a general line bundle of degree ≥ g+1 then |L ′| is base point free.
In particular , if deg L ′ = g+1, then h2L ′ = 0, h0L ′ = 2, and |L ′| exhibits
X as a (g+1)-fold cover of P1.

4. If L ′ is a general line bundle of degree ≥ g+2 then |L ′| maps X birationally .
If deg L ′ = g+2, the image is a curve of degree g+2 with at worst ordinary
nodes in P2.

5. If L ′ is a general line bundle of degree ≥ g+3 then L ′ is very ample; that
is, |L ′| embeds X. In particular , if deg L ′ = g+3, then |L ′| embeds X as a
curve of degree g+3 in P3.

6. If L is a line bundle of degree d ≥ 2g+1 and D is a general effective divisor
of degree d−g−1 then L ′ = L (−D) has h1(L ′) = 0,h0(L ′) = 2, and |L ′|
is basepoint-free.

Here, when we say that something is true for “a general effective divisor of
degree m,” we mean that there is a dense open subset U ⊆ Xm = X×X×· · ·×X
such that the property holds for all divisors D =

∑m
1 pi with (p1, . . . , pm) ∈ U .

To say that something holds for a general line bundle of degree m makes sense
in the same way because Picm(X) is an irreducible algebraic variety. In the
proof below will use this and several further facts about Picard varieties. For a
characteristic 0 introduction to the subject, see [Hartshorne 1977, Appendix B,
Section 5]. A full characteristic 0 treatment is given in [Arbarello et al. 1985,
Chapter 1], while [Serre 1988] gives an exposition of the construction in general.

• For each integer d the variety Picd(X) is irreducible of dimension g, the genus
of X.

• The disjoint union
⋃

Picd(X) is a graded algebraic group in the sense that
the inverse and multiplication maps

Picd(X)→ Pic−d(X) : L �→ L −1

Picd(X)×Pice → Picd+e(X) : (L ,L ′) �→ L ⊗L ′

are maps of varieties.
• The set of effective divisors of degree d on X may be identified with the d-th

symmetric power X(d) := Xd/G, where Xd = X×· · ·×X is the direct product
of d copies of X and G is the symmetric group on d elements, permuting the
factors. The identification is given by

Xd � (x1, . . . , xd) �→ x1 + · · ·+xd.

Since Xd is a projective variety of dimension d and G is a finite group, X (d)

is also a projective variety of dimension d.
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• The map of sets X(d) → Picd(X) sending x1 + · · ·+ xd to the line bundle
OX(x1+· · ·+xd) is a map of algebraic varieties, called the Abel–Jacobi map.
Its fiber over a line bundle L is thus isomorphic to the projective space of
global sections of L , modulo nonzero scalars.

Proof of Theorem 8.5. Part 1: By Serre duality, h1L ′ = h0(ωX ⊗L ′−1). Fur-
ther, if deg L ′ = d ≥ g− 1 then deg(ωX ⊗L ′−1) = 2g− 2− d ≤ g− 1. The
map Picd(X) → Pic2g−2−d(X) taking L ′ to ωX ⊗L ′−1 is a morphism. Its in-
verse is given by the same formula, so it is an isomorphism. Thus it suffices to
show the set of line bundles L ′′ ∈ Pic2g−2−d(X) of with h0L ′′ = 0 is open
and dense. Let e = 2g−2−d ≤ g−1. The complementary set, the set of bun-
dles L ′′ ∈ Pice(X) with nonzero sections, is the image of the Abel–Jacobi map
X(e) → Pice . Since X(e) is projective, the image is closed and of dimension at
most ≤ dimX(e) = e < g = dimPice(X). Thus the set of bundles of degree e
without sections is nonempty and open; it is dense since Pice(X) is irreducible.
Part 2: Let x be a point of X. For any integer d the morphism

Picd(X) � L ′ �→ L ′(p) = L ′⊗OX(p) ∈ Picd+1(X)

is an isomorphism (its inverse is L ′′ �→ L ′′(−p)). Thus it suffices to show
that every line bundle of degree exactly g can be written as OX(D) for some
D ∈ X(g). That is, it suffices to show that the Abel–Jacobi map X (g) → Picg(X)
is surjective. These varieties both have dimension g. Since X (g) is a projective
variety its image is closed, so it suffices to show that the image has dimension
g, or equivalently, that the general fiber is finite. The fiber through a general
divisor D consists of the set of divisors linearly equivalent to D, so it suffices to
show that there are none except D —that is, h0(OX(D)) = 1.

By the Riemann–Roch theorem and Serre duality,

h0(OX(D)) = deg D−g+1+h1(OX(D)) = 1+h0(ωX(−D)).

If F is any sheaf on X with H0F �= 0 then the set of sections of F vanishing
at a general point of X is a proper linear subspace of H0F . We may write D
as the sum of g general points, D = p1 + · · ·+ pg. Since h0(ωX) = g, we have
h0(ωX(−p1−· · ·−pg)) = 0 as required.
Part 3: Suppose d ≥ g+1 and let U ⊂ Picd(X) be set of line bundles L ′ with
h1(L ′) = 0, which is open and dense by part 8.5. Let

U ′ = {(L ′, p) ⊂ U×X | p is a basepoint of L ′},

and let π1 : U ′ → U and π2 : U ′ → X be the projections. The set of line
bundles of degree d without basepoints contains the complement of π1(U ′). It
thus suffices to show that dimU ′ < g.

Consider the map

φ : U ′ → Picd−1(X); (L ′, p) �→ L ′(−p).
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The fiber φ−1(L ′′) over any line bundle L ′′ is contained in the set {(L ′′(p), p) |
p ∈ X} parametrized by X, so dimφ−1(L ′′) ≤ 1. On the other hand, the image
φ(U ′) consists of line bundles L ′(−p) such that h0(L ′(−p)) = h0(L ′). Applying
the Riemann–Roch formula, and using h1(L ′) = 0, we see that h0(L ′(−p)) =
(d−1)−g+1+h1(L ′(−p)) = d−g+1; that is, h1(L ′(−p)) = 1. It thus suffices
to show that the set U ′′ of line bundles L ′′ of degree d−1 ≥ g with h1(L ′′) �= 0
has dimension ≤ g−2.

Let e = 2g−2−(d−1). Under the isomorphism

Picd−1(X)→ Pice(X); L ′′ �→ ωX⊗L ′′−1

the set U ′′ is carried into the set of bundles with a nonzero global section, the
image of the Abel–Jacobi map X (e) → Pice(X). This image has dimension at
most dimX(e) = e = 2g−2−(d−1) ≤ 2g−2−g = g−2 as required.
Part 6: If d ≥ 2g+1 then d−g−1 ≥ g, so any line bundle of degree d−g−1 can
be written as OX(D) for some effective divisor. Thus if L has degree d, and D
is a general effective divisor of degree d−g−1, then L ′′ := OX(D) is a general
line bundle of degree d−g−1, and L ′ = L ⊗L ′′−1 is a general line bundle of
degree g+1. The assertions of part 6 thus follow from those of part 3.

Returning to the proof of Theorem 8.1 and its notation, we suppose that D
is a general divisor of degree d−g−1, the sum of d−g−1 general points. Since
L |D is a coherent sheaf with finite support, it is generated by global sections.
The line bundle L is generated by global sections too, as already noted, and by
Theorem 8.5, part 6, the same goes for L (−D). Thus all three rows of diagram
(∗) are exact. The exactness of the right-hand column is immediate, while the
exactness of the middle column follows from the fact that H1L (−D) = 0. By
the Snake Lemma, it follows that the left-hand column of (∗) is exact.

To understand ML (−D), we use part 6 of Theorem 8.5 again. Let σ1, σ2 be a
basis of the vector space H0(L (−D)). We can form a sort of Koszul complex

K : 0→ L −1(D)

(
σ2

−σ1

)
� O2

X

(σ1 σ2 )� L (−D)→ 0

whose right-hand map O2
X

(σ1 σ2 )� L (−D) → 0 is the map H0L (−D)⊗K

OX → L (−D) in the sequence εL (−D). If U = SpecR ⊂ X is an open set where
L is trivial, then we may identify L |U with R, and σ1, σ2 as a pair of elements
generating the unit ideal. Thus K|U is exact, and since X is covered by such
open sets U , the complex K is exact. It follows that ML (−D) = L −1(D).

Finally, to understand ML |D we choose an isomorphism L |D = OD. Writing
D =
∑d−g−1

1 pi, the defining sequence εOD
becomes

0→MOD
→

d−g−1∑
1

OX →
d−g−1∑

1

Opi
→ 0,
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and we deduce that MOD
=
∑d−g−1

1 OX(−pi).
The left-hand column of diagram (∗) is thus an exact sequence

0→ L −1(D)→MX →
d−g−1∑

1

OX(−pi)→ 0.

Tensoring with L n and taking cohomology, we get an exact sequence

H1(L n−1(D))→ H1(L n⊗MX)→
∑

H1(L n(−pi)).

As D is general of degree d − g − 1 > g − 1, part 1 of Theorem 8.5 gives
H1(L n−1(D)) = 0 for all n ≥ 1. Since L n(−pi) has degree at least n(2g+1)−1 ≥
2g, its first cohomology also vanishes, whence H1(L n⊗MX) = 0 as required for
the proof of Theorem 8.1.

8B Strands of the Resolution

Consider again the case of a curve X of genus g embedded in Pr by a complete
linear series |L | of “high” degree d = 2g+1+p ≥ 2g+1 (so that by Riemann–
Roch we have r = d− g.) By Theorem 8.1 and Corollary 8.2 the resolution of
SX has the form

0 1 2 · · · · · · r−2 r−1
0 1 - - · · · · · · - -
1 - β1,2 β2,3 · · · · · · βr−2,r−1 βr−1,r

2 - β1,3 β2,4 · · · · · · βr−2,r βr−1,r+1

where βi,j is the vector space dimension of TorS
i (SX , K)j . The goal of this section

is to explain what is known about the βi,j . We will call the strand of the resolution
corresponding to the βi,i+1 the quadratic strand ; the βi,i+2 correspond to the
cubic strand. (The names arise because β1,2 is the number of quadratic generators
required for the ideal of X, while β1,3 is the number of cubic equations.)

Since IX contains no linear forms, the number of generators of degree 2 is

β1,2 = dim(IX)2 = dimS2−dim(SX)2 =
(

r+2
2

)
−(2d−g+1) =

(
d−g−1

2

)
,

where the penultimate equality comes from Corollary 8.4 and the Riemann–
Roch theorem. This argument extends a little. By Corollary 1.10, the formula in
Corollary 8.4 determines the numbers βi,i+1−βi−1,i+1 for all i in terms of the
genus g and degree d of X ⊂ Pr

0.
We have already given a similar argument computing the “last” graded Betti

number, βr−1,r+1(SX) (Corollary 8.4). Now we will give a conceptual argument
yielding much more.
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Proposition 8.6. With notation as above, βr−1,r+1 = g. In fact , if F is the
minimal free resolution of SX as an S-module, and ωX is the canonical sheaf of
X, then the twisted dual , HomS(F, S(−r−1)), of F, is the minimal free resolution
of the S-module wX :=

⊕
n H0ωX(n).

Proof. The first statement of the Proposition follows from the second because
wX is 0 in negative degrees, while (wX)0 = H0ωX is a vector space of dimension
g.

Since SX is Cohen–Macaulay and of codimension r−1 we have

Exti
S(SX , S(−r−1)) = 0 for i �= r−1.

In other words, the cohomology of the twisted dual Hom(F, S(−r−1)) is zero
except at the end, so it is a free resolution of the module Extr−1

S (SX , S(−r−1)).
It is minimal because it is the dual of a minimal complex. Because the resolution
is of length r− 1, the module Extr−1

S (SX , S(−r− 1)) is Cohen–Macaulay, and
it follows from Corollary A1.12 that Extr−1

S (SX , S(−r−1)) =
⊕

n H0ωX(n). In
particular, we see that

βr−1,r+1(SX) = β0,0

(
Extr−1

S (SX , S(−r−1))
)

= dimK H0ωX = h0ωX .

From Serre duality we have h0ωX = h1OX = g, as required by the last formula.

In terms of Betti diagrams, Proposition 8.6 means that the Betti diagram of
wX is obtained by “reversing” that of SX left-right and top-to-bottom. Taking
account of what we know so far, it has the form:

0 1 2 · · · · · · r−2 r−1
0 g βr−2,r · · · · · · β2,4 β1,3 -
1 βr−1,r βr−2,r−1 · · · · · · β2,3 β1,2 -
2 - - · · · · · · - - 1

It would be fascinating to know what the value of each individual Betti number
says about the geometry of the curve, but this is far beyond current knowledge.
A cruder question is, “Which of the βi,j are actually nonzero?” In fact, there is
just one block of nonzero entries in each row:

Proposition 8.7. If I ⊂ S is a homogeneous ideal that does not contain any
linear forms, and if S/I is Cohen–Macaulay of regularity 3, then

βi,i+1 = 0 ⇒ βj,j+1 = 0 for j ≥ i,
βi,i+2 = 0 ⇒ βj,j+2 = 0 for j ≤ i.

Proof. Using Proposition 1.9, applied to the resolution of SX , gives the first
conclusion. By Proposition 8.6 the dual complex is also a resolution; applying
Proposition 1.9 to it, we get the second conclusion.
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Because the projective dimension of SX is r− 1, at least one of βi,i+1 and
βi,i+2 must be nonzero for i = 1, . . . , r−1. Thus the nonzero entries in the Betti
diagram of SX are determined by two numbers a = a(X) and b = b(X) with
0 ≤ a < b ≤ r which may be defined informally from the diagram

0 1 · · · a a+1 · · · b−1 b · · · r−1
0 1 − · · · − − · · · − − · · · −
1 − ∗ · · · ∗ ∗ · · · ∗ − · · · −
2 − − · · · − ∗ · · · ∗ ∗ · · · g

where “−” denotes a zero entry and “∗” denotes a nonzero entry (we admit the
possibilities a = 0, b = r, and b = a+1.) More formally, 0 ≤ a(X) < b(X) ≤ r
are defined by letting a(X) be the greatest number such that βi,i+2(SX) = 0 for
all i ≤ a(X) and letting b(X) be the least number such that βi,i+1(SX) = 0 for
all i ≥ b(X).

Note that when b ≤ a+2 Corollaries 8.4 and 1.10 determine all of the numbers
βi,j . However if b ≥ a+3 there could be examples with the same genus and degree
but with different graded Betti numbers.

8B.1 The Cubic Strand

What does the number a tell us? It is closely related to an important geometric
invariant of the embedding X ⊂ Pr, the dimension of the smallest degenerate
secant plane. To understand this notion, recall that q general points span a
projective q− 1-plane. A plane in Pr is a degenerate q-secant plane to X if it
has dimension at most q−2 and meets X in at least q points, or more generally
if it meets X in a scheme of length at least q. We use �x� and �x� to denote
the floor and ceiling of x, the largest integer ≤ x and the smallest integer ≥ x
respectively.

Theorem 8.8. Suppose that X ⊂ Pr is a curve embedded by a complete linear
series of degree 2g+1+p, with p ≥ 0.

1. p ≤ a(X).
2. If X has a degenerate q-secant plane, then a(X) ≤ q−3.
3. X always has a degenerate q-secant plane for q = p+3+max(0,

⌈
g−p−3

2

⌉
).

Thus

p ≤ a(X) ≤ p+max
(
0,

⌈
g−3−p

2

⌉)
.

When p ≥ g−3, or in other words d = 2g+1+p ≥ 3g−2, Parts 1 and 2 show
that a(X) determines the size of the smallest degenerate secant plane precisely.
For smaller p, and special X other phenomena can occur. See the example and
discussion in Section 8C.

Part 1 of Theorem 8.8, along with Theorem 8.1, is usually stated by saying
that a linearly normal curve X ⊂ Pr of degree 2g+1+p satisfies condition Np;
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here N0 is taken to mean that SX is Cohen–Macaulay; N1 means N0 and the
condition that IX is generated by quadrics; N2 means in addition that IX is
linearly presented; and so on.

Proof of Theorem 8.8.1. Let F be the minimal free resolution of SX . By Propo-
sition 8.6 the complex HomS(F, S(−r−1)) is the minimal free resolution of
wX = ⊕nH0(ωX(n)). We have h0(ωX) = g, while h0ωX(n) = 0 for n < 0
since deg OX(1) > deg ωX = 2g−2. Thus we may apply Corollary 7.4, and we
see that the linear strand of the free resolution HomS(F, S(−r−1)) has length
r−a−2 ≤ g−1, as required.

Theorem 8.8.2 is a special case (see Exercise 8.12) of a more general geometric
result:

Theorem 8.9. If a variety (or scheme) X ⊂ Pr intersects a plane Λ of di-
mension e in a finite scheme of length at least e+ 2, the graded Betti number
βe,e+2(SX) is nonzero. In particular , a ≤ e−1.

The idea is that by Theorem 4.1 and Proposition 4.12, the homogeneous coor-
dinate ring of a set of dependent points in Pe cannot be 1-regular, and the cubic
strand of its resolution begins by the e-th step. In general, the regularity of a
subset Y ⊂ X need not be bounded by the regularity of X, but in our setting
the high degree syzygy in the e-th place of the resolution of the coordinate ring
of the point somehow forces a high degree syzygy in the same place in the reso-
lution of the coordinate ring of X. The proof we will give is indirect; we bound
the local cohomology instead of the syzygies. Here is a general algebraic version,
from which Theorem 8.9 will follow easily. The reader will recognize the idea
used here from the proof of the Gruson–Lazarsfeld–Peskine Theorem 5.1: if the
homology of a free complex has low dimension, then the complex can be used to
compute regularity as if it were a resolution.

Theorem 8.9 follows at once from a still more general result of Eisenbud,
Huneke and Ulrich [Eisenbud et al. 2004, Theorem 2.1]. We give here the special
case of the result that is needed:

Theorem 8.10. Let M be a finitely generated gradedmodule over a polyno-
mial ring S = K[x0, . . . , xr]. Set S = K[x0, . . . , xp] be the quotient of S by an
ideal generated by r− p linear forms, and M = M ⊗S S. If dimM ≤ 1 then
reg H1

m(M)+1 ≤ reg Torp(M, K)−p.

Proof. Let F : · · · → F1 → F0 →M → 0 be the minimal free resolution of M as
an S-module, and write F i for S⊗Fi. Let Ki = kerF i → F i−1 be the module of
i-cycles, and let Bi = imF i+1 → F i be the module of boundaries, so that there
are exact sequences

(Ei) 0→ Bi → Ki → Hi(S⊗F)→ 0,

(Gi) 0→ Ki → F i → Bi−1 → 0,

(G0) 0→ K0 → F 0 →M → 0.
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The objects that play a role in the proof appear in the diagram

H1
mM

s0� H2
mK0

�t0 H2
mB0

s1� H3
mK1

�t1 H3
mB1

s2� H4
mK2

�t2 · · ·
· · ·

H2
mF 1

u1
�

H3
mF 2

u2
�

· · ·
where the map ti is induced by the inclusion Bi ⊂ Ki, the map si is the connect-
ing homomorphism coming from the sequence Gi and the map ui comes from
the surjection F i → Bi−1. We will prove:

1. Each ti is an isomorphism;
2. For i < p the map si is a monomorphism;
3. For i = p the map ui is a surjection.

It follows from items 1–3 that H1
m(M) is a subquotient of Hp+1

m (F p). In partic-
ular, since both of these are Artinian modules, reg H1

m(M) ≤ reg Hp+1
m (F p). By

Lemma A1.6,
reg Hp+1

m (F p)+p+1

is the maximum degree of a generator of F p or, equivalently, of Fp; this number
is also equal to reg Torp(M,K). Putting this together we get reg H1

m(M)+1 ≤
reg Torp(M,K)−p as required.

The map ti is an isomorphism for i = 0 simply because B0 = K0. For i > 0,
we first note that Hi(S⊗F) = Tori(S,M). Since M = S⊗M has dimension
≤ 1, the annihilator of M plus the annihilator of S is an ideal of dimension ≤ 1.
This ideal also annihilates Tori(S,M), so dimTori(S,M) ≤ 1 also. It follows
that Hj

m(Hi(S⊗F)) = 0 for all j ≥ 2 and all i. The short exact sequence (Ei)
gives rise to a long exact sequence containing

Hi+1
m (Hi(S⊗F)) � Hi+2

m (Bi)
ti� Hi+2

m (Ki) � Hi+2
m (Hi(S⊗F))

and we have just shown that for i ≥ 1 the two outer terms are 0. Thus ti is an
isomorphism, proving the statement in item 1.

For items 2 and 3 we use the long exact sequence

· · · � Hi+1F i
� Hi+1Bi−1

si� Hi+2Ki
� · · ·

corresponding to the short exact sequence (Gi). For i < p we have Hi+1F i = 0,
giving the conclusion of item 2. Finally, dimS = p+1, so Hp+2

m Ki = 0. This gives
the statement of item 3.

Conclusion of the proof of Theorem 8.8. It remains to prove part 3, and for this
it is enough to produce a degenerate q-secant plane with

q = p+3+max
(
0, �(g−p−3)/2�),
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to which to apply Theorem 8.9.
To do this we will focus not on the q-plane but on the subscheme D in which

it meets X. We don’t need to know about schemes for this: in our case D is an
effective divisor on X. Thus we want to know when an effective divisor spans
“too small” a plane.

The hyperplanes in Pr correspond to the global sections of L := OX(1), so
the hyperplanes containing D correspond to the global sections of L (−D). Thus
the number of independent sections of L (−D) is the codimension of the span
of D. That is, D spans a projective plane of dimension e = r−h0(L (−D)) =
h0(L )−1−h0(L (−D)).

The Riemann–Roch formula applied to L and to L (−D) shows that

e = (deg L −g+1−h1L )−1−(degL −deg D−g+1−h1L (−D))

= deg D+h1L −h1L (−D)−1

= deg D−h1L (−D)−1,

since h1L = 0. From this we see that the points of D are linearly dependent,
that is, e ≤ deg D−2, if and only if

h1L (−D) = h0
(
ωX⊗L −1(D)

) �= 0.

This nonvanishing means ωX ⊗L −1(D) = OX(D′), or equivalently that L ⊗
ω−1

X = OX(D−D′), for some effective divisor D′.
The degree of L ⊗ω−1

X is 2g+1+p−(2g−2) = p+3, but we know nothing else
about it. If p ≥ g−3, then deg L ⊗ω−1

X ≥ g. By Theorem 8.5, Part 8.5, there is
an effective divisor D such that L ⊗ω−1

X = OX(D), and taking D′ = 0 we see
that the span of D is a degenerate p+3-secant plane, as required in this case.

On the other hand, if p < g−3, the subset of Picp+3(X) that consists of line
bundles of degree p + 3 that can be written in the form OX(D) is the image
of Xp+3, so it has at most dimension p + 3 < g. Thus it cannot be all of the
variety Picp+3(X), and we will not in general be able to take D′ = 0. From this
argument it is clear that we may have to take the degree q of D large enough so
that the sum of the degrees of D and D′ is at least g. Moreover this condition
suffices: if q and q′ are integers with q+q′ = g then the map

Xq×Xq′ → Picq−q′(X)

(
(a1, . . . , aq), (b1, . . . bq′)

) �→ OX

( q∑
1

ai−
q′∑
1

bj

)
is surjective (see [Arbarello et al. 1985, V.D.1]).

With this motivation we take

q = p+3+
⌈g−p−3

2

⌉
=
⌈g+p+3

2

⌉
,

q′ =
⌊g−p−3

2

⌋
.
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We get q− q′ = p+3 and q + q′ = g, so by the result above we may write the
line bundle L ⊗ω−1

X in the form OX(D−D′) for effective divisors D and D′

of degrees q and q′, and the span of D will be a degenerate q-secant plane as
required.

Some of the uncertainty in the value of a(X) left by Theorem 8.8 can be
explained in terms of the quadratic strand; see Example 8.21 and Theorem 8.23.

8B.2 The Quadratic Strand

We turn to the invariant of X given by b(X) = min
{
i ≥ 1 | βi,i+1(X) =

0
}
. Theorem 8.8 shows that some βi,i+2 is nonzero when X contains certain

“interesting” subschemes. By contrast, we will show that some βi,i+1 is nonzero
by showing that X is contained in a variety Y with βi,i+1(SY ) �= 0. To do this
we compare the resolution of IX with that of its submodule IY .

Proposition 8.11. Suppose that M ′ ⊂M are graded S-modules. If Mn = 0 for
n < e, then βi,i+e(M ′) ≤ βi,i+e(M) for all i.

Proof. If M ′
e = 0 then β0,e(M ′) = 0, and since the differential in a minimal

resolution maps each module into m times the next one, it follows by induction
that βi,i+e(M ′) = 0 for every i. Thus we may assume that M ′

e ⊂ Me are both
nonzero. Under this hypothesis, we will show that any map φ : F′ → F from
the minimal free resolution of M ′ to that of M that lifts the inclusion M ′ ⊂M
must induce an inclusion of the linear strands. To simplify the notation we may
shift both M and M ′ so that e = 0.

Let G ⊂ F be the linear strand, so that the i-th free module Gi in G is a direct
sum of copies of S(−i), and similarly for G′ ⊂ F′. To prove that φi|Gi

: G′
i → Fi

is an inclusion, we do induction on i, starting with i = 0.
Because the resolution is minimal, we have F0/mF0 = M/mM . In particular

G0/mG0 = M0, and similarly G′
0/mG′

0 = M ′
0, which is a subspace of M0. Thus

the map φ0|G′
0

has kernel contained in mG′
0. Since G′

0 and G0 are free modules
generated in the same degree, and φ0|G′

0
is a monomorphism in the degree of the

generators, φ0|G′
0

is a monomorphism (even a split monomorphism.)
For the inductive step, suppose that we have shown φi|G′

i
is a monomorphism

for some i. Since F′ is a minimal resolution, the kernel of the differential d :
F ′

i+1 → F ′
i is contained in mF ′

i+1. Since d(G′
i+1) ⊂ G′

i, and G′
i+1 is a summand

of F ′
i+1, the composite map φi|Gi+1 ◦d has kernel contained in mGi+1. From the

commutativity of the diagram

Gi+1
d � Gi

G′
i+1

φi+1|Gi+1

�

d
� G′

i

φi|Gi

�
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we see that the kernel of φi+1|Gi+1 must also be contained in mG′
i+1. Once

again, φi+1|Gi+1 is a map of free modules generated in the same degree that is a
monomorphism in the degree of the generators, so it is a (split) monomorphism.

To apply Proposition 8.11 we need an ideal generated by quadrics that is
contained in IX . We will use an ideal of 2×2 minors of a 1-generic matrix, as
described in Chapter 6. Recall that the integer b(X) was defined as the smallest
integer such that βi,i+1(SX) = 0 for all i ≥ b(X).

Theorem 8.12. Suppose that X ⊂ Pr is a curve embedded by a complete lin-
ear series |L |. Suppose a divisor D ⊂ X has has h0OX(D) = s + 1 ≥ 2. If
h0L (−D) = t+1 ≥ 2, then βs+t−1,s+t(SX) �= 0. In particular b(X) ≥ s+ t.

Proof. After picking bases for H0OX(D) and H0L (−D), the multiplication map

H0OX(D)⊗H0L (−D)→ H0L

corresponds, as in Proposition 6.10, to a 1-generic (s+1)× (t+1) matrix A of
linear forms on Pr whose 2×2 minors lie in IX .

Since IX contains no linear forms we may apply Proposition 8.11, and it suffices
to show that the ideal I = I2(A) ⊂ IX has βs+t−2,s+t(I) �= 0.

If s = 1, we can get the result from the Eagon–Northcott complex as follows.
By Theorem 6.4 the maximal minors of A generate an ideal I of codimension
(t + 1)− (s + 1) + 1 = t whose minimal free resolution is given by the Eagon–
Northcott complex (see Section A2H). Examining this complex, we see that
βt−1,t+1(I) �= 0. A similar argument holds when t = 1.

If s > 2 and t > 2 we use a different technique, which also covers the previous
case and is in some ways simpler. Since the matrix A is 1-generic, the elements
of the first row are linearly independent, and the same goes for the first column.
We first show that by choosing bases that are sufficiently general, we can ensure
that the s+ t+1 elements in the union of the first row and the first column are
linearly independent.

Choose bases σ0, . . . , σs and τ0, . . . , τt for H0OX(D) and H0L (−D) respec-
tively, so that the (i, j)-th element of the matrix A is the linear form correspond-
ing to σiτj ∈ H0L = S1. Let Bσ and Bτ be the base divisors of the linear series
|OX(D)| = (OX(D), 〈σ0, . . . , σs−1〉) and |L (−D)| = (L (−D), 〈τ0, . . . , τt−1〉) re-
spectively. Since the linear series |OX(D−Bσ)| is basepoint-free, we may choose
the basis {σi} so that the divisor corresponding to σ0 is Bσ + D0, and D0 is
disjoint from Bτ . We may then choose τ0 such that the divisor corresponding to
τ0 is BτE0 and E0 is disjoint from both Bσ and D0.

With these choices, we claim that the spaces of linear forms 〈σ0τ0, . . . , σ0τt−1〉
and 〈σ0τ0, . . . , σs−1τ0〉 intersect only in the one-dimensional space 〈σ0τ0〉. Indeed,
if a linear form � is in the intersection, then � vanishes on both D0 and E0, so it
vanishes on D0 +E0 and thus, taking the base loci into account, on Bσ +Bτ +
D0+E0. This is the divisor of σ0τ0, so � is a scalar multiple of σ0τ0 as required.
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It follows that the linear forms that appear in the first row and column of A,
that is the s+ t+1 elements

σ0τ0 · · · σ0τt
...

σsτ0

are linearly independent.
The following more general result now concludes the proof of Theorem 8.12.

Theorem 8.13. Let A = (�i,j)0≤i≤s,0≤j≤t be an s+1× t+1 matrix of linear
forms. If the first row and column of A consist of s+ t+1 linearly independent
elements, then βs+t−1,s+t(S/I2(A)) �= 0.

A weaker version of Theorem 8.13 was proved by Green and Lazarsfeld to verify
one inequality of Green’s conjecture, as explained below. A similar theorem holds
for the 4×4 pfaffians of a suitably conditioned skew-symmetric matrix of linear
forms, and in fact this represents a natural generalization of the result above.
See [Koh and Stillman 1989] for details.

Example 8.14. Consider the matrix

A =

⎛⎜⎜⎝
x0 x1 x2 · · · xt

x1+t 0 0 · · · 0
...

...
... · · · ...

xs+t 0 0 · · · 0

⎞⎟⎟⎠ (∗)

where x0, . . . , xs+t are indeterminates. To simplify the notation, let

P = (x1, . . . , xt) and Q = (x1+t, . . . , xs+t)

be the ideals of S corresponding to the first row and the first column of A,
respectively. It is easy to see that I2(A) = PQ = P ∩Q. Consider the exact
sequence

0→ S/P ∩Q→ S/P ⊕S/Q→ S/P +Q→ 0.

The corresponding long exact sequence in Tor includes

Tors+t(S/P ⊕S/Q, K)→ Tors+t(S/(P +Q), K)→ Tors+t−1(S/(P ∩Q), K).

The free resolutions of S/P , S/Q and S/(P +Q) are all given by Koszul com-
plexes, and we see that the left-hand term is 0 while the middle term is K in
degree s+ t, so

βs+t−1,s+t(S/I2(A)) = dimTors+t−1(S/(P ∩Q) ≥ 1

as required.
Note that x0 actually played no role in this example—we could have replaced

it by 0. Thus the conclusion of Theorem 8.13 holds in slightly more generality
than we have formulated it. But some condition is necessary: see Exercise 8.14.
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The proof of Theorem 8.13 uses the Koszul complex through the following
result.

Theorem 8.15. Let I ⊂ S be a homogeneous ideal containing no linear form,
and let δ be the differential of the Koszul complex K(x0, . . . , xr). The graded Betti
number βi,i+1(S/I) is nonzero if and only if there is an element u ∈ ∧i

Sr+1(−i)
of degree i+1, such that δ(u) ∈ I

∧i−1
Sr+1(−i+1) and δ(u) �= 0.

Given an element u ∈ ∧i
Sr+1(−i) of degree i+1 with δ(u) �= 0, there is a

smallest ideal I such that δ(u) ∈ I
∧i−1

Sr+1(−i+1); it is the ideal generated
by the coefficients of δ(u) with respect to some basis of

∧i−1
Sr+1(−i+1), and

is thus generated by quadrics. This ideal I is called the syzygy ideal of u, and by
Theorem 8.15 we have βi,i+1(S/I) �= 0.

Proof. Suppose first that βi,i+1(S/I) = dimK Tori(S/I, K)i+1 �= 0, so we can
choose a nonzero element t ∈ Tori(S/I, K)i+1. Since Tori(S/I, K) is the i-th
homology of S/I ⊗K(x0, . . . , xr), we may represent t as the class of a cycle
1⊗u with u ∈ ∧i

Sr+1(−i) and deg u = i+1. Thus δ(u) ∈ I
∧i−1

Sr+1(−i+1).
If δ(u) = 0, then u would be a boundary in K(x0, . . . , xr), and thus also a
boundary in S/I⊗K(x0, . . . , xr), so that t = 0, contradicting our hypothesis.

Conversely, let u ∈ ∧i
Sr+1(−i) be an element with deg u = i+1 and δ(u) �= 0.

If δ(u) ∈ I
∧i−1

Sr+1(−i+1) then the element 1⊗u is a cycle in

S/I⊗K(x0, . . . , xr).

We show by contradiction that 1⊗ u is not a boundary. The generators of∧i
Sr+1(−i) are all in degree exactly i. Since I contains no linear forms, the

degree i+1 part of S/I ⊗∧i
Sr+1(−i) may be identified with the degree i+1

part of
∧i

Sr+1(−i). If 1⊗ u were a boundary in S/I ⊗K(x0, . . . , xr), then u
would be a boundary in K(x0, . . . , xr) itself. But then δ(u) = 0, contradicting
our hypothesis.

Since 1⊗u is not a boundary, Tori(S/I, K)i+1 �= 0, so βi,i+1(S/I) �= 0.

The hypothesis that I contain no linear forms is necessary in Theorem 8.15. For
example, if I = m, then δ(u) ∈ I

∧i−1
Sr+1(−i+1) for any u, but βi,i+1S/m = 0

for all i.
As an application, using Theorem 8.15 we can easily describe all the ideals

I ⊂ S such that I contains no linear form but βr+1,r+2(S/I) �= 0. (For the
case of βr,r+1(S/I) �= 0 see the next theorem.) Since

∧r+1
Sr+1 ∼= S, an ele-

ment of degree r + 2 in
∧r+1

Sr+1(−r− 1) may be written as a linear form �
times the generator. Applying δ gives an element whose coefficients are ±xi�. By
Theorem 8.15, if I is a homogeneous ideal that contains no linear forms, then
βr+1,r+2(S/I) �= 0 if and only if I contains the ideal �(x0, . . . , xr) for some linear
form �.

Proof of Theorem 8.13. To simplify notation, set I = I2(A). We must show that
the vector space Tors+t−1(S/I, K)s+t is nonzero, and we use the free resolution
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K of K to compute it. We may take K to be the Koszul complex

K : 0 � ∧r+1
Sr+1(−r−1)

δ� ∧r
Sr(−r)

δ� · · · δ� S,

Thus it suffices to give a cycle of degree s+ t in

S/I⊗Ks+t−1 = S/I⊗
s+t−1∧

Sr+1(−s− t+1)

that is not a boundary. The trick is to find an element α, of degree s + t in
Ks+t−1, such that

1. δ(α) �= 0 ∈ Ks+t−2; and
2. δ(α) goes to zero in S/I⊗Ks+t−2.

Having such an element will suffice to prove the Theorem: From condition 2
it follows that the image of α in S/I ⊗K is a cycle. On the other hand, the
generators of Ks+t−1 have degree s + t− 1, and the elements of I are all of
degree 2 or more. Thus the degree s+ t part of Ks+t−1 coincides with that of
S/I⊗Ks+t−1. If the image of α were a boundary in S/I⊗K, then α would also
be a boundary in K, and δ(α) would be zero, contradicting condition 1.

To write down α, let x0, . . . xt be the elements of the first row of A, and let
x1+t, . . . , xs+t be the elements of the first column, starting from the position
below the upper left corner, as in equation (∗) in the example above. Thus if
0 ≤ j ≤ t then �0,j = xj , while if 1 ≤ i ≤ s then �i,0 = xi+t. Complete the
sequence x0, . . . , xs+t to a basis of the linear forms in S by adjoining some linear
forms xs+t+1, . . . , xr. Let {ei} be a basis of Sr+1(−1) such that δ(ei) = xi in the
Koszul complex.

The free module
∧s+t−1

Sr+1(−s−t+1) has a basis consisting of the products
of s+ t−1 of the ei. If 0 ≤ j ≤ t and 1 ≤ i ≤ s, then we denote by e[i+t,j] the
product of all the e1, . . . , es+t except ej and ei+t, in the natural order, which is
such a basis element. With this notation, set

α =
∑

1≤i≤s
0≤j≤t

(−1)i+j�i,je[i+t,j].

If 0 ≤ k ≤ s+t and k �= i+t, k �= j then we write e[k,i+t,j] for the product of all
the e1, . . . , es+t except for ei+t, ek and ej , as always in the natural order. These
elements are among the free generators of

∧s+t−2
Sr+1(−s−t+2). The formula

for the differential of the Koszul complex gives

δ(e[i+t,j]) =
∑

0≤k<j

(−1)ke[k,i+t,j] +
∑

j<k<i+t

(−1)k−1e[k,i+t,j]

+
∑

i+t<k≤s+t

(−1)ke[k,i+t,j].
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Write (p, q | u, v) for the 2×2 minor of A involving rows p, q and columns u, v.
Straightforward computation shows that the coefficient of e[k,i+t,j] in δ(α) is{±(0, i | j, k)e[k,i+t,j] if 0 ≤ k ≤ t,

±(i, k−t | 0, j)e[k,i+t,j] if 1+j ≤ k =≤ s+ t.

In particular, the coefficients of the e[k,i+t,j] in δ(α) are all in I.
Consider a 2×2 minor of A involving the upper left corner, say

(0, 1 | 0, 1) = det
(

�0,0 �0,1

�1,0 �1,1

)
= �0,0�1,1−�0,1�1,0.

Since �0,0, �0,1, and �1,0 are distinct prime elements of S, and S is factorial, this
element is nonzero. Thus the coefficients of δ(α) are not all 0, so α satisfies
conditions 1 and 2 as required.

One way to get a divisor to which to apply Theorem 8.12 is to choose D to be
a general divisor of degree g+1. By Theorem 8.5.1, we have h0OX(D) = 2. Since
L (−D) is a general line bundle of degree 2g +1+p− g−1 = g +p the bundle
L (−D) will be nonspecial, whence h0(L (−D)) = p+1 by the Riemann–Roch
formula. Thus b(X) ≥ p+1. However, we could already have deduced this from
the fact that b(X) > a(X) and a(X) ≥ p by Theorem 8.8.

To do better, we need to invoke a much deeper result, the Brill–Noether Theo-
rem. The statement first appears in [Brill and Noether 1873], but it was realized
fairly soon that the proof given by Brill and Noether was incomplete. The first
complete proofs are found in [Kempf 1972; Kleiman and Laksov 1972; 1974] (see
[Arbarello et al. 1985, Chapter V] for an exposition and history). The application
to high degree curves was first noted in the thesis of Schreyer [1983].

Theorem 8.16 (Brill–Noether). If X is a curve of genus g, then the set
Jr

d of line bundles F ∈ Picd(X) with h0F ≥ s+1 is an algebraic subset with
dimension

dimJr
d ≥ ρ(d, s) = g−(s+1)(g−d+s).

In particular , if if d ≥ 1+ �g/2� then X has a line bundle of degree d with at
least 2 independent sections.

It is known that the Brill–Noether theorem is sharp for a general curve (that
is, for the curves in on open dense set of the moduli space of curves of genus g.)
See [Gieseker 1982] or, for a simpler proof, [Eisenbud and Harris 1983].

Idea of the proof. The formula is easy to understand, even though it is hard to
prove. Take an arbitrary divisor E that is the sum of a large number e of distinct
points of X. The divisor E corresponds to a section of the line bundle OX(E)
from which we get a short exact sequence

0 � OX
� OX(E) � OE

� 0.
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Let F be a line bundle of degree d on X. We tensor the exact sequence above
with F . Since E is a finite set of points we may identify F⊗OE with OE . Taking
cohomology, we get a left exact sequence

0 � H0F � H0F (E)
αL� H0OE .

Now H0OE
∼= Ke is the e-dimensional vector space of functions on E. If we

choose e so large that deg F (E) = d+ e > 2g−2, then by the Riemann–Roch
formula

h0F (E) = (d+e)−g+1+h1F (E) = d+e−g+1.

Thus the dimension of H0F (E) does not vary as F runs over Picd(X). Locally
on Picd(X) we may think of αF as a varying map between a fixed pair of vector
spaces (globally it is a map between a certain pair of vector bundles). The set
of F with h0F ≥ s+1 is the set of F with rankαF ≤ d+e−g+1− (s+1) =
d+e−g−s, so, locally, Jr

d (X) is defined by the (d+e−g−s−1)×(d+e−g−s−1)
minors of a (d+e−g+1)×e matrix. Macaulay’s formula, Theorem A2.54 shows
that if the set Jr

d is nonempty then its codimension is at most (s+1)(g−d+s),
so the dimension is at least g− (s+1)(g−d+s) as required. The argument we
have given is essentially the original argument of Brill and Noether. Its main
problem is that is does not prove that the locus J r

d (X) is nonempty — the very
fact we were interested in.

One way to address this point is to identify αF as the map on fibers of a map
of explicitly given vector bundles, α : E1 → E2. To see what might be required,
replace Picd(X) by a projective space Pr, and α by a map

α : E1 = OPr(a)→ E2 = OPr(b).

Let Y be the locus of points y ∈ Pr such that the fiber of α at y has rank 0.
There are three cases:

• If b−a < 0 then α = 0 and Y = Pr.
• If b−a = 0 then either Y = Pr or Y = ∅.
• If b − a > 0 then Y is always nonempty, and has codimension ≤ 1 by

Macaulay’s formula, Theorem A2.54, or just the Principal Ideal Theorem,
of which Macaulay’s Theorem is a generalization.

Thus the case in which Macaulay’s formula is relevant is the case where E ∗
1 ⊗E2 =

OPr(b−a) with b−a > 0. This suggests the general case: by [Fulton and Lazarsfeld
1983, Prop. 3.5], the determinantal loci are really nonempty if E ∗

1 ⊗E2 is ample
in the vector bundle sense. This turns out to be true for the bundles that appear
in the Brill–Noether theorem, completing the proof.

As promised, we can use the Brill–Noether theorem to give a lower bound for
the number b(X) that is better than p+1:
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Theorem 8.17 (Schreyer). If X ⊂ Pr is a curve ,embedded by a complete
linear series of degree 2g+1+p, with p ≥ 0, then

b(X) ≥ p+1+
⌊g
2

⌋
.

Proof. Theorem 8.16 tells us that X must have a line bundle F of degree 1+
�g/2� with h0F ≥ 2. Let D be the divisor corresponding to a global section
of F . As before, set L = OX(1). The codimension of the span of D in Pr is
number of independent hyperplanes containing D, that is h0L (−D). By the
Riemann–Roch formula,

h0L (−D) ≥ deg L −deg D−g+1 = 2g+1+p−
⌈g
2

⌉
−1−g+1 = p+1+

⌊g
2

⌋
,

and the desired result follows from Theorem 8.12.

With this lower bound for b(X) in hand, we turn to the question of an upper
bound. When X ⊂ Pr is the rational normal curve, then the Eagon–Northcott
construction (Theorem A2.60) shows that the quadratic strand is the whole
resolution. Thus b(X) = 1 + pdSX = r. However, b(X) ≤ r− 1 for curves of
higher genus. To derive this bound we use Koszul homology, which enables us to
go directly from information about the βi,i+1(X) to information about quadrics
in the ideal of X.

Theorem 8.18. Suppose that K is algebraically closed . If I ⊂ S is a homoge-
neous ideal not containing any linear form, then βr,r+1(S/I) is nonzero if and
only if , after a linear change of variables, I contains the ideal of 2×2 minors of
a matrix of the form (

x0 · · · xs xs+1 · · · xr

�0 · · · �s 0 · · · 0

)
where 0 ≤ s < r and �0, . . . , �s are linearly independent linear forms.

See Exercise 8.10 for an example in the non–algebraically closed case.

Proof. Consider the Koszul complex

K(x0, . . . , xr) : 0 � ∧r+1
Sr+1(−r−1)

δ� · · · δ� Sr+1(−1)
δ� S.

By Theorem 8.15 it suffices to show that if u ∈ ∧r
Sr+1(−r) is an element

of degree r + 1 such that δ(u) �= 0, then the syzygy ideal of u has the given
determinantal form.

Let e0, . . . , er be the basis of Sr+1 such that δ(ei) = xi. There is a basis for∧r−1
Sr+1 consisting of all products of “all but one” of the ej ; we shall write

ie = e0∧· · ·∧ei−1∧ei+1∧· · ·∧er
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for such a product. Similarly, we write ije for the product of all but the i-th and
j-th basis vectors, so the ije form a basis of

∧r−1
Sr+1.

Suppose that u =
∑

i mi ie. Since deg u = i+1, the mi are linear forms. Now

δ( ie) =
∑
j<i

(−1)jxj ije+
∑
j>i

(−1)j−1xj ije,

so

δ(u) =
∑
g<h

(
(−1)gxgmh +(−1)h−1xhmg

)
ije

=
∑
g<h

det
(

(−1)gxg (−1)hxh

mg mh

)
ije

=
∑
g<h

(−1)g+h det
(

xg xh

(−1)gmg (−1)hmh

)
ije.

Setting �′i = (−1)imi, it follows that the syzygy ideal of u is the ideal of 2×2
minors of the matrix

M =
(

x0 x1 · · · xr

�′0 �′1 · · · �′r

)
.

If we set e = e0∧· · ·∧er, then δ(e) =
∑

(−1)ixi ie. Moreover, the Koszul complex
is exact, so the hypothesis δ(u) �= 0 translates into the hypothesis that u is not
a scalar multiple of δ(e). It follows in particular that the two rows R1, R2 of the
matrix M , regarded as vectors of linear forms, are linearly independent, so no
scalar linear combination of R1 and R2 can be 0. If the elements �′i are linearly
dependent, then after a column transformation and a linear change of variables,
the matrix M will have the desired form. Furthermore, we could replace the
second row R2 by λR1 +R2 for any λ ∈ K without changing the situation, so
it is enough to show that the linear forms in the vector λR1 +R2 are linearly
dependent for some λ.

Each vector �0, . . . , �r of r + 1 linear forms corresponds to a linear transfor-
mation of the space of linear forms sending xi to �i. Because R2 is not a scalar
multiple of R1, the set of vectors λR1+R2 correspond to a line in the projective
space of matrices modulo scalars. In this projective space, any line must meet
the hypersurface of matrices of vanishing determinant, so some row λR1 +R2

consists of linearly dependent forms, and we are done. (This last argument is a
special case of a general fact about 1-generic matrices, for which see [Eisenbud
1988, Proposition 1.3].)

Putting these ideas together, we can characterize rational normal curves in
terms of syzygies.

Corollary 8.19. Suppose that X ⊂ Pr is an irreducible nondegenerate curve
such that SX is Cohen–Macaulay and some hyperplane section H∩X of X con-
sists of simple points in linearly general position. X is a rational normal curve
if and only if b(X) = r.
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Proof. The points of a general hyperplane section of the rational normal curve
P1 � X ⊂ Pr correspond to the roots of a general polynomial of degree r, so
they are distinct, simple and independent. We already know that βr−1,r(X) �= 0
and βr,r+1(X) = 0, so b(X) = r.

Conversely, the hypothesis b(X) = r means that βr−1,r �= 0. Let Y be a
hyperplane section Y = X ∩H. After a change of variable, we may suppose
that the ideal of H is generated by the last variable, xr. Since SX is Cohen–
Macaulay, the minimal free resolution of SY as an S = S/(xr)-module is obtained
by reducing the resolution of SX modulo xr.

We consider Y as a subset of H = Pr−1. Write βr−1,r(SY , S) for the graded
Betti number of this S-free resolution. We have βr−1,r(SY , S) �= 0 and S has only
r variables, so we may apply Theorem 8.18. In particular, the ideal of Y contains
a product (�0, . . . , �s)(xs+1, . . . , xr−1) with 0 ≤ s < r−1. Since Y is reduced, it
is contained in the union of the linear subspaces L and L′ in Pr−1 defined by the
ideals (�0, . . . , �s) and (xs+1, . . . , xr−1) respectively. The dimensions of L and L′

are r− 1− (s+1) < r− 1 and s < r− 1. Since the points of Y are in linearly
general position, at most (r−1− (s+1))+1 points of Y can be contained in L
and at most s+1 points of Y can be contained in L′, so the cardinality of Y ,
which is the degree of X, is at most

deg X ≤ (r−1−(s+1)+1)+(s+1) = r.

By Theorem 6.8, X is a rational normal curve.

Corollary 8.20. If X ⊂ Pr is a curve embedded by a complete linear series
of degree 2g + 1 + p, with p ≥ 0, and X is not a rational normal curve, then
b(X) < r. In particular , the graded S-module wX = ⊕H0(ωX(n)) is generated by
H0(ωX).

The method explained at the end of Section 2B can be used to derive the value
of the second-to-last Betti number in the cubic strand from this; see Exercise
8.9.

Proof. The hypothesis of Corollary 8.19 holds for all smooth curves X embed-
ded by linear series of high degree. The Cohen–Macaulay property is proved in
Theorem 8.1 and the general position property is proved in the case char K = 0
in Exercises 8.18–8.20. A general proof may be found in [Rathmann 1987].

Because pdSX ≤ r−1 we have b(X) ≤ r. By Corollary 8.19, except possibly
b(X) < r.

To prove the second statement we must show that β0,m(wX) = 0 for m �= 0.
Since SX is Cohen–Macaulay, the dual of its free resolution, twisted by −r−1,
is a free resolution of the canonical module wX = Extr−1(SX , S(−r−1)). Thus
β0,m(wX) = βr−1,r+1−m(SX). When m ≥ 2 this is zero because IX is 0 in degrees
≤ 1, and when m < 0 we have H0(ωX(m)) = 0 because then ωX(m) has negative
degree. Thus only β0,0(wX) = βr−1,r(SX) and β0,1(wX) could be nonzero. But
βr−1,r(SX) = 0 by the first part of the Corollary.
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8C Conjectures and Problems

Again, let X be a (smooth irreducible) curve embedded in Pr as a curve of degree
d = 2g+1+p ≥ 2g+1 by a complete linear series |L |. We return to the diagram
at the end of the introduction to Section 8B:

0 1 · · · a a+1 · · · b−1 b · · · r−1 = g+p

0 1 − · · · − − · · · − − · · · −
1 − (

d−g−1
2

) · · · ∗ ∗ · · · ∗ − · · · -
2 − − · · · − ∗ · · · ∗ ∗ · · · g

We have shown that

p ≤ a ≤ p+max
(
0,
⌈g−p−3

2

⌉)
and

p+1+
⌊g
2

⌋
≤ b ≤ r−1.

Using Proposition 2.7 and Corollary 8.4 we can compute some of the nonzero
graded Betti numbers, namely βi,i+1 for i ≤ a+1 and βi,i+2 for i ≥ b−1 in terms
of g and d. When b(X) ≤ a(X)+2 (and this includes all cases with g ≤ 3) we
get the values of all the graded Betti numbers. However, in the opposite case, for
example when g ≥ 4, p ≥ 2, we will have both βa,a+2 �= 0 and βa+1,a+2 �= 0, so
βa,a+2 cannot be determined this way. In such cases the remaining values, and
their significance, are mostly unknown.

We can probe a little deeper into the question of vanishing in the cubic strand,
that is, the value of a(X). Part 3 of Theorem 8.8 shows that, when the degree d
is at least 3g−2, the value of a(X) is accounted for by degenerate secant planes
to X. But when 2g +1 ≤ d < 3g− 2, other phenomena may intervene, as the
next example shows.

Example 8.21. When does a high degree curve require equations of
degree 3?
Suppose that X ⊂ Pr is a curve embedded by a complete linear series of degree
d = 2g+1+p. By Corollary 8.2, the ideal IX of X is generated by forms of degrees
≤ 3. We know that IX contains exactly

(
g+2
2

)
quadrics. But these quadrics might

not generate the ideal of X. For example, if X has a trisecant line L, every
quadric containing X vanishes at three points L, and thus vanishes on all of L.
This shows that IX is not generated by quadrics. (This is an simple special case
of Theorem 8.8.)

Another way to see that IX is not generated by quadrics is to show that the
quadrics it contains have “too many” linear relations. By Corollary 8.4, we may
choose linear forms x, y ∈ S that form a regular sequence on SX , and the nonzero
values of the Hilbert function of SX/(x, y)SX are 1, g, g. Using Proposition 2.7
we see that

β1,3(SX)−β2,3(SX) = g2−g

(
g

2

)
+
(

g

3

)
= g2−2

(
g+1

3

)
.



170 8. Curves of High Degree

From this it follows that if β2,3(SX) > 2
(
g+1
3

)−g2, then β1,3(SX) �= 0. (A similar
argument shows that if any Betti number βj−1,j(SX) in the quadratic strand is
unusually large, then the Betti number βj−2,j in the cubic strand is nonzero, so
a(X) ≤ j−3.)

One geometric reason for the quadratic strand to be large would be the pres-
ence of a special variety containing X (Theorem 8.12). The most extreme exam-
ples come from two-dimensional scrolls, defined by the 2×2 minors of a 1-generic
matrix of linear forms on Pr. Such scrolls appear, for example, when X is hyper-
elliptic in the sense that g ≥ 2 and there is a degree 2 map X → P1. Let D be a
fiber of this map, so that deg D = 2 and h0(OX(D) = 2. The multiplication ma-
trix H0(OX(D))⊗H0(L (−D)) → H0L = S1 corresponds to a 2×h0(L (−D))
matrix of linear forms. Since L has degree 2g + 1, the line bundle L (−D) is
nonspecial, so the Riemann–Roch theorem yields h0L (−D) = g+p−1 = r−2.
By Theorem 6.4 the variety Y defined by the 2×2 minors is irreducible and has
the “generic” codimension for a variety defined by such matrices, namely r−2,
so it is a surface, the union of the lines spanned by divisors linearly equivalent
to D (see the equality (*) on page 100 and [Eisenbud 1988]). Moreover X ⊂ Y
by Proposition 6.10.

The minimal free resolution of S/IY is an Eagon–Northcott complex, and it
follows that β2,3(SY ) = 2

(
r−2
3

)
. By Theorem 8.12

β2,3(SX) ≥ 2
(

r−2
3

)
= 2
(

g−1
3

)
.

But 2
(
g−1
3

)
> 2
(
g+1
3

)−g2 for every g ≥ 1. This proves the first statement of the
following Proposition.

Proposition 8.22. If X ⊂ Pr is a hyperelliptic curve embedded by a complete
linear series |L | of degree 2g+1, then IX is not generated by quadrics (so a(X) =
0). Moreover , if g ≥ 4 and L is general in Pic2g+1(X), then X has no trisecant .

Using the same method one can show that a(X) = p whenever X ⊂ Pr is
hyperelliptic of degree 2g+1+p (Exercise 8.15).

Proof. We can characterize a trisecant as an effective divisor D of degree 3 on
X lying on r− 2 independent hyperplanes, which means h0L (−D) = r− 2.
Since deg L (−D) = 2g + 1− 3 = 2g − 2, the Riemann–Roch theorem yields
h0L (−D) = 2g−2+h1L (−D) = r−1+h0(ωX⊗L −1(D)). Since ωX⊗L −1(D)
is a line bundle of degree 0, it cannot have sections unless it is trivial. Unwinding
this, we see that there exists a trisecant D to X if and only if the line bundle
L = OX(1) can be written as OX(1) = ωX(D) for some effective divisor D
of degree 3. When g ≤ 3 this is always the case — that is, there is always a
trisecant—by Theorem 8.5.3. But when g ≥ 4 most line bundles of degree 3 are
ineffective, so when L is general X has no trisecant.

It turns out that hyperellipticity is the only reason other than a degenerate
secant plane for having a(X) = p.
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Theorem 8.23. [Green and Lazarsfeld 1988] Suppose that X is a curve of genus
g. If X ⊂ Pr is embedded by a complete linear series of degree 2g +1+p, with
p ≥ 0, and a(X) = p, then either X ⊂ Pr has a degenerate (p+3)-secant plane
(that is, OX(1) = ωX(D) for some effective divisor D) or X is hyperelliptic.

Hyperelliptic curves are special in other ways too; for example b(X) takes on
its maximal value r− 1 for hyperelliptic curves: if X is hyperelliptic, then the
scroll Y ⊃ X constructed above has βr−2,r−1(SY ) �= 0 because the free resolution
is given by the Eagon–Northcott complex of 2×2 minors of a 2×(r−1) matrix.
Thus βr−2,r−1(SX) �= 0 by Theorem 8.12.

More generally, we say that a curve X is δ-gonal if there is a nonconstant map
φ : X → P1 of degree δ. The gonality of X is then the minimal δ such that X is
δ-gonal. (The name came from the habit of calling a curve with a three-to-one
map to P1 “trigonal”.) Suppose that X ⊂ Pr is a δ-gonal curve in a high degree
embedding, and set L = OX(1). Let D be a fiber of a map φ : X → P1 of degree
δ. By the same arguments as before, X is contained in the variety Y defined by
the 2×2 minors of the matrix M(OX(D),L (−D)). This matrix has size at least
2×(r+1−δ), so the Eagon–Northcott complex resolving SY has length at least
r−δ, and b(X) ≥ r−δ+1 by Theorem 8.12. For embedding of very high degree,
this may be the only factor:

Gonality Conjecture. [Green and Lazarsfeld 1985, Conjecture 3.7] If d � g
and X is a δ-gonal curve of genus g embedded by a complete linear series of
degree d in Pr, then b(X) = r−δ+1.

This conjecture was recently verified for generic curves and in some further
cases by Aprodu and Voisin. See [Aprodu 2004].

8D Exercises

1. Suppose that X ⊂ Pr is a curve of genus > 0. Use the sheaf cohomology
description of regularity to prove that the regularity of SX is at least 2.

2. Show that if X ⊂ Pr is any scheme with SX Cohen–Macaulay of regularity
1, then X has degree at most 1+ codimX (this gives another approach to
Exercise 8.1 in the arithmetically Cohen–Macaulay case.)

3. Let X be a reduced curve in Pr. Show that SX is Cohen–Macaulay if and
only if the space of forms of degree n in Pr vanishing on X has dimension at
most (equivalently: exactly)

dim(IX)n =
(

r+n

r

)
−h0OX(n),

or equivalently dim(SX)n = h0OX(n) for every n ≥ 0.
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4. Suppose that X ⊂ Pr is a hyperelliptic curve of genus g. Show that if SX is
Cohen–Macaulay then deg X ≥ 2g +1, by using Exercise 8.3 and the 2× 2
minors of the matrix M(L ′,L ⊗L ′−1) as defined on page 99, where L ′ is
the line bundle of degree 2 defining the two-to-one map from X → P1.

5. Show that if X ⊂ Pr is any variety (or even any scheme) of dimension d, and
νd : X → PN is the d-th Veronese embedding (the embedding by the complete
linear series |OX(d)|) then for d� 0 the image νd(X) is (1+dimX)-regular.
(This can be proved using just Serre’s and Grothendieck’s vanishing theorems
[Hartshorne 1977, Theorems III.2.7 and III.5.2].)

6. Suppose that X is an irreducible algebraic variety of dimension ≥ 1 and that
L �∼= OX is a line bundle on X with H0L �= 0. Show that H0L −1 = 0. (Hint:
A nonzero section of L must vanish somewhere. . . ).

7. Suppose that X is a smooth projective hyperelliptic curve of genus g, and let
L0 be the line bundle that is the pull-back of OP1(1) under the two-to-one
map X → P1. Show that if L is any line bundle on X that is special (which
means h1(L ) �= 0) then L = L a

0 L1 where L1 is a special bundle satisfying
h0L1 = 1 and a ≥ 0. Show under these circumstances that h0L = g + 1.
Deduce that any very ample line bundle on X is nonspecial.

8. Compute all the βi,j for a curve of genus 2, embedded by a complete linear
series of degree 5.

9. Let X ⊂ Pr be a curve of degree 2g +1+p embedded by a complete linear
series in Pr. Use Corollary 8.20 and the method of Section 2B to show that
βr−2,r(X) = g(g+p−1) (the case g = 2, p = 0 may look familiar.)

10. Let r = 1, and let

Q = det
(

x0 x1

−x1 x0

)
; I = (Q) ⊂ R[x0, x1].

Show that βr,r+1(R[x0, x1]/I) �= 0, but that I does not satisfy the conclusion
of Theorem 8.18. Show directly that I does satisfy Theorem 8.18 if we extend
the scalars to be the complex numbers.

11. Prove parts 4 and 5 of Theorem 8.5.

12. Complete the proof ofthe second statement of Theorem 8.8 by showing that
there are effective divisors D and E such that L −1⊗ωX(D) = OX(E) with

deg D ≤ 2+max
(
p+1, �(g+p−1)/2�).

Hint: the numbers are chosen to make deg D+deg E ≥ g.

13. Theorem 8.8 implies that a smooth irreducible curve X of genus g, embedded
in Pr by a complete linear series of degree 2g+1+p, cannot have a degenerate
q-secant plane for q < p+3. Give a direct proof using just the Riemann–Roch
Theorem.
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14. Find a 2× t+1 matrix of linear forms(
�0,0 · · · �0,t

�1,0 · · · �1,t

)
such that the 1+ t elements �1,0, �0,1, �0,2, . . . , �0,t are linearly independent,
but all the 2×2 minors are 0.

15. Let X ⊂ Pr be a hyperelliptic curve embedded by a complete linear series
of degree 2g + 1 + p with p ≥ 0. Show by the method of Section 8C that
a(X) ≤ p, and thus a(X) = p by Theorem 8.8.

Many deep properties of projective curves can be proved by Harris’ “Uniform
Position Principle” [Harris 1979], which says that, in characteristic 0, two sub-
sets of points of a general hyperplane section are geometrically indistinguishable
if they have the same cardinality. A consequence is that the points of a gen-
eral hyperplane section always lie in linearly general position. It turns out that
Theorem 8.1 (in characteristic 0) can easily be deduced from this. The following
exercises sketch a general approach to the arithmetic Cohen–Macaulay property
for “nonspecial” curves— that is, curves embedded by linear series whose line
bundle has vanishing first cohomology—that includes this result.

16. Suppose that X ⊂ Pr is a (reduced, irreducible) curve. Use Exercise 8.2 to
show that if X is linearly normal and the points of some hyperplane section of
X impose independent conditions on quadrics, then SX is Cohen–Macaulay.
If h1OX(1) = 0, show that the converse is also true.

17. Suppose that X is a curve of genus g, embedded in Pr by a complete linear
series of degree d ≥ 2g+1. Show that d ≤ 2(r−1)+1. Deduce from Exercise
2.9 that if the points of the hyperplane section H∩X are in linearly general
position, then they impose independent conditions on quadrics. By Exercise
8.16, this statement implies Theorem 8.1 for any curve of high degree whose
general hyperplane section consists of points in linearly general position.

Here are two sharp forms of the uniform position principle, from [Harris
1979]. The exercises below sketch a proof of the first, and suggest one of its
simplest corollaries.

Theorem 8.24. Let X ⊂ Pr
C

be an irreducible reduced complex projective curve.
If U ⊂ P̌r

C
is the set of hyperplanes H that meet X transversely then the fun-

damental group of U acts by monodromy as the full symmetric group on the
hyperplane section H∩X.

In other words, as we move the hyperplane H around a loop in U and follow
the points of intersection H∩X (which we can do, since the intersection remains
transverse) we can achieve any permutation of the set H∩X. The result can be
restated in a purely algebraic form, which makes sense over any field, and is true
in somewhat more generality.
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Theorem 8.25. [Rathmann 1987] Let S = K[x0, . . . , xr] be the homogeneous
coordinate ring of Pr, and let X ⊂ Pr

K
be an irreducible reduced curve. Assume

that K is algebraically closed , and that either K has characteristic 0 or that X
is smooth. Let H be the universal hyperplane, defined over the field of rational
functions K(u0, . . . , ur), with equation

∑
uixi = 0. The intersection H ∩X is

an irreducible variety and the natural map H∩X → X is a finite covering with
Galois group equal to the full symmetric group on deg X letters.

Theorem 8.25 can be stated as the same way as Theorem 8.24 by using the
étale fundamental group. It remains true for singular curves in P5 or higher-
dimensional spaces. Amazingly, it really can fail for singular curves in P3: [Rath-
mann 1987] contains examples where the general hyperplane section looks like
the set of points of a finite projective plane (with many collinear points, for
example).

Theorem 8.24 may be proved by following the steps in Exercises 8.19–8.20.
But first, here is an application.

18. Use Theorem 8.24 to show that if X ⊂ Pr
C

is an irreducible curve, then the
general hyperplane section Γ = H ∩X consists of points in linearly general
position (If a point p ∈ H ∩X lies in the span of p1, . . . , pk ∈ H ∩X, use a
permutation to show that every point of H∩X lies in this span.) Use Exercise
8.17 to deduce Theorem 8.1 for projective curves over C.

19. Let X ⊂ Pr
C

be a reduced, irreducible, complex projective curve. Show that
a general tangent line to X is simply tangent, and only tangent at 1 point of
X as follows.
(a) Reduce to the case r = 2 by showing that X ⊂ Pr

C
can be projected

birationally into P2 (Show that if r > 2 then there is a point of Pr on
only finitely many (or no) secant lines to X at smooth points. Sard’s
Theorem implies that projection from such a point is generically an iso-
morphism. For a version that works in any characteristic see [Hartshorne
1977, Proposition IV.3.7]).

(b) Assume that r = 2. Show that the family of tangent lines to X is ir-
reducible and one-dimensional, and that not all the tangent lines pass
through a point. (For the second part, you can use Sard’s theorem on the
projection from the point.) Thus the general tangent line does not pass
through any singular point of the curve.

(c) Let U be an open subset of C. Show that the general point of any analytic
map v : U → C2, is uninflected. (This means that there are points p ∈
U such that the derivatives v′(p) and v′′(p) are linearly independent.)
Deduce that the general tangent line is at worst simply tangent at several
smooth points of X.

(d) Let p ∈ X ⊂ P2
C

be an uninflected point. Show that in suitable analytic
coordinates there is a local parametrization at p of the form

v(x) = p+v0(x) with v0(x) = (x, x2).
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Deduce that as p moves only X the motion of the tangent line is approx-
imated to first order by “rolling” on the point p.

p

(e) Conclude that there are only finitely many lines that are simply tangent
to X at more than one point. Thus the general tangent line to X is
tangent only at a single, smooth point.

20. Complete the proof of Theorem 8.24 as follows.

(a) Use Exercise 8.19 to prove that the general tangent hyperplane to X is
tangent at only one point, and is simply tangent there.

(b) Suppose that H meets X at an isolated point p, at which H is simply
tangent to X. Show that a general hyperplane H ′ near H meets X in
two points near p, and that these two points are exchanged as H ′ moves
along a small loop around the divisor of planes near H that are tangent
to X near p. That is, the local monodromy of H ′∩X is the transposition
interchanging these two points.

(c) Show that the incidence correspondence

I :=
{
(p1, p2,H) ∈ X2× P̌r :

p1 �= p2, p1, p2 ∈ H and H meets X transversely
}

is an irreducible quasiprojective variety, and is thus connected (this de-
pends on the complex numbers: over the real numbers, an irreducible
variety minus a proper closed set may be disconnected).

(d) Deduce that the monodromy action in Theorem 8.24 is doubly transi-
tive. Show that a doubly transitive permutation group that contains a
transposition is the full symmetric group.
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Clifford Index and Canonical Embedding

If X ⊂ Pr is a curve embedded by a complete linear series |L | of high degree,
as studied in Chapter 8, then properties of the homogeneous coordinate ring
SX , such as its graded betti numbers, depend both on the curve and on L .
But there is a distinguished linear series on X, called the canonical series. It
is the complete linear series |ωX | associated to the to the canonical bundle ωX ,
the cotangent bundle of the curve. For most curves the canonical series gives an
embedding, and properties of the homogeneous coordinate ring of a curve X in
this embedding are intrinsic properties of X alone. We will call the image of X
under the map defined by |ωX | the canonical model of X, and refer to it as a
canonical curve.

Green’s Conjecture says that the invariants a(X) and b(X), studied in Chapter
8, measure, in the case of canonical curves, the Clifford index of X. In this chapter
we briefly introduce the Clifford index, canonical curves, and Green’s conjecture.
As this book is being completed there are dramatic advances in our knowledge,
and we will finish the chapter with some pointers to this literature.

9A The Cohen–Macaulay Property and the Clifford
Index

To introduce the Clifford index, we will consider the question: when is the ho-
mogeneous coordinate ring of a curve X ⊂ Pr Cohen–Macaulay? To avoid tech-
nicalities, we will restrict to the case of smooth curves. By Proposition 8.3 this
is the case if and only if the linear series of hypersurface sections of degree d on
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X is complete for every d. In particular, the linear series of hyperplane sections
must be the complete. It makes no difference to restrict our attention to the
linear span of X, and thus to assume that X is nondegenerate in Pr. With this
restriction, to say that the linear series of hyperplane sections is complete is to
say that X is embedded by the complete series |L |, where L is the line bundle
OX(1). Thus we may restate the original question: for which line bundles L
on a curve X is it the case that the homogeneous coordinate ring of the curve
embedded by |L | is Cohen–Macaulay? Theorem 8.1 asserts that this is the case
whenever deg L ≥ 2g+1. What about bundles of lower degree?

For at least one sort of curve, there are no such bundles of lower degree: Recall
that X is hyperelliptic if X has genus ≥ 2 and X admits a map of degree 2 onto
P1, or, equivalently, X has a line bundle of degree 2 with 2 independent global
sections (such a line bundle is then unique.) Exercise 8.4 shows that if X ⊂ Pr

is a hyperelliptic curve with SX Cohen–Macaulay, then X must have degree
≥ 2g+1, so Theorem 8.1 is sharp in this sense. However, among curves of genus
≥ 2, hyperelliptic curves are the only curves for which Theorem 8.1 is sharp! To
give a general statement we will define the Clifford index, which measures how
far a curve is from being hyperelliptic. It may be thought of as a refinement of
the gonality, the lowest degree of a nonconstant morphism from the curve to the
projective line; the Clifford index is the gonality minus 2 in many cases.

The name “Clifford index” comes from Clifford’s Theorem (see, for example,
[Hartshorne 1977, Theorem IV.5.4]). Recall that a line bundle L on a curve X
is called special if h1(L ) �= 0. Clifford’s classic result gives an upper bound on
the number of sections of a special line bundle L . If we set r(L ) = h0(L )−1,
the dimension of the projective space to which |L | maps X, Clifford’s Theorem
asserts that a special line bundle L satisfies r(L ) ≤ (deg L )/2, with equality if
and only if L = OX or L = ωX or X is hyperelliptic and L = L k

0 , where L0

is the line bundle of degree 2 with two independent sections and 0 ≤ k ≤ g−1.
With this in mind, we define the Clifford index of (any) line bundle L on a

curve X to be

Cliff L = deg L −2(h0(L )−1) = g+1−h0(L )−h1(L ),

where g is the genus of X and the two formulas are related by the Riemann–Roch
Theorem.

For example, if L is nonspecial (that is, h1L = 0) then Cliff L = 2g−deg L
depends only on the degree of L , and is negative when deg L ≥ 2g+1. By Serre
duality,

Cliff L = Cliff(L −1⊗ωX).

Finally, the Clifford index of the curve X of genus g ≥ 4 is defined by taking
the minimum of the Clifford indices of all “relevant” line bundles on X:

Cliff X = min{Cliff L | h0L ≥ 2 and h1L ≥ 2}.
If g ≤ 3 (in which case there are no line bundles L with h0L ≥ 2 and h1L ≥ 2)
we instead make the convention that a nonhyperelliptic curve of genus 3 has
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Clifford index 1, while any hyperelliptic curve or curve of genus ≤ 2 has Clifford
index 0.

Thus, by Clifford’s Theorem, Cliff X ≥ 0 and Cliff X = 0 if and only if X is
hyperelliptic (or g ≤ 1). If L is a line bundle defining a map of degree δ from X
to P1, and h1(L ) ≥ 2 (the Brill-Noether Theorem 8.16 shows that this is always
the case if X if X is δ-gonal (see page 171), then h0(L ) ≥ 2, so Cliff L ≤ δ−2.
On the other hand, the Brill-Noether Theorem also shows the gonality of any
curve is at most

⌈
1
2 (g+2)

⌉
, and it follows that

0 ≤ Cliff X ≤ ⌈ 12 (g−2)
⌉
.

The sharpness of the Brill–Noether Theorem for general curves implies that for
a general curve of genus g we actually have Cliff X =

⌈
1
2 (g−2)

⌉
, and that (for

g ≥ 4) the “relevant” line bundles achieving this low Clifford index are exactly
those defining the lowest degree maps to P1.

For a first example where the gonality does not determine the Clifford index,
let X be a smooth plane quintic curve. The line bundle L embedding X in the
plane as a quintic has

g = 6, deg L = 5, h0L = 3,

whence
h1L = 3, Cliff L = 1 and Cliff X ≤ 1.

Any smooth plane quintic X is in fact 4-gonal: the lowest degree maps X → P1

are projections from points on X, as indicated in the drawing.

p

X

πp

In general, one can show that Cliff X = 1 if and only if X is either trigonal or X
can be represented as a smooth plane quintic. This sort of analysis can be carried
much farther; see for example [Eisenbud et al. 1989], joint work with Herbert
Lange and Frank-Olaf Schreyer.

Using the Clifford index we are able to state a strong result about the Cohen–
Macaulay property:
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Theorem 9.1. Suppose that X ⊂ Pr is a smooth curve over an algebraically
closed field of characteristic 0, embedded by a complete linear series. If

Cliff OX(1) < Cliff X,

then SX is Cohen–Macaulay .

This was first proved in [Green and Lazarsfeld 1985] over the complex numbers.
See [Koh and Stillman 1989] for a proof in all characteristics, along lines devel-
oped in this book. Theorem 9.1 includes Theorem 8.1 and some other classical
assertions:

Corollary 9.2. Let X ⊂ Pr be a smooth nondegenerate curve of degree d and
genus g ≥ 2, embedded by a complete linear series, and let L = OX(1). The
homogeneous coordinate ring SX is Cohen–Macaulay if any of the following con-
ditions are satisfied :

1. (Castelnuovo) d ≥ 2g+1.
2. (Max Noether) X is nonhyperelliptic and L = ωX .
3. (Arbarello, Cornalba, Griffiths, Harris) X is a general curve, L is a general

bundle on X, and d ≥ ⌊ 32g
⌋
+2.

Proof. 1. If d ≥ 2g + 1 then L is nonspecial so Cliff L = 2g− d < 0 while
Cliff X ≥ 0.

2. Cliff ωX = 0, and by Clifford’s theorem Cliff X = 0 only if X is hyperelliptic.

3. If X is general, Cliff X equals
⌈

1
2 (g−2)

⌉
. If L is general of degree at least 3

2g,
then L is nonspecial by Lemma 8.5, so Cliff L = 2g−d. Arithmetic shows that
2g−d <

⌈
1
2 (g−2)

⌉
if and only if d ≥ � 3

2g�+2 (compare Theorem 8.16). See and
[Arbarello et al. 1985, Exercises V.C] for further information.

Because of the way Cliff X is defined, the only very ample bundles that can
have Cliff L < Cliff X must have h1L ≤ 1. It would be interesting to know
what is true beyond this range. Some results of this sort appear in [Yau and
Chen 1996].

9B Green’s Conjecture

The homogeneous coordinate ring of a canonical curve has been an object of
study in algebraic geometry and commutative algebra since the work of Petri
[1922] in the early part of the twentieth century. It was my own path of entry
from commutative algebra to algebraic geometry, and it still contains plenty of
mysteries! In this last section we will concentrate on one of the major conjectures,
relating the the free resolution of the homogeneous coordinate ring of a canonical
curve with the Clifford index of the curve.
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The Homogeneous Coordinate Ring of a Canonical Curve

Let X be a smooth projective curve. If X has genus 0—and since we are working
over an algebraically closed field, this just means X ∼= P1 —the canonical bundle
has only the 0 section. For a curve of genus g > 0, however, the canonical series
is basepoint-free. If X has genus 1, the canonical line bundle is OX , and the
canonical model is a point. For a curve of genus 2, there are 2 sections, so the
canonical model is P1. In these cases the canonical series is not very ample. But
for g ≥ 3, the canonical series is very ample on most curves of genus g.

Theorem 9.3. [Hartshorne 1977, Proposition IV.5.2] Let X be a smooth curve
of genus g ≥ 2. If X is hyperelliptic, then the canonical series maps X two-to-
one onto X, which is a rational normal curve of degree g−1 in Pg−1. Otherwise,
the canonical series is very ample and embeds X = X as a curve of degree 2g−2
in Pg−1.

Since the hyperelliptic case is so simple we will normally exclude it from con-
sideration, and we will discuss only canonical models X ⊂ Pg−1 of smooth, non-
hyperelliptic curves of genus g ≥ 3. By Part 2 of Corollary 9.2, the homogeneous
coordinate ring SX of X in its canonical embedding is then Cohen–Macaulay.

For example, it follows from Exercise 9.2 or from the adjunction formula
[Hartshorne 1977, Example II.8.20.3] that any smooth plane curve of degree
4 = 2 ·3−2 is the canonical model of a smooth nonhyperelliptic curve of genus
3, and conversely; see Exercise 9.1. The Betti diagram is

g = 3 :

0 1

0 1 −
1 − −
2 − −
3 − 1

For a nonhyperelliptic curve X of genus g = 4, we see from the Hilbert function
that the canonical model X ⊂ P3 has degree 6 and lies on a unique quadric. In
fact, X is a complete intersection of the quadric and a cubic (see Exercise 9.3).
Conversely, the adjunction formula shows that every such complete intersection
is the canonical model of a curve of genus 4.

g = 4 :

0 1 2

0 1 − −
1 − 1 −
2 − 1 −
3 − − 1

Finally, we shall see in Exercise 9.4 that two Betti diagrams are possible for
the homogeneous coordinate ring of the canonical model of a curve of genus 5:
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g = 5 :

0 1 2 3

0 1 − − −
1 − 3 − −
2 − − 3 −
3 − − − 1

or

0 1 2 3

0 1 − − −
1 − 3 2 −
2 − 2 3 −
3 − − − 1

In all these examples we see that SX has regularity 3. This is typical:

Corollary 9.4. If X ⊂ Pg−1 is the canonical model of a nonhyperelliptic curve
of genus g ≥ 3, the Hilbert function of SX is given by

HSX
(n) =

⎧⎪⎨⎪⎩
0 if n < 0,
1 if n = 0,
g if n = 1,
(2g−2)n−g+1 = (2n−1)(g−1) if n > 1.

In particular , β1,2(SX), the dimension of the space of quadratic forms in the
ideal of X, is

(
g−1
2

)
and the Castelnuovo–Mumford regularity of SX is 3.

Proof. Because SX is Cohen–Macaulay, its n-th homogeneous component (SX)n

is isomorphic to H0(OX(n)) = H0(ωn
X). Given this, the Hilbert function values

follow at once from the Riemann–Roch theorem.
Because SX is Cohen–Macaulay we can find a regular sequence on X consisting

of 2 linear forms �1, �2. The regularity of SX is the same as that of SX/(�1, �2).
The Hilbert function of this last module has values 1, g− 2, g− 2, 1, and thus
reg SX/(�1, �2) = 3. (See also Theorem 4.2.)

The question addressed by Green’s conjecture is: which βi,j are nonzero? Since
the regularity is 3 rather than 2 as in the case of a curve of high degree, one
might think that many invariants would be required to determine this. But in
fact things are simpler than in the high degree case, and a unique invariant
suffices. The simplification comes from a self-duality of the resolution of SX ,
equivalent to the statement that SX is a Gorenstein ring. See [Eisenbud 1995,
Chapter 20] for an introduction to the rich theory of Gorenstein rings, as well as
[Huneke 1999] and [Eisenbud and Popescu 2000] for some manifestations.

As in the previous chapter, we write a(X) for the largest integer a such that
βi,i+2(SX) vanishes for all i ≤ a(X), and b(X) for the smallest integer such that
βi,i+1(SX) = 0 for all i ≥ b(X). The next result shows that, for a canonical
curve, b(X) = g−2−a(X).

Proposition 9.5. If X ⊂ Pg−1 is the canonical model of a nonhyperelliptic
curve of genus g ≥ 3, then wX = Extg−2(SX , S(−g)) ∼= SX(1), so the minimal
free resolution of SX is, up to shift , self-dual , with

βi,j(SX) = βg−2−i,g+1−j(SX).
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Setting βi = βi,i+1 the Betti diagram of SX has the form

0 1 · · · a a+1 · · · b−1 b · · · g−3 g−2
0 1 − · · · − − · · · − − · · · − −
1 − β1 · · · βa βa+1 · · · βg−3−a − · · · − −
2 − − · · · − βg−3−a · · · βa+1 βa · · · β1 −
3 − − · · · − − · · · − − · · · − 1

where the terms marked “−” are zero, the βi are nonzero, and β1 =
(
g−2
2

)
.

Proof. By Theorem 9.3, local duality (Theorem A1.9), and Corollary 9.2 we have

SX =
⊕

H0OX(n) =
⊕

H0(ωn
X) =

⊕
H0(ωX(n−1)) = wX(−1).

The rest of the statements follow.

Here is Green’s Conjecture, which stands at the center of much current work
on the topics of this book.

Conjecture 9.6. [Green 1984b] Let X ⊂ Pg−1 be a smooth nonhyperelliptic
curve over a field of characteristic 0 in its canonical embedding . The invariant
a(X) of the free resolution of SX is equal to Cliff X−1.

The first case in which Green’s conjecture is nontrivial is that of a nonhyper-
elliptic curve X of genus 5. In this case X has Clifford index 1 if and only if X
has a degree 3 divisor that “moves” in the sense that h0OX(D) = 2; otherwise
X has Clifford index 2. If the Clifford index of X is 2, then the canonical model
X ⊂ P4 is a complete intersection of 3 quadrics, with Betti diagram

g = 5, Cliff X = 2 :

0 1 2 3

0 1 − − −
1 − 3 − −
2 − − 3 −
3 − − − 1

On the other hand, if X has Clifford index 1 then the Betti diagram of X is

g = 5, Cliff X = 1 :

0 1 2 3

0 1 − − −
1 − 3 2 −
2 − 2 3 −
3 − − − 1

(Exercise 9.4). In the case g = 6 one encounters for the first time a case in which
the Clifford index itself, and not just the gonality of X enters the picture. If X
is a smooth plane curve of degree d, then by the adjunction formula [Hartshorne
1977, Example 8.20.3] the canonical series is the restriction of OP2(d−3) = OP2(2)
to X. Thus in the case d = 5 the canonical model of X in P5 is the image of
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X ⊂ P2 under the quadratic Veronese map ν2 : P2 → P5. The Veronese surface
V := ν2(P2) has degree 4, and thus its hyperplane section is a rational normal
curve. Since SV is Cohen–Macaulay (A2.44), the graded Betti numbers of SV

are the same as those for the rational normal quartic, namely

0 1 2 3

0 1 − − −
1 − 6 8 3

It follows from Theorem 8.12 that β3,4(S/IX) �= 0, so a(X) = 0 in this case,
just as it would if X admitted a line bundle L of degree 3 with h0L = 2. This
corresponds to the fact that Cliff X = 1 in both cases.

Green and Lazarsfeld proved one inequality of the Conjecture, using the same
technique that we have used above to give a lower bound for b(X) [Green 1984b,
Appendix].

Corollary 9.7. With hypothesis as in Green’s Conjecture,

a(X) ≤ Cliff X−1.

Proof. Let D be a divisor on X with h0OX(D) ≥ 2 and h1OX(D) ≥ 2. Theorem
8.12 shows that b(X) is bounded below by

h0OX(D)−1+h0ωX(−D)−1 = h0OX(D)+h1OX(D)−2 = g−1−Cliff OX(D).

By virtue of the duality above, this bound can also be viewed as an upper bound

a(X) = g−2−b(X) ≤ g−2−(g−1−Cliff OX(D)) = Cliff OX(D)−1.

Thus, to prove Green’s Conjecture for a particular curve X we need to show
that a(X) ≥ Cliff(X)− 1. As of this writing the result is known for all curves
of genus up to 9 (see [Schreyer 1986] for genus up to 8, and [Hirschowitz and
Ramanan 1998a], [Mukai 1995] and [Schreyer 1989] for different subcases of genus
9). It is known for all curves of Clifford index at most 4 [Voisin 1988, Schreyer
1991], and it is also known for some special classes of curves, such as those that
can be represented as smooth plane curves [Loose 1989].

On the other hand, The obvious extension of Green’s conjecture to positive
characteristic is known to fail in characteristic 2 for curves of genus 7 [Schreyer
1986] and 9 [Mukai 1995] and there is strong probabilistic evidence that it fails
in various other cases of positive characteristic. For this and a very interesting
group of conjectures about the possible Betti diagrams of canonical curves of
genus up to 14 in any characteristic, see [Schreyer 2003, Section 6].

As of this writing, a series of spectacular papers [Voisin 2002, Voisin 2003,
Teixidor I Bigas 2002] has greatly advanced our knowledge: roughly speaking,
we now know that the conjecture holds for the generic curves of each genus
and Clifford index. By [Hirschowitz and Ramanan 1998b] this implies that the
conjecture is true for every curve of odd genus g that has the maximal possible
Clifford index, 1

2 (g−1).
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As always in mathematics, when one approaches the frontier one begins to re-
alize that the unknown is far larger and than the known. But the recent progress
in Green’s conjecture offers plenty of hope for further breakthroughs. Perhaps
the reader will take the next step!

9C Exercises

1. Show that a smooth plane curve is a canonical model if and only if it is a
plane quartic (you might use the Adjunction Formula of [Hartshorne 1977,
Example 8.20.3].

2. Suppose that X ⊂ Pg−1 is a nondegenerate curve such that SX is Cohen–
Macaulay. Show that X is the canonical model of the abstract curve X if and
only if

βg−2,n =
{ 1 if n = g,

0 otherwise.

3. Prove that a curve in P3 is a canonical model if and only if it is a complete
intersection of a quadric and a cubic. (You might use Exercise 9.2.)

4. Let X ⊂ P4 be a nondegenerate smooth irreducible curve. If X is the complete
intersection of three quadrics, show that X is a canonical model. In this case
a(X) = 1.

Now let X ⊂ P4 be a canonical model with a(X) = 0; that is, suppose
that IX is not generated by quadrics. Show that the quadratic forms in IX

form a three-dimensional vector space, and that each of them is irreducible.
Show that they define a two-dimensional irreducible nondegenerate variety Y
of degree 3. This is the minimal possible degree for a nondegenerate surface in
P4 [Hartshorne 1977, Exercise I.7.8]. By the classification of such surfaces (see
for example [Eisenbud and Harris 1987]) Y is a scroll. Using the Adjunction
formula ([Hartshorne 1977, Proposition V.5.5]) show that the curve meets
each line of the ruling of Y in 3 points. The divisor defined by these three
points moves in a one-dimensional linear series by Theorem 9.8, and thus the
Clifford index of X is 1, as required by Green’s Theorem.

5. Suppose that X ⊂ Pg−1 is a smooth, irreducible, nondegenerate curve of de-
gree 2g−2 where g ≥ 3 is the genus of X. Using Clifford’s Theorem (page 178),
show that OX(1) = ωX , so X is a canonical model.

6. Let X ⊂ Pg−1 be the canonical model of a smooth irreducible curve of genus
g ≥ 3. Assume that for a general hyperplane H ⊂ Pg−1 the hyperplane section
Γ = H∩X consists of points in linearly general position. Show that Γ fails by
at most 1 to impose independent conditions on quadrics in H, and imposes
independent conditions on hypersurfaces of degree n for n > 2. Deduce that
the linear series of hypersurfaces of degree n is complete for every n, and thus
that SX is Cohen–Macaulay.
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7. Reinterpret the Riemann–Roch theorem to prove the following:

Theorem 9.8 (Geometric Riemann–Roch). Let X ⊂ Pg−1 be a canon-
ically embedded nonhyperelliptic curve. If D is an effective divisor on X
and L is the smallest linear space in Pg−1 containing D, then h0OX(D) =
deg D−dimL.

Otherwise stated: The (projective) dimension, h0(OX(D))− 1, of the
linear series D equals the amount by which the points of D fail to be linearly
independent. (Some care is necessary when the points of D are not distinct. In
the statement of the theorem, we must insist that L cut X with multiplicity
at least as great as that of D at each point. And “the amount by which the
points of D fail to be linearly independent” requires us to think of the span
of a multiple point as the dimension of the smallest linear space that contains
it, in the sense just given.)

8. Use Theorem 8.9, Corollary 9.7, and Theorem 9.8 to show that for a canoni-
cally embedded, nonhyperelliptic curve X ⊂ Pg−1, with genus g ≥ 4,

a(X) ≤ Cliff OX(D)−1 ≤ d−3.

9. Work through the document “Canonical Embeddings of Plane Curves and Go-
nality” found at www.math.uiuc.edu/Macaulay2/Manual/1617.html as part
of the Macaulay manual.



Appendix 1

Introduction to Local Cohomology

This appendix is an introduction to local cohomology, including the results used
in the text and the connection with the cohomology of sheaves on projective
space. For another version, see [Hartshorne/Grothendieck 1967]; for more results,
and a very detailed and careful treatment, see [Brodmann and Sharp 1998]. A
partial idea of recent work in the subject can be had from the survey [Lyubeznik
2002].

We will work over a Noetherian ring, with a few comments along the way
about the differences in the non-Noetherian case. (I am grateful to Arthur Ogus
and Daniel Schepler for straightening out my ideas about this.)

A1A Definitions and Tools

First of all, the definition: If R is a Noetherian ring, Q ⊂ R is an ideal, and M
is an R-module, then the zeroth local cohomology module of M is

H0
Q(M) := {m ∈M | Qdm = 0 for some d}.

H0
Q is a functor in an obvious way: if ϕ : M → N is a map, the induced map

H0
Q(ϕ) is the restriction of ϕ to H0

Q(M). One sees immediately from this that
the functor H0

Q is left exact, so it is natural to study its derived functors, which
we call Hi

Q.
For example, suppose that R is a local ring and Q is its maximal ideal. If

M is a finitely generated R-module then we claim that H0
Q(M) is the (unique)

largest submodule of M with finite length. On one hand, Nakayama’s Lemma
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shows that any finite length submodule is annihilated by some power of Q, and
thus is contained in H0

Q(M). On the other hand, since R is Noetherian and M is
finitely generated, H0

Q(M) is generated by finitely many elements. Some power
of Qd annihilates each of them, and thus H0

Q(M) is a finitely generated module
over the ring R/Qn, which has finite length, completing the argument. The same
proof works in the case where R is a graded algebra, generated over a field K by
elements of positive degree, the ideal Q is the homogeneous maximal ideal, and
M is a finitely generated graded R-module.

Local Cohomology and Ext

We can relate the local cohomology to the more familiar derived functor Ext.

Proposition A1.1. There is a canonical isomorphism

Hi
Q(M) ∼= lim−→ Exti

R(R/Qd,M),

where the limit is taken over the maps Exti
R(R/Qd,M) → Exti

R(R/Qe,M) in-
duced by the natural epimorphisms R/Qe �� R/Qd for e ≥ d.

Proof. There is a natural injection

Ext0R(R/Qd,M) = Hom(R/Qd,M) � M

φ � φ(1)

whose image is {m ∈M | Qdm = 0}. Thus the direct limit lim−→Ext0R(R/Qd,M) =
lim−→Hom(R/Qd,M) may be identified with the union⋃

d {m ∈M | Qdm = 0} = H0
Q(M).

The functor Exti
R(R/Qd,−) is the i-th derived functor of HomR(R/Qd,−). Tak-

ing filtered direct limits commutes with taking derived functors because of the ex-
actness of the filtered direct limit functor [Eisenbud 1995, Proposition A6.4].

Corollary A1.2. Any element of Hi
Q(M) is annihilated by some power of Q.

Proof. Any element is in the image of some Exti
R(R/Qd,M), which is itself

annihilated by Qd.

Local Cohomology and Čech Cohomology

Another useful expression for the local cohomology is obtained from a Čech
complex: Suppose that Q is generated by elements (x1, . . . , xt). We write [t] =
{1, . . . , t} for the set of integers from 1 to t, and for any subset J ⊂ [t] we let
xJ =

∏
j∈J xj . We denote by M [x−1

J ] the localization of M by inverting xJ .
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Theorem A1.3. Suppose that R is a Noetherian ring and Q = (x1, . . . , xt).
For any R-module M the local cohomology Hi

Q(M) is the i-th cohomology of the
complex

C(x1, . . . , xt; M) : 0 � M
d�

t⊕
1

M [x−1
i ]

d� · · ·

�
⊕

#J=s

M [x−1
J ]

d� · · · � M [x−1
{1,...,t}] � 0,

whose differential takes an element

mJ ∈M [x−1
J ] ⊂

⊕
#J=s

M [x−1
J ]

to the element
d(mJ ) =

∑
k/∈J

(−1)oJ (k)mJ∪{k},

where oJ(k) denotes the number of elements of J less than k, and mJ∪{k} denotes
the image of mJ in the further localization M

[
(xJ∪{k})−1

]
= M [x−1

J ][x−1
k ].

Here the terms of the Čech complex are numbered from left to right, counting
M as the 0-th term, and we write Cs(M) =

⊕
#J=s M [x−1

J ] for the term of coho-
mological degree s. If R is non-Noetherian, then the Čech complex as defined here
does not always compute the derived functors in the category of R-modules of
H0

I() as defined above, even for finitely generated I; see Exercise A1.7. Rather, it
computes the derived functors in the category of (not necessarily quasi-coherent)
sheaves of OSpec R modules. For this and other reasons, the general definition
of the local cohomology modules should probably be made in this larger cate-
gory. As we have no use for this refinement, we will not pursue it further. See
[Hartshorne/Grothendieck 1967] for a treatment in this setting.

Proof. An element m ∈ M goes to zero under d : M →⊕j M [x−1
j ] if and only

if m is annihilated by some power of each of the xi. This is true if and only if
m is annihilated by a sufficiently big power of Q, so H0(C(M)) = H0

Q(M) as
required.

The complex C(x1, . . . , xt; M) is obviously functorial in M. Since localiza-
tion is exact, a short exact sequence of modules gives rise to a short exact se-
quence of complexes, and thus to a long exact sequence in the homology functors
Hi(C(M)). To prove that Hi(C(M)) = Hi

Q(M) we must show it is the derived
functor of H0

Q(M) = H0(C(M)). For this it is enough to show that Hi(C(M)) = 0
when M is an injective module and i > 0 (see for example [Eisenbud 1995, Propo-
sition A3.17 and Exercise A3.15]). We need two properties of injective modules
over Noetherian rings:

Lemma A1.4. Suppose that R is a Noetherian ring , and M is an injective
R-module.
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1. For any ideal Q ⊂ R, the submodule H0
Q(M) is also an injective module.

2. For any x ∈ R, the localization map M →M [x−1] is surjective.

Proof. 1. We must show that if I ⊂ R is an ideal and φ : I → H0
Q(M) is a

map, then φ extends to a map R → H0
Q(M). We first extend φ to an ideal

containing a power of Q: Since I is finitely generated, and each generator goes
to an element annihilated by a power of Q, we see that for sufficiently large d
the ideal QdI is in the kernel of φ. By the Artin–Rees Lemma [Eisenbud 1995,
Lemma 5.1], the ideal QdI contains an ideal of the form Qe∩I. It follows that the
map (φ, 0) : I⊕Qe → H0

Q(M) factors through the ideal I +Qe ⊂ R. Changing
notation, we may assume that I ⊃ Qe from the outset.

By the injectivity of M we may extend φ to a map φ′ : R → M. Since
φ′(Qe) = φ(Qe) ⊂ H0

Q(M), it follows that some power of Q annihilates Qeφ′(1),
and thus some power of Q annihilates φ′(1); that is, φ′(1) ∈ H0

Q(M), so φ′ is the
desired extension.
2. Given m ∈ M and natural number d, we want to show that m/xd is in the
image of M in M [x−1]. Since R is Noetherian, the annihilator of xe in R is equal
to the annihilator of xd+e in R when e is large enough. Thus the annihilator
of xd+e is contained in the annihilator of xem. It follows that there is a map
from the principal ideal (xd+e) to M sending xd+e to xem. Since M is injective,
this map extends to a map R → M ; write m′ ∈ M for the image of 1, so
that xe+dm′ = xem. Since xe(xdm′−m) = 0, the element m′ goes, under the
localization map, to m/xd ∈M [x−1], as required.

To complete the proof of Theorem A1.3 we prove that Hi(C(x1, . . . , xt;M)) =
0 for all i > 0, when M is an injective module. We apply induction on t, the
case t = 0 being obvious. For the case t = 1 we must show that, for any injective
R-module M and any x ∈ R, the localization map M → M [x−1] is surjective,
and this is the content of part 2 of Lemma A1.4.

When t > 1, we observe that the submodules⊕
t∈J

#J=s

M [x−1
J ] ⊂ Cs(x1, . . . , xt;M)

for a subcomplex isomorphic to C(x1, . . . , xt;M)[x−1
J ][1], where the [1] indicates

that the cohomological degree is shifted by 1. Since the quotient involves no
terms where xt is inverted, we get a short exact sequence of complexes

0 � C(x1, . . . , xt−1; M)[x−1
t ][1] � C(x1, . . . , xt; M) �

� C(x1, . . . , xt−1; M) � 0.

The associated long exact sequence contains the terms

Hi−1
(
C(x1, . . . , xt−1; M)

) δi� Hi−1
(
C(x1, . . . , xt−1; M)[x−1

t ]
) �

� Hi
(
C(x1, . . . , xt; M)

) � Hi
(
C(x1, . . . , xt−1; M)

)
.
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It is easy to check from the definitions that the connecting homomorphism δ is
simply the localization map. If M is injective and i > 1 we derive

Hi
(
C(x1, . . . , xt; M)

)
= 0

by induction. For the case i = 1 we use Lemma A1.4, which implies that δ0 :
M → M [x−1

t ] is surjective. By induction, H1(C(x1, . . . , xt; M)) = 0, and the
result follows.

Corollary A1.5. If M is a graded S-module of finite length, then H0
Q(M) = M,

while Hi
Q(M) = 0 for i > 0.

Note the contrast with the case of Exti
S(S/Qj ,M); for example, when M is

the module K, of length 1, the value is nonzero for all j and all 0 ≤ i ≤ r. The
corollary says that in the limit everything goes to zero except when i = 0!

Proof. The first assertion is the definition of H0
Q(M). Since a power of each xi an-

nihilates M, we have M [x−1
i ] = 0 for each i. Thus the complex C(x1, . . . , xt; M)

reduces to 0→M → 0, so the the second assertion follows from Theorem A1.3.

Theorem A1.3 also allows us to compute the Hi
(x0,...,xr)(S) explicitly. For any

finitely generated graded S-module M let M∨ be the graded vector space dual⊕
d(HomK(Md, K), regarded as an S-module by the rule (sφ)(m) := φ(sm) for

s ∈ S, φ ∈ ⊕HomK(Md, K) and m ∈M . As usual we set ωS = S(−r−1), called
the canonical module of S.

Corollary A1.6. If S = K[x0, . . . , xr] is the polynomial ring in r+1 variables,
and Q = (x0, . . . , xr) is the ideal generated by the variables, then Hi

Q(S) = 0 for
i < r+1 while

Hr+1
Q (S) = (ωS)∨

functorially as S-modules. That is, the functor on free S-modules that takes F
to Hr+1

Q (F ) is naturally isomorphic to the functor F �→ (HomS(F, ωS))∨.

Proof. To show that Hi
Q(S) = 0 for i < r + 1 it suffices, since the complex

C(x0, . . . , xr;S) is multigraded, to work on one multi-degree α ∈ Zr+1 at a
time. Let J be the set of those indices j ∈ {0, . . . , r+1} such that αj < 0. The
summand S[x−1

I ] contains the monomial xα if and only if I ⊃ J , so

S[x−1
I ]α =

{
K if I ⊂ J ;
0 otherwise.

Consider the simplex ∆ whose faces are the subsets of K := {0, . . . , r} \ J .
Examining the maps of the complex, we see that the the degree α part of
C(x0, . . . , xr;S) is the reduced chain complex of ∆, where the face with index set
L corresponds to the monomial xα in the component S[x−1

J∪L] of C(x0, . . . , xr;S).
Since the reduced homology of a simplex is 0 unless the simplex is empty, we are
done.
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The same argument shows that Hr
Q(S)α is K if every component of α is

negative, and zero otherwise, which agrees as a vector space with (ωS)∨ =
(HomS(S, ωS))∨. To say that the identification is functorial means that if f :
S(d) → S(e) is a map, so that f ∈ Se−d, then the induced map f∨ : ωS(d)∨ →
ωS(d)∨ is the map f : Hr+1

Q (S(d))→ Hr+1
Q (S(e)) induced by multiplication. For

this we must simply show that the module structure of Hr+1
Q (S) agrees with that

of (ωS)∨.
As an S-module Hr+1

Q (S) is, by definition, the cokernel of the natural map⊕
#I=r

S[x−1
I ] � S[(x0 · · ·xr)−1].

The image is the vector space spanned by those monomials xα such that one of
the components αi of the multi-index α = (α0, . . . , αr) is non-negative. Thus the
cokernel, Hr+1

Q (S), may be identified with the vector space

(x0 · · ·xr)−1K[x−1
0 , · · · , x−1

r ].

The S-module structure on Hr+1
Q (S) induced from S[(x0 · · ·xr)−1] may be de-

scribed, with this identification, by saying that for xβ ∈ S and xα ∈ Hr+1
Q (S) we

have

xβxα =
{

xα+β if all components of α+β are negative,
0 otherwise.

Thus the map Hr+1
Q →⊕d HomK(Sd, K) sending xα to the dual basis vector of

x−α is an isomorphism.

One of the most important applications of local cohomology depends on the
following easy consequence.

Corollary A1.7. Suppose Q = (x1, . . . , xt). If M is an R-module, Hi
Q(M) = 0

for i > t.

Proof. The length of the Čech complex C(x1, . . . , xt; M) is t.

We say that an algebraic set X is defined set-theoretically by n equations if
there is an ideal Q with n generators whose radical is I(X). Corollary A1.7 is a
powerful tool for testing whether this holds. Since the local cohomology Hi

I(M)
depends only on the radical of I, this implies Hi

I(X)(M) = Hi
Q(M) = 0 for all

i > n and all modules M. See [Schmitt and Vogel 1979] and [Stückrad and Vogel
1982] for examples of use of this technique, and [Lyubeznik 2002] for a recent
survey including many pointers to the literature.

By far the most famous open question of this type is whether each irreducible
curve in P3

K
can be defined set-theoretically by just two equations; it is not even

known whether this is the case for the smooth rational quartic curve X in P3
K

defined as the image of the map

P1
K � (s, t)→ (s4, s3t, st3, t4) ∈ P3

K .
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For this curve it is known that Hi
I(X)(M) = 0 for all i > 2 and all modules M

[Hartshorne 1970, Chapter 3], so the local cohomology test is not useful here.
To add to the fun, it is known that if we replace K by a field of characteristic
p > 0 then this curve is set-theoretically the complete intersection of two surfaces
[Hartshorne 1979]. See [Lyubeznik 1989] for an excellent review of this whole
area.

Change of Rings

Suppose ϕ : R → R′ is a homomorphism of rings, Q is an ideal of R, and M
is an R′-module. Using the map ϕ we can also regard M as an R-module. For
any given d, the relation between Exti

R(R/Qd,M) and Exti
R′(R′/Q′d,M), where

Q′ = QR′, is mysterious (there is a change of rings spectral sequence that helps
a little). For some reason taking the limit, and thus passing to local cohomology,
fixes this.

Corollary A1.8. Suppose that ϕ : R → R′ is a homomorphism of Noethe-
rian rings. With notation as above, there is a canonical isomorphism Hi

Q(M) ∼=
Hi

QR′(M).

Proof. If x ∈ R is any element, the localization M [x−1] is the same whether we
think of M as an R-module or an R′-module: it is the set of ordered pairs (m,xd)
modulo the equivalence relation (m,xd) ∼ (m′, xe) if xf (xem−xdm′) = 0 for
some f . Thus the Čech complex C(x1, . . . , xt; M) is the same whether we regard
M as an R-module or an R′-module, and we are done by Theorem A1.3.

Corollary A1.8 fails in the non-Noetherian case even when R = K[t] and I = t;
see Exercise A1.7.

Local Duality

Because it comes up so often in applications, we mention a convenient way to
compute local cohomology with respect to the maximal ideal of a homogeneous
polynomial ring. The same method works more generally over regular local rings,
and, with some care, over arbitrary rings.

Theorem A1.9. Let S = K[x0, . . . , xr] be the polynomial ring , and let m =
(x0, . . . , xr) be the homogeneous maximal ideal . If M is a finitely generated
graded S-module then Hi

m(M) is (as S-module) the graded K-vectorspace dual of
Extr+1−i(M,S(−r−1)).

Proof. Let F : · · ·F1 → F0 be a free resolution of M . Tensoring F with the com-
plex C := C(x0, · · · , xr;S) gives a double complex. If we think of the differentials
from F as horizontal, and the differentials induced from C as vertical, then since
localization is an exact functor the horizontal homology of the double complex
is just the complex C(x0, · · · , xr;M). The i-th homology of C(x0, · · · , xr;M) is
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Hi
Q(M). Thus one spectral sequence of the double complex degenerates, and the

homology of the total complex F⊗C is Hi
Q(M).

By Corollary A1.6 Hi
QFj = 0 for i < r + 1, so the columns of the double

complex have homology only at the end, and the vertical homology of the double
complex is the complex Hr+1

Q (F) ∼= ((Hom(F, ωS))∨. Since A �→ A∨ is an exact
functor, it comutes with homology, and the j-th homology of ((Hom(F, ωS))∨ is
(Extr+1−j

S (M,ωS))∨. Thus the other spectral sequence degenerates too, and the
homology of the total complex F⊗C is (Extr+1−j

S (M,ωS))∨, proving the desired
equality.

Example A1.10. A simple example may serve to make all these computations
clearer.

Let S = K[x, y], m = (x, y), and consider the S-module R = K[x, y]/(x2, xy).
We will compute the local cohomology Hi

m(R) (which is the same, by Theorem
A1.8, as the local cohomology of R as a module over itself) in two ways:

From the Čech complex: The Čech complex of R is by definition

0 � R

(
1
1

)
� R[x−1]⊕R[y−1]

(1,−1)� R[(xy)−1] � 0.

However, R is annihilated by x2, and thus also by (xy)2. Consequently, the Čech
complex takes the simpler form

0→ R
(1)� R[y−1] � 0,

where the map denoted (1) is the canonical map to the localization.
The kernel of this map is the 0-th homology of the Čech complex, and thus by

Theorem A1.3 it is H0
m(R). As the kernel of the localization map R → R[y−1],

it is the set of elements of R annihilated by a power of y, which is the one-
dimensional vector space

H0
m(R) = (x2, xy) : y∞/(x2, xy) = (x)/(x2, xy) = K ·x = K(−1).

Since the localization map kills x, we see that R[y−1] = S/(x)[y−1], and the
image of R in R[y−1] is the same as the image of S/(x) in S/(x)[y−1]. Thus the
first homology of the Čech complex, which is equal by Theorem A1.3 to the first
local cohomology of R, is

H1
m(R) = S/(x)[y−1]/(S/(x)) = K ·y−1⊕K ·y−2⊕· · · = K(1)⊕K(2)⊕· · · .

From local duality: Because (x2, xy) is generated by just two elements it is easy
to write down a free resolution of R = S/(x2, xy):

0 � S(−3)

(
y
−x

)
� S2(−2)

(x2 xy )� S � R � 0.
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The modules Exti
S(R,S(−2)) = ExtS(R,S(−2)) are the homology of the dual

complex, twisted by −2, which is

0 � S(1) �(y −x )
S2 �

(
x2

xy

)
S(−2) � 0.

It is thus immediate that Ext0S(R,S(−2)) = 0. We also see at once that

Ext2S(R,S(−2)) = S(1)/(x, y) = K(1),

the dual of K(−1) = H0
m(R), as claimed by Theorem A1.9.

To analyze Ext1S(R,S(−2)) = 0 we note that the actual kernel of the map

S(1) �(y −x )
S2

is the image of the map

S2 �

(
x
y

)
S(−1),

so the desired homology is

Ext1S(R,S(−2)) = S ·
(

x
y

)
/S ·
(

x2

xy

)
= S/(x)(−1) = K(−1)⊕K(−2)⊕· · · ,

which is indeed the dual of the local cohomology module H1
m(R), as computed

above.

A1B Local Cohomology and Sheaf Cohomology

If M is any module over a Noetherian ring R and Q = (x1, . . . , xt) ⊂ R is an
ideal, then M gives rise by restriction to a sheaf FM on the scheme SpecR\V (Q).
The i-th Zariski cohomology Hi(FM ) may be defined as the i-th cohomology of
the Čech complex

Čech(x1, . . . , xt; M) :

0 �
t⊕
1

M [x−1
i ]

d� · · ·
⊕

#J=s

M [x−1
J ]

d� · · · � M [x−1
{1,...,t}] � 0,

whose differential is defined as in Theorem A1.3. The reader who has not yet
studied schemes and their cohomology should think of Hi(FM ) as a functor
of M without worrying about the nature of FM. The definition is actually
independent of the choice of generators x1, . . . , xt for Q; one can show that
H0(FM ) = lim−→d Hom(Qd,M). This module is sometimes called the ideal trans-
form of M with respect to Q (see Exercise A1.3). Further, Hi(M) is the i-th right
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derived functor of the ideal transform functor— this follows just as in the proof
of Theorem A1.3. As a consequence, Hi(FM ) = limn Exti(Qn,M).

The local cohomology is related to Zariski cohomology in a simple way:

Proposition A1.11. Suppose Q = (x1, . . . , xt).Then:

1. There is an exact sequence of R-modules

0→ H0
Q(M)→M → H0(FM )→ H1

Q(M)→ 0.

2. For every i ≥ 2,
Hi

Q(M) = Hi−1(FM ).

Proof. Čech(x1, . . . , xt; M) is the subcomplex of the complex C(x1, . . . , xt; M)
obtained by dropping the first term, M ; so we get an exact sequence of complexes

0 � Čech(x1, . . . , xt; M)[−1] � C(x1, . . . , xt; M) � M � 0,

where M is regarded as a complex with just one term, in degree 0. Since this one-
term complex has no higher cohomology, the long exact sequence in cohomology
coming from this short exact sequence of complexes gives exactly statements 1
and 2.

Henceforward we will restrict our attention to the case where R is a graded
polynomial ring S = K[x0, . . . , xr], each variable xi ahs degree 1, the ideal Q is
the homogeneous maximal ideal Q = (x0, . . . , xr), and the module M is finitely
generated and graded.

It follows that all the cohomology is graded too. Following our usual con-
vention, we will write Hi

Q(M)d for the d-th graded component of Hi
Q(M), and

similarly for the Zariski cohomology of FM.
In this setting the Zariski cohomology has another interpretation: Any graded

S-module M gives rise to a quasicoherent sheaf M̃ on the projective space Pr

(for the definition and properties of this construction see [Hartshorne 1977, II.5],
for example). The Čech complex for M̃ is the degree 0 part of the complex
Čech(x0, . . . , xr; M). In particular, the i-th (Zariski) cohomology of the sheaf M̃

is the degree 0 part of the cohomology of FM, that is Hi(M̃) = Hi(FM )0. If we
shift the grading of M by d to get M(d), then M̃(d) is the sheaf on Pr associated
to M(d), so in general Hi(M̃(d)) = Hi(FM )d. Thus Theorem A1.11 takes on the
following form:

Corollary A1.12. Let M be a graded S-module, and let M̃ be the corresponding
quasicoherent sheaf on Pr.

1. There is an exact sequence of graded S-modules

0 � H0
Q(M) � M �

⊕
d

H0(M̃(d)) � H1
Q(M) � 0.
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2. For every i ≥ 2,
Hi

Q(M) =
⊕

d

Hi−1(M̃(d)).

This corollary reduces the computation of the cohomology of line bundles on
projective space to Corollary A1.6.

Corollary A1.13. Let M be a finitely generated graded S-module. The natural
map M →⊕d H0(M̃(d)) is an isomorphism if and only if depthM ≥ 2.

Proof. We have seen that depthM ≥ 2 if and only if Hi
QM = 0 for i = 0, 1; the

first assertion now follows from the first assertion of Proposition A1.12.

Corollary A1.14. Let S = K[x0, . . . , xr], with r ≥ 1. The line bundle OPr (d)
on Pr = Proj(S) has cohomology

Hi(OPn(d)) =

⎧⎨⎩
Sd if i = 0,
0 if 0 < i < n,
(Sr−1−d)∨ if i = r.

The final result of this section explains the gap between the Hilbert function
and the Hilbert polynomial:

Corollary A1.15. Let M be a finitely generated graded S-module. For every
d ∈ Z,

PM (d) = HM (d)−
∑
i≥0

(−1)i dimK Hi
Q(M)d.

Proof. The Euler characteristic of the sheaf M̃(d) is by definition

χ(M̃(d)) =
∑
i≥0

(−1)i dimK HiM̃(d).

We first claim that PM (d) = χ(M̃(d)) for every d. Indeed, by Serre’s Vanishing
Theorem [Hartshorne 1977, Chapter 3], Hi(M̃(d)) vanishes for i > 0 when d� 0
so χ(M̃(d)) = dimK H0(M̃(d)) = Md for large d. Thus for the claim it suffices to
show that χ(M̃(d)) is a polynomial function of d. This is done by induction: if
x is a general linear form on Pr then from the exact sequence

0→ M̃(−1)
x� M̃ � M̃/xM → 0

we derive a long exact sequence in cohomology which (since it has only finitely
many terms) establishes the recursion formula

χ(M̃(d))−χ(M̃(d−1)) = χ(M̃/xM(d)).

Since the support of M̃/xM is the hyperplane section of the support of M̃, we
see by induction on the dimension of the support that

χ(M̃/xM(d))
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is a polynomial, and thus χ(M̃(d)) is also.
By Corollary A1.12 we have, as required,

χ(M̃(d)) = dimK H0(M̃(d))−
∑
i≥1

(−1)i dimK Hi(M̃(d))

= dimK Md−dimK H0
Q(M)d+dimK H1

Q(M)d−
∑
i≥2

(−1)i dimK Hi
Q(M)d.

A1C Vanishing and Nonvanishing Theorems

In this section we maintain the hypothesis that S = K[x0, . . . , xr], the ideal Q is
the homogeneous maximal ideal Q = (x0, . . . , xr), and the module M is finitely
generated and graded.

The converse of Corollary A1.5 is also true; it is a special case of the dimension
assertion in the following result. The proofs of the next two results require slightly
more sophisticated commutative algebra than what has gone before.

Proposition A1.16. Let M be a finitely generated graded S-module.

1. If i < depthM or i > dimM then Hi
Q(M) = 0 for all e ≥ d.

2. If i = depthM or i = dimM then Hi
Q(M) �= 0.

3. There is an integer d (depending on M) such that Hi
Q(M)e = 0

In the context of sheaf cohomology the dimension statement of part 1 is called
Grothendieck’s Vanishing Theorem, and part 3 is called Serre’s Vanishing Theo-
rem. In between the depth and dimension the local cohomology modules can be
zero and nonzero in any pattern; see [Evans and Griffith 1979].

Proof. We will use local duality (Theorem A1.9) and the Auslander–Buchsbaum
Formula (Theorem A2.15). With these tools, the depth assertions of parts 1 and
2 are equivalent to the statements that Extj

S(M,S) = 0 for j > n−depthM ,
while Extj

S(M,S) �= 0 for j = n−depthM . By the Auslander–Buchsbaum For-
mula, n−depthM is the projective dimension of M , and the depth statement
in part 1 follows. When j is equal to the projective dimension of M , the module
Extj

S(M,S) is the cokernel of the dual of the last map in a minimal free resolu-
tion of M . This cokernel is nonzero by Nakayama’s Lemma, since the minimality
of the resolution implies that the entries of a matrix representing the map are
contained in the maximal ideal of S. This gives the depth statement in part 2.

The dimension assertion of part 1 is likewise equivalent to the statement that
Extj

S(M,S) vanishes for j < codimM = codimannS M . The polynomial ring
S is Cohen–Macaulay, so the depth of annS M on S is equal to the codimen-
sion codimannS M = codimM . We will show that Extj

S(M,N) = 0 whenever
j < d := depth(annS M,N). For this we do not need the hypothesis that S is
a polynomial ring—any Noetherian ring will do. We do induction on the this
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depth, the case d = 0 being trivial, since then j < 0. If d > 0, then by the defini-
tion of depth, the annihilator of M contains an element f that is a nonzerodivisor
on N . The exact sequence

0 � N
f� N � N/fF � 0

gives rise to a long exact sequence in ExtS(M,−). The maps in this sequence
corresponding to multiplication by f are zero since f annihilates M . Thus
Extj

S(M,N) ∼= Extj−1
S (M,N/fN). Since depthN/fN = depthN − 1, we are

done by induction.
To finish the proof of part 2 we must show that Extj

S(M,S) �= 0 for j =
codimM . Choose a codimension j prime P of S that is minimal over the anni-
hilator of annS M . Since the construction of Ext commutes with localization, it
suffices to show that Extj

SP
(MP , SP ) is nonzero when MP is a module of finite

length and dimSP = j. As any module of finite length also has depth 0, and as
SP is a Cohen-Macaulay ring, we may apply the nonvanishing result of part 1.

Finally, part 3 is equivalent to the statement that when d is sufficientlly nega-
tive the d-th graded component of the module E := Extj

S(M,S) is 0. This holds
because E is a finitely generated module— just take d less than the degree of
any generator of E.

A1D Exercises

1. (Cofinality.) Let R ⊃ J1 ⊃ J2 ⊃ · · · and R ⊃ K1 ⊃ K2 ⊃ · · · be sequences of
ideals in a ring R, and suppose that there exist functions m(i) and n(i) such
that Ji ⊃ Km(i) and Ki ⊃ Jn(i) for all i. Show that for any R-module M we
have

lim−→i Extp
R(S/Ji,M) = lim−→i Extp

R(S/Ki,M).

2. Use Exercise A1.1 and the Artin–Rees Lemma to show that if R is a Noethe-
rian ring containing ideals Q1 and Q2, and M is an R-module, then there is
a long exact sequence

· · · � Hi
Q1+Q2

(M) � Hi
Q1

(M)⊕Hi
Q2

(M) �

� Hi
Q1∩Q2

(M) � Hi+1
Q1+Q2

(M) � · · · .

3. Let Q be an ideal in a Noetherian ring R. Let F be a coherent sheaf on
SpecR\V (Q). Prove that H0(FM ) = lim−→Hom(Qd,M) by defining maps

{mi/xd
i } �→ [f : xe

i �→ xe−d
i mi]

in both directions restricted to Q(r+1)e ⊂ (xe
0, . . . , x

e
r) for big e; and

[f : Qd →M ] �→ {f(xd
i )/xd

i }.
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4. Prove that, for any R-module M over any Noetherian ring,

lim−→d Hom((xd),M) = M [x−1].

5. Show that the complex C(x1, . . . , xt; M) is the direct limit of the Koszul
complexes. Use this to give another proof of Theorem A1.3 in the case where
x1, . . . , xt is a regular sequence in R.

6. The ring R = k[x, y1, y2, . . . ]/(xy1, x
2y2, . . .) is non-Noetherian: the sequence

of ideals ann(xn) increases forever. Show that the formula in Exercise A1.4
fails over this ring for M = R.

7. Let R be any ring containing an element x such that the sequence of ideals
ann(xn) increases forever. If an R-module M contains R, show that the map
M → M [x−1] cannot be surjective; that is, the first homology of the Čech
complex

0→M →M [x−1]→ 0

is nonzero. In particular, this is true for the injective envelope of R in the
category of R-modules. Conclude that the cohomology of this Čech complex
of M does not compute the derived functors of the functor H0

Rx, and in
particular that Corollary A1.8 fails for the map Z[t]→ R with t �→ x.



Appendix 2

A Jog Through Commutative Algebra

My goal in this appendix is to lead the reader on a brisk jog through the garden
of commutative algebra. There won’t be time to smell many flowers, but I hope
to impart a sense of the landscape, at least of that part of the subject used in
this book.

Each section focuses on a single topic. It begins with some motivation and the
main definitions, and then lists some central results, often with illustrations of
their use. Finally, there are some further, perhaps more subtle, examples. There
are practically no proofs; these can be found, for example, in [Eisenbud 1995].

I assume that the reader is familiar with

• rings, ideals, and modules, and occasionally homological notions such as Hom
and ⊗, Ext and Tor;

• prime ideals and the localizations of a ring; and
• the correspondence between affine rings and algebraic sets.

The few references to sheaves and schemes can be harmlessly skipped.

The topics treated in Sections A to H are:

A. associated primes
B. depth
C. projective dimension and regular local rings
D. normalization (resolution of singularities for curves)
E. the Cohen–Macaulay property
F. the Koszul complex
G. Fitting ideals
H. the Eagon–Northcott complex and scrolls
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Throughout, K denotes a field and R denotes a commutative Noetherian ring.
You can think primarily of the cases where R = K[x1, . . . , xn]/I for some ideal
I, or where R is the localization of such a ring at a prime ideal. Perhaps the most
interesting case of all is when R is a homogeneous algebra (or standard graded
algebra), by which is meant a graded ring of the form

R = K[x0, . . . , xr]/I,

where all the xi have degree 1 and I is a homogeneous ideal (an ideal generated
by homogeneous polynomials, so that a polynomial f is in I if and only if each
homogeneous component of f is in I).

There is a fundamental similarity between the local and the homogeneous
cases. Many results for local rings depend on Nakayama’s Lemma, which states
(in one version) that if M is a finitely generated module over a local ring R
with maximal ideal m and g1, . . . , gn ∈M are elements whose images in M/mM
generate M/mM , then g1, . . . , gn generate M . A closely analogous result is true
in the homogeneous situation: if M is a finitely generated graded module over
a homogeneous algebra R with maximal homogeneous ideal m =

∑
d>0 Rd, and

if g1, . . . , gn ∈ M are homogeneous elements whose images in M/mM generate
M/mM , then g1, . . . , gn generate M . These results can be unified: following
[Goto and Watanabe 1978a; 1978b], one can define a generalized local ring to be
a graded ring R = R0⊕R1⊕· · · such that R0 is a local ring. If m is the maximal
homogeneous ideal, that is, the sum of the maximal ideal of R0 and the ideal of
elements of strictly positive degree, then Nakayama’s Lemma holds for R and a
finitely generated graded R-module M just as before.

Similar homogeneous versions are possible for many results involving local
rings. Both the local and homogeneous cases are important, but rather than
spelling out two versions of every theorem, or passing to the generality of gener-
alized local rings, we usually give only the local version.

A2A Associated Primes and Primary Decomposition

Any integer admits a unique decomposition as a product of primes and a unit.
Attempts to generalize this result to rings of integers in number fields were
the number-theoretic origin of commutative algebra. With the work of Emanuel
Lasker (who was also a world chess champion) and Francis Macaulay around
1900 the theorems took something like their final form for the case of polyno-
mial rings, the theory of primary decomposition. It was Emmy Noether’s great
contribution to see that they followed relatively easily from just the ascending
chain condition on ideals. (Indeed, modern work has shown that most of the
important statements of the theory fail in the non-Noetherian case.) Though the
full strength of primary decomposition is rarely used, the concepts involved are
fundamental, and some of the simplest cases are pervasive.
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The first step is to recast the unique factorization of an integer n ∈ Z into a
unit and a product of powers of distinct primes pi, say

n = ±
∏

i

pai
i ,

as a result about intersections of ideals, namely

(n) =
⋂
i

(pai
i ).

In the general case we will again express an ideal as an intersection of ideals,
called primary ideals, each connected to a particular prime ideal.

Recall that a proper ideal I ⊂ R (that is, an ideal not equal to R) is prime if
xy ∈ I and x /∈ I implies y ∈ I. If M is a module then a prime ideal P is said
to be associated to M if P = annm, the annihilator of some m ∈ M . We write
AssM for the set of associated primes of M . The module M is called P -primary
if P is the only associated prime of M . The most important case occurs when
I ⊂ R is an ideal and M = R/I; then it is traditional to say that P is associated
to I when P is associated to R/I, and to write Ass I in place of Ass R/I. We
also say that I is P -primary if R/I is P -primary. (The potential confusion is
seldom a problem, as the associated primes of I as a module are usually not
very interesting.) The reader should check that the associated primes of an ideal
(n) ⊂ Z are those ideals (p) generated by the prime divisors p of n. In particular,
the (p)-primary ideals in Z are exactly those of the form (pa).

For any ideal I we say that a prime P is minimal over I if P is is minimal
among primes containing I. An important set of primes connected with a module
M is the set Min M of primes minimal over the annihilator I = annM . These
are called the minimal primes of M . Again we abuse the terminology, and when
I is an ideal we define the minimal primes of I to be the minimal primes over I,
or equivalently the minimal primes of the module R/I. We shall see below that
all minimal primes of M are associated to M . The associated primes of M that
are not minimal are called embedded primes of M .

Theorem A2.1. Let M be a nonzero finitely generated R-module.

1. MinM ⊂ Ass M , and both are nonempty finite sets .
2. The set of elements of R that are zerodivisors on M is the union of the

associated primes of M .

If M is a graded module over a homogeneous algebra R, all the associated primes
of M are homogeneous.

Among the most useful corollaries is the following.

Corollary A2.2. If I is an ideal of R and M is a finitely generated module such
that every element of I annihilates some nonzero element of M , then there is a
single nonzero element of M annihilated by all of I. In particular , any ideal of
R that consists of zerodivisors is annihilated by a single element .
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The proof is immediate from Theorem A2.1 given the following result, often
called “prime avoidance”.

Lemma A2.3. If an ideal I is contained in a finite union of prime ideals, then
it is contained in one of them.

It is easy to see that an element f ∈ R is contained in an ideal I (equivalently:
is zero in R/I) if and only if the image of f in the localization RP is contained in
IP for all prime ideals, or even just for all maximal ideals P of R. Using Theorem
A2.1 one can pinpoint the set of localizations it is necessary to test, and see that
this set is finite.

Corollary A2.4. If f ∈ M , then f = 0 if and only if the image of f is zero
in MP for each associated prime P of M . It even suffices that this condition be
satisfied at each maximal associated prime of M .

One reason for looking at associated primes for modules, and not only for
ideals, is the following useful result, a component of the proof of Theorem A2.1.

Theorem A2.5. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
finitely generated R-modules. Then

Ass M ′ ⊂ Ass M ⊂ AssM ′ ∪ AssM ′′.

If M = M ′⊕M ′′ then the second inclusion becomes an equality .

Here is the primary decomposition result itself.

Theorem A2.6. If I is an ideal of R then Ass(R/I) is the unique minimal
set of prime ideals S that can written as I =

⋂
P∈S QP , where each QP is a

P -primary ideal . (There is a similar result for modules.)

In this decomposition the ideals QP with P ∈ Min I are called minimal com-
ponents and are unique. The others are called embedded components and are
generally nonunique.

Example A2.7. Primary decomposition translates easily into geometry by
means of Hilbert’s Nullstellensatz [Eisenbud 1995, Theorem 1.6]. Here is a sam-
ple that contains a fundamental finiteness principle. Recall that the radical of
an ideal I, written

√
I, is the ideal
√

I = {f ∈ R | fm ∈ I for some m}.
We say that I is radical if I =

√
I. The primary decomposition of a radical ideal

has the form √
I =

⋂
P∈Min I

P.

Any algebraic set X (say in affine n-space An
K

over an algebraically closed field
K, or in projective space) can be written uniquely as a finite union X =

⋃
i Xi

of irreducible sets. The ideal I = I(X) of functions vanishing on X is the inter-
section of the prime ideals Pi = I(Xi). The expression I =

⋂
i Pi is the primary

decomposition of I.
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Example A2.8. For any ring R we write K(R) for the result of localizing R by
inverting all the nonzerodivisors of R. By Theorem A2.1, this is the localization
of R at the complement of the union of the associated primes of R, and thus it is
a ring with finitely many maximal ideals. Of course if R is a domain then K(R)
is simply its quotient field. The most useful case beyond is when R is reduced.
Then K(R) = K(R/P1)×· · ·×K(R/Pm), the product of the quotient fields of
R modulo its finitely many minimal primes.

Example A2.9. Let R = K[x, y] and let I = (x2, xy). The associated primes
of I are (x) and (x, y), and a primary decomposition of I is I = (x)∩ (x, y)2.
This might be read geometrically as saying: for a function f(x, y) to lie in I,
the function must vanish on the line x = 0 in K2 and vanish to order 2 at
the point (0, 0) (this last condition can be expressed by saying that the partial
derivatives of f relative to x and y vanish at (0, 0)). In this example, the (x, y)-
primary component (x, y)2 is not unique: we also have I = (x)∩ (x2, y). The
corresponding geometric statement is that a function f lies in I if and only if f
vanishes on the line x = 0 in K2 and (∂f/∂x)(0, 0) = 0.

Example A2.10. If P is a prime ideal, the powers of P mayfail to be P -
primary! In general, the P -primary component of P m is called the m-th symbolic
power of P , written P (m). In the special case where R = K[x1, . . . , xn] and K
is algebraically closed, a famous result of Zariski and Nagata (see for example
[Eisenbud and Hochster 1979]) says that P (m) is the set of all functions vanishing
to order ≥ m at each point of V (P ). For example, suppose that

A =

⎛⎝x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

⎞⎠
is a matrix of indeterminates. If P is the ideal I2(A) of 2×2 minors of A, then P
is prime but, we claim, P (2) �= P 2. In fact, the partial derivatives of det A are the
2×2 minors of A, so detA vanishes to order 2 wherever the 2×2 minors vanish.
Thus detA ∈ P (2). On the other hand, detA /∈ P 2 because P 2 is generated by
elements of degree 4, while detA only has degree 3.

A2B Dimension and Depth

Perhaps the most fundamental definition in geometry is that of dimension. The
dimension (also called Krull dimension) of a commutative ring plays a similarly
central role. An arithmetic notion of dimension called depth is also important
(the word “arithmetic” in this context refers to divisibility properties of elements
in a ring). Later we shall see geometric examples of the difference between depth
and dimension.

The dimension of R, written dimR is the supremum of lengths of chains
of prime ideals of R. (Here a chain is a totally ordered set. The length of a
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chain of primes is, by definition, one less than the number of primes; that is
P0 ⊂ P1 ⊂ · · · ⊂ Pn is a chain of length n.) If P is a prime ideal, the codimension
of P , written codimP , is the maximum of the lengths of chains of prime ideals
P ⊃ · · · ⊃ P0 descending from P . If I is any ideal, the codimension of I is
the minimum of the codimension of primes containing I. See [Eisenbud 1995,
Ch. 8] for a discussion linking these very algebraic notions with geometry.) The
generalization to modules doesn’t involve anything new: we define the dimension
dimM of an R-module M to be the dimension of the ring R/ annM .

A sequence x = x1, . . . , xn of elements of R is a regular sequence (or R-
sequence) if x1, . . . , xn generate a proper ideal of R and if, for each i, the element
xi is a nonzerodivisor modulo (x1, . . . , xi−1). Similarly, if M is an R-module, then
x is a regular sequence on M (or M -sequence) if (x1, . . . , xn)M �= M and, for
each i, the element xi is a nonzerodivisor on M/(x1, . . . , xi−1)M .

An ideal that can be generated by a regular sequence (or, in the geometric
case, the variety it defines) is called a complete intersection.

If I is an ideal of R and M is a finitely generated module such that IM �= M ,
then the depth of I on M , written depth(I,M), is the maximal length of a
regular sequence on M contained in I. (If IM = M we set depth(I,M) = ∞.)
The most interesting cases are the ones where R is a local or homogeneous algebra
and I is the maximal (homogeneous) ideal. In these cases we write depth M in
place of depth(I,M). We define the grade of I to be grade I = depth(I,R).
(Alas, terminology in this area is quite variable; see for example [Bruns and
Herzog 1998, Section 1.2] for a different system.) We need one further notion
of dimension, a homological one that will reappear in the next section. The
projective dimension of an R-module is the minimum length of a projective
resolution of M (or ∞ if there is no finite projective resolution.)

We will suppose for simplicity that R is local with maximal ideal m. Similar
results hold in the homogeneous case. A fundamental geometric observation is
that a variety over an algebraically closed field that is defined by one equation has
codimension at most 1. The following is Krull’s justly celebrated generalization.

Theorem A2.11 (Principal Ideal Theorem). If I is an ideal that can be
generated by n elements in a Noetherian ring R, then grade I ≤ codim I ≤ n.
Moreover , any prime minimal among those containing I has codimension at most
n. If M is a finitely generated R-module, then dimM/IM ≥ dimM−n.

For example, in

R = K[x1, . . . , xn] or R = K[x1, . . . , xn](x1,...,xn) or R = K[[x1, . . . , xn]],

the sequence x1, . . . , xn is a maximal regular sequence. It follows at once from
Theorem A2.11 that in each of these cases the ideal (x1, . . . , xn) has codimension
n, and for the local ring R = K[x1, . . . , xn](x1,...,xn) or R = K[[x1, . . . , xn]] this
gives dimR = n. For the polynomial ring R itself this argument gives only
dimR ≥ n, but in fact it is not hard to show dimR = n in this case as well. This
follows from a general result on affine rings.
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Theorem A2.12. If R is an integral domain with quotient field K(R), and R
is a finitely generated algebra over the field K, then dimR is equal to the tran-
scendence degree of K(R) over K. Geometrically : the dimension of an algebraic
variety is the number of algebraically independent functions on it .

The following is a generalization of Theorem A2.11 in which the ring R is
replaced by an arbitrary module.

Theorem A2.13. If M is a finitely generated R-module and I ⊂ R is an ideal ,
then

depth(I,M) ≤ codim((I +annM)/ ann M) ≤ dimM.

A module is generally better behaved—more like a free module over a poly-
nomial ring— if its depth is close to its dimension. See also Theorem A2.15.

Theorem A2.14. Suppose R is a local ring and M is a finitely generated R-
module.

1. All maximal regular sequences on M have the same length; this common
length is equal to the depth of M . Any permutation of a regular sequence
on M is again a regular sequence on M .

2. depthM = 0 if and only if the maximal ideal of R is an associated prime of
M (see Theorem A2.1.2).

3. For any ideal I, depth(I,M) = inf {i | Exti
R(R/I,M) �= 0}.

4. If R = K[x0, . . . , xr] with the usual grading , M is a finitely generated graded
R-module, and m = (x0, . . . , xr), then depthM = inf {i | Hi

m(M) �= 0}.
Parts 3 and 4 of Theorem A2.14 are connected by what is usually called local

duality ; see Theorem A1.9.

Theorem A2.15 (Auslander–Buchsbaum formula). If R is a local ring and
M is a finitely generated R-module such that pdM (the projective dimension of
M) is finite, then depthM = depthR−pdM .

The following results follow from Theorem A2.15 by localization.

Corollary A2.16. Suppose that M is a finitely generated module over a local
ring R.

1. If M has an associated prime of codimension n, then pdM ≥ n.
2. If M has finite projective dimension, then pdM ≤ depthR ≤ dimR. If also

depthM = dimR then M is free.
3. If pdM = dimR then R is Cohen–Macaulay and its maximal ideal is associ-

ated to M .

Another homological characterization of depth, this time in terms of the Koszul
complex, is given in Section A2G.
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Example A2.17. Theorem A2.14 really requires the“local” hypothesis (or, of
course, the analogous “graded” hypothesis). For example, in K[x]×K[y, z] the
sequence (1, y), (0, z) of length two and the sequence (x, 1) of length one are both
maximal regular sequences. Similarly, in R = K[x, y, z] the sequence x(1−x),
1−x(1−y), xz is a regular sequence but its permutation x(1−x), xz, 1−x(1−y) is
not. The ideas behind these examples are related: R/(x(1−x)) = K[y, z]×K[y, z]
by the Chinese Remainder Theorem.

A2C Projective Dimension and Regular Local Rings

After dimension, the next most fundamental geometric ideas may be those of
smooth manifolds and tangent spaces. The analogues in commutative algebra
are regular rings and Zariski tangent spaces, introduced by Krull [1937] and
Zariski [1947]. Since the work of Auslander, Buchsbaum, and Serre in the 1950s
this theory has been connected with the idea of projective dimension.

Let R be a local ring with maximal ideal m. The Zariski cotangent space
of R is m/m2, regarded as a vector space over R/m; the Zariski tangent space
is the dual, HomR/m(m/m2, R/m). By Nakayama’s Lemma, the vector space
dimension of m/m2 is the minimal number of generators of m. By the Principal
Ideal Theorem A2.11 this is an upper bound for the Krull dimension dimR. The
ring R is called regular if dimR is equal to the vector space dimension of the
Zariski tangent space; otherwise, R is singular. If R is a Noetherian ring that
is not local, we say that R is regular if each localization at a maximal ideal is
regular.

For example, the n-dimensional power series ring K[[x1, . . . , xn]] is regular be-
cause the maximal ideal m = (x1, . . . , xn) satisfies m/m2 =

⊕n
1 Kxi. The same

goes for the localization of the polynomial ring K[x1, . . . , xn](x1,...,xn). Indeed
any localization of one of these rings is also regular, though this is harder to
prove; see Corollary A2.20.

Here is a first taste of the consequences of regularity.

Theorem A2.18. Any regular local ring is a domain. A local ring is regular if
and only if its maximal ideal is generated by a regular sequence.

The following result initiated the whole homological study of rings.

Theorem A2.19 (Auslander–Buchsbaum–Serre). A local ring R is regular
if and only if the residue field of R has finite projective dimension if and only if
every R-module has finite projective dimension.

The abstract-looking characterization of regularity in Theorem A2.19 allowed
a proof of two properties that had been known only in the “geometric” case (R
a localization of a finitely generated algebra over a field). These were the first
triumphs of representation theory in commutative algebra. Recall that a domain
R is called factorial if every element of r can be factored into a product of prime
elements, uniquely up to units and permutation of the factors.
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Theorem A2.20. Any localization of a regular local ring is regular . Every regu-
lar local ring is factorial (that is, has unique factorization of elements into prime
elements.)

The first of these statements is, in the geometric case, a weak version of the
statement that the singular locus of a variety is a closed subset. The second plays
an important role in the theory of divisors.

Example A2.21. The rings

K[x1, . . . , xn], K[x1, . . . , xn, x−1
1 , . . . , x−1

n ], and K[[x1, . . . , xn]]

are regular, and the same is true if K is replaced by the ring of integers Z.

Example A2.22. A regular local ring R of dimension 1 is called a discrete
valuation ring. By the definition, together with Nakayama’s Lemma, the maximal
ideal of R must be principal; let π be a generator. By Theorem A2.18, R is a
domain. Conversely, any one-dimensional local domain with maximal ideal that
is principal (and nonzero!) is a discrete valuation ring. Every nonzero element f
of the quotient field K(R) can be written uniquely in the form u·πk for some unit
u ∈ R and some integer k ∈ Z. The name “discrete valuation ring” comes from
the fact that the mapping ν : K(R)∗ → Z taking f to k satisfies the definition
of a valuation on R and has as value group the discrete group Z.

Example A2.23. A ring of the form A = K[[x1, . . . , xn]]/(f) is regular if and
only if the leading term of f has degree ≤ 1 (if the degree is 0, of course A is the
zero ring!) In case the degree is 1, the ring A is isomorphic to the ring of power
series in n−1 variables. If R = K[[x1, . . . , xn]]/I is nonzero then R is regular if
and only if I can be generated by some elements f1, . . . , fm with leading terms
that are of degree 1 and linearly independent; in this case R ∼= K[[x1, . . . , xn−m]].
Indeed, Cohen’s Structure Theorem says that any complete regular local ring
containing a field is isomorphic to a power series ring (possibly over a larger
field.)

This result suggests that all regular local rings, or perhaps at least all regular
local rings of the same dimension and characteristic, look much alike, but this is
only true in the complete case (things like power series rings). Example A2.30
shows how much structure even a discrete valuation ring can carry.

Example A2.24. Nakayama’s Lemma implies that amodule over a local ring
has projective dimension 0 if and only if it is free. It follows that an ideal of
projective dimension 0 in a local ring is principal, generated by a nonzerodivisor.
An ideal has projective dimension 1 (as a module) if and only if it is isomorphic
to the ideal J of n×n minors of an (n+1)×n matrix with entries in the ring, and
this ideal of minors has depth 2 (that is, depth(J,R) = 2), the largest possible
number. This is the Hilbert–Burch Theorem, described in detail in Chapter 3.
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A2D Normalization: Resolution of Singularities for
Curves

If R ⊂ S are rings, an element f ∈ S is integral over R if f satisfies a monic
polynomial equation

fn +a1f
n−1 + · · ·+an = 0

with coefficients in R. The integral closure of R in S is the set of all elements of
S integral over R; it turns out to be a subring of S (Theorem A2.25). The ring
R is integrally closed in S if all elements of S that are integral over R actually
belong to R. The ring R is normal if it is reduced and integrally closed in the
ring obtained from R by inverting all nonzerodivisors.

These ideas go back to the beginning of algebraic number theory: the integral
closure of Z in a finite field extension K of Q, defined to be the set of elements of
K satisfying monic polynomial equations over Z, is called the ring of integers of
K, and is in many ways the nicest subring of K. For example, when studying the
field Q[x]/(x2−5) ∼= Q(

√
5) it is tempting to look at the ring R = Z[x]/(x2−5) ∼=

Z[
√

5]. But the slightly larger (and at first more complicated-looking) ring

R =
Z[y]

(y2−y−1)
∼= Z
[1−√5

2

]
is nicer in many ways: for example, the localization of R at the prime P =
(2, x−1) ⊂ R is not regular, since RP is one-dimensional but P/P 2 is a two-
dimensional vector space generated by 2 and x− 1. Since x2 − x− 1 has no
solution modulo 2, the ideal P ′ = PR = (2)R is prime and RP ′ is regular. In
fact R itself is regular. This phenomenon is typical for one-dimensional rings.

In general, the first case of importance is the normalization of a reduced ring
R in its quotient ring K(R). In addition to the number-theoretic case above,
this has a beautiful geometric interpretation. Let R be the coordinate ring of
an affine algebraic set X ⊂ Cn in complex n-space. The normalization of R in
K(R) is then the ring of rational functions that are locally bounded on X.

For example, suppose that X is the union of two lines meeting in the origin
in C2, with coordinates x, y, defined by the equation xy = 0. The function
f(x, y) = x/(x− y) is a rational function on X that is well-defined away from
the point (0, 0). Away from this point, f takes the value 1 on the line y = 0 and
0 on the line x = 0, so although it is bounded near the origin, it does not extend
to a continuous function at the origin. Algebraically this is reflected in the fact
that f (regarded either as a function on X or as an element of the ring obtained
from the coordinate ring R = K[x, y]/(xy) of X by inverting the nonzerodivisor
x−y) satisfies the monic equation f 2−f = 0, as the reader will easily verify. On
the disjoint union X of the two lines, which is a smooth space mapping to X,
the pull back of f extends to be a regular function everywhere: it has constant
value 1 on one of the lines and constant value 0 on the other.
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Another significance of the normalization is that it gives a resolution of sin-
gularities in codimension 1 ; we will make this statement precise in Example
A2.32.

Theorem A2.25. Let R ⊂ S be rings. If s, t ∈ S are integral over R, then s+t
and st are integral over R. Thus the of elements of S integral over R form a
subring of S, called the normalization of R in S. If S is normal (for example if
S is the quotient field of R), the integral closure of R in S is normal .

The following result says that the normalization of the coordinate ring of an
affine variety is again the coordinate ring of an affine variety.

Theorem A2.26. If R is a domain that is a finitely generated algebra over a
field K, then the normalization of R (in its quotient field) is a finitely generated
R-module; in particular it is again a finitely generated algebra over K.

It is possible to define the normalization of any abstract variety X (of finite
type over a field K), a construction that was first made and exploited by Zariski.
Let X =

⋃
Xi be a covering of X by open affine subsets, such that Xi∩Xj is

also affine, and let X i be the affine variety corresponding to the normalization
of the coordinate ring of Xi. We need to show that the X i patch together well,
along the normalizations of the sets Xi∩Xj . This is the essential content of the
next result.

Theorem A2.27. Normalization commutes with localization in the following
sense. Let R ⊂ S be rings and let R be the subring of S consisting of elements
integral over R. If U is a multiplicatively closed subsetof R, then the localization
R[U−1] is the normalization of R[U−1] in S[U−1].

Here is what good properties we can expect when we have normalized a variety.

Theorem A2.28 (Serre’s Criterion). Any normal one-dimensionsonal ring is
regular (that is, discrete valuation rings are precisely the normal one-dimensional
rings). More generally , we have Serre’s Criterion: A ring R is a finite direct
product of normal domains if and only if

1. RP is regular for all primes P of codimension ≤ 1; and
2. depth(PP , RP ) ≥ 2 for all primes P of codimension ≥ 2.

When R is a homogeneous algebra, it is only necessary to test conditions 1 and 2
at homogeneous primes.

When R is the coordinate ring of an affine variety X over an algebraically
closed field, condition 1 has the geometric meaning one would hope: the singular
locus of X has codimension at least 2.

Example A2.29. The ring Z is normal; so is any factorial domain (for example,
any regular local ring). (Reason: Suppose f = u/v is integral, satisfying an
equation fn +a1f

n−1 + · · ·+an = 0, with a1 ∈ R. If v is divisible by a prime p
that does not divide u, then p divides all except the first term of the expression
un +a1vun−1 + · · ·+anvn = vn(fn +a1f

n−1 + · · ·+an) = 0, a contradiction.)
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Example A2.30. Despite the simplicity of discrete valuation rings (see Exam-
ple A2.22) there are a lot of nonisomorphic ones, even after avoiding the obvious
differences of characteristic, residue class field R/m, and quotient field. For a
concrete example, consider first the coordinate ring of a quartic affine plane
curve, R = K[x, y]/(x4 + y4− 1), where K is the field of complex numbers (or
any algebraically closed field of characteristic not 2). The ring R has infinitely
many maximal ideals, which have the form (x−α, y−β), where α ∈ K is arbi-
trary and β is any fourth root of 1−α4. But given one of these maximal ideals
P , there are only finitely many maximal ideals Q such that RP

∼= RQ. This
follows at once from the theory of algebraic curves (see [Hartshorne 1977, Ch. I,
§8], for example): any isomorphism RP → RQ induces an automorphism of the
projective curve x4+y4 = z4 in P2 carrying the point corresponding to P to the
point corresponding to Q. But there are only finitely many automorphisms of
this curve (or, indeed, of any smooth curve of genus at least 2).

Example A2.31. The set of monomials in x1, . . . , xn corresponds to the set
of lattice points Nn in the positive orthant (send each monomial to its vector
of exponents). Let U be an subset of Nn, and let K[U ] ⊂ K[x1, . . . , xn] be the
subring generated by the corresponding monomials. For simplicity we assume
that the group generated by U is all of Zn, the group generated by Nn. It is
easy to see that any element of Nn that is in the convex hull of U , or even in the
convex hull of the set generated by U under addition, is integral over K[U ]. In
fact the integral closure of K[U ] is K[Ū ], where Ū is the convex hull of the set
generated by U using addition. For example take U = {x4

1, x3
1x2, x1x

3
2, x4

2}—
all the monomials of degree 4 in two variables except the middle monomial f :=
x2

1x
2
2. The element f is in the quotient field of K[U ] because f = x4

1 ·x1x
3
2/x3

1x2.
The equation (2, 2) = 1

2

(
(4, 0)+(0, 4)

)
, expressing the fact that f corresponds

to a point in the convex hull of U , gives rise to the equation f 2−x4
1 ·x4

2 = 0, so
f is integral over K[U ].

Example A2.32 (Resolution of singularities in codimension 1). Sup-
pose that X is an affine variety over an algebraically closed field K, with affine
coordinate ring R. By Theorem A2.26 the normalization R corresponds to an
affine variety Y , and the inclusion R ⊂ R corresponds to a map g : Y → X. By
Theorem A2.27 the map g is an isomorphism over the part of X that is smooth,
or even normal. The map g is a finite morphism in the sense that the coordinate
ring of X is a finitely generated as a module over the coordinate ring of X; this
is a strong form of the condition that each fiber g−1(x) is a finite set.

Serre’s Criterion in Theorem A2.28 implies that the coordinate ring of Y is
smooth in codimension 1, and this means the singular locus of Y is of codimension
at least 2.

Desingularization in codimension 1 is the most that can be hoped, in general,
from a finite morphism. For example, the quadric cone X ⊂ K3 defined by the
equation x2 +y2 +z2 = 0 is normal, and it follows that any finite map Y → X
that is isomorphic outside the singular point must be an isomorphism.
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However, for any affine or projective variety X over a field it is conjectured
that there is actually a resolution of singularities: that is, a projective map
π : Y → X (this means that Y can be represented as a closed subset of X×Pn

for some projective space Pn) where Y is a smooth variety, and the map π is an
isomorphism over the part of X that is already smooth. In the example above,
there is a desingularization (the blowup of the origin in X) that may be described
as the subset of X×P2, with coordinates x, y, z for X and u, v, w for P2, defined
by the vanishing of the 2×2 minors of the matrix(

x y z
u v w

)
together with the equations xu+yv+zw = 0 and u2+v2+w2 = 0. It is described
algebraically by the Rees algebra

R⊕I⊕I2⊕· · ·

where R=K[x, y, z]/(x2+y2+z2) is the coordinate ring of X and I =(x, y, z)⊂R.
The existence of resolutions of singularities was proved in characteristic 0 by

Hironaka. In positive characteristic it remains an active area of research.

A2E The Cohen–Macaulay Property

Which curves in the projective plane pass through the common intersections of
two given curves? The answer was given by the great geometer Max Noether (fa-
ther of Emmy) [Noether 1873] in the course of his work algebraizing Riemann’s
amazing ideas about analytic functions, under the name of the “Fundamen-
tal Theorem of Algebraic Functions”. However, it was gradually realized that
Noether’s proof was incomplete, and it was not in fact completed until work
of Lasker in 1905. By the 1920s (see [Macaulay 1916] and [Macaulay 1934]),
Macaulay had come to a much more general understanding of the situation for
polynomial rings, and his ideas were studied and extended to arbitrary local
rings by Cohen in the 1940s [Cohen 1946]. In modern language, the fundamental
idea is that of a Cohen–Macaulay ring.

A curve in the projective plane is defined by the vanishing of a (square-free)
homogeneous polynomial in three variables. Suppose that curves F , G and H
are defined by the vanishing of f , g and h. For simplicity assume that F and G
have no common component, so the intersection of F and G is finite. If h can
be written as h = af + bg for some a and b, then h vanishes wherever f and
g vanish, so H passed through the intersection points of F and G. Noether’s
Fundamental Theorem is the converse: if H “passes through” the intersection of
F and G, then h can be written as h = af +bg.

To understand Noether’s Theorem we must know what it means for H to
pass through the intersection of F and G. To make the theorem correct, the



214 Appendix 2. A Jog Through Commutative Algebra

intersection, which may involve high degrees of tangency and singularity, must
be interpreted subtly. We will give a modern explanation in a moment, but it is
interesting first to phrase the condition in Noether’s terms.

For Noether’s applications it was necessary to define the intersection in a way
that would only depend on data available locally around a point of intersection.
Suppose, after a change of coordinates, that F and G both contain the point
p = (1, 0, 0). Noether’s idea was to expand the functions f(1, x, y), g(1, x, y) and
h(1, x, y) as power series in x, y, and to say that H passes through the intersection
of F and G locally at p if there are convergent power series α(x, y) and β(x, y)
such that

h(1, x, y) = α(x, y)f(1, x, y)+β(x, y)g(1, x, y).

This condition was to hold (with different α and β !) at each point of intersection.
Noether’s passage to convergent power series ensured that the condition “H

passes through the intersection of F and G” depended only on data avail-
able locally near the points of intersection. Following [Lasker 1905] and using
primary decomposition, we can reformulate the condition without leaving the
context of homogeneous polynomials. We first choose a primary decomposition
(f, g) =

⋂
Qi. If p is a point of the intersection F ∩G, then the prime ideal P

of forms vanishing at p is minimal over the ideal (f, g). By Theorem A2.1, P is
an associated prime of (f, g). Thus one of the Qi, say Q1, is P -primary. We say
that H passes through the intersection of F and G locally near p if h ∈ Q1.

In this language, Noether’s Fundamental Theorem becomes the statement that
the only associated primes of (f, g) are the primes associated to the points of
F ∩G. Since f and g have no common component, they generate an ideal of
codimension at least 2, and by the Principal Ideal Theorem A2.11 the codimen-
sion of all the minimal primes of (f, g) is exactly 2. Thus the minimal primes
of (f, g) correspond to the points of intersection, and Noether’s Theorem means
that there are no nonminimal, that is, embedded, associated primes of (f, g).
This result was proved by Lasker in a more general form, Lasker’s Unmixed-
ness Theorem: if a sequence of c homogeneous elements in a polynomial ring
generates an ideal I of codimension c, then every associated prime of I has codi-
mension c. The modern version simply says that a polynomial ring over a field
is Cohen–Macaulay. By Theorem A2.36, this is the same result.

Now for the definitions: a local ring R is Cohen–Macaulay if depthR = dimR;
it follows that the same is true for every localization of R (Theorem A2.33).
More generally, an R-module M is Cohen–Macaulay if depthM = dimM . For
example, if S is a local ring and R = S/I is a factor ring, then R is Cohen–
Macaulay as a ring if and only if R is Cohen–Macaulay an S-module.

If R is not local, we say that R is Cohen–Macaulay if the localization RP

is Cohen–Macaulay for every maximal ideal P . If R is a homogeneous algebra
with homogeneous maximal ideal m, then R is Cohen–Macaulay if and only if
grade(m) = dimR (as can be proved from Theorem A2.15 and the existence of
minimal graded free resolutions).
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Globalizing, we say that a variety (or scheme) X is Cohen–Macaulay if each
of its local rings OX,x is a Cohen–Macaulay ring. More generally, a coherent
sheaf F on X is Cohen–Macaulay if for each point x ∈ X the stalk Fx is a
Cohen–Macaulay module over the local ring OX,x.

If X ⊂ Pr is a projective variety (or scheme), we say that X is arithmetically
Cohen–Macaulay if the homogeneous coordinate ring

SX = K[x0, . . . , xr]/I(X)

is Cohen–Macaulay. The local rings of X are, up to adding a variable and
its inverse, obtained from the homogeneous coordinate ring by localizing at
certain primes. With Theorem A2.33 this implies that if X is arithmetically
Cohen–Macaulay then X is Cohen–Macaulay. The “arithmetic” property is much
stronger, as we shall see in the examples.

The Cohen–Macaulay property behaves well under localization and forming
polynomial rings.

Theorem A2.33. The localization of any Cohen–Macaulay ring at any prime
ideal is again Cohen–Macaulay . A ring R is Cohen–Macaulay if and only if
R[x] is Cohen–Macaulay if and only if R[[x]] is Cohen–Macaulay if and only if
R[x, x−1] is Cohen–Macaulay .

The following result is an easy consequence of Theorems A2.19 and A2.15, and
should be compared with Example A2.42 above.

Theorem A2.34. Suppose that a local ring R is a finitely generated module
over a regular local subring T . The ring R is Cohen–Macaulay as an R-module
if and only if it is free as a T -module. A similar result holds in the homogeneous
case.

Sequences of c elements f1, . . . , fc in a ring R that generate ideals of codimen-
sion c have particularly nice properties. In the case when R is a local Cohen–
Macaulay ring the situation is particularly simple.

Theorem A2.35. If R is a local Cohen–Macaulay ring and f1, . . . , fc generate
an ideal of codimension c then f1, . . . , fc is a regular sequence.

Here is the property that started it all. We say that an ideal I of codimension
c is unmixed if every associated prime of I has codimension exactly c.

Theorem A2.36. A local ring is Cohen–Macaulay if and only if every ideal of
codimension c that can be generated by c elements is unmixed , and similarly for
a homogeneous algebra.

Theorem A2.18 shows that a local ring is regular if its maximal ideal is gen-
erated by a regular sequence; here is the corresponding result for the Cohen–
Macaulay property.

Theorem A2.37. Let R be a local ring with maximal ideal m. The following
conditions are equivalent :
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(a) R is Cohen–Macaulay .
(b) There is an ideal I of R that is generated by a regular sequence and contains

a power of m.

The next consequence of the Cohen–Macaulay property is often taken as the
definition. It is pleasingly simple, but as a definition it is not so easy to check.

Theorem A2.38. A ring R is Cohen–Macaulay if and only if every ideal I of
R has grade equal to its codimension.

One way to prove that a ring is Cohen–Macaulay is to prove that it is a
summand in a nice way. We will apply the easy first case of this result in Example
A2.43.

Theorem A2.39. Suppose that S is a Cohen–Macaulay ring and R ⊂ S is
a direct summand of S as R-modules. If either S is finitely generated as an
R-module, or S is regular , then R is Cohen–Macaulay .

The first statement follows from basic statements about depth and dimension
[Eisenbud 1995, Proposition 9.1 and Corollary 17.8]. The second version, without
finiteness, is far deeper. The version where S is regular was proved by Boutot
[1987].

Example A2.40 (Complete intersections). Any regular local ring is Cohen–
Macaulay (Theorem A2.18). If R is any Cohen–Macaulay ring, for example the
power series ring K[[x1, . . . , xn]], and f1, . . . , fc is a regular sequence in R, then
R/(f1, . . . , fc) is Cohen–Macaulay; this follows from Theorem A2.13(a). For ex-
ample, K[x1, . . . , xn]/(xa1

1 , . . . , xak

k ) is Cohen–Macaulay for any positive integers
k ≤ n and a1, . . . , ak.

Example A2.41. Any Artinian local ring is Cohen–Macaulay. So is any one-
dimensional local domain. More generally, a one-dimensional local ring is Cohen–
Macaulay if and only if the maximal ideal is not an assocated prime of 0 (Theorem
A2.1.2). For example, K[x, y]/(xy) is Cohen–Macaulay.

Example A2.42. The simplest examples of Cohen–Macaulay rings not included
in the preceding cases are the homogeneous coordinate rings of set of points,
studied in Chapter 3, and the homogeneous coordinate rings of rational normal
curves, studied in 6.

Example A2.43. Suppose a finite group G acts on a ring S, and the order n
of G is invertible in S. Let R be the subring of invariant elements of S. The
Reynolds operator

s �→ 1
n

∑
g∈G

gs

is an R linear splitting of the inclusion map. Thus if S is Cohen–Macaulay, so is
R by Theorem A2.39. Theorem A2.39 further shows that the ring of invariants
of any linearly reductive group, acting linearly on a polynomial ring is a Cohen–
Macaulay ring, a result first proved by Hochster and Roberts [1974].
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Example A2.44. Perhaps the most imporant example of a ring of invariants
under a finite group action is that where S = K[x0, . . . , xr] is the polynomial
ring on r+1 indeterminates and G = (Z/d)r+1 is the product of r+1 copies of
the cyclic group of order d, whose i-th factor acts by multiplying xi by a d-th
root of unity. The invariant ring R is the d-th Veronese subring of S, consisting
of all forms whose degree is a multiple of d.

Example A2.45. Most Cohen–Macaulay varieties in Pn (even smooth varieties)
are not arithmetically Cohen–Macaulay. A first example is the union of two skew
lines in P3. In suitable coordinates this scheme is represented by the homogeneous
ideal I := (x0, x1)∩ (x2, x3); that is, it has homogeneous coordinate ring R :=
K[x0, x1, x2, x3]/(x0, x1)∩ (x2, x3). To see that R is not Cohen–Macaulay, note
that

R ⊂ R/(x0, x1)×R/(x2, x3) = K[x2, x3]×K[x0, x1],

so that f0 := x0−x2 is a nonzerodivisor on R. By the graded version of Theorem
A2.14.1, it suffices to show that every element of the maximal ideal is a zerodi-
visor in R/(f0). As the reader may easily check, I = (x0x2, x0x3, x1x2, x1x3), so
R := R/(f0) = K[x1, x2, x3]/(x2

2, x2x3, x1x2, x1x3). In particular, the image of x2

is not zero in R, but the maximal ideal annihilates x2.

Example A2.46. Another geometric example easy to work out by hand is that
of a smooth rational quartic curve in P3. We can define such a curve by giving its
homogeneous coordinate ring. Let R be the subring of K[s, t] generated by the
elements f0 = s4, f1 = s3t, f2 = st3, f3 = t4. Since R is a domain, the element
f0 is certainly a nonzerodivisor, and as before it suffices to see that modulo the
ideal (f0) = Rs4 the whole maximal ideal consists of zerodivisors. One checks at
once that s6t2 ∈ R\Rs4, but that fis

6t2 ∈ Rs4 for every i, as required.
Many of the most interesting smooth projective varieties cannot be embedded

in a projective space in any way as arithmetically Cohen–Macaulay varieties.
Such is the case for all abelian varieties of dimension greater than 1 (and in
general for any variety whose structure sheaf has nonvanishing intermediate co-
homology.)

A2F The Koszul Complex

One of the most significant homological constructions is the Koszul complex. It is
fundamental in many senses, perhaps not least because its construction depends
only on the commutative and associative laws in R. It makes one of the essen-
tial bridges between regular sequences and homological methods in commutative
algebra, and has been at the center of the action since the work of Auslander,
Buchsbaum, and Serre in the 1950s. The construction itself was already exploited
(implicitly) by Cayley; see [Gel’fand et al. 1994] for an exegesis. It enjoys the role
of premier example in Hilbert’s 1890 paper on syzygies. (The name Koszul seems
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to have been attached to the complex in the influential book [Cartan and Eilen-
berg 1956].) It is also the central construction in the Bernstein–Gelfand–Gelfand
correspondence described briefly in Chapter 7. It appears in many other gener-
alizations as well, for example in the Koszul duality associated with quantum
groups (see [Manin 1988].)

I first learned about the Koszul complex from lectures of David Buchsbaum.
He always began his explanation with the following special cases, and these still
seem to me the best introduction.

Let R be a ring and let x ∈ R be an element. The Koszul complex of x is the
complex

0 1

K(x) : 0 � R
x � R � 0.

We give the cohomological degree of each term of K(x) above that term so that
we can unambiguously refer to Hi(K(x)), the homology of K(X) at the term
of cohomological degree i. Even this rather trivial complex has interesting ho-
mology: the element x is a nonzerodivisor if and only if H0(K(x)) is 0. The
homology H1(K(x) is always R/(x), so that when x is a nonzerodivisor, K(x) is
a free resolution of R/(x).

If y ∈ R is a second element, we can form the complex

0 1 2

K(x) = K(x, y) : 0 � R

(
x
y

)
� R2 (−y x )� R � 0.

Again, the homology tells us interesting things. First, H0(K(x, y)) is the set
of elements annihilated by both x and y. By Corollary A2.2, H0(K(x, y)) = 0
if and only if the ideal (x, y) contains a nonzerodivisor. Supposing that x is a
nonzerodivisor, we claim that H1(K(x, y)) = 0 if and only if x, y is a regular
sequence. By definition,

H1(K(x, y)) =
{(a, b) | ay−bx = 0}
{rx, ry | r ∈ R} .

The element a in the numerator can be chosen to be any element in the quo-
tient ideal (x) : y = {s ∈ R | sy ∈ (x)}. Because x is a nonzerodivisor, the
element b in the numerator is then determined uniquely by a. Thus the numer-
ator is isomorphic to (x) : y, and H1(K(x, y)) ∼= ((x) : y)/(x). It follows that
H1(K(x, y)) = 0 if and only if y is a nonzerodivisor modulo x, proving the claim.
The module H2(K(x, y)) is, in any case, isomorphic to R/(x, y), so when x, y
is a regular sequence the complex K(x, y) is a free resolution of R/(x, y). This
situation generalizes, as we shall see.

In general, the Koszul complex K(x) of an element x in a free module F

is the complex with terms K i :=
∧i

F whose differentials d : K i � Ki+1

are given by exterior multiplication by x. The formula d2 = 0 follows because
elements of F square to 0 in the exterior algebra. (Warning: our indexing is
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nonstandard—usually what we have called K i is called Kn−i, where n is the
rank of F , and certain signs are changed as well. Note also that we could defined
a Koszul complex in exactly the same way without assuming that F is free—
this makes it easy, for example, to define the Koszul complex of a section of a
vector bundle.) If we identify F with Rn for some n, we may write x as a vector
x = (x1, . . . , xn), and we will sometimes write K(x1, . . . , xn) instead of K(x).

Here is a weak sense in which the Koszul complex is always “close to” exact.

Theorem A2.47. Let x1, . . . , xn be a sequence of elements in a ring R. For
every i, the homology H i(K(x1, . . . , xn)) is anhilated by (x1, . . . , xn).

The next result says that the Koszul complex can detect regular sequences
inside an ideal.

Theorem A2.48. Let x1, . . . , xn be a sequence of elements in a ring R. The
grade of the ideal (x1, . . . , xn) is the smallest integer i such that

Hi(K(x1, . . . , xn)) �= 0.

In the local case, the Koszul complex detects whether a given sequence is
regular.

Theorem A2.49. Let x1, . . . , xn be a sequence of elements in the maximal ideal
of a local ring R. The elements x1, . . . , xn form a regular sequence if and only if

Hn−1(K(x1, . . . , xn)) = 0.

In this case the Koszul complex is the minimal free resolution of the module
R/(x1, . . . , xn).

The Koszul complex is self-dual, and this is the basis for much of duality
theory in algebraic geometry and commutative algebra. Here is how the duality
is defined. Let F be a free R-module of rank n, and let e be a generator of∧n

F ∼= R. Contraction with e defines an isomorphism φk

∧k
F ∗ → ∧n−k

F for
every k = 0, . . . , n. The map φk has a simple description in terms of bases: if
e1 . . . , en is a basis of F such that e = e1∧· · ·∧en, and if f1, . . . , fn is the dual
basis to e1 . . . , en, then

φk(fi1 ∧· · ·∧fik
) = ±ej1 ∧· · ·∧ejn−k

where {j1, . . . , jn−k} is the complement of {i1, . . . , ik} in {1, . . . , n}, and the sign
is that of the permutation (i1 . . . ikj1 . . . jn−k).

Theorem A2.50. The contraction maps define an isomorphism of the complex
K(x1, . . . , xn) with its dual .

Example A2.51. The Koszul complex can be built up inductively as a mapping
cone. For example, using an element x2 we can form the commutative diagram
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with two Koszul complexes K(x1):

K(x1) : 0 � R
x1 � R � 0

K(x1) : 0 � R

x2

�

x1

� R

x2

�
� 0

We regard the vertical maps as forming a map of complexes. The Koszul complex
K(x1, x2) may be described as the mapping cone.

More generally, the complex K(x1, . . . , xn) is (up to signs) the mapping cone
of the map of complexes

K(x1, . . . , xn−1) � K(x1, . . . , xn−1)

given by multiplication by xn. It follows by induction that, when x1, . . . , xn is a
regular sequence, K(x1, . . . , xn) is a free resolution of R/(x1, . . . , xn). This is a
weak version of Theorem A2.49.

Example A2.52. The Koszul complex may also be built up as a tensor product
of complexes. The reader may check from the definitions that

K(x1, . . . , xn) = K(x1)⊗K(x2)⊗· · ·⊗K(xn).

The treatment in Serre’s book [Serre 2000] is based on this description.

A2G Fitting Ideals and Other Determinantal Ideals

Matrices and determinants appear everywhere in commutative algebra. A linear
transformation of vector spaces over a field has a well defined rank (the size of a
maximal submatrix with nonvanishing determinant in a matrix representing the
linear transformation) but no other invariants. By contrast linear transformations
between free modules over a ring have as invariants a whole sequence of ideals, the
determinantal ideals generated by all the minors (determinants of submatrices)
of a given size. Here are some of the basic tools for handling them.

Let R be a ring and let A be a matrix with entries in R. The ideal of n×n
minors of A, written In(A), is the ideal in R generated by the n×n minors (=
determinants of n×n submatrices) of A. By convention we set I0(A) = R, and
of course In(A) = 0 if A is a q×p matrix and n > p or n > q. It is easy to see
that In(A) depends only on the map of free modules φ defined by A—not on
the choice of bases. We may thus write In(φ) in place of In(A).

Let M be a finitely generated R-module, with free presentation

Rp φ� Rq � M � 0.
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Set Fittj(M) = Iq−j(φ). The peculiar-looking numbering makes the definition of
Fittj(M) independent of the choice of the number of generators chosen for M .

There is a close relation between the annihilator and the zeroth Fitting ideal:

Theorem A2.53. If M is a module generated by n elements, then

(annM)n ⊂ Fitt0 M ⊂ annM.

Krull’s Principal Ideal Theorem (Theorem A2.11) says that an ideal gener-
ated by n elements in a Noetherian ring can have codimension at most n; and
when such an ideal has codimension n it is unmixed. An ideal generated by n
elements is the ideal of 1× 1 minors of a 1× n matrix. Macaulay generalized
these statements to determinantal ideals in polynomial rings. The extension to
any Noetherian ring was made by Eagon and Northcott [1962].

Theorem A2.54 (Macaulay’s Generalized Principal Ideal Theorem). If
A is a p×q matrix with elements in a Noetherian ring R, and It(A) �= R, then

codim(It(A)) ≤ (p− t+1)(q− t+1)

Let R be a local Cohen–Macaulay ring. Theorem A2.35 together with Example
A2.40 show that if f1, . . . , fc is a sequence of elements that generates an ideal of
the maximum possible codimension, c, then R/(f1, . . . , fc) is a Cohen–Macaulay
ring. The next result, proved by Hochster and Eagon [1971], is the analogue for
determinantal ideals.

Theorem A2.55. If A is a p×q matrix with elements in a local Cohen–Macaulay
ring R and codim(It(A)) = (p−t+1)(q−t+1), then R/It(A) is Cohen–Macaulay .

Note that the determinantal ideals defining the rational normal curves (Ex-
ample A2.58) have this maximal codimension.

Example A2.56. Suppose that R = Z, K[x], or any other principal ideal do-
main. Let M be a finitely generated R-module. The structure theorem for such
modules tells us that M ∼= Rn⊕R/(a1)⊕ . . .⊕R/(as) for uniquely determined
nonnegative n and positive integers ai such that ai divides ai+1 for each i. The ai

are called the elementary divisors of M . The module M has a free presentation
of the form Rs φ� Rs+n where φ is represented by a diagonal matrix whose
diagonal entries are the ai followed by a block of zeros. From this presentation
we can immediately compute the Fitting ideals, and we find:

• Fittj M = 0 for 0 ≤ j < n.
• For n ≤ j, the ideal Fittj M is generated by all products of j − n + 1 of

the ai; in view of the divisibility relations of the ai this means Fittj M =
(a1 · · · aj−n+1).

In particular the Fitting ideals determine n by the first relation above and the
elementary divisors by the formulas

(a1) = Fittn, (a2) = (Fittn+1 : Fittn), . . . , (as) = (Fittn+s : Fittn+s−1).
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Thus the Fitting ideals give a way of generalizing to the setting of arbitrary rings
the invariants involved in the structure theorem for modules over a principal ideal
domain; this seems to have been why Fitting introduced them.

Example A2.57. Over more complicated rings cyclic modules (that is, modules
of the form R/I) are still determined by their Fitting ideals (Fitt0(R/I) = I);
but other modules are generally not. For example, over K[x, y], the modules with
presentation matrices(

x y 0
0 x y

)
and

(
x y 0 0
0 0 x y

)
are not isomorphic (the second is annihilated by (x, y), the first only by (x, y)2)
but they have the same Fitting ideals: Fitt0 = (x, y)2, Fitt1 = (x, y), Fittj = (1)
for j ≥ 2.

Example A2.58. A determinantal prime ideal of the “wrong” codimension
Consider the smooth rational quartic curve X in P3 with parametrization

P1 � (s, t) �→ (s4, s3t, st3, t4) ∈ P3.

Using the “normal form” idea used for the rational normal curve in Proposition
6.1, it is not hard to show that the ideal I(X) is generated by the 2×2 minors
of the matrix (

x0 x2 x2
1 x1x3

x1 x3 x0x2 x2
2

)
.

The homogeneous coordinate ring SX = S/I(X) is not Cohen–Macaulay (Ex-
ample A2.46). The ideal I(X) is already generated by just four of the six minors:

I(X) = (x0x3−x1x2, x1x
2
3−x3

2, x0x
2
2−x2

1x3, x3
1−x2

0x2).

Compare this with the situation of Corollary A2.61.

A2H The Eagon–Northcott Complex and Scrolls

Let A be a g×f matrix with entries in a ring R, and suppose for definiteness that
g ≤ f . The Eagon–Northcott complex of A [Eagon and Northcott 1962] bears
the same relation to the determinantal ideal Ig(A) of maximal minors of A that
the Koszul complex bears to sequences of q elements; in fact the Koszul complex
is the special case of the Eagon–Northcott complex in which g = 1. (A theory
including the lower-order minors also exists, but it is far more complicated; it
depends on rather sophisticated representation theory, and is better-understood
in characteristic 0 than in finite characteristic. See for example [Akin et al. 1982].)
Because the material of this section is less standard than that in the rest of this
appendix, we give more details.
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Sets of points in P2 (Chapter 3) and rational normal scrolls (Chapter 6) are
some of the interesting algebraic sets whose ideals have free resolutions given by
Eagon–Northcott complexes.

Let R be a ring, and write F = Rf , G = Rg. The Eagon–Northcott complex
of a map α : F � G (or of a matrix A representing α) is a complex

EN(α) : 0→ (Symf−g G)∗⊗∧f
F

df−g+1� (Symf−g−1 G)∗⊗∧f−1
F

df−g�

· · · � (Sym2 G)∗⊗∧g+2
F

d3� G∗⊗∧g+1
F

d2� ∧g
F
∧g

α� ∧g
G.

Here Symk G is the k-th symmetric power of G and the notation M ∗ denotes
HomR(M,R). The maps dj are defined as follows. First we define a diagonal map

∆ : (Symk G)∗ � G∗⊗(Symk−1 G)∗

as the dual of the multiplication map G⊗Symk−1 G � Symk G in the sym-
metric algebra of G. Next we define an analogous diagonal map

∆ :
∧k

F � F ⊗∧k−1
F

as the dual of the multiplication in the exterior algebra of F ∗. These diagonal
maps can be defined as components of the maps of algebras induced by the
diagonal map of modules F → F⊕F sending f to (f, f). For the exterior algebra,
for example, this is the composite∧k

F ↪→ ∧F � ∧
(F ⊕F ) =

∧
F ⊗∧F → F ⊗∧k−1

F.

On decomposable elements, this diagonal has the simple form

f1∧ . . .∧fk �→
∑

i

(−1)i−1fi⊗f1∧ . . .∧ f̂i∧ . . .∧fk.

For u ∈ (Symj−1 G)∗) we write ∆(u) =
∑

i u′
i⊗ u′′

i ∈ G∗ ⊗ (Symj−2 G)∗ and
similarly for v ∈ ∧g+j−1

F we write ∆(v) =
∑

v′t⊗ v′′t ∈ F ⊗∧g+j−2
F . Note

that α∗(u′
i) ∈ F ∗, so [α∗(u′

i)](v
′
t) ∈ R. We set

dj : (Symj−1 G)∗⊗∧g+j−1
F → (Symj−2 G)∗⊗∧g+j−2

F

u⊗v �→
∑
s,t

[α∗(u′
s)](v

′
t) ·u′′

s ⊗v′′t .

That the Eagon–Northcott complex is a complex follows by a direct computation,
or by an inductive construction of the complex as a mapping cone, similar to
the one indicated above in the case of the Koszul complex. The most interesting
part— the fact that d2 composes with

∧g
α to 0— is a restatement of Cramer’s

Rule for solving linear equations; see Examples A2.67 and A2.68 below.
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Rational Normal Scrolls

We give three definitions of rational normal scrolls, in order of increasing ab-
straction. See [Eisenbud and Harris 1987] for a proof of their equivalence. Fix
nonnegative integers a1, . . . , ad. Set D =

∑
ai and N = D+d−1.

As homogeneous ideals. Take the homogeneous coordinates on PN to be

x1,0, . . . , x1,a1 , x2,0, . . . , x2,a2 , . . . , xd,0, . . . , xd,ad
.

Define a 2×D matrix of linear forms on PN by

A(a1, . . . , ad) =
(

x1,0 . . . x1,a1−1 x2,0 . . . x2,a2−1 . . .
x1,1 . . . x1,a1 x2,1 . . . x2,a2 . . .

)
.

The rational normal scroll S(a1, . . . , ad) is the variety defined by the ideal of
2×2 minors of I2(A(a1, . . . , ad)). Each of the blocks(

xi,0 xi,1 . . . xi,a1−1

xi,1 xi,2 . . . xi,a1

)
used to construct A(a1, . . . , ad) is 1-generic by Proposition 6.3, and since the
blocks involve different variables the whole matrix A(a1, . . . , ad) is 1-generic. It
follows from Theorem 6.4 that the ideal of 2×2 minors I2(A(a1, . . . , ad)) is prime.
(This could also be proved directly by the method of Proposition 6.1.)

As a union of planes. Let Vi be a vector space of dimension ai. Regard P(Vi)
as a subspace of PN = P(

⊕
i Vi). Consider in P(Vi) the parametrized rational

normal curve
λi : P1 � P(Vi)

represented in coordinates by

(s, t) �→ (sai , sai−1t, . . . , tai).

For each point p ∈ P1, let L(p) ⊂ PN be the (d−1)-plane spanned by λ1(p), . . . ,
λd(p). The rational normal scroll S(a1, . . . , ad) is the union

⋃
p∈P1 L(p).

Structural definition. Let E be the vector bundle on P1 that is the direct sum
E =
⊕d

i=1 O(ai). Consider the projectivized vector bundle X := P(E ), which is a
smooth d-dimensional variety mapping to P1 with fibers Pd−1. Because all the ai

are nonnegative, the tautological bundle OP(E )(1) is generated by its global sec-
tions, which may be naturally identified with the N +1-dimensional vector space
H0(E ) =

⊕
i H0(OP1(ai)). These sections thus define a morphism X � PN .

The rational normal scroll S(a1, . . . , ad) is the image of this morphism.

Here are generalizations of Theorems A2.47, A2.49 and Example A2.40.

Theorem A2.59. Let α : F → G with rankF ≥ rankG = g be a map of free
R-modules. The homology of the Eagon–Northcott complex EN(α) is annihilated
by the ideal of g×g minors of α.
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The following result gives another (easier) proof of Theorem A2.55 in the case
of maximal order minors. It can be deduced from Theorem A2.59 together with
Theorem 3.3.

Theorem A2.60. Let α : F → G with rankF = f ≥ rankG = g be a map of free
R-modules. The Eagon–Northcott complex EN(α) is exact (and thus furnishes
a free resolution of R/Ig(α)) if and only if grade(Ig(α)) = f−g+1, the greatest
possible value. In this case the dual complex Hom(EN(α), R) is also a resolution.

The following important consequence seems to use only a tiny part of Theorem
A2.60, but I know of no other approach.

Corollary A2.61. If α : Rf → Rg is a matrix of elements in the maximal ideal
of a local ring S such that grade(Ig(α)) = f−g+1, then the

(
f
g

)
maximal minors

of α are minimal generators of the ideal they generate.

Proof. The matrix of relations on these minors given by the Eagon–Northcott
complex is zero modulo the maximal ideal of S.

We can apply the preceding theorems to the rational normal scrolls.

Corollary A2.62. The ideal of 2× 2 minors of the matrix A(a1, . . . , ad) has
grade and codimension equal to D− 1, and thus the Eagon–Northcott complex
EN(A(a1, . . . , ad)) is a free resolution of the homogeneous coordinate ring of the
rational normal scroll S(a1, . . . , ad). In particular the homogeneous coordinate
ring of a rational normal scroll is Cohen–Macaulay.

The next results give some perspective on scrolls. The first is part of the
Kronecker–Weierstrass classification of matrix pencils.

Theorem A2.63. Suppose A is a 2×D matrix of linear forms over a polynomial
ring whose ideal I of 2×2 minors has codimension D−1. If I is a prime ideal
then A is equivalent by row operations, column operations, and linear change of
variables to one of the matrices A(a1, . . . , ad) with D =

∑
ai.

Theorem A2.64. If X is an irreducible subvariety of codimension c in PN ,
not contained in a hyperplane, then the degree of X is at least c+1. Equality is
achieved if and only if X is (up to a linear transformation of projective space)
either

• a quadric hypersurface,
• a cone over the Veronese surface in P5 (whose defining ideal is the ideal of

2×2 minors of a generic symmetric 2×2 matrix ), or
• a rational normal scroll S(a1, . . . , ad) with

∑
ai = c+1.

Consider a map α : F � G, where F and G are free R-modules of ranks f
and g respectively. The definition of the Eagon–Northcott complex is easier to
understand if g = 1 or if f is close to g:
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Example A2.65 (The Koszul complex). If g = 1 and we choose a generator
for G, identifying G with R, then the symmetric powers Symk(G) and their duals
may all be identified with R. If we suppress them in the tensor products defining
the Eagon–Northcott complex, we get a complex of the form

0 � ∧f
F � . . . � ∧1

F � {∧1
G = R}.

Choosing a basis for F and writing x1, . . . , xf for the images of the basis elements
in G = R, this complex is isomorphic to the Koszul complex K(x1, . . . , xf ).

Example A2.66. If f = g then the Eagon–Northcott complex is reduced to

0 � {R ∼= ∧f
F} det α� {R ∼= ∧g

G}.
Example A2.67 (The Hilbert–Burch complex). Supose f = g +1. If we
choose an identification of

∧f
F with R then we may suppress the tensor factor∧f

F from the notation, and also identify
∧g

F =
∧f−1

F with F ∗. If we also
choose an identification of

∧g
G with R, then the Eagon–Northcott complex of

α takes the form

0 � G∗ α∗
� {F ∗ =

∧g
F} ∧

g
α� {∧g

G = R}.
This is the complex used for the Hilbert–Burch in Chapter 3.

Example A2.68. If α is represented by a matrix A, then the map at the far
right of the Eagon–Northcott complex,

∧g
α, may be represented by the 1×(fg)

matrix whose entries are the g×g minors of α. The map d2 admits a similarly
transparent description: for every submatrix A′ of A consisting of g+1 columns,
there are g relations among the minors involving these columns that are given
by A′∗, exactly as in the Hilbert–Burch complex, Example A2.67. The map d2

is made by simply concatenating these relations.

Example A2.69. Suppose that α is represented by the 2×4 matrix(
a b c d
e f g h

)
so that g = 2, f = 4. There are six 2×2 minors, and for each of the four 2×3
submatrices of A there are two relations among the six, a total of eight, given
as in A2.68. Since (Sym2 G)∗ ∼= (Sym2(R2))∗ ∼= R3, the the Eagon–Northcott
complex takes the form

0 � R3 � R8 � R6 � R .

The entries of the right-hand map are the 2×2 minors of A, which are quadratic
in the entries of A, whereas the rest of the matrices (as in all the Eagon–Northcott
complexes) have entries that are linear in the entries of A.
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Norm. Sup. (4) 31:2 (1998), 145–152.

[Hochster and Eagon 1971] M. Hochster and J. A. Eagon, “Cohen-Macaulay
rings, invariant theory, and the generic perfection of determinantal loci”,
Amer. J. Math. 93 (1971), 1020–1058.

[Hochster and Roberts 1974] M. Hochster and J. L. Roberts, “Rings of invari-
ants of reductive groups acting on regular rings are Cohen-Macaulay”, Ad-
vances in Math. 13 (1974), 115–175.

[Huneke 1999] C. Huneke, “Hyman Bass and ubiquity: Gorenstein rings”, pp.
55–78 in Algebra, K-theory, groups, and education (New York, 1997), edited
by T.-Y. Lam and A. R. Magid, Contemp. Math. 243, Amer. Math. Soc.,
Providence, RI, 1999.

[Kempf 1972] G. R. Kempf, “Schubert methods with an application to algebraic
curves”, Technical report, Mathematisch Centrum, Amsterdam, 1972.

[Kempf 1989] G. R. Kempf, “Projective coordinate rings of abelian varieties”,
pp. 225–235 in Algebraic analysis, geometry, and number theory (Baltimore,
1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989.

[Kleiman and Laksov 1972] S. L. Kleiman and D. Laksov, “On the existence of
special divisors”, Amer. J. Math. 94 (1972), 431–436.

[Kleiman and Laksov 1974] S. L. Kleiman and D. Laksov, “Another proof of the
existence of special divisors”, Acta Math. 132 (1974), 163–176.

[Koh 1998] J. Koh, “Ideals generated by quadrics exhibiting double exponential
degrees”, J. Algebra 200:1 (1998), 225–245.

[Koh and Stillman 1989] J. Koh and M. Stillman, “Linear syzygies and line bun-
dles on an algebraic curve”, J. Algebra 125:1 (1989), 120–132.

[Kreuzer and Robbiano 2000] M. Kreuzer and L. Robbiano, Computational com-
mutative algebra. 1, Springer, Berlin, 2000.
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