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Preface: Algebra and Geometry

Syzygy [from] Gr. culuyia
Yoke, pair, copulation, conjunction

— Oxford English Dictionary (etymology)

Implicit in the name “algebraic geometry” is the relation between geometry and
equations. The qualitative study of systems of polynomial equations is the chief
subject of commutative algebra as well. But when we actually study a ring or
a variety, we often have to know a great deal about it before understanding its
equations. Conversely, given a system of equations, it can be extremely difficult
to analyze its qualitative properties, such as the geometry of the corresponding
variety. The theory of syzygies offers a microscope for looking at systems of
equations, and helps to make their subtle properties visible.

This book is concerned with the qualitative geometric theory of syzygies. It
describes geometric properties of a projective variety that correspond to the
numbers and degrees of its syzygies or to its having some structural property —
such as being determinantal, or having a free resolution with some particularly
simple structure. It is intended as a second course in algebraic geometry and
commutative algebra, such as I have taught at Brandeis University, the Institut
Poincaré in Paris, and the University of California at Berkeley.
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What Are Syzygies?

In algebraic geometry over a field K we study the geometry of varieties through
properties of the polynomial ring

S =Ko, ...,z

and its ideals. It turns out that to study ideals effectively we we also need to study
more general graded modules over S. The simplest way to describe a module is
by generators and relations. We may think of a set A C M of generators for an
S-module M as a map from a free S-module F = S4 onto M, sending the basis
element of F' corresponding to a generator m € A to the element m € M.

Let M7 be the kernel of the map F — M; it is called the module of syzygies
of M corresponding to the given choice of generators, and a syzygy of M is an
element of M7 — a linear relation, with coefficients in S, on the chosen generators.
When we give M by generators and relations, we are choosing generators for M
and generators for the module of syzygies of M.

The use of “syzygy” in this context seems to go back to Sylvester [1853].
The word entered the language of modern science in the seventeenth century,
with the same astronomical meaning it had in ancient Greek: the conjunction
or opposition of heavenly bodies. Its literal derivation is a yoking together, just
like “conjunction”, with which it is cognate.

If r = 0, so that we are working over the polynomial ring in one variable, the
module of syzygies is itself a free module, since over a principal ideal domain
every submodule of a free module is free. But when r > 0 it may be the case
that any set of generators of the module of syzygies has relations. To understand
them, we proceed as before: we choose a generating set of syzygies and use them
to define a map from a new free module, say Fi, onto Mi; equivalently, we give
a map ¢p : F; — F whose image is M;. Continuing in this way we get a free
resolution of M, that is, a sequence of maps

P2 1

F ja F M 0,

where all the modules F; are free and each map is a surjection onto the kernel
of the following map. The image M; of ¢; is called the i-th module of syzygies of
M.

In projective geometry we treat S as a graded ring by giving each variable z;
degree 1, and we will be interested in the case where M is a finitely generated
graded S-module. In this case we can choose a minimal set of homogeneous
generators for M (that is, one with as few elements as possible), and we choose
the degrees of the generators of F' so that the map F — M preserves degrees.
The syzygy module M; is then a graded submodule of F', and Hilbert’s Basis
Theorem tells us that M; is again finitely generated, so we may repeat the
procedure. Hilbert’s Syzygy Theorem tells us that the modules M; are free as
soon as 7 > r.

The free resolution of M appears to depend strongly on our initial choice of
generators for M, as well as the subsequent choices of generators of M7, and so
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on. But if M is a finitely generated graded module and we choose a minimal
set of generators for M, then M; is, up to isomorphism, independent of the
minimal set of generators chosen. It follows that if we choose minimal sets of
generators at each stage in the construction of a free resolution we get a minimal
free resolution of M that is, up to isomorphism, independent of all the choices
made. Since, by the Hilbert Syzygy Theorem, M; is free for i > r, we see that in
the minimal free resolution F; = 0 for ¢ > r+ 1. In this sense the minimal free
resolution is finite: it has length at most r+ 1. Moreover, any free resolution of
M can be derived from the minimal one in a simple way (see Section 1B).

The Geometric Content of Syzygies

The minimal free resolution of a module M is a good tool for extracting infor-
mation about M. For example, Hilbert’s motivation for his results just quoted
was to devise a simple formula for the dimension of the d-th graded component
of M as a function of d. He showed that the function d — dimg My, now called
the Hilbert function of M, agrees for large d with a polynomial function of d.
The coefficients of this polynomial are among the most important invariants of
the module. If X C PT7 is a curve, the Hilbert polynomial of the homogeneous
coordinate ring Sx of X is

(deg X) d+ (1 —genus X),

whose coefficients deg X and 1—genus X give a topological classification of the
embedded curve. Hilbert originally studied free resolutions because their discrete
invariants, the graded Betti numbers, determine the Hilbert function (see Chapter
1).

But the graded Betti numbers contain more information than the Hilbert func-
tion. A typical example is the case of seven points in P2, described in Section 2C:
every set of 7 points in P3 in linearly general position has the same Hilbert func-
tion, but the graded Betti numbers of the ideal of the points tell us whether the
points lie on a rational normal curve.

Most of this book is concerned with examples one dimension higher: we study
the graded Betti numbers of the ideals of a projective curve, and relate them to
the geometric properties of the curve. To take just one example from those we
will explore, Green’s Conjecture (still open) says that the graded Betti numbers
of the ideal of a canonically embedded curve tell us the curve’s Clifford index
(most of the time this index is 2 less than the minimal degree of a map from the
curve to IP1). This circle of ideas is described in Chapter 9.

Some work has been done on syzygies of higher-dimensional varieties too,
though this subject is less well-developed. Syzygies are important in the study
of embeddings of abelian varieties, and thus in the study of moduli of abelian
varieties (for example [Gross and Popescu 2001]). They currently play a part
in the study of surfaces of low codimension (for example [Decker and Schreyer
2000]), and other questions about surfaces (for example [Gallego and Purnapra-
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jna 1999]). They have also been used in the study of Calabi-Yau varieties (for
example [Gallego and Purnaprajna 1998]).

What Does Solving Linear Equations Mean?

A free resolution may be thought of as the result of fully solving a system of
linear equations with polynomial coefficients. To set the stage, consider a system
of linear equations AX = 0, where A is a p X ¢ matrix of elements of K, which
we may think of as a linear transformation

P =K? -2+ KP = R,

Suppose we find some solution vectors Xi,...,X,. These vectors constitute a
complete solution to the equations if every solution vector can be expressed as
a linear combination of them. Elementary linear algebra shows that there are
complete solutions consisting of ¢—rank A independent vectors. Moreover, there
is a powerful test for completeness: A given set of solutions {X,} is complete if
and only if it contains ¢ —rank A independent vectors.

A set of solutions can be interpreted as the columns of a matrix X defining a
map X : F5 — F} such that

F2—X>F1—A>Fo

is a complex. The test for completeness says that this complex is exact if and
only if rank A 4+rank X = rank F. If the solutions are linearly independent as
well as forming a complete system, we get an exact sequence

O—>F2—X>F1—A>F0.

Suppose now that the elements of A vary as polynomial functions of some
parameters xg, ..., Z,, and we need to find solution vectors whose entries also
vary as polynomial functions. Given a set X, ..., X, of vectors of polynomials
that are solutions to the equations AX = 0, we ask whether every solution can
be written as a linear combination of the X; with polynomial coefficients. If so we
say that the set of solutions is complete. The solutions are once again elements
of the kernel of the map A : F; = S?9 — Fy = SP, and a complete set of solutions
is a set of generators of the kernel. Thus Hilbert’s Basis Theorem implies that
there do exist finite complete sets of solutions. However, it might be that every
complete set of solutions is linearly dependent: the syzygy module M; = ker A
is not free. Thus to understand the solutions we must compute the dependency
relations on them, and then the dependency relations on these. This is precisely
a free resolution of the cokernel of A. When we think of solving a system of linear
equations, we should think of the whole free resolution.

One reward for this point of view is a criterion analogous to the rank criterion
given above for the completeness of a set of solutions. We know no simple criterion
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for the completeness of a given set of solutions to a system of linear equations
over S, that is, for the exactness of a complex of free S-modules Fy, — F; — Fj.
However, if we consider a whole free resolution, the situation is better: a complex

¢’V7‘L

0 . F, L ¢2‘Fl 1

Fy

of matrices of polynomial functions is exact if and only if the ranks r; of the ¢;
satisfy the conditions r; +r;_1 = rank F;, as in the case where S is a field, and
the set of points

{p € K"*! | the evaluated matrix ¢;|,—, has rank < r;}

has codimension > i for each i. (See Theorem 3.4.)
This criterion, from joint work with David Buchsbaum, was my first real result
about free resolutions. I’ve been hooked ever since.

Ezxperiment and Computation

A qualitative understanding of equations makes algebraic geometry more acces-
sible to experiment: when it is possible to test geometric properties using their
equations, it becomes possible to make constructions and decide their structure
by computer. Sometimes unexpected patterns and regularities emerge and lead
to surprising conjectures. The experimental method is a useful addition to the
method of guessing new theorems by extrapolating from old ones. I personally
owe to experiment some of the theorems of which I'm proudest. Number the-
ory provides a good example of how this principle can operate: experiment is
much easier in number theory than in algebraic geometry, and this is one of
the reasons that number theory is so richly endowed with marvelous and dif-
ficult conjectures. The conjectures discovered by experiment can be trivial or
very difficult; they usually come with no pedigree suggesting methods for proof.
As in physics, chemistry or biology, there is art involved in inventing feasible
experiments that have useful answers.

A good example where experiments with syzygies were useful in algebraic
geometry is the study of surfaces of low degree in projective 4-space, as in work
of Aure, Decker, Hulek, Popescu and Ranestad [Aure et al. 1997]. Another is the
work on Fano manifolds such as that of of Schreyer [2001], or the applications
surveyed in [Decker and Schreyer 2001, Decker and Eisenbud 2002]. The idea,
roughly, is to deduce the form of the equations from the geometric properties
that the varieties are supposed to possess, guess at sets of equations with this
structure, and then prove that the guessed equations represent actual varieties.
Syzygies were also crucial in my work with Joe Harris on algebraic curves. Many
further examples of this sort could be given within algebraic geometry, and there
are still more examples in commutative algebra and other related areas, such as
those described in the Macaulay 2 Book [Decker and Eisenbud 2002].

Computation in algebraic geometry is itself an interesting field of study, not
covered in this book. It has developed a great deal in recent years, and there are
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now at least three powerful programs devoted to computation in commutative
algebra, algebraic geometry and singularities that are freely available: CoCoA,
Macaulay 2, and Singular.! Despite these advances, it will always be easy to give
sets of equations that render our best algorithms and biggest machines useless,
so the qualitative theory remains essential.

A useful adjunct to this book would be a study of the construction of Grobner
bases which underlies these tools, perhaps from [Eisenbud 1995, Chapter 15],
and the use of one of these computing platforms. The books [Greuel and Pfister
2002, Kreuzer and Robbiano 2000] and, for projective geometry, the forthcoming
book [Decker and Schreyer > 2004], will be very helpful.

What’s In This Book?

The first chapter of this book is introductory: it explains the ideas of Hilbert
that give the definitive link between syzygies and the Hilbert function. This is
the origin of the modern theory of syzygies. This chapter also introduces the basic
discrete invariants of resolution, the graded Betti numbers, and the convenient
Betti diagrams for displaying them.

At this stage we still have no tools for showing that a given complex is a
resolution, and in Chapter 2 we remedy this lack with a simple but very effective
idea of Bayer, Peeva, and Sturmfels for describing some resolutions in terms of
labeled simplicial complezes. With this tool we prove the Hilbert Syzygy Theorem
and we also introduce Koszul homology. We then spend some time on the example
of seven points in P3, where we see a deep connection between syzygies and an
important invariant of the positions of the seven points.

In the next chapter we explore a case where we can say a great deal: sets
of points in P2. Here we characterize all possible resolutions and derive some
invariants of point sets from the structure of syzygies.

The following Chapter 4 introduces a basic invariant of the resolution, coarser
than the graded Betti numbers: the Castelnuovo—Mumford regularity. This is a
topic of central importance for the rest of the book, and a very active one for
research. The goal of Chapter 4, however, is modest: we show that in the setting
of sets of points in P” the Castelnuovo-Mumford regularity is the degree needed
to interpolate any function as a polynomial function. We also explore different
characterizations of regularity, in terms of local or Zariski cohomology, and use
them to prove some basic results used later.

Chapter 5 is devoted to the most important result on Castelnuovo-Mumford
regularity to date: the theorem by Castelnuovo, Mattuck, Mumford, Gruson,
Lazarsfeld, and Peskine bounding the regularity of projective curves. The tech-
niques introduced here reappear many times later in the book.

IThese software packages are freely available for many platforms, at cocoa.dima.unige.it,
www.math.uiuc.edu/Macaulay2 and www.singular.uni-kl.de, respectively. These web sites are
good sources of further information and references.
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The next chapter returns to examples. We develop enough material about
linear series to explain the free resolutions of all the curves of genus 0 and 1
in complete embeddings. This material can be generalized to deal with nice
embeddings of any hyperelliptic curve.

Chapter 7 is again devoted to a major result: Green’s Linear Syzygy theorem.
The proof involves us with exterior algebra constructions that can be organized
around the Bernstein—Gelfand—Gelfand correspondence, and we spend a section
at the end of Chapter 7 exploring this tool.

Chapter 8 is in many ways the culmination of the book. In it we describe (and
in most cases prove) the results that are the current state of knowledge of the
syzygies of the ideal of a curve embedded by a complete linear series of high
degree — that is, degree greater than twice the genus of the curve. Many new
techniques are needed, and many old ones resurface from earlier in the book.
The results directly generalize the picture, worked out much more explicitly, of
the embeddings of curves of genus 0 and 1. We also present the conjectures of
Green and Green—Lazarsfeld extending what we can prove.

No book on syzygies written at this time could omit a description of Green’s
conjecture, which has been a wellspring of ideas and motivation for the whole
area. This is treated in Chapter 9. However, in another sense the time is the
worst possible for writing about the conjecture, since major new results, recently
proven, are still unpublished. These results will leave the state of the problem
greatly advanced but still far from complete. It’s clear that another book will
have to be written some day. ..

Finally, T have included two appendices to help the reader: Appendix 1 ex-
plains local cohomology and its relation to sheaf cohomology, and Appendix 2
surveys, without proofs, the relevant commutative algebra. I can perhaps claim
(for the moment) to have written the longest exposition of commutative algebra
in [Eisenbud 1995]; with this second appendix I claim also to have written the
shortest!

Prerequisites

The ideal preparation for reading this book is a first course on algebraic geometry
(alittle bit about curves and about the cohomology of sheaves on projective space
is plenty) and a first course on commutative algebra, with an emphasis on the
homological side of the field. Appendix 1 proves all that is needed about local
cohomology and a little more, while Appendix 2 may help the reader cope with
the commutative algebra required.

How Did This Book Come About?

This text originated in a course I gave at the Institut Poincaré in Paris, in 1994.
The course was presented in my imperfect French, but this flaw was corrected by
three of my auditors, Freddy Bonnin, Clément Caubel, and Heléne Maugendre.
They wrote up notes and added a lot of polish.
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I have recently been working on a number of projects connected with the ex-
terior algebra, partly motivated by the work of Green described in Chapter 7.
This led me to offer a course on the subject again in the Fall of 2001, at the Uni-
versity of California, Berkeley. I rewrote the notes completely and added many
topics and results, including material about exterior algebras and the Bernstein—
Gelfand—Gelfand correspondence.

Other Books

Free resolutions appear in many places, and play an important role in books such
as [Eisenbud 1995], [Bruns and Herzog 1998], and [Miller and Sturmfels 2004].
The last is also an excellent reference for the theory of monomial and toric ideals
and their resolutions. There are at least two book-length treatments focusing
on them specifically, [Northcott 1976] and [Evans and Griffith 1985]. The books
[Cox et al. 1997] and [Schenck 2003] give gentle introductions to computational
algebraic geometry, with lots of use of free resolutions, and many other topics.
The notes [Eisenbud and Sidman 2004] could be used as an introduction to parts
of this book.

Thanks

I’'ve worked on the things presented here with some wonderful mathematicians,
and I've had the good fortune to teach a group of PhD students and postdocs
who have taught me as much as I've taught them. I’'m particularly grateful to
Dave Bayer, David Buchsbaum, Joe Harris, Jee Heub Koh, Mark Green, Irena
Peeva, Sorin Popescu, Frank Schreyer, Mike Stillman, Bernd Sturmfels, Jerzy
Weyman, and Sergey Yuzvinsky, for the fun we’ve shared while exploring this
terrain.

I'm also grateful to Eric Babson, Baohua Fu, Leah Gold, George Kirkup,
Pat Perkins, Emma Previato, Hal Schenck, Jessica Sidman, Greg Smith, Rekha
Thomas, Simon Turner, and Art Weiss, who read parts of earlier versions of this
text and pointed out infinitely many of the infinitely many things that needed
fixing.

Notation

Throughout the text K denotes an arbitrary field; S = K|z, ..., z,] denotes a
polynomial ring; and m = (xg,...,z,) C S denotes its homogeneous maximal
ideal. Sometimes when r is small we rename the variables and write, for example,
S =Klz,y, 2].
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Free Resolutions and Hilbert Functions

A minimal free resolution is an invariant associated to a graded module over a
ring graded by the natural numbers N or by N™. In this book we study minimal
free resolutions of finitely generated graded modules in the case where the ring
is a polynomial ring S = Klxg,...,z,] over a field K, graded by N with each
variable in degree 1. This study is motivated primarily by questions from pro-
jective geometry. The information provided by free resolutions is a refinement
of the information provided by the Hilbert polynomial and Hilbert function. In
this chapter we define all these objects and explain their relationships.

The Generation of Invariants

As all roads lead to Rome, so | find in my own case at least
that all algebraic inquiries, sooner or later, end at the Capitol of modern algebra,
over whose shining portal is inscribed The Theory of Invariants.

— J. J. Sylvester (1864)

In the second half of the nineteenth century, invariant theory stood at the center
of algebra. It originated in a desire to define properties of an equation, or of
a curve defined by an equation, that were invariant under some geometrically
defined set of transformations and that could be expressed in terms of a poly-
nomial function of the coefficients of the equation. The most classical example
is the discriminant of a polynomial in one variable. It is a polynomial function
of the coefficients that does not change under linear changes of variable and
whose vanishing is the condition for the polynomial to have multiple roots. This
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example had been studied since Leibniz’s work: it was part of the motivation
for his invention of matrix notation and determinants (first attested in a letter
to 'Hopital of April 1693; see [Leibniz 1962, p. 239]). A host of new examples
had become important with the rise of complex projective plane geometry in the
early nineteenth century.

The general setting is easy to describe: If a group G acts by linear trans-
formations on a finite-dimensional vector space W over a field K, the action
extends uniquely to the ring S of polynomials whose variables are a basis for
W. The fundamental problem of invariant theory was to prove in good cases —
for example when K has characteristic zero and G is a finite group or a special
linear group — that the ring of invariant functions S¢ is finitely generated as a
K-algebra, that is, every invariant function can be expressed as a polynomial in
a finite generating set of invariant functions. This had been proved, in a number
of special cases, by explicitly finding finite sets of generators.

Enter Hilbert

The typical nineteenth-century paper on invariants was full of difficult com-
putations, and had as its goal to compute explicitly a finite set of invariants
generating all the invariants of a particular representation of a particular group.
David Hilbert changed this landscape forever with his papers [Hilbert 1978] or
[Hilbert 1970], the work that first brought him major recognition. He proved that
the ring of invariants is finitely generated for a wide class of groups, including
those his contemporaries were studying and many more. Most amazing, he did
this by an existential argument that avoided hard calculation. In fact, he did
not compute a single new invariant. An idea of his proof is given in [Eisenbud
1995, Chapter 1]. The really new ingredient was what is now called the Hilbert
Basis Theorem, which says that submodules of finitely generated S-modules are
finitely generated.

Hilbert studied syzygies in order to show that the generating function for the
number of invariants of each degree is a rational function [Hilbert 1993]. He also
showed that if I is a homogeneous ideal of the polynomial ring S, the “number
of independent linear conditions for a form of degree d in S to lie in I” is a
polynomial function of d [Hilbert 1970, p. 236]. (The problem of counting the
number of conditions had already been considered for some time; it arose both in
projective geometry and in invariant theory. A general statement of the problem,
with a clear understanding of the role of syzygies (but without the word yet —see
page x) is given by Cayley [1847], who also reviews some of the earlier literature
and the mistakes made in it. Like Hilbert, Cayley was interested in syzygies (and
higher syzygies too) because they let him count the number of forms in the ideal
generated by a given set of forms. He was well aware that the syzygies form
a module (in our sense). But unlike Hilbert, Cayley seems concerned with this
module only one degree at a time, not in its totality; for instance, he did not
raise the question of finite generation that is at the center of Hilbert’s work.)
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1A The Study of Syzygies

Our primary focus is on the homogeneous coordinate rings of projective varieties
and the modules over them, so we adapt our notation to this end. Recall that the
homogeneous coordinate ring of the projective r-space P” = Py is the polynomial
ring S = K|[zo, ..., 2] in r+1 variables over a field K, with all variables of degree
1. Let M = @,y My be a finitely generated graded S-module with d-th graded
component M. Because M is finitely generated, each M, is a finite-dimensional
vector space, and we define the Hilbert function of M to be

HM(d) = dimK Md.

Hilbert had the idea of computing Hj;(d) by comparing M with free modules,
using a free resolution. For any graded module M, denote by M (a) the module
M shifted (or “twisted”) by a:

M(a)d = Ma+d-

(For instance, the free S-module of rank 1 generated by an element of degree a is
S(—a).) Given homogeneous elements m; € M of degree a; that generate M as an
S-module, we may define a map from the graded free module Fy = @, S(—a;)
onto M by sending the i-th generator to m;. (In this text a map of graded
modules means a degree-preserving map, and we need the shifts m; to make this
true.) Let M; C Fy be the kernel of this map Fy — M. By the Hilbert Basis
Theorem, M; is also a finitely generated module. The elements of M; are called
syzygies on the generators m;, or simply syzygies of M.

Choosing finitely many homogeneous syzygies that generate M7, we may define
a map from a graded free module F; to Fy with image M;. Continuing in this
way we construct a sequence of maps of graded free modules, called a graded free
resolution of M:

Fi bl Fi—l > F1 bkl Fo.

It is an exact sequence of degree-0 maps between graded free modules such that
the cokernel of ; is M. Since the @; preserve degrees, we get an exact sequence
of finite-dimensional vector spaces by taking the degree d part of each module
in this sequence, which suggests writing

Ha(d) = (=1)'H,(d).
This sum might be useless, or even meaningless, if it were infinite, but Hilbert
showed that it can be made finite.

Theorem 1.1 (Hilbert Syzygy Theorem). Any finitely generated graded S-
module M has a finite graded free resolution

0—> Fp =% Fppoy —> - — F| > F,.

Moreover, we may take m < r+1, the number of variables in S.
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We will prove Theorem 1.1 in Section 2B.

As first examples we take, as did Hilbert, three complexes that form the be-
ginning of the most important, and simplest, family of free resolutions. They are
now called Koszul complexes:

K(zg): 0 — S(-1) (o) g

()

Zo
x1
T2

K(.Z‘Q,.’L'l,l‘g) 0 —— S(—?)) —_— 53(—2)

§2(—1) o) g

0 T —Iq1
(—zg 0 z0>
r1 —To 0

The first of these is obviously a resolution of S/(zg). It is quite easy to prove
that the second is a resolution —see Exercise 1.1. It is also not hard to prove

directly that the third is a resolution, but we will do it with a technique developed
in the first half of Chapter 2.

K(zg,z1): 0 — S(—2)

§3(—1) Lo rm) g

The Hilbert Function Becomes Polynomial
From a free resolution of M we can compute the Hilbert function of M explicitly.

Corollary 1.2. Suppose that S = K|xg,...,x,] is a polynomial ring. If the
graded S-module M has finite free resolution

00— Fpy =" Fpg — -+ - ) 2 R,
with each F; a finitely generated free module F; = @j S(—a; ), then

- i r+d—a;;
) = > 3 (7).
Proof. We have Hp(d) = > 1% (—1)"Hp, (d), so it suffices to show that

r—l—d—am»
Hp,(d) = Z ( . )
J
Decomposing F; as a direct sum, it even suffices to show that Hg_q)(d) =
(T+ﬁ_“). Shifting back, it suffices to show that Hg(d) = (T'j:d). This basic com-
binatorial identity may be proved quickly as follows: a monomial of degree d
is specified by the sequence of indices of its factors, which may be ordered to
make a weakly increasing sequence of d integers, each between 0 and r. For ex-
ample, we could specify 2322 by the sequence 1,1,1,3,3. Adding i to the i-th

element of the sequence, we get a d element subset of {1,...,r+d}, and there
are (T;d) = (Ttd) of these. O
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Corollary 1.3. There is a polynomial Py;(d) (called the Hilbert polynomial
of M) such that, if M has free resolution as above, then Pyi(d) = Hp(d) for
d > max; j{a; ; —1}.

Proof. When d+7—a > 0 we have

(d+r—a) _ (d—i—r—a)(d—f—r—:l—a)-~-(d+1—a)

r )
which is a polynomial of degree r in d. Thus in the desired range all the terms
in the expression of H)s(d) from Proposition 1.2 become polynomials. O

Exercise 2.15 shows that the bound in Corollary 1.3 is not always sharp. We
will investigate the matter further in Chapter 4; see, for example, Theorem 4A.

1B  Minimal Free Resolutions

Each finitely generated graded S-module has a minimal free resolution, which is
unique up to isomorphism. The degrees of the generators of its free modules not
only yield the Hilbert function, as would be true for any resolution, but form a
finer invariant, which is the subject of this book. In this section we give a careful
statement of the definition of minimality, and of the uniqueness theorem.

Naively, minimal free resolutions can be described as follows: Given a finitely
generated graded module M, choose a minimal set of homogeneous generators
m;. Map a graded free module Fjy onto M by sending a basis for F to the set
of m;. Let M’ be the kernel of the map Fy — M, and repeat the procedure,
starting with a minimal system of homogeneous generators of M’. ...

Most of the applications of minimal free resolutions are based on a property
that characterizes them in a different way, which we will adopt as the formal
definition. To state it we will use our standard notation m to denote the homo-
geneous maximal ideal (zo,...,2,) C S = Klzo,...,z,].

Definition. A complex of graded S-modules

d;

F; Fi_4

1s called minimal if for each i the image of §; is contained in mF;_1.

Informally, we may say that a complex of free modules is minimal if its differ-
ential is represented by matrices with entries in the maximal ideal.

The relation between this and the naive idea of a minimal resolution is a conse-
quence of Nakayama’s Lemma. See [Eisenbud 1995, Section 4.1] for a discussion
and proof in the local case. Here is the lemma in the graded case:

Lemma 1.4 (Nakayama). Suppose M is a finitely generated graded S-module
and my,...,m, € M generate M/mM. Then my,...,m, generate M.



6 1. Free Resolutions and Hilbert Functions

Proof. Let M = M/ (> Sm;). If the m; generate M/mM then M/mM = 0 so
mM = M. If M # 0, since M is finitely generated, there would be a nonzero
element of least degree in M; this element could not be in mM. Thus M = 0, so
M is generated by the m;. O

Corollary 1.5. A graded free resolution

)

F: -« —F —+F_1—» -

is minimal as a complex if and only if for each i the map §; takes a basis of F;
to a minimal set of generators of the image of §;.

Proof. Consider the right exact sequence F; 11 — F; — im§; — 0. The complex
F is minimal if and only if, for each ¢, the induced map

diy1: Fip1/mFi — F;/mF;

is zero. This holds if and only if the induced map F;/mF; — (imd;)/m(im ;) is
an isomorphism. By Nakayama’s Lemma this occurs if and only if a basis of Fj
maps to a minimal set of generators of im J;. O

Considering all the choices made in the construction, it is perhaps surprising
that minimal free resolutions are unique up to isomorphism:

Theorem 1.6. Let M be a finitely generated graded S-module. If F and G are
minimal graded free resolutions of M, then there is a graded isomorphism of
complexes F — G inducing the identity map on M. Any free resolution of M
contains the minimal free resolution as a direct summand.

Proof. See [Eisenbud 1995, Theorem 20.2]. O

We can construct a minimal free resolution from any resolution, proving the
second statement of Theorem 1.6 along the way. If F is a nonminimal complex of
free modules, a matrix representing some differential of F must contain a nonzero
element of degree 0. This corresponds to a free basis element of some F; that
maps to an element of F;_; not contained in mF;_;. By Nakayama’s Lemma
this element of F;_; may be taken as a basis element. Thus we have found a
subcomplex of F of the form

C

G: 0— S(—a) — S(—a) — 0
for a nonzero scalar ¢ (such a thing is called a trivial complex) embedded in
F in such a way that F/G is again a free complex. Since G has no homology
at all, the long exact sequence in homology corresponding to the short exact
sequence of complexes 0 — G — F — F/G — 0 shows that the homology of
F/G is the same as that of F. In particular, if F is a free resolution of M, so is

F/G. Continuing in this way we eventually reach a minimal complex. If F was
a resolution of M, we have constructed the minimal free resolution.
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For us the most important aspect of the uniqueness of minimal free resolutions
is that, if F : - -+ — F} — F{ is the minimal free resolution of a finitely generated
graded S-module M, the number of generators of each degree required for the
free modules F; depends only on M. The easiest way to state a precise result
is to use the functor Tor; see for example [Eisenbud 1995, Section 6.2] for an
introduction to this useful tool.

Proposition 1.7. If F : --- — F} — Fy is the minimal free resolution of a
finitely generated graded S-module M and K is the residue field S/m, then any
minimal set of homogeneous generators of F; contains exactly dimg Torf (K, M),
generators of degree j.

Proof. The vector space Torf (K, M), is the degree j component of the graded
vector space that is the i-th homology of the complex K® gF'. Since F is minimal,
the maps in K®g F are all zero, so Torf(K, M) = K®g F;, and by Lemma 1.4
(Nakayama), Tor? (K, M); is the number of degree j generators that F; requires.

O

Corollary 1.8. If M is a finitely generated graded S-module then the projective
dimension of M is equal to the length of the minimal free resolution.

Proof. The projective dimension is the minimal length of a projective resolution
of M, by definition. The minimal free resolution is a projective resolution, so one
inequality is obvious. To show that the length of the minimal free resolution is at
most the projective dimension, note that Toris (K, M) = 0 when i is greater than
the projective dimension of M. By Proposition 1.7 this implies that the minimal
free resolution has length less than i too. OJ

If we allow the variables to have different degrees, H(t) becomes, for large ¢,
a polynomial with coefficients that are periodic in t. See Exercise 1.5 for details.

Describing Resolutions: Betti Diagrams

We have seen above that the numerical invariants associated to free resolutions
suffice to describe Hilbert functions, and below we will see that the numerical
invariants of minimal free resolutions contain more information. Since we will be
dealing with them a lot, we will introduce a compact way to display them, called
a Betti diagram.

To begin with an example, suppose S = K[z, z1,22] is the homogeneous
coordinate ring of P2. Theorem 3.13 and Corollary 3.10 below imply that there
is a set X of 10 points in P2 whose homogeneous coordinate ring Sx has free
resolution of the form

0 — S(-6)»S(-5) — S(—-4)dS(—4)®S(-3) —— S.

I I I

Fy Fy Fo
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We will represent the numbers that appear by the Betti diagram

|0 1 2
0|1 - -
1 — — —
2| - 1 -
3/- 2 1
41- - 1

where the column labeled ¢ describes the free module Fj;.
In general, suppose that F is a free complex

F: OHFgH*)Fm*)*)FO

where F; = P, S(— §)P3; that is, F; requires 3; ; minimal generators of degree
j. The Betti diagram of F has the form

| 0 1 . s
1 ﬁO,i ﬁl,i+l Tt Bs,i+s
i4+1 | Boi+1  Brive - Bsjits+1
J | Boj  Brj+r 0 Bsjts
It consists of a table with s+ 1 columns, labeled 0,1,...,s, corresponding to
the free modules Fy, ..., Fs. It has rows labeled with consecutive integers corre-

sponding to degrees. (We sometimes omit the row and column labels when they
are clear from context.) The m-th column specifies the degrees of the generators
of F,,. Thus, for example, the row labels at the left of the diagram correspond
to the possible degrees of a generator of Fy. For clarity we sometimes replace a
0 in the diagram by a “—” (as in the example given on the previous page) and
an indefinite value by a “x”.

Note that the entry in the j-th row of the i-th column is 3; ;4; rather than
Bi.;. This choice will be explained below.

If F is the minimal free resolution of a module M, we refer to the Betti diagram
of F as the Betti diagram of M and the 3,, 4 of F are called the graded Betti
numbers of M, sometimes written (3, ¢(M). In that case the graded vector space
Tor,,(M,K) is the homology of the complex F ®p K. Since F is minimal, the
differentials in this complex are zero, so B,,q(M) = dimg (Tor,, (M, K)q).

Properties of the Graded Betti Numbers

For example, the number By ; is the number of elements of degree j required
among the minimal generators of M. We will often consider the case where M
is the homogeneous coordinate ring Sx of a (nonempty) projective variety X.
As an S-module Sx is generated by the element 1, so we will have 5y = 1 and

ﬂO,j :Oforj;él
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On the other hand, 3, ; is the number of independent forms of degree j needed
to generate the ideal Iy of X. If Sx is not the zero ring (that is, X # &), there
are no elements of the ideal of X in degree 0, so 10 = 0. This is the case
i = d = 0 of the following;:

Proposition 1.9. Let {3; ;} be the graded Betti numbers of a finitely generated
S-module. If for a given i there is d such that B;; = 0 for all j < d, then

5¢+1,j+1 =0 for all j < d.

Proof. Suppose that the minimal free resolution is - -- BLE P LI Fy. By
minimality any generator of Fj;; must map to a nonzero element of the same
degree in mFj, the maximal homogeneous ideal times F;. To say that 3; ; = 0 for
all j < d means that all generators— and thus all nonzero elements —of F; have
degree > d. Thus all nonzero elements of mF; have degree > d+1, so F;;1 can
have generators only in degree > d+1 and 3;11,j41 = 0 for j < d as claimed. [

Proposition 1.9 gives a first hint of why it is convenient to write the Betti
diagram in the form we have, with 3;;4; in the j-th row of the i-th column: it
says that if the i-th column of the Betti diagram has zeros above the j-th row,
then the (i41)-st column also has zeros above the j-th row. This allows a more
compact display of Betti numbers than if we had written 3; ; in the i-th column
and j-th row. A deeper reason for our choice will be clear from the description
of Castelnuovo-Mumford regularity in Chapter 4.

The Information in the Hilbert Function

The formula for the Hilbert function given in Corollary 1.2 has a convenient
expression in terms of graded Betti numbers.

Corollary 1.10. If {3, ;} are the graded Betti numbers of a finitely generated
S-module M, the alternating sums B; = Y.~ (=1)"8;; determine the Hilbert
function of M wvia the formula a

Hu(d) = 3B, (”‘:j).

Moreover, the values of the B; can be deduced inductively from the function
H(d) via the formula

Bj=Hu(j)~ Y. B <r+ik>.

k: k<j

Proof. The first formula is simply a rearrangement of the formula in Corollary
1.2.

Conversely, to compute the B; from the Hilbert function Hps(d) we proceed
as follows. Since M is finitely generated there is a number jg so that Hys(d) =0
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for d < jo. It follows that By ; = 0 for all j < jo, and from Proposition 1.9 it
follows that if j < jo then 3; ; = 0 for all . Thus B; = 0 for all j < jp.
Inductively, we may assume that we know the value of By for k& < j. Since
(T+Z,_k) = 0 when j < k, only the values of By with k < j enter into the formula
for Hpr(j), and knowing Hj(j) we can solve for B;. Conveniently, B; occurs

with coefficient (:) =1, and we get the displayed formula. O

1C Exercises

1. Suppose that f, g are polynomials (homogeneous or not) in S, neither of which
divides the other, and consider the complex

/

(.7) v

0 S §% =% s,
where f' = f/h, g’ = g/h, and h is the greatest common divisor of f and g.
Proved that this is a free resolution. In particular, the projective dimension
of S/(f,g) is at most 2. If f and g are homogeneous and neither divides
the other, show that this is the minimal free resolution of S/(f,g), so that
the projective dimension of this module is exactly 2. Compute the twists
necessary to make this a graded free resolution.

This exercise is a hint of the connection between syzygies and unique fac-
torization, underlined by the famous theorem of Auslander and Buchsbaum
that regular local rings (those where every module has a finite free resolution)
are factorial. Indeed, refinements of the Auslander-Buchsbaum theorem by
MacRae [1965] and Buchsbaum—Eisenbud [1974]) show that a local or graded
ring is factorial if and only if the free resolution of any ideal generated by two
elements has the form above.

In the situation of classical invariant theory, Hilbert’s argument with syzy-
gies easily gives a nice expression for the number of invariants of each degree —
see [Hilbert 1993]. The situation is not quite as simple as the one studied in
the text because, although the ring of invariants is graded, its generators have
different degrees. Exercises 1.2-1.5 show how this can be handled. For these ex-
ercises we let T = K]lz1,...,2,] be a graded polynomial ring whose variables
have degrees deg z; = o; € N.

2. The most obvious generalization of Corollary 1.2 is false: Compute the Hilbert
function Hr(d) of T in the case n = 2,1 = 2,3 = 3. Show that it is not
eventually equal to a polynomial function of d (compare with the result of
Exercise 1.5). Show that over the complex numbers this ring 7" is isomorphic
to the ring of invariants of the cyclic group of order 6 acting on the polynomial
ring C[xg, z1], where the generator acts by zq — €>™/2xq, z1 — €2™/3z,.
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Now let M be a finitely generated graded T-module. Hilbert’s original argu-
ment for the Syzygy Theorem (or the modern one given in Section 2B) shows that
M has a finite graded free resolution as a T-module. Let Wy (t) = Y, Hu(d) t*
be the generating function for the Hilbert function.

3. Two simple examples will make the possibilities clearer:
(a) Modules of finite length. Show that any Laurent polynomial can be writ-
ten as W, for suitable finitely generated M.
(b) Free modules. Suppose M = T, the free module of rank 1 generated by
an element of degree 0 (the unit element). Prove by induction on n that

> 1 1
t)y= ) t“"Up(t) = Uri(t) = =,
; 1—ton T, (1—t)

where T" = K{z1,...,2n-1].
Deduce that if M = ZﬁV:_N T(—4)% then

ZJ‘\L—N ¢iti
W (t ¢:Vri(t) = T
I_Z:N e [[i=, (1 =t2)

4. Prove:

Theorem 1.11 (Hilbert). Let T = K]|z1,...,2z,], where degz; = «;, and
let M be a graded T-module with finite free resolution

__,ZT 511_,ZT BoJ

Set ¢p; = > ,(=1)'Bi; and set ppr(t) = d_nt™N +-- -+ ¢nt"N. The Hilbert
series of M is given by the formula

om(t)
[I7 (1 —tos)’

in particular Wy is a rational function.

Wp(t) =

5. Suppose T = K]zp, ..., 2] is a graded polynomial ring with deg z; = o; € N.
Use induction on r and the exact sequence

0—T(—0p) —> T — T/(2,) = 0

to show that the Hilbert function Hp of T is, for large d, equal to a polynomial
with periodic coefficients: that is,

Hy(d) = ho(d)d" +hy(d)d" ' +

for some periodic functions h;(d) with values in Q, whose periods divide the
least common multiple of the «;. Using free resolutions, state and derive a
corresponding result for all finitely generated graded T-modules.
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Some infinite resolutions: Let R = S/I be a graded quotient of a polynomial
ring S = K]zo, . .., 2,]. Minimal free resolutions exist for R, but are generally not

finite. Much is known about what the resolutions look like in the case where R
is a complete intersection —that is, I is generated by a regular sequence —and
in a few other cases, but not in general. For surveys of some different areas, see
[Avramov 1998, Froberg 1999]. Here are a few sample results about resolutions
of modules over a ring of the form R = S/I, where S is a graded polynomial ring
(or a regular local ring) and I is a principal ideal. Such rings are often called
hypersurface rings.

6.

10.

Let S = Klzo,...,x,], let I C S be a homogeneous ideal, and let R = S/1I.
Use the Auslander—-Buchsbaum—Serre characterization of regular local rings
(Theorem A2.19) to prove that there is a finite R-free resolution of K =
R/(xo,...,z.)R if and only if I is generated by linear forms.

Let R = K|[t]/(t™). Use the structure theorem for modules over the principal
ideal domain K[t] to classify all finitely generated R-modules. Show that the
minimal free resolution of the module R/t%, for 0 < a < n, is

@ n—a e 1@

-R-+R— ... Z» R

Let R = S/(f), where f is a nonzero homogeneous form of positive degree.
Suppose that A and B are two n X n matrices whose nonzero entries have
positive degree in S, such that AB = f-1I, where I is an n X n identity
matrix. Show that BA = f-I as well. Such a pair of matrices A, B is called
a matriz factorization of f; see [Eisenbud 1980]. Let

F:... A g Bopgm A 4 R",

where A := R®g A and B := R®g B , denote the reductions of A and B
modulo (f). Show that F is a minimal free resolution. (Hint: any element

that goes to 0 under A lifts to an element that goes to a multiple of f over
A)

. Suppose that M is a finitely generated R-module that has projective dimen-

sion 1 as an S-module. Show that the free resolution of M as an S-module

has the form A
0 > S™ > S™ - M >0

for some n and some n x n matrix A. Show that there is an n x n matrix B
with AB = f-1. Conclude that the free resolution of M as an R-module has
the form given in Exercise 1.8.

The ring R is Cohen—Macaulay, of depth r (Example A2.40). Use part 3
of Theorem A2.14, together with the Auslander-Buchsbaum Formula A2.13,
to show that if N is any finitely generated graded R-module, then the r-
th syzygy of M has depth r, and thus has projective dimension 1 as an



1C Exercises 13

S-module. Deduce that the free resolution of any finitely generated graded
module is periodic, of period at most 2, and that the periodic part of the
resolution comes from a matrix factorization.



2

First Examples of Free Resolutions

In this chapter we introduce a fundamental construction of resolutions based on
simplicial complexes. This construction gives free resolutions of monomial ideals,
but does not always yield minimal resolutions. It includes the Koszul complexes,
which we use to establish basic bounds on syzygies of all modules, including the
Hilbert Syzygy Theorem. We conclude the chapter with an example of a different
kind, showing how free resolutions capture the geometry of sets of seven points
in P3.

2A  Monomial Ideals and Simplicial Complexes

We now introduce a beautiful method of writing down graded free resolutions
of monomial ideals due to Bayer, Peeva and Sturmfels [Bayer et al. 1998]. So
far we have used Z-gradings only, but we can think of the polynomial ring S
as Z"t1-graded, with z{° - - - 2% having degree (ag, ..., a,) € Z""!, and the free
resolutions we write down will also be Z"*!-graded. We begin by reviewing the
basics of the theory of finite simplicial complexes. For a more complete treatment,
see [Bruns and Herzog 1998].

Simplicial Complexes

A finite simplicial complex A is a finite set N, called the set of vertices (or nodes)
of A, and a collection F' of subsets of N, called the faces of A, such that if A € F
is a face and B C A then B is also in F. Maximal faces are called facets.
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A simplex is a simplicial complex in which every subset of N is a face. For
any vertex set N we may form the void simplicial complex, which has no faces
at all. But if A has any faces at all, then the empty set @ is necessarily a
face of A. By contrast, we call the simplicial complex whose only face is @ the
irrelevant simplicial complex on N. (The name comes from the Stanley—Reisner
correspondence, which associates to any simplicial complex A with vertex set
N = {zg,...,z,} the square-free monomial ideal in S = K[z, ..., z,] whose
elements are the monomials with support equal to a non-face of A. Under this
correspondence the irrelevant 