
Chapter 1

Squarefree monomial
ideals

We begin by studying ideals in a polynomial ring k[x1, . . . , xn] that are
generated by squarefree monomials. Such ideals are also known as Stanley–
Reisner ideals, and quotients by them are called Stanley–Reisner rings.
The combinatorial nature of these algebraic objects stems from their in-
timate connections to simplicial topology. This chapter explores various
enumerative and homological manifestations of these topological connec-
tions, including simplicial descriptions of Hilbert series and Betti numbers.

After describing the relation between simplicial complexes and square-
free monomial ideals, this chapter goes on to introduce the objects and
notation surrounding both the algebra of general monomial ideals as well
as the combinatorial topology of simplicial complexes. Section 1.2 defines
what it means for a module over the polynomial ring k[x1, . . . , xn] to be
graded by Nn and what Hilbert series can look like in these gradings. In
preparation for our discussion of Betti numbers in Section 1.5, we review
simplicial homology and cohomology in Section 1.3 and free resolutions in
Section 1.4. The latter section introduces monomial matrices, which allow
us to write down Nn-graded free resolutions explicitly.

1.1 Equivalent descriptions

Let k be a field and S = k[x] the polynomial ring over k in n indeterminates
x = x1, . . . , xn.

Definition 1.1 A monomial in k[x] is a product xa = xa1
1 xa2

2 · · ·xan
n for

a vector a = (a1, . . . , an) ∈ Nn of nonnegative integers. An ideal I ⊆ k[x]
is called a monomial ideal if it is generated by monomials.
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As a vector space over k, the polynomial ring S is a direct sum

S =
⊕

a∈Nn

Sa,

where Sa = k{xa} is the vector subspace of S spanned by the monomial xa.
Since the product Sa · Sb of graded pieces equals the graded piece Sa+b in
degree a + b, we say that S is an Nn-graded k-algebra.

Monomial ideals are the Nn-graded ideals of S, which means by defini-
tion that I can also be expressed as a direct sum, namely I =

⊕
xa∈I k{xa}.

Lemma 1.2 Every monomial ideal has a unique minimal set of monomial
generators, and this set is finite.

Proof. The Hilbert Basis Theorem says that every ideal in S is finitely
generated. It implies that if I is a monomial ideal, then I = ⟨xa1 , . . . ,xar⟩.
The direct sum condition means that a polynomial f lies inside I if and
only if each term of f is divisible by one of the given generators xai . !
Definition 1.3 A monomial xa is squarefree if every coordinate of a is
0 or 1. An ideal is squarefree if it is generated by squarefree monomials.

The information carried by squarefree monomial ideals can be charac-
terized in many ways. The most combinatorial uses simplicial complexes.

Definition 1.4 An (abstract) simplicial complex ∆ on the vertex set
{1, . . . , n} is a collection of subsets called faces or simplices, closed under
taking subsets; that is, if σ ∈ ∆ is a face and τ ⊆ σ, then τ ∈ ∆. A simplex
σ ∈ ∆ of cardinality |σ| = i + 1 has dimension i and is called an i-face
of ∆. The dimension dim(∆) of ∆ is the maximum of the dimensions of
its faces, or it is −∞ if ∆ = {} is the void complex, which has no faces.

The empty set ∅ is the unique dimension −1 face in any simplicial com-
plex ∆ that is not the void complex {}. Thus the irrelevant complex {∅},
whose unique face is the empty set, is to be distinguished from the void
complex. The reason for this distinction will become clear when we intro-
duce (co)homology as well as in numerous applications to monomial ideals.

We frequently identify {1, . . . , n} with the variables {x1, . . . , xn}, as in
our next example, or with {a, b, c, . . .}, as in Example 1.8.

Example 1.5 The simplicial complex ∆ on {1, 2, 3, 4, 5} consisting of all
subsets of the sets {1, 2, 3}, {2, 4}, {3, 4}, and {5} is pictured below:

x1 x2

x3 x4

x5

The simplicial complex ∆
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Note that ∆ is completely specified by its facets, or maximal faces, by
definition of simplicial complex. "

Simplicial complexes determine squarefree monomial ideals. For nota-
tion, we identify each subset σ ⊆ {1, . . . , n} with its squarefree vector in
{0, 1}n, which has entry 1 in the ith spot when i ∈ σ, and 0 in all other
entries. This convention allows us to write xσ =

∏
i∈σ xi.

Definition 1.6 The Stanley–Reisner ideal of the simplicial complex ∆
is the squarefree monomial ideal

I∆ = ⟨xτ | τ ̸∈ ∆⟩

generated by monomials corresponding to nonfaces τ of ∆. The Stanley–
Reisner ring of ∆ is the quotient ring S/I∆.

There are two ways to present a squarefree monomial ideal: either by
its generators or as an intersection of monomial prime ideals. These are
generated by subsets of {x1, . . . , xn}. For notation, we write

mτ = ⟨xi | i ∈ τ ⟩

for the monomial prime ideal corresponding to τ . Frequently, τ will be the
complement σ = {1, . . . , n} " σ of some simplex σ.

Theorem 1.7 The correspondence ∆ ! I∆ constitutes a bijection from
simplicial complexes on vertices {1, . . . , n} to squarefree monomial ideals
inside S = k[x1, . . . , xn]. Furthermore,

I∆ =
⋂

σ∈∆

mσ.

Proof. By definition, the set of squarefree monomials that have nonzero
images in the Stanley–Reisner ring S/I∆ is precisely {xσ | σ ∈ ∆}. This
shows that the map ∆ ! I∆ is bijective. In order for xτ to lie in the
intersection

⋂
σ∈∆ mσ, it is necessary and sufficient that τ share at least

one element with σ for each face σ ∈ ∆. Equivalently, τ must be contained
in no face of ∆; that is, τ must be a nonface of ∆. !

Example 1.8 The simplicial complex ∆ =
a b

c d

e from Example 1.5, af-

ter replacing the variables {x1, x2, x3, x4, x5} by {a, b, c, d, e}, has Stanley–
Reisner ideal

a b

c c d

b

d

e

I∆ = ⟨d, e⟩ ∩ ⟨a, b, e⟩ ∩ ⟨a, c, e⟩ ∩ ⟨a, b, c, d⟩
= ⟨ad, ae, bcd, be, ce, de⟩.
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This expresses I∆ via its prime decomposition and its minimal generators.
Above each prime component is drawn the corresponding facet of ∆. "

Remark 1.9 Because of the expression of Stanley–Reisner ideals I∆ as
intersections in Theorem 1.7, they are also in bijection with unions of co-
ordinate subspaces in the vector space kn, or equivalently, unions of coor-
dinate subspaces in the projective space Pn−1

k . A little bit of caution is
warranted here: if k is finite, it is not true that I∆ equals the ideal of poly-
nomials vanishing on the corresponding collection of coordinate subspaces;
in fact, this vanishing ideal will not be a monomial ideal! On the other
hand, when k is infinite, the Zariski correspondence between radical ideals
and algebraic sets does induce the bijection between squarefree monomial
ideals and their zero sets, which are unions of coordinate subspaces. (The
zero set inside kn of an ideal I in k[x] is the set of points (α1, . . . , αn) ∈ kn

such that f(α1, . . . , αn) = 0 for every polynomial f ∈ I.)

1.2 Hilbert series

Even if the goal is to study monomial ideals, it is necessary to consider
graded modules more general than ideals.

Definition 1.10 An S-module M is Nn-graded if M =
⊕

b∈Nn Mb and
xaMb ⊆ Ma+b. If the vector space dimension dimk(Ma) is finite for all
a ∈ Nn, then the formal power series

H(M ;x) =
∑

a∈Nn

dimk(Ma) · xa

is the finely graded or Nn-graded Hilbert series of M . Setting xi = t
for all i yields the (Z-graded or coarse) Hilbert series H(M ; t, . . . , t).

The ring of formal power series in which finely graded Hilbert series live
is Z[[x]] = Z[[x1, . . . , xn]]. In this ring, each element 1−xi is invertible, the
series 1

1−xi
= 1 + xi + x2

i + · · · being its inverse.

Example 1.11 The Hilbert series of S itself is the rational function

H(S;x) =
n∏

i=1

1
1 − xi

= sum of all monomials in S.

Denote by S(−a) the free module generated in degree a, so S(−a) ∼= ⟨xa⟩
as Nn-graded modules. The Hilbert series

H(S(−a);x) =
xa

∏n
i=1(1 − xi)

of such an Nn-graded translate of S is just xa ·H(S;x). "
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In the rest of Part I, our primary examples of Hilbert series are

H(S/I;x) = sum of all monomials not in I

for monomial ideals I. A running theme of Part I of this book is to analyze
not so much the whole Hilbert series, but its numerator, as defined in
Definition 1.12. (In fact, Parts II and III are frequently concerned with
similar analyses of such numerators, for ideals in other gradings.)

Definition 1.12 If the Hilbert series of an Nn-graded S-module M is ex-
pressed as a rational function H(M ;x) = K(M ;x)/(1 − x1) · · · (1 − xn),
then its numerator K(M ;x) is the K-polynomial of M .

We will eventually see in Corollary 4.20 (but see also Theorem 8.20)
that the Hilbert series of every monomial quotient of S can in fact be ex-
pressed as a rational function as in Definition 1.12, and therefore every such
quotient has a K-polynomial. That these K-polynomials are polynomials
(as opposed to Laurent polynomials, say) is also proved in Corollary 4.20.
Next we want to show that Stanley–Reisner rings S/I∆ have K-polynomials
by explicitly writing them down in terms of ∆.

Theorem 1.13 The Stanley–Reisner ring S/I∆ has the K-polynomial

K(S/I∆;x) =
∑

σ∈∆

( ∏

i∈σ

xi ·
∏

j ̸∈σ

(1 − xj)
)
.

Proof. The definition of I∆ says which squarefree monomials are not in I∆.
However, because the generators of I∆ are themselves squarefree, a mono-
mial xa lies outside I∆ precisely when the squarefree monomial xsupp(a) lies
outside I∆, where supp(a) = {i ∈ {1, . . . , n} | ai ̸= 0} is the support of a.
Therefore

H(S/I∆; x1, . . . , xn) =
∑

{xa | a ∈ Nn and supp(a) ∈ ∆}

=
∑

σ∈∆

∑
{xa | a ∈ Nn and supp(a) = σ}

=
∑

σ∈∆

∏

i∈σ

xi

1 − xi
,

and the result holds after multiplying the summand for σ by
∏

j ̸∈σ
1−xj

1−xj
to

bring the terms over a common denominator of (1 − x1) · · · (1 − xn). !
Example 1.14 Consider the simplicial complex Γ depicted in Fig. 1.1.
(The reason for not calling it ∆ is because we will compare Γ in Exam-
ple 1.36 with the simplicial complex ∆ of Examples 1.5 and 1.8.) The
Stanley–Reisner ideal of Γ is

IΓ = ⟨de, abe, ace, abcd⟩
= ⟨a, d⟩ ∩ ⟨a, e⟩ ∩ ⟨b, c, d⟩ ∩ ⟨b, e⟩ ∩ ⟨c, e⟩ ∩ ⟨d, e⟩,
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hollow
tetrahedron

a

b

c

d

e

Figure 1.1: The simplicial complex Γ

and the Hilbert series of the quotient k[a, b, c, d, e]/IΓ is

1 + a
1−a + b

1−b + c
1−c + d

1−d + e
1−e + ab

(1−a)(1−b) + ac
(1−a)(1−c)

+ ad
(1−a)(1−d) + ae

(1−a)(1−e) + bc
(1−b)(1−c) + bd

(1−b)(1−d) + be
(1−b)(1−e)

+ cd
(1−c)(1−d) + ce

(1−c)(1−e) + abc
(1−a)(1−b)(1−c) + abd

(1−a)(1−b)(1−d)

+ acd
(1−a)(1−c)(1−d) + bcd

(1−b)(1−c)(1−d) + bce
(1−b)(1−c)(1−e)

=
1 − abcd − abe − ace − de + abce + abde + acde

(1 − a)(1 − b)(1 − c)(1 − d)(1 − e)
.

See Example 1.25 for a hint at a quick way to get this series. "

The formula for the Hilbert series of S/I∆ perhaps becomes a little
neater when we coarsen to the N-grading.

Corollary 1.15 Letting fi be the number of i-faces of ∆, we get

H(S/I∆; t, . . . , t) =
1

(1 − t)n

d∑

i=0

fi−1t
i(1 − t)n− i,

where d = dim(∆) + 1.

Canceling (1 − t)n−d from the sum and the denominator (1 − t)n in
Corollary 1.15, the numerator polynomial h(t) on the right-hand side of

1
(1 − t)d

d∑

i=0

fi−1 ti(1 − t)d− i =
h0 + h1t + h2t2 + · · · + hdtd

(1 − t)d

is called the h-polynomial of ∆. It and the f-vector (f−1, f0, . . . , fd−1)
are, to some approximation, the subjects of a whole chapter of Stanley’s
book [Sta96]; we refer the reader there for further discussion of these topics.
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1.3 Simplicial complexes and homology

Much of combinatorial commutative algebra is concerned with analyzing
various homological constructions and invariants, and in particular, the
manner in which they are governed by combinatorial data. Often, the
analysis reduces to related (and hopefully easier) homological constructions
purely in the realm of simplicial topology. We review the basics here,
referring the reader to [Hat02], [Rot88], or [Mun84] for a full treatment.

Let ∆ be a simplicial complex on {1, . . . , n}. For each integer i, let
Fi(∆) be the set of i-dimensional faces of ∆, and let kFi(∆) be a vector
space over k whose basis elements eσ correspond to i-faces σ ∈ Fi(∆).

Definition 1.16 The (augmented or reduced) chain complex of ∆
over k is the complex C̃.(∆; k):

0 ←− kF−1(∆) ∂0←− · · · ←− kFi−1(∆) ∂i←− kFi(∆) ←− · · · ∂n−1←− kFn−1(∆) ←− 0.

The boundary maps ∂i are defined by setting sign(j, σ) = (−1)r−1 if j is
the rth element of the set σ ⊆ {1, . . . , n}, written in increasing order, and

∂i(eσ) =
∑

j∈σ

sign(j, σ) eσ!j .

If i < −1 or i > n − 1, then kFi(∆) = 0 and ∂i = 0 by definition. The
reader unfamiliar with simplicial complexes should make the routine check
that ∂i ◦ ∂i+1 = 0. In other words, the image of the (i + 1)st boundary
map ∂i+1 lies inside the kernel of the ith boundary map ∂i.

Definition 1.17 For each integer i, the k-vector space

H̃i(∆; k) = ker(∂i)/im(∂i+1)

in homological degree i is the ith reduced homology of ∆ over k.

In particular, H̃n−1(∆; k) = ker(∂n−1), and when ∆ is not the irrelevant
complex {∅}, we get also H̃i(∆; k) = 0 for i < 0 or i > n−1. The irrelevant
complex ∆ = {∅} has homology only in homological degree −1, where
H̃−1(∆; k) ∼= k. The dimension of the zeroth reduced homology H̃0(∆; k)
as a k-vector space is one less than the number of connected components
of ∆. Elements of ker(∂i) are often called i-cycles and elements of im(∂i+1)
are often called i-boundaries.

Example 1.18 For ∆ as in Example 1.5, we have

F2(∆) = {{1, 2, 3}},
F1(∆) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}},
F0(∆) = {{1}, {2}, {3}, {4}, {5}},

F−1(∆) = {∅}.
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Ordering the bases for kFi(∆) as suggested by the ordering of the faces listed
above, the chain complex for ∆ becomes

[
1 1 1 1 1

]

⎡

⎢⎢⎢⎢⎣

−1 −1 0 0 0

1 0 −1 −1 0

0 1 1 0 −1

0 0 0 1 1

0 0 0 0 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1

−1

1

0

0

⎤

⎥⎥⎥⎥⎦

0 ←− k ←−−−−−−−−−−− k5 ←−−−−−−−−−−−−−−−−− k5 ←−−− k ←− 0,
∂0 ∂1 ∂2

where vectors in kFi(∆) are viewed as columns of length fi = |Fi(∆)|. For
example, ∂2(e{1,2,3}) = e{2,3} − e{1,3} + e{1,2}, which we identify with the
vector (1,−1, 1, 0, 0). The homomorphisms ∂2 and ∂0 both have rank 1
(that is, they are injective and surjective, respectively). Since the matrix
∂1 has rank 3, we conclude that H̃0(∆; k) ∼= H̃1(∆; k) ∼= k, and the other
homology groups are 0. Geometrically, H̃0(∆; k) is nontrivial because ∆
is disconnected, and H̃1(∆; k) is nontrivial because ∆ contains a triangle
that does not bound a face of ∆. "
Remark 1.19 We would avoid making such a big deal about the difference
between the irrelevant complex {∅} and the void complex {} if it did not
come up so much. Many of the formulas for Betti numbers, dimensions of
local cohomology, and so on depend on the fact that H̃i({∅}; k) is nonzero
for i = −1, whereas H̃i({}; k) = 0 for all i.

In some situations, the notion dual to homology arises more naturally.
In what follows, we write ( )∗ for vector space duality Homk( , k).

Definition 1.20 The (reduced) cochain complex of ∆ over k is the vec-
tor space dual C̃.(∆; k) = (C̃.(∆; k))∗ of the chain complex, with cobound-
ary maps ∂i = ∂∗

i . For i ∈ Z, the k-vector space

H̃i(∆; k) = ker(∂i+1)/im(∂i)

is the ith reduced cohomology of ∆ over k.

Explicitly, let kF∗
i (∆) = (kFi(∆))∗ have basis F ∗

i (∆) = {e∗σ | σ ∈ Fi(∆)}
dual to the basis of kFi(∆). Then

0 −→ kF∗
−1(∆) ∂0

−→ · · · −→ kF∗
i−1(∆) ∂i

−→ kF∗
i (∆) −→ · · · ∂n−1

−→ kF∗
n−1(∆) −→ 0

is the cochain complex C̃.(∆; k) of ∆, where for an (i − 1)-face σ,

∂i(e∗σ) =
∑

j ̸∈σ
j∪σ∈∆

sign(j, σ ∪ j) e∗σ∪j

is the transpose of ∂i.
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Since Homk( , k) takes exact sequences to exact sequences, there is a
canonical isomorphism H̃i(∆; k) = H̃i(∆; k)∗. Elements of ker(∂i+1) are
called i-cocycles and elements of im(∂i) are called i-coboundaries.

Example 1.21 The cochain complex for ∆ as in Example 1.18 is exactly
the same as the chain complex there, except that the arrows should be
reversed and the elements of the vector spaces should be considered as
row vectors, with the matrices acting by multiplication on the right. The
nonzero reduced cohomology of ∆ is H̃0(∆; k) ∼= H̃1(∆; k) ∼= k. "

1.4 Monomial matrices

The central homological objects in Part I of this book, as well as in Chap-
ter 9, are free resolutions. To begin, a free S-module of finite rank is a
direct sum F ∼= Sr of copies of S, for some nonnegative integer r. In
our combinatorial context, F will usually be Nn-graded, which means that
F ∼= S(−a1) ⊕ · · ·⊕ S(−ar) for some vectors a1, . . . ,ar ∈ Nn. A sequence

F. : 0 ←− F0
φ1←− F1 ←− · · · ←− Fℓ−1

φℓ←− Fℓ ←− 0 (1.1)

of maps of free S-modules is a complex if φi ◦ φi+1 = 0 for all i. The
complex is exact in homological degree i if ker(φi) = im(φi+1). When the
free modules Fi are Nn-graded, we require that each homomorphism φi be
degree-preserving (or Nn-graded of degree 0), so that it takes elements in Fi

of degree a ∈ Nn to degree a elements in Fi−1.

Definition 1.22 A complex F. as in (1.1) is a free resolution of a mod-
ule M over S = k[x1, . . . , xn] if F. is exact everywhere except in homolog-
ical degree 0, where M = F0/im(φ1). The image in Fi of the homomor-
phism φi+1 is the ith syzygy module of M . The length of the resolution
is the greatest homological degree of a nonzero module in the resolution;
this equals ℓ in (1.1), assuming Fℓ ̸= 0.

Often we augment the free resolution F. by placing 0 ← M
φ0←− F0 at

its left end instead, to make the complex exact everywhere.
The Hilbert Syzygy Theorem says that every module M over the poly-

nomial ring S has a free resolution with length at most n. In cases that
interest us here, M = S/I is Nn-graded, so it has an Nn-graded free res-
olution. Indeed, the kernel of an Nn-graded module map is Nn-graded, so
the syzygy modules—and hence the whole free resolution—of S/I are au-
tomatically Nn-graded. Before giving examples, it would help to be able to
write down maps between Nn-graded free modules efficiently. To do this,
we offer the following definition, in which the “≽” symbol is used to denote
the partial order on Nn in which a ≽ b if ai ≥ bi for all i ∈ {1, . . . , n}.
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Definition 1.23 A monomial matrix is an array of scalar entries λqp

whose columns are labeled by source degrees ap, whose rows are labeled
by target degrees aq, and whose entry λqp ∈ k is zero unless ap ≽ aq.

The general monomial matrix represents a map that looks like

...
aq

...

⎡

⎣

· · · ap · · ·

λqp

⎤

⎦

⊕

q

S(−aq) ←−−−−−−−−−−−−
⊕

p

S(−ap).

Sometimes we label the rows and columns with monomials xa instead of
vectors a. The scalar entry λqp indicates that the basis vector of S(−ap)
should map to an element that has coefficient λqp on the monomial that is
xap−aq times the basis vector of S(−aq). Observe that this monomial sits
in degree ap, just like the basis vector of S(−ap). The requirement ap ≽ aq

precisely guarantees that xap−aq has nonnegative exponents.
When the maps in a free resolution are written using monomial matrices,

the top border row (source degrees ap) on a monomial matrix for φi equals
the left border column (target degrees aq) on a monomial matrix for φi+1.

Each Nn-graded free module can also be regarded as an ungraded free
module, and most readers will have seen already matrices used for maps of
(ungraded) free modules over arbitrary rings. In order to recover the more
usual notation, simply replace each matrix entry λqp by xap−aqλqp, and
then forget the border row and column. Because of the conditions defining
monomial matrices, xap−aqλqp ∈ S for all p and q.

Definition 1.24 A monomial matrix is minimal if λqp = 0 when ap = aq.
A homomorphism of free modules, or a complex of such, is minimal if it
can be written down with minimal monomial matrices.

Given that Nn-graded free resolutions exist, it is not hard to show (by
“pruning” the nonzero entries λqp for which ap = aq) that every finitely
generated graded module possesses a minimal free resolution. In fact, min-
imal free resolutions are unique up to isomorphism. For more details on
these issues, see Exercises 1.10 and 1.11; for a full treatment, see [Eis95,
Theorem 20.2 and Exercise 20.1].

Minimal free resolutions are characterized by having scalar entry λqp = 0
whenever ap = aq in any of their monomial matrices. If the monomial
matrices are made ungraded as above, this simply means that the nonzero
entries in the matrices are nonconstant monomials (with coefficients), so it
agrees with the usual notion of minimality for N-graded resolutions.



1.4. MONOMIAL MATRICES 13

Example 1.25 Let Γ be the simplicial complex from Example 1.14. The
Stanley–Reisner ring S/IΓ has minimal free resolution

1
[de abe ace abcd

1 1 1 1
]

de

abe

ace

abcd

⎡

⎢⎢⎣

abce abde acde abcde

0 −1 −1 −1

1 1 0 0

−1 0 1 0

0 0 0 1

⎤

⎥⎥⎦

abce

abde

acde

abcde

⎡

⎢⎢⎣

abcde

−1

1

−1

0

⎤

⎥⎥⎦

0 ← S ←−−−−−−−−−−− S4 ←−−−−−−−−−−−−−−−−−−− S4 ←−−−−−−− S ← 0
00000 00011 11101 11111

11001 11011
10101 10111
11110 11111

in which the maps are denoted by monomial matrices. We have used the
more succinct monomial labels xap and xaq instead of the vector labels ap

and aq. Below each free module is a list of the degrees in N5 of its generators.
For an example of how to recover the usual matrix notation for maps of
free S-modules, this free resolution can be written as

[
de abe ace abcd

]

⎡

⎢⎢⎣

0 −ab −ac −abc

c d 0 0

−b 0 d 0

0 0 0 e

⎤

⎥⎥⎦

⎡

⎢⎢⎣

−d

c

−b

0

⎤

⎥⎥⎦

0 ← S ←−−−−−−−−−−−−−− S4 ←−−−−−−−−−−−−−−−−− S4 ←−−− S ← 0,

without the border entries and forgetting the grading.
As a preview to Chapter 4, the reader is invited to figure out how the

labeled simplicial complex below corresponds to the above free resolution.

abcd

abe

ace

de
abce

abde

acde

abcde
abcde

Hint: Compare the free resolution and the labeled simplicial complex with
the numerator of the Hilbert series in Example 1.14. "

Recall that in reduced chain complexes of simplicial complexes, the basis
vectors are called eσ for subsets σ ⊆ {1, . . . , n}.

Definition 1.26 The Koszul complex is the complex K. of free modules
given by monomial matrices as follows: in the reduced chain complex of
the simplex consisting of all subsets of {1, . . . , n}, label the column and the
row corresponding to eσ by σ itself (or xσ), and renumber the homological
degrees so that the empty set ∅ sits in homological degree 0.



14 CHAPTER 1. SQUAREFREE MONOMIAL IDEALS

Example 1.27 The Koszul complex for n = 3 is

1
[x y z

1 1 1
]

x

y

z

⎡

⎣

yz xz xy

0 1 1

1 0 −1

−1 −1 0

⎤

⎦
yz

xz

xy

⎡

⎣

xyz

1

−1

1

⎤

⎦

K. : 0 ←− S ←−−−−−−−− S3 ←−−−−−−−−−−−−−− S3 ←−−−−−− S ←− 0

after replacing the variables {x1, x2, x3} by {x, y, z}. "

The method of proof for many statements about resolutions of monomial
ideals is to determine what happens in each Nn-graded degree of a complex
of S-modules. To illustrate, we do this now for K. in some detail.

Proposition 1.28 The Koszul complex K. is a minimal free resolution of
k = S/m for the maximal ideal m = ⟨x1, . . . , xn⟩.

Proof. The essential observation is that a free module generated by 1τ in
squarefree degree τ is nonzero in squarefree degree σ precisely when τ ⊆ σ
(equivalently, when xτ divides xσ). The only contribution to the degree 0
part of K., for example, comes from the free module corresponding to ∅,
whose basis vector 1∅ sits in degree 0.

More generally, for b ∈ Nn with support σ, the degree b part (K.)b of
the complex K. comes from those rows and columns labeled by faces of σ. In
other words, we restrict K. to its degree b part by ignoring summands S ·1τ

for which τ is not a face of σ. Therefore, (K.)b is, as a complex of k-vector
spaces, precisely equal to the reduced chain complex of the simplex σ! This
explains why the homology of K. is just k in degree 0 and zero elsewhere:
a simplex σ is contractible, so it has no reduced homology—that is, unless
σ = {∅} is the irrelevant complex (see Remark 1.19). !

1.5 Betti numbers

Since every free resolution of an Nn-graded module M contains a minimal
resolution as a subcomplex (Exercise 1.11), minimal resolutions of M are
characterized by having the ranks of their free modules Fi all simultaneously
minimized, among free resolutions (1.1) of M .

Definition 1.29 If the complex F. in (1.1) is a minimal free resolution of
a finitely generated Nn-graded module M and Fi =

⊕
a∈Nn S(−a)βi,a , then

the ith Betti number of M in degree a is the invariant βi,a = βi,a(M).

There are other equivalent ways to describe the Nn-graded Betti num-
ber βi,a(M). For example, it measures the minimal number of generators
required in degree a for any ith syzygy module of M . A more natural (by
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which we mean functorial) characterization of Betti numbers uses tensor
products and Tor, which we now review in some detail.

If M and N are Nn-graded modules, then their tensor product N⊗SM is
Nn-graded, with degree c component (N ⊗S M)c generated by all elements
fa ⊗ gb such that fa ∈ Na and gb ∈ Mb satisfy a + b = c. For example,
S(−a) ⊗S M is a module denoted by M(−a) and called the Nn-graded
translate of M by a. Its degree b component is M(−a)b = 1a ⊗ Mb−a,
where 1a is a basis vector for S(−a), so that S · 1a = S(−a). In particular,
S(−a) ⊗S k is a copy k(−a) of the vector space k in degree a ∈ Nn.

Example 1.30 Tensoring the minimal free resolution in Example 1.25 with
k = S/m yields a complex

0 ←− k ←−−−− k4 ←−−−− k4 ←−−−− k ←− 0
00000 00011 11101 11111

11001 11011
10101 10111
11110 11111

of S-modules, each of which is a direct sum of translates of k, and where all
the maps are zero. The translation vectors, which are listed below each di-
rect sum, are identified with the row labels to the right of the corresponding
free module in Example 1.25, or the column labels to the left. "

The modules TorS
i (M, N) are by definition calculated by applying ⊗N

to a free resolution of M and taking homology [Wei94, Definition 2.6.4].
However, it is a general theorem from homological algebra (see [Wei94, Ap-
plication 5.6.3] or do Exercise 1.12) that TorS

i (M, N) can also be calculated
by applying M ⊗ to a free resolution of N and taking homology. When
both M and N are Nn-graded, we can choose the free resolutions to be
Nn-graded, so the Tor modules are also Nn-graded.

Example 1.31 The homology of the complex in Example 1.30 is the com-
plex itself, considered as a homologically and Nn-graded module. By defini-
tion, this module is TorS. (S/IΓ, k). It agrees with the result of tensoring the
Koszul complex with S/IΓ, where again Γ is the simplicial complex from Ex-
amples 1.25 and 1.14. The reader is encouraged to check this explicitly, but
we shall make this calculation abstractly in the proof of Corollary 5.12. "

Now we can see that Betti numbers tell us the vector space dimensions
of certain Tor modules.

Lemma 1.32 The ith Betti number of an Nn-graded module M in degree a
equals the vector space dimension dimk TorS

i (k, M)a.

Proof. Tensoring a minimal free resolution of M with k = S/m turns all of
the differentials φi into zero maps. !
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There is no general formula for the maps in a minimal free resolution
of an arbitrary squarefree monomial ideal I∆. However, we can figure out
what its Betti numbers are in terms of simplicial topology. More generally,
we can get simplicial formulas for Betti numbers of quotients by arbitrary
monomial ideals.

Definition 1.33 For a monomial ideal I and a degree b ∈ Nn, define

Kb(I) = {squarefree vectors τ | xb−τ ∈ I}

to be the (upper) Koszul simplicial complex of I in degree b.

Theorem 1.34 Given a vector b ∈ Nn, the Betti numbers of I and S/I
in degree b can be expressed as

βi,b(I) = βi+1,b(S/I) = dimk H̃i−1(Kb(I); k).

Proof. For the first equality, use a minimal free resolution of I achieved by
snipping off the copy of S occurring in homological degree 0 of a minimal
free resolution of S/I. To equate βi,b(I) with the dimension of the indicated
homology, use Lemma 1.32 and Proposition 1.28 to write βi,b(I) as the
vector space dimension of the ith homology of the complex K. ⊗ I in Nn-
graded degree b. Then calculate this homology as follows.

Since I is a submodule of S, the complex in degree b of K.⊗S I is natu-
rally a subcomplex of (K.)b, which we saw in the proof of Proposition 1.28
is the reduced chain complex of the simplex with facet σ = supp(b). It
suffices to identify which faces of σ contribute k-basis vectors to (K.)b.

The summand of K. corresponding to a squarefree vector τ is a free
S-module of rank 1 generated in degree τ . Tensoring this summand with I
yields I(−τ ), which contributes a nonzero vector space to degree b if and
only if I is nonzero in degree b − τ , which is equivalent to xb−τ ∈ I. !

In the special case of squarefree ideals, the Koszul simplicial complexes
have natural interpretations in terms of a simplicial complex closely re-
lated to ∆. In fact, the simplicial complex we are about to introduce is
determined just as naturally from the data defining ∆ as is ∆ itself.

Definition 1.35 The squarefree Alexander dual of I = ⟨xσ1 , . . . ,xσr⟩ is

I⋆ = mσ1 ∩ · · · ∩ mσr .

If ∆ is a simplicial complex and I = I∆ its Stanley–Reisner ideal, then the
simplicial complex ∆⋆ Alexander dual to ∆ is defined by I∆⋆ = I⋆

∆.

Example 1.36 The Stanley–Reisner ideals I∆ and IΓ from Examples 1.8
and 1.14 are Alexander dual; their generators and irreducible components
are arranged to make this clear. "
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The following is a direct description of the Alexander dual simplicial
complex. Recall that σ = {1, . . . , n} " σ is the complement of σ in the
vertex set.

Proposition 1.37 If ∆ is a simplicial complex, then its Alexander dual is
∆⋆ = {τ | τ ̸∈ ∆}, consisting of the complements of the nonfaces of ∆.

Proof. By Definition 1.6, I∆ = ⟨xτ | τ ̸∈ ∆⟩, so I∆⋆ =
⋂

τ ̸∈∆ mτ by Defini-
tion 1.35. However, this intersection equals

⋂
τ∈∆⋆ mτ by Theorem 1.7, so

we conclude that τ ̸∈ ∆ if and only if τ ∈ ∆⋆, as desired. !
Specializing Theorem 1.34 to squarefree ideals requires one more notion.

Definition 1.38 The link of σ inside the simplicial complex ∆ is

link∆(σ) = {τ ∈ ∆ | τ ∪ σ ∈ ∆ and τ ∩ σ = ∅},

the set of faces that are disjoint from σ but whose unions with σ lie in ∆.

Example 1.39 Consider the simplicial complex Γ from Examples 1.14
and 1.25, depicted in Fig. 1.1. The link of the vertex a in Γ consists of
the vertex e along with all proper faces of the triangle {b, c, d}. The link
of the vertex c in Γ is pure of dimension 1, its four facets being the three
edges of the triangle {a, b, d} plus the extra edge {b, e} sticking out.

linkΓ(a) =
b

c

d

e
linkΓ(c) =

a

b d

e

The simplicial complex linkΓ(e) consists of the vertex a along with the edge
{b, c} and its subsets. The link of the edge {b, c} in Γ consists of the three
remaining vertices: linkΓ({b, c}) = {∅, a, d, e}. The link in Γ of the edge
through a and e is the irrelevant complex: linkΓ({a, e}) = {∅}. "

The next result is called the “dual version” of Hochster’s formula be-
cause it gives Betti numbers of I∆ by working with the Alexander dual
complex ∆⋆, and because it is dual to Hochster’s original formulation, which
we will see in Corollary 5.12.

Corollary 1.40 (Hochster’s formula, dual version) All nonzero Betti
numbers of I∆ and S/I∆ lie in squarefree degrees σ, where

βi,σ(I∆) = βi+1,σ(S/I∆) = dimk H̃i−1(link∆⋆(σ); k).

Proof. For squarefree degrees, apply Theorem 1.34 by first checking that
Kσ(I∆) = linkK1(I∆)(σ) and then verifying that K1(I∆) = ∆⋆. Both of
these claims are straightforward from the definitions and hence omitted.
For degrees b with bi ≥ 2, the monomial xb−(τ∪i) lies in I∆ if and only if
xb−τ does. This means that Kb(I∆) is a cone with vertex i. Cones, being
contractible, have zero homology (see [Wei94, Section 1.5], for example). !
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We will have a lot more to say about Alexander duality in Chapter 5.
The interested reader may even wish to skip directly to Sections 5.1, 5.2,
and 5.5 (except the end), as these require no additional prerequisites.

Remark 1.41 Since we are working over a field k, one may substitute
reduced homology for reduced cohomology when calculating Betti numbers,
since these have the same dimension.

Exercises

1.1 Let n = 6 and let ∆ be the boundary of an octahedron.

(a) Determine I∆ and I⋆
∆.

(b) Compute their respective Hilbert series.

(c) Compute their minimal free resolutions.

(d) Interpret the Betti numbers in part (c) in terms of simplicial homology.

1.2 Suppose that xb is not the least common multiple of some subset of the
minimal monomial generators of I. Explain why Kb(I) is the cone over some
subcomplex. Conclude that all nonzero Betti numbers of I occur in Nn-graded de-
grees b for which xb equals a least common multiple of some minimal generators.

1.3 Fix a simplicial complex ∆. Exhibit a monomial ideal I and a degree b in Nn

such that ∆ = Kb(I) is a Koszul simplicial complex. Is your ideal I squarefree?

1.4 Fix a set of monomials in x1, . . . , xn, and let I(k) be the ideal they generate
in S = k[x1, . . . , xn], for varying fields k.

(a) Can the Nn-graded Hilbert series of I(k) depend on the characteristic of k?

(b) Is the same true for Betti numbers instead of Hilbert series?

(c) Show that the Betti numbers of S/I(k) in homological degrees 0, 1, 2, and n
are independent of k.

(d) Prove that all Betti numbers of S/I(k) in homological degrees 0, 1, and n lie
in distinct Nn-graded degrees. Why is 2 not on this list? Give an example.

1.5 Let k = C be the field of complex numbers. For each monomial xa ∈ C[x],
the exponent vector a can be considered as a vector in Cn. Show that a lies in
the zero set of a Stanley–Reisner ideal I∆ if and only if xa is nonzero in C[x]/I∆.

1.6 For a monomial ideal I = ⟨m1, . . . , mr⟩ and integers t ≥ 1, the Frobenius
powers of I are the ideals I [t] = ⟨mt

1, . . . , m
t
r⟩. Given a simplicial complex ∆,

write an expression for the K-polynomial of S/I [2]
∆ . What about S/I [3]

∆ ? S/I [t]
∆ ?

1.7 Is there a way to construct monomial matrices for a (minimal) free resolution
of I [t] starting with monomial matrices for a (minimal) free resolution of I?

1.8 Let ∆ be as in Examples 1.5 and 1.8. Use the links in Example 1.39 to
compute as many nonzero Betti numbers of I∆ as possible.

1.9 Which links in the simplicial complex ∆ from Example 1.5 have nonzero
homology? Verify your answer using Hochster’s formula by comparing it to the
Betti numbers of S/IΓ that appear in Examples 1.25 and 1.30.
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1.10 Suppose that φ is a nonminimal Nn-graded homomorphism of free modules.
Show that φ can be represented by a block diagonal monomial matrix Λ in which
one of its blocks is a nonzero 1× 1 matrix with equal row and column labels.

1.11 Using the fact that every Nn-graded module M has a finite Nn-graded free
resolution, deduce from Exercise 1.10 that every Nn-graded free resolution of M
is the direct sum of a minimal free resolution of M and a free resolution of zero.

1.12 This exercise provides a direct proof that TorS
i (M, N) ∼= TorS

i (N,M). Let
F and G be free resolutions of M and N , respectively, with differentials φ and ψ.
Denote by F ⊗ G the free module

L
i,j Fi ⊗ Gj , and think of the summands as

lying in a rectangular array, with Fi ⊗ Gj in row i and column j.

(a) Explain why the horizontal differential (− 1)i⊗ψ on row i of F⊗G, induced
by ψ on G and multiplication by ±1 on Fi, makes Fi⊗G into a free resolution
of Fi ⊗N . (The sign (− 1)i is innocuous, but is needed for ∂, defined next.)

(b) Define a total differential ∂ on F ⊗ G by requiring that

∂(f ⊗ g) = φi(f) ⊗ g + (− 1)if ⊗ ψj(g)

for f ∈ Fi and g ∈ Gj . Show that ∂2 = 0, so we get a total complex
tot(F ⊗ G) by setting tot(F⊗G)k =

L
i+j=k Fi⊗Gj in homological degree k.

(c) Prove that the map F ⊗ G → F ⊗ N that kills Fi ⊗ Gj for j > 0 and maps
Fi ⊗ G0 " Fi ⊗ N induces a morphism tot(F ⊗ G) → F ⊗ N of complexes,
where the ith differential on F ⊗ N is the map φi ⊗ 1 induced by φ.

(d) Using the exactness of the horizontal differential, verify that the morphism
tot(F⊗G) → F⊗N induces an isomorphism on homology. (The arguments
for injectivity and surjectivity are each a diagram chase.)

(e) Deduce that the ith homology of tot(F ⊗ G) is isomorphic to TorS
i (M, N).

(f) Transpose the above argument, leaving the definition of tot(F ⊗ G) un-
changed but replacing (− 1)i ⊗ ψ with the vertical differential φ ⊗ 1 on the
jth column of F⊗G, to deduce that tot(F⊗G) has jth homology TorS

j (N,M).
(g) Conclude that TorS

i (M, N) ∼= Hi(tot(F ⊗ G)) ∼= TorS
i (N,M).

1.13 Let m ≤ n be positive integers, and S = k[x1, . . . , xm+n]. Setting M =
S/⟨xm+1, . . . , xm+n⟩ and N = S/⟨xn+1, . . . , xm+n⟩, find the Hilbert series of the
isomorphic modules TorS

i (M, N) and TorS
i (N,M). Which is easier to calculate?

Write a succinct expression for the result of setting xi = qi for all i in this series.

Notes

Stanley–Reisner rings and Stanley–Reisner ideals are sometimes called face rings
and face ideals. Their importance in combinatorial commutative algebra cannot
be overstated. Stanley’s green book [Sta96] contains a wealth of information
about them, including a number of important applications, such as Stanley’s
proof of the Upper Bound Theorem for face numbers of convex polytopes. We
also recommend Chapter 5 of the book of Bruns and Herzog [BH98] and Hibi’s
book [Hib92] for more background on squarefree monomial ideals. The first two
of these references contain versions of Hochster’s formula, whose original form
appeared in [Hoc77]; the form taken by Theorem 1.34 is that of [BCP99].

We have only presented the barest prerequisites in simplicial topology. The
reader wishing a full introduction should consult [Hat02], [Mun84], or [Rot88].
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Monomial matrices were introduced in [Mil00a] for the purpose of working
efficiently with resolutions and Alexander duality. Monomial matrices will be
convenient for the purpose of cellular resolutions in Chapters 4, 5, and 6. Other
applications and generalizations will appear in the context of injective resolutions
(Section 11.3) and local cohomology (Chapter 13).

The reader is encouraged to do explicit computations with the objects in this
chapter, and indeed, in all of the chapters to come. Those who desire to compute
numerous or complicated examples should employ a computer algebra system
such as CoCoA, Macaulay2, or Singular [CoC, GS04, GPS01].

We included Exercise 1.12 because there seems to be no accessible proof of the
symmetry of Tor in the literature. The proof outlined here shows that the natural
map from the total complex of any bicomplex to its horizontal homology complex
is an isomorphism on homology when the rows are resolutions (so their homology
lies only in homological degree zero). This statement forms the crux of a great
number of arguments producing isomorphisms arising in local cohomology and
other parts of homological algebra. The argument given in Exercise 1.12 is the
essence behind the spectral sequence method of deriving the same result. Those
who desire to brush up on their abstract homological algebra should employ a
textbook such as Mac Lane’s classic [MacL95] or Weibel’s book [Wei94].


