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ABSTRACT. Syzygies capture intricate geometric properties of a subvariety in projective space.
However, when the ambient space is a product of projective spaces or a more general smooth
projective toric variety, minimal free resolutions over the Cox ring are too long and contain many
geometrically superfluous summands. In this paper, we construct some much shorter free complexes
that better encode the geometry.

The geometric and algebraic sources of locally-free resolutions have complementary advantages.
To see the differences, consider a smooth projective toric variety X together with its Pic(X)-graded
Cox ring S. The local version of the Hilbert Syzygy Theorem implies that any coherent OX -module
admits a locally-free resolution of length at most dimX ; see Exercise III.6.9 in [Har77]. The global
version of the Hilbert Syzygy Theorem implies that every saturated module over the polynomial ring
S has a minimal free resolution of length at most dimS−1, so any coherent OX -module has a locally-
free resolution of the same length; see Proposition 3.1 in [Cox95]. Unlike the geometric approach,
this algebraic method only involves vector bundles that are a direct sum of line bundles. When X
is projective space, these geometric and algebraic constructions usually coincide. However, when
the Picard number of X is greater than 1, the locally-free resolutions arising from the minimal free
resolution of an S-module are longer, and typically much longer, than their geometric counterparts.

To enjoy the best of both worlds, we focus on a more flexible algebraic source for locally-free
resolutions. The following definition, beyond providing concise terminology, highlights this source.

Definition 1.1. A free complex F := [F0←− F1←− F2←− ·· · ] of Pic(X)-graded S-modules is
called a virtual resolution of a Pic(X)-graded S-module M if the corresponding complex F̃ of
vector bundles on X is a locally-free resolution of the sheaf M̃.

In other words, a virtual resolution is a free complex of S-modules whose higher homology groups
are supported on the irrelevant ideal of X . The benefits of allowing a limited amount of homology are
already present in other parts of commutative algebra including almost ring theory [GR03], where
one accepts homology annihilated by a given idempotent ideal, and phantom homology [HH93],
where one admits cycles that are in the tight closure of the boundaries. In this paper, we describe a
few different, and generally incomparable, processess for creating virtual resolutions.

For projective space, minimal free resolutions are important in the study of points [GGP95,EP99],
curves [Voi02, EL15], surfaces [GP99, DS00], and moduli spaces [Far09, DFS16]. Our overarching
goal is to demonstrate that the right analogues for subschemes in a smooth complete toric variety
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use virtual resolutions rather than minimal free resolutions. This distinction is not apparent on
projective space because the New Intersection Theorem [Rob87] establishes that a free complex
with finite-length higher homology groups has to be at least as long as the minimal free resolution.
For other toric varieties such as products of projective spaces, allowing irrelevant homology may
yield simpler complexes; see Example 1.4.

Throughout this paper, we write Pn := Pn1×Pn2×·· ·×Pnr for the product of projective spaces
with dimension vector n :=(n1,n2, . . . ,nr)∈Nr over a field k. Let S :=k[xi, j : 16 i6 r, 06 j 6 ni]
be the Cox ring of Pn and let B :=

⋂r
i=1
〈
xi,0,xi,1, . . . ,xi,ni

〉
be its irrelevant ideal. We identify the

Picard group of Pn with Zr and partially order the elements via their components. If e1,e2, . . . ,er
is the standard basis of Zr, then the polynomial ring S has the Zr-grading induced by deg(xi, j) := ei.
We first reprove the existence of short virtual resolutions; compare with Corollary 2.14 in [EES15].

Proposition 1.2. Every finitely-generated Zr-graded B-saturated S-module has a virtual resolution
of length at most |n| := n1 +n2 + · · ·+nr = dimPn.

Since dimS− dimPn = r, we see that a minimal free resolution can be arbitrarily long when
compared with a virtual resolution. A proof of Proposition 1.2, which relies on a locally-free
resolution of the structure sheaf for the diagonal embedding Pn ↪→ Pn×Pn, appears in Section 2.

Besides having shorter representatives, virtual resolutions also exhibit a closer relationship with
Castelnuovo–Mumford regularity than minimal free resolutions. On projective space, Castelnuovo–
Mumford regularity has two equivalent descriptions: one arising from the vanishing of sheaf
cohomology and another arising from the Betti numbers in a minimal free resolutions. However, on
more general toric varieties, the multigraded Castelnuovo–Mumford regularity is not determined
by a minimal free resolution; see Theorem 1.5 in [MS04] or Theorem 4.7 in [BC17]. From this
perspective, we demonstrate that virtual resolutions improve on minimal free resolutions in two ways.
First, Theorem 2.9 proves that the set of virtual resolutions of a module determines its multigraded
Castelnuovo–Mumford regularity. Second, the next theorem, from Section 3, demonstrates how to
use regularity to extract a virtual resolution from a minimal free resolution.

Theorem 1.3. Let M be a finitely-generated Zr-graded B-saturated S-module that is d-regular. If
G is the free subcomplex of a minimal free resolution of M consisting of all summands generated in
degree at most d+n, then G is a virtual resolution of M.

This subcomplex is seldom a resolution. For convenience, we refer to the free complex G as
the virtual resolution of the pair (M,d). Algorithm 3.4 shows that it can be constructed without
computing the entire minimal free resolution.

The following example illustrates that a virtual resolution can be much shorter and much thinner
than the minimal free resolution. It follows that a majority of the summands in the minimal free
resolution are unneeded when building a locally-free resolution of the structure sheaf.

Example 1.4. A hyperelliptic curve C of genus 4 can be embedded as a curve of bidegree (2,8) in
P1×P2; see Theorem IV.5.4 in [Har77]. For instance, the B-saturated S-ideal

I :=

〈 x3
1,1x2,0− x3

1,1x2,1 + x3
1,0x2,2, x2

1,0x2
2,0 + x2

1,1x2
2,1 + x1,0x1,1x2

2,2, x2
1,1x3

2,0− x2
1,1x2

2,0x2,1− x1,0x1,1x2
2,1x2,2− x2

1,0x3
2,2, x1,0x1,1x3

2,0+

x1,0x1,1x2
2,0x2,1−x2

1,0x2
2,1x2,2 +x2

1,1x2,0x2
2,2 +x2

1,1x2,1x2
2,2, x1,1x3

2,0x2
2,1 +x1,1x2

2,0x3
2,1−x1,0x4

2,1x2,2−x1,0x3
2,0x2

2,2 +x1,0x2
2,0x2,1x2

2,2−
x1,1x2,0x4

2,2− x1,1x2,1x4
2,2, x1,1x5

2,0 + x1,1x4
2,0x2,1− x1,0x2

2,0x2
2,1x2,2 + x1,1x2

2,1x3
2,2 + x1,0x5

2,2, x1,0x5
2,0 + x1,0x4

2,0x2,1 + x1,1x4
2,1x2,2+

x1,1x3
2,0x2

2,2 +x1,1x2
2,0x2,1x2

2,2 +x1,0x2
2,1x3

2,2, x8
2,0 +2x7

2,0x2,1 +x6
2,0x2

2,1 +x6
2,1x2

2,2 +3x3
2,0x2

2,1x3
2,2 +3x2

2,0x3
2,1x3

2,2−x2,0x7
2,2−x2,1x7

2,2

〉
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defines such a curve. Macaulay2 [M2] shows that the minimal free resolution of S/I has the form

S1←−

S(−3,−1)1

⊕
S(−2,−2)1

⊕
S(−2,−3)2

⊕
S(−1,−5)3

⊕
S(0,−8)1

←−−

S(−3,−3)3

⊕
S(−2,−5)6

⊕
S(−1,−7)1

⊕
S(−1,−8)2

←−

S(−3,−5)3

⊕
S(−2,−7)2

⊕
S(−2,−8)1

←− S(−3,−7)1←− 0 .(1.4.1)

Using the Riemann–Roch Theorem [Har77, Theorem IV.1.3], one verifies that the module S/I is
(4,2)-regular, so the virtual resolution of the pair

(
S/I,(4,2)

)
has the much simpler form

S1←−

S(−3,−1)1

⊕
S(−2,−2)1

⊕
S(−2,−3)2

ϕ←−− S(−3,−3)3←− 0 .(1.4.2)

If the ideal J ⊂ S is the image of the first map in (1.4.2), then we have J = I∩Q for some ideal Q
whose radical contains the irrelevant ideal. Using Proposition 2.5, we can even conclude that S/J is
Cohen–Macaulay and J is the ideal of maximal minors of the 4×3 matrix

�(1.4.3) ϕ :=


x2

2,1 x2
2,2 −x2

2,0
−x1,1(x2,0− x2,1) 0 x1,0x2,2

x1,0 −x1,1 0
0 x1,0 x1,1

 .

As an initial step towards our larger goal, we formulate a novel analogue for properties of
points in projective space. Although any punctual subscheme of projective space is arithmetically
Cohen–Macaulay, this almost always fails for a zero-dimensional subscheme of Pn; see [GVT15].
However, we do obtain a short virtual resolution just by choosing an unconventional module to
represent the structure sheaf on the punctual subscheme.

Theorem 1.5. Let Z ⊂ Pn be a zero-dimensional scheme and let I be its corresponding B-saturated
S-ideal. There exists an S-ideal Q, whose radical contains B, such that the minimal free resolution
of S/(I ∩Q) has length |n|. In particular, the minimal free resolution of S/(I ∩Q) is a virtual
resolution of S/I.

This theorem, proven in Section 4, does not imply that S/(I∩Q) is itself Cohen–Macaulay, as the
components of Q will often have codimension less than |n|. However, when the ambient variety is
P1×P1, the ring S/(I∩Q) will be Cohen–Macaulay of codimension 2. In this case, Corollary 4.2
shows that there is a matrix whose maximal minors cut out Z scheme-theoretically. Proposition 4.8
extends this to general points on any smooth toric surface.

As a second and perhaps more substantial step, we apply virtual resolutions to deformation theory.
On projective space, there are three classic situations in which the particular structure of the minimal
free resolution allows one to show that all deformations have the same structure: arithmetically
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Cohen–Macaulay subschemes of codimension 2, arithmetically Gorenstein subschemes in codimen-
sion 3, and complete intersections; see Sections 2.8–2.9 in [Har10]. We generalize these results
about unobstructed deformations in projective space as follows.

Theorem 1.6. Consider Y ⊂ Pn and let I be the corresponding B-saturated S-ideal. Assume that
the generators of I have degrees d1,d2, . . . ,ds and that the natural map (S/I)di → H0(Y,OY (di)

)
is an isomorphism for all 16 i6 s. If any one of the following conditions hold

(i) the subscheme Y has codimension 2 and there is d ∈ reg(S/I) such that the virtual resolution
of the pair (S/I,d) has length 2;

(ii) each factor in Pn has dimension at least 2, the subscheme Y has codimension 3, and there is
d ∈ reg(S/I) such that the virtual resolution of the pair (S/I,d) is a self-dual complex (up to
a twist) of length 3; or

(iii) there is d ∈ reg(S/I) such that virtual resolution of the pair (S/I,d) is a Koszul complex of
length codimY ;

then the embedded deformations of Y in Pn are unobstructed and the component of the multigraded
Hilbert scheme of Pn containing the point corresponding to Y is unirational.

To illustrate this theorem, we can reuse the hyperelliptic curve in Example 1.4.

Example 1.7. By reinterpreting Example 1.4, we see that the hyperelliptic curve C ⊂ P1×P2 satis-
fies condition (i) in Theorem 1.6. It follows that the embedded deformations of C are unobstructed
and the corresponding component of the multigraded Hilbert scheme of P1×P2 can be given an
explicit unirational parametrization by varying the entries in the 4×3 matrix ϕ from (1.4.3). �

Three other geometric applications for virtual resolutions are collected in Section 5. The first,
Proposition 5.1, provides an unmixedness result for subschemes of Pn that have a virtual resolution
whose length equals its codimension. The second, Proposition 5.5, gives sharp bounds on the
Castelnuovo–Mumford regularity of a tensor product of coherent OPn-modules; compare with
Proposition 1.8.8 in [Laz04]. Lastly, Proposition 5.8 describes new vanishing results for the
higher-direct images of sheaves, which are optimal in many cases.

The final section presents some promising directions for future research.

Conventions. In this article, we work in the product Pn :=Pn1×Pn2×·· ·×Pnr of projective spaces
with dimension vector n := (n1,n2, . . . ,nr) ∈ Nr over a field k. Its Cox ring is the polynomial
ring S := k[xi, j : 16 i6 r, 06 j 6 ni] and its irrelevant ideal is B :=

⋂r
i=1
〈
xi,0,xi,1, . . . ,xi,ni

〉
. The

Picard group of Pn is identified with Zr and the elements are partially ordered componentwise. If
e1,e2, . . . ,er is the standard basis of Zr, then S has the Zr-grading induced by deg(xi, j) := ei. We
assume that all S-modules are finitely generated and Zr-graded.

Acknowledgements. Some of this research was completed during visits to the Banff International
Research Station (BIRS) and the Mathematical Sciences Research Institute (MSRI), and we are
very grateful for their hospitality. We thank Lawrence Ein, David Eisenbud, Craig Huneke, Nathan
Ilten, Rob Lazarsfeld, Mike Looper, Diane Maclagan, Frank-Olaf Schreyer, and Ian Shipman for
helpful conversations. We also thank an anonymous referee for their valuable suggestions.
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2. EXISTENCE OF SHORT VIRTUAL RESOLUTIONS

This section, by proving Proposition 1.2, establishes the existence of virtual resolutions whose length
is bounded above by the dimension of Pn. In particular, these virtual resolutions are typically shorter
than a minimal free resolution. Moreover, Proposition 2.5 shows that Proposition 1.2 provides
the best possible uniform bound on the length of a virtual resolution. Exploiting multigraded
Castelnuovo–Mumford regularity, we also produce short virtual resolutions where the degrees of the
generators of the free modules satisfy explicit bounds. Better yet, we obtain a converse, by showing
that the set of virtual resolutions of a module determine its regularity.

Our proof of Proposition 1.2 is based on a minor variation of Beilinson’s resolution of the diagonal;
compare with Proposition 3.2 in [Căl05] or Lemma 8.27 in [Huy06]. Given an OXj

-module Fj for
all 16 j 6 n, their external tensor product is

F1�F2� · · ·�Fm := (p∗1 F1)⊗OX (p
∗
2 F2)⊗OX · · ·⊗OX (p

∗
m Fm)

where p j denotes the projection map from the Cartesian product X := X1×X2× ·· ·×Xm to X j.
In particular, for all u ∈ Zr, we have OPn(u) = OPn1 (u1)�OPn2 (u2)� · · ·�OPnr (ur). With this
notation, we can describe the resolution of the diagonal Pn ↪→ Pn×Pn.

Lemma 2.1. If T ei
Pn := OPn1 �OPn2 � · · ·�OPni−1 �TPni �OPni+1 � · · ·�OPnr for 16 i6 r, then

the diagonal Pn ↪→ Pn×Pn is the zero scheme of a global section of
⊕r

i=1 OPn(ei)�T ei
Pn(−ei).

Hence, the diagonal has a locally-free resolution of the form

OPn×Pn←−
r⊕

i=1

OPn(−ei)�Ω
ei
Pn(ei)←−

⊕
06u6n
|u|=2

OPn(−u)�Ω
u
Pn(u)←···←OPn(−n)�Ω

n
Pn(n),

where Ωa
Pn := Ω

a1
Pn1 �Ω

a2
Pn2 � · · ·�Ω

ar
Pnr is the external tensor product of the exterior powers of the

cotangent bundles on the factors of Pn.

Proof. For each 1 6 i 6 r, fix a basis xi,0,xi,1, . . . ,xi,ni
for H0(Pn,OPn(ei)

)
. The Euler sequence

on Pni yields

0←−T ei
Pn ←−

ni⊕
j=0

OPn(ei)
[xi,0 xi,1 ··· xi,ni ]←−−−−−−−−−−OPn ←− 0;

see Theorem 8.1.6 in [CLS11]. Knowing the cohomology of line bundles on Pn, the associated long
exact sequence gives H0(Pn,T ei

Pn(−ei)
)∼=⊕ni

j=0 H0(Pn,OPn). A basis for
⊕ni

j=0 H0(Pn,OPn) is
given by the dual basis x∗i,0,x

∗
i,1, . . . ,x

∗
i,ni

. Let ∂/∂xi, j denote the image of x∗i, j in H0(Pn,TPn(−ei)
)
.

Consider s ∈ H0(Pn×Pn,
⊕r

i=1 OPn(ei)�T ei
Pn(−ei)

)
given by

s :=

(
n1

∑
j=0

x1, j
∂

∂y1, j
,

n2

∑
j=0

x2, j
∂

∂y2, j
, . . . ,

nr

∑
j=0

xr, j
∂

∂yr, j

)
where xi, j and yi, j are the coordinates on the first and second factor of Pn×Pn respectively. We
claim that the zero scheme of s equals the diagonal in Pn×Pn. By symmetry, it suffices to check
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this on a single affine open neighborhood. If x1,0x2,0 · · ·xr,0 6= 0 and y1,0y2,0 · · ·yr,0 6= 0, then the
Euler relations yield

ni

∑
j=0

xi, j
∂

∂yi, j
= xi,0

(
− 1

yi,0

ni

∑
j=1

yi, j
∂

∂yi, j

)
+

ni

∑
j=1

xi, j
∂

∂yi, j
=

1
yi,0

ni

∑
j=1

(xi, jyi,0− xi,0yi, j)
∂

∂yi, j
,

for each 1 6 i 6 r. It follows that s = 0 if and only if xi, j
xi,0

=
yi, j
yi,0

for all 1 6 i 6 r and 1 6 j 6 ni.
Hence, the global section s vanishes precisely on the diagonal Pn ↪→ Pn×Pn.

The Koszul complex associated to s is the required locally-free resolution of the diagonal,
because Pn is smooth and the codimension of the diagonal equals the rank of the vector bundle⊕r

i=1 OPn(ei)�T ei
Pn(−ei); see Section B.2 in [Laz04]. Since Ω

ei
Pn =HomOPn (T

ei
Pn,OPn), we

have
k∧(

OPn(−ei)�Ω
ei
Pn(ei)

)
=

⊕
06u6n
|u|=k

OPn(−u)�Ω
u
Pn(u) ,

for 06 k 6 |n|. �

Proof of Proposition 1.2. Let π1 and π2 be the projections of Pn×Pn onto the first and second
factors respectively. For any u ∈ Zr, the Fujita Vanishing Theorem [Fuj83, Theorem 1] implies
that Ωu

Pn(u+d)⊗ M̃ has no higher cohomology for any sufficiently positive d ∈ Zr. Let K
be the locally-free resolution of the diagonal Pn ↪→ Pn×Pn described in Lemma 2.1. Both
hypercohomology spectral sequences, namely

′Ep,q
2 := Hp(Rq

π1∗
(
π
∗
2 M̃(d)⊗OPn×Pn K

))
and ′′Ep,q

2 := Rp
π1∗ Hq(

π
∗
2 M̃(d)⊗OPn×Pn K

)
,

converge to Rp+qπ1∗
(
π∗2 M̃(d)⊗OPn×Pn K

)
; see Section 12.4 in [EGA3I]. Since K is a locally-

free resolution of the diagonal, it follows that ′′E0,0
2
∼= M̃(d) and ′′Ep,q

2 = 0 when either p 6= 0 or
q 6= 0; compare with Proposition 8.28 in [Huy06]. Hence, we conclude that

Rp+q
π1∗
(
π
∗
2 M̃(d)⊗OPn×Pn K

)∼={M̃(d) if p = 0 = q,
0 otherwise.

On the other hand, the first page of the other hypercohomology spectral sequence is

′Ep,q
1 = Rq

π1∗
(
π
∗
2 M̃(d)⊗OPn×Pn K−p

)
= Rq

π1∗

( ⊕
06u6n
|u|=−p

OPn(−u)�
(
Ω

u
Pn⊗ M̃(u+d)

))

=
⊕

06u6n
|u|=−p

OPn(−u)⊗k Hq(Pn,Ωu
Pn⊗ M̃(u+d)

)
.

Our positivity assumption on d implies that Hq(Pn,Ωu
Pn⊗ M̃(u+d)

)
= 0 for all q > 0, so ′Ep,q

1 is
concentrated in a single row. Applying the functor F 7→

⊕
v∈Nr H0(Pn,F (v)

)
, we obtain a virtual
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resolution of M in which the i-th module is⊕
06u6n
|u|=i

S(−u)⊗k Hq(Pn,Ωu
Pn⊗ M̃(u+d)

)
. �

Remark 2.2. By scrutinizing the linear free resolutions of well-chosen truncated twisted modules,
Corollary 2.14 in [EES15] also establishes the existence of short virtual resolutions on Pn. Although
the proof of Proposition 1.2 and Proposition 2.7 in [EES15] use somewhat different the notions of a
“sufficiently positive” degree d ∈ Zr, both are quite similar to Castelnuovo–Mumford regularity.

The next examples demonstrate why we want more than just these short virtual resolutions arising
from the proof of Proposition 1.2.

Example 2.3. Consider the hyperelliptic curve C ⊂ P1×P2 from Example 1.4. Using d := (2,2)
in the construction from the proof of Proposition 1.2 yields a virtual resolution of the form

S(−2,−2)17←−
S(−2,−3)26

⊕
S(−3,−2)15

←−
S(−2,−4)9

⊕
S(−3,−3)22

←− S(−3,−4)7←− 0.

Compared to the virtual resolution in (1.4.2), the length of this complex is longer, the rank of the
free modules is higher, and the degrees of the generators are larger. �

Example 2.4. If X is the union of m distinct points on P1×P1, then for any sufficiently positive
d= (d1,d2), the construction in the proof of Proposition 1.2 yields a virtual resolution of the form

S(−d1,−d2)
m←−

S(−d1−1,−d2)
m

⊕
S(−d1,−d2−1)m

←− S(−d1−1,−d2−1)m←− 0.

Unlike the minimal free resolution, this Betti table of this free complex is independent of the
geometry of the points, so even short virtual resolutions can obscure the geometric information. �

As a counterpoint to Proposition 1.2, we provide a lower bound on the length of a virtual
resolution. Extending the well-known result for projective space, we show that the codimension of
any associated prime of M gives a lower bound on the length of any virtual resolution of M.

Proposition 2.5. Let M be a finitely-generated Zr-graded S-module. Let Q be an associated prime
of M that does not contain the irrelevant ideal B and let F := [F0←− F1←− ·· · ←− Fp←− 0] be
a virtual resolution of M. These hypotheses yield the following.

(i) We have codimQ6 p.
(ii) If Q is the prime ideal for a closed point of Pn, then we have p> |n|.

(iii) If p6min{ni +1 : 16 i6 r}, then F is a free resolution of H0(F).

Proof. Localizing at the prime ideal Q, F becomes a free SQ-resolution of MQ. Part (i) then follows
from the fact that, over the local ring SQ, the projective dimension of a module is always greater
than or equal to the codimension of a module; see Proposition 18.2 in [Eis95]. Part (ii) is immediate,
as codimQ = |n| if Q is the prime ideal for a closed point of Pn.

For part (iii), assume by way of contradiction that F is not a free resolution of H0(F). It follows
that H j(F) 6= 0 for some j > 0; choose the maximal such j. Since F is a virtual resolution of M,
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the module H j(F) must be supported on the irrelevant ideal B. Setting Pi :=
〈
xi,0,xi,1, . . . ,xi,ni

〉
to

be the component of the irrelevant ideal B corresponding to the factor Pni , there is an index i such
that

(
H j(F)

)
Pi
6= 0. Localizing at Pi yields a complex FPi of the form

· · · ←− (Fj−1)Pi ←− (Fj)Pi ←− (Fj+1)Pi ←− ·· · ←− (Fp)Pi ←− 0

where H j(FPi) is supported on the maximal ideal of SPi . We deduce that p> p− j> codimPi = ni+1
from the Peskine–Szpiro Acyclicity Lemma; see Lemma 20.11 in [Eis95]. However, this contradicts
our assumption that p6min{ni +1 : 16 i6 r}. Therefore, we conclude that the complex F is a
free resolution of H0(F). �

The following simple corollary is useful in applications such as Theorem 1.6.

Corollary 2.6. Let I be a B-saturated S-ideal and let F = [F0←− F1←− ·· · ←− Fp←− 0] be a
virtual resolution of S/I. If F0 = S and p < min{ni +1 : 16 i6 r}, then the complex F is a free
resolution of S/I.

Proof. By part (iii) of Proposition 2.5, the complex F is a free resolution of H0(F). The hypothesis
that F0 = S implies that H0(F) = S/J for some ideal J. Since I is B-saturated and F is a virtual
resolution of S/I, we deduce that I equals the B-saturation of J. If we had I 6= J, then it would follow
that S/J has an associated prime Q that contains the irrelevant ideal B. However, the codimension
of Q is at least min{ni + 1 : 1 6 i 6 r}. As F is a free resolution of S/J, this would yield the
contraction p>min{ni +1 : 16 i6 r}; see Proposition 18.2 in [Eis95]. �

Just like in projective space, one can find subvarieties of codimension c which do not admit a
virtual resolution of length c.

Example 2.7. Working in P2×P2, consider the B-saturated S-ideal J :=
〈
x1,0,x1,1

〉
∩
〈
x2,0,x2,1

〉
.

The minimal free resolution of S/J has the form

S←− S(−1,−1)4←−
S(−2,−1)2

⊕
S(−1,−2)2

←− S(−2,−2)←− 0.

Although the codimension of every associated prime of J is 2, there is no virtual resolution of S/J
of length 2. If we had such a free complex F = [F0←− F1←− F2←− 0], then Corollary 2.6 would
imply that F is a minimal free resolution of S/J, which would be a contradiction. �

Remark 2.8. Proposition 5.1 analyzes when a subscheme has a virtual resolution of its structure
sheaf whose length equals its codimension—a special case of equality in part (i) of Proposition 2.5.

We next refine our results on short virtual resolutions by developing effective degree bounds.
Following Definition 1.1 in [MS04], a finitely-generated Zr-graded B-saturated S-module M is
m-regular, for some m ∈ Zr, if H i

B(M)p = 0 for all i> 1 and all p ∈
⋃
(m−q+Nr), where the

union is over all q ∈Nr such that |q|= i−1. The (multigraded Castelnuovo–Mumford) regularity
of M is regM := {p ∈ Zr : M is p-regular}. Let ∆i ⊂ Zr denote the set of twists of the summands
in the i-th step of the minimal free resolution of the irrelevant ideal B.
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Theorem 2.9. Let M be a finitely-generated Zr-graded B-saturated S-module. We have d ∈ regM
if and only if the module M(d) has a virtual resolution F0←− F1←− ·· · ←− F|n|←− 0 such that,
for all 06 i6 |n|, the degree of each generator of Fi belongs to ∆i+Nr, and its Hilbert polynomial
and Hilbert function agree on Nr.

When r = 1, we have ∆i = {−i} and this theorem specializes to the existence of linear resolutions
on projective space; see Proposition 1.8.8 in [Laz04]. Since the minimal free resolution of S/B
is a cellular resolution described explicitly by Corollary 2.13 in [BS98], it follows that ∆0 := {0}
and that for i> 1, we have ∆i := {−a ∈ Zr : 06 a−16 n and |a|= r+ i−1}. We first illustrate
Theorem 2.9 in the case of a hypersurface.

Example 2.10. Given a homogeneous polynomial f ∈ S of degree d, the regularity of S/〈 f 〉
has a unique minimal element e, where e j := max{0,d j−1}. As a consequence, it follows that
0 ∈ reg(S/〈 f 〉) if and only if d j 6 1 for all j. �

Before proving Theorem 2.9, we need two technical lemmas.

Lemma 2.11. For 06 i6 |n|, b∈ ∆i+Nr, and a∈Nr \{0}, we have H |a|+i(Pn,OPn(b−a)
)
= 0.

Proof. We induct on r. For the base case r = 1, we have nonzero higher cohomology for the given
line bundle on Pn1 only if |a|+ i = a1 + i = n1. Since b ∈ ∆i +N= {−i}+N, or b1 >−i, we have
b1−a1 >−i− (n1− i) =−n1 >−n1−1, so OPn(b1−a1) has no higher cohomology.

For the induction step, we first consider the case where at least one entry of b−a is nonnegative,
and we assume for contradiction that H |a|+i(Pn,OPn(b−a)

)
6= 0. Since |a|+ i > 0, we may

also assume, by reordering the factors, that the first entry of b−a is strictly negative and the last
entry is nonnegative. We write b−a = (b′−a′,br− ar) and n = (n′,nr) in Zr−1⊕Z. Since
H |a|+i(Pn,OPn(b−a)) 6= 0, the Künneth formula implies that H |a|+i(Pn′,OPn′ (b

′−a′)
)
6= 0. De-

creasing the first entry of b′−a′ will not alter this nonvanishing. Setting a′′ := a′+(ar,0,0, . . . ,0),
we obtain a′′ ∈ Nr−1 \ {0}, |a′′| = |a′|+ ar = |a|, and H |a

′′|+i(Pn′,OPn′ (b
′−a′′)

)
6= 0, which

contradicts the induction hypothesis.
It remains to consider the case in which all entries of b−a are strictly negative. Hence, we

can assume that |a|+ i = |n|. The hypothesis b ∈ ∆i +Nr implies |b| > −r− i+ 1. Combining
these yields |b−a|= ∑i bi−ai = |b|− |a|> (−r− i+1)− (|n|− i) =−|n|− r+1. But the most
positive line bundle with top-dimensional cohomology is the canonical bundle, and this inequality
shows that OPn(b−a) cannot have top dimensional cohomology. �

Remark 2.12. Proposition 5.8 develops a related vanishing result for derived pushforwards.

Lemma 2.13. Let F be a 0-regular OPn-module and let 06 a6 n. If H p(Pn,F ⊗Ωa(a)
)
6= 0,

then we have −a ∈ ∆|a|−p +Nr.

Proof. If a = 0, then we have Ωa(a) = OPn , and the statement follows immediately from the
0-regularity of F . Thus, we assume that a 6= 0. After possibly reordering the factors of Pn, we
may write a = (a′,0) ∈ Zr′ ⊕Zr−r′ where every entry of a′ is strictly positive. For any k > 1,
we have (−a′,0) ∈ ∆k +Nr ⇐⇒ (−a′,−1) ∈ ∆k +Nr ⇐⇒ |a′|+(r− r′) 6 k+ r− 1. Setting
k = |a|− p = |a′|− p establishes that −a= (−a′,0) ∈ ∆|a|−p +Nr is equivalent to p < r′.
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We next use truncated Koszul complexes to build a locally free resolution of Ωa
Pn(a). For j > r′,

we have a j = 0 and Ω
a j

Pn j (a j) ∼= OPn j . For 1 6 j 6 r′, the truncated Koszul complex twisted by
OPn j (a j), namely

OPn j (−1)
(n j+1

a j+1)←− OPn j (−2)
(n j+1

a j+2)←− ·· · ←− OPn j (−n j−1+a j)
(n j+1

n j+1)←− 0,

resolves Ω
a j

Pn j (a j). Taking external tensor products gives a locally-free resolution G of Ωa
Pn(a).

Any summand OPn(c) in Gi has the form c= (c′,0) ∈ Zr′⊕Zr−r′ , where |c′|=−r′− i. Tensoring
the locally-free resolution G with F is a resolution of F ⊗Ωa

Pn(a).
Since H p(F ⊗Ωa

Pn(a)) 6= 0, breaking the resolution F ⊗G into short exact sequences implies
that, for some index i, we have H p+i(F ⊗Gi) 6= 0. Hence, there exists c= (c′,0) with |c′|=−r′− i
such that H p+i(Pn,F (c)

)
6= 0. Since F is 0-regular, we have that |c|= |c′|<−(p+ i). Therefore,

we conclude that p <−|c′|− i = (r′+ i)− i = r′ and a ∈ ∆|a|−p +Nr. �

Proof of Theorem 2.9. Assume that M(d) has a virtual resolution F of the specified form and its
Hilbert polynomial and Hilbert function agree on Nr. Since M is B-saturated, it suffices to show
that H |a|(Pn,M̃(d−a)) = 0 for all a ∈ Nr−{0}. By splitting up F into short exact sequences, it
suffices to show that H |a|+i(Pn, F̃i(−a)) = 0 for all a∈Nr \{0}. This is the content of Lemma 2.11.

For the converse, let K denote the locally-free resolution of the diagonal Pn ↪→ Pn× Pn

described in Lemma 2.1. Let π1 and π2 be the projections onto the first and second factors of Pn×Pn

respectively. The sheaf M̃(d) is quasi-isomorphic to the complex F = Rπ1∗
(
π∗2 M̃(d)⊗K

)
, where

F j =
⊕
|a|−p= j

H p(Pn,M̃(d)⊗Ω
a
Pn(a)

)
⊗OPn(−a).

Lemma 2.13 says that H p(Pn,M̃(d)⊗Ωa
Pn(a)

)
6= 0 only if −a ∈ ∆|a|−p +Nr = ∆ j +Nr. Since

each F j is a sum of line bundles, the corresponding S-module Fj is free. It follows that the complex
F := [F0←−F1←− ·· ·←−F|n|←− 0] is a virtual resolution of M(d) with the desired form. Finally,
M is B-saturated so H0

B(M) = 0 and the hypothesis that d ∈ regM implies that H1
B
(
M(d)

)
p
= 0 for

all p ∈ Nr, so the Hilbert polynomial and Hilbert function of M(d) agree on Nr. �

3. SIMPLER VIRTUAL RESOLUTIONS

We describe, in this section, an effective method for producing interesting virtual resolutions
of a given S-module. Unlike the previous section, the free complex is ordinarily not linear nor
acyclic. Our construction depends on a B-saturated module M as well as an element d ∈ regM.
Although Theorem 3.1 defines the corresponding virtual resolution as a subcomplex of a minimal
free resolution of M, Algorithm 3.4 shows that the subcomplex can be assembled without first
computing the entire minimal free resolution.

Theorem 3.1. For a finitely generated Zr-graded S-module M, consider a minimal free resolution
F of M. For a degree d ∈ Zr and each i, let Gi be the direct sum of all free summands of Fi whose
generator is in degree at most d+n, and let ϕi be the restriction of the i-th differential of F to Gi.

(i) For all i, we have ϕi(Gi)⊆ Gi−1 and ϕi ◦ϕi+1 = 0, so G forms a free complex.
(ii) Up to isomorphism, G depends only on M and d.
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(iii) If M is B-saturated and d ∈ regM, then G is a virtual resolution of M.

When M is B-saturated and d ∈ regM, the complex G is the virtual resolution of the pair (M,d).

Proof of Theorem 1.3. This theorem is simply a restatement of part (iii) of Theorem 3.1. �

To illustrate the basic idea behind the proof of Theorem 3.1, we revisit our first example.

Example 3.2. Let C be the hyperelliptic curve in P1×P2 defined by the ideal I in Example 1.4.
The free complex in (1.4.2) is the virtual resolution of the pair

(
S/I,(4,2)

)
and it is naturally a

subcomplex of the minimal free resolution (1.4.1) of S/I. The corresponding quotient complex E is

S(−1,−5)3

⊕
S(0,−8)1

←−

S(−2,−5)6

⊕
S(−1,−7)1

⊕
S(−1,−8)2

←−

S(−3,−5)3

⊕
S(−2,−7)2

⊕
S(−2,−8)1

←− S(−3,−7)1←− 0 .

Restricting attention to the terms of degree (∗,−8), we have

S(0,−8)1←− S(−1,−8)2←− S(−2,−8)1←− 0,

which looks like a twist of the Koszul complex on x1,0 and x1,1. In fact, the (∗,−8), (∗,−7), and
(∗,−5) strands each appear to have homology supported on the irrelevant ideal. This suggests that
the complex Ẽ is quasi-isomorphic to zero, and that is what we show in the proof of Theorem 3.1. �

Lemma 3.3. Let E be a bounded complex of coherent OPn-modules. If E ⊗OPn(b) has no
hypercohomology for all 06 b6 n, then E is quasi-isomorphic to 0.

Proof. By Theorem 1.1 in [EES15], any bounded complex of coherent OPn-modules is quasi-
isomorphic to a Beilinson monad whose terms involve the hypercohomology evaluated at the line
bundles of the form 06 b6 n. The hypothesis on vanishing hypercohomology ensures that this
Beilinson monad of E is the 0 monad, and hence E is quasi-isomorphic to 0. While Theorem 1.1 in
[EES15] is stated for a sheaf, the authors remark in Equation (1) on page 8 that a similar statement
holds for bounded complexes of coherent sheaves. �

Proof of Theorem 3.1. For part (i), write Fi = Gi⊕Ei for each i. Each generating degree e of Ei
satisfies e 66 d+n. It follows that, for degree reasons, there are no nonzero maps from Gi to Ei−1.
The i-th differential ∂i : Fi→ Fi−1 has a block decomposition

∂i =

[Gi Ei

Gi−1 ϕi ∗
Ei−1 0 ∗

]
,

so ϕi(Gi)⊆Gi−1 and ∂i◦∂i+1 = 0 implies that ϕi◦ϕi+1 = 0. As G only depends on F and d, part (ii)
follows from the fact that the minimal free resolution of M is unique up to isomorphism. For part (iii),
we may without loss of generality replace M by M(d) and d by 0. Let G be the virtual resolution
of the pair (M,0) and consider the short exact sequence of complexes 0→ G→ F → E → 0. It
suffices to show that the complex Ẽ of sheaves is quasi-isomorphic to zero.
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Fix some b, where 06 b6n. If a 66n, then the line bundle OPn(−a+b) has no global sections.
It follows that each summand of F̃(b) with global sections belongs to G̃(b). If H i(Pn, F̃(b)

)
is

the complex obtained by applying the functor F 7→ H i(Pn,F ) to the complex F̃(b), then we
have H0(Pn, F̃(b)

)
= H0(Pn, G̃(b)

)
. The notation H i(Pn, F̃(b)

)
should not be confused with the

hypercohomology group Hi(Pn, F̃(b)
)
, which equals H i(Pn,M̃(b)

)
because F̃ is a locally-free

resolution of the sheaf M̃. Since 0 ∈ regM and b> 0, the Hilbert polynomial and Hilbert function
of M agree in degree b. Because F is a minimal free resolution of M, it follows that the strand
[F ]b := [(F0)b←− (F1)b←− ·· · ] is quasi-isomorphic to Mb, and hence

H0(Pn, F̃(b)
)
= Mb

∼= [F ]b = H0(Pn, F̃(b)
)∼= H0(Pn, G̃(b)

)
.

If the line bundle OPn(−a+n) has global sections, then we see that OPn(−a+b) has no higher
cohomology. Therefore, the only summands in F̃ that can potentially have higher cohomology
are those that also appear in Ẽ. Thus, for all i > 0, we have H i(Pn, F̃(b)

)
= H i(Pn, Ẽ(b)

)
and

H i(Pn, G̃(b)
)
= 0. It follows that H0(Pn, G̃(b)

) ∼= H0(Pn, G̃(b)
)

and Hi(Pn, G̃(b)
)
= 0 for all

i > 0. Hence, the long exact sequence in hypercohomology yields

Hi(Pn, Ẽ(b)
)
=

{
0 if i = 0,
Hi(Pn, F̃(b)

)
if i > 0.

Since b ∈ regM, the sheaf M̃(b) has no higher cohomology and F̃(b) has no higher hypercohomol-
ogy. By Lemma 3.3, we conclude that Ẽ is quasi-isomorphic to 0. �

Although Theorem 3.1 presents the virtual resolution of the pair (M,d) as a subcomplex of a
minimal free resolution, the following algorithm shows that we can compute a virtual resolution of
the pair (M,d) without first computing an entire minimal free resolution. Our approach is similar
to Theorem 1.5 in [MS04], which allows one to certify that an element belongs to the regularity
of a module from just part of its minimal free resolution. Alternatively, one can verify that an
element belongs to the regularity by using the Tate resolutions appearing in Section 4 of [EES15];
the package TateOnProducts [EESS18] already implements these algorithms in Macaulay2 [M2].
For a module M and a degree d ∈ Zr, let M6d denote the submodule generated by

⊕
a6dMa.

Algorithm 3.4 (Computing Virtual Resolutions of a Pair).
Input: A finitely generated Zr-graded B-saturated S-module M and

a vector d ∈ Zr such that d ∈ regM.
Output: The virtual resolution G of the pair (M,d).

Initialize K := M and i := 0;
While K 6= 0 do

Choose a homogeneous minimal set G of generators for K;
Initialize Gi :=

⊕
g∈G S

(
−deg(g)

)
and ϕi : Gi→ K to be the corresponding surjection;

Set K := (Kerϕi)6d+n;
Set i := i+1;

Return G := [G0
ϕ1←−− G1

ϕ2←−− G2←− ·· · ].
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Proof of Correctness. Let G be the complex produced by the algorithm, let F be the minimal free
resolution of M, and let G′ be the virtual resolution of (M,d). Let ϕ , ∂ , and ψ be the differentials
of G, F , and G′ respectively. We have G0 = F0 = G′0, as d ∈ regM implies that M is generated in
degree at most d by Theorem 1.3 in [MS04].

The definition of G′ implies that (Im∂i)6d+n equals Imψi. We use induction on i to prove that
Imϕi = (Im∂i)6d+n. When i = 1, we have Imϕ1 = (Im∂1)6d+n. For i > 1, the key observation is

(Im∂i)6d+n = (Ker∂i−1)6d+n =
(
Ker∂i−1|Gi−1

)
6d+n

,

where the righthand equality holds because any element in (Ker∂i−1)6d+n only depends on the
restriction of ∂i−1 to Gi−1. By induction, we have Imϕi−1 = (Im∂i−1)6d+n, so(

Ker∂i−1|Gi−1

)
6d+n

=
(
Kerϕi−1

)
6d+n

= Imϕi.

Therefore, we conclude that Imϕi = Imψi for all i and G∼= G′. �

Remark 3.5. Although Algorithm 3.4 bares some superficial similarities with the linear resolutions
considered in Proposition 2.7 of [EES15], the free modules appearing in a given term of our virtual
resolutions need not be generated in a single degree and our complexes need not be acyclic.

The subsequent example demonstrates that the virtual resolution of a pair does depend on the
choice of element in the regularity.

Example 3.6. Let Z ⊂ P1×P1×P2 be the subscheme consisting of 6 general points and let I be
the corresponding B-saturated S-ideal. Macaulay2 [M2] shows that the minimal free resolution of
S/I has the form S1←− S37←− S120←− S166←− S120←− S45←− S7←− 0, where for brevity
we have omitted the twists. Using Proposition 6.7 in [MS04], it follows that, up to symmetry in the
first two factors, the minimal elements in the regularity of S/I are (5,0,0),(2,1,0), (1,0,1), and
(0,0,2). Table 3.6.1 compares some basic numerical invariants for the minimal free resolution and
the corresponding virtual resolutions. The total Betti numbers of a free complex F are the ranks of
the terms Fi ignoring the twists. Since Z has codimension 4, part (i) of Proposition 2.5 implies that

TABLE 3.6.1. Comparison of various free complexes associated to Z
Type of Free Complex Total Betti Numbers Number of Twists

minimal free resolution of S/I (1,37,120,166,120,45,7) 78
virtual resolution of the pair

(
S/I,(5,0,0)

)
(1,24,50,33,6) 18

virtual resolution of the pair
(
S/I,(2,1,0)

)
(1,29,73,66,21) 22

virtual resolution of the pair
(
S/I,(1,0,1)

)
(1,25,63,57,18) 15

virtual resolution of the pair
(
S/I,(0,0,2)

)
(1,22,51,42,12) 13

any virtual resolution for S/I must have length at least 4, so the minimum is achieved by all of these
virtual resolutions. All four virtual resolutions also have a nonzero first homology module, which
is supported on the irrelevant ideal. The first three virtual resolutions also have nonzero second
homology modules. By examining the twists, we see that no pair of these virtual resolutions are
comparable. This corresponds to the fact that the reg(S/I) has several distinct minimal elements. �
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4. VIRTUAL RESOLUTIONS FOR PUNCTUAL SCHEMES

This section formulates and proves an extension of a property of points in projective space. While
every punctual scheme in projective space is arithmetically Cohen–Macaulay, this fails when the
ambient space is a product of projective spaces; the minimal free resolution is nearly always too
long. However, by using virtual resolutions, we obtain a unexpected variant for points in Pn.

To state this analogue, recall that the irrelevant ideal on Pn is B =
⋂r

i=1
〈
xi,0,xi,1, . . . ,xi,ni

〉
. For

a vector a ∈ Nr, set Ba :=
⋂r

i=1
〈
xi,0,xi,1, . . . ,xi,ni

〉ai . With this notation, we may easily choose a
different algebra to represent the structure sheaf on our punctual subscheme. In contrast with the
virtual resolutions in Section 3, the next theorem produces acyclic free complexes.

Theorem 4.1. If Z ⊂ Pn is a zero-dimensional scheme and I is the corresponding B-saturated
S-ideal, then there exists a ∈ Nr with ar = 0 such that the minimal free resolution of S/(I∩Ba) has
length equal |n|= dimPn. Moreover, any a ∈ Nr with ar = 0 and other entries sufficiently positive
yields such a virtual resolution of S/I.

Proof of Theorem 1.5. Applying Theorem 4.1, it suffices to choose Q = Ba for any a ∈ Nr with
ar = 0 and other entries sufficiently positive. �

While Theorem 4.1 establishes that, for appropriate a∈Nr, the projective dimension of S/(I∩Ba)
equals the codimension of Z, this does not mean that the algebra S/(I∩Ba) is Cohen–Macaulay;
the ideal I∩Ba will often fail to be unmixed. For instance, on P2×P2, the ideals

〈
xi,0,xi,1,xi,2

〉
for

16 i6 2 have codimension 3 whereas a zero-dimensional scheme Z would have codimension 4.
Nevertheless, we do get Cohen–Macaulayness in one case.

Corollary 4.2. If Z ⊂ P1 × P1 is a zero-dimensional subscheme and I is the corresponding
B-saturated S-ideal, then there exists an ideal Q whose radical is

〈
x1,0,x1,1

〉
such that

(i) the algebra S/(I∩Q) is Cohen–Macaulay, and
(ii) there exists an (m+1)×m matrix over S whose maximal minors generate I∩Q.

Proof. Theorem 4.1 yields an a ∈ Nr such that I ∩Ba has projective dimension 2. On P1×P1,
the irrelevant ideal B also has codimension 2, so S/(I∩Ba) has codimension 2. Thus, the algebra
S/(I∩Ba) is Cohen–Macaulay. The second statement is an immediate consequence of the Hilbert–
Burch Theorem [Eis95, Theorem 20.15]. �

Remark 4.3. Although this paper focuses on products of projective spaces, our proofs for both
Theorem 4.1 and Corollary 4.2 can be adapted to hold in the more general context of iterated
projective bundles. For instance, let X be the Hirzebruch surface with Cox ring S = k[y0,y1,y2,y3]
where the variables have degrees (1,0), (1,0), (−2,1), and (0,1) respectively. Let Z ⊂ X be the
scheme-theoretic intersection of y5

0y2
2 + y1y2

3 and y0y1 + y2y3
1. If I is the B-saturated S-ideal of Z,

then S/I has projective dimension 3 and S/(I∩〈y0,y1〉a) has projective dimension 2 for any a> 4.

As with the proof of Theorem 3.1, we collect two lemmas before proving Theorem 4.1.

Lemma 4.4. If Z ⊂ Pn is a zero-dimensional scheme and I is the corresponding B-saturated S-ideal,
then there exists a ∈ Zr with ar = 0 such that the depth of (S/I)>a is r. Moreover, this holds for
any a ∈ Zr with ar = 0 and other entries sufficiently positive.
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Proof. Extending the ground field does not change the depth of a module, so we assume that k is
an infinite field. Since dim(S/I)>a = dim(S/I) = r, the depth of S/I is bounded above by r. For
each 16 i6 r, choose a general linear element `i in

〈
xi,0,xi,1, . . . ,xi,ni

〉
. We claim that the elements

`1, `2, . . . , `r form a regular sequence on (S/I)>a.
Let M :=

⊕
b∈Nr H0(Z,OZ(b)

)
. By construction, the elements `1, `2, . . . , `r form a regular se-

quence on M. Since I is B-saturated, it follows that H0
B(S/I) = 0. The exact sequence relating local

cohomology and sheaf cohomology [CLS11, Theorem 9.5.7] gives

0
(
H1

B(S/I)
)
>0 M S/I 0

0
(
H1

B(S/I)
)
>0 M S/I 0 .

·`i ·`i ·`i

The middle vertical arrow is an isomorphism because `i does not vanish on any point in Z. Hence,
the Snake Lemma [Eis95, Exercise A3.10] implies that the right vertical arrow is injective.

Focusing on the last component of Zr, we identify the Cox ring R := k[xr,0,xr,1, . . . ,xr,nr ] of the
factor Pnr with the subring (S)(0,∗) :=

⊕
α∈N(S)(0,α) of S. For any c′ ∈Zr−1, consider the R-module

(S/I)(c′,∗) :=
⊕

α∈N(S)(c′,α). These modules form a directed set: for c′,c′′ ∈ Zs−1 with c′′ > c′,

multiplication by the form `
c′′1−c′1
1 `

c′′2−c′2
2 · · ·`c

′′
s−1−c′s−1

s−1 gives the inclusion (S/I)(c′,∗) ⊆ (S/I)(c′′,∗).
Each R-module (S/I)(c′,∗) is a submodule of (M)(c′,∗) and (M)(c′,∗) ∼= (M)(0,∗). It follows that
the (S/I)(c′,∗) form an increasing sequence of finitely-generated R-submodules of (M)(0,∗), so
this sequence stabilizes. In particular, if a′ ∈ Zr−1 is sufficiently positive, then the inclusion
(S/I)(c′,∗) ⊆ (S/I)(c′+ei,∗) is an isomorphism for each c′ > a′ and each 1 6 i 6 r− 1. Hence,
`1, `2, . . . , `r−1 form a regular sequence on (S/I)>(a′,0) and

(S/I)>(a′,0)
〈`1, `2, . . . , `r−1〉

∼= (S/I)(a′,∗).

Since I is B-saturated, `r is regular on S/I, so it is also regular on the R-module (S/I)(a′,∗). Setting
a= (a′,0), the Auslander–Buchsbaum Formula [Eis95, Theorem 19.9] completes the proof. �

Remark 4.5. The proof of Lemma 4.4 shows that (S/I)>a has a multigraded regular sequence of
length r, but neither S/(I∩Ba) nor S/Ba generally has a multigraded regular sequence of length r.

Lemma 4.6. If a := (a1,a2, . . . ,ai,0, . . . ,0) ∈ Zr for some 16 i6 r, then the projective dimension
of S/Ba is at most n1 +n2 + · · ·+ni +1.

Proof. We proceed by induction on i. The base case i = 1 is just the Hilbert Syzygy Theorem [Eis95,
Theorem 1.3] applied to the Cox ring of Pn1 . When i > 1, set a′ := (a1,a2, . . . ,ai−1,0, . . . ,0) and
a′′ := (0, . . . ,0,ai,0, . . . ,0), so that a = a′+a′′ and Ba = Ba′ ∩Ba′′ . The short exact sequence
0←− S/(Ba′+Ba′′)←− S/Ba′ ←− S/Ba←− 0 yields

(4.6.4) pdim(S/Ba)6max
{

pdim(S/Ba′),pdim(S/Ba′′),pdim
(
S/(Ba′+Ba′′)

)
−1
}
.

By induction, the projective dimension of S/Ba′ is at most n1 +n2 + · · ·+ni−1 +1. By the Hilbert
Syzygy Theorem on Pni , the projective dimension of S/Ba′′ is at most ni +1. Since Ba′ and Ba′′
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are supported on disjoint sets of variables, pdim
(
S/(Ba′ +Ba′′)

)
= pdim(S/Ba′)+ pdim(S/Ba′′)

which is at most n1 +n2 + · · ·+ni +2. Applying (4.6.4), we obtain the result. �

Proof of Theorem 4.1. Let a ∈ Zr with ar = 0 and other entries sufficiently positive. There is a
short exact sequence 0←− S/Ba←− S/(I∩Ba)←− (S/I)>a←− 0. By Proposition 2.5, it suffices
to prove that the projective dimension of S/(I ∩Ba) is at most n1 + n2 + · · ·+ nr. Lemma 4.4
shows that (S/I)>a has projective dimension n1 +n2 + · · ·+nr and Lemma 4.6 shows that S/Ba

has projective dimension at most n1 +n2 + · · ·+nr−1 +1. It follows that the projective dimension
of S/(I∩Ba) is at most n1 +n2 + · · ·+nr as well. �

The next example compares the virtual resolutions produced by Theorem 1.3 and Theorem 1.5;
neither seems to have a definitive advantage over the other.

Example 4.7. As in Example 3.6, let Z ⊂ P1×P1×P2 be the subscheme consisting of 6 general
points and let I be the corresponding B-saturated S-ideal. Table 4.7.2 compares some basic nu-
merical invariants for virtual resolutions arising from Theorem 4.1. Since the virtual resolutions

TABLE 4.7.2. Comparison of various free complexes associated to Z
Type of Free Complex Total Betti Numbers Number of Twists

minimal free resolution of S/I (1,37,120,166,120,45,7) 78
virtual resolution from a= (2,1,0) (1,17,34,24,6) 12
virtual resolution from a= (3,3,0) (1,22,42,27,6) 13

in Table 4.7.2 involve non-minimal generators for I, they are different than those in Table 3.6.1.
Conversely, the virtual resolutions appearing in Table 3.6.1 cannot be obtained from Theorem 1.5
because those free complexes are not acyclic. �

We end this section by extending Corollary 4.2 to any smooth projective toric surface.

Proposition 4.8. Fix a smooth projective toric surface X. Let Z ⊂ X be the subscheme consisting
of m general points and let I be the corresponding B-saturated S-ideal. There exists a virtual
resolution F := [S←− F1

ϕ←−− F2←− 0] of S/I such that rank(F1) = rank(F2)+ 1, the maximal
minors of ϕ generate an ideal J with I = (J : B∞), and S/J is a Cohen–Macaulay algebra.

Proof. Any smooth projective toric surface can be realized as a blowup of π : X → Y , where Y is
P2 or a Hirzebruch surface [CLS11, Theorem 10.4.3]. Since π(Z)⊂ Y is a punctual scheme, we
can apply the Hilbert–Burch Theorem when Y is P2, or Corollary 4.2 and Remark 4.3 when Y is a
Hirzebruch surface, to obtain a resolution of O

π(Z) of the form OY ←− E1←− E2←− 0, where E1

and E2 are sums of line bundles on Y . Our genericity hypothesis implies that Z does not intersect the
exceptional locus of π , so π∗OY ←− π∗E1←− π∗E2←− 0 is a locally-free resolution of OZ . The
corresponding complex of S-modules is a virtual resolution for S/I of the appropriate form. �

Example 4.9. Consider the del Pezzo surface X of degree 7 or equivalently the smooth Fano toric
surface obtained by blowing-up the projective plane at two torus-fixed points. The Cox ring of X is
S := k[y0,y1, . . . ,y4] equipped with the Z3-grading induced by

deg(y0) :=
[

1
0
0

]
, deg(y1) :=

[−1
1
0

]
, deg(y2) :=

[ 1
−1

1

]
, deg(y3) :=

[ 0
1
−1

]
, deg(y4) :=

[
0
0
1

]
.
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With this choice of basis for Pic(X), the nef cone equals the positive orthant. Let Z ⊂ X be the
subscheme consisting of the three points [1 : 1 : 1 : 1 : 1], [2 : 1 : 3 : 1 : 5], and [7 : 1 : 11 : 1 : 13]
(expressed in Cox coordinates) and let I be the corresponding B-saturated S-ideal. Macaulay2 [M2]
shows that the minimal free resolution of S/I has the form

S1←−

S(−1,0,−1)1

⊕
S(0,−1,−1)1

⊕
S(−1,−1,0)1

⊕
S(0,0,−3)1

⊕
S(−3,0,0)1

←−

S(0,−2,−2)1

⊕
S(−1,−1,−1)2

⊕
S(−2,−1,0)1

⊕
S(−1,0,−3)1

⊕
S(−3,0,−1)1

←−
S(−1,−1,−2)1

⊕
S(−2,−1,−1)1

←− 0 .

However, there is a virtual resolution of S/I having the form

S1←− S(0,−2,0)3 ←− S(0,−3,0)2 ←− 0 . �

Example 4.10. Let Z ⊂ P1×P1 be the subscheme consisting of m general points and let I be the
corresponding B-saturated S-ideal. Not only is there a Hilbert–Burch-type virtual resolution of S/I,
it can be chosen to be a Koszul complex. Since dimH0(P1×P1,OP1×P1(i, j)

)
= (i+1)( j+1), the

generality of the points implies that dimH0(P1×P1,OZ(i, j)
)
= min{(i+1)( j+1),m}. Hence, if

m = 2k for some k ∈ N, then two independent global sections of OP1×P1(1,k) vanish on Z. Using
this pair, we obtain a virtual resolution of S/I of the form S←− S(−1,−k)2←− S(−2,−2k)←− 0.
On the other hand, if m = 2k+1, then there are independent global sections of OP1×P1(1,k) and
OP1×P1(1,k+1) that vanish on Z, so we obtain a virtual resolution of S/I having the form

S←−
S(−1,−k)
⊕

S(−1,−k−1)
←− S(−2,−2k−1)←− 0 . �

Question 4.11. Does Proposition 4.8 hold for any punctual scheme Z in a smooth toric surface X?

5. GEOMETRIC APPLICATIONS

In this section, we showcase four geometric applications of virtual resolutions. In particular, each
of these support our overarching thesis that replacing minimal free resolutions by virtual resolutions
yields the best geometric results for subschemes of Pn.

Unmixedness. Given a subscheme that has a virtual resolution whose length equals its codimension,
we prove an unmixedness result. Closely related to Proposition 2.5, this extends the classical
unmixedness result for arithmetically Cohen–Macaulay subschemes, see Corollary 18.14 in [Eis95].

Proposition 5.1 (Unmixedness). Let Z ⊂ Pn be a closed subscheme of codimension c and let I
be the corresponding B-saturated S-ideal. If S/I has a virtual resolution of length c, then every
associated prime of I has codimension c.
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Proof. Let Q be an associated prime of I and let F denote a virtual resolution of S/I having
length c. Our hypothesis on Z implies that codimQ> c. Since Q does not contain the irrelevant
ideal B, localizing at Q annihilates the homology of F that is supported at B. Thus, the complex
FQ is a free SQ-resolution of (S/I)Q. Since the projective dimension of a module is at least its
codimension [Eis95, Proposition 18.2], it follows that c> codimSQ(S/I)Q = codimQ> c. �

Deformation Theory. Using virtual resolutions, we generalize results about unobstructed de-
formations for arithmetically Cohen–Macaulay subschemes of codimension two, arithmetically
Gorenstein subschemes of codimension three, and complete intersections. To accomplish this, we
first observe that the Piene–Schlessinger Comparison Theorem [PS85] applies more generally by
relating the deformations of a closed subscheme Y ⊆ Pn with deformations of a corresponding
graded module over the Cox ring.

Theorem 5.2 (Comparison Theorem). Let Y ⊂ Pn be a closed subscheme and let I be a homoge-
neous S-ideal defining Y scheme-theoretically and generated in degrees d1,d2, . . . ,ds. If the natural
map (S/I)di → H0(Y,OY (di)

)
is an isomorphism for all 16 i6 s, then the embedded deformation

theory of Y ⊂ Pn is equivalent to the degree zero embedded deformation theory of V(I)⊂ Spec(S).

Proof. Piene and Schlessinger’s proof of the Comparison Theorem [PS85] goes through essentially
verbatim by replacing projective space and its coordinate ring with Pn and its Cox ring S. �

Proof of Theorem 1.6. If e ∈ reg(S/I) and F is the virtual resolution of the pair (S/I,e), then we
have H0(F) = S/J for some ideal J whose B-saturation equals I. By Theorem 1.3, the generating
degrees for J are a subset of those for I. It follows that (S/J)d = H0(Y,OY (d)

)
for each degree d

of a generator for J. Therefore, Theorem 5.2 implies that the embedded deformation theory of Y is
equivalent to the degree zero embedded deformation theory of the subscheme V(J)⊂ Spec(S).

(i) The virtual resolution F has length 2, so Proposition 2.5 implies that F is the minimal free
resolution of S/J. Thus, S/J is Cohen–Macaulay of codimension 2, and [Art76, §5] or [Sch77]
implies that its embedded deformations are unobstructed.

(ii) The virtual resolution F has length 3 and min{ni + 1 : 1 6 i 6 r} > 3, so Proposition 2.5
implies that F is the minimal free resolution of S/J. Thus, S/J is Gorenstein of codimension
3, and Theorem 2.1 in [MR92] implies that its embedded deformations are unobstructed.

(iii) Let c := codimY . As F is a Koszul complex, we have F1 =
⊕c

i=1 S(−di). Since F is a virtual
resolution of S/I, we also see that J̃ equals the ideal sheaf IY for Y ⊂ Pn. The complex
F̃1←− F̃2←− F̃3←− ·· · is a locally-free resolution of IY , so the normal bundle of Y in Pn is
NY/Pn :=Hom(IY/I 2

Y ,OY )
∼=
⊕c

i=1 OY (di). For a fixed deformation of Y , the obstruction
is a Čech cocycle in H1(Y,NY/Pn) determined by local lifts of the syzygies; see Theorem 6.2
in [Har10]. However, since Y is a scheme-theoretic complete intersection, its syzygies are all
Koszul, so we can define this cocycle by lifting those Koszul syzygies globally on Y . Hence,
the Čech cocycle in H1(Y,NY/Pn) is actually a coboundary and the obstruction vanishes. �

Remark 5.3. In part (ii) of Theorem 1.6, we suspect that the hypothesis min{ni}> 2 is unnecessary.

Example 5.4. Consider the hyperelliptic curve C ⊂ P1×P2 defined in Example 1.4. Applying
part (i) of Theorem 1.6, the virtual resolution from (1.4.2) implies that C has unobstructed embedded



VIRTUAL RESOLUTIONS 19

deformations. Alternatively, this curve has a virtual resolution

S
[ f g ]←−−−−

S(−2,−2)
⊕

S(−3,−1)

[−g
f

]
←−−−− S(−5,−3)←− 0,

where f = x2
1,0x2

2,0 + x2
1,1x2

2,1 + x1,0x1,1x2
2,2 and g = x3

1,0x2,2 + x3
1,1(x2,0 + x2,1), so part (iii) of Theo-

rem 1.6 provides another proof that this curve has unobstructed embedded deformations. �

Regularity of Tensor Products. Using virtual resolutions, we can prove bounds for the regularity
of a tensor product, similar to the bounds obtained for projective space; see Proposition 1.8.8 in
[Laz04]. Let ei denote the i-th standard basis vector in Zr = Pic(Pn).

Proposition 5.5. Let E and F be coherent OPn-modules such that Tor j(E ,F ) = 0 for all j > 0.
If a ∈ regE and b ∈ regF , then we have a+b+1−ei ∈ reg(E ⊗F ) for each 16 i6 r.

Proof. Let M and N be the B-saturated S-modules corresponding to E and F . Since M(a) is
0-regular, Theorem 2.9 implies that it has a virtual resolution F0←− F1←− ·· · , where the degree of
each generator of Fi belongs to ∆i +Nr. Similarly, N(b) has a virtual resolution G0←− G1←− ·· ·
satisfying the same conditions. The vanishing of Tor-groups implies that H := F⊗G is a virtual
resolution of M(a)⊗N(b). Since ∆i +∆ j +1−ei ⊆ ∆i+ j +Nr, it follows that the degree of each
generator of the free module H(1−ei)k belongs to ∆k +Nr, for each k. Hence Theorem 2.9 implies
that

(
M(a)⊗N(b)

)
(1−ei) is 0-regular. �

Remark 5.6. Proposition 5.5 is sharp. When r = 1, it recovers Proposition 1.8.8 in [Laz04], as the
higher Tor-groups vanish whenever one of the two sheaves is locally free. If r > 1, then it is possible
to have 0-regular sheaves whose tensor product is not 0-regular. For instance, if D,D′ ⊂ P1×P2

are degree (1,1)-hypersurfaces, then the product OD⊗OD′ is isomorphic to the structure sheaf OC
for a curve C with H1(C,OC(0,−1)

)
6= 0.

Remark 5.7. Definition 2.8 in [EES15] describes an asymptotic variant of Proposition 5.5.

Vanishing of Higher Direct Images. A relative notion of Castelnuovo–Mumford regularity with
respect to a given morphism is defined in terms of the vanishing of derived pushforwards; see Exam-
ple 1.8.24 in [Laz04]. Just as virtual resolutions yield sharper bounds on multigraded Castelnuovo–
Mumford regularity, they also provide sharper bounds for the vanishing of derived pushforwards.
For some 16 s6 r, fix a subset {i1, i2, . . . , is} ⊆ {1,2, . . . ,r} and let Y be the corresponding prod-
uct Pni1 ×Pni2 ×·· ·×Pnir of projective spaces. The canonical projection π : Pn→ Y induces an
inclusion π∗ : Pic(Y )→ Pic(Pn) and we write ρ : Pic(Pn)→ Coker(π∗) = Pic(Pn)/Pic(Y ).

Proposition 5.8. Let M be a finitely-generated Zr-graded S-module and consider a ∈ Zr. If we
have ρ(a) ∈ ρ(regM), then it follows that Riπ∗M̃(a) = 0 for all i > 0.

Proof. Since ρ(a)∈ ρ(regM), we can choose b∈ Pic(Y ) such that a+π∗b∈ regM. The Projection
Formula [Har77, Exercise III.8.3] gives Riπ∗M̃(a)⊗OY (b) = Riπ∗M̃(a+π∗b) for all b ∈ Pic(Y ).
Hence, by replacing a with a+π∗b, we assume that a itself lies in regM.

Let G be the virtual resolution of the pair (M,a), and consider a summand S(−c) of G. By
definition, we have c 6 a+n. It follows that −n 6 −c+a and Riπ∗OPn(−c+a) = 0 for all
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i > 0. From the hypercohomology spectral sequence E p,q
2 := RpG̃−q =⇒Rp+qM̃, we conclude that

the higher direct images of M̃(a) also vanish. �

α •

reg(S/I)
ρ

ρ(α)

ρ
(
reg(S/I)

)
•

FIGURE 5.8.1. Representation of reg(S/I) and its image under ρ .

Example 5.9. Let Y ⊂ P1×P3 be the surface defined by the B-saturated ideal

I =
〈

x1,1x2
2,1 + x1,0x2,0x2,2 + x1,1x2,1x2,3, x2

1,0x2
2,1 + x1,0x1,1x2

2,2 + x2
1,1x2,0x2,3, x1,0x4

2,1− x1,0x2,0x3
2,2+

x1,0x3
2,1x2,3− x1,1x2

2,0x2,2x2,3, x6
2,1− x2,0x2

2,1x3
2,2 +2x5

2,1x2,3 + x3
2,0x2

2,2x2,3− x2,0x2,1x3
2,2x2,3 + x4

2,1x2
2,3

〉
,

and let π : P1×P3→ P1 be the projection onto the first factor. To understand the vanishing of the
higher direct images of OY , we consider the minimal free resolution of S/I which has the form

S1←−

S(−2,−2)1

⊕
S(−1,−2)1

⊕
S(−1,−4)1

⊕
S(0,−6)1

←−
S(−2,−4)2

⊕
S(−1,−6)2

←− S(−2,−6)1←− 0.

If we tensor the corresponding locally-free resolution with the line bundle OY (0,3), then none of the
terms in the resulting complex have nonzero higher direct images, so R1π∗OY (0,c) = 0 for c> 3.
However, Proposition 5.8 yields a sharper vanishing result. Since Macaulay2 [M2] shows that
(1,1) ∈ reg(S/I), we have R1π∗OY (0,c) = 0 for all c> 1. This bound is sharp because a general
fiber of π is a curve of genus 1. �

6. QUESTIONS

We expect that virtual resolutions will produce further analogues of theorems involving minimal
free resolutions on projective space. We close by highlighting several promising directions.

The first question is to find a notion of depth that controls the minimal length of a virtual
resolution and provides an analogue of the Auslander–Buchsbaum Theorem.

Question 6.1. Given an S-module M, what invariants of M determine the length of the shortest
possible virtual resolution of M?

Even understanding this question for curves in P1×P2 would be compelling. In light of Theorem 1.6,
this case would produce unirationality results for certain parameter spaces of curves.

Question 6.2. For which values of d, e, and g, does there exist a smooth curve in P1×P2 of
bidegree (d,e) and genus g with a virtual resolution of the form S←− F1←− F2←− 0?
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Proposition 5.1 and Theorem 1.6 suggest that having a virtual resolution whose length equals the
codimension of the underlying variety can have significant geometric implications. As these results
parallel the arithmetic Cohen–Macaulay property over projective space, it would be interesting to
seek out analogues of being arithmetically Gorenstein.

Question 6.3. Consider a positive-dimensional subscheme Z ⊆ Pn such that ωZ = OPn(d)|Z for
some d ∈ Zr. Is there a self-dual virtual resolution of Z?

It would also be interesting to better understand scheme-theoretic complete intersections.

Question 6.4. Develop an algorithm to determine if a subvariety Z ⊆ Pn has a virtual resolution
that is a Koszul complex. This is already interesting in the case of points on P1×P1.

Finally, we believe that many of these results should hold for more general toric varieties.

Question 6.5. Prove an analogue of Proposition 1.2 for an arbitrary smooth toric variety.
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