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1. INTRODUCTION 

Our purpose here is to till the two remaining gaps in the determination of 
the Schur multipliers of the finite simple Chevalley groups and their twisted 
analogues by providing 1.1, 5.1 and 6.1 (see also 6.2) below. 

THEOREM 1.1. Let G be the group of rational points of a simply 
connected simple afine algebraic group defined and split over a fmite j?eld of 
q elements. Then the Schur multiplier M of G is trivial with the following 
exceptions: (a) Zf G is A,(4), A,(2), A,(3), C,(2), F,(2) or G,(4) then h4 is 
Z, (cyclic of order 2); if G is A,(9), B,(3) or G,(3) it is iz,. (b) Zf G is A,(4) 
(resp. D,(2)) then M is the direct product of Z, (resp. Z,) with itself. 

This is proved in Schur [ 11, p. 1191 for G = SL, and in [ 13, 4.11 for the 
oher types with q > 5. Most of the exceptional cases of 1.1 have been treated 
by other authors (see Sects. 2, 3 below). In Sects. 2, 3 we treat the case 
q < 4, limit it4 as indicated, and construct an appropriate covering group 
when this is easy, using mainly the spin covering which is developed in 
Section 7. In this regard we call attention to a forthcoming paper of Robert 
Griess, “Schur multipliers of the known finite simple groups III,” in which 
such a construction is given for each of the simple groups (including the 26 
sporadic groups) for which this has not been done here or elsewhere in the 
literature. The main idea in this part, as in [ 131, is to attempt to lift a certain 
presentation of G (see Section 2 below) to an arbitrary central extension. 

In the second part of this paper, Sections 4-6, we obtain similar presen- 
tations for the finite quasisplit groups SU,,+,(k/k,). From this, one can 
determine the Schur multipliers of these groups, and in fact Griess [9] has 

* Part of this paper was written in 1979-1980 while the author was a guest at Queen Mary 
College. He acknowledges with pleasure the extreme hospitality shown him during this visit. 
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already done this, among other things. His results together with those of 
Grover [lo] and Alperin and Gorenstein [2] show that if G is twisted in 1.1 
then M is trivial except for the following cases: M(2A,(2)) = L,, 
w24(3)) = z, x z,, q2‘4m = L2 x z,, MC’&(g)) = if 2 X L, 5 
M(‘E,(2)) = Z, X Z,. Other papers that are relevant to this part are Abe [l] 
and Deodhar [ 71, where fragments of our calculations may be found. 

Our results were obtained more than 10 years ago (that the number of 
exceptions in 1.1 is finite is mentioned in [ 131) but remained unpublished 
because of a miseading of the literature on our part. We are indebted to 
Robert Griess for setting us straight on this point and for helping us 
otherwise in the preparation of this paper. 

2. START OF THE PROOF OF THEOREM 1.1 

For G = SL, the result is due to Schur [ 11, p. 1191 and is also proved in 
[13]. The exceptional cases are covered by the sequences L!,,(4) N 
PSL,(S) t SL,(5) and SL,(9) -+ P%?,,(9) *A, (alternating group) which 
has a B-fold covering group [ 121. (Here and elsewhere “w” denotes an 
isomorphism.) Hence for the rest of the proof we may assume that the rank 
is at least 2. The group G is as in 1.1, thus is a universal Chevalley group in 
the language of [ 141 (this is a departure from [ 131, where G denotes the 
adjoint group), H a split Cartan subgroup, IV, W= N/H (Weyl group), 
R = {r, s, t,...) the root system, xl(u) as in [ 131, as are X,. = {x,(u) ( u E k), 
w,(u) = x,(u) x-,(--u-r) x,(u) (U # 0) and h, = w,(u) ~~(-1). The Xr’s taken 
together generate G and they satisfy the following relations, which in case k 
is finite as is now being assumed form a complete set [ 13, 3.31. 

(A) x,(u) x,(v) = x,(u + v), 

(B) Cxrlu), xs(")> = n Xir+js(CijrsUid)' 

Here u and u run over k and r and s # -r over R. The term on the left of (B) 
is the commutator of the two factors and on the right is the product over all 
pairs of positive integers (i,j) taken in any order, the Cijrs being certain 
integers which depend on the order chosen but not on u or v and are known, 
at least up to sign, in the various cases (see, e.g., [6], [ 131 or [ 141). Now let 
rr: G, -+ G be a universal central extension of G (so that ker II is M(G)). As 
stated above our object is to lift relations (A) and (B) to G, if this is possible 
and to measure the obstruction if not. Since this is done for q > 5 in [ 131 we 
may assume from now on that q < 4. To compensate for the smallness of k, 
we shall have to be able to produce roots with suitable geometric properties. 
The basic result towards this end is as follows. 
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LEMMA 2.1. Let R be a root system and S a subsystem closed under real 
(or rational) linear combinations. Then any basis, i.e., simple system, for S 
extends to one for R. 

Proof Let A and B be the real spaces generated by R and by S, and C 
the orthogonal complement of B in A. Order C arbitrarily, B compatibly 
with a given basis for S, and then A lexicographically so that b + c > 0 if 
c>Oorifc=Oandb>O.IfnowsissimpleinSands=r,+r,,asumof 
positive roots in R, with rl = b, + c, and rz = b, + c2 in B + C, then 
s=b,+b,andO=c,+c,. Thus ci = c, = 0, whence rl and r2 are in S, and 
s remains simple in R, as required. 

We turn now to the proof of 1.1 proper, considering in the rest of this 
section groups for which there is just one root length. 

2.2. We assume first that q > 2. 
(1) In the present case (R simple, one root length) any two roots are 

contained in a subsystem of type A,, A, or A,. To see this, let B be a basis 
for the system generated over the reals by the given roots and A an extension 
to R as given by 2.1. If B is not of type A, or A, then it is of type A: and we 
may adjoin to B the root which is the sum of the intermediate roots to those 
of B in the Dynkin diagram of A (which is connected since R is simple) to 
get a basis of type A,. Henceforth we shall omit proofs of this nature. 

Now we define f: X, + G, as in [ 13, Sect. 91: choose h, E H so that 
r(h,) # 1, i.e., x + (h,., x) is a bijection on X,, and then define f(x) so that 
f((h,., x)) = (f(h,),f(x)) with f(h,) any lift of h,. This is not circular since 
the right side is independent off: 

(2) zelH transforms f(X,) into itself. More generally, if n EN 
corresponds to w  E W then 7c- ‘n transforms f(Xr) into f(X,,). The proof is 
like that in [ 13, Sect. 9, step (l)]. 

(3) Each f(X,) is Abelian. Write r = s + t, the sum of two other roots 
and x = (y, z) E X, r7 (X,, X,) accordingly. If x’ E X,, then x’ commutes 
with y and z since r + s and r t t are not roots. Thus f(x’) commutes with 
f(y) and f(z) up to central elements of G,, thus with (f(y),f(z)) exactly, 
thus also withf(x) which differs from this by a central element of G,. 

(4) The relations (A) hold (for the elementsf(Xr)), The proof is as in 
[ 13, Sect. 9, step (3)]. 

(5) If r and s are independent roots there exists h E H such that 
r(h) = 1 and s(h) # 1 (in k) unless G = A,(4) or q = 3 and r and s are 
orthogonal. For this assume first that r and s are not orthogonal. If the rank 
is at least three we choose a root t with (r, t) = 0 (Cartan integer) and 
(s, t) = 1 (this is possible in A,, hence in general by (1)) and set h = h,(c) 
with c # 1; if G = A,(3) set h = h,(c). If r and s are orthogonal and q = 4 
then h = h,(c) works. 
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(6) If G #A,(4) then relations (B) hold. We use induction on the 
number of roots involved. Let c(t,u) denote the ratio of the two sides of (B) 
when the x’s are replaced by thef(x)‘s. By (4) and our inductive assumption 
it easily follows that c is “biadditive.” In the favorable cases of (5) we 
conjugate our relation byf(h), any lift of h. By (5) and the centrality of c we 
get c(t, u) = c(t, us(h)) whence c(t, u(s(h) - 1)) = 1 and c is identically 1. If 
q = 3 and r and s are orthogonal and also t and u are both 1, which we may 
assume since the additive group of k is cyclic, there exists n E N 
transforming x = x,.(l) and y = x,(l) into each other (easily checked in SL, , 

see (l).) Thus (f(x>, f(.d) =f(n)(f(x>,f(v)> f(n)-’ = UbWW and 
c* = 1. But also c3 = 1 since c is additive. Thus c = 1, as required. 

(7) Now let G =A,(4). Everything is as before through (4) so that 
only relations (B) need be considered. In the 60” case (r + s is not a root) 
the obstruction is biadditive, hence yields an elementary 2-group. In the 
120” case if we write (B) (lifted) as f(x,(t))f(x,(u)) f(x,(t))-’ = 
cr,(t, u>f(x,+,(tu))f(x,(u)), th e same with u replaced by U, and then 
multiply, we get (*) c,,(t, u + V) = cTS(t, U) c,.,(t, v) c,,,+&u, tu). This shows 
(take u = u) that c:~ = 1 and that the 60” obstructions are expressible in 
terms of the 120” ones. If we make H act and use (2) we get c,,,+,(t, U) = 
c,,,+,(tu, UC’) and (**) c,,(t, u) = c,,(tv, UV) for all u E k*, so that in 
particular c,,,+, is symmetric. Let u be a generator of k*. Take the product 
of (*) with t = a and (u, u) running over all pairs of distinct elements of k*. 
In view of the above remarks we get ~,,(a, 1) ~,,(a, a) crs(a, a’) equal to the 
same item with s replaced by r + s, which is 1 by additivity in the last 
position. Since also the Weyl group is transitive on 120’ pairs of roots and 
(**) holds, the obstruction to lifting all of relations (B), hence to lifting G 
itself, is reduced to a potential (4,4) group generated by ~,.,(a, 1) and 
~,,(a, a’). That this obstruction is real has been shown by Burgoyne and by 
Thompson, unpublished. One way to do this is to construct the central 
extension over B (the Bore1 subgroup corresponding to the positive roots) 
first and then to check certain compatibility conditions for the action of the 
Weyl group, sufficient for the extension of the construction to the whole 
group. (See [9, pp. 366-3711, where this method is applied to the group 
G,(3), mentioned in Sect. 3.5 below.) 

2.3. Now we assume that q = 2 (and still that there is just one root 
length). We set x, = x,( 1) and define y,. =f(x,) thus. Write r = s + 1, a sum 
of two other roots, so that x, = (x,, xI) (one of the relations of (B)) and then 
Y, = (v, 3 Y,). 

(1) If the rank is >3 and (r, s) = 1 (i.e., r, s make an angle of 600), 
then y, and y, commute. To see this, write s = t + u with T, t, u independent. 
Then r + t and r + u are not roots: if, e.g., r + t were a root, we would have 
(r, t) < 0, whence (r, u) > 1, which is impossible since r # U. Thus y, 
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commutes with yI and y, up to central elements and thus with y, exactly (see 
step (3) of 2.2). 

(2) If the rank is 23, then (A) holds (for the yr)s), i.e., y,’ = 1. Write 
y, = (y,, y,) as at the start. Then y, commutes with y, and y, by (1). Thus 
y: = (y,, yf) = 1 since yf is central. 

(3) Assume that the rank is 24 and that the type is A, or E,. If r and 
s are orthogonal roots, then y, and y, commute. By 2.2 (1) and our present 
assumptions we may imbed r and s into a root system of type A, and the 
latter into one of type A ., . There we write s = t + u with all roots orthogonal 
to r. Then y, commutes with ys as in (1). 

(4) Assume as in (3). Then the y,.‘s satisfy conditions (A) and (B). By 
(11, (2) and (3) ‘t 1 remains only to show that the normalization of y, is 
independent of the choice of s and t. Let r = u + v be another such choice. If 
u = t and v = s, the result holds by (2). Otherwise u is linearly independent 
from s and t, and from (s + t, u) = (u + v, v) = 1, we get one of (s, u), (t, u), 
say, the first, equal to 1, the other equal to 0, and vice versa if u is replaced 
by v. Thus s - u = v - t is a root, call it p, and it is orthogonal to s + t. If 
we conjugate (y,, y,) by wP E W, represented in N by an element of 
XPXePXP, we leave it unchanged by (2) and transform it into (y,, y,) since 
wPs = u and wP t = v, whence (4). 

(5) If the type is A, or A,, then z is a double covering. For A, we get 
in (1) an obstruction j = (y,, y,), j2 = 1, independent of r and s (because of 
the action of W), and then each xf = j in (2). We can realize the covering 
concretely via SL,(2) - P%,(7) t Z,(7). For type A, we have (1) and (2), 
but in (3) an obstruction j = (y,, y,), j’ = 1, independent of r and s, and in 
(4) an obstruction expressible in terms of j. Here we get our realization via 
SL,(2) -A, (alternating group) c SO, t Spin, (See 7.9 below.) 

(6) The groups D,(2) (n 2 4) remains to be considered. As above (1) 
and (2) hold; thus the crux of the matter is (3). In terms of coordinates the 
roots may be written &vi f vi (1 < i <j < n), more simply fi f j. Assume 
n > 4 first. Then for r and s of the form 12 and 34 we write 
34 = 35 + (4 - 5) to get (3). For the only other possible form 12, 1 - 2 we 
set j = (y,, y,), which is independent of the indices involved. We conjugate 
y,, by w,-~w~~w~-~. By our result for pairs of the first form and the fact 
that wie2 may be chosen in X, -2X2-,X, _ 2 we get jyi2. If we conjugate in 
the same way (y ,3, y-,,), equal to y,, up to a central element, we get 
(y,-,, y,J, which is (Y,~, y,-,) by (2). Thus j= 1 and we have (3) and 
hence (4) in this case. If n = 4, there are three orbits of orthogonal pairs of 
roots, represented by (12, 1 - 2), (12,3 - 4) and (12,34). These yield 
obstructions j, k and 1 in (3), each of square 1. We claim that jkl = 1. In fact 
the calculation just made shows that this is so. Further the obstructions in 
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(4) are expressible in terms of j, k and 1. We thus have a potential (2,2) 
covering which can be realized via D,(2) t SW(E,) (special Weyl group) c 
SO, c Spin,. Here the first arrow is a double covering realized by reduction 
mod 2. 

The proof of 1.1 in the single root case is now complete. 

3. THE PROOF CONCLUDED 

3.1. We turn next to the groups C,,(q). We assume first that n > 2 and 
q = 4. We normalize y,(u) rf(x,(u)) as in 2.2 and see as there that 

(1) n-‘H normalizes {y,(u)} for each r. 

(2) If r # s and x,(u) and x,(v) commute, then so do y,(u) and y,(u). 
If r and s are orthogonal we remove any potential obstruction by 
conjugation by h,(c) (c # 1) as in 2.2 (6). If r and s make an acute angle, 
there exists a long root t orthogonal to one of them and not to the other: if r 
is long and s short, then t = r - 2s will do, while if both are short we imbed 
{r, -s} in a basis of type C, (see 2.1) and use the remaining basis vector. In 
both cases h,(c) works as in the first case. 

(3) Each 1 JWI is Abelian. Consider a relation (B) of the form 
(Y,, YJ=cYs+~Ystzl with c central. Since Y;+~ commutes with y,, y, and 
Y $+ 2I by (2), it also commutes with ys+l ; and similarly for y:+ Zt. Since every 
y, occurs, up to a central factor, in the role of ystr or ys+ 21 above, we have 
(3). 

(4) Relations (A) hold. By (1) and (3) as in 2.2. 

(5) Relations (B) hold. By (2) we are left with the case in which r and 
s make an obtuse angle. By (2) again the obstruction c is biadditive, hence 
may be removed as in the second case of (2). 

3.2. Next come the groups C,(3) (n > 2). For n = 2 the central extension 
Sp,(3) -+ SU,(2) shows that ker 71 is both a 2-group and a 3-group (by 
analogues of 6.2 below which hold for these groups and are proved in the 
same way (see [ 13, 4.5]), hence is trivial. Thus we may assume that n > 3. 
For r short we normalize y,(u) as in 2.2, while for r long, in which case H is 
too small for this, we write r = s + t with s and t short so that xr(u) = 
(x,(u), x~(E)) for some sign E and then set y,(u) = (y,(u), yI(s)). 

(1) Ir r + s is not a root then relations (B) hold. If r and s are both 
short, the relation is within a subgroup of type A,(3), a case treated in 2.2. If 
both are long we can write s as a sum of two (short) roots orthogonal to r 
and proceed as in 2.3 (l), while if r is long and s short we can choose a long 
root t orthogonal to r and not to s and then use h,(-1) as in 2.2 (6). 
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(2) Relations (A) hold. If I is short we go to A,(3) as before. If I ,is 
long, then (~~(4, ~~(4 t as above) commutes with both factors by (1). Thus 
it is “additive” in the first factor, thus also in u since central factors inside 
commutators are immaterial. 

(3) Relations (B) hold. By (1) we may assume that r t s is a root, 
say, t. If all roots are short we are inside A,(3) and so done. If r and s are 
short and t long, assume first that t = r + s is the decomposition of t used in 
the normalization of the yl)s, so that (B) holds for the choice U, E of the 
parameters. But then it holds for fu, fs since the commutator on the left 
commutes with both of its factors by (l), i.e., for all values of the parameters 
since q = 3. If t = r’ + s’ is another decomposition of t of the present type, 
there exists a root p orthogonal to t sch that w,,r = r’ and wPs = s’. 
Transforming y, = (y,, y,) by wP represented in the form yP y-, J$, in G, , we 
get yI on the left by (1) and some (y,,, v,,) on the right, so that (B) holds in 
this case. Finally, if r is long and s short, we get in (B) an obstruction which 
is biadditive by what has already been proved and so may be removed as in 
the last case of (1). 

3.3. For type C, only the groups C,(2) (n > 3) remain to be treated. If r 
is short we define y, = y,( 1) = (y,, y,) with r = s + t a sum of short roots. If 
r is long we write r = s t 2t and then define y, =yS+21 by (y,, y,) = 
y,+,~,+*~. We assume first that n > 5. 

(1) The relations (A) and (B) involving only short roots hold. This is 
because the short roots support a subgroup of G isomorphic to D,(2), a case 
treated in 2.3. 

(2) y, and y, commute if r is long and r t s is not a root. In terms of 
the usual coordinates for roots for C,, the possibilities, up to the action of 
the Weyl group, are: r = 2u, and s = vi - v2, u2 - Us or 2u,. In the first case 
we write u, - v2 = (v, - u3) + (vJ - VJ and proceed as in 2.3 (1). In the 
second case there is a potential obstruction j = (y,, v,), j2 = 1, invariant 
under W. We apply w,w, to (y,, yb) = cy,+* with a = u2 - u,, b = v, + u3 
and c central. The left side remains unchanged by (1) since the two terms 
there get interchanged up to central factors, while the right side gets 
multiplied by j3 = j since w, has no effect by (1) and w, may be chosen as 
y, y-, y;. Thus j = 1. In the third case we set s = 2u, + 2(u, - VJ = u + 2b, 
say. Then in (Y,, YJ = CY~+~ ya+26 the left side commutes with y, as does 
the second term on the right by the second case just treated; thus so does the 
final term, as required. 

(3) If r is long relations (A) hold. We square the equation used to 
define y,. By (1) and (2) we get (yz, y,) = 1 on the left and Y:+*~ = yf on the 
right. 

(4) Relations (B) hold. Because of (1) and (2) this amounts to 



534 ROBERT STEINBERG 

showing that for’ r long our normalization of y, is indepenent of s and t. If s’ 
and t’ form another possibility then up to the action of W there is just one 
case: 

Y = 24 = 2v, + 2(v, - VJ = 225 + 2(v, - Vj). 

If we apply the reflection corresponding to vi - v2 to the first normalization 
we get the second one with Y,. intact by (1) and (2), whence our result. 

(5) We now assume that n is 3 or 4. We have arranged the steps 
above so that they all apply modulo the first, i.e., so that all obstructions are 
expressible in terms of those found for D,(2) in 2.3. If n = 4 the obstructions 
can be removed. For since the orbits through (12, 3-4) and (12, 34) near the 
end of 2.3 fuse, k = I, whence j= 1; and conjugating (v,, y,) = cyr+s~r+zs 
with I = 2v, and s = v3 - vq by y, with t = v, + vr we get I = 1. This requires 
knowing the second case of (2) which can be proved directly for all n > 4 by 
writing v2 - v3 = (v2 - v,) + (v, - vj) and proceeding as in 2.3 (1). If n = 3, 
the apparent obstruction of order 2 is actual as is shown by the sequence 
C,(2) - S W(E,) c SO, c Spin,. 

(6) The case n = 2 is not covered by our theorem, but we observe that 
C,(2) - S, (symmetric group), so that there is a double covering, as was 
shown by Schur himself in [12]. 

3.4. Because of the isomorphisms B, - C, if q is even, B, - C, always, 
the groups B,(3) (n > 3) are the only classical ones still to be considered. 
Here we can normalize all Y,.‘s as in 2.2. 

(1) The relations (A) and (B) that involve only long roots hold. For 
the long roots support a subgroup D,(3) for which the result is already 
known. 

(2) If r is short the relations (A) hold. Since k is cyclic {y,(u)} is 
Abelian. Thus (2) follows as in 2.2 (4). 

(3) Relations (B) hold if we exclude the single case: r long, s short 
and orthogonal to r, n = 3. By induction on the number of roots involved the 
obstruction is biadditive and hence may be removed as in 2.2 (6) by 
conjugation by h,(-1) with t a (long) root orthogonal to r but not to s. 

(4) If n = 3 tere is a potential obstruction of order 3 in the excluded 
case of (3), independent of (r, s) because of the action of W. The obstruction 
here is real (Fischer, unpublished): B,(3) can be imbedded in ‘E,(2) (adjoint 
group) (this is the hard part) and the index is prime to 3. Thus we get a 
nontrival triple covering of B,(3) by restricting that of 2Es(2) (adjoint group) 
given by the universal group of the same type. 

3.5. We conclude with the two remaining types, first F,. If q > 3, we 
normalize y,(u) as in 2.2; then each of the relations (A) and (B) occurs in a 
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subgroup of type B, or C,, hence holds by what has been done in 3.1, 3.2 
and 3.4 (and an extra bit of argument because the normalization here is 
different from that in 3.2). If q = 2, we can respect the outer automorphism 
interchanging long roots and short roots by setting y,. = y,(l) = (y,, yt) with 
all roots of the same length, whether r is long or short. Using our results for 
O,(2) as imbedded in C,(2) we get all relations in which only roots of one 
length are involved and also those in which the right side of (B) is 1. We are 
thus left with a potential obstruction j of order 2 coming from the relations 
of the form (Y,, Y,> =~Y,+~Y,+~~~ a real obstruction as has been shown by 
Griess (9 pp. 374-3791. 

For the final type of group G, the situation is tighter and the relations of 
type (B) are more complicated. Since the details are available in [9, 
pp. 357-3711, we omit them here. The results are: for q = 3 a triple cover, 
for q = 4 a double cover. Griess’ existence proof in the latter case is very 
clever and is contained in Section 7. below. 

The proof of 1.1 is hereby completed. 

4. SPLIT BN PAIRS OF RANK 1 

In this section G is a group of rank 1 with split BN pair, B = HX, and 
B- = HY opposite to B satisfying: 

(1) X and Y (together) generate G. 

(2) N’ E (N - B) n XYX generates N. 

(3) YnB= 1. 

These properties, which are not independent, are enough to ensure 
uniqueness in the Bruhat normal form. They hold for SL,, the quasisplit 
SU, (property (2) is verified just after 5.3 below) and the other rank 1 
groups arising in the theory of algebraic groups, including the Suzuki and 
Ree groups. We consider the following relations on the elements of X and Y 
which hold in G. 

(A) Those that hold in X; those in Y. 

(B’) Those of the form w  =xyx’ as in (2) above, thought of as a 
definition of w  in terms of x,y, x’; those of the form w,,,=~,,. 

(C) Those of the form w  = w’ in N’. 
(D) The further relations on the elements of N’ needed for an abstract 

definition of N. 

Remark 4.1. If w  EN’ then w-’ EN’ by (B’), whence N’ transforms Y 
into X and w  = “‘w E YXY. Thus relations (B’) are entirely symmetric in X 
and Y. 
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PROPOSITION 4.2. (a) Relations (A) to (D) (on the set XV Y) define G 
as an abstract group. (b) Relations (A) and (B’) define a group G, which is 
a central extension of G. 

Proof: Let H, be the subgroup of G, consisting of even products of 
elements of N’. Then H, transforms X and Y into themselves, in fact by the 
same equations as in G, and every y E Y - 1 has the form xwx’, both by (B’) 
and 4.1. It readily follows that if wO is a fixed element of N’ then 
XH, U XH, w,X is invariant under right multiplication by X and Y and 
hence equals G,, and that the kernel of the natural map 71: G, + G is 
contained in H, . Now each h E ker 71 transforms X and Y in G, as nh = 1 
does in G, i.e., trivially, hence lies in the center of G,, whence (b). The extra 
relations (C) and (D) make 7~ injective on H,, hence also on G, since 
ker n c H,, whence (a). 

LEMMA 4.3. In G, (or in G) let (*) w = xyx’ as in (B’). (a) Then also 
w =x’(w-lxw)(w-‘yw) and w = wywx’x in XYX. (b) Each of x,y, x’ is 
dlQ?ierent from 1. (c) Conversely for each x, y or x’ difJ’erent from 1 the other 
items in the equation (*) exist and are unique. (d) Zf we write w = w(x) in 
(c) then w(x) = w(x’). (e) Further w(x-‘) = w(x)-‘. 

Proof (a) It is easily checked that each equation here is formally 
equivalent to (*). (b) y # 1 since w  @? X and similarly for x and x’ by the 
equations in (a). (c) Given any y f 1 then y 65 B and hence y = xwx’ (Bruhat 
form) for unique x,x’ and w, whence w  = x-‘y(x’)-‘. Given x # 1 write 
x = ywy’, whence w  = x( y’)- ‘(w- ‘y - ‘w) with y, w, y’ uniquely determined 
by x; similarly for x’. (d) By each equation in (a). (e) Take inverses in (*) 
and use (d). 

LEMMA 4.4. In G, assume that x, , x2, x3 are in X and different from 1 
and that x2 = x3x,. Write w(xJ =xI yi* for i= 2,3 as in 4.3(*) and 
w(x,) = xl’ y,x, as in the second equation of 4.3 (a). Then y, y3 # 1, and if 
x, corresponds to y, z y1 y, as x does to y in 4.3 (c) then 

w(xJ w(x*)-’ w(x3) = ww 

Proof. Writing wi for w(xi) and x5, x6 ,... for elements of X whose precise 
values are not needed we have: 

w, w;‘w3 = WI y;‘x;‘(w,(x;)-’ w;l) wj (def. of wJ 
-1 

= w5 WI% w355 (with x, = w1 y;‘w;‘) 
=x,x:Y,x,x* -%Y3-%% (def. of w,, w& 
=x,Y,Y,x, (since x,x; ‘x3 = 1) 

=x,y,x, (def. of y4). 

It follows that x7 y,x, E N’ in G, hence also in G, . Then y, # 1 by 4.3 (b) 



GENERATOR&RELATIONS AND COVERINGS 531 

and x, =x0 by the definition of x,, so that x, y4x8 = w(xJ = w,, as 
required. 

5. THE QUASISPLIT SW, 

In this section G is as just described relative to a separable quadratic 
extension o fields k/k, and a split Hermitian form which may be taken as 
U, U3 - u2 U; + uj I, in terms of suitable coordinates. As usual X (resp. Y, N, 
H) is the subgroup of superdiagonal unipotent (resp. subdiagonal unipotent, 
monomial, diagonal) elements of G. Our goal is the following result. 

THEOREM 5.1. Assume that G = SU, in 4.2 (a) and that k isfinite. Then 
relations (C) and (D) may be omitted. In other words, (A) and (B’) sz@ce to 
define G abstractly. 

The proof requires several steps. At the start k need not be finite. 
For x to be in X it must be of the form (1, a, b; 0, 1, a; 0, 0, 1) (with the 

rows of x written out in order) with 

5.2. aa= b + 6. 

We write x(a, b) for this element. Then x(a, b) x(c, d) = x(a + c, b + aF + d) 
and x(a, b)-’ =x(-a, r). Further x(a, b) # 1 just when (a, b) # (O,O), i.e., 
when b # 0 by 5.2; and similarly for Y. For x = x(a, b) equation 4.3 (*) 
works out to 

5.3. w(a, 6) = x(a, b) y(-#6-l, 6-l) x(ab-‘6, b). 

This therefore is our definition of w(a, b) in the abstract group G, (in which 
all of the calculations of this section are taking place). Now w(a, b) in G is 
just the offdiagonal matrix [b, -b-lb; 6-l]. Thus in view of 5.2 condition (2) 
at the start of Section 4 amounts to: every b E k* is a product of such 
elements having traces that are norms. If k is finite this is clear since then 
every element of k, is a norm. If k is infinite two elements suffice: bj andj-’ 
with j = b - 6 or any nonzero skew element according as b - 6 is nonzero or 
not. 

By 5.3 equation 4.3 (d) becomes 

5.4. w(a, b) = w(ab-‘6, b). 

And Lemma 4.4 now reads: 

LEMMA 5.5. In G, we have that w(a,, 6,) w(a,, b,)-’ w(a,, b3) is of the 
form w(a,, b4) lfb,, b,, 6, are nonzero, a, = a, + a3 and b, = b, + b, + a, a3, 
Then a4 = b,b;‘b,(a,b;’ +a,b;‘) and b, = b,b;‘b,. 
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Proof: The first set of equations follows from x2 = x3x1, the second from 
y4 = y, y, . (From 5.3 it follows that y, = ~(4~6; I, 6; ‘) and from 5.3 and a 
simple calculation that yi = ~(4, b; ‘, 6; ‘), whence y4 = yi y, = ~(4, b; ’ - 
a,ty, 6;’ + 6;’ + a16;‘ci,6;‘). Then x, = ~(a,, b4) with r&5;’ = 
fi,b;’ + ti,b;-’ and 6;’ = 6;’ + 6;’ + a,d;‘G,6;’ by 5.3, whence the 
expressions for a4 and b, after some simplication using the equation for b, 
already established.) 

We now specialize (uz, b2) to (0,j) with j a fixed nonzero skew element of 
k and set c =j-‘b and h(a, c) = w(u, jc) w(0, j))‘. Observe that h(0, 1) = 1. 
Conditions 5.2 and 5.4 become: 

5.6. a& = j(c - F). 

5.7. h(u, c) = h(-uc- 9, c). 

If in 5.5 we solve for u3, b,, u4, 6, in terms of a,, b, and drop the subscript 1 
then that relation becomes 

5.8. h(u, c) h(-a, 1 - F) = h(-ucF- ‘, c( 1 - F)). 

Now h(a, c) in G works out to diag(c, C-II?, F-‘). Thus in view of 5.6 
relations (C) become 

(C’) h(u, c) depends only on c, i.e., does not change when a is multiplied 
by an element of norm 1. 

We now reinstate our assumption that k is finite in 5.1. Then each element 
of k, is a norm so that each c E k* is allowable in 5.6. Thus the relations 
(D) require, in addition to (C’), that: 

(D’) h(., c) h(., d) = h(., cd) for all c, dE k* and some choice of the 
dots. 

It remains to show that (C’) and (D’) hold in G,. 

5.9. In a relation (D’) that holds in G, all of the dots may be multiplied 
by anyuEk,ofnorm 1. 

Let o be the automorphism of G given by conjugation by diag(u, 1, u). It 
acts on X, Y, N’,..., hence also on relations (A) and (B’) and so yields an 
automorphism of G, . Applying c to (D’) we get the same relation with each 
dot multiplied by u. 

5.10. We have h(u, c) h(0, d2) = h(ud’d- ‘, cdd). 

We conjugate h(u, c) = w(u, jc) w(0, j)- ’ by h = h(., d). The left side 
remains unchanged since H, is a central extension of the cyclic group H 
(isomorphic to k*) and hence is Abelian; on the right side we use h~(u, b) = 
w(ud*d-‘, bdc?) which follows from 5.3 and the fact that h acts on X and Y 
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by the same formulas in G, as in G. The result is an equation which works 
out to 5.10. 

5.11. (C’) holds if c is a generator of k*. 

We set d= c-‘c it generates te group of elements of norm 1 in k”. 
Because of 5.10 we may multiply a by d3 without changing h(a, c), and 
because of 5.7 by -d, hence also by d3(-d)-* = d, hence by any element of 
norm 1. 

5.12. Relations (D’) hold. 

If c or d is a norm, i.e., is in k$ , then (D’) holds by 5.10. Assume next 
that none of c, d, cd is in k,*. Then the equation pc + qd = 1 has a solution 
with p, q E k,*. Set p = rr and q = sS. Then h(O,p) h(a, c) h(b, d) h(0, q) = 
h(ar2~-‘, cri’) h(bs*S-‘, ds5) by 5.10; write this as h(A, C) h(B, D). We have 
D = 1 - c by the choice of p and q, and Ax= j(C - c) = j(D - 6) = BE by 
5.6, so that -AB-’ has norm 1. Replacing b by -AB-‘b at the start we 
achieve B = -A at the end. Thus the original product equals h( . , CD) by 
5.8, then h(., pcqd) by the definition of C and D, and then 
h(O,p) h(., cd) h(0, q) by 5.10, whence 5.12 in this case. Finally if c, d 6Z k, 
and cd E k, choose a generator e of k* so that de & k,: if e is any generator 
then either e or e-’ will work since otherwise e* E k,* and k*/k$ has order at 
most 2, which is impossible. We also have e, cde 6Z k,. Thus by cases 
already done and 5.9 we have, for suitable choices of the dots, 
h(., c) h(+, d) h(., e) = h(., c) h(., de) = h(., cde) = h( . , cd) h(s, e). The two 
h( ., e)‘s here are equal by 5.11, whence 5.12 in this last case. 

5.13. Relations (C’) hold. 

Given h(a, c), write c = c: with c0 a fixed generator of k*. Then h(a, c) is 
a product of n elements of the form h(., c,,) by 5.12 and 5.9, hence depends 
only on n by 5.11, hence only on c = co”, as required. 

Since relations (C’) and (D’), and hence also (C) and (D), have been 
shown to hold in G,, the proof of 5.1 is now complete. 

Remarks 5.14. Theorem 5.1 also holds for SL, (see [13, 3.31 whose 
proof provides a model for the present proof) and probably also holds for the 
Suzuki groups and the Ree groups. It does hold if q # 2,8 in the first case 
and q # 3 in the second. For then it can be proved that G and G, are perfect 
(easy) and that G has trivial Schur multiplier (one prime at a time, as Schur 
did for SL,(q # 4,9), see [2],), whence the central extension of 4.2 (b) is 
trivial. The same method works for the current groups SU, if q # 4. Unfor- 
tunately, most of the omitted cases above are needed in the treatment of 
groups of higher rank, as in the next section. 
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6. THE QUASISPLIT SU,,, 1 (n > 1) 

In this section G is of this type. It is generated by unipotent subgroups X, 
each isomorphic to k (additive group) or to the subgroup X of SU, of 
Section 5. Each X, has an “opposite” X-, which with it generate a group 
isomorphic to SL, or to SU, in these two cases. In G the following relations 
on the Xr’s hold. 

(A) For each r the relations in the group X,. 

(B) For r # --s those of the form (x, JJ) = n Zij analogous to (B) in 
Section 2. 

(C), (D) As in Section 4 with (X, Y) replaced by (X,, X-,) for each r. 

For the details of (B) the reader may consult [9, p. 3881. Our goal is the 
following result. 

THEOREM 6.1. Let G be as above, the quasisplit SU2,,+, with n > 1. (a) 
Relations (A) to (D) define G as an abstract group. (b) Relations (A) and 
(B) define a group G, which is a central extension of G. (c) If the basefield 
isfinite, i.e., fq is so, then (A) and (B) suflce in (a), i.e., they imply (C) and 
(D). 

Proof Since the proof is close to that for split groups given in [13, 3.31 
we shall be sketchy. Relations (A) and (B) restricted to positive (negative) 
roots define abstractly the maximal unipotent subgroups X(Y) of G (see 
[ 13, 7.11). They also imply the relations (B’) of Section 4 for each r and in 
fact that the w’s in all of the N;‘s transform all of the Xs’s in G, exactly as in 
G (see [ 13, 7.21 for the argument). If N, denotes the subgroup of G, 
generated by all of the N:‘s then G, = XiV,X readily follows and from this 
(b), as in the proof of 4.2 (b) above. The extra relations (C) and (D) then 
permit the identification of N, with ZV, the corresponding subgroup of G, 
whence (a). Finally, if k is finite then for each rank 1 subgroup (Xr, X-,) of 
G, we have the relations (A) and (B’) of Section 4, as already noted. By 5.1 
and the corresponding result for SL2 (see [ 13, 3.31) we also have (C) and 
(D), whence (c). 

COROLLARY 6.2. If k is finite in 5.1 or in 6.1 and p is its characteristic 
then the p’-part of the Schur multiplier of G is trivial. 

Proof. Here also we essentially follow [ 131. We use the easy fact that (*) 
a central extension of a finite p-group by a @-group always spits (see, e.g., 
[ 15, Theorem 2.51 where a more general result of Schur is proved). Now let 
rr: G, + G be a central extension with ker rr a p/-group. In any one of the 
relations in (A) or in (B) the elements involved all lie in a p-subgroup of G. 
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Thus by (x) that relation can be lifted from G to G,. In the process each 
element of G involved is lifted to the unique p-element of G, above it. Thus 
all of the relations can be lifted together. By 5.1 or 6.1 this yields a splitting 
map for 71, whence 6.2. 

7. THE SPIN COVERING 

Throughout this section let V be a vector space of finite dimension n > 2 
over R and ( , ) a positive-definite inner product on it. Our object is to give 
a quick self-contained introduction to the spin group in this situation, enough 
to prove 7.7 below. Other, more comprehensive, treatments may be found in 
13-51. The Clifford algebra C = C(v) is, by definition, the associative 
algebra (with 1) generated by the linear space V and the relations (*) 
v* = (v, v) for all v E V. In terms of an orthonormal basis {vi} of V these 
relations become (M) vf = 1 and vivj = -vjvi if i #j. If for each subset S of 
(vi} we take the product us of its elements with the subscripts in increasing 
order, we get a basis for C which thus has dimension 2”. For, first by use of 
the relations every element of C can be reduced to a linear combination of 
us%. To prove linear independence we may do so over Z since the structural 
coefficients are all in Z, hence over F, on reduction mod 2. By (**), C is 
now the direct product of n subalgebras, the ith generated by vi subject to the 
condition U: = 1, thus having 1 and vi linearly independent. In the full 
algebra the 2” products us are thus linearly independent, as required. 

In C we have the subalgebra C’ of even elements, generated by the 
products ViVj ; it has dimension 2”-I. For example, if n = 2, C, is the field 
of complex numbers, and if n = 3 it is the skew field of quaternions. 

7.1. Center(C) n C+ = R. 

If x = C cs us E Center (C), we have vixu; ’ = C cs ui us u; ’ with 
viusv,~l = us or -us according as S - {i} is of even or odd size. For S even 
and nonempty the minus sign holds for i E S, whence cs = 0. 

On C there is a unique antiautomorphism x-t x* fixing V, for there is 
certainly one on the tensor algebra T(V) and it preserves the relations (*) 
that define C. The product x* is generally not in R but it is so if x is decom- 
posable (x = u1 uZ . . . uk with each ui in V) and then defines a norm which 
extends the given norm on V (imbedded in C in the obvious way) and is 
multiplicative, as is easily checked. We define Spin(V) (or Spin,) to be the 
group of such x for which k is even and xx* = 1, or, equivalently, each ui is 
a unit vector. 

7.2. If u is a unit vector in V, it preserves V by conjugation and acts 
there as minus the reflection corresponding to u. 

481/71/Z-17 
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For uuu-’ = U, while if u is orthogonal to u then UUU-’ = --v by (**). 
We denote this action and its extension to Spin(V) by 72. 

7.3. Every element x of O(V) is a product of at most n reflections. 

If 1 is n eigenvalue of x then by induction x is a product of at most n - 1 
reflections. If 1 is not one then from det(x - 1) = det(-x) det(x’ - 1) = 
det(-x) det(x - 1), we get det(x) = (-1)” so that replacing x by xr with r 
any reflection puts us back in the first case. 

THEOREM 7.4. rf II: Spin(V) + GL(V) is as above then im II is SO(V) 
and ker rt is the central subgroup (f 1 }. 

The first point is by 7.2 and 7.3. If x E ker 7~ then x commutes with every 
u E V, hence lies in Center(C) n C+, hence is a scalar by 7.1, f 1 since its 
norm is 1; and both cases occur: -1 = u(-u) E Spin(V) for any unit vector 
U. 

Remarks 7.5. (a) By 7.3 and 7.4 every element of Spin(V) is a product 
of at most n elements of V. Since the unit vectors of V form a compact 
connected set it follows that Spin(V) is a compact connected Lie subgroup of 
C*. That II: Spin(V) -+ SO(V) is the universal covering requires further 
argument (see [4]). (b) It also follows that Spin(V) could have been defined 
as the commutator subgroup of the group of those elements of (C’)* that 
conjugate V into itself. 

COROLLARY 7.6. An involution x of SO(V) with -1 an eigenvalue of 
multiplicity 2k lifts to an element of order 4 in Spin(V) if k is odd, to one of 
order 2 if k is even. 

If v,, vz,.-, v2k are the first elements of an orthonormal basis of V then 
n(v,, u2,..., &k) may be taken as x. Since (fv, v2 a’. vZk)’ = (-l)k by (**) we 
have 7.6. 

COROLLARY 7.7. If G is a subgroup of SO(V) containing an involution 
as in 7.6 with k odd then n: x-‘G --f G does not split. In particular this so for 
II: Spin(V) + SO(V). 

This follows at once from 7.6. 

COROLLARY 7.8. If n is odd Spin(V) has center of order 2. If n is even 
the center has order 4 and it is cyclic just when n/2 is odd. 

This follows from 7.6 applied to the center of G which is 1 if n is odd, 
(*l} if n is even. 

COROLLARY 7.9. If G s a subgroup of A,, (alternating group) containing 
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an involution which is the product of 2k disjoint transpositions with k odd 
then G has a nonsplit 2-fold central extension. 

We apply 7.7 to the obvious imbedding A, c SO,. 
This result goes back to Schur [ 121. He proved it by in effect explicitly 

constructing the fragment of the spin group lying above A, (and of the pin 
group lying above S,). 

EXAMPLES 7.10. (a) Corollary 7.9 was used for n = 8 in 2.3 and could 
have been used for n = 5 in Section 2 since S&(4) -A,. (b) Corollary 7.7 
applied to the groups SW(E,) (n = 7,8) is used in 3.1 and 2.3. The case 
n = 6 figures indirectly in 3.2 since SW(E,) - SU,(2) N PSp,(3). (c) Here is 
the pretty way in which Griess [9, pp. 363-3641 gets a nonsplit double 
covering of the group G = G,(4) of 3.5. Let b be the simple short root and P 
the corresponding parabolic subgroup. Then G acts on G/P and it turns out 
that x,(l) has 25 fixed points, thus acts as a product of (1365 - 25)/2 = 670 
disjoint transpositions, so that 7.9 applies. 
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