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Monomial Ideals

Monomial ldeals

Definition

A monomial ideal is an ideal that can be generated by monomials.

Example

° (z—y,y) = (2,9)
° <m2,y2,22>
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Monomial Ideals

Staircase Diagrams

Staircase diagrams are a pictorial way to characterize monomial ideals,
they rely on the following facts.

REU Exercise (8.1)

Show the following facts about monomial ideals

@ A monomial ideal is uniquely characterized by the set of monomials it
contains. i.e. if two monomial ideals containing the same monomials,
they are the same ideal.

@ Every monomial ideal has a unique minimal set of monomial
generators.
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Monomial Ideals

Staircase Diagrams

Example

Let I = <a:3y,acy2,y3>
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Monomial Ideals

Staircase Diagrams

Example
Let I = <333y, wyz,y3>
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Monomial Ideals

Staircase Diagrams
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Squarefree Monomial Ideals

Squarefree monomial ideals are a special case of monomial ideas where
none of the variables show up in a generator with degree higher than 2.
Definition (Stanley-Reisner Correspondence)

For a simplicial complex A on n vertices, define In C k[x1,...,z,] to be
the ideal generated by the minimal non-faces.

Theorem (Hochster’'s Formula)

For A a simplicial complex and Ia the associated Stanley-Reisner Ideal

Big(S/1a) = Y dim Hj-1(Ala)

lal=j
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Monomial Ideals

Example




Monomial Ideals

Example
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Monomial Ideals

Example

Moo'o
()]

IA = (x123, 2125, X126, T2T4, T2T5, L2X6, T4T5, T4L6)
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Randomness

Randomness

Two sides to randomness:
@ Use Randomness to sample to space of possible outcomes
@ Prove facts about certain distributions of ideals to

Same Starting Point: Construct a model of a “Random Monomial Ideal”.
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Random Graphs

The main inspiration for all of this is the theory of Random Graphs.

Theorem (Erdés-Rényi 1976)

Choose a random graph G with M (n) edges on n vertices uniformly. Then
fore >0 asn — oo if M(n) > (1+ e)nlogn, then asymptotically almost
surely, the graph is connected. Conversely, if M(n) < (1 — e)nlogn, then
asymptotically almost surely the graph is disconnected.
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Randomness

Existing models of random (monomial) ideals

© Erdbs-Rényi type Random monomial ideals.
@ Random Stanely Reisner ldeals via Random Flag Complexes

© “Randomldeals” package in Macaulay 2
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Randomness

Erdos-Renyi type Random Monomial Ideals

First described by De Loera, Petrovié, Silverstein, Stasi, and Wilburne in
2018. This model uses 3 parameters, n for the number of variables, D for

the maximum degree, and p for the probability (of taking a particular
monomial). Consider n = 2,D = 6,p = 0.1
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Randomness

Random Squarefree Monomial ldeals

First described in a joint paper with Daniel Erman also in 2018. This
model has two parameters, n for the number of variables, and p for an

“attaching probability”. Choose a random graph, then create the largest
simplicial complex with these edges.

Example
n=8 and p=0.4
T
xrs . X9
Ty o « X3

Ze : Zq
L5
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Randomness

Random Squarefree Monomial ldeals

First described in a joint paper with Daniel Erman also in 2018. This
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Randomness

Random Squarefree Monomial ldeals

First described in a joint paper with Daniel Erman also in 2018. This
model has two parameters, n for the number of variables, and p for an

“attaching probability”. Choose a random graph, then create the largest
simplicial complex with these edges.

Example
n=8 and p=0.4
1
xrs T
x7 T3
Te T4
Zs

I= <96‘1963,$1334,$1905,961366,361167,902963,$2SC6,$2907,963364,3?396'6,903907,

XT3X8, X4X5, X 4L 6, L4L7, TALY, L5LT, LELT, 336168>
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Random Syzygies

Theorem (Erman-Y. 2018)

Fix somer > 1. Let A ~ A(n,p) with # <KpK m then
asymptotically almost surely r + 1 < reg(S/Ia) < 2r.
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Product of Projective Spaces

Goal: Work with syzygies over a product of projective spaces (or more
generally a Toric Variety).

@ For n € N” we write P* for P™ x P2 x ... x P"r,
@ Need to define a “Coordinate Ring" for P™.
@ Need to figure out what syzygies should look like.
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Multigraded Polynomial Rings

Definition

We say the polynomial ring k[z1,...,xy] is Z"-graded if deg(z;) is an
element of Z"

Example

The polynomial ring k[z1,...,x,] with the “standard grading” is
Z-graded, with deg(x;) = 1.

Example

Consider the polynomial ring k[xo, z1, Yo, y1, y2] with deg(x;) = (1,0) and
deg(yi) = (0,1). Then the degrees of the following monomials are

o deg(zoz1) = (2,0)
o deg(ziy1y2) = (2,2)

4

Mentor: Jay Yang TA: Elizabeth Kelley (UniyAlgtiEIRaEIat RSB VIR CEIEN (N =T June 24, 2020 14 /33



Polynomial Rings for Products of Projective Spaces

Example

The polynomial ring k[zg, 21, Y0, Y1, y2| with deg(x;) = (1,0) and
deg(y;) = (0,1) is the homogeneous coordinate ring for the space P! x P2

More generally, for P™ the homogeneous coordinate ring is

S = k’[.fl,(), L1155 L1lngs Lr0y- - xr,nr]

with deg(x; j) = e; where e; is the i-th standard basis vector in Z"
and the irrelevant ideal is B = (\,_, (Zi0, ..., Zin,)
This is a special case of a more general theory of Toric Varieties.
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Geometry of a Product of Projective Spaces

P" is a quotient of C"™1\ {0}. In particular, we write a coordinate as

l[ap : aj : -+ : a,] where we require a; not all be 0 and two coordinates
represent the same point if they differ by a non-zero constant. i.e.

[ap : a1 : -+ :ap] and [Aag : Aay @ -+ - : Aay] for A # 0 are the same point.
Example

Now consider P! x P2, The coordinates are of the form

([ao = a1], [bo : b1 : ba]) where not all a; are 0 and not all b; are 0. Finally
([ao : al], [bo : b1 : bg]) and ([)\10,0 : )\10,1], [)\Qbo : )\le : )\252}) represent
the same point for A\, Ao # 0
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Irrelevant ldeal

Remark

The irrelevant ideal corresponds to the coordinates that don’t have any
geometric realization in P™. That is to say, it corresponds to the “invalid
coordinates”.

For example, for P! x P? the irrelevant ideal is B = (zo, z1) N (yo, y1, y2)
But if f € B, then f is zero on the coordinates where ag and a; are 0 or
where by, b1, and by are all zero.
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Homogeneous Polynomial

Definition
A polynomial f in a Z"-graded polynomial ring is homogeneous if the
degree of every term is the same.

Proposition

If f is homogeneous, then A € C" with \; #0, f(...,\i-x;j,...) =0 if
and only if f(x) =0

Remark
This is exactly the condition that we need to be able to tell if a polynomial
is zero at a point in P™.
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|deals in a Product of Projective Space

Proposition

Subvarieties of a product of projective spaces correspond to homogeneous
B-saturated radical ideals in the homogeneous coordinate ring

{Varieties in P*} <+ {homogeneous B-saturated radical ideals}

Remark

All monomial ideals are homogeneous and a monomial ideal is radical if
and only if it is squarefree.
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Saturation

Definition
The saturation of an ideal I by an ideal B is given by

I:B*:= {7" € S :r- B c I for k sufficiently Iarge}

Geometrically, the saturation “removes the component corresponding to
B’
Proposition J

V(I:B®)=V(I)\V(B)
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Saturation Example

Example

I = {2, 20 *yo, x1 % Yo)
B = (zoyo, Toy1, T1Y0, T1Y1)
I:B* = (z§,y0)
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REU Exercise (8.2)

@ Given the monomial ideal <x0x%yo, yoy%>, compute its saturation with
respect to (zoyo, Toy1, T1Yo, z1y1) (You may assume that the
saturation of a monomial ideal is a monomial ideal)

@ Check your answer using Macaulay 2

© Try computing the saturation of some square free monomial ideals.
Can you give a geometric method for computing the saturation of a
squarefree monomial ideal by another squarefree monomial ideal?
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Free Resolutions

Recall the main features of a minimal free resolution
Definition

d d d . .o . .
A complex Cy <% C; <= Cy <% --- is a minimal free resolution if

@ C; are free modules,

@ It is minimal,

Q diy10d; =0fori>0,

Q imgd;;; = kerd; fori >0
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Resolutions

Virtual Resolutions (for a product of projective spaces)

Definition

d, d d . . . .
A complex Cy <= Cy <+ Cy <2 --- is a virtual resolution if

@ (; are free modules,
Q d,od;_1=0fori>0,
@ H;(C,) :=kerd;_1/imgd; is irrelevant for i > 0.
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Why Virtual Resolutions

Remark
Over P™ minimal free resolutions don't accurately reflect the geometry.

Theorem (Hilbert Syzygy Theorem)

If I is a non-maximal 7" -graded ideal on P", then S/I has a free
resolution of length at most n

Theorem (Berkesch-Erman-Smith, 2017)

Every finitely generated 7" -graded B-saturated module on Pt x --. x P"r
has a virtual resolution of length at most n1 + - - - + n,
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Resolutions

Example of a Virtual Resolution

Example

This example is taken from the BES 2017 paper. For I the ideal
corresponding to a specific curve in P! x P?, we have that the minimal
free resolution of I is

S(—3,—1)!
® S(—3,-3)3

S(—2,-2)! - S(-3,-5)3
) S(—2,—5)6 B

St §(—2,-3)% T — S(=2,-7)2 « 5(=3,-71) «0

) S(—1,-7)! B

S(—1,-5)3 = S(—2,—8)"
) S(—1,-8)2

S(0, —8)*
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Resolutions

Example of a Virtual Resolution

Example
This example is taken from the BES 2017 paper. For I the ideal
corresponding to a specific curve in P' x P?, we have that the minimal

free resolution of [ is
Sl 88 « 812 66+ gl .
However there is a virtual resolution of the form
S(—=3,-1)!
& )
St §(—2,-2)! « 5(=3,-3)> < 0.

=
S(—2,-3)?
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What is known?

@ Virtual resolutions in a product of projective spaces have length
<>, ni (BES 2017)
Virtual resolution of a pair (M, b) where b € reg(M). (BES 2017)

Monomial ideals on a toric variety X have virtual resolutions of that
have length < dim X (Y. 2019)

Conditions for points in P! x P! to be virtual complete intersections
(Gao, Li, Loper, Mattoo 2020)
Certain 1-dimensional monomial ideals have length dim X — 1 virtual
resolutions. (Work in progress)
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Resolutions

Special Case of Virtual Resolutions

Lemma

If I is a B-saturated ideal, and J : B>® = I then a minimal free resolution
of S/J is a virtual resolution of S/I.
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Multigraded Regularity

See the paper “ Multigraded Castelnuovo-Mumford Regularity” by Diane
Maclagan and Greg Smith for a definition. In the case of P™ for n € N”
we have the following properties:

Q reg(M) C N".

@ If b € reg(M) then b+ N" € reg(M).

@ In the case of P", min(reg(M)) is the usual regularity.
@ Macaulay2 can compute it.
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Resolutions

Resolution Regularity

Definition (Sidman-Van Tuyl 2006)

For a module M, given a minimal free resolution Fy < F} < --- of M
define the resolution regularity denoted res-reg(M) € N” given by

res-reg(M); = max{a; : a+ i - ¢ is the degree of a generator in F;}

Remark

The resolution regularity gives a bound on the multigraded regularity. But
in general, it does not give the whole multigraded regularity.
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Resolutions

Resolution Regularity

res-reg(M); = max {a; : a+ i - ¢ is the degree of a generator in F;}

Example

S(—=3,-1)!
® S(-3,-3)3 ;

S(-2,-2) S o s S(—3,-5)
& -2, — &

St §(—2,-3)% D — S(=2,-7)% « S(=3,-7) «+0

& S(—1,-7)! &

S(~1,-5) o S(—2,—8)
® S(—1,-8)?

S(0,—8)!

res-reg(S/I) = (2,7)

v
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Resolutions

REU Exercise (8.3)

@ Use the VirtualResolutions package in Macaulay? to compute some
examples of multigraded regularity

@ Write code to compute the resolution regularity
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REU Problem

REU Problem

Use random methods to characterize the virtual resolutions of monomial
ideals that are given by free resolutions of monomial ideals.

@ Which multidegrees show up as twists in virtual resolutions.

@ What can we say about the ‘“virtual resolution regularities”, do they
still give bounds on the multigraded regularity?

© s there any structure to the set of virtual resolutions coming from
monomial ideals?

© What about monomial modules
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