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The g-Integers




The g-Integers

For each n € N, define the polynomial [n], € Z[q]:

[Mlg=1+q+q+ - +q"
q
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The g-Integers

For each n € N, define the polynomial [n], € Z[q]:

My=1+qg+¢+-+q""
q

Remark: Substituting g = 1 gives n.
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Rational Numbers

Main object of study for us is [x], when x € Q.

Cranford & Fonseca (UMN) g-rationals



Rational Numbers

Main object of study for us is [x], when x € Q.

A first natural guess for the definition is

b

m _ldg _14g+-+q7"
e by 1+gq+-+g!

We will use a different definition which uses continued fractions
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Continued Fractions
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Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

N 1
a 1
%+ a3+__'+¥
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Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

N 1
a 1
%+ a3+__'+¥

We use the notation [ay, as, . . ., a,] to denote the expression above.
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Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

N 1
a 1
%+ a3+__'+¥

We use the notation [ay, as, . . ., a,] to denote the expression above.

1

Example: § = 1+ 77 So we'd write § = [1,1,3].
3
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Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

N 1
a 1
%+ a3+__'+¥

We use the notation [ay, as, . . ., a,] to denote the expression above.

1

Example: § = 1+ 77 So we'd write § = [1,1,3].
3

Remark: These are not unique. For example,  is also equal to [1,1, 2, 1]. Requiring
an even number of coefficients makes it unique.
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Definition of g-Rationals
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Definition of g-Rationals

Ifl= [a1, ay, . . ., azy), then define

5], = et

- = | q p—

$q [aZ]q—l + qqﬂzznfl
fazn]—1
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Definition of g-Rationals

Ifl= [a1, ay, . . ., azy), then define

r s
H = ladg + e
S7q [a2]g-1 + —Lamer
el
Example: I = [2,3].
A 7 _1+29+2¢°+q +¢"
3) SOt T 1+q+¢
q

Cranford & Fonseca (UMN) g-rationals



Definition of g-Rationals

Ifl= [a1, ay, . . ., azy), then define

r s
H = ladg + e
S7q [a2]g-1 + —Lamer
el
Example: I = [2,3].
A 7 _1+29+2¢°+q +¢"
q

Fact: The only time this agrees with the “naive guess” is for ["—H} .=
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The Desirable Properties
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The Desirable Properties

As we saw there are other possible definitions for g-rationals that “work”
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The Desirable Properties

As we saw there are other possible definitions for g-rationals that “work”

The continued fraction definition is the “right one” because of the following:
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The Desirable Properties

As we saw there are other possible definitions for g-rationals that “work”

The continued fraction definition is the “right one” because of the following:

Theorem [Morier-Genoud, Ovsienko]

The continued fraction definition of [%] ¢ satisfies the following order and
convergence properties.
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The Desirable Properties

As we saw there are other possible definitions for g-rationals that “work”

The continued fraction definition is the “right one” because of the following:

Theorem [Morier-Genoud, Ovsienko]

The continued fraction definition of [%] ¢ satisfies the following order and
convergence properties.

@ Order: Define a relation on rational functions by ZEZ; - :1((?1% if

a(q)d(q) — b(q)c(q) has all non-negative coefficients.

i > 5, then [3], = [2],
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The Desirable Properties

As we saw there are other possible definitions for g-rationals that “work”

The continued fraction definition is the “right one” because of the following:

Theorem [Morier-Genoud, Ovsienko]

The continued fraction definition of [%] ¢ satisfies the following order and
convergence properties.

@ Order: Define a relation on rational functions by ZEZ; - ;((Z)) if

a(q)d(q) — b(q)c(q) has all non-negative coefficients.
118> 5 then (5], = [3],

Gy

o Convergence: If * — A € R irrational, then [b } “converges” in some sense,
n g

and moreover the convergence is independent of the sequence
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Combinatorial interpretation
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Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of g-rationals
count anything?
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Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of g-rationals
count anything?

Turns out they count many things!
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Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of g-rationals
count anything?

Turns out they count many things!

o Perfect matching on snake graphs
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Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of g-rationals
count anything?

Turns out they count many things!

o Perfect matching on snake graphs

@ Angle matching on snake graphs
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Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of g-rationals
count anything?

Turns out they count many things!

o Perfect matching on snake graphs
@ Angle matching on snake graphs
o T-paths
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Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of g-rationals
count anything?

Turns out they count many things!

o Perfect matching on snake graphs
@ Angle matching on snake graphs
o T-paths

@ Lattice paths in snake graphs
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From rationals to Binary words
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From rationals to Binary words

. ) -
Given a rational © = [ay, ..., Go;m
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From rationals to Binary words

. ) -
Given a rational © = [ay, ..., Go;m

Construct a binary word by W = U4 ~1R% ... J%n—1R%n—1
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From rationals to Binary words

Given a rational © = [ay, ..., Go;m
Construct a binary word by W = U4 ~1R% ... J%n—1R%n—1

Example: I = (2, 3] and thus has binary word W = URR.
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From Binary Words to Snake Graphs
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From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows
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From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

Start with a square. For each letter in the binary word, add another square either
above (for U) or to the right (for R) of the previous
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From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

Start with a square. For each letter in the binary word, add another square either
above (for U) or to the right (for R) of the previous

Example: % has binary word URR. The resulting snake graph looks like

Gy3=
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From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

Start with a square. For each letter in the binary word, add another square either
above (for U) or to the right (for R) of the previous

Example: % has binary word URR. The resulting snake graph looks like

Gy3=

In this way we associated a snake graph G,/ to a rational
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Lattice Paths

If G is a snake graph, let L(G) be the set of all paths in G from the south-west corner
to the north-east corner using only right and up steps.
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Lattice Paths

If G is a snake graph, let L(G) be the set of all paths in G from the south-west corner
to the north-east corner using only right and up steps.

Example: The 7 lattice paths in G; /3 are

[ | | [

[ | | | [
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Lattice Paths

Theorem [Schiffler, Canakgi]

If L = [a, a,. .., am| then

=S

}L(Gr/s)‘ =r and ‘L(A,/s)

The notation G, /s means the snake graph from the transpose of the word associated
to the continued fraction [ay, a3, . . ., d2m]-
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A Partial Order on Paths

There is a partial order on the lattice paths in G,/, so that locally

<[]
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A Partial Order on Paths

There is a partial order on the lattice paths in G,/, so that locally

<[]

Example: L(G;/3)
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A Partial Order on Paths

There is a partial order on the lattice paths in G,/, so that locally

<[]

Example: L(G;/3)

Define the height or rank of a lattice path as how many steps it takes to get to it
from the minimal path. This make L(G) a ranked poset.
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What Do g-Rationals Count?
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What Do g-Rationals Count?

Theorem [Claussen]

Let [g]q = %. Then:

© The coefficient of g* in R(q) is the number of lattice paths in G, of height k.
Q@ The coefficient of ¥ in S(q) is the number of lattice paths in €} /s of height k.
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Example




We saw that the poset L(G;/3) is given by

Vi B:D\ H:D
Bj:l\ e




We saw that the poset L(G;/3) is given by

Vi B:D\ H:D
Bj:l\ e

The corresponding height polynomial is 1 + 2q + 2¢* + ¢* + ¢* which indeed agrees
with the numerator of [%] . from the continued fraction definition
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Unimodal sequences
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Unimodal sequences

A sequence of integers ay, gy, . . ., a, is unimodal if there exits an s € N such that

aoS""SasZasHZn-Zan

A polynomial p(q) = Y, piq' is said to be unimodal if the p; form a unimodal
sequence.
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The Problem




Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any g-rational are unimodal. In terms of the
lattice path interpretation of g-rationals this is the statement that the height
polynomial of lattice paths in any snake graph is unimodal.
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Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any g-rational are unimodal. In terms of the
lattice path interpretation of g-rationals this is the statement that the height
polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary
word W is know in some special cases:
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Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any g-rational are unimodal. In terms of the
lattice path interpretation of g-rationals this is the statement that the height
polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary
word W is know in some special cases:
@ W consists only of U’s or only of R’s. It is easy to see that the height
polynomial is [((W) + 2],
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Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any g-rational are unimodal. In terms of the
lattice path interpretation of g-rationals this is the statement that the height
polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary
word W is know in some special cases:

@ W consists only of U’s or only of R’s. It is easy to see that the height
polynomial is [((W) + 2],

@ W is azigzag word, i.e. there are no consecutive R’s or U’s in W (Fibonacci
cubes are unimodal [Munarini and Salvi, 2002])
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Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any g-rational are unimodal. In terms of the
lattice path interpretation of g-rationals this is the statement that the height
polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary
word W is know in some special cases:

@ W consists only of U’s or only of R’s. It is easy to see that the height
polynomial is [((W) + 2],

@ W is azigzag word, i.e. there are no consecutive R’s or U’s in W (Fibonacci
cubes are unimodal [Munarini and Salvi, 2002])

@ W is a word with isolated U’s with constant row length (up-down posets are
unimodal [Emden, 1982])
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Notation




Let Wk denote the word obtained from W by removing the right most section of R’s.

Similarly let Wi denote the word obtained from W by removing the right most
section of U’s.
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Let Wk denote the word obtained from W by removing the right most section of R’s.

Similarly let Wi denote the word obtained from W by removing the right most
section of U’s.

Example: If W = RUUUUU then Wy = R.
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Let Wk denote the word obtained from W by removing the right most section of R’s.
Similarly let Wi denote the word obtained from W by removing the right most
section of U’s.

Example: If W = RUUUUU then Wy = R.

If W is a binary word then (W) denotes the length of the word.
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Let Wk denote the word obtained from W by removing the right most section of R’s.
Similarly let Wi denote the word obtained from W by removing the right most
section of U’s.

Example: If W = RUUUUU then Wy = R.

If W is a binary word then (W) denotes the length of the word.

If W is a word then W is defined to be the word formed from W by removing the
right most letter in W.
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Let Wk denote the word obtained from W by removing the right most section of R’s.
Similarly let Wi denote the word obtained from W by removing the right most
section of U’s.

Example: If W = RUUUUU then Wy = R.

If W is a binary word then (W) denotes the length of the word.

If W is a word then W is defined to be the word formed from W by removing the
right most letter in W.

Example: If W = RURUR then W = RURU.
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Let Wk denote the word obtained from W by removing the right most section of R’s.
Similarly let Wi denote the word obtained from W by removing the right most
section of U’s.

Example: If W = RUUUUU then Wy = R.
If W is a binary word then (W) denotes the length of the word.

If W is a word then W is defined to be the word formed from W by removing the
right most letter in W.

Example: If W = RURUR then W = RURU.

If W is a word then define W7, the transpose, to be the word formed from
interchanging R with U in W.
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Recurrences

A basic idea for proving unimodality is by induction. Led us to look for recurrences
for the height polynomial:
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Recurrences

A basic idea for proving unimodality is by induction. Led us to look for recurrences
for the height polynomial:

Theorem

If W is a binary word on {U, R} then we have the following recurrences for the
height polynomial

H(WU) = H(W) + ¢"") ")+ 5 (W)

and

H(WR) = H(Wg) + qH(W)
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H =

. . H_U
R.<q> = PolynomialRing(QQ) H R
def word-to-num (w): Ut
top =1 -
bot =1 for
for letter in w:

if letter == ’U’:
bot = top + bot

elif letter == ’R’:
top = top + bot
else:
print ("No!!!")
raise Exception()

return top + bot

d word_to_poly (w):
1 +q

hat =1

hat =1

un = 0

letter in w:
if letter ==
U run = 0
H U hat = H
H =HR hat + q * H
elif letter == ’U’:
_run += 1

,R,:

run + 1)

else:
print ("No!!!")
raise Exception ()
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Symmetry




Proposition

If W is a binary word such that the poset L(Gy ) is unimodal then L(Gy,r) is also
unimodal

Cranford & Fonseca (UMN) g-rationals



Proposition

If W is a binary word such that the poset L(Gy ) is unimodal then L(Gy,r) is also
unimodal

Proof idea: L(Gy ) is related to L(Gy,r) by inverting the order relation, i.e.
L(Gyr) = L(Gw)®®. Since inverting the order of the elements in a unimodal
sequence preserves the unimodal property the conclusion follows.

Cranford & T eca (UMN) g-rationals



Proposition

If W is a binary word such that the poset L(Gy ) is unimodal then L(Gy,r) is also
unimodal

Proof idea: L(Gy ) is related to L(Gy,r) by inverting the order relation, i.e.
L(Gyr) = L(Gw)®®. Since inverting the order of the elements in a unimodal
sequence preserves the unimodal property the conclusion follows.

Consequence: To prove that all snake graphs are unimodal it is enough to prove
that if H(W) is unimodal then H(WR) or H(WU) is also unimodal.
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Special Class of Snake Graphs
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Special Class of Snake Graphs

A binary word on {U, R} is said to be a word with isolated U’s there are no
consecutive U’s in W.
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Special Class of Snake Graphs

A binary word on {U, R} is said to be a word with isolated U’s there are no
consecutive U’s in W.

Denote the word R“URR U - - - URF" by I(ky, ko, . . . , k).
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Special Class of Snake Graphs

A binary word on {U, R} is said to be a word with isolated U’s there are no
consecutive U’s in W.

Denote the word R“URR U - - - URF" by I(ky, ko, . . . , k).

Snake graph corresponding to the word I(2, 3, 4)

Fonseca (UMN)
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Some formula from the recurrences
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Some formula from the recurrences

Let ki, ky, ks € N. Then we have
qk1+2 —1
H(I(ky)) = o1 k1 + 24
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Some formula from the recurrences

Let ki, ky, ks € N. Then we have
qk1+2 —1
H(I(k)) = ———— = [k + 2]
q—1
H(I(kr, ko)) = [k + 1]0q"+ + [k + 2]glke + 1],

~((¢° = ¢ +q—¢"")g" + 447 -1
¢ —2q+1

Cranford & Fonseca (UMN) g-rationals



Some formula from the recurrences

Let ki, ky, ks € N. Then we have

Hut) = Tt =+ 2,

H(I(ki, k) = [k + 1qq™* + [k + 2],k + 1],
_ (@ = +q-g"")g" + 44" 1)

¢ —2q+1
H(I(ki, ko, ks)) = [ki + 2]g([ke + Uglks + 1g + " ko]g) + ¢ [k + 1]g[ks + 2],
¢ -3¢ +3q—1
with

Ns=(q - ¢ +q—qd"™)g"+
+ (@ (- +)" — (@ ¢+~ ") — ¢+ q)d"+

+4htt 1

August, 2020
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Geometric Interpretation

Consider the following graph.

HEEE

[ |

L[]




Geometric Interpretation

Consider the following graph.

HEEE

[ |

L[]

It’s height polynomial counts the lattice points of a (2 4+ 1) x (3+1) x (5+ 1)
hyper-rectangle.
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Geometric Interpretation

Consider the following graph.

HEEE

[ |

L[]

It’s height polynomial counts the lattice points of a (2 4+ 1) x (3+1) x (5+ 1)
hyper-rectangle.

The height sequence of R“ UR¥: - - - is given by

H[ki+1]q_ xhi+1—1 H [ki+1g | +--

i=1 =1 i (i +1)
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Snaking Sequences

A unimodal sequence (g;) is said to snake if it has a peak element a,, such that

m = Qi1 = Gm—1 > Gmiz > Gmp 2> - .-

am Z Am—1 Z Am+1 2 am—2 2 Am4-2 Z coo

Cranford
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Snaking Sequences

Definition

A unimodal sequence (g;) is said to snake if it has a peak element a,, such that

m = Qi1 = Gm—1 > Gmiz > Gmp 2> - .-

am Z Am—1 Z Am+1 2 am—2 2 Am4-2 Z coo

Not only are the height polynomials of lattice paths unimodal, but they also snake.
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