Puzzles, Ice, and Grothendieck Polynomials

Ariana Chin and Nyah Davis
joint with Elisabeth Bullock, Noah Caplinger, and Gahl Shemy

University of Minnesota, Twin Cities REU
led by Claire Frechette

August 2021
Outline

1. Introduction
2. Lattice Models
3. Puzzles
4. Future Work
Puzzles, Ice, and Grothendieck Polynomials

Chin and Davis

Introduction
Lattice Models
Puzzles
Future Work

Partitions

Definition

A *partition* λ is a string of weakly decreasing nonnegative integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

Definition

A *skew partition* λ/μ is a set of two partitions λ, μ such that $\forall i, \lambda_i \geq \mu_i$.

Example

A skew partition diagram of shape $(4, 2)/(1, 0)$
Tableaux

Definition

A **semistandard tableau** of shape λ/μ is a filling of the Young/Ferrers diagram from $[n] = 1, \ldots, n$, with weakly increasing rows and strictly increasing columns.

Definition

Two **valued set tableaux** of shape $(4, 2)/(1, 0)$:

```
1 1 2
1 2
```

```
1 2
1 2
```
\[j_{\lambda/\mu}(z, \alpha) = \sum_{T \in VST_{\lambda/\mu}} \alpha^{\lambda/\mu - |T|} z^{\text{wt}(T)} \]

Example

\[\alpha^{\lambda/\mu - |T|} z^{\text{wt}(T)} \] for two valued set tableaux T

\[
\begin{array}{ccc}
1 & 2 & z_1^2 z_2^2 \\
1 & 2
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & \alpha z_1^2 z_2^2 \\
1 & 2
\end{array}
\]
What is a Lattice Model?

- Model particle interactions within thin sheets of matter.
- Model classes of polynomials.
- We want to model Grothendieck polynomials to demonstrate certain polynomial identities.
 - Cauchy identities with families of dual polynomials
 - Littlewood-Richardson rule
 - Pieri/branching rules
What is a Lattice Model?

- Boundary conditions are fixed by skew partition λ/μ.
- Vertices have a choice of weights.
- Edges are labeled with arrows/orientations, ICE.
- The **state** is a choice of orientation for each edge.
- The **system** is the set of all states.
Definition

The partition function of a lattice model over partition λ/μ is

$$Z(\mathcal{G}_{\lambda/\mu}(z)) = \sum_{S \in \mathcal{G}_{\lambda/\mu}} wt(S)$$

where $wt(S)$ is the product of weights of each vertex in the lattice model.
Partition Functions

Example

\[\lambda = (3), \mu = (1) \]
A Model for $j_{\lambda/\mu}$

Definition (Our Boltzmann Weights)

1 \[\alpha + z_i\] 1 \[z_i\] 1 0

Theorem (Bullock-Caplinger-C.-D.-Shemy)

Under our choice of Boltzmann weights, for skew partition λ/μ,

\[j_{\lambda/\mu}(z, \alpha) = Z(S_{\lambda/\mu}(z)) .\]
Finding a Compatible Model for G_λ

Definition

The stable symmetric Grothendieck polynomial for λ

$$G_\lambda(z) = \sum_{T \in SVT_\lambda} z^{wt(T)}$$

Proposition (BCCDS)

There are no top-bottom lattice models for G_λ satisfying the following conditions:

- **Horizontal lattice lines are in direct correspondence with variables** z_1, \ldots, z_n.
- **ICE holds, with a 5-vertex model.**
- **There is a bijection between SSYTs and states in the lattice model.**
Schur Polynomials

Definition

The Schur polynomials can be defined as,

\[s_\lambda(z) = \sum_{T \in \text{SSYT}(\lambda)} z^{\text{wt}(T)}. \]

These give a vector space basis for the symmetric polynomials in \(z_1, z_2, ..., z_n \).
Littlewood-Richardson Rule

There exists some unique expansion,

\[s_\lambda \cdot s_\mu = \sum_\nu c_{\lambda\mu}^\nu s_\nu. \]

Theorem (Knutson, Tao, Woodward)

The Littlewood-Richardson coefficients, \(c_{\lambda\mu}^\nu \), count puzzle tilings with boundaries determined by \(\lambda \), \(\mu \), and \(\nu \).
Definition

A puzzle of size n is a filling of an equilateral triangle of side length n with KTW tiles such that adjacent edge labels match.

Example

For $\lambda = (2, 1, 0)$, $\mu = (3, 2, 0)$, and $\nu = (4, 3, 1)$ binary string of ν and puzzle tiling with boundary $\Delta_{\lambda\mu}^\nu$.
The Connection

Theorem (KTW ’04)

For \(\lambda, \mu, \nu \) that fit in a \(k \times (n - k) \) ambient rectangle and \(|\nu| = |\lambda| + |\mu| \), the number of possible tilings of a puzzle with fixed boundary \(\Delta^\nu_{\lambda\mu} \) is \(c^\nu_{\lambda\mu} \).

Example

For \(\lambda = (2, 1, 0), \mu = (3, 2, 0), \nu = (4, 3, 1) \), we get \(c^\nu_{\lambda\mu} = 2 \).
Green Hexagons and $j_{\lambda\mu}^\nu$.

Theorem (Pylyvaskyy, Yang ’18)

For λ, μ, ν that fit in a $k \times (n - k - 1)$ ambient rectangle and $|\nu| \leq |\lambda| + |\mu|$, the number of green hexagon tilings with boundary $\Delta_{\lambda\mu}^\nu$ is $d_{\lambda\mu}^\nu$.

Littlewood-Richard Rule, $j_{\lambda\mu}^\nu$ specific

There exists some unique expansion

$$j_{\lambda} \cdot j_{\mu} = \sum_{\nu} (-1)^{|\nu| - |\lambda| - |\mu|} d_{\lambda\mu}^\nu j_{\nu}.$$
Path Model

Path Tiles inspired by Zinn-Justin

We set $+$ = 1 and $-$ = 0. These correspond to KTW tiles.

This additional Z-J tile is needed to draw paths through green hexagons.
Puzzle to Lattice Model

Example

For $\lambda = (2, 0)$, $\mu = (2, 1)$, and $\nu = (2, 2)$.
Future Work

- Given a λ, μ, ν we want a choice of Boltzmann weights which gives us the corresponding $d_{\lambda\mu}^{\nu}$.
- Attach puzzle lattice model to our $j_{\lambda\mu}^{\nu}$ lattice model so that it satisfies the Yang-Baxter equation.