Shelling AugBerg and the Weak Lefschetz Property

Elisabeth Bullock, Gahl Shemy, Dawei Shen
joint with Aidan Kelley, Kevin Ren, Brian Sun, Amy Tao, Joy Zhang

mentored by Prof. Vic Reiner, Trevor Karn, Sasha Pevzner

Twin Cities REU in Algebra, Combinatorics, and Representation Theory
University of Minnesota

August 2, 2021
At a glance: AugBerg is an object that arises from a matroid.
What is AugBerg?

• At a glance: AugBerg is an object that arises from a matroid.
• Okay... what are *matroids*?
What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.
- Okay... what are matroids?
- Intuitively: a matroid is an object that stores information about a set of vectors and their dependencies.
What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.
- Okay... what are *matroids*?
- Intuitively: a matroid is an object that stores information about a set of vectors and their dependencies.
- *Independent sets*: sets of linearly independent vectors.
 Flats: closed under linear span
What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.
- Okay... what are matroids?
- Intuitively: a matroid is an object that stores information about a set of vectors and their dependencies.
- Independent sets: sets of linearly independent vectors.
 Flats: closed under linear span
- A matroid can be equiv. defined by its independent sets or by its flats
For a matroid M, we have two important objects associated with it:
For a matroid M, we have two important objects associated with it:

1. $\text{Berg}(\mathcal{M})$ is a simplicial complex in which faces correspond to chains of flats (excluding \emptyset and E)
For a matroid M, we have two important objects associated with it:

1. $\text{Berg}(\mathcal{M})$ is a simplicial complex in which faces correspond to chains of flats (excluding \emptyset and E)

2. $\mathcal{I}(\mathcal{M})$ is a simplicial complex in which faces correspond to independent sets of \mathcal{M}
What is AugBerg?

- Start with a matroid \mathcal{M} on ground set $E = \{1, \ldots, n\}$, with independent sets $\mathcal{I}(\mathcal{M})$ and flats $\mathcal{F}(\mathcal{M})$.
What is AugBerg?

- Start with a matroid \mathcal{M} on ground set $E = \{1, \ldots, n\}$, with independent sets $\mathcal{I}(\mathcal{M})$ and flats $\mathcal{F}(\mathcal{M})$.
- augmented Bergman complex $\text{AugBerg}(\mathcal{M})$ is a simplicial complex on vertices $\{y_1, \ldots, y_n\} \cup \{x_F\}_{F \in \mathcal{F}(\mathcal{M}) \setminus \{E\}}$
What is AugBerg?

- Start with a matroid \mathcal{M} on ground set $E = \{1, \ldots, n\}$, with independent sets $\mathcal{I}(\mathcal{M})$ and flats $\mathcal{F}(\mathcal{M})$.
- augmented Bergman complex $\text{AugBerg} (\mathcal{M})$ is a simplicial complex on vertices $\{y_1, \ldots, y_n\} \cup \{x_F\}_{F \in \mathcal{F}(\mathcal{M}) - \{E\}}$
- Simplices are given by $\{y_i\}_{i \in I} \cup \{x_{F_1}, \ldots x_{F_k}\}$ where $I \in \mathcal{I}(\mathcal{M})$ and $I \subseteq F_1 \subset F_2 \subset \ldots \subset F_k$
AugBerg Example

\(\mathcal{F}(M) \)

\{1, 2, 3\}

\{1, 2\} \quad \{1, 3\} \quad \{2, 3\}

\{1\} \quad \{2\} \quad \{3\}

\emptyset
AugBerg Example

\[\mathcal{F}(\mathcal{M}) \]

\{1, 2, 3\}

\{1, 2\} \quad \{1, 3\} \quad \{2, 3\}

\{1\} \quad \{2\} \quad \{3\}

\emptyset

\[\mathcal{I}(\mathcal{M}) \]

\[F(M) \]

\(y_1 \)

\(y_2 \) \quad \(y_3 \)

\[\operatorname{Berg}(\mathcal{M}) \]

\(x_1 \) \quad \(x_{12} \) \quad \(x_2 \)

\(x_{13} \) \quad \(x_3 \) \quad \(x_{23} \)
AugBerg Example

$\mathcal{F}(\mathcal{M})$

\{1, 2, 3\}

\{1\} \quad \{2\} \quad \{3\}

\emptyset

$\mathcal{I}(\mathcal{M})$

y_1

y_2 \quad y_3

Berg(\mathcal{M})

AugBerg(\mathcal{M}) \ \setminus \ B \ \setminus \ \{x_0\}
Our question

• Already well known that the independent set and Bergman complexes of a matroid are **shellable**
Our question

• Already well known that the independent set and Bergman complexes of a matroid are **shellable**
 • we can order facets in such a way that these complexes are **very connected**
Our question

• Already well known that the independent set and Bergman complexes of a matroid are **shellable**
 • we can order facets in such a way that these complexes are *very connected*
• Also known that AugBerg is gallery connected, a weaker property than shellable [1]
Our question

• Already well known that the independent set and Bergman complexes of a matroid are **shellable**
 • we can order facets in such a way that these complexes are *very connected*

• Also known that AugBerg is gallery connected, a weaker property than shellable [1]

A Natural Question

Is AugBerg shellable?
Theorem

AugBerg(M) is shellable. Furthermore, we have

- a shelling that shells Cone(Berg(M)) first and $I(M)$ last.
- a shelling that shells $I(M)$ first and Cone(Berg(M)) last.
AugBerg(M) is shellable. Furthermore, we have

- a shelling that shells Cone(Berg(M)) first and \(I(M) \) last.
- a shelling that shells \(I(M) \) first and Cone(Berg(M)) last.

Idea

We leverage the following two well-known facts.

- For the “base case,” apply the lexicographic shelling of \(I(M) \)
- For the “inductive step,” apply the lexicographic shelling of Berg(\(M' \)) for some “quotient” of \(M \)
The Shelling Order

Shell in increasing order based on rank of independent set.
The Shelling Order

Shell in increasing order based on rank of independent set. Consider facets of AugBerg(M) given by

\[T_i = I \subseteq F_1^i \subseteq \cdots \subseteq F_m^i \]
\[T_j = J \subseteq F_1^j \subseteq \cdots \subseteq F_n^j \]
The Shelling Order

Shell in increasing order based on rank of independent set. Consider facets of AugBerg(M) given by

\[T_i = I \subseteq F_1^i \varsubsetneq \cdots \varsubsetneq F_m^i \]
\[T_j = J \subseteq F_1^j \varsubsetneq \cdots \varsubsetneq F_n^j \]

1. If \(\#I < \#J \), order \(T_i \) before \(T_j \).
The Shelling Order

Shell in increasing order based on rank of independent set. Consider facets of AugBerg(M) given by

\[T_i = I \subseteq F_1^i \subsetneq \cdots \subsetneq F_m^i \]
\[T_j = J \subseteq F_1^j \subsetneq \cdots \subsetneq F_n^j \]

1. If \(\#I < \#J \), order \(T_i \) before \(T_j \).
2. If \(\#I = \#J \) but \(I \neq J \),
 Apply the lexicographic order on \(I \) and \(J \).

Apply the shelling order on \(\text{Berg}(M/F) \).
The Shelling Order

Shell in increasing order based on rank of independent set. Consider facets of AugBerg(M) given by

\[T_i = I \subseteq F^i_1 \subsetneq \cdots \subsetneq F^i_m \]
\[T_j = J \subseteq F^j_1 \subsetneq \cdots \subsetneq F^j_n \]

1. If \(\#I < \#J \), order \(T_i \) before \(T_j \).
2. If \(\#I = \#J \) but \(I \neq J \),
 Apply the lexicographic order on \(I \) and \(J \).
3. If \(I = J \), then \(F^i_1 = F^j_1 = \text{span}\{I\} =: F \)
 Define the contraction matroid
 \[M/F = (E \setminus F, \{I : I \cup F \in I(M)\}) \]
 Then \(\{\text{Flats in } M \text{ containing } F \} \leftrightarrow \{\text{Flats in } M/F\} \).
 Apply the shelling order on Berg(M/F).
The Shelling Order
Shell in *decreasing* order based on rank of independent set!
Let M be a matroid of rank $r(M)$. Recall the Tutte Polynomial:

$$T_M(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)}(y - 1)^{|A| - r(A)}$$
Let M be a matroid of rank $r(M)$. Recall the Tutte Polynomial:

$$T_M(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)}$$

- $I(M)$ is homotopy equiv. to a wedge of $T_M(0, 1)$ spheres of dimension $r(M) - 1$ (Provan and Billera [3]).
Let M be a matroid of rank $r(M)$. Recall the Tutte Polynomial:

$$T_M(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)}$$

- $I(M)$ is homotopy equiv. to a wedge of $T_M(0, 1)$ spheres of dimension $r(M) - 1$ (Provan and Billera [3]).
- $Cone(Berg(M))$ is homotopy equiv. to a wedge of $T_M(1, 0)$ spheres of dimension $r(M) - 2$ (Garsia [2])
Let M be a matroid of rank $r(M)$. Recall the **Tutte Polynomial**:

\[
T_M(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)}
\]

- $I(M)$ is homotopy equiv. to a wedge of $T_M(0, 1)$ spheres of dimension $r(M) - 1$ (Provan and Billera [3]).
- $\text{Cone}(\text{Berg}(M))$ is homotopy equiv. to a wedge of $T_M(1, 0)$ spheres of dimension $r(M) - 2$ (Garsia [2])

Our Result

$\text{AugBerg}(M)$ is homotopy equiv. to a wedge of $T_M(1, 1)$ spheres of dimension $r(M) - 1$.
At this point in the research we switched gears:
Moving on...

At this point in the research we switched gears:

Now introducing:
the Weak Lefschetz Property
Some Background (Stanley-Reisner Ring)

- \(\Delta \) is simplicial complex with vertices \(\{1, \ldots, n\} \)
- \(I_\Delta \) is the ideal generated by monomials supported on non-faces of \(\Delta \)

Example

Taking \(\Delta \) to be the boundary of a tetrahedron, we have \(K[\Delta] = K[x_1, x_2, x_3, x_4]/(x_1 x_2 x_3 x_4) \).
Some Background (Stanley-Reisner Ring)

- Δ is simplicial complex with vertices $\{1, \ldots, n\}$
- I_Δ is the ideal generated by monomials supported on non-faces of Δ
- the **Stanley-Reisner ring** is $K[\Delta] := K[x_1, \ldots, x_n] / I_\Delta$
- the Stanley-Reisner ring is isomorphic to the K-span of monomials whose support is a face of Δ
• Δ is simplicial complex with vertices $\{1, \ldots, n\}$
• I_Δ is the ideal generated by monomials supported on non-faces of Δ
• the **Stanley-Reisner ring** is $K[\Delta] := K[x_1, \ldots, x_n]/I_\Delta$
• the Stanley-Reisner ring is isomorphic to the K-span of monomials whose support is a face of Δ

Example

![Diagram of a tetrahedron with vertices labeled 1, 2, 3, 4]
Some Background (Stanley-Reisner Ring)

- Δ is simplicial complex with vertices $\{1, \ldots, n\}$
- I_Δ is the ideal generated by monomials supported on non-faces of Δ
- the **Stanley-Reisner ring** is $K[\Delta] := K[x_1, \ldots, x_n]/I_\Delta$
- the Stanley-Reisner ring is isomorphic to the K-span of monomials whose support is a face of Δ

Example

Taking Δ to be the boundary of a tetrahedron, we have $K[\Delta] = K[x_1, x_2, x_3, x_4]/(x_1x_2x_3x_4)$.

\begin{center}
\begin{tabular}{c}
\begin{tikzpicture}
\draw[thick, fill=gray!50] (0,0) -- (1,1) -- (2,0) -- cycle;
\draw[thick, fill=gray!50] (0,0) -- (1,1) -- (0.5,0.5) -- cycle;
\draw[thick, fill=gray!50] (0,0) -- (1,1) -- (1,0) -- cycle;
\end{tikzpicture}
\end{tabular}
\end{center}
Definition

A linear system of parameters (LSOP) θ is a set of $\theta_i \in K[\Delta]$ that are linear in the x_j's such that $K[\Delta]/(\theta)$ is finite dimensional over K.

$$M(\theta) = \begin{bmatrix} \theta_1 & \cdots & \theta_r \end{bmatrix}$$
Fact

If Δ is the boundary of a simplicial polytope, then we can get an LSOP as follows:

$$M(\theta) = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$$

Example

Now $K[\Delta]/(\theta) = K[t]/t^4$.

$$M(\theta) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \quad \theta_1 = x_1 - x_4$$

$$\theta_2 = x_2 - x_4$$

$$\theta_3 = x_3 - x_4$$

Now $K[\Delta]/(\theta) = K[t]/t^4$.

$$M(\theta) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
Fact

If Δ is the boundary of a simplicial polytope, then we can get an LSOP as follows:

$$M(\theta) = \begin{bmatrix} v_1 & \ldots & v_n \end{bmatrix}$$

Example

$$M(\theta) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$\theta_1 = x_1 - x_4$
$\theta_2 = x_2 - x_4$
$\theta_3 = x_3 - x_4$

Now $K[\Delta]/(\theta) = K[t]/t^4$.
• Let $A = K[\Delta]/(\theta)$ be the Stanley-Reisner ring of a the simplicial complex Δ quotiented out by an LSOP θ.

Definition

Given an $\ell \in A_1$, we say that ℓ is Weak-Lefschetz (WL) if and only if the multiplication by ℓ map $(\cdot \ell)$ from A_i to A_{i+1} is full rank for all $i \in \{0, \ldots, d-1\}$. In particular, if Δ is the boundary of a convex simplicial polytope, then ℓ is WL iff $(\cdot \ell)$ from A_i to A_{i+1} is injective for $i < \frac{r}{2}$ and surjective otherwise, since the dimensions of the A_i's are symmetric and unimodal.
Weak Lefschetz

- Let $A = K[\Delta]/(\theta)$ be the Stanley-Reisner ring of a simplicial complex Δ quotiented out by an LSOP θ.
- A is \mathbb{N} graded, say with graded components A_i for $i \in \{0, 1, \ldots, d\}$.
Weak Lefschetz

- Let $A = K[\Delta]/(\theta)$ be the Stanley-Reisner ring of a simplicial complex Δ quotiented out by an LSOP θ.
- A is \mathbb{N} graded, say with graded components A_i for $i \in \{0, 1, \ldots, d\}$

Definition

Given an $\ell \in A_1$, we say that ℓ is Weak-Lefschetz (WL) if and only if the multiplication by ℓ map $(\cdot \ell)$ from A_i to A_{i+1} is full rank for all $i \in \{0, \ldots, d - 1\}$.
Weak Lefschetz

• Let $A = K[\Delta]/(\theta)$ be the Stanley-Reisner ring of a simplicial complex Δ quotiented out by an LSOP θ.

• A is \mathbb{N} graded, say with graded components A_i for $i \in \{0, 1, \ldots, d\}$.

Definition

Given an $\ell \in A_1$, we say that ℓ is Weak-Lefschetz (WL) if and only if the multiplication by ℓ map ($\cdot \ell$) from A_i to A_{i+1} is full rank for all $i \in \{0, \ldots, d-1\}$.

In particular, if Δ is the boundary of a convex simplicial polytope, then ℓ is WL iff $\cdot \ell$ from A_i to A_{i+1} is injective for $i < r/2$ and surjective otherwise, since the dimensions of the A_i’s are symmetric and unimodal.
What do we want to know?

Big Question

Is the WL property matroidal?
Big Question
Is the WL property matroidal?

Matroidal
Define $\hat{M}(\theta, \ell) = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_k \\ \ell \end{bmatrix}$.
What do we want to know?

Big Question

Is the WL property matroidal?

Matroidal

Define $\hat{M}(\theta, \ell) = \begin{bmatrix} \theta_1 \\ \cdots \\ \theta_k \\ \ell \end{bmatrix}$.

Does WL property depend on minors of $\hat{M}(\theta, \ell)$?
Reduction to Middle Map

Proposition

- If d odd, ℓ is WL $\iff \frac{A_{d-1}}{2} \cdot \ell \rightarrow A_{\frac{d+1}{2}}$ is injective.

- If d even, ℓ is WL $\iff \frac{A_d}{2} - 1 \rightarrow \frac{A_d}{2}$ is injective $\iff \frac{A_d}{2} \cdot \ell \rightarrow A_{\frac{d+1}{2}}$ is surjective.
Reduction to Even Dimensions

Bipyramid Construction

For a polytope P, let P', its bipyramid, be the polytope with vertex set $\{x_1 \cdots x_n\} \cup \{x_{n+1}x_{n+2}\}$, where

- $x_{n+1}, x_{n+2} \not\in \text{span}\{x_1, \cdots, x_n\}$
- The line $x_{n+1}x_{n+2}$ goes through the origin
Bipyramid Construction

For a polytope P, let P', its bipyramid, be the polytope with vertex set $\{x_1 \cdots x_n\} \cup \{x_{n+1}x_{n+2}\}$, where

- $x_{n+1}, x_{n+2} \notin \text{span}\{x_1, \cdots, x_n\}$
- The line $x_{n+1}x_{n+2}$ goes through the origin
Reduction to Even Dimensions

Proposition

- \(A' \cong A[x_{n+1}]/(x_{n+1}^2) \)
- \(A'_k \cong A_k \oplus x_{n+1}A_{k-1} \)
Proposition

- $A' \cong A[x_{n+1}]/(x_{n+1}^2)$
- $A'_k \cong A_k \oplus x_{n+1}A_{k-1}$

Proposition

Let d be odd.

$\sum_{i=1}^{n} \alpha_i x_i \in A_1$ is WL in $A \iff \sum_{i=1}^{n} \alpha_i x_i \in A'_1$ is WL in A'.
Stacking Construction

Let P be a polytope and $F \in \mathcal{F}(P)$. To obtain P' from P, add in a new vertex x_{n+1} “close enough” to F on the outside.
Stacking Construction

Let P be a polytope and $F \in \mathcal{F}(P)$. To obtain P' from P, add in a new vertex x_{n+1} “close enough” to F on the outside.

Definition

P is a stacked polytope if P is obtained from a simplex through a sequence of stacking operations.
Stacked Polytopes

Stacking Construction

Let P be a polytope and $F \in \mathcal{F}(P)$. To obtain P' from P, add in a new vertex x_{n+1} “close enough” to F on the outside.

Definition

P is a stacked polytope if P is obtained from a simplex through a sequence of stacking operations.
Stacked Polytopes

Definition

P is a stacked polytope if P is obtained from a simplex through a sequence of stacking operations.

Proposition

$\sum_{i=1}^{n+1} \alpha_i x_i \in A'_1$ is WL in A' $\iff \begin{cases} \sum_{i=1}^{n} \alpha_i x_i \in A_1 \text{ is WL in } A \\ \alpha_{n+1} \neq 0 \end{cases}$
Definition

$C(n, d)$, the d-dimensional polytope on n vertices is the convex hull of any n points on the moment curve

$$t \mapsto \begin{bmatrix} t \\ t^2 \\ \vdots \\ t^d \end{bmatrix}$$
Definition

$C(n, d)$, the d-dimensional polytope on n vertices is the convex hull of any n points on the moment curve

$$t \mapsto \begin{bmatrix} t \\ t^2 \\ \vdots \\ t^d \end{bmatrix}$$
Proposition

- Let d even. ℓ is WL $\iff \ell \neq 0$
- Let d odd. ℓ is WL \iff all minors of $M((\theta), \ell)$ with columns indexed by $\{x_1, x_{i_1}, x_{i_2}, \ldots x_{i_{d-1}}, x_n\}$ are L.I., where $\{x_1, x_{i_1}, x_{i_2}, \ldots x_{i_{d-1}}\}$ runs through all facets not containing x_n.
Cross Polytopes

Definition

The n-dimensional cross polytope is the convex hull of \[\{ e_i, -e_i, 1 \leq i \leq n \} \] (ie. square, octahedron)
Definition

The \(n \)-dimensional cross polytope is the convex hull of \(\{ e_i, -e_i, 1 \leq i \leq n \} \) (ie. square, octahedron)

Proposition

Let \(\Delta \) be the boundary of the \(n \)-dimensional cross polytope. Then \(K[\Delta]/(\theta) \) is isomorphic to the \(K \)-span of all square-free monomials in \(x_1, \ldots, x_n \).
Cross Polytopes

Definition

The n-dimensional cross polytope is the convex hull of $\{e_i, -e_i, 1 \leq i \leq n\}$ (ie. square, octahedron)

Proposition

Let Δ be the boundary of the n-dimensional cross polytope. Then $K[\Delta]/(\theta)$ is isomorphic to the K-span of all square-free monomials in x_1, \ldots, x_n.

Proposition

Let $\ell = \sum_{i=1}^{n} c_i x_i \in K[\Delta]/(\theta)$.

- If n is odd, ℓ is WL if and only if $c_i \neq 0$ for all i.
- If n is even, ℓ is WL if and only if $c_i = 0$ for at most one i.
What We Found

Is the WL property matroidal in general?

Counterexample

Consider the following Δ:

$x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8$

with vertex LSOP:

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 & -1 \\
-1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & -1 \\
\end{bmatrix}$$

Claim: The rank of $\ell: A_1 \rightarrow A_2$ is not determined by minors of $\hat{M}(\theta, \ell)$.
What We Found
Is the WL property matroidal in general? **No!**
Counterexample

What We Found

Is the WL property matroidal in general? **No!**

Boundary of a Tetrahedron Counterexample

Consider the following Δ:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
-1 & 0 & 1 & 0 & 1 & 0 & 1 \\
-1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

Claim: The rank of $\ell: A_1 \to A_2$ is not determined by minors of $\hat{M}(\theta, \ell)$.
What We Found

Is the WL property matroidal in general? **No!**

Boundary of a Tetrahedron Counterexample

Consider the following Δ:

```
 x_1
  |   |
  |   |
  |   |
```

with vertex LSOP:

```
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & -1 \\
\end{bmatrix}
```
Counterexample

What We Found
Is the WL property matroidal in general? **No!**

Boundary of a Tetrahedron Counterexample

Consider the following Δ:

![Triangle Diagram]

with vertex LSOP:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 & -1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & -1 \\
\end{bmatrix}
\]

Claim: The rank of \(\ell : A_1 \rightarrow A_2 \) is not det. by minors of \(\hat{M}(\theta, \ell) \).
Thank you for watching and thank you to all the REU staff who were super thoughtful and encouraging throughout the research process, and especially to Vic for providing team 7 with a great problem to work on, and to Sasha and Trevor for their guidance!
