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Abstract

We investigate the weak Lefschetz property for Artinian reductions A = K[∆]/(θ) of the Stanley-
Reisner ring K[∆] of a simplicial complex ∆ by a linear system of parameters θ = (θ1, . . . , θd). It is
known that deciding whether or not the ring A is Artinian is matroidal, in the sense that it is controlled
only by the matroid M(θ) for the coefficient matrix specifying θ. We consider the weak Lefschetz property
for a degree one element ` in K[∆], meaning that multiplication by ` from Ai → Ai+1 has full rank for
all i, and ask when it is matroidal in the sense of of being controlled only by the lifted matroid M̂(θ, `)
for the coefficient matrix of θ and `.

It is known from work of Stanley [3], McMullen and others that when K = R and ∆ is the boundary
of a simplicial polytope, there exists a choice θ and degree one elements ` having the weak Lefschetz
property. In this context, we find some examples where the weak Lefschetz property is not matroidal,
and others where it is matroidal.
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1 Introduction

Let ∆ be a simplicial complex on n vertices. Its Stanley-Reisner ring is the quotient

K[∆] := K[x1, . . . , xn]/I∆

where the ideal I∆ is generated by all squarefree monomials xA :=
∏
i∈A xi for which A is not a face of ∆.

The early history and applications of K[∆] in the theory of face numbers for convex polytopes make use of
quotients A = K[∆]/(θ) in which θ = (θ1, . . . , θd) is a linear system of parameters (lsop), meaning that
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• each θi is an element of K[∆] of degree one,

• the quotient A is Artinian (i.e., of Krull dimension zero; equivalently, finite-dimensional over K), and

• d is the smallest cardinality possible (which is one more than the dimension of ∆).

See Stanley [4, Chap. II,III] for history, background, and terms not defined here.
The condition under which a candidate set of degree one elements θ = (θ1, . . . , θd) form an lsop is due to

Kind and Kleinschmidt [4, Lemma III.2.4(a)]: the coefficient matrix (cij) in Kd×n where θi =
∑n
j=1 cijxj

should have the property that every submatrix obtained by restricting to a set of columns F indexing a face
F of ∆ is of maximal rank #F . This condition is matroidal in the sense that it depends only on the matroid
M(θ) associated with the matrix (cij), meaning the specification of which subsets of its columns are linear
independent or dependent.

The interest in the Artinian reduction A = K[∆]/(θ) has often centered on deciding whether it contains

an element of degree one ` = a1x1 +a2x2 + · · ·+anxn for which the maps Ai
·`−→ Ai+1 given by multiplication

by ` have maximal rank for all i, where Ai is the ith graded component. In this case, one says that that
` is a weak Lefschetz element ; see Migliore and Nagel [2] for more on the weak Lefschetz property. Having
fixed θ, one might ask whether this property depends solely on the matroid M(θ) and on the lifted matroid
M(θ, `) corresponding to the columns of the matrix in K(d+1)×n having the vectors of (θ1, . . . , θd, `) as its
rows; in this case we will say that the weak Lefschetz property for ` is matroidal. This is the question we
examine here.

Question. For which simplicial complexes ∆ and lsop θ is the weak Lefschetz property for ` matroidal?

From now on we will assume that ∆ is the boundary of a d-dimensional, convex, simplicial polytope P
in Rd, containing the origin in its interior. It is not hard to see that in this setting, one can form an lsop θ
by taking the columns of the matrix (cij) to be the vectors v1, . . . , vn which are the vertices of P ; we will
call this the geometric choice of lsop. Unless specified, we will always work with the geometric lsop. Work
of Stanley and McMullen (see [4, §III.1]) shows that there always exist weak Lefschetz elements ` in this
context.1

2 Preliminaries

Definition. Recall that M(θ) is the d × n coefficient matrix of θ. Given any facet F of ∆, we use M(θ)F
to denote the d × d minor of M(θ) with columns indexed by vertices in F . Furthermore, given any vertex
x 6∈ F , we use M(θ, `)F,x to denote the (d+ 1)× (d+ 1) minor of M(θ, `) with columns indexed by vertices
in F

⋃
{x}

Lemma 2.1. Let F be a facet of ∆. We have a canonical graded algebra isomorphism

φF : K[x1, x2, · · · , xn]/(θ)→ K[xi : i 6∈ F ]

given by x̄i 7→ xi for all i 6∈ F . This gives rises to a graded algebra isomorphism

ψF : A→ K[xi : i 6∈ F ]/φF (I∆)

Proof. Notice that for any facet F of ∆, M(θ)F is invertible. Thus, we can perform row reduction to express
all elements in {xi : i ∈ F} as a linear combination of {xi : i 6∈ F}. This gives us the isomorphism φF .

Furthermore, notice that A = K[∆]/(θ) = K[x1, x2, · · · , xn]/(I∆, θ) ∼= K[xi : i 6∈ F ]/φF (I∆) via φ.

Lemma 2.2. Let ` =
∑
i∈[n] αixi (and resp.,

∑
i6∈F βixi) be any representative for some generic element in

A1 (and resp., its image under ψF ). Then for any i0 6∈ F , βi0 = 0 if and only if M̂(θ, `)F,xi0
is invertible.

1In fact, they showed that there are always strong Lefschetz elements in this context, that is, those for which the maps
Ai → Ai+m which multiply by `m all have maximal rank.
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Proof. βi0 = 0 if and only if applying row reduction to M̂(θ, `)F,xi0
to zero out the last row with columns

except xi0 automatically zeros out xi0 . And this happens if and only if M̂(θ, `)F,xi0
.

The following well-known theorem is crucial for future calculations; a proof can be found in [4, II.6].

Lemma 2.3 (Dehn-Sommerville equations). The h-vector of the boundary of a simplicial d-polytope satisfies

hk = hd−k, for k = 0, 1, . . . , d.

Remark. Since the h-vector enumerates the dimensions of the graded components of A as a K-vector space,
we also have that dimCAi = dimCAd−i.

A final lemma further characterizes the h-vector. This is Theorem 1.1(b) in [4, III.1].

Lemma 2.4. The h-vector for a d-dimensional simplicial polytope P is unimodal, and in particular

h1 ≤ h2 ≤ · · · ≤ hb d2 c and hd d2 e
≥ hd d2 e+1 ≥ · · · ≥ hd.

3 Reducing the Weak Lefschetz Property

A priori, checking that our candidate choice of a degree one element ` ∈ A1 is weak Lefschetz requires

verifying that every possible multiplication by ` map Ai
·`−→ Ai+1 is full rank. It would be ideal if we

could simplify the criterion. In this section, we first show that it suffices to show that the middle map

Ab d−1
2 c

·`−−→ Ab d+1
2 c

is full rank. We then apply the bipyramid construction in order to reduce the odd case

to the even case.

3.1 The Gorenstein Property

It is known that A = K[∆]/(θ) is a Gorenstein ring. Since A is a graded algebra over the field K, this is
equivalent to the product map 〈·, ·〉 : Ai × Ad−i → Ad being a nondegenerate bilinear form. In particular,
given some basis {aj} of Ai and basis {bj} for Ad−1, we have that

〈aj , bk〉 = δjk. (1)

Details can be found in Stanley [4, §II.5].
Using this fact, we can prove the following proposition that exploits this “duality.” In particular, for the

weak Lefschetz property it will suffice to check that only half of the maps are full rank.

Proposition 3.1. Let A = K[∆]/(θ) For any i ≤ bd2c, the map Ai
·`−→ Ai+1 is injective if and only if the

map Ad−i−1
·`−→ Ad−i is surjective.

Proof. Let {x} be a basis for Ad. Assume first that Ai
·`−→ Ai+1 is injective. Fix a basis {au}u=1,2,...,hi

for Ai. By the injectivity assumption we know that ·` maps Ai to an hi dimensional subspace of Ai+1, so
{au · `}u=1,2,...,hi is a linearly independent set in Ai+1. Extend it to

({au · `}u=1,2,···hi
) ∪
(
{bu}u=hi+1,hi+2,···hi+1

)
a basis of Ai+1. There exists a basis {cv}v=1,2,···hd−i−1

for Ad−i−1 that is dual to ({au · `}u=1,2,...hi
) ∪

({bu}u=hi+1,hi+2,...hi+1
) under 〈·, ·〉, in the sense of (1). In particular, 〈au · `, cv〉 = δuv for u, v = 1, 2, . . . , hi.

By definition of the bilinear form, δuvx = au · ` · cv = au · cv · `, and thus 〈au, cv · `〉 = δuv. By nondegeneracy,

{cv · `}v=1,2,...,hi
is a basis for Ad−i by Lemma 2.3. This gives that Ad−i−1

·`−→ Ad−i is surjective.

Conversely, assume that Ad−i−1
·`−→ Ad−i is surjective. This implies that hd−i−1 ≥ hd−i. Thus we can let

{cu}u=1,2,...hd−i
in Ad−i−1 be such that {cu ·`}u=1,2,...,hd−i

is a basis for Ad−i. We set {av}v=1,2,...hi
as a basis

of Ai dual to {cu · `}u=1,2,...,hd−i
, again in the sense of (1). Then 〈av, cu · `〉 = δuv for u, v = 1, 2, . . . , hd−i.

So δuvx = av · cu · ` = av · ` · cu. And thus 〈av · `, cu〉 = δuv for u, v = 1, 2, . . . , hd−i.
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Notice that {cu}u=1,2,...,hd−i
is linearly independent in Ad−i−1 because {cu · `}u=1,2,···hd−i

is linearly
independent in Ad−i. We wish to show that {av · `}v=1,2,···hd−i

is linearly independent in Ai+1, such that

Ai
·`−→ Ai+1 is injective. Suppose β1a1 · `+ · · ·+ βhd−i

ahd−i
· ` = 0 for coefficients βi in our field K. We then

have that 〈β1a1 · `+ · · ·+ βhd−i
ahd−i

· `, cu〉 = 0 for all u = 1, . . . , hd−i, which implies that

β1〈a1 · `, cu〉+ · · ·+ βhd−i
〈ahd−i

· `, cu〉 = 0 (2)

for all u = 1, . . . , hd−i. We showed above that 〈av · `, cu〉 = δuv, and thus in order for the left hand side of
(2) to be zero, we must have that the billinear form βu〈au · `, cu〉 is equal to zero for all u. But this is true
if and only if βu = 0 for each u, as desired.

We then make the following observation, which, combined with the preceding proposition, reduces the
problem to studying the full-rank property of maps in the “middle.”

Proposition 3.2. For any 0 ≤ i ≤ (bd2c − 1), if Ai+1
·`−→ Ai+2 is injective, then Ai

·`−→ Ai+1 is injective.

Proof. We first show that for any x ∈ A, there exists some `′ ∈ A1 such that x ·`′ 6= 0. Indeed, if x ·xi = 0 for
all i = 1, 2, . . . , n then x times any monomial in the xi’s is 0. In particular, if we focus on the monomials in
the basis of Ad−i, we get that x · a = 0 for all a in this basis. This contradicts the fact that A is Gorenstein.

We now show the contrapositive of the statement. Suppose that Ai
·`−→ Ai+1 is not injective, and let

x 6= 0 ∈ Ai be such that x · ` = 0. Pick some `′ so that x · `′ ∈ Ai+1 is nonzero. But (x · `′) · ` = x · ` · `′ = 0.

Hence Ai+1
·`−→ Ai+2 is not injective.

This yields the following corollary.

Corollary 3.3. An element ` ∈ A1 is a weak Lefschetz element of A if and only if Ab d−1
2 c

·`−→ Ab d+1
2 c

is

injective.

Proof. The claim follows directly from Proposition 3.1 and Proposition 3.2.

Corollary 3.3 greatly reduces the computation required to verify whether a given ` ∈ A1 forms a weak
Lefschetz element for A. We make a further reduction before computing examples of boundaries of simplicial
polytopes by showing that the problem only requires us to study even dimensional polytopes. This is done
via the bipyramid construction in the next subsection.

3.2 Reduction to Even Dimensional Polytopes

Definition. For a given polytope P such that the origin is in P , define its bipyramid P ′ as the polytope
with vertex set P ∪ {N,S}, where N and S are not in spanP and the line NS through the north pole and
the south pole goes through the origin.

Let ∆ be the simplicial complex given by the boundary of a d-dimensional convex polytope P , and let ∆′

be the boundary of the (d+ 1)-dimensional bipyramid P ′ of P . We have that for any F ⊂ {x1, x2, · · · , xn},
the sets {xn+1} ∪F and {xn+2} ∪F are faces of ∆′ if and only if F is a face of ∆. Note {xn+1, xn+2} is not
a face of ∆′.

Finally, let A = K[∆]/(θ) and A′ = K[∆′]/(θ′), where θ and θ′ are the geometric lsop’s of P and P ′.

Proposition 3.4.

A′ = A[xn+1, xn+2]/(xn+1xn+2, xn+1 − xn+2) ' A[xn+1]/(x2
n+1)

Also, A′i = Ai
⊕
xn+1Ai−1.

Proof. In P ′, we added two more vertices xn+1 and xn+2. Notice that the set of non-faces of ∆′ not
containing xn+1 or xn+2 is exactly the set of non-faces of ∆. If a non-face of ∆′ contains xn+1 or xn+2,
removing xn+1 or xn+2 gives a non-face of ∆. And {xn+1, xn+2} is a non-face of ∆′. So the set of minimal
non-faces of ∆′ is exactly the set of minimal non-faces of ∆, union {xn+1, xn+2}. This shows that K[∆′] =
K[∆][xn+1, xn+2]/(xn+1xn+2).
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Notice that θ′ is a (d+ 1) by (n+ 2) matrix, where the first n columns are obtained by adjoining one row
of 0’s to θ. The (n+ 1)st column consists of all 0’s in the first d rows and a 1 in the last row, corresponding
to the coordinates of xn+1. Similarly, the (n + 2)nd column consists of all 0’s in the first d rows and a −1
in the last row, corresponding to the coordinates of xn+2. This tells us that xn+1 − xn+2 = 0 in K[∆′]/(θ′),
resulting in A′ = A[xn+1, xn+2]/(xn+1xn+2, xn+1 − xn+2) ∼= A[xn+1]/(x2

n+1).
Finally, since we can express A′ = A[xn+1]/(x2

n+1) as the direct sum A
⊕
xn+1A, it is not difficult to see

that this direct sum extends to each of the graded components, that is, A′i = Ai
⊕
xn+1Ai−1.

We now use this construction to prove a property of weak Lefschetz elements in the bipyramids of
boundaries of simplicial polytopes that allows

Proposition 3.5. Let d be odd. Let ` =

n∑
i=1

αixi ∈ A1 and let `′ =

n∑
i=1

αixi ∈ A′1 be the same element, but

viewed in A′1. Then ` is a weak Lefschetz element of A if and only if `′ is a weak Lefschetz element of A′.

Proof. By Corollary 3.3, ` is a weak Lefschetz element of A if and only if A d−1
2

·`−→ A d+1
2

is injective and `′

is a weak Lefschetz element of A′ if and only if A′d−1
2

·`′−→ A′d+1
2

is injective.

Let a + xn+1b be a generic element in A′d−1
2

= A d−1
2

⊕
xn+1A d−1

2 −1, where a ∈ A d−1
2

and b ∈ A d−1
2 −1.

Then (a + xn+1b) · `′ = a · `′ + xn+1(b · `′). Assume that ` is a weak Lefschetz element. Then a · ` ∈ A d+1
2

is nonzero for any a ∈ A d−1
2

nonzero. Also, b · ` ∈ A d−1
2

is nonzero for any b ∈ A d−1
2 −1 nonzero. So

if a + xn+1b ∈ A d−1
2

⊕
xn+1A d−1

2 −1 is nonzero, a or b is nonzero, which implies that a · ` ∈ A d+1
2

or

xn+1b · ` ∈ xn+1A d−1
2

is nonzero. This means that their sum (a + xn+1b) · `′ is nonzero, implying that the

map A d−1
2

·`′−→ A d+1
2

is injective. Thus `′ is a weak Lefschetz element of A′, as desired.

The converse argument follows similarly.

Remark. For any polytope of odd dimension, we can construct its bipyramid of one dimension higher. Then,
setting αn+1 = αn+2 = 0 in the conditions for `′ to be a weak Lefschetz element for the bipyramid gives us
the conditions for ` to be a weak Lefschetz element in the original polytope.

Our problem is now reduced to studying even dimensional polytopes which may answer the following
(refined) question:

Question. Let ∆ represent the boundary of an even-dimensional simplicial polytope. For which ∆ and lsop
θ is the weak Lefschetz property for an element ` dependent on the minors of M̂(θ, `)?

We now explore specific classes of ∆ for which the weak Lefschetz property of ` is matroidal.

4 Specific Classes

In this section we discuss the weak Lefschetz elements for stacked polytopes, cyclic polytopes, and cross
polytopes. The first two are of interest, as they are “extremal” in the sense that for a given dimension,
stacked polytopes have the fewest number of “large-dimensional” faces, while cyclic polytopes have the most
(cf. [5]). Cross polytopes are another special family of interest, as we will see these polytopes have some
intriguing properties.

4.1 Stacked Polytopes

Stacking is a common operation that gives a new polytope PF from an old polytope P , where F is a facet of
P . It can be thought of as placing a new vertex an infinitesimal distance from F , outside of P , and taking
the convex hull of P and this new point. We now state a formal definition.

Definition. Let P be a polytope with a set of facets F . Fixing some facet F , define the stacked polytope
PF as the polytope with vertex set P ∪ {xn+1} and facets (F \ F ) ∪

⋃
i∈F ((F \ i) ∪ {n+ 1}).
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Proposition 4.1. Let ∆ (and resp., ∆′) be the simplicial complex given by the boundary of a polytope P
(and resp., its stacked polytope PF for some facet F ). Fix the lsops of P and PF to be the geometric lsops
of their vertices.

If A = K[∆]/(θ), then A′ = K[∆′]/(θ′) ∼= A[xn+1]/I, where I is generated by the additional minimal
non-faces xF =

∏
i∈F xi and xixn+1 for i /∈ F .

Furthermore, we may write any `′ ∈ A′1 as `′ =
∑
i/∈F αixi. Then `′ is a weak Lefschetz element for A′

if and only if ` is a weak Lefschetz element for A and αn+1 6= 0.

To prove Proposition 4.1, we need two lemmas. The first allows us to substitute monomials with smaller
powers of xn+1 for monomials with larger ones.

Lemma 4.2. xn+1xi = dix
2
n+1 for any i ∈ F , where di is some constant.

Proof. Recall that by definition 4.1, since F is a facet of P then (F \ {i}) ∪ {n+ 1} is a facet of PF . Thus
the columns corresponding to F in M(θ) are linearly independent, and also the columns corresponding to
(F \ {i}) ∪ {n+ 1} in M(θ) are linearly independent. Hence, we may row reduce the lsop (via Lemma 2.1)
and assume one of the θ rows takes the following form, for constants ck with ci 6= 0:

xn+1 + cixi +
∑
j /∈F

cjxj = 0.

Since {j, n + 1} is a non-face for j /∈ F , we see that xjxn+1 = 0 ∈ A. Thus, multiplying both sides of our
equation by xn+1, we get x2

n+1 = −cixixn+1. Take di = − 1
ci

to complete our proof.

The second lemma shows how the graded decomposition of A′ depends on that of A.

Lemma 4.3. A′k = Ak ⊕ span {xkn+1}.

In order to prove Lemma 4.3, we need to first introduce the concept of a shelling order on the facets of
a pure simplicial complex P .

Definition. A shelling order for a pure simplicial complex ∆ is a linear ordering on its facets F1, . . . , Ft
such that for each pair of facets Fi, Fj with i < j, there is a facet Tk with k < j and an element v ∈ Tj such
that Ti ∩ Tj ⊆ Tk ∩ Tj = Tj \ {v}.

Remark. Such a shelling order does not always exist; if it exists we say that the simplicial complex is shellable.

We now provide the proof of Lemma 4.3.

Proof. Choose a shelling for P where we shell facet F last. This lifts to a shelling for PF where we shell the
facets (F \ {i}) ∪ {n+ 1} in some order i1, i2, . . . , id. Thus, a basis for A′ is given by concatenating a basis
for A with xn+1, xn+1xi1 , xn+1xi1xi2 , · · · , xn+1xi1 . . . xid . By repeated application of Lemma 4.2, we may
use alternative basis elements xkn+1 where 1 ≤ k ≤ d.

We are now ready to show the proposition.

Proof of Proposition 4.1. It’s clear that A′ = K[∆′]/(θ′) ' A[xn+1]/I. Since the columns of F are indepen-
dent, we may use the rows to set αi = 0 for i ∈ F .

We want to show the map A′k
`′−→ A′k+1 is injective if and only if the map Ak

`−→ Ak+1 is injective and

αn+1 6= 0. Let a + bxkn+1 ∈ A′k, where a ∈ Ak and b ∈ Ak−1. By expressing xi for i ∈ F as a linear
combination of xj for j /∈ F , we may assume a has no monomials in F . Then

(a+ bxkn+1)(`+ αn+1xn+1) = a`+ bαn+1x
k+1
n+1

since xkn+1` = axn+1 = 0. If ` is WL and αn+1 6= 0, then this is not zero. If ` is not WL, then take b = 0
and a 6= 0 such that a` = 0. If αn+1 = 0, then take a = 0 and b 6= 0.
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4.2 Cyclic Polytopes

The cyclic polytope C(n, d) in Rd is the convex hull of substituting n points t1 < t2 < · · · < tn into the
moment curve x : R → Rd given via the mapping t 7→ [t, t2, . . . , td]>. We will use [n] to label the set of
vertices, where vertex k corresponds to the point x(tk).

This next two lemmas is are well-known facts about cyclic polytopes.

Lemma 4.4 (Gale’s evenness condition). A size d subset S ⊂ [n] of C(n, d) is a facet if and only if the
following condition is satisfied:

If i < j are not in S, the number of k ∈ S between i and j is even.

For the next lemma, recall that a polytope P is l-neighborly if any subset S of its vertices with cardinality
l form a facet.

Lemma 4.5. Let P be a simplicial d-polytope on f0 = n vertices. Then for 0 ≤ k ≤ d, the h-vector of P
satisfies

hk ≤
(
n− d− 1 + k

k

)
.

Equality holds for all k with 0 ≤ k ≤ l if and only if l ≤ bd2c and P is l-neighborly.

This next proposition constructs a basis for Ak in the case of C(n, d).

Proposition 4.6. Let C(n, d) be a cyclic polytope with vertices given by [n], and fix some facet F . Then
for any k ≤ bd2c, the following set is a basis for Ak:

B := {xi1xi2 · · ·xik : ij ∈ [n] \ F for all 1 ≤ j ≤ k}.

Proof. Without loss of generality, let F be {1, 2, . . . , d}; the general case is entirely analogous (F is a facet by
Lemma 4.4). We first show that B spans Ak. Consider any monomial of degree k in Ak given by xi1xi2 · · ·xik .
If ij 6∈ {d + 1, d + 2, . . . , n} for some j, then it must be contained in F . As θ is an lsop, there exists some
linear combination of θ1, θ2, . . . , θd that equals η = xij +

∑n
m=d+1 cmxm. In A we have xij = xij − η, which

expresses xij as a linear combination of elements xm, where m ∈ [n] \ F . Repeating this process allows us
to express xi1xi2 · · ·xik as a linear combination of elements in B.

It now suffices to show that the dimension of Ak matches the number of elements in B. By a stars and
bars argument, B contains

(
n−d−1+k

k

)
elements, which is precisely the dimension of Ak given by Lemma 4.5,

as cyclic polytopes are bd2c-neighborly.

Using what we have proven, we can classify all weak Lefschetz elements for cyclic polytopes when d is
even.

Theorem 4.7. Let C(n, d) by a cyclic polytope where d is even. Then any nonzero ` is a weak Lefschetz
element.

Proof. It suffices from Corollary 3.3 to show that the map Ad/2−1
·`−−→ Ad/2 is injective, given via multipli-

cation by some nonzero ` = ad+1xd+1 + ad+1xd+2 + · · · + andn. Let M be the matrix for the map, where
the bases of the domain and image are given by those in Proposition 4.6. From Lemma 2.4, we know that
M has at least as many rows as there are columns.

We claim that there exists a collection of k × k minors of M with values akd+1, a
k
d+2, . . . , a

k
n, where k is

the cardinality of Ad/2−1, or the number of columns in M . This implies the theorem as any nonzero ` has

some nonzero coefficient aj , and thus M would have a k × k minor akj , implying that M is full rank.
To prove the claim, pick any j ∈ {d + 1, d + 2, . . . , n} and order the bases of both Ad/2−1 and Ad/2 in

lexicographic order based on the ordering of A1 given by

xj > xd+1 > · · · > xj−1 > xj+1 > · · · > xn.

One easily verifies that if we reorder the rows and columns of M in such a manner, the first k × k minor is
lower triangular with determinant akj .
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We now move onto the case where d is odd, where begin with two important lemmas.

Lemma 4.8. Let F be a facet of C(n, d) that does not contain n. Then any non-face of cardinality d+1
2

must contain some k, where k 6∈ F and k 6= n.

Proof. Once again, we can assume that F is the facet {1, 2, . . . , d}, as the argument for general F is completely
analogous. Indeed, suppose for contradiction that we have a non-face of cardinality d+1

2 that contains n.

The remaining (d− 1)/2 vertices form a face by Lemma 4.5, as cyclic polytopes are bd2c-neighborly. Adding
n at the end still satisfies the evenness condition given in Lemma 4.4, and hence we would have a facet, a
contradiction. Next, such a nonface clearly cannot be contained in the facet {1, . . . , d}. Hence every nonface
of cardinality (d+ 1)/2 has at least one vertex in the set [n] \ (F ∪ {n}).

Lemma 4.9. Following the notation of Lemma 2.1, the ideal φF (I∆) doesn’t contain any degree d+1
2 poly-

nomial with nonzero x
d+1
2

n coefficient.

Proof. Let G be a non-face of ∆ of size d+1
2 . Then by Lemma 4.8, there exists k ∈ G, k /∈ F , k 6= n. Thus,

xG will be divisible by xk, so if it is of degree d+1
2 , then it can’t contain a term x

d+1
2

n . This holds for any
non-face G, so it also holds for any polynomial in the ideal.

The following is an immediate corollary of Lemma 4.9.

Lemma 4.10. The element x
(d+1)/2
n represents a nonzero element in A(d+1)/2.

With this lemma, we can proceed to the proof of delineating the weak Lefschetz elements for cyclic
polytopes of odd dimension.

Theorem 4.11. For odd d, a nonzero ` is weak Lefschetz if and only if all minors of M(θ, `) with columns
given by {x1, xi1 , xi2 , . . . , xid−1

, xn} are nonzero, for any facet of P {x1, xi1 , . . . , xid−1
} that does not contain

xn.

Proof. We will prove that the determinant of the map A(d−1)/2
·`−−→ A(d+1)/2 factors precisely into a product

of linear terms corresponding to the declared facets.
Take any facet F not containing xn. We now view A as its isomorphic image K[xi : i 6∈ F ]/φF (I∆),

adopting the notation from Lemma 2.1. Recall that this essentially means that we are expressing all variables
corresponding to elements in F as a linear combination of variables corresponding to elements not in F . Let∑
i 6∈F αixi be any representative of ` in K[xi : i 6∈ F ]/φF (I∆).
By Proposition 4.6, we have the following explicit basis for A(d−1)/2 given by

B := {xi1xi2 · · ·xi(d−1)/2
: ij ∈ {d+ 1, d+ 2, . . . , n} for all 1 ≤ j ≤ k}.

By Lemma 4.10, x
d+1
2

n represents a nonzero element in A(d+1)/2. Thus, we can complete it to a basis B′

for A(d+1)/2.

Let M be the matrix for the linear transformation A(d−1)/2
·`−−→ A(d+1)/2 with respect to B and B′. We

claim that if αn = 0, the row of M corresponding to the basis element represented by x
d+1
2

n are all 0’s. That

is, we claim that the element represented by x
d+1
2

n is not in the image.
Take any representative of any element in A(d−1)/2, it is a polynomial f of degree d−1

2 . Multiply this
polynomial by a linear element with 0 coefficient in front of xn gives a polynomial g that has 0 coefficient

in front of the monomial x
d+1
2

n . But notice that by Lemma 4.9, the ideal φF (I∆) doesn’t contain any degree
d+1

2 polynomial with nonzero x
d+1
2

n coefficient. Thus, the element represented by g cannot be represented

by x
d+1
2

n , because their difference has nonzero coefficient in front of x
d+1
2

n and thus not in the ideal φF (I∆).
Claim proved.

The above claim implies that ·` is not weak Lefschetz if for some facet F not containing xn, φF (l) has 0
coefficient in front of xn. We now show that ·` is weak Lefschetz if for any facet F not containing xn, φF (l)
has nonzero coefficient in front of xn.
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Choose one specific facet F0 not containing xn. Let M0 be the matrix for the linear transformation

A(d−1)/2
·`−−→ A(d+1)/2 described above, for this chosen facet F0. Take any l ∈ A1. Let φF0

(l) be represented
by
∑
i 6∈F0

αixi. Then for each facet F not containing xn, φF (l) is represented by
∑
j 6∈F β

F
j xj , where βFj

is a linear expression of {αi : i 6∈ F0}. This is because the maps φF are essentially expressing elements
corresponding to vertices in F as linear expressions of vertices corresponding to vertices not in F . In
particular, βFn is a linear expression of the αi’s. For example, βF0

n = αn. We claim that βFn ’s will be distinct
up to multiplication by a scalar for distinct F ’s.

Assume otherwise, then we have βF1
n = 0 if and only if βF2

n = 0. By Lemma 2.2, the above statement is
equivalent to M(θ, `)F1,xn

is singular if and only if M(θ, `)F2,xn
is singular for any fixed `. But by choosing

` = xi for some i ∈ F2 \F1, we see that M(θ, `)F1,xn
6= 0 because the complementary minor of xi has nonzero

coefficient. (In fact, all minors of M(θ) does.) But M(θ, `)F1,xn
= 0. Contradiction. Thus, the βFn ’s are

distinct up to multiplication by a scalar for distinct F ’s.
Recall that detM0 = 0 if φF (l) has 0 coefficient in front of xn. Thus, detM0 = 0 if βF = 0. Thus,

βF divides detM0, viewed as polynomials in variables {αi : i 6∈ F0}. Since detM0 has degree at most the

dimension of A(d−1)/2, which equals
(
n−d/2−3/2

(d−1)/2

)
by Lemma 4.5. We now show that this is the exact number

of facets F not containing xn. First, we notice that given a facet F that does not contain xn, it has to contain
x1. This is because otherwise, there are d, and thus an odd number of, vertices in the facet between x1

and xn, which contradicts Lemma 4.4. Furthermore, by the evenness condition, it is easy to see that all the
other d − 1 elements after x1 in the facets come in consecutive pairs. Conversely, all choices of consecutive
pairs from x2 · · ·xn−1 union x1 is a facet. Therefore, the number of facets not containing xn equals the

number of ways to choose (d− 1)/2 consecutive pairs from x2 · · ·xn−1, which equals
(
n−d/2−3/2

(d−1)/2

)
by a simple

combinatorial argument.
Since each βFn is distinct and they all divide detM0, detM0 is a multiple of

∏
F β

F
n . Since the degrees

match, it’s a scalar multiple.
We now show that the determinant is not the zero polynomial. This follows from the fact that Stanley-

McMullen have shown the existence of a weak Lefschetz element for the boundary complex of a simplicial
polytope, and hence in this case there is at least some choice of ai that yields a nonzero value.

And thus detM0 is a nonzero multiple of
∏
F β

F
n . So ` is weak Lefschetz if all βFn nonzero, which is

equivalent to M(θ, `)F,xn
singular by Lemma 2.2.

4.3 Cross Polytopes

Define the dimension r cross polytope to the be convex hull of

{±ei|1 ≤ i ≤ r} ⊂ Rr

Then, let ∆ be the boundary of the r-dimensional cross-polytope, and label the vertex ei by xi and −ei
by yi. The minimal non-faces of this polytope are {xi, yi}, so we get that

K[∆] = K[x1, y1, x2, y2, . . . , xr, yr]/(x1y1, x2y2, . . . , xryr)

We consider the geometric lsop θ = (θ1, ..., θr), where θi = xi − yi. Then, we have that

A = K[∆]/(θ) ∼= K[x1, . . . , xr]/(x
2
1, x

2
2, . . . , x

2
r)

We see that A is a graded ring over K and that a basis for each component Ad is given by

{xI |I ∈
(

[n]

d

)
}

where xI :=
∏
i∈I xI . Further, given ` =

∑r
i=1 aixi + biyi, we can write

` =

r∑
i=1

cixi
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for ci := ai − bi. Since any monomial in A with a square term is 0, we get the following multiplication
relation:

xixI =

{
xi∪I i 6∈ I
0 i ∈ I

Now, consider ` : Ad → Ad+1 as a linear operator, and let M(r, d) the matrix representing ` matrix under

this basis. We index entries of M(r, d) by M(r, d)J,I , where I ∈
(

[r]
d

)
, J ∈

(
[r]
d+1

)
. Then, our multiplication

relation implies that

M(r, d)J,I =

{
0 I 6⊂ J
ci J \ I = {i}

Example. Consider A when r = 4 we have in this case that the graded components of A are

A0 = K

A1 = K〈x1, x2, x3, x4〉
A2 = K〈x1x2, x1x3, x1x4, x2x3, x2x4, x3x4〉
A3 = K〈x2x3x4, x1x3x4, x1x2x4, x1x2x3〉
A4 = K〈x1x2x3x4〉

Further, consider ` = c1x1 + c2x2 + c3x3 + c4x4 as a linear operator from A1 → A2. The matrix under
this basis is



x1 x2 x3 x4

x1x2 c2 c1 0 0
x1x3 c3 0 c1 0
x1x4 c4 0 0 c1
x2x3 0 c3 c2 0
x2x4 0 c4 0 c2
x3x4 0 0 c4 c3


For the remainder of this subsection, let G(r, d) be the graph with vertices subsets of [r] of size d and

d+ 1, and where there is an edge of weight ci between I ∈
(

[r]
d

)
and J ∈

(
[r]
d+1

)
whenever J = I ∪ {i}

Proposition. Let ∆ be the boundary of the d-dimensional cross polytope. Consider ` =
∑r
i=1 cixi ∈

K[∆]/(θ)

1. If r is odd, then ` is weak Lefschetz if and only if ci 6= 0 for all i.

2. If r is even, then ` is weak Lefschetz if and only if ci = 0 for at most one i.

Before we prove this proposition, we show some helpful lemmas.

Lemma 4.12. Every maximal minor of M(r, d) has form αce11 . . . cerr , where alpha ∈ Z and

ei = {number of occurrences of i in the rows indexing the minor} −
(
r − 1

d− 1

)
Proof. A maximal minor in M(r, d) can be identified by the family J ⊂

(
[r]
d+1

)
of sets indexing the rows. Let

G′ denote subgraph of G(r, d) induced by restricting to
(

[r]
d

)
∪J . Looking at the Leibniz determinant formula,
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one can observe that a nonzero term in the sum over permutations corresponds to a perfect matchingM in
G′. In particular, the term is equal to the product of edge weights of edges in the matching, ie.

x1,σ(1) · · ·x(r
d),σ(r

d)
=
∏
e∈M

wt(e)

=
∏
J∈J

cJ−σ(J)

=

∏
J∈J [

∏
i∈J ci]∏

I∈([r]
d )[
∏
i ∈ I]

The number of occurrences of ci in the numerator is just the number of occurrences of i in J , and the
number of occurrences in the denominator is

(
r−1
d−1

)
.

Note that in the odd case, this tells us that the determinant of the middle map from A r−1
2

to A r+1
2

has

form α(c1 . . . cr)
1
r ( r

r−1
2

)
and α ∈ Z.

Lemma 4.13. When r is even, any maximal minor of M(r, r−1
2 ) has at most one ei = 0.

Proof. Let d = r/2− 1. Using the same bipartite matching setup as in the proof of lemma 4.12, we see that
in order to find a minor such that er−1 = er = 0, we need to find a maximal bipartite matching in G(r, d)

so that all J ∈
(

[r]
d+1

)
such that r ∈ J must be matched to a subset I containing r, and similarly for r− 1, as

otherwise a factor of cr would appear in the minor. There are
(
r
d+1

)
−
(
r−2
d+1

)
such J , but only

(
r
d

)
−
(
r−2
d

)
such

I. The remaining
(
n−2
d+1

)
subsets I of size d containing neither r nor r− 1 must be matched to the remaining(

n−2
d+1

)
subsets of size d + 1 containing neither r nor r − 1, but when d = r/2 − 1,

(
n−2
d+1

)
<
(
n−2
d

)
, so this is

not possible.

Proof. Proof of proposition 4.3

1. r is odd. It suffices to consider the multiplication by ` map from A r−1
2
→ A r+1

2
. As mentioned above,

the determinant of this matrix is α(c1 . . . cr)
1
r ( r

r−1
2

)
for some α ∈ Z. To show α 6= 0, it suffices to make

the substitution ci = 1 for all i. The resulting matrix is the incidence matrix for the two middle ranks
of the the Boolean poset on an odd number of elements, which is well known to be invertible [1].

2. r is even. It suffices to consider the multiplication by ` map from A r
2−1 → A r

2
. We will reduce this case

to the odd case to show that there exists a maximal minor of M(r, r2 −1) of form αce11 c
e2
2 . . . c

er−1

r−1 , with
α 6= 0. Then we are done, since by symmetry, there exists a maximal minor with nonzero determinant
and ei = 0 for any i, and by lemma 4.13 we cannot have ei = ej = 0 for i 6= j.
First, assume c1, . . . , cr−1 6= 0. Thus M(r − 1, r/2− 1) is invertible and M(r − 1, r/2− 2) contains a

nonzero maximal minor. Say this minor is corresponds to rows J ⊂
(

[r−1]
r/2−1

)
. Let J ′ = {J∪{r}|J ∈ J }.

Then the desired minor in M(r, r/2−1) corresponds to rows
(

[r−1]
r/2

)
∪J ′ ⊂

(
[r]
r/2

)
. Let H be the subgraph

of G(r, r/2 − 1) obtained by restricting to vertices J ′ and
(

[r−1]
r−2

)
. Note that H decomposes into two

disjoint bipartite graphs HA and HB on vertices containing and not containing r respectively, so a
matching in H can be thought of as a pair of matchings, one in HA and one in HB . Say that A+

and A− are the number of even and odd matchings respectively of HA, and that B+ and B− are the
number of even and odd matchings respectively of HB . Without loss of generality, say that A+ > A−
and B+ > B− (otherwise we could just swap the ordering of two vertices/rows). But then the number
of even and odd matchings of H is A+B+ + A−B− > A+B− + A−B+ respectively, and in particular
these two quantities are unequal, so we conclude that α 6= 0.

Finally, since all I ∈
(

[r]
r
2−1

)
such that r ∈ I must be matched to J ∈

(
[r]
r
2

)
such that r ∈ J , we know

that er = 0.
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4.4 Investigating when a minor is 0

Here, we investigate conditions for when a minor of M(r, d) is zero. In light of lemma 4.12, we can specialize
each ci to be 1. Call this new matrix M∗(r, d). Then, we are working with a matrix with rows and columns

indexed by
(

[r]
d+1

)
and

(
[r]
d

)
, respectively, where

M∗(r, d)J,I =

{
1 I ⊂ J
0 otherwise

Now, let M be the linear matroid over R on the rows of this matrix. Let RJ ∈ R(r
d) be the Jth row of

M∗ and let V =
(

[r]
d

)
be the vertex set of M.

In this section, assume we are working in a field of characteristic 0.

4.4.1 The relations simplex

Here, we discuss how to associate a simplex Φ to a set J ⊂ 2V and state some basic results about how they
relate to dependencies between the RJs.

Definition. The relations simplex Φ of J is the simplex on [r] generated by J ∈ J .

Corollary 4.14. Φ is pure and the facets of Φ are J .

The primary motivation for the preceding definition is that assigning weights to the facets of Φ is in
correspondence with dependencies between the RJs

Definition. Let a weighting of Φ be a function wt from facets of Φ (= J ) to K. We extend wt to all of Φ
via

wt(I) =
∑

J∈J :J⊃I
wt(J)

Definition. If wt(I) = 0 for all |I| = d, call wt a dependent weighting

Proposition 4.15. Given J ⊂ 2V , there is a linear dependency between between the RJs if and only if there
exists a non-zero dependent weighting of Φ

Proof. First, we prove

Lemma 4.16. For βJ ∈ K,∑
J∈J

βJRj = 0 ⇐⇒ wt(J) = βJ , defines a dependent weighting

Proof. We have
∑
J∈J βJRJ = 0 if and only if

∑
J⊃I βJ = 0 for all |I| = d if and only if wt(J) = βJ defines

a dependent weighting.

The claim follows from the lemma.

Corollary 4.17. If J is a circuit in M, then Φ is connected.

Proof. If Φ were not connected, one of the connected components of Φ must have a non-zero dependent
weighting. This component describes a dependent subset of J , thus J is not a circuit.
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4.4.2 The case d = 1

First, we investigateM when d = 1 but for general r > 2. We characterize the independent sets ofM, and,
as a corollary, say exactly when M(r, d) is non-zero.

In the d = 1 case, Φ is a graph. Then, let E(Φ) be the set of edges in Φ and V (Φ) the set of vertices.

Proposition 4.18. J is an independent set if and only if for each connected component Ψ ⊂ Φ, |E(Ψ)| ≤
|V (Ψ)| and Φ contains no even cycles.

Proof. We prove the contrapositive, that J is a dependent set if and only if one of the following holds:

1. There is a connected component Ψ ⊂ Φ with |E(Ψ)| > |V (Ψ)|

2. Φ contains an even cycle

First, let J be a set with a component Φ ⊂ Φ with |E(Ψ)| > |V (Ψ)|. Then, for J ⊂ E(Ψ), the row
vectors RJ have only |V (Ψ)| columns in which they have non-zero values. Then, the span of the RJ is at
most of dimension |V (Ψ)| but we have |E(Ψ)| > |V (Ψ)| vectors, meaning there is a dependency between
them.

Now, say Φ contains an even cycle. Consider the weighting wt which assigns weight 0 to edges not in the
cycle, and alternates between weights 1 and −1 for edges in the cycle. We see this is a dependent weighting.

Now, let J be a dependent set. If condition (1) holds, we are done. Moving forward, assume condition
(1) fails. Let C ⊂ J be a circuit, which exists since J is dependent. Let Ψ be the relations simplex to
associated C. From corollary 4.17, we know Ψ is connected.

Let L be a matrix with row vectors RJs for J ∈ C. Let q be the number of 1s in L, which we know is
equal to 2|E(Ψ)|. If such a matrix has a column with only 1 one in it, then that row must have coefficient
0 in a linear dependency. This would contradict C being a circuit, so every column with at at least one 1
must have at least two. Then, since there are |V (Ψ)| columns which are not all zeroes, q ≥ 2|V (Ψ)|, so in
particular |E(Ψ)| ≥ |V (Ψ)|. Since we are not in case 1, |E(Ψ)| = |V (Ψ)|.

Then, there are exactly 2 ones in each column of L. Then, this says each vertex of Ψ has degree 2. Since
Ψ is connected, Ψ is a cycle.

Now we must show Ψ is an even cycle. Say the linear dependency between the RJs, J ∈ E(Ψ) is∑
J∈J

βJRJ = 0.

Then, if RJ , RJ′ have a one in the same column, we have βJ = −βJ . Since Φ is connected, we can take
all βJs to be ±1. Now, since the weight at each vertex in V (Φ) is 0, the sum of the weights of all vertices is
0, so

2
∑
J∈J

βJ = 0.

Thus, since βJ = ±1, the number of βJs is even, so |J | = |V (J )| is even. Thus, Φ contains an even
cycle.

Corollary 4.19. A minor with rows J ⊂ 2V is non-zero if and only if each component of Φ is odd unicyclic.

Proof. A minor with rows J ⊂ 2V has the constraint that |J | = r. Then, since V (J ) = [r], this says
|E(Φ)| = |J | = r = |V (J )|. We know a minor is non-zero if and only if J is an independent set. If every
component of Φ is odd unicyclic, we see this satisfies the conditions of proposition 4.18, so the minor is non-
zero. If the minor is non-zero, then |E(Φ)| = |V (Φ)| in combination with condition (1) of proposition 4.18
says that each connected component of Φ is unicyclic. Further, as to not violate condition (2) each connected
component is odd unicyclic.

5 Two non-matroidal counterexamples

We know that the weak Lefschetz property will not hold for a general simplicial polytope and geometric lsop
θ, as seen in the following counterexamples.
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5.1 Tetrahedron Boundary Counterexample

Let x1, . . . , x8 be vertices in R3, given by the coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0),
(1, 1, 1), (−1,−1,−1), respectively. Consider the boundary of the tetrahedron ∆0 given by the following
facets: {348}, {358}, {158}, {168}, {268}, {248}, {247}, {267}, {347}, {357}, {157}, {167}. This gives rise to
a geometric interpretation of ∆0 as

x8

x3

x2

x7

x1

x6

x4

x5

We let the linear system of parameters (θ) be given by the coordinates of our vertices, such that θi is a
vector corresponding to the ith coordinate of each vj , in order from v1 to v8. In order for an element ` = a1x1+
· · ·+anxn to be Weak Lefschetz, in particular the middle map from A1 → A2 given by multiplication by `must
be invertible, as both A1 and A2 have dimension five. After establishing bases for the graded components A1

and A2, a simple computation gives the determinant of our middle map as (−1)(a7 +a8)(a2
4 +a2

5 +a2
6 +a7a8).

In order for our desired map to be invertible, we need this determinant to be nonzero.
To see that the invertibility of the desired map is not determined by our matrix M̂(l, `), and hence the

Weak Lefshetz property is not in general matroidal for a simplicial complex, it is sufficient to find two evalu-
ations of the coefficients of ` such that both evaluations produce the same set of minors of M̂(l, `) being zero
or nonzero, while one evaluation makes the `-map determinant zero and the other makes this determinant
nonzero. Indeed, it is not difficult to check that if we set (a1, . . . , a8) = (0, 0, 0, 2, 0, 0, 1,−4), we get a zero
determinant for our `-map, whereas when we set (a1, . . . , a8) = (0, 0, 0, 6, 0, 0, 3,−5), we get that our desired
map is invertible. However, both matrices corresponding to the stated linear system of parameters and the
respective coefficients of ` produce the same sets of zero and nonzero minors.

5.2 A Remark on Cross-polyotpes

In fact, depending on θ, the weak Lefschetz property for ` can be arbitrarily “far” from being matroidal. In
particular, tale our simplicial complex ∆ to be the boundary of the cross polytope in n dimensions, which
has 2n vertices. We can pick a valid lsop given by choosing 2n generic points in the ambient n-dimensional
space. Running code in Sage to calculate the determinant of the middle map referenced in Corollary 3.3
reveals that the weak Lefschetz property for ` =

∑2n
i=1 aixi is controlled by a polynomial that seems to scale

at least linearly with the dimension n. For example, letting n = 3 yields a middle map whose determinant
is an irreducible polynomial of the form

c1a
2
4a5 + c2a4a

2
5 + c3a

2
4a6 + c4a4a5a6 + c5a

2
5a6 + c6a4a

2
6 + c7a5a

2
6,

where all ci are constants (which will depend on θ). The n = 4 case requires a8 to be nonzero, as well as the
following relies on an irreducible degree 4 polynomial:

c1a
4
6 + c2a

3
6a8 + c3a

2
5a7a8 + c4a5a6a7a8 + c5a

2
6a7a8 + c6a5a

2
7a8 + c7a6a

2
7a8 + c8a

3
7a8

+ c9a
2
5a

2
8 + c10a5a6a

2
8 + c11a

2
6a

2
8 + c12a5a7a

2
8 + c13a7a

2
8 + c14a5a

3
8 + c15a6a

3
8 + c16a7a

3
8.

Following this pattern, the n = 5 case is even more complicated, depending on the vanishing of an irreducible
degree 10 polynomial. The particular polynomials themselves are not as relevant for this discussion, and
details will be spared.

These calculations imply that the choice of θ has important ramifications in simplifying the condition
for ` to be weak Lefschetz. Indeed, we saw in Proposition 4.3 that if we pick θ to be the geometric lsop,
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we do obtain a matroidal condition for the weak Lefschetz property to hold. The core difference between
the generic and geometric θ are the linear dependencies. In the latter case, there are n pairs of vectors that
are multiples of one another, and as we saw in the case of n = 3, breaking all such dependencies led to a
weak Lefschetz condition that depended on an irreducible polynomial of degree 3. Would breaking fewer
dependencies lead to polynomials of lower degree? The answer is in the affirmative. Recall that with no
dependencies broken, the determinant controlling ` being weak Lefschetz is precisely the product a4 · a5 · a6.
Breaking one dependency by moving the vertex associated to a6, the determinant of the middle map takes
the form

a5 · a4 · (c1a4 + c2a6).

Curiously, we see that the a6 term in the original determinant has been replaced with a more complicated
linear term. If we shift the vertex associated to a5, we obtain

a4 · (c1a4a5 + c2a4a6 + c3a5a6),

which follows a similar logic as before. It appears that the more generic our θ, the more unwieldy our
determinant. We do not understand this phenomenon very well at all, so needless to say, there is more to
uncover in this direction.
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