Bender-Knuth Moves on Linear extensions of Posets

BK Moves on Column Strict Tableaux

Definition

The Bender-Knuth ($\boldsymbol{B K}$) moves $\boldsymbol{t}_{\boldsymbol{i}}$ act on a column-strict tableau by swapping the contents of the letters i and $i+1$ in each row, fixing an i (resp. $i+1$) when there is an $i+1$ below (resp. i above) [2]

Illustration

BK moves on Linear extension of Posets

Definition

- A linear extension of a poset \mathbf{P} is a linear order that is compatible with P. Denote by LinExt(P) set of all such linear extensions.
- The BK moves t_{i} on $\operatorname{LinExt}(P)$ swap two adjacent letters i and $i+1$ when they label incomparable elements of P and fix them otherwise. We denote the $\mathcal{B K}$ group on $\operatorname{LinExt}(P)$ as $\mathcal{B K}_{P}$ [3].

Illustration

For example. we can view an Standard Young Tableau as a linear extension of a Ferrers poset.

Main Questions

Definition: the cactus relation is $\left(t_{i} q_{j k}\right)^{2}=1$ where $q_{j k}=q_{k-1} q_{k-j} q_{k-1}$ and $q_{j}=t_{1}\left(t_{2} t_{1}\right) \ldots\left(t_{j} t_{j-1} \ldots t_{1}\right)$ for all $i+1<j<k$ [2].
Q1: For which posets P do the cactus relation hold inside $\mathcal{B} \mathcal{K}_{P}$?

- Define an n-element poset P as LE-cactus if the cactus relation holds inside the group $\mathcal{B} \mathcal{K}_{P}$.
Q2: For which posets P do we have $\mathcal{B} \mathcal{K}_{P}=\mathfrak{S}_{P}$, the full symmetric group on $\operatorname{LinExt}(P)$?
- Define LE-symmetric posets as the posets where $\mathcal{B} \mathcal{K}_{P}$ equals the full symmetric group on $\operatorname{LinExt}(P)$
\Rightarrow Which posets P are LE-cactus? What about LE-symmetric?

Results on Le-cactus posets

Poset operations

Given P, Q two finite posets, denote their ordinal sum as $P \oplus Q$, where each element of P is less than those of Q. We also denote their disjoint union $P+Q$ and dual P^{*} (opposite poset) as below:

$$
P=\text { 高 } Q=\dot{\bullet} ; P+P+Q=P \text {. }
$$

Properties

Theorem. P is LE-cactus iff every ordered ideal of P is LE-cactus.
Theorem. P and Q are $L E$-cactus iff $P+Q$ is $L E$-cactus.
Theorem. If P is $L E$-cactus, then $A_{1} \oplus P$ and $A_{2} \oplus P$ are LE-cactus, where A_{m} is an antichain of m elements. In particular, A_{1} is a singleton.
Theorem. For any finite non-empty $P, A_{m} \oplus P$ is not $L E$-cactus if $m \geq 3$.

LE-cactus Families

Theorem. The Ferrers posets [2], shifted Ferrers posets, rooted trees, and the minuscule posets are all families of LE-cactus posets.

RESULTS ON LE-SYMMETRIC POSETS

The $N_{a, b, c}$ Posets

$$
\text { [The poset } \left.\left.N_{a, b, c}\right] \quad \text { [The poset } N_{1,2,1}\right]
$$

Properties

Theorem. A disconnected poset P is LE-symmetric iff $P=C_{n}+A_{1}$, where C_{n} is the chain of n elements for some $n \geq 1$.
Theorem. If P is LE-symmetric, so is its dual P^{*}.
Theorem. There exists an isomorphism: $\mathcal{B} \mathcal{K}_{P \oplus Q} \cong \mathcal{B} \mathcal{K}_{P} \times \mathcal{B} \mathcal{K}_{Q}$.

LE-symmetric Families

Theorem. Posets $N_{1,2, c}, N_{1, b, 1}$, and $N_{a, 2,1}$ for all $a, b, c \geq 2$ are LE-symmetric.
Theorem. A series parallel poset is LE-symmetric iff is of the form $C_{a} \oplus\left(C_{b}+\right.$ $\left.A_{1}\right) \oplus C_{d}$, where C_{a}, C_{b} and C_{d} are (possibly empty) chains.

Conjectures and Future Directions

LE-cactus Posets

Based on SageMath computational data, there are more LE-cactus posets which are not covered by our previous results. We listed out some small examples here.

Motivated by Knuth's and Frame-Robinson-Thrall's hook-length formula that counts the linear extensions of rooted forest posets and Ferrers posets, Proctor defined a family of d-complete posets that include both.
Conjecture. All d-complete posets are LE-cactus.
This family is computationally checked as LE-cactus for $n \leq 9$ by SageMath LE-symmetric Posets

Conjecture. The posets $N_{a, b, c}$ are LE-symmetric for all $a, c \geq 1$ and $b \geq 2$. Conjecture. The zigzag-poset Z_{n} below is $L E$-symmetric when n is even.

Computationally, SageMath indicates poset $N_{a, b, c}$ is LE-symmetric for all $1 \leq a, c \leq 4$ and $2 \leq b \leq 5 ; Z_{n}$ is LE-symmetric for all even $n \leq 10$

References

[1] Edward A Bender and Donald E Knuth. Enumeration of plane partitions. Journal of Combinatorial Theory, Series A, 13(1):40-54, 1972.
[2] Michael Chmutov, Max Glick, and Pavlo Pylyavskyy. The Berenstein-Kirillov group and cactus groups. J. Comb. Algebra, 4(2):111-140, 2020.
[3] Richard P. Stanley. Promotion and evacuation. Electron. J. Combin., 16(2, Special volume in honor of Anders Björner):Research Paper 9, 24, 2009.

ACKNOWLEDGEMENT

This research is based on a project carried out at the 2022 University of Minnesota Twin Cities Combinatorics and Algebra REU. We are extremely thankful for UMN Math Department and the support from RTG grant NSF/DMS-1745638.

