BENDER-KNUTH MOVES ON LINEAR EXTENSIONS OF POSETS

PRESENTERS: JUDY HSIN-HUI CHIANG¹, MATTHEW KENDALL², BENJAMIN PRZYBOCKI³

COLLABORATORS: RYAN LYNCH⁴, SON NGUYEN⁵, JANABEL XIA⁶.

MENTORS: VIC REINER⁵, ANH TRONG NAM HOANG⁵

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN¹, PRINCETON UNIVERSITY², STANFORD UNIVERSITY³, UNIVERSITY OF NOTRE DAME⁴, UNIVERSITY OF MINNESOTA TWIN CITIES⁵, MASSACHUSETTS INSTITUTE OF TECHNOLOGY⁶

BK MOVES ON COLUMN STRICT TABLEAUX

Definition

The **Bender-Knuth (***BK***) moves** t_i act on a column-strict tableau by swapping the contents of the letters *i* and i+1 in each row, fixing an *i* (resp. i+1) when there is an i + 1 below (resp. i above) [2].

Illustration

BK MOVES ON LINEAR EXTENSION OF POSETS

Definition

- A linear extension of a poset P is a linear order that is compatible with P. Denote by **LinExt(P)** set of all such linear extensions.
- The **BK moves** t_i on LinExt(P) swap two adjacent letters i and i + 1when they label incomparable elements of *P* and fix them otherwise. We denote the \mathcal{BK} group on $\operatorname{LinExt}(P)$ as \mathcal{BK}_P [3].

Illustration

For example. we can view an Standard Young Tableau as a linear extension of a Ferrers poset.

MAIN QUESTIONS

Definition: the cactus relation is $(t_i q_{jk})^2 = 1$ where $q_{jk} = q_{k-1} q_{k-j} q_{k-1}$ and $q_j = t_1(t_2t_1) \dots (t_jt_{j-1} \dots t_1)$ for all i + 1 < j < k [2].

Q1: For which posets *P* do the cactus relation hold inside \mathcal{BK}_P ?

• Define an *n*-element poset *P* as **LE-cactus** if the cactus relation holds inside the group \mathcal{BK}_P .

Q2: For which posets *P* do we have $\mathcal{BK}_P = \mathfrak{S}_P$, the full symmetric group on LinExt(P)?

- Define **LE-symmetric posets** as the posets where \mathcal{BK}_P equals the full symmetric group on LinExt(P)
- \Rightarrow Which posets *P* are LE-cactus? What about LE-symmetric?

Results on LE-cactus posets

Poset operations

Given *P*, *Q* two finite posets, denote their ordinal sum as $P \oplus Q$, where each element of P is less than those of Q. We also denote their disjoint union P + Q and dual P^* (opposite poset) as below:

$$P = \checkmark Q = \downarrow \Rightarrow P + Q = \checkmark \downarrow; P \oplus Q = \checkmark; P^* = \checkmark$$

Properties

Theorem. *P* is *LE*-cactus iff every ordered ideal of *P* is *LE*-cactus.

Theorem. *P* and *Q* are *LE*-cactus iff P + Q is *LE*-cactus.

Theorem. If P is LE-cactus, then $A_1 \oplus P$ and $A_2 \oplus P$ are LE-cactus, where A_m is an antichain of m elements. In particular, A_1 is a singleton.

Theorem. For any finite non-empty P, $A_m \oplus P$ is not LE-cactus if $m \ge 3$.

LE-cactus Families

Theorem. The Ferrers posets [2], shifted Ferrers posets, rooted trees, and the *minuscule posets are all families of LE-cactus posets.*

RESULTS ON LE-SYMMETRIC POSETS

Properties

Theorem. A disconnected poset P is LE-symmetric iff $P = C_n + A_1$, where C_n is the chain of n elements for some $n \ge 1$.

Theorem. If P is LE-symmetric, so is its dual P^* .

Theorem. There exists an isomorphism: $\mathcal{BK}_{P\oplus Q} \cong \mathcal{BK}_P \times \mathcal{BK}_Q$.

LE-symmetric Families

Theorem. Posets $N_{1,2,c}$, $N_{1,b,1}$, and $N_{a,2,1}$ for all $a, b, c \ge 2$ are LE-symmetric.

Theorem. A series parallel poset is LE-symmetric iff is of the form $C_a \oplus (C_b + C_b)$ $A_1) \oplus C_d$, where C_a, C_b and C_d are (possibly empty) chains.

Based on *SageMath* computational data, there are more LE-cactus posets which are not covered by our previous results. We listed out some small examples here.

Motivated by Knuth's and Frame-Robinson-Thrall's hook-length formula that counts the linear extensions of rooted forest posets and Ferrers posets, Proctor defined a family of *d*-complete posets that include both.

Conjecture. *All d-complete posets are LE-cactus.*

This family is computationally checked as LE-cactus for $n \leq 9$ by *SageMath*. **LE-symmetric Posets**

Conjecture. The posets $N_{a,b,c}$ are LE-symmetric for all $a, c \ge 1$ and $b \ge 2$.

Conjecture. The zigzag-poset Z_n below is LE-symmetric when n is even.

CONJECTURES AND FUTURE DIRECTIONS

LE-cactus Posets

Computationally, *SageMath* indicates poset $N_{a,b,c}$ is LE-symmetric for all $1 \le a, c \le 4$ and $2 \le b \le 5$; Z_n is LE-symmetric for all even $n \le 10$

REFERENCES

[1] Edward A Bender and Donald E Knuth. Enumeration of plane partitions. Journal of Combinatorial Theory, Series A, 13(1):40–54, 1972.

[2] Michael Chmutov, Max Glick, and Pavlo Pylyavskyy. The Berenstein-Kirillov group and cactus groups. J. Comb. Algebra, 4(2):111–140, 2020.

[3] Richard P. Stanley. Promotion and evacuation. Electron. J. Combin., 16(2, Special volume in honor of Anders Björner):Research Paper 9, 24, 2009.

ACKNOWLEDGEMENT

This research is based on a project carried out at the 2022 University of Minnesota Twin Cities Combinatorics and Algebra REU. We are extremely thankful for UMN Math Department and the support from RTG grant NSF/DMS-1745638.