MEASURING THE SPACE OF METAPLECTIC WHITTAKER FUNCTIONS
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ABOUT METAPLECTIC WHITTAKER FUNCTIONS

Whittaker functions are special functions that arise in p-adic number theory
and representation theory. Metaplectic Whittaker functions are Whittaker
functions on metaplectic covering groups, which are central extensions of
a reductive group by the n'” roots of unity.

Unlike Whittaker functions on the base group GL, (F'), metaplectic Whit-
taker functions are not unique up to multiplicity. To understand the behav-
ior of the space, we need to know how the cover affects the dimension.

Theorem (Brylinski-Deligne [2], Frechette [3])

Every n-fold metaplectic cover of GL,(F') corresponds to a bilinear form
B, 4 for some c,d € Z thatactson (x,y) € Z" x Z" by
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Theorem (McNamara [4], Frechette [3])

The dimension of the space 20 of Whittaker functions on a metaplectic
cover of GL,.(F) is
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These are the cocharacter equations.
Diagonal numbers

Let d; = ged(c — d,n) and d5 = ged(c+ (r — 1)d, n).
Example: » = 3, n = 10

We record |A ¢;,,| for each c,d € Z1p when r = 3 and n = 10:
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In this case (where n and r are coprime), |[A ;| = d’"l"_lc?z.

MAIN THEOREM (A)

Theorem
Afin] = d] " ged (412, —

Proof outline
A vector € Z] solves the inhomogenous cocharacter equations if

B.4xr =al, (mod n)

for some a € Z,. Here, 1, = (1,1,...,1)%.
The solutions to this are precisely vectors of the form

for constants =1, vs,...,v, € Z,. There are nc(”l"_l of these, and the fraction
with a = 0 is ged(ds, j—?)/n.

MAIN THEOREM (B)
Definition
The coroot equations are the system of r equations:

(c—d)(x; — xp) =
(c+(r—Dd)(x1+ -+ z,) =

(mod n)
(mod n).

0 forall: € {1,...,r — 1},
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These arise from the root structure of GL,(F), and any solution to the
cocharacter equations also solves the coroot equations.
Theorem

The number of solutions to the coroot equations is
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Counting the proportion of these which also solve the cocharacter equa-
tions yields another expression for A ¢;,,:
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COROLLARIES

e We have dim(2J) = 1 (that is, of minimum size) if and only if c = d =
0 (mod n).

e We have dim(20) = n" (that is, of maximum size) if and only if ¢ — d
and ¢ + (r — 1)d are coprime to n.

o If n and r are relatively prime, dim(20) = n"/ (4] d).

QUANTUM GROUPS

One application of our approach is to investigate the connection between
20 and quantum group modules found by Brubaker-Buciumas-Bump for
the case c = d = 1 [1], and Frechette [3] in general.

Definition
U=U,( gl(n/dy))isa quantum group, an affine quasitriangular Hopf algebra

built from the Lie algebra gl. For each z € C, this quantum group has an
evaluation module V. (z), with basis parametrized by Z/(n/d1)Z.

Thoerem (Brubaker-Bucimas-Bump [1], Frechette [3])
There is a homomorphism

0, :W* = V(1) ®- - @ Vi(z)
(r—1,...,2,1,0) —v (mod n/d;),

This map translates the action of intertwining operators on 2U into that of
the quantum group on the module.
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However, this map depends on a particular choice of basis for 20. When is
it well-defined regardless of that choice?

Theorem
The map 0, is well-defined for any choice of basis precisely when

d
ged (&2, Z—) = ged(c, d, n).
1

FUTURE WORK

* Find the dimension of the space of metaplectic Whitaker functions for
other reductive groups (the coroot strategy may be helpful here).

* Investigate the kernel and image of 0, and classify when this map is
an isomorphism (or injection or surjection).

e Use this to understand better what quantum group modules we
should use for other reductive groups.
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