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1 Introduction
Upon Fomin and Zelvinsky’s pioneer work [8][9] in cluster algebras for the study of total pos-

itivity and dual canonical bases in semisimple Lie groups, a great variety of its applications have
been found in combinatorics, tropical geometry [5], Teichmüller theory [16], representation theory
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[2]. With the introduction of Laurent phenomenon, mathematicians [15] [12] [3] have been intrigued
to study combinatorial interpretations for the cluster variables as perfect matchings of graphs, under
suitable weighting schemes . Of particular interest is the situation where the graphs are directly re-
lated to the quiver of the cluster algebra, namely when they are subgraphs of the dual of the quiver.

Previous work in dP3 quiver has considered both a single and an infinite class of mutation se-
quence on this quiver to a class of subgraphs of its brane tiling (known as Aztec dragons and Aztec
castles respectively) [17] [12]. As Zhang [17] proved the explicit formula for cluster variables of Aztec
dragon, Leoni-Musiker-Neel-Turner [13] proved a more generalized mutation sequence. Afterwards,
Lai-Musiker [12] found explicit formula for cluster variables of Aztec castles with Aztec dragons as a
special case.

Our paper is concerned with a variant of such quiver over the del Pezzo surface dP3, where we
include a second alphabet of variables, {y1, y2, . . . , yn}, that breaks the symmetry of this recurrence.
This deformation is motivated by the theory of cluster algebras with principal coefficients introduced
by Fomin and Zelvinsky [9]. We attempt to answer Question 1 and our goal is to obtain combinato-
rial formulas for the Laurent expansions of cluster variables obtained by certain sequences of muta-
tions of quivers of interest to string theorists such as those associated to reflexive polygons [1].

Question 1. Given a deformation of the dP3 quiver with an infinite class of mutation sequence as
introduced in [12], what is the combinatorial interpretations for the cluster variables? In other words,
what is the minimal matching for an Aztec castle graph?

Our main result is the construction of the minimal matching of Aztec Castles in Section 5.1 and
the outline of the paper proceeds as follows. In Section 2, we discuss the backgrounds of quivers by
reminding the readers definitions of quiver and cluster mutations in Section 2.1. Then, we introduce
their deformations (framed quivers) in Section 2.6. Specifically, we introduce dP -3 quivers and the
construction of Aztec castles described in [12] along with Aztec dragons as a special case. We give
the construction of minimal matching of Aztec Castles in Section 5 and discuss the proof of Theo-
rem 5.1 in Section 6.

2 Background

2.1 Quiver and cluster mutations
A quiver Q is a directed finite graph with a set of vertices V and a set of directed edges E

connecting them such that there are no loops or 2-cycles. We can relate a cluster algebra with
initial seed {x1, x2, . . . , xn} to Q by associating a cluster variable xi to every vertex labeled i in Q
where |V | = n. The cluster is the union of the cluster variables at each vertex.

Definition 2.1. [Quiver Mutation [8]] Mutating at a vertex i in Q is denoted by µi and corresponds
to the following actions on the quiver:

• For every 2-path through i (e.g. j → i→ k), add an edge from j to k.

• Reverse the directions of the arrows incident to i

• Delete any 2-cycles created from the previous two steps.

When we mutate at a vertex i, the cluster variable at this vertex is updated and all other cluster
variables remain unchanged. The action of µi on the cluster leads to the following binomial exchange
relation:

x′ixi =
∏

i→j in Q

x
ai→j

j +
∏

j→i in Q

x
bj→i

j

where x′i is the new cluster variable at vertex i, ai→j denotes the number of edges from i to j, and
bj→i denotes the number of edges from j to i.
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It was proved in [8] that every cluster variable is a Laurent polynomial in Z[x1, . . . , xn], i.e.

xm =
P (x1, . . . , xn)

xd1
1 . . . xdn

n

for all m.

2.2 del Pezzo 3 quiver and lattice
Our focus on this project is the del Pezzo 3 (dP3) quiver illustrated in Figure 1. By unfolding this

quiver, we get the infinite unfolded dP3 quiver as shown in Figure 2. Then, taking the dual graph of
the unfolded quiver yields its brane tiling in Figure 3, which will be referred to as the dP3 lattice.
The notion of brane tiling is first introduced in physics but later interpreted by Cottrell-Young [4] as
a version of the domino shuffling algorithm. This doubly periodic, bipartite, planar graphs arise in
string theory where theoretical physicist can associate an infinite class of supersymmetric quiver gauge
theories to a corresponding toric variety (which is a Calabi–Yau 3-fold) as well as this combinatorial
model. They appear physically in string theory through the intersections of NS5 and D5-branes which
are dual to a configuration of D3-branes probing the singularity of a toric Calabi–Yau threefold [7].
Because of its geometry connection and how the (3 + 1) dimensional supersymmetric gauge field theory
lives on the worldvolume of the D3-brane, it can be represented by the dP3 quiver.

Figure 1: dP3 quiver

Figure 2: Unfolded dP3 quiver

2.3 Toric mutations and prism walk
2.3.1 Toric mutations

A vertex is toric if its in-degree and out-degree are both 2. A toric mutation is a mutation at a
toric vertex. In this paper, we will study the following five actions on the dP3 quiver, which are also

3



Figure 3: dP3 lattice

the main actions studied in [12].

Definition 2.2. Define the following actions

τ1 = µ1 ◦ µ2 ◦ (12),

τ2 = µ3 ◦ µ4 ◦ (34),

τ3 = µ5 ◦ µ6 ◦ (56),

τ4 = µ1 ◦ µ4 ◦ µ1 ◦ µ5 ◦ µ1 ◦ (145),

τ5 = µ2 ◦ µ3 ◦ µ2 ◦ µ6 ◦ µ2 ◦ (236),

where we apply a graph automorphism of Q and permutation to the labeled seed after the sequence
of mutations.

One can then check that on the level of quivers and labeled seeds (i.e. ordered clusters), we have
the following identities, which are also noted in [12]: For all i, j such that 1 ≤ i 6= j ≤ 3, we have

τ1(Q) = τ2(Q) = τ3(Q) = τ4(Q) = τ5(Q) = Q

(τi)
2{x1, x2 . . . , x6} = (τ4)

2{x1, x2 . . . , x6} = (τ5)
2{x1, x2 . . . , x6} = {x1, x2 . . . , x6}

(τiτj)
3{x1, x2 . . . , x6} = {x1, x2 . . . , x6},

τiτ4{x1, x2 . . . , x6} = τ4τi{x1, x2 . . . , x6},
τiτ5{x1, x2 . . . , x6} = τ5τi{x1, x2 . . . , x6}.

2.3.2 Prism walk

We will model the mutations in defined in Definition 2.2 as prism walk on a square triangulated
lattice, illustrated in Figure 4b. We will place the prism so that the coordinates of vertices 1, . . . , 6
are (0,−1, 1), (0,−1, 0), (−1, 0, 0), (−1, 0, 1), (0, 0, 1), (0, 0, 0) respectively. The reason is the cluster
variables corresponding to these coordinates, described in Section 2.4, are x1, . . . , x6 respectively.

Figure 5 and 6 show how τ1 and τ4 act on the prism. Thus, τ1, τ2, τ3 correspond to reflecting the
prism about its three side faces, as illustrated in Figure 7, while τ4, τ5 correspond to reflecting the
prism about its two top faces, as in Figure 8.

One can check that using these five τ -mutations, we can indeed move the original prism to any
isometric prism in the Z3 lattice. Conversely, any sequence of τ -mutations can be modeled as a prism
in the Z3 lattice. As a result, we can associate a cluster variable zi,j,k to each point (i, j, k) in Z3.
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Figure 4: Prism and lattice

Figure 5: τ1 action on the prism

2.4 Aztec Castles
2.4.1 Construction

In this section, we describe the construction of Aztec Castles from the points in the Z3 lattice as
this will give the cluster variables for the τ -mutations. In general, the construction of Aztec Castles
consists of the following steps, as described in [12].

• Step 1: We start with a 6-tuple (a, b, c, d, e, f) ∈ Z6 and draw a (six-sided) contour C(a, b, c, d, e, f)
on the dP3 lattice in the direction in Figure 9. We start from a vertex in the center of a hexagon,
and define the unit length to be two "long" edges of the lattice. Note that if an element of the
tuple is 0, we simply skip the corresponding side, and if an element is negative, we transverse in
the opposite direction.

Also note that we want to pick a 6-tuple so that the resulting contour is closed. We will ex-
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Figure 6: τ4 action on the prism

Figure 7: Three reflections corresponding to τ1, τ2, τ3
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Figure 8: Two reflections corresponding to τ4, τ5

a

b

c

d

e

f

Figure 9: Contour direction

Figure 10: Step 1

plain this further in Section 2.4.2. Figure 10 shows an example of a contour when the tuple is
(4,−3, 0, 3,−2,−1).

• Step 2: We remove every vertex outside the contour and keep only the vertices inside, as in
Figure 11.
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Figure 11: Step 2

• Step 3: We remove vertices along the sides as follow. For any side of positive (resp. negative)
length, we remove all black (resp. white) vertices along that side. For any side of length zero,
this side corresponds to a single vertex. If any of the adjacent sides is negative, then this vertex
is already removed. If this side is between two sides of length zero, we will also remove this
vertex. The only case that we keep this vertex is when it is between two sides of positive lengths.
Figure 12 shows the resulting graph after this step.

Figure 12: Step 3

• Step 4: Finally, we have some "dangling" edges, which are edges in which one of the two incident
vertices has degree 1. These are the red edges in Figure 13. For these edges, we can either keep
or remove the two incident vertices. The reason is that when considering perfect matchings of
this graph, these edges are always forced to be in the matching, and they do not contribute to
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the weight of the matching (which will be defined in Section 2.4.3). For this paper, we opt to
keep these edges.

Figure 13: Step 4

The resulting graph after the above four steps is an Aztec Castle.

2.4.2 Contour parametrization

We now discuss the requirements we have for the 6-tuple as described in lemma 5.3 of [12]. First
of all, for the contour to be closed, we want

a+ b = d+ e and c+ d = f + a.

We also want b+ c = e+f , but this is implied by the above two relations, so we do not include this
condition. Finally, since we will work with perfect matchings of this graph, we want the same number
of white vertices and black vertices. By counting the number of vertices deleted on each side in step
3 of the construction, Lai and Musiker introduced a third condition which allows for an equal number
of black and white vertices:

a+ b+ c+ d+ e+ f = 1.

With these three conditions, we can parametrize the 6-tuple by three parameters as follows.

Definition 2.3. Define the Castle Ci,j,k to be the Castle constructed by the contour

C(j + k,−i− j − k, i+ k, j + 1− k,−i− j − 1 + k, i+ 1− k)

One can check that the above tuple satisfies all three aforementioned conditions. Thus, we can
associate each point in Z3 to an Aztec Castle. Different possible shapes of Aztec Castles can be seen
in figures 14 and 15. There are also degenerate cases at the lines separating the regions where one or
two sides have length 0. We number the cases as in the two figures, leaving out the yellow region since
the contour in that case has a self-intersection, and we do not have a full understanding of that type
of Castle yet.
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Figure 14: Possible Castle shapes for a fixed k ≥ 1, source: [12]

2.4.3 Weight

For every Aztec Castle Ci,j,k, we will use the common definition of the weight of a perfect matching
m as defined by Speyer in [15].

wt(m) =


∏

f∈Gt+1

x
(s−1)−|E(f)∩m|
f , if f ∈ G◦∏

f∈Gt+1

x
b s2 c−|E(f)∩m|
f , if f ∈ ∂G

,

where G is the graph, and f is a face of a 2s−gon in the graph.
In our discussion of Aztec Castles, since all faces are 4-gons, the formula for the weight can be

simplified to
wt(m) =

∏
f∈Gt+1

x
(1−|E(f)∩m|)
f .
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Figure 15: Possible Castle shapes for a fixed k ≤ 0, source: [12]

With the weight of each perfect matching defined, we have the following definition of the weight of
an Aztec Castle:

wt(Ci,j,k) =
∑
m

wt(m).

Lai and Musiker [12] prove the following theorem about Aztec Castle.

Theorem 2.1. Let zi,j,k be the cluster variable at point (i, j, k). Then if (i, j, k) is not in the yellow
region in Figure 14 and 15, we have

zi,j,k = wt(Ci,j,k).
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2.5 Aztec Dragons
A special family of Aztec Castles is the family of Aztec Dragons, which are Aztec Castles with

i ∈ {−1, 0}, k ∈ {0, 1}, and j ≥ 0. Specifically, we define Dn to be C0,n,1 and Dn+1/2 to be C−1,n+1,0.
Also, we define D′n to be C0,n,0 and D′n+1/2 to be C−1,n+1,1. Some examples of Aztec Dragons can be
seen in figures 16 and 17. Notice that D′n is a 180◦ rotation of Dn, and D′n+1/2 is a 180◦ rotation of
Dn+1/2. It was proved in [17] that the weights of Aztec Dragons are the cluster variables of the dP3
quiver after mutations τ1τ2τ3τ1τ2τ3 . . .

Figure 16: Aztec Dragons D5 and D′5

Figure 17: Aztec Dragons D4+1/2 and D′4+1/2

2.6 Framed quiver, c-vector, g-vector and F -polynomial
2.6.1 Framed quiver and c-vector

For a quiver Q, the associated framed quiver Q̂ is a directed graph in which

VQ̂ = VQ ∪ {vi+n | vi ∈ VQ} and EQ̂ = EQ ∪ {vi → vi+n | vi ∈ VQ}.

The additional vertices in Q̂ are called frozen vertices, which means that we never mutate at these
vertices. An important family of integer vectors relating to the framed quiver, called c-vectors, was
introduced in [9].
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Definition 2.4. Let B be the incidence matrix of Q̂. Then for each ` = 1, . . . , n, the c-vector c` is
defined to be c` = (bn+1,`, . . . , b2n,`)

T .

A key property of c-vectors is sign-coherence, which means that all entries in each c-vector is either
nonnegative or nonpositive. This was conjectured in [9] and first proved for quivers in [6]. The general
case for cluster was proved in [10].

2.6.2 F -polynomial and g-vector

We also associate new cluster variables {y1, . . . , yn} to the frozen vertices. Then every cluster
variable is a Laurent polynomial in Z[x1, . . . , xn, y1, . . . , yn], i.e.

xm =
P (x1, . . . , xn, y1, . . . , yn)

xd1
1 . . . xdn

n

for all m. These are called the principal coefficients of the cluster variable.
Setting x1 = . . . = xn = 1, we obtain the F -polynomial of the cluster variable, i.e. we have

Fm = P (1, . . . , 1, y1, . . . , yn).

As a corollary of the sign-coherence property of c-vectors, the F -polynomial always contains a
unique term 1 (Proposition 5.6 in [9]). This means that there is a unique term in xm in which the
exponents of yi is 0 for all i, in other words, this term is a monomial in Z[x1, . . . , xn]. We will refer to
this as the minimal monomial of xm.

The minimal monomials form another prominent family of integer vectors introduced in [9] called
the g-vectors.

Definition 2.5. Let xg11 . . . xgnn be the minimal monomial of xm. Then the g-vector cm is defined to
be cm = (g1, . . . , gn).

Since the Laurent polynomial of any xm is homogeneous, if we set

yi =

∏
edge j→i xj∏
edge i→j xj

for all i, then the resulting polynomial consists of a single term whose exponents are the g-vector.
Therefore, finding the F -polynomial is sufficient to find the Laurent polynomial (Proposition 6.3 in
[9]). In the context of framed quiver, given Theorem 2.1, the cluster variable with principal coefficients
are expected to be generating functions (or termed weighted sums) over the perfect matching for the
Aztec castle. In this case, instead of simply taking the weight defined in Section 2.4.3, we also need to
introduce the notion of height for each perfect matching. Then, based on Section 2.6.2, it is sufficient
to define the minimal matching and show that its weight matched the g-vectors as desired.

Definition 2.6. The height ht(m) = f , where f is the face in a closed loop created by superimposing
the perfect matching m with the minimal matching.

2.6.3 c-matrix and g-matrix

Let the c-matrix C be the matrix whose columns are c-vectors, and g-matrix G be the matrix
whose rows are g-vectors. We have the following theorem, which is a special case of a theorem proved
in [14].

Theorem 2.2. For any skew-symmetric exchange matrix B, we have

G = (−C)−1

Thus, we can find one matrix from the other.
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3 Kuo condensation
Kuo condensation is the main tool of this paper. It was introduced by Kuo in [11], and can

be considered a combinatorial interpretation of Dodgson condensation on determinants of matrices.
Several versions of Kuo condensation were presented in [11], here we opt to state the versions that we
will use in Section 6.

Lemma 3.1 (Balanced Kuo Condensation; Theorem 5.1 in [11]). Let G = (V1, V2, E) be a (weighted)
planar bipartite graph with |V1| = |V2|. Assume that p1, p2, p3, p4 are four vertices appearing in a cyclic
order on a face of G. Assume in addition that p1, p3 ∈ V1 and p2, p4 ∈ V2. Then

w(G)w(G− {p1, p2, p3, p4}) =w(G− {p1, p2})w(G− {p3, p4})
+ w(G− {p1, p4})w(G− {p2, p3}). (1)

Lemma 3.2 (Non-alternating Kuo Condensation; Theorem 5.3 in [11]). Let G = (V1, V2, E) be a
planar bipartite graph with |V1| = |V2|. Assume that p1, p2, p3, p4 are four vertices appearing in a cyclic
order on a face of G. Assume in addition that p1, p2 ∈ V1 and p3, p4 ∈ V2. Then

w(G− {p1, p4})w(G− {p2, p3}) =w(G)w(G− {p1, p2, p3, p4})
+ w(G− {p1, p3})w(G− {p2, p4}). (2)

We will now give a summary of how to pick the four points for Kuo condensation as presented in
[12].

First, we define the points A,B,C,D,E, F on the sides a, b, c, d, e, f depending on the sign of each
side, as shown in figures 18 and 19.

Deletion of these points yield forced edges as in figures 20 and 21. Therefore, the subgraph after
removing A corresponds to the contour C(a − 1, b + 1, c, d, e, f + 1) if A is black and to the contour
C(a + 1, b − 1, c, d, e, f − 1) if A is white. Analogous results hold for B,C,D,E, F . Thus, given
an appropriate subgraph of a Castle, we can determine the right choice of four out of six points
A,B,C,D,E, F based on the difference (dA, dB , dC , dD, dE , dF ) so that the subgraph after removing
the four points is the desired subgraph.

4 Minimal matching of Aztec Dragons
We now gives the minimal matching of Aztec Dragons. Although this section is subsumed by

Theorem 5.1 in Section 5, since Aztec Dragons are special cases of Aztec Castles, we think that this
section is a great example for the general Aztec Castles.

4.1 C-matrix
Lemma 4.1. Let Ci be the c-matrix of the quiver after the ith mutation in the sequence

µ1µ2µ3µ4µ5µ6µ1µ2µ3µ4µ5µ6 . . . ,

then Ci has the following formula.
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Figure 18: Choices of A,B,C,D,E, F when the signs are +,−,+,+,−,+
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Figure 19: Choices of A,B,C,D,E, F when the signs are −,+,−,−,+,−
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Figure 20: Deletion of A,B,C,D,E, F yields forced edges
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Figure 21: Deletion of A,B,C,D,E, F yields forced edges
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Q0+12k =


−3k−1 0 0 0 3k 0

0 −3k−1 0 0 0 3k
−3k 0 −1 0 3k 0
0 −3k 0 −1 0 3k
−3k 0 0 0 3k−1 0
0 −3k 0 0 0 3k−1

, Q1+12k =


3k+1 0 −3k−1 0 −1 0

0 −3k−1 0 0 0 3k
3k 0 −3k−1 0 0 0
0 −3k 0 −1 0 3k
3k 0 −3k 0 −1 0
0 −3k 0 0 0 3k−1

,
Q2+12k =


3k+1 0 −3k−1 0 −1 0

0 3k+1 0 −3k−1 0 −1
3k 0 −3k−1 0 0 0
0 3k 0 −3k−1 0 0
3k 0 −3k 0 −1 0
0 3k 0 −3k 0 −1

, Q3+12k =


0 0 3k+1 0 −3k−2 0
0 3k+1 0 −3k−1 0 −1
−1 0 3k+1 0 −3k−1 0
0 3k 0 −3k−1 0 0
0 0 3k 0 −3k−1 0
0 3k 0 −3k 0 −1

,
Q4+12k =


0 0 3k+1 0 −3k−2 0
0 0 0 3k+1 0 −3k−2
−1 0 3k+1 0 −3k−1 0
0 −1 0 3k+1 0 −3k−1
0 0 3k 0 −3k−1 0
0 0 0 3k 0 −3k−1

, Q5+12k =


−3k−2 0 −1 0 3k+2 0

0 0 0 3k+1 0 −3k−2
−3k−2 0 0 0 3k+1 0

0 −1 0 3k+1 0 −3k−1
−3k−1 0 −1 0 3k+1 0

0 0 0 3 0 −3k−1

,
Q6+12k =


−3k−2 0 −1 0 3k+2 0

0 −3k−2 0 −1 0 3k+2
−3k−2 0 0 0 3k+1 0

0 −3k−2 0 0 0 3k+1
−3k−1 0 −1 0 3k+1 0

0 −3k−1 0 −1 0 3k+1

, Q7+12k =


3k+2 0 −3k−3 0 0 0

0 −3k−2 0 −1 0 3k+2
3k+2 0 −3k−2 0 −1 0

0 −3k−2 0 0 0 3k+1
3k+1 0 −3k−2 0 0 0

0 −3k−1 0 −1 0 3k+1

,
Q8+12k =


3k+2 0 −3k−3 0 0 0

0 3k+2 0 −3k−3 0 0
3k+2 0 −3k−2 0 −1 0

0 3k+2 0 −3k−2 0 −1
3k+1 0 −3k−2 0 0 0

0 3k+1 0 −3k−2 0 0

, Q9+12k =


−1 0 3k+3 0 −3k−3 0
0 3k+2 0 −3k−3 0 0
0 0 3k+2 0 −3k−3 0
0 3k+2 0 −3k−2 0 −1
−1 0 3k+2 0 −3k−2 0
0 3k+1 0 −3k−2 0 0

,
Q10+12k =


−1 0 3k+3 0 −3k−3 0
0 −1 0 3k+3 0 −3k−3
0 0 3k+2 0 −3k−3 0
0 0 0 3k+2 0 −3k−3
−1 0 3k+2 0 −3k−2 0
0 −1 0 3k+2 0 −3k−2

, Q11+12k =


−3k−4 0 0 0 3k+3 0

0 −1 0 3k+3 0 −3k−3
−3k−3 0 −1 0 3k+3 0

0 0 0 3k+2 0 −3k−3
−3k−3 0 0 0 3k+2 0

0 −1 0 3k+2 0 −3k−2

.
Proof. This can be easily proved by induction, noticing that

Q0 =

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


and

Q12(k+1) =


−3(k+1)−1 0 0 0 3(k+1) 0

0 −3(k+1)−1 0 0 0 3(k+1)
−3(k+1) 0 −1 0 3(k+1) 0

0 −3(k+1) 0 −1 0 3(k+1)
−3(k+1) 0 0 0 3(k+1)−1 0

0 −3(k+1) 0 0 0 3(k+1)−1

.

Knowing the c-matrices, we can compute the minimal weight for each cluster variable xi.

4.2 Minimal Matching
Since D′n and D′n+1/2 are rotations of Dn and Dn+1/2, we will mainly work with Dn and Dn+1/2

only.
Let the zero line be the horizontal line passing through the starting point of the contour, we will

consider the following perfect matching.

• For the edges on and above the 0 level, match all 1− 6, 5− 4, 2− 3 edges.

• For the edges below the 0 level, match all 1− 4, 2− 5, 3− 6 edges (except the 2− 6 dangling edge
in Dn+1/2).
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(a) Minimal matching of D5 (b) Minimal matching of D4+1/2

Proposition 4.2. The above perfect matching is the unique minimal matching.

Proof. We will prove this using Kuo condensation. By the discussion in Section 3, we choose four
points A,B,D,E as shown in figures 23 and 24. As can be seen in the figures, from a Dragon Di

removing all four points A,B,D,E gives the Dragon Di−3/2 while removing pairs of two points give
Di−1, Di−1/2, D

′
i−1, D

′
i−1/2.

The c-matrices in Lemma 4.1 tell us that

z0,n,1z−1,n−1,0 = z0,n−1,1z−1,n,0 +
∏

yiz0,n−1,0z−1,n,1

z−1,n+1,0z0,n−1,1 = z0,n,1z−1,n,0 +
∏

yiz0,n,0z−1,n,1

In both cases, we can see that superimposing Di and Di−3/2 gives the same double dimer cover
as superimposing Di−1 and Di−1/2. On the other hand, superimposing D′i−1 and D′i−1/2 gives the
product of yi that matches the above two equations. This verifies that the proposed perfect matching
satisfies the recurrence for Aztec Dragons, and hence proves that it is indeed the minimal matching.

Now we demonstrate how the minimal weight can be easily computed from the minimal matching.

Lemma 4.3. For dP3 quiver, the minimal weight of a cluster variable xi, denoted as mon(xi), is:

mon(x4k) =
x4x

k
6

xk2
, mon(x4k+1) =

xk5
xk−11

, mon(x4k+2) =
xk6
xk−12

, mon(x4k+3) =
x3x

k
5

xk1
.

Proof. Since for each region above and below the zero line, we use the same matching pattern, every
face in each region has exactly one edge, and so does not contribute to the weight. Thus, to compute
the weight, we only need to consider the faces along the zero line.

In the case of Dn, we have exactly n faces 5 having no edge, and exactly n− 1 faces 1 having two

edges. Therefore, the weight of the perfect matching is
xn5
xn−11

.
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Figure 23: Kuo condensation for Dn+1/2

In the case of Dn+1/2, we have exactly n faces 5 having no edge, exactly n faces 1 having two
edges, and one face 3 having no edge at the 2− 6 dangling edge. Therefore, the weight of the perfect

matching is
x3x

n
5

xn1
.
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Figure 24: Kuo condensation for Dn

Remark. We can also verify these minimal weights by checking that the g-matrix formed by these
weights, together with the c-matrix found in Lemma 4.1, satisifies Theorem 2.2.
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5 Minimal matching of Aztec Castles
Now we give the minimal matching for Aztec Castles. In general, the construction is more compli-

cated than for Aztec Dragons since we now vary all i, j, k in all direction.

5.1 Construction
In this section, we will give the construction of the minimal matching, which will be proved later

in Section 6. Specifically, we will give the construction for generic cases when none of the sides is 0.
The construction has two main steps.

• Step 1: Dividing the Castle into regions. We transverse along the sides of the contour in clockwise
direction. At each corner, we perform one of the following actions:

– If we move from a positive side to a positive side, draw a straight line in the direction of
the second side.

– If we move from a negative side to a negative side, draw a straight line in the direction of
the first side.

– If we move from a negative side to a positive side, draw a staircase diagonally, with the first
step lying on the positive side.

– If we move from a positive side to a negative side, no action is required.

Since the tuple for the Castle does not alternate in sign, there are exactly two straight lines and
two staircases. Also, by checking every case, we found that these two straight lines and two
staircases intersect at two points (one per pair of line a staircase), and the two points can be
connected by a straight line. We connect these two points by that straight line, and we call this
line the zero line. This is because this line is the zero line in the Aztec Dragon case.

After this step, the Castle is divided into four regions, two of them are each incident to one side
of the contour while the other two are each incident to two sides. The four regions for all possible
Castle shapes can be seen in Figure 25.

• Step 2: Covering each region according to the side. We will use a universal covering for each
region, and the covering is determined by the side of the contour that the region is incident to
as in Table 1.

Side Positive Negative
a 1− 4, 2− 5, 3− 6 1− 5, 2− 4, 3− 6
b 1− 4, 2− 6, 3− 5 1− 4, 2− 5, 3− 6
c 1− 3, 2− 6, 4− 5 1− 4, 2− 6, 3− 5
d 1− 6, 2− 3, 4− 5 1− 3, 2− 6, 4− 5
e 1− 5, 2− 3, 4− 6 1− 6, 2− 3, 4− 5
f 1− 5, 2− 4, 3− 6 1− 5, 2− 3, 4− 6

Table 1: Universal covering for each case

Note that in Table 1, the matching when one side is positive is the same as when the next side
is negative. This is because in step 1, when moving from a positive side to a negative side, we
do nothing, so these two sides are incident to the same region. Thus, they should have the same
universal covering. Also when two consecutive sides have the same sign, their universal covering
has one edge in common. This means that there is a "smooth transition" between the two
corresponding regions. As a result, when considering the weight of this matching, the nonzero
terms do not come from faces along the straight line dividing the two regions. The nonzero terms
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also do not come from faces in the interior of each region either. Therefore, the nonzero terms
only come from faces along the two staircases and the zero line. This allows for easy calculations
of the minimal weight of this matching.

Remark. There seems to be a small ambiguity in step 2 above for the covering on the zero line as we
may have the choice of which covering to use. However, depending on the parity of the staircases’
length, there is only a unique choice for this line.

Figure 25: Four regions in each possible Castle shape

Figures 26, 27 and 28 show the four regions and minimal matchings of three Castles corresponding
to three main families. Figure 29 shows the degenerate case when the f side is zero, which is the
intersection of case 2.1a and 1.1a. Figure 30 shows the degenerate case when sides d and f are zero.
Finally, figure 31 and 32 show how the regions change from case 2.1a to 1.1a, when the f side changes
from negative to zero to positive, and how the regions change from a contour with one zero to a contour
with two zeros.

Figure 33 shows how the weight of the minimal matching can be calculated easily. The purple faces
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(a) Four regions (b) Minimal matching

Figure 26: Four regions and minimal matching of Castle C4,3,2 in case 1.1a

(a) Four regions (b) Minimal matching

Figure 27: Four regions and minimal matching of Castle C0,4,3 in case 2.1a

(a) Four regions (b) Minimal matching

Figure 28: Four regions and minimal matching of Castle C−3,5,5 in case 3.2a

are the only faces with zero or two edges, and so they are the only faces contributing to the weight.
Notice that these faces are all on the staircases and the zero line.

We are now ready to state our main theorem.
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(a) Four regions (b) Minimal matching

Figure 29: Four regions and minimal matching of Castle C1,4,2 in the intersection of 1.1a and 2.1a

(a) Four regions (b) Minimal matching

Figure 30: Four regions and minimal matching of Castle C2,2,3 where the contour has two zeros

Theorem 5.1. The above construction gives the minimal matching of any Aztec Castles.

5.2 Minimal weight
Before proving the main theorem, we will show that the weight of the proposed perfect matching

can be easily calculated with examples from region 1.1a.
Let i = k − 1 +m and j = k − 1 + n where m,n > 0, we have two cases.

• Case 1: If m = 2p, then the contour is

(k + j, j + k + i, 2(k − 1 + p) + 1, n, n+ i, 2p).

Thus, the staircase on side c has height k− 1 + p, and the staircase on side f has height p. This
means that the first staircase contributes x−(k−1+p)

3 xk−1+p
5 and the second staircase contributes

x−p4 xp6. We can also see that the zero line has length n + k − 1, which means this contributes
x
−(n+k−1)
1 xn+k

5 to the weight. Thus, the weight of the perfect matching is
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(a) 2.1a (b) Intersection (c) 1.1a

Figure 31: Transition from 2.1a to 1.1a, where the f side changes from negative to zero to positive

(a) One zero (b) Two zeros

Figure 32: Contour with one zero degenerates to contour with two zeros

x2k−1+p+n
5 xp6

xn+k−1
1 xk−1+p

3 xp4

• Case 2: If m = 2p− 1, then the contour is

(k + j, j + k + i, 2(k − 1 + p), n, n+ i, 2p− 1).

Thus, the staircase on side c has height k−1+p, and the staircase on side f has height p−1. This
means that the first staircase contributes x−(k−1+p)

3 xk−1+p
5 and the second staircase contributes

x
−(p−1)
4 xp−16 . We can also see that the zero line has length n+k−1, which means this contributes
x
−(n+k−1)
2 xn+k

6 to the weight. Thus, the weight of the perfect matching is

xk−1+p
5 xn+k+p−1

6

xn+k−1
2 xk−1+p

3 xp−14
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Figure 33: Weight of minimal matching of Castle C4.3.2

A question may arise from the above reasoning is why the zero line contributes x−(n+k−1)
1 xn+k

5 in
one case and x−(n+k−1)

2 xn+k
6 in the other. This is because of the canonical choice on the zero line that

we have in the construction. Figure 34 illustrates this choice clearly. When m is even, the zero line
follows the top region while when m is odd, it follows the bottom region.

(a) even m (b) odd m

Figure 34: Contour with one zero degenerates to contour with two zeros

6 Proof of main theorem

6.1 Recurrences
We will verify that the minimal matching satisfies the three types of recurrences described in [12].

These are

(R4) zi−1,j+2,kzi,j,k+1 = zi−1,j+1,kzi,j+1,k+1 + zi−1,j+1,k+1zi,j+1,k

(R1) zi−1,j+1,k+1zi,j+1,k−1 = zi−1,j+2,kzi,j,k + zi−1,j+1,kzi,j+1,k
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(R2) zi−1,j+2,kzi+1,j,k = zi,j+1,k−1zi,j+1,k+1 + z2i,j+1,k

The three types are illustrated in Figure 35.

(i-1,j+1,k)

(R2)

(i,j,k)

(i,j,k-1)
(i-1,j,k-1)

(i,j-1,k-1)
(i+1,j-1,k-1)

(i,j-1,k-2)

(i,j,k)

(i+1,j-1,k+1)

(i+1,j-1,k)

(i+1,j-1,k)

(i+2,j-2,k)

(i,j,k)

(i-1,j+1,k-1)

(i-1,j,k-1)

(i-1,j,k)

(i-2,j+1,k-1)

i

jk

O

(R1) (R4)

Figure 35: Three types of recurrences, source: [12]

The (R4) recurrences correspond to replacing the cluster variable zi,j,k with one of twelve possibil-
ities:

zi−1,j+2,k±1, zi+1,j−2,k±1, zi+2,j−1,k±1, zi−2,j+1,k±1, zi−1,j−1,k±1, zi+1,j+1,k±1.

In terms of the 6-tuples, this corresponds to replacing (a, b, c, d, e, f) with

(a− 2, b+ 3, c− 2, d, e− 1, f)

or a cyclic rotation or negation of this transformation. As described in Section 3, this corresponds to
choosing A,B,C,E, or its cyclic rotation.

The (R1) recurrences correspond to replacing the cluster variable zi,j,k with one of twelve possibil-
ities:

zi+1,j,k±2, zi−1,j,k±2, zi,j+1,k±2, zi,j−1,k±2, zi+1,j−1,k±2, zi−1,j+1,k±2.

In terms of the 6-tuples, this corresponds to replacing (a, b, c, d, e, f) with

(a+ 3, b− 2, c+ 1, d− 1, e+ 2, f − 3)

or a cyclic rotation or negation of this transformation. As described in Section 3, this corresponds to
choosing A,B,E, F , or its cyclic rotation.

The (R2) recurrences correspond to replacing the cluster variable zi,j,k with one of twelve possibil-
ities:

zi+2,j,k, zi−2,j,k, zi,j+2,k, zi,j−2,k, zi+2,j−2,k, zi−2,j+2,k.

In terms of the 6-tuples, this corresponds to replacing (a, b, c, d, e, f) with

(a, b+ 2, c− 2, d, e+ 2, f − 2)

or a cyclic rotation or negation of this transformation. As described in Section 3, this corresponds to
choosing B,C,E, F , or its cyclic rotation.

We will use Kuo condensation to prove that the minimal matching satisfies the three recurrences.
We will prove this in detail in Section 6.3. Generally, the main point of the proof is to compare the
staircase regions in the matching and show that after superimposing, they are similar. In this report,
we will show the details for case 1.1, and other regions can be shown analogously.
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Figure 36: Action of m1,m2,m3 on the (i, j) position of prisms

6.2 c-matrix
Before continuing with Kuo condensation, we will prove an important property of the c-matrix.

Lemma 6.1. When the prism has its bottom right angle position at (i, j, k), the mutation sequences
(τ3τ2τ1τ2), (τ2τ1τ3τ1), (τ1τ3τ2τ3), and each of their infinite products preserve the sign of each column
in the c−vector.

Proof. Since the position of prism is fixed for each (i, j, k), m1 = (τ3τ2τ1τ2), m2 = (τ2τ1τ3τ1), and
m3 = (τ1τ3τ2τ3) move the prism in the same way with different starting positions. Call the starting
edge of each mi mutation, mi(1) (e.g. m1(1) = 3, m2(1) = 2, m3(1) = 1). Observe that all mi move
the prism from (i, j, k) to (i + 1, j + 1, k) if mi(1) is the diagonal side, (i, j, k) to (i + 1, j − 2, k) if
mi(1) is the horizontal edge of the triangle, and (i, j, k) to (i− 2, j +1, k) if mi(1) is the vertical edge.
Also, mi position the prism the same way as it did before the mutation. In other words, if mi(1) were
on the diagonal side, it remains to be on the diagonal side. Then by induction, we can show the sign
preserved property. Without loss of generality, we only consider m1 and fix k = 1 below to consider
the base case.

This is a work in progress.

Lemma 6.2. When the prism has its bottom right angle position at (i, j, k), the mutation sequence
τ5, τ4, and their alternating infinite product (τ5τ4 . . . ) preserve the sign of each column in the c−vector.

Proof. This is a work in progress.

Proposition 6.3. Consider the c-vector for each (i, j, k) in region 1.1, where the prism has its bottom
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right angle at (i, j, k). Then, the only negative columns of the c-vector at (i, j, k) are
col 1, 2, when i− j ≡ 1 (mod 3)

col 3, 4, when i− j ≡ 2 (mod 3)

col 5, 6, when i− j ≡ 0 (mod 3)

.

Proof. Since we position the prism in the same way for each position, the mutating sequence are
predictable. Therefore, there are 6 cases to prove by induction.

• Case 1 (k − 1, k − 1, k): The base case is (0, 0, 1), where we mutate the original prism through
τ2τ1τ2 to get to the desired position. For our purpose, we do not consider if τ2τ1τ2 change the
c-vectors are not since we always start our mutation sequence with τ2τ1τ2 in region 1.1. Here,
the c-vector of (0, 0, 1) is 

0 0 0 1 −2 0
0 0 1 0 0 −2
1 0 0 0 −1 −1
0 1 0 0 −1 −1
0 0 0 0 −1 0
0 0 0 0 0 −1

 ,

having column 5 and 6 negative. Notice that the mutation sequence from (k − 1, k − 1, k) to
(k, k, k + 1) is (τ3τ2τ1τ2τ4) if k is even and (τ3τ2τ1τ2τ5) if k is odd. Given k, assume that
(k − 1, k − 1, k) also has column 5 and 6 as negative columns. Since τ4, and τ5 all preserve the
signs of each column, by induction, (k, k, k + 1) also has column 5 and 6 negative.

• Case 2 (n, n, k): The base case is Case 1, whose negative columns are always column 5 and 6.
Assume that the negative columns are always 5 and 6 for (i, j, k) = (n−1, n−1, k), where n > k.
Note that the mutation sequence from (n − 1, n − 1, k) to (n, n, k) is (τ3τ2τ1τ2),∀n > k. Since
(τ3τ2τ1τ2) preserves the sign of columns, by induction, the negative columns are always 5 and 6
for (n, n, k) as desired.

• Case 3 (k − 1, j, k): When j = k − 1, this is reduced to Case 1. Fix k = 1, for j > k − 1, from
(k − 1, j, 1) to (k − 1, j + 1, 1), we mutate

(τ3τ1), for j ≡ 0 (mod 3)

(τ2τ3), for j ≡ 1 (mod 3)

(τ1τ2), for j ≡ 2 (mod 3)

.

Then, as we increase k > 1, we mutate
(τ2τ1τ3τ1), for j − k ≡ 0 (mod 3)

(τ1τ3τ2τ3), for j − k ≡ 1 (mod 3)

(τ3τ2τ1τ2), for j − k ≡ 2 (mod 3)

.

Note the c-vectors for (0, 1, 1) and (0, 2, 1) respectively are
2 0 0 −3 0 0
0 2 −3 0 0 0
1 0 −1 −2 1 0
0 1 −2 −1 0 1
1 0 0 −2 0 0
0 1 −2 0 0 0

 and


−4 0 0 0 3 0
0 −4 0 0 0 3
−3 −1 0 1 2 0
−1 −3 1 0 0 2
−3 0 0 0 2 0
0 −3 0 0 0 2

 ,
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having column 3 and 4 negative and column 1 and 2 negative. Also, (0, 0, 1) in Case 1 has
negative columns 5 and 6. Then, since (τ2τ1τ3τ1), (τ1τ3τ2τ3), (τ3τ2τ1τ2), (τ4) and (τ5) preserve
the sign of each column for the c-vectors, if we assume that (k− 1, j, k) satisfies the proposition,
then the induction cases for (k − 1, j + 1, k) follows.

• Case 4 (i, k − 1, k): This is similar to Case 3. When i = k − 1, this is reduced to Case 1. Fix
k = 1, for i > k − 1, from (i, k − 1, 1) to (i+ 1, k − 1, 1), we mutate

(τ3τ2), for j ≡ 0 (mod 3)

(τ1τ3), for j ≡ 1 (mod 3)

(τ2τ1), for j ≡ 2 (mod 3)

.

Then, as we increase k > 1, we mutate
(τ1τ3τ2τ3), for j − k ≡ 0 (mod 3)

(τ2τ1τ3τ1), for j − k ≡ 1 (mod 3)

(τ3τ2τ1τ2), for j − k ≡ 2 (mod 3)

.

along with τ4 if k is even and τ5 k is odd. Note the c-vectors for (1, 0, 1) and (2, 0, 1) respectively
are 

−1 −2 1 0 0 1
−2 −1 0 1 1 0
−1 −2 1 1 0 0
−2 −1 1 1 0 0
−1 −1 1 0 0 0
−1 −1 0 1 0 0

 and


1 0 −1 −3 1 1
0 1 −3 −1 1 1
0 0 −2 −2 2 1
0 0 −2 −2 1 2
0 0 −1 −2 1 1
0 0 −2 −1 1 1

 ,

having column 1 and 2 negative and column 3 and 4 negative. Also, (0, 0, 1) in Case 1 has
negative columns 5 and 6. Then, since (τ2τ1τ3τ1), (τ1τ3τ2τ3), (τ3τ2τ1τ2), (τ4) and (τ5) preserve
the sign of each column for the c-vectors, if we assume that (k− 1, j, k) satisfies the proposition,
then the induction cases for (k − 1, j + 1, k) follows.

• Case 5 (n, j, k): Apply the mutation sequences in Case 4 to Case 3 (base case) to prove the
proposition from (k − 1, j, k) to (n, j, k) by induction.

• Case 6 (i, n, k): Apply the mutation sequences in Case 3 to Case 4 (base case) to prove the
proposition from (i, k − 1, k) to (i, n, k) by induction.

6.3 Kuo Condensation
As discussed in Section 6.1, we only need to show that the proposed perfect matching satisfies the

three recurrences (R4), (R1), (R2).
We will first verify the minimal matching for the (R4) recurrence when replacing zi−1,j−1,k−1 by

zi,j,k. Let G be the Castle Ci,j,k, then by the discussion in Section 6.1, we will choose four points
A,B,C,E. We have the following graphs for each case of deletion:
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Points removed Resulting Castle
A,B,C,E Ci−1,j−1,k−1
A,B Ci,j−1,k−1
C,E Ci−1,j,k
A,E Ci,j−1,k
B,C Ci−1,j,k−1

By the sign pattern in Section 6.2, the cluster mutation corresponding to these vertices is

zi−1,j−1,k−1zi,j,k = zi,j−1,kzi−1,j,k−1 +

(∏
i

yi

)
zi,j−1,k−1zi−1,j,k.

This means that we only need to compare the superimposing of G and G−{A,B,C,E} with G−{A,E}
and G−{B,C}. Figure 37 shows this comparison, where the staircases and zero line match perfectly.

Figure 37: Kuo condensation for (R4)

Verifying the minimal matching for the (R2) recurrence when replacing zi−2,j,k by zi,j,k works
similarly. Let G be the Castle Ci,j,k, then by the discussion in Section 6.1, we will choose four points
B,C,E, F . We have the following graphs for each case of deletion:
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Points removed Resulting Castle
B,C,E, F Ci−2,j,k
B,C Ci−1,j,k−1
E,F Ci−1,j,k+1

C,E Ci−1,j,k
B,F Ci−1,j,k

By the sign pattern in Section 6.2, the cluster mutation corresponding to these vertices is

zi−2,j,kzi,j,k = zi−1,j,k−1zi−1,j,k+1 +

(∏
i

yi

)
z2i−1,j,k.

This means that we only need to compare the superimposing of G and G−{B,C,E, F} with G−{E,F}
and G−{B,C}. Figure 38 shows this comparison, where the staircases and zero line match perfectly.

Figure 38: Kuo condensation for (R2)

Finally, we will verify the minimal matching for the (R1) recurrence when replacing zi+1,j−1,k−2
by zi,j,k. For this recurrence, we will use the non-alternating version of Kuo condensation. Let G be
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the Castle Ci+1,j,k−1, then by the discussion in Section 6.1, we will choose four points A,B,E, F . We
have the following graphs for each case of deletion:

Points removed Resulting Castle
A,B,E, F Ci,j−1,k−1
A,B Ci+1,j−1,k−2
E,F Ci,j,k

A,E Ci+1,j−1,k−1
B,F Ci,j,k−1

By the sign pattern in Section 6.2, the cluster mutation corresponding to these vertices is

zi+1,j−1,k−2zi,j,k = zi,j−1,k−1zi+1,j,k−1 +

(∏
i

yi

)
zi+1,j−1,k−1zi,j,k−1.

This means that we only need to compare the superimposing of G and G−{A,B,E, F} with G−{E,F}
and G− {A,B}. Figure 39 shows this comparison, where the staircases and zero line match perfectly.

Figure 39: Kuo condensation for (R1)
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