Polarizations of Strongly Stable Ideals

UMN Algebra and Combinatorics REU 2022

Hanson Hao, Yuyuan Luo, and Sterling Saint Rain 4 August 2022

Mentor: Ayah Almousa, TA: John O'Brien

- 1. Polarizations
- 2. Strongly Stable Ideals
- 3. Results
- 4. Applications

Polarizations

Definition (Polarization) A square-free monomial ideal *J* is a *polarization* of a monomial ideal I if I can be obtained from J by quotienting out by a sequence of non-zero-divisor variable differences.

Definition (Polarization)

A square-free monomial ideal *J* is a *polarization* of a monomial ideal *I* if *I* can be obtained from *J* by quotienting out by a sequence of non-zero-divisor variable differences.

Example

The standard polarization:

 $x_1^2 x_2 x_3^3 \mapsto x_{11} x_{12} x_{21} x_{31} x_{32} x_{33}$

Definition (Polarization)

A square-free monomial ideal *J* is a *polarization* of a monomial ideal *I* if *I* can be obtained from *J* by quotienting out by a sequence of non-zero-divisor variable differences.

Example

The standard polarization:

 $x_1^2 x_2 x_3^3 \mapsto x_{11} x_{12} x_{21} x_{31} x_{32} x_{33}$

The box polarization:

 $x_1^2 x_2 x_3^3 \mapsto x_{11} x_{12} x_{23} x_{34} x_{35} x_{36}$

Definition (Polarization)

A square-free monomial ideal *J* is a *polarization* of a monomial ideal *I* if *I* can be obtained from *J* by quotienting out by a sequence of non-zero-divisor variable differences.

Example

The standard polarization:

 $x_1^2 x_2 x_3^3 \mapsto x_{11} x_{12} x_{21} x_{31} x_{32} x_{33}$

The box polarization:

 $x_1^2 x_2 x_3^3 \mapsto x_{11} x_{12} x_{23} x_{34} x_{35} x_{36}$

In general,

 $\mathbf{x}^{\mathbf{a}} = \mathbf{x}_1^{a_1} \mathbf{x}_2^{a_2} \cdots \mathbf{x}_n^{a_n} \mapsto m_1(\mathbf{a}) m_2(\mathbf{a}) \cdots m_n(\mathbf{a}) = m(\mathbf{a})$

where each $m_i(\mathbf{a})$ is a squarefree monomial of degree a_i in the variables of the set $\{x_{i1}, \ldots, x_{i,d_i}\}$.

Strongly Stable Ideals

Definition

Let $S = k[x_1, ..., x_n]$ be a polynomial ring over a field k. A monomial ideal $I \subset S$ is strongly stable if for any generator **m** of I, I contains every monomial that is reachable from **m** by swapping x_j 's out for x_i 's when i < j.

Given the monomial $x_1x_3^2 \in S = k[x_1, x_2, x_3]$, we can construct a strongly stable ideal I generated by all monomials reachable from it:

Given the monomial $x_1x_3^2 \in S = k[x_1, x_2, x_3]$, we can construct a strongly stable ideal I generated by all monomials reachable from it:

By swapping an x_3 for an x_2 we obtain $x_1x_2x_3$

Given the monomial $x_1x_3^2 \in S = k[x_1, x_2, x_3]$, we can construct a strongly stable ideal I generated by all monomials reachable from it: By swapping an x_3 for an x_2 we obtain $x_1x_2x_3$ Swapping an x_3 for an x_1 we obtain $x_1^2x_3$

Given the monomial $x_1x_3^2 \in S = k[x_1, x_2, x_3]$, we can construct a strongly stable ideal I generated by all monomials reachable from it: By swapping an x_3 for an x_2 we obtain $x_1x_2x_3$ Swapping an x_3 for an x_1 we obtain $x_1^2x_3$

Swapping two x_3 's for x_2 's we obtain $x_1x_2^2$

Given the monomial $x_1x_3^2 \in S = k[x_1, x_2, x_3]$, we can construct a strongly stable ideal I generated by all monomials reachable from it:

By swapping an x_3 for an x_2 we obtain $x_1x_2x_3$

Swapping an x_3 for an x_1 we obtain $x_1^2x_3$

Swapping two x_3 's for x_2 's we obtain $x_1x_2^2$

And finally, by swapping two x_3 's for x_1 's we obtain x_1^3 .

Given the monomial $x_1x_3^2 \in S = k[x_1, x_2, x_3]$, we can construct a strongly stable ideal I generated by all monomials reachable from it:

By swapping an x_3 for an x_2 we obtain $x_1x_2x_3$

Swapping an x_3 for an x_1 we obtain $x_1^2x_3$

Swapping two x_3 's for x_2 's we obtain $x_1x_2^2$

And finally, by swapping two x_3 's for x_1 's we obtain x_1^3 .

So our strongly stable ideal *I* is $I = (x_1x_3^2, x_1x_2x_3, x_1^2x_3, x_1x_2^2, x_1^3)$

Given the monomial $x_1x_3^2 \in S = k[x_1, x_2, x_3]$, we can construct a strongly stable ideal I generated by all monomials reachable from it:

By swapping an x_3 for an x_2 we obtain $x_1x_2x_3$

Swapping an x_3 for an x_1 we obtain $x_1^2 x_3$

Swapping two x_3 's for x_2 's we obtain $x_1x_2^2$

And finally, by swapping two x_3 's for x_1 's we obtain x_1^3 .

So our strongly stable ideal *I* is $I = (x_1x_3^2, x_1x_2x_3, x_1^2x_3, x_1x_2^2, x_1^3)$

Example

Notice that $I = (x_2, x_3^2) \subset S$ is not strongly stable since we can swap x_2 for x_1 , but $x_1 \notin I$.

Some motivating facts:

Some motivating facts:

• We have results and techniques for polarizations of powers of the maximal ideal by (AFL '22), and powers of the maximal ideal are strongly stable.

Some motivating facts:

- We have results and techniques for polarizations of powers of the maximal ideal by (AFL '22), and powers of the maximal ideal are strongly stable.
- Polarization replaces a monomial ideal with a square-free monomial ideal sharing the same homological data, giving access to combinatorial tools such as Stanley-Reisner theory.

Some motivating facts:

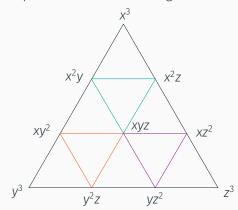
- We have results and techniques for polarizations of powers of the maximal ideal by (AFL '22), and powers of the maximal ideal are strongly stable.
- Polarization replaces a monomial ideal with a square-free monomial ideal sharing the same homological data, giving access to combinatorial tools such as Stanley-Reisner theory.
- Strongly stable ideals arise naturally in algebraic combinatorics; e.g. generic initial ideals are always strongly stable in characteristic 0.

Results

Graph of Linear Syzygies

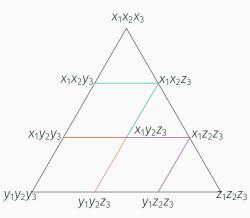
Suppose we have a strongly stable ideal I with a polarization \tilde{I} .

• Let $\Delta^{\mathbb{Z}}(n, d)$ denote be the lattice simplex with vertices given by all $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}_0^n$ with $\sum a_i = d$. Its vertices are in one-one correspondence with minimal generator of $(x_1, \dots, x_n)^d$.

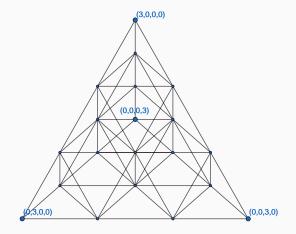


Graph of Linear Syzygies (cont.)

- We form the linear syzygy graph G_I by taking vertices as generators of I and edges when there is a linear relation between two generators. This graph can be superimposed on $\Delta^{\mathbb{Z}}(n, d)$.
- Suppose $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$. We refer to the induced subgraph on all vertices of the form $\mathbf{c} - e_i$ as a down-graph $D(\mathbf{c})$.



Graph of Linear Syzygies

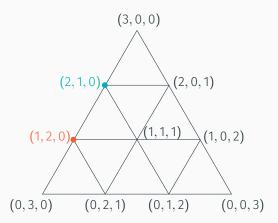


Specifying the labeling

Put partial orders \geq_i on $\Delta^{\mathbb{Z}}(n, d)$ defined by $\mathbf{a} \geq_i \mathbf{b}$ if $a_i \geq b_i$ and $a_j \leq b_j$ for all $j \neq i$.

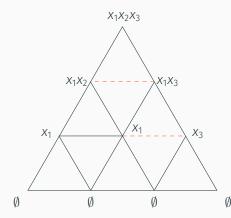
Specifying the labeling

Put partial orders \geq_i on $\Delta^{\mathbb{Z}}(n, d)$ defined by $\mathbf{a} \geq_i \mathbf{b}$ if $a_i \geq b_i$ and $a_j \leq b_j$ for all $j \neq i$.



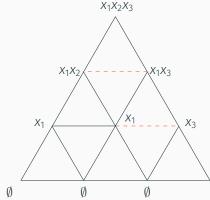
For example, $(2,1,0) \ge_1 (1,2,0)$, but $(2,1,0) \le_2 (1,2,0)$ and they are incomparable with respect to \ge_3 .

Lemma (AFL '22) Let $\mathbf{x}^{\mathbf{a}}$ and $\mathbf{x}^{\mathbf{b}}$ be minimal generators of a monomial ideal I and $m(\mathbf{a})$ and $m(\mathbf{b})$ the corresponding generators in a polarization of I. Fix an index i. If $\mathbf{a} \leq_i \mathbf{b}$, then the i'th part $m_i(\mathbf{a})$ divides $m_i(\mathbf{b})$. Let $B(\check{X}_i)$ be the BOOLEAN POSET on $\check{X}_i = \{x_{i1}, \ldots, x_{id}\}$. Polarizations give rise to isotone maps $X_i : \Delta^{\mathbb{Z}}(n, d) \to B(\check{X}_i)$ with respect to \geq_i .



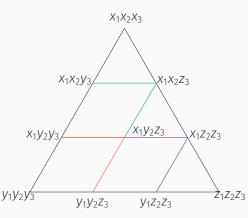
Let $B(\check{X}_i)$ be the BOOLEAN POSET on $\check{X}_i = \{x_{i1}, \ldots, x_{id}\}$. Polarizations give rise to isotone maps $X_i : \Delta^{\mathbb{Z}}(n, d) \to B(\check{X}_i)$ with respect to \geq_i .

Ø



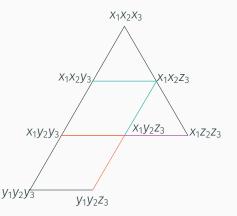
An example of the image of an isotone X_1 map on $\Delta^{\mathbb{Z}}(3,3)$.

Theorem (Almousa–Fløystad– Lohne (2022)) A set of isotone maps $X_1, ..., X_n$ determines a polarization of $I = (x_1, ..., x_n)^d$ if and only if for every $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d + 1)$, the graph of linear syzygy edges contains a spanning tree for $D(\mathbf{c})$.



Theorem

A set of isotone maps $X_1, \ldots X_n$ determines a polarization of a strongly stable ideal I if and only if for every $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d + 1)$, the graph of linear syzygy edges contains a spanning tree for $D(\mathbf{c}) \cap G_{l}$.



Applications

Definition (Associated prime) Let *R* be a Noetherian ring and M a finitely generated R-module. A prime ideal $P \subset R$ is an associated prime ideal of M, if there exists an element $x \in M$ such that $P = \operatorname{ann}(x)$, where $\operatorname{ann}(x) = \{a \in R : ax = 0\}$. The set of all associated primes of *I* is denoted ass(R/I).

Definition (Associated prime) Let *R* be a Noetherian ring and M a finitely generated R-module. A prime ideal $P \subset R$ is an associated prime ideal of M, if there exists an element $x \in M$ such that $P = \operatorname{ann}(x)$, where $\operatorname{ann}(x) = \{a \in R : ax = 0\}$. The set of all associated primes of *I* is denoted ass(R/I).

Remark 1: For I a squarefree monomial ideal in a polynomial ring R:

- I is an intersection of its associated primes.
- The associated prime ideals of I are a finite number of prime ideals generated by variables.

Definition (Alexander Dual)

Let *I* be a square-free monomial ideal in a polynomial ring *S*. The Alexander dual ideal I^{\vee} of *I* is the monomial ideal in *S* whose monomials are precisely those that have a nontrivial common divisor with every generator of *I*.

Definition (Alexander Dual)

Let *I* be a square-free monomial ideal in a polynomial ring *S*. The Alexander dual ideal I^{\vee} of *I* is the monomial ideal in *S* whose monomials are precisely those that have a nontrivial common divisor with every generator of *I*.

Remark 2: Given a square-free monomial ideal *I*, the minimal generators of the Alexander dual of *I* correspond to the product of the variables that generate the associated primes of *I*.

Then notice that *I* decomposes into an intersection of prime ideals $I = (x_1, x_6) \cap (x_3, x_4, x_6) \cap (x_3, x_5, x_6)$.

Then notice that *I* decomposes into an intersection of prime ideals $I = (x_1, x_6) \cap (x_3, x_4, x_6) \cap (x_3, x_5, x_6)$.

Then by Remark 1, we know its associated primes are the following: $ass(R/I) = \{(x_1, x_6), (x_3, x_4, x_6), (x_3, x_5, x_6)\}.$

Then notice that *I* decomposes into an intersection of prime ideals $I = (x_1, x_6) \cap (x_3, x_4, x_6) \cap (x_3, x_5, x_6)$.

Then by Remark 1, we know its associated primes are the following: $ass(R/I) = \{(x_1, x_6), (x_3, x_4, x_6), (x_3, x_5, x_6)\}.$

Then by Remark 2, we know that the Alexander dual of *I* is: $I^{\vee} = (x_1x_6, x_3x_4x_6, x_3x_5x_6).$

Definition (Color Classes, Rainbow Monomials) We call the set of all variables sharing their first index $\{x_{i,1}, \ldots, x_{i,m}\}$ the *i*-color class. We call a monomial in degree *d* a *rainbow* monomial when it is of the form $x_{1,j_1} \dots x_{d,j_d}$, a product of *exactly* one variable from each color class.

Definition (Color Classes, Rainbow Monomials) We call the set of all variables sharing their first index $\{x_{i,1}, \ldots, x_{i,m}\}$ the *i*-color class. We call a monomial in degree *d* a *rainbow* monomial when it is of the form $x_{1,j_1} \dots x_{d,j_d}$, a product of *exactly* one variable from each color class.

Definition (Weakly-Rainbow) We say a monomial is *weakly-rainbow* if it is generated by *at most* one variable from each color class.

We call the set of all variables sharing their first index $\{x_{i,1}, \ldots, x_{i,m}\}$ the *i*-color class. We call a monomial in degree *d* a *rainbow* monomial when it is of the form $x_{1,i_1} \dots x_{d,i_d}$, a product of exactly one variable from each color class.

Definition (Weakly-Rainbow) We say a monomial is *weakly-rainbow* if it is generated by *at most* one variable from each color class.

Example

In $S = k[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, x_{3,1}, x_{3,2}]$:

We call the set of all variables sharing their first index $\{x_{i,1}, \ldots, x_{i,m}\}$ the *i*-color class. We call a monomial in degree *d* a *rainbow* monomial when it is of the form $x_{1,j_1} \dots x_{d,j_d}$, a product of *exactly* one variable from each color class.

Definition (Weakly-Rainbow) We say a monomial is *weakly-rainbow* if it is generated by *at most* one variable from each color class.

Example

In $S = k[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, x_{3,1}, x_{3,2}]$:

 $x_{1,2}x_{2,1}x_{3,1}$ is a rainbow monomial

We call the set of all variables sharing their first index $\{x_{i,1}, \ldots, x_{i,m}\}$ the *i*-color class. We call a monomial in degree *d* a *rainbow* monomial when it is of the form $x_{1,j_1} \dots x_{d,j_d}$, a product of *exactly* one variable from each color class.

Definition (Weakly-Rainbow) We say a monomial is *weakly-rainbow* if it is generated by *at most* one variable from each color class.

Example

In $S = k[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, x_{3,1}, x_{3,2}]$:

 $x_{1,2}x_{2,1}x_{3,1}$ is a rainbow monomial

 $x_{1,1}x_{2,1}$ is a weakly-rainbow monomial

We call the set of all variables sharing their first index $\{x_{i,1}, \ldots, x_{i,m}\}$ the *i*-color class. We call a monomial in degree *d* a *rainbow* monomial when it is of the form $x_{1,j_1} \dots x_{d,j_d}$, a product of *exactly* one variable from each color class.

Definition (Weakly-Rainbow) We say a monomial is *weakly-rainbow* if it is generated by *at most* one variable from each color class.

Example

In $S = k[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, x_{3,1}, x_{3,2}]$:

 $x_{1,2}x_{2,1}x_{3,1}$ is a rainbow monomial

 $x_{1,1}x_{2,1}$ is a weakly-rainbow monomial

 $x_{1,1}x_{1,2}x_{3,1}$ is neither rainbow, nor weakly-rainbow

Our main result for this section gives us a helpful fact regarding polarizations of *any* monomial ideal $J \subset k[x_1, ..., x_n]$.

Theorem

If $I \subset S = k[x_{1,1}, \ldots, x_{1,d}, \ldots, x_{n,1}, \ldots, x_{n,d}]$ is a polarization of any monomial ideal $J \subset k[x_1, \ldots, x_n]$, then the generators of I^{\vee} are weakly-rainbow.

Our main result for this section gives us a helpful fact regarding polarizations of *any* monomial ideal $J \subset k[x_1, ..., x_n]$.

Theorem

If $I \subset S = k[x_{1,1}, \ldots, x_{1,d}, \ldots, x_{n,1}, \ldots, x_{n,d}]$ is a polarization of any monomial ideal $J \subset k[x_1, \ldots, x_n]$, then the generators of I^{\vee} are weakly-rainbow.

Example

Given $J = (x^2, xy, xz, y^2)$, we can check whether or not $I = (x_1x_2, x_2y_1, x_1z_1, y_1y_2)$ is a polarization of J.

Our main result for this section gives us a helpful fact regarding polarizations of *any* monomial ideal $J \subset k[x_1, ..., x_n]$.

Theorem

If $I \subset S = k[x_{1,1}, \ldots, x_{1,d}, \ldots, x_{n,1}, \ldots, x_{n,d}]$ is a polarization of any monomial ideal $J \subset k[x_1, \ldots, x_n]$, then the generators of I^{\vee} are weakly-rainbow.

Example

Given $J = (x^2, xy, xz, y^2)$, we can check whether or not $I = (x_1x_2, x_2y_1, x_1z_1, y_1y_2)$ is a polarization of J.

Notice that $I = (X_1, y_1) \cap (X_1, X_2, Z_1) \cap (X_2, y_1, Z_1) \cap (X_2, y_2, Z_1)$

Our main result for this section gives us a helpful fact regarding polarizations of *any* monomial ideal $J \subset k[x_1, ..., x_n]$.

Theorem

If $I \subset S = k[x_{1,1}, \ldots, x_{1,d}, \ldots, x_{n,1}, \ldots, x_{n,d}]$ is a polarization of any monomial ideal $J \subset k[x_1, \ldots, x_n]$, then the generators of I^{\vee} are weakly-rainbow.

Example

Given $J = (x^2, xy, xz, y^2)$, we can check whether or not $I = (x_1x_2, x_2y_1, x_1z_1, y_1y_2)$ is a polarization of J.

Notice that $I = (x_1, y_1) \cap (x_1, x_2, z_1) \cap (x_2, y_1, z_1) \cap (x_2, y_2, z_1)$

Then $ass(I) = \{(x_1, y_1), (x_1, x_2, z_1), (x_2, y_1, z_1), (x_2, y_2, z_1)\}$

Our main result for this section gives us a helpful fact regarding polarizations of *any* monomial ideal $J \subset k[x_1, ..., x_n]$.

Theorem

If $I \subset S = k[x_{1,1}, \ldots, x_{1,d}, \ldots, x_{n,1}, \ldots, x_{n,d}]$ is a polarization of any monomial ideal $J \subset k[x_1, \ldots, x_n]$, then the generators of I^{\vee} are weakly-rainbow.

Example

Given $J = (x^2, xy, xz, y^2)$, we can check whether or not $I = (x_1x_2, x_2y_1, x_1z_1, y_1y_2)$ is a polarization of J.

Notice that $I = (x_1, y_1) \cap (x_1, x_2, z_1) \cap (x_2, y_1, z_1) \cap (x_2, y_2, z_1)$

Then $ass(I) = \{(x_1, y_1), (x_1, x_2, z_1), (x_2, y_1, z_1), (x_2, y_2, z_1)\}$

Hence $I^{\vee} = (x_1y_1, x_1x_2z_1, x_2y_1z_1, x_2y_2z_1).$

Our main result for this section gives us a helpful fact regarding polarizations of *any* monomial ideal $J \subset k[x_1, ..., x_n]$.

Theorem

If $I \subset S = k[x_{1,1}, \ldots, x_{1,d}, \ldots, x_{n,1}, \ldots, x_{n,d}]$ is a polarization of any monomial ideal $J \subset k[x_1, \ldots, x_n]$, then the generators of I^{\vee} are weakly-rainbow.

Example

Given $J = (x^2, xy, xz, y^2)$, we can check whether or not $I = (x_1x_2, x_2y_1, x_1z_1, y_1y_2)$ is a polarization of J.

Notice that $I = (x_1, y_1) \cap (x_1, x_2, z_1) \cap (x_2, y_1, z_1) \cap (x_2, y_2, z_1)$

Then $ass(I) = \{(x_1, y_1), (x_1, x_2, z_1), (x_2, y_1, z_1), (x_2, y_2, z_1)\}$

Hence $I^{\vee} = (x_1y_1, x_1x_2z_1, x_2y_1z_1, x_2y_2z_1).$

Then since $x_1x_2z_1$ is not weakly-rainbow, by our theorem *I* is *not* a polarization of *J*.

Stanley-Reisner Complex and Shellability

Definition

For a squarefree monomial ideal *I*, the *Stanley-Reisner complex* of *I* is the simplicial complex consisting of the monomials not in *I*,

 $\Delta_l = \{ \mathbf{m} \subset X | \mathbf{m} \not\in l \}.$

Stanley-Reisner Complex and Shellability

Definition

For a squarefree monomial ideal *I*, the *Stanley-Reisner complex* of *I* is the simplicial complex consisting of the monomials not in *I*,

 $\Delta_{l} = \{\mathbf{m} \subset X | \mathbf{m} \not\in l\}.$

Question. Are Stanley-Reisner complexes of polarizations of Artinian monomial ideals always simplicial spheres/balls?

Stanley-Reisner Complex and Shellability

Definition

For a squarefree monomial ideal *I*, the *Stanley-Reisner complex* of *I* is the simplicial complex consisting of the monomials not in *I*,

 $\Delta_l = \{ \mathbf{m} \subset X | \mathbf{m} \not\in l \}.$

Question. Are Stanley-Reisner complexes of polarizations of Artinian monomial ideals always simplicial spheres/balls?

Definition

An ordering F_1, \ldots, F_t of the facets of a simplicial complex Δ is a *shelling* if, for each *j* with $1 < j \le t$, the intersection

$$\left(\bigcup_{i=1}^{j-1} F_i\right) \cap F_j$$

is a nonempty union of facets of ∂F_j . If there exists a shelling of Δ , then Δ is called *shellable*.

Question. For $I = (x_1, \ldots, x_n)^d$, is $\Delta_{\tilde{I}}$ shellable?

Question. For $I = (x_1, \ldots, x_n)^d$, is $\Delta_{\tilde{I}}$ shellable?

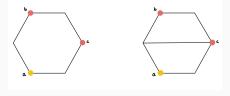
Theorem (Almousa–Fløystad–Lohne (2022)) $\Delta_{\tilde{l}}$ is shellable when n = 3 or d = 2.

Definition

A graph is *well-connected* if for any vertices a, b, c, there exists a shortest path from b to c such that the distance from a to anything on the path is $\leq \max(d(a, b), d(a, c))$.

Example

The left graph is not well-connected, but the right graph is.

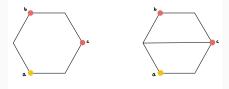


Definition

A graph is *well-connected* if for any vertices a, b, c, there exists a shortest path from b to c such that the distance from a to anything on the path is $\leq \max(d(a, b), d(a, c))$.

Example

The left graph is not well-connected, but the right graph is.



Question Is the linear syzygy graph of \tilde{I}^{\vee} is well-connected for any Artinian *I*?

Theorem

Let \tilde{I} be a polarization of an Artinian I. If the linear syzygy graph G on the Alexander dual \tilde{I}^{\vee} is well-connected, $\Delta_{\tilde{I}}$ is shellable.

- The Hilbert scheme $H = H_{\mathbb{P}^n}^{p(z)}$ is a space "parameterizing" closed subschemes (projective varieties) with Hilbert polynomial p(z) inside \mathbb{P}^n .
- It is not well understood (can have terrible singularities, don't know the number of irreducible components, etc.).

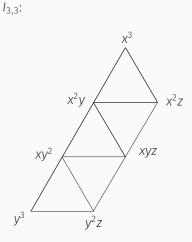
Overarching question: When are the points on *H* corresponding to the varieties cut out by polarizations of strongly stable ideals smooth?

Theorem (Lohne, 2013)

If J is either the standard or box polarization of $(x_1, \ldots, x_n)^d \subset k[x_1, \ldots, x_n]$, then the point on H corresponding to J is smooth.

Definition

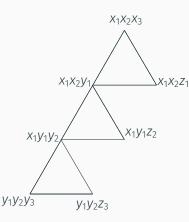
For each $m, n \ge 2$, define $I_{m,n}$ to be the strongly stable closure of $\{x_2^{n-1}x_m\}$.



A Case Study

Definition

Define the *pyramidal* polarization $J_{m,n}$ of $I_{m,n}$ as follows: take the standard polarization of $I_{m,n}$ and separate the x_3, \ldots, x_m variables as much as possible.



J_{3,3}:

How to show a point on *H* is smooth? In general finding the dimension of its component is hard.

Our strategy: the T^2 functor.

Associated to any ideal $J \subset S$ is the *cotangent complex* of S/J-modules

$$L_2 \rightarrow L_1 \rightarrow L_0.$$

Our strategy: the T^2 functor.

Associated to any ideal $J \subset S$ is the *cotangent complex* of *S*/*J*-modules

$$L_2 \rightarrow L_1 \rightarrow L_0.$$

We can apply $Hom(\cdot, S/J)$ and obtain a complex

```
\operatorname{Hom}(L_0, S/J) \to \operatorname{Hom}(L_1, S/J) \to \operatorname{Hom}(L_2, S/J).
```

The homology at position 2 (i.e. the cokernel of the second map) is T_J^2 .

Our strategy: the T^2 functor.

Associated to any ideal $J \subset S$ is the *cotangent complex* of *S*/*J*-modules

$$L_2 \rightarrow L_1 \rightarrow L_0.$$

We can apply $Hom(\cdot, S/J)$ and obtain a complex

```
\operatorname{Hom}(L_0, S/J) \to \operatorname{Hom}(L_1, S/J) \to \operatorname{Hom}(L_2, S/J).
```

The homology at position 2 (i.e. the cokernel of the second map) is T_J^2 .

 T^2 tells us how "obstructed" our ideal *J* is. It provides an "upper bound" on how bad a possible singularity at *J* can be.

Theorem (FGA Explained, Chapter 6) $T_I^2 = 0$ implies that the point on H corresponding to J is smooth (but not vice versa).

Theorem (FGA Explained, Chapter 6)

 $T_J^2 = 0$ implies that the point on H corresponding to J is smooth (but not vice versa).

Theorem

For $m, n \ge 2$, $T_{J_{m,n}}^2 = 0$.

Hence $J_{m,n}$ defines a smooth point $x_{m,n}$ on its Hilbert scheme.

Theorem (FGA Explained, Chapter 6)

 $T_J^2 = 0$ implies that the point on H corresponding to J is smooth (but not vice versa).

Theorem

For $m, n \ge 2$, $T_{J_{m,n}}^2 = 0$.

Hence $J_{m,n}$ defines a smooth point $x_{m,n}$ on its Hilbert scheme.

Theorem $\dim_{k(x_{m,n})} T_{x_{m,n}} = n(n-1)(m^2 + m - 1).$

Question: Let *I'* be a polarization of a strongly stable ideal *I*, and *I''* a further polarization of *I'*. Do the tangent spaces at the points corresponding to *I'* and *I''* (in the same Hilbert scheme *H*) have the same dimension?

Question: Let *I'* be a polarization of a strongly stable ideal *I*, and *I''* a further polarization of *I'*. Do the tangent spaces at the points corresponding to *I'* and *I''* (in the same Hilbert scheme *H*) have the same dimension?

For instance, this would imply that the tangent space of the standard polarization of $I_{m,n}$ is also dimension $n(n-1)(m^2 + m - 1)$.

- Ayah Almousa, John O'Brien
- Gregg Musiker
- The UMN Math Dept. Faculty & Staff
- This project was partially supported by RTG grant NSF/DMS-1745638.