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Polarizations

Definition (Polarization)
A square-free monomial ideal J is a polarization of a monomial ideal
I if I can be obtained from J by quotienting out by a sequence of
non-zero-divisor variable differences.

Example
The STANDARD POLARIZATION:

x21x2x33 7→ x11x12x21x31x32x33

The BOX POLARIZATION:

x21x2x33 7→ x11x12x23x34x35x36

In general,

xa = xa11 x
a2
2 · · · xann 7→ m1(a)m2(a) · · ·mn(a) = m(a)

where each mi(a) is a squarefree monomial of degree ai in the
variables of the set {xi1, . . . , xi,di}.
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Strongly stable ideals

Definition

Let S = k[x1, . . . , xn] be a polynomial ring over a field k. A monomial
ideal I ⊂ S is strongly stable if for any generator m of I, I contains
every monomial that is reachable from m by swapping xj’s out for xi’s
when i < j.
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Strongly stable ideals

Example
Given the monomial x1x23 ∈ S = k[x1, x2, x3], we can construct a
strongly stable ideal I generated by all monomials reachable from it:

By swapping an x3 for an x2 we obtain x1x2x3
Swapping an x3 for an x1 we obtain x21x3
Swapping two x3’s for x2’s we obtain x1x22
And finally, by swapping two x3’s for x1’s we obtain x31 .

So our strongly stable ideal I is I = (x1x23, x1x2x3, x21x3, x1x22, x31)

Example
Notice that I = (x2, x23) ⊂ S is not strongly stable since we can swap x2
for x1, but x1 /∈ I.
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Motivation

Goal: Our aim is to characterize combinatorially all polarizations of
strongly stable ideals.

Some motivating facts:

• We have results and techniques for polarizations of powers of
the maximal ideal by (AFL ’22), and powers of the maximal ideal
are strongly stable.

• Polarization replaces a monomial ideal with a square-free
monomial ideal sharing the same homological data, giving
access to combinatorial tools such as Stanley-Reisner theory.

• Strongly stable ideals arise naturally in algebraic combinatorics;
e.g. generic initial ideals are always strongly stable in
characteristic 0.
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Graph of Linear Syzygies

Suppose we have a strongly stable ideal I with a polarization Ĩ.

• Let ∆Z(n,d) denote be the lattice simplex with vertices given by
all a = (a1, . . . , an) ∈ Nn

0 with
∑
ai = d. Its vertices are in

one-one correspondence with minimal generator of (x1, . . . , xn)d.

x2y x2z

x3

y3 z3

xz2xy2

y2z yz2

xyz
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Graph of Linear Syzygies (cont.)

• We form the linear syzygy
graph GI by taking vertices
as generators of I and
edges when there is a
linear relation between two
generators. This graph can
be superimposed on
∆Z(n,d).

• Suppose c ∈ ∆Z(n,d+ 1).
We refer to the induced
subgraph on all vertices of
the form c− ei as a
down-graph D(c).

x1x2y3 x1x2z3

x1x2x3

y1y2y3 z1z2z3

x1z2z3x1y2y3

y1y2z3 y1z2z3

x1y2z3
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Graph of Linear Syzygies

(3,0,0,0)(3,0,0,0)

(0,0,0,3)(0,0,0,3)

(0,3,0,0)(0,3,0,0) (0,0,3,0)(0,0,3,0)
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Specifying the labeling

Put partial orders ≥i on ∆Z(n,d) defined by a ≥i b if ai ≥ bi and
aj ≤ bj for all j 6= i.

(2, 1, 0) (2, 0, 1)

(3, 0, 0)

(0, 3, 0) (0, 0, 3)

(1, 0, 2)(1, 2, 0)

(0, 2, 1) (0, 1, 2)

(1, 1, 1)

For example, (2, 1, 0) ≥1 (1, 2, 0), but (2, 1, 0) ≤2 (1, 2, 0) and they are
incomparable with respect to ≥3.
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Specifying the Labeling

Lemma (AFL ’22)
Let xa and xb be minimal generators of a monomial ideal I and m(a)
and m(b) the corresponding generators in a polarization of I. Fix an
index i. If a ≤i b, then the i’th part mi(a) divides mi(b).
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Specifying the labeling

Let B(X̌i) be the BOOLEAN POSET on X̌i = {xi1, . . . , xid}. Polarizations
give rise to isotone maps Xi : ∆Z(n,d) → B(X̌i) with respect to ≥i.

x1x2 x1x3

x1x2x3

∅ ∅

x3x1

∅ ∅

x1

An example of the image of an
isotone X1 map on ∆Z(3, 3).
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Polarizations of (x1, . . . , xn)d

Theorem (Almousa–Fløystad–
Lohne (2022))
A set of isotone maps X1, . . . Xn
determines a polarization of
I = (x1, . . . , xn)d if and only if for
every c ∈ ∆Z(n,d+ 1), the graph
of linear syzygy edges contains
a spanning tree for D(c).

x1x2y3 x1x2z3

x1x2x3

y1y2y3 z1z2z3

x1z2z3x1y2y3

y1y2z3 y1z2z3

x1y2z3

12



Polarizations of Strongly Stable Ideals

Theorem
A set of isotone maps X1, . . . Xn
determines a polarization of a
strongly stable ideal I if and
only if for every c ∈ ∆Z(n,d+ 1),
the graph of linear syzygy edges
contains a spanning tree for
D(c) ∩ GI.

x1x2y3 x1x2z3

x1x2x3

y1y2y3

x1z2z3x1y2y3

y1y2z3

x1y2z3
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Alexander Duals and Associated Primes

Definition (Associated prime)
Let R be a Noetherian ring and M a finitely generated R-module. A
prime ideal P ⊂ R is an associated prime ideal of M, if there exists an
element x ∈ M such that P = ann(x), where ann(x) = {a ∈ R : ax = 0}.
The set of all associated primes of I is denoted ass(R/I).

Remark 1: For I a squarefree monomial ideal in a polynomial ring R:

• I is an intersection of its associated primes.
• The associated prime ideals of I are a finite number of prime
ideals generated by variables.
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Alexander Duals and Associated Primes

Definition (Alexander Dual)
Let I be a square-free monomial ideal in a polynomial ring S. The
Alexander dual ideal I∨ of I is the monomial ideal in S whose
monomials are precisely those that have a nontrivial common
divisor with every generator of I.

Remark 2: Given a square-free monomial ideal I, the minimal
generators of the Alexander dual of I correspond to the product of
the variables that generate the associated primes of I.
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Alexander Duals and Associated Primes

Example
Let I = (x1x3, x4x5x1, x6)

Then notice that I decomposes into an intersection of prime ideals
I = (x1, x6) ∩ (x3, x4, x6) ∩ (x3, x5, x6).

Then by Remark 1, we know its associated primes are the following:
ass(R/I) = {(x1, x6), (x3, x4, x6), (x3, x5, x6)}.

Then by Remark 2, we know that the Alexander dual of I is:
I∨ = (x1x6, x3x4x6, x3x5x6).
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Alexander Duals and Associated Primes

Definition (Color Classes, Rainbow Monomials)
We call the set of all variables sharing their first index {xi,1, . . . , xi,m}
the i−color class. We call a monomial in degree d a rainbow
monomial when it is of the form x1,j1 . . . xd,jd , a product of exactly one
variable from each color class.

Definition (Weakly-Rainbow)
We say a monomial is weakly-rainbow if it is generated by at most
one variable from each color class.

Example
In S = k[x1,1, x1,2, x2,1, x2,2, x3,1, x3,2]:

x1,2x2,1x3,1 is a rainbow monomial

x1,1x2,1 is a weakly-rainbow monomial

x1,1x1,2x3,1 is neither rainbow, nor weakly-rainbow

17
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Alexander Duals and Associated Primes

Our main result for this section gives us a helpful fact regarding
polarizations of any monomial ideal J ⊂ k[x1, ..., xn].

Theorem
If I ⊂ S = k[x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d] is a polarization of any
monomial ideal J ⊂ k[x1, ..., xn], then the generators of I∨ are
weakly-rainbow.

Example
Given J = (x2, xy, xz, y2), we can check whether or not
I = (x1x2, x2y1, x1z1, y1y2) is a polarization of J.

Notice that I = (x1, y1) ∩ (x1, x2, z1) ∩ (x2, y1, z1) ∩ (x2, y2, z1)

Then ass(I) = {(x1, y1), (x1, x2, z1), (x2, y1, z1), (x2, y2, z1)}

Hence I∨ = (x1y1, x1x2z1, x2y1z1, x2y2z1).

Then since x1x2z1 is not weakly-rainbow, by our theorem I is not a
polarization of J.

18
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Stanley-Reisner Complex and Shellability

Definition
For a squarefree monomial ideal I, the Stanley-Reisner complex of I
is the simplicial complex consisting of the monomials not in I,

∆I = {m ⊂ X|m 6∈ I}.

Question. Are Stanley-Reisner complexes of polarizations of Artinian
monomial ideals always simplicial spheres/balls?

Definition
An ordering F1, . . . Ft of the facets of a simplicial complex ∆ is a
shelling if, for each j with 1 < j ≤ t, the intersectionj−1∪

i=1

Fi

 ∩ Fj

is a nonempty union of facets of ∂Fj. If there exists a shelling of ∆,
then ∆ is called shellable.
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Shellability when I = (x1, . . . , xn)d

Question. For I = (x1, . . . , xn)d, is ∆Ĩ shellable?

Theorem (Almousa–Fløystad–Lohne (2022))
∆Ĩ is shellable when n = 3 or d = 2.
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Well-Connected Graphs

Definition
A graph is well-connected if for any vertices a,b, c, there exists a
shortest path from b to c such that the distance from a to anything
on the path is ≤ max(d(a,b),d(a, c)).

Example
The left graph is not well-connected, but the right graph is.

Question Is the linear syzygy graph of Ĩ∨ is well-connected for any
Artinian I?
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Artinian I?

21



Shellability given Well-Connected

Theorem
Let Ĩ be a polarization of an Artinian I. If the linear syzygy graph G on
the Alexander dual Ĩ∨ is well-connected, ∆Ĩ is shellable.

22



Smooth Points on Hilbert Schemes

• The Hilbert scheme H = Hp(z)Pn is a space “parameterizing” closed
subschemes (projective varieties) with Hilbert polynomial p(z)
inside Pn.

• It is not well understood (can have terrible singularities, don’t
know the number of irreducible components, etc.).

23



Smooth Points on Hilbert Schemes

Overarching question: When are the points on H corresponding to
the varieties cut out by polarizations of strongly stable ideals
smooth?

Theorem (Lohne, 2013)
If J is either the standard or box polarization of
(x1, . . . , xn)d ⊂ k[x1, . . . , xn], then the point on H corresponding to J is
smooth.
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A Case Study

Definition

For each m,n ≥ 2, define Im,n to
be the strongly stable closure of
{xn−12 xm}.

I3,3:

x2y x2z

x3

y3

xy2

y2z

xyz

25



A Case Study

Definition

Define the pyramidal
polarization Jm,n of Im,n as
follows: take the standard
polarization of Im,n and separate
the x3, . . . , xm variables as much
as possible.

J3,3:

x1x2y1 x1x2z1

x1x2x3

y1y2y3

x1y1y2

y1y2z3

x1y1z2
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A Case Study

How to show a point on H is smooth? In general finding the
dimension of its component is hard.

27



A Case Study

Our strategy: the T2 functor.

Associated to any ideal J ⊂ S is the cotangent complex of
S/J-modules

L2 → L1 → L0.

We can apply Hom(·, S/J) and obtain a complex

Hom(L0, S/J) → Hom(L1, S/J) → Hom(L2, S/J).

The homology at position 2 (i.e. the cokernel of the second map) is
T2J .

T2 tells us how “obstructed” our ideal J is. It provides an “upper
bound” on how bad a possible singularity at J can be.
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A Case Study

Theorem (FGA Explained, Chapter 6)
T2J = 0 implies that the point on H corresponding to J is smooth (but
not vice versa).

Theorem
For m,n ≥ 2, T2Jm,n

= 0.

Hence Jm,n defines a smooth point xm,n on its Hilbert scheme.

Theorem
dimk(xm,n) Txm,n = n(n− 1)(m2 +m− 1).
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One More Word on Tangent Spaces

Question: Let I′ be a polarization of a strongly stable ideal I, and I′′ a
further polarization of I′. Do the tangent spaces at the points
corresponding to I′ and I′′ (in the same Hilbert scheme H) have the
same dimension?

For instance, this would imply that the tangent space of the standard
polarization of Im,n is also dimension n(n− 1)(m2 +m− 1).
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