POLARIZATIONS OF EQUIGENERATED STRONGLY STABLE IDEALS

HANSON HAO, YUYUAN LUO, AND STERLING SAINT RAIN

Abstract

In this paper, we extend the results of Almousa, Fløystad, and Lohne ([AFL22]) which completely characterize polarizations of powers of the maximal ideal $\left(x_{1}, \ldots, x_{n}\right)^{d} \subset k\left[x_{1}, \ldots, x_{n}\right]$ to the setting of strongly stable monomial ideals. In particular, we give a necessary and sufficient criterion for determining when any polarization of a given strongly stable ideal is a separated model, and we reproduce (in the strongly stable case) [AFL22]'s classification of polarizations in terms of isotone maps. We also discuss conjectures and some results relating these polarizations to commutative algebra, simplicial topology, and algebraic geometry in the contexts of their associated Alexander duals, Stanley-Reisner simplicial complexes, and Hilbert schemes, respectively.

Contents

1. Introduction 2
2. Background 3
2.1. Strongly Stable ideals 3
2.2. Polarizations and separations 3
2.3. Constructions and results from the literature 5
3. Polarizations and Separated Models of Strongly Stable Ideals 8
4. Down-triangles in the Strongly Stable Case 11
4.1. Linear Syzygy Paths 11
5. Extending Isotone Maps and Polarizations 13
5.1. An Alternate Proof of Proposition 4.7 in the Three Variable Case 14
6. Spanning Tree Condition 16
7. Alexander Duals and Associated Primes of Polarizations 18
8. Stanley-Reisner complexes and shellability 21
9. A class of rigid polarizations of strongly stable ideals 26
Acknowledgements 36
References 36
Bibliography 37

1. Introduction

Monomial ideals play a central role in combinatorial commutative algebra, a field pioneered by the work of Stanley that connects commutative algebra and algebraic geometry to combinatorics on simplicial complexes. One of the main tools in their study is polarization, which was introduced in Hartshorne's thesis [Har66] in order to prove connectedness of the Hilbert scheme. Polarization replaces a monomial ideal with a square-free monomial ideal sharing the same homological data, giving access to combinatorial tools such as Stanley-Reisner theory.
Historically, polarization referred to the standard polarization (shown in the construction in the preceding paragraph), which is a specific method to separate the variables. But it turns out that many ideals have other, nonisomorphic polarizations. Another polarization which has been studied in some depth, the box polarization, was first introduced by Nagel and Reiner in [NR09] and further studied in [Yan12] as a tool to help construct the "complex of boxes." This "complex of boxes" is useful in that it gives a minimal, linear, cellular free resolution for the class of strongly stable ideals that we will study in this paper.

The aim of this paper is to extend the results of Almousa, Fløystad, and Lohne ([AFL22]) regarding polarizations of powers of the maximal ideal $\left(x_{1}, \ldots, x_{n}\right) \subset k\left[x_{1}, \ldots, x_{n}\right]$ to the class of strongly stable (monomial) ideals, and to explore the applications of this work. The class of strongly stable ideals, which generalizes the aforementioned family of powers of the maximal ideal, is defined by the following property: I is strongly stable if for any monomial $\mathbf{m} \in I$ and any x_{i} dividing \mathbf{m}, the monomials of the form $\mathbf{m} \cdot \frac{x_{j}}{x_{i}}$ are in I for all $1 \leq j<i$. For example, if a strongly stable ideal contains the monomial $x_{1} x_{2} x_{3}^{2}$, it must also contain the monomial $x_{1} x_{2}^{2} x_{3}$ obtained by swapping an x_{3} out for an x_{2}. Strongly stable ideals arise naturally in algebraic combinatorics; for instance, generic initial ideals are always strongly stable in characteristic 0 .

The main result of this paper is Theorem 6.1 and its converse Proposition 4.2, a generalization of the spanning tree criterion for polarizations presented in the power of the maximal ideal case in [AFL22]. This allows us to determine combinatorially when a set of isotone maps defines a polarization for any strongly stable ideal, by looking at its graph of linear syzygies.

The paper is organized as follows. We begin with relevant background definitions and constructions that will define our setting in Section 2. We then move to Section 3, characterizing separated models of strongly stable ideals.

In Section 4, we introduce our definitions of down-triangles, and prove one direction of our main theorem. Section 5 explores a bootstrapping technique in the three variable case, and discusses why the strategy fails in higher dimensions. In Section 6, we prove the other direction of the main theorem by generalizing a strategy from [AFL22].

We conclude our paper with our work in three applications: in Section 7 we discuss Alexander duality and associated primes of polarizations, in Section 8 we explore the shellability of polarizations of strongly stable ideals, and in Section 9 we discuss when a polarization of a strongly stable ideal yields a smooth point on its associated Hilbert scheme.

Conventions. Unless otherwise stated, throughout the paper we will only consider equigenerated strongly stable ideals; that is, strongly stable ideals whose minimal monomial generators are all of the same degree $d \geq 2$. When $d=1$, all strongly stable ideals are in the form of the homogeneous maximal ideal of a polynomial subring; hence the statements tend to be trivial. Unless otherwise mentioned, we will always be adopting this setup, so "strongly stable" will mean "strongly stable and equigenerated of degree ≥ 2 ".

2. Background

In this section we will present relevant definitions and constructions that will be useful to us throughout this paper.

2.1. Strongly Stable ideals.

Remark 2.1. Recall from Proposition 1.1.6 in Herzog-Hibi [HH11] that a monomial ideal has a unique minimal monomial set of generators. In the future, we mean a minimal set of generators whenever we refer to generators of a monomial ideal.

Definition 2.2. An elementary move (also known as a Borel move) $e_{i j}$ where $i<j$ is the operation sending a monomial \mathbf{m} to the monomial $\mathbf{m} \cdot \frac{x_{i}}{x_{j}}$, i.e.

$$
e_{i j}\left(x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right)=x_{1}^{a_{1}} \ldots x_{i}^{a_{i}+1} \ldots x_{j}^{a_{j}-1} \ldots x_{n}^{a_{n}} .
$$

Such a move is admissible if $a_{j} \geq 1$ (that is, $e_{i j}\left(x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right)$ really is in our polynomial ring). We say a monomial m^{\prime} is reachable from m if m^{\prime} can be obtained from m by a sequence of admissible elementary moves. We say m is maximal if it is not reachable from any other generator of I.

Example 2.3. The monomial $x_{1}^{3} x_{2}$ is reachable from $x_{1} x_{3}^{3}$ through the sequence of admissible elementary moves $e_{13} e_{13} e_{23}$.

Notice that a monomial with exponent vector $\left(a_{1}, \ldots, a_{n}\right)$ is reachable from $\left(b_{1}, \ldots, b_{n}\right)$ exactly when $\sum_{i=1}^{j} a_{i} \geq \sum_{i=1}^{j} b_{i}$ for all $1 \leq j \leq n$.

Definition 2.4. Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k. A monomial ideal $I \subset S$ is strongly stable if for any generator \mathbf{m} of I, I contains every monomial that is reachable from \mathbf{m}.
2.2. Polarizations and separations. In this subsection, we recall the definitions of polarization and separation from [AFL22] and recall their characterization of polarizations of powers of the graded maximal ideal.

Notation 2.5. If R is a set, let $k\left[x_{R}\right]$ be the polynomial ring in the variables x_{r} where $r \in R$. If $S \rightarrow R$ is a map of sets, it induces a k-algebra homomorphism $k\left[x_{S}\right] \rightarrow k\left[x_{R}\right]$ by mapping x_{s} to x_{r} if $s \mapsto r$.

Definition 2.6 (Separation, Separated Model). Let $R^{\prime} \xrightarrow{p} R$ be a surjection of finite sets such that $\left|R^{\prime}\right|=|R|+1$. Let r_{1} and r_{2} be the two distinct elements of R^{\prime} which map to a single element r in R. Let I be a monomial ideal in the polynomial ring $k\left[x_{R}\right]$ and J a monomial ideal in $k\left[x_{R^{\prime}}\right]$. Then J is a simple separation of I if the following holds:
i. The monomial ideal I is the image of J by the map $k\left[x_{R^{\prime}}\right] \rightarrow k\left[x_{R}\right]$.
ii. Both the variables $x_{r_{1}}$ and $x_{r_{2}}$ occur in some minimal generators of J (usually in distinct generators).
iii. The variable difference $x_{r_{1}}-x_{r_{2}}$ is a non-zero divisor in the quotient ring $k\left[x_{R^{\prime}}\right] / J$.

More generally, if $R^{\prime} \xrightarrow{p} R$ is a surjection of finite sets and $I \subseteq k\left[x_{R}\right]$ and $J \subseteq k\left[x_{R^{\prime}}\right]$ are monomial ideals such that J is obtained by a succession of simple separations of I, then J is a separation of I. J a separated model (of I) if there are no possible nontrivial separations of J.

Definition 2.7 (Preseparation). Define a preseparation of a monomial ideal $I \subset k\left[x_{R}\right]$ (using the same notation as Definition 2.6) to satisfy the same conditions as that definition, except (iii): that is, the appropriate difference of variables is not guaranteed to be a regular sequence.

Intuitively, one can think of a preseparation as a "potential" separation. Often in proofs we will put forth preseparations and need to check that they satisfy the "nonzero divisor" condition (iii) in Definition 2.6.

Definition 2.8. An ideal J is a polarization of an ideal I if it is a square-free separation of I.
Construction 2.9 (Standard Polarization). Let I be a monomial ideal in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ over a field k. Let d_{i} be the largest power of the variable x_{i} which divides a minimal generator of I. Let Let $\check{X}_{i}=\left\{x_{i_{1}}, \ldots, x_{i_{d_{i}}}\right\}$ be a set of variables for each $i \in[n]$, and let $\tilde{S}=k\left[\check{X}_{1}, \ldots, \check{X}_{n}\right]$ be a polynomial ring in the union of all these variables.

Take each generator of I of the form $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$ and make the following monomial ($x_{11} x_{12} \ldots x_{1 a_{1}}$). $\left(x_{21} x_{22} \ldots x_{2 a_{2}}\right) \cdots \cdots\left(x_{n 1} x_{n 2} \ldots x_{n a_{n}}\right)$ a minimal generator of the ideal $\tilde{I} \subset \tilde{S}$.
Call \tilde{I} the standard polarization of I . To recover the quotient ring S / I from \tilde{S} / \tilde{I}, quotient successively by the regular sequence of variable differences $x_{i 1}-x_{i 2}, \ldots, x_{i 1}-x_{i n}$ for each i.

Another useful polarization, which we refer to as the box polarization, was introduced by Nagel and Reiner in [NR09].

Construction 2.10 (Box Polarization). Let I be a monomial ideal in the polynomial ring $S=$ $k\left[x_{1}, \ldots, x_{n}\right]$ over a field k. Let d_{i} be the largest power of the variable x_{i} which divides a minimal generator of I. Let Let $\check{X}_{i}=\left\{x_{i_{1}}, \ldots, x_{i_{d_{i}}}\right\}$ be a set of variables for each $i \in[n]$, and let $\tilde{S}=k\left[\check{X}_{1}, \ldots, \check{X}_{n}\right]$ be a polynomial ring in the union of all these variables.

Take each generator of I of the form $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$ and make the following monomial ($x_{11} x_{12} \ldots x_{1 a_{1}}$). $\left(x_{2 a_{1}+1} x_{2 a_{1}+2} \ldots x_{2 a_{1}+a_{2}}\right) \cdots \cdots\left(x_{n a_{1}+\cdots+a_{n-1}+1} x_{n a_{1}+\cdots+a_{n-1}+2} \ldots x_{n a_{1}+\cdots+a_{n}}\right)$ a minimal generator of the ideal $\tilde{I} \subset \tilde{S}$.

Call Ĩ the box polarization of I.
Notice that the second indices restart for each change in the first index of the standard polarization, while the second indices keep increasing in the box polarization.

Example 2.11. Observe:
The standard polarization:

$$
x_{1}^{2} x_{2} x_{3}^{3} \mapsto x_{11} x_{12} x_{21} x_{31} x_{32} x_{33}
$$

The box polarization:

$$
x_{1}^{2} x_{2} x_{3}^{3} \mapsto x_{11} x_{12} x_{23} x_{34} x_{35} x_{36}
$$

This paper's aim is to shed light on more general polarizations.
For convenience, we record here a useful lemma and its corollary on square-free monomial ideals (Lemma 5.8 in [AFL22]):

Lemma 2.12. Let I be a monomial ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ such that each generator of I is square-free in the x_{i}-variable. Then if $j \neq i$ and $\left(x_{i}-x_{j}\right) \cdot f$ is in I, then for every monomial \mathbf{m} in f we have that $x_{i} \mathbf{m}$ and $x_{j} \mathbf{m}$ are in I.

Lemma 2.13. Let $\mathbf{x}^{\mathbf{a}}$ and $\mathbf{x}^{\mathbf{b}}$ be minimal generators of a monomial ideal I and $m(\mathbf{a})$ and $m(\mathbf{b})$ the corresponding generators in a polarization of I. Fix an index i. If $a_{i} \leq b_{i}$ and $a_{j} \geq b_{j}$ for every $j \neq i$, then the i 'th part $m_{i}(\mathbf{a})$ divides $m_{i}(\mathbf{b})$.

The lemma above is important in motivating the construction of isotone maps on a partial order encoding divisibility of the generators of a polarization, which will be crucial to the statement and proof of many of our results. We will now transition into providing background constructions and results from the original paper [AFL22].
The goal of the original paper was to study polarizations of powers of the maximal ideal, and while we concern ourselves with polarizations of strongly stable ideals, we will be borrowing much of the terminology and techniques introduced in [AFL22].
2.3. Constructions and results from the literature. In this section we summarize the characterization of polarizations of powers of the graded maximal ideal from [AFL22]

Notation 2.14. Fix integers n and d, and let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial over a field k. Let $\check{X}_{i}=\left\{x_{i 1}, \ldots, x_{i d}\right\}$ be a set of variables, and let $\tilde{S}=k\left[\check{X}_{1}, \ldots, \check{X}_{n}\right]$ be a polynomial ring in the union of all these variables. Denote by $\mathrm{m}=\left(x_{1}, \ldots, x_{n}\right)$ the graded maximal ideal of S.
Denote by $\Delta^{\mathbb{Z}}(n, d)=\Delta(n, d) \cap \mathbb{Z}^{n}$ the set of lattice points of the dilated simplex $d \cdot \Delta^{n-1}$, i.e., the set of tuples $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ of non-negative integers with $\sum_{i}^{n} a_{i}=d$. Consider the polytopal CWcomplex with the underlying space $d \cdot \Delta_{n-1}$, with CW-complex structure induced by intersection with the cubical CW-complex structure on \mathbb{R}^{n} given by the integer lattice \mathbb{Z}^{n}. Denote by $\mathcal{T}(n, d)$ the one-skeleton of this cell complex.

Observation 2.15. The elements of $\Delta^{\mathbb{Z}}(n, d)$ are exactly the exponent vectors of the minimal generating set of the ideal m^{d}.

Notation 2.16. Let $e_{i} \in \mathbb{N}^{n}$ be the i th unit vector in \mathbb{N}^{n}. For a given a, denote by $\operatorname{Supp}(\mathbf{a})$ the support of \mathbf{a}, that is, the set of all i such that $a_{i}>0$. If B is a subset of $[n]$, denote by $\mathbb{1}_{B}$ the n-tuple $\sum_{i \in B} e_{i}$. For example, if $B=[n]$, then $\mathbb{1}_{B}=(1, \ldots, 1)$.

In the following definitions, we recall from [AFL22] some key subgraphs of $\mathcal{T}(n, d)$ which will be critical for characterizing polarizations combinatorially.

Definition 2.17 (Complete down-graph). Given $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$ and $i, j \in \operatorname{Supp}(\mathbf{c})$, there is an edge between $\mathbf{c}-e_{i}$ and $\mathbf{c}-e_{j}$ in $\mathcal{T}(n, d)$ denoted $(\mathbf{c} ; i, j)$. Every edge in $\mathcal{T}(n, d)$ can be realized as an edge ($\mathbf{c} ; i, j$) for unique \mathbf{c}, i, and j. An n-tuple $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$ induces a subgraph of $\mathcal{T}(n, d)$ called the complete down-graph $D(\mathbf{c})$ on the points $\mathbf{c}-e_{i}$ for $i \in \operatorname{Supp}(\mathbf{c})$. If $R \subseteq[n]$, denote by $D_{R}(\mathbf{c})$ the complete graph with edges ($\mathbf{c} ; r, s$) for $r, s \in R$.

Definition 2.18 (Complete up-graph). Any $\mathbf{a} \in \Delta^{\mathbb{Z}}(n, d-1)$ also determines a subgraph of $\mathcal{T}(n, d)$: the complete up-graph $U(\mathbf{a})$ consisting of points $\mathbf{a}+e_{i}$ for $i=1, \ldots, n$ with edges $\left(\mathbf{a}+e_{i}+e_{j} ; i, j\right)$ for $i \neq j$.

Remark 2.19. The complete down-graph $D(\mathbf{c})$ induces a simplex of full dimension $d-1$ if and only if $c_{i} \geq 1$ for all i, i.e., \mathbf{c} has full support. For each \mathbf{a} in $\Delta^{\mathbb{Z}}(n, d-1)$, the induced simplex of the up-graph $U(\mathbf{a})$ always has full dimension $d-1$.

Figure 1. The graph $\mathcal{T}(3,3)$.

Example 2.20. The graph $\mathcal{T}(3,3)$ pictured in Figure 1 has three "complete down-triangles" with full support corresponding to the vectors $(2,1,1),(1,2,1)$, and $(1,1,2)$ in $\Delta^{\mathbb{Z}}(n, d+1)$. It also has six "complete up-triangles".

We now introduce a set of partial orders \geq_{i} for each $i \in[n]$.
Definition 2.21 (The Partial Order \geq_{i}). Adopt notation and hypotheses of Notation 2.14. Fix an index $1 \leq i \leq n$. Define ($\Delta^{\mathbb{Z}}(n, d), \geq_{i}$) to be the poset with ground set $\Delta^{\mathbb{Z}}(n, d)$ and partial order \geq_{i} such that $\mathbf{b} \geq_{i}$ a if $b_{i} \geq a_{i}$ and $b_{j} \leq a_{j}$ for $j \neq i$.

Observation 2.22. The partial order \geq_{i} as in Definition 2.21 is graded, where $\mathbf{a} \in \Delta^{\mathbb{Z}}(n, d)$ has rank a_{i}.

The maps in the following construction will play an important role in our efforts to combinatorially characterize polarizations throughout this paper.

Construction 2.23 (Isotone Maps). Adopt notation and hypotheses of Notation 2.14. Let \mathcal{B}_{d} be the Boolean poset on [d] and $\left\{X_{i}\right\}_{1 \leq i \leq n}$ be a set of rank-preserving isotone maps

$$
X_{i}:\left(\Delta^{\mathbb{Z}}(n, d), \leq_{i}\right) \rightarrow \mathcal{B}_{d} .
$$

For any $\mathbf{a} \in \Delta^{\mathbb{Z}}(n, d)$, let $m_{i}(\mathbf{a})=\prod_{j \in X_{i}(\mathbf{a})} x_{i j}$ and $m(\mathbf{a})=\prod_{i=1}^{n} m_{i}(\mathbf{a})$. Let J be the ideal in $k\left[\check{X}_{1}, \ldots, \check{X}_{n}\right]$ generated by the $m(\mathbf{a})$.

Definition 2.24 (Linear Syzygy Edge). Let ($\mathbf{c} ; i, j)$ be an edge of $\mathcal{T}(n, d)$, where $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$. Then ($\mathbf{c} ; i, j$) is a linear syzygy edge (or LS-edge) if there is a monomial \mathbf{m} of degree $d-1$ such that

$$
m\left(\mathbf{c}-e_{i}\right)=x_{j r} \cdot \mathbf{m} \quad \text { and } \quad m\left(\mathbf{c}-e_{j}\right)=x_{i s} \cdot \mathbf{m}
$$

Figure 2. A down-triangle and its labeled monomials
for suitable variables $x_{j r} \in \check{X}_{j}$ and $x_{i s} \in \check{X}_{i}$. This edge gives a linear syzygy between the monomials $m\left(\mathbf{c}-e_{i}\right)$ and $m\left(\mathbf{c}-e_{j}\right)$. Equivalently, in terms of the isotone maps,

$$
X_{p}\left(\mathbf{c}-e_{i}\right)=X_{p}\left(\mathbf{c}-e_{j}\right)
$$

for every $p \neq i, j$. Observe that both $m_{i}\left(\mathbf{c}-e_{i}\right)$ and $m_{j}\left(\mathbf{c}-e_{j}\right)$ are common factors of $m\left(\mathbf{c}-e_{i}\right)$ and $m\left(\mathbf{c}-e_{j}\right)$.

Sometimes, one may wish to consider whether two elements of $\Delta^{\mathbb{Z}}(n, d)$ would share a linear syzygy edge with respect to a subset of $[n]$.

Definition 2.25 (R-Linear Syzygy Edge). Let $R \subseteq[n]$ and $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$ with R contained in the support of \mathbf{c}. Let $r, s \in R$. Define ($\mathbf{c} ; r, s$) to be an R-linear syzygy edge if

$$
X_{p}\left(\mathbf{c}-e_{r}\right)=X_{p}\left(\mathbf{c}-e_{s}\right) \text { for } p \in R \backslash\{r, s\} .
$$

By the isotonicity of the X_{p}, for $p=r, s$,

$$
X_{r}\left(\mathbf{c}-e_{r}\right) \subseteq X_{r}\left(\mathbf{c}-e_{s}\right), \quad X_{s}\left(\mathbf{c}-e_{s}\right) \subseteq X_{s}\left(\mathbf{c}-e_{r}\right) .
$$

Let $D_{R}(\mathbf{c})$ be the complete graph with edges $(\mathbf{c} ; r, s)$ for $r, s \in R$.
The following lemma tells us that the monomials assigned to vertices of a down-triangle by a set of isotone maps must have a common factor which is easy to describe.

Lemma 2.26. Let $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d)$ have support $C \subseteq\{1,2, \ldots, n\}$. The monomials assigned to the vertices in the down-graph $D(\mathbf{c})$ by the maps X_{i} have a common factor of degree $\mathbf{c}-\mathbb{1}_{C}$. This common factor is $\prod_{i \in C} m_{i}\left(\mathbf{c}-e_{i}\right)$.

Example 2.27. Let $m=3$ and $\mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right)$ be in $\Delta_{3}^{+}(n+1)$. On the left in Figure 2 is the down triangle $D(\mathbf{c})$. Let

$$
\mathbf{n}=m_{1}\left(\mathbf{c}-e_{1}\right) \cdot m_{2}\left(\mathbf{c}-e_{2}\right) \cdot m_{3}\left(\mathbf{c}-e_{3}\right) .
$$

Then the monomials associated to the vertices of this down-triangle are shown to the right in Figure 2.

The following lemma turns out to be a useful tool for induction, and for applications in later sections.

Lemma 2.28. Let $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$. If the set of linear syzygy edges in $L S(\mathbf{c})$ contains a spanning tree for $D(\mathbf{c})$, then for each $R \subseteq \operatorname{supp}(\mathbf{c})$, the set of R-linear syzygy edges contains a spanning tree for $D_{R}(\mathbf{c})$.

Figure 3. R-linear syzygy edges where $R=\{2,3,4\}$.

Figure 4. An example of a polarization of $(x, y, z)^{3}$.
Example 2.29. Consider the case of four variables and $\mathbf{c}=(1,1,1,1)$. Write x, y, z, w for $x_{1}, x_{2}, x_{3}, x_{4}$, respectively. On the left of Figure 3 is the down-graph $D(\mathbf{c})$ with the three thick edges the linear syzygy edges.
Let $R=\{2,3,4\}$. On the right is the down-graph $D_{R}(\mathbf{c})$ where the two thick edges are the R-linear syzygy edges and the relevant variables marked in bold.

We conclude this section by recalling the main result of [AFL22] which offers a complete combinatorial characterization of all polarizations of m^{d} in terms of their graphs of linear syzygies.

Theorem 2.30. Adopt notation 2.14. A set of isotone maps X_{1}, \ldots, X_{n} as in Construction 2.23 determines a polarization of the ideal $\left(x_{1}, \ldots, x_{n}\right)^{d}$ if and only if for every $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$, the linear syzygy edges $L S(\mathbf{c})$ contain a spanning tree for the down-graph $D(\mathbf{c})$.

Example 2.31. Figure 4 depicts the graph of linear syzygies for a polarization of $(x, y, z)^{3}$. Notice that at most one edge is removed from each down-triangle, so it satisfies the spanning tree condition of Theorem 2.30.

3. Polarizations and Separated Models of Strongly Stable Ideals

In Section 2.2 of [AFL22], it is determined (Corollary 2.6) that any polarization of an Artinian monomial ideal is a separated model. Recall from Definition 2.6 that this means a polarization cannot be separated any further by "splitting" one of the variables that appear in it. However, this does not hold for strongly stable ideals, as the following example shows:

(A) The standard polarization of the ideal in Example 3.1.

(в) A separation of the standard polarization of the ideal in Example 3.1.

Figure 5. Two polarizations of a strongly stable ideal with linear syzygy edges marked, the second of which is a separation of the first.

Example 3.1. The standard polarization of the strongly stable ideal $\left(x^{2}, x y, x z, y^{2}, y z\right) \subset k[x, y, z]$ is not a separated model. The standard polarization is

$$
I:=\left(x_{1} x_{2}, x_{1} y_{1}, x_{1} z, y_{1} y_{2}, y_{1} z\right) \subset S^{\prime}:=k\left[x_{1}, x_{2}, y_{1}, y_{2}, z\right] .
$$

This has a further separation

$$
J:=\left(x_{1} x_{2}, x_{1} y_{1}, x_{1} z_{1}, y_{1} y_{2}, y_{1} z_{2}\right) \subset S^{\prime \prime}:=k\left[x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right] .
$$

Indeed, the natural surjection of polynomial rings sends J onto I, and if $f \in S^{\prime \prime}$ is such that $f\left(z_{1}-z_{2}\right) \in J$, then Lemma 2.12 shows that for every monomial \mathbf{m} of f, both $\mathbf{m} z_{1}$ and $\mathbf{m} z_{2}$ are in J. One sees from the generators of J that $\mathbf{m} z_{1} \in J$ implies $x_{1} \mid \mathbf{m}$ or \mathbf{m} is a multiple of a monomial generator of J, and that $\mathbf{m} z_{2} \in J$ implies $y_{1} \mid \mathbf{m}$ or \mathbf{m} is a multiple of a monomial generator of J. Since $x_{1} y_{1} \in J$, it follows that $\mathbf{m} \in J$, so $f \in J$. Hence $z_{1}-z_{2}$ is not a zero divisor in $S^{\prime \prime} / J$. See Figure 5 for the graphs of linear syzygies for the polarizations I and J.

It is therefore interesting to characterize the strongly stable ideals for which any polarization is a separated model. In particular, for strongly stable I, we will see that either any polarization of I is a separated model, or the standard polarization of I will not be a separated model.
For the setup, consider a function ρ, acting on the set of monomials as $\rho\left(x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right)=x_{i}^{a_{i}}$, where i is the largest index with a_{i} strictly positive. For instance, $\rho\left(x_{1}^{5} x_{3} x_{4}^{2}\right)=x_{4}^{2}$, regardless of what polynomial ring in which we consider the monomial $x_{1}^{5} x_{3} x_{4}^{2}$.

Lemma 3.2. Suppose I is strongly stable with minimal generators $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right)$ each of degree d. Suppose there exists a maximal generator \mathbf{a}_{j} such that there is a distinct generator \mathbf{a}_{k} (not necessarily maximal) with $\rho\left(\mathbf{a}_{j}\right) \mid \mathbf{a}_{k}$. Then the standard polarization of I is not a separated model.

Proof. Let $\mathbf{a}_{j}=x_{1}^{b_{1}} \ldots x_{i}^{b_{i}}$ and $\mathbf{a}_{k}=x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}$, where $c_{i} \geq b_{i} \geq 1$. In the standard polarization $I^{\prime} \subset S^{\prime}$, the indeterminant $x_{i, b_{i}}$ appears in at least two different monomials (preimages of \mathbf{a}_{j} and \mathbf{a}_{k}). Consider the preseparation $I^{\prime \prime}$ inside $S^{\prime \prime}:=k\left[x_{1,1}, \ldots, \widehat{x_{i, b_{i}}}, \ldots, x_{n, e_{n}}, y_{1}, y_{2}\right]$, such that $I^{\prime \prime}$ has the same generators as I^{\prime}, but we replace every instance of $x_{i, b_{i}}$ with y_{1} except the $x_{i, b_{i}}$ appearing in $m\left(\mathbf{a}_{j}\right)$, which we replace with y_{2}.

We claim that $y_{1}-y_{2}$ is not a zero divisor in $S^{\prime \prime} / I^{\prime \prime}$, so this preseparation is actually a separation. Indeed, suppose $f \in S^{\prime \prime}$ with $f\left(y_{1}-y_{2}\right) \in I^{\prime \prime}$. Since $I^{\prime \prime}$ is equigenerated of degree $d \geq 2, y_{1}-y_{2} \notin I^{\prime \prime}$. We want $f \in I^{\prime \prime}$, so it suffices to show that every monomial \mathbf{m} of f is in $I^{\prime \prime}$. Since $I^{\prime \prime}$ is square-free,
by Lemma 2.12, we must have $\mathbf{m} y_{1}, \mathbf{m} y_{2} \in I^{\prime \prime}$. We see from the latter condition that either \mathbf{m} is divisible by a generator of $I^{\prime \prime}$, or it is divisible by $x_{1,1} \ldots x_{i, b_{i}-1}$, so consider the second case.

The indeterminant y_{1} can only appear in a generator $I^{\prime \prime}$ as a result of pre-separating $m\left(\mathbf{a}_{k}\right)$, where $\mathbf{a}_{k}=x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}, \mathbf{a}_{k} \neq \mathbf{a}_{j}$, and $c_{i} \geq b_{i}$. Notice that it is not possible to have $c_{i^{\prime}} \leq b_{i^{\prime}}$ for all $1 \leq i^{\prime} \leq i$, since $\sum b_{l}=d=\sum c_{l}$ and $b_{i} \leq c_{i}+\ldots+c_{n}$, so this would contradict maximality of \mathbf{a}_{j}. Therefore pick i^{\prime} with $c_{i^{\prime}}>b_{i^{\prime}}$.

The point is as follows. For $\mathbf{m} y_{1}$ to be in $I^{\prime \prime}, \mathbf{m}$ is either divisible by a generator of $I^{\prime \prime}$, or $\mathbf{m} y_{1}$ is divisible by some $x_{1,1} \ldots \widehat{x_{i, b_{i}}} \ldots x_{n, c_{n}} y_{1}$ induced by an \mathbf{a}_{k} as above. So \mathbf{m} is divisible by $x_{1,1} \ldots \widehat{x_{i, b_{i}}} \ldots x_{n, c_{n}}$, and in particular it is divisible by $x_{i^{\prime}, b_{i^{\prime}+1}}$. Hence $x_{1,1} \ldots x_{i, b_{i}-1} x_{i^{\prime}, b_{i^{\prime}}+1} \mid \mathbf{m}$. But $x_{1}^{b_{1}} \ldots x_{i^{\prime}}^{b_{i^{\prime}+1}} \ldots x_{i}^{b_{i}-1}$ is in I because it is strongly stable, so $\mathbf{m} \in I^{\prime \prime}$.

It turns out that the criterion given in Lemma 3.2 is in fact precisely the right condition needed to describe those strongly stable I whose polarizations are all separated models.

Lemma 3.3. Suppose I is strongly stable with minimal generators $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right)$ each of degree d. Let $e_{i} \geq 1$ be the maximal power of x_{i} that appears in any \mathbf{a}_{j}. Suppose that for any maximal generator \mathbf{a}_{j}, the only generator divisible by $\rho\left(\mathbf{a}_{j}\right)$ is \mathbf{a}_{j}. Then any polarization of I is a separated model.

Proof. Let $I^{\prime} \subset S^{\prime}$ be some polarization of $I \subset S$. Suppose that $I^{\prime \prime} \subset S^{\prime \prime}$ is a further simple separation of I^{\prime}, so $I^{\prime \prime}$ is again a polarization of I.

First, if $\mathbf{a}_{j_{i}}$ is a maximal generator with $\rho\left(\mathbf{a}_{j_{i}}\right)=x_{i}^{b_{i}}$, then we must have $b_{i}=e_{i}$, and $\mathbf{a}_{j_{i}}$ is the unique generator divisible by $x_{i}^{e_{i}}$. This uniqueness also implies that $\mathbf{a}_{j_{i}}=x_{1}^{d-e_{i}} x_{i}^{e_{i}}$. Moreover, notice that we must have $d=e_{1} \geq e_{2} \geq \ldots \geq e_{n}$ (if $e_{i}<e_{j}$ with $i>j$, then $x_{1}^{d-e_{j}} x_{j}^{e_{j}} \in I$ implies $x_{1}^{d-e_{j}} x_{i}^{e_{j}} \in I$, contradicting maximality of e_{i}).

We now claim that, if $i>1$ and $\mathbf{a}_{k}=x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}$ is a generator divisible by x_{i}, then $c_{1} \geq d-e_{i}$. If not, then $c_{1}<d-e_{i}$, so \mathbf{a}_{k} is not maximal as the only maximal generator divisible by x_{i} is $\mathbf{a}_{j_{i}}=x_{1}^{d-e_{i}} x_{i}^{e_{i}}$. But then \mathbf{a}_{k} is not reachable from any of the maximal generators: surely it is not reachable from any of the $\mathbf{a}_{j_{l}}$ with $l \leq i$, and it is not reachable from any $\mathbf{a}_{j_{l}}=x_{1}^{d-e_{l}} x_{i}^{e_{l}}$ with $l>i$ as $c_{1}<d-e_{i} \leq d-e_{l}$. This implies that \mathbf{a}_{k} is maximal, a contradiction.

In particular, we see that if \mathbf{a}_{k} is divisible by x_{i} (for any fixed $i>1$), then $c_{i}<e_{i}$ and c_{l} is greater than or equal to the l th exponent of $\mathbf{a}_{j_{i}}$. It follows from Lemma 2.4 and Remark 2.5 in [AFL22] that if the polarization of $\mathbf{a}_{j_{i}}$ is $x_{1,1} \ldots x_{1, d-e_{i}} x_{i, 1} \ldots x_{i, e_{i}}$ (after a possible re-indexing) inside $I^{\prime \prime}$, then every indeterminant of $S^{\prime \prime}$ mapping to x_{i} under a sequence of simple separations is one of the $\left\{x_{i, 1}, \ldots, x_{i, e_{i}}\right\}$. Then the proof of Corollary 2.6 in [AFL22] shows that the "split" indeterminant in the simple separation $S^{\prime \prime} \rightarrow S^{\prime}$ cannot be any of the $x_{i, l}$.

It remains to discuss x_{1}. But we know $\mathbf{a}_{j_{1}}=x_{1}^{d}$ is in I, so again Corollary 2.6 tells us that the "split" indeterminant in the simple separation $S^{\prime \prime} \rightarrow S^{\prime}$ cannot be any of the $x_{1, l}$. This contradicts the existence of the further simple separation $I^{\prime \prime}$.

Note that an ideal satisfying the hypotheses of Lemma 3.3 need not be Artinian: consider $\left(x^{2}, x y, y^{2}, x z\right) \subset k[x, y, z]$.

4. Down-triangles in the Strongly Stable Case

Recall Theorem 2.30, which gives an explicit combinatorial description of all possible polarizations of a power of a maximal ideal $\left(x_{1}, \ldots, x_{n}\right)^{d}$:

Theorem 4.1. Adopt notation 2.14. A set of isotone maps X_{1}, \ldots, X_{n} as in Construction 2.23 determines a polarization of the ideal $\left(x_{1}, \ldots, x_{n}\right)^{d}$ if and only if for every $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$, the linear syzygy edges $L S(\mathbf{c})$ contain a spanning tree for the down-graph $D(\mathbf{c})$.

We wish to extend this proposition to the case where the ideal in question is strongly stable. It turns out that the directly analogous criterion in the strongly stable case is the correct one:

Proposition 4.2. Let $I \subseteq \Delta_{n}(d)$ correspond to the monomial generators of an ideal inside $k\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\left(^{*}\right)$. Suppose that for every $\mathbf{c} \in \Delta_{n}(d+1)$, the set of linear syzygy edges $L S(\mathbf{c})$ arising from isotone maps $X_{1}, \ldots, X_{n}: I \rightarrow \mathcal{B}_{d}$ contains a spanning tree for the (partial) down-graph $D(\mathbf{c}) \cap I$. Then the X_{i} determine a polarization of I.

We now recall the proof of Theorem 4.1 as outlined in Section 5 of [AFL22]. The first key ingredient is Lemma 2.28, which may be reformulated in our situation as follows:

Lemma 4.3. Let $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$. If the set of linear syzygy edges in $L S(\mathbf{c})$ contains a spanning tree for $D(\mathbf{c}) \cap I$, then for each $R \subseteq \operatorname{supp}(\mathbf{c})$, the set of R-linear syzygy edges contains a spanning tree for $D_{R}(\mathbf{c}) \cap I$.

Proof. Exactly as in Lemma 2.28. The only needed ingredient is that for any $\mathbf{a}, \mathbf{b} \in D(\mathbf{c}) \cap I$, there is a path consisting of linear syzygy edges between \mathbf{a} and \mathbf{b}. It does not matter that $D(\mathbf{c}) \cap I$ might be smaller than $D(\mathbf{c})$ (a point which we will return to many times).
4.1. Linear Syzygy Paths. It remains to discuss the main ingredient of the argument, which is a combinatorial lemma describing paths in $\Delta_{n}(d)$. We first have to make two definitions.

Definition 4.4. For points $\mathbf{a}, \mathbf{b} \in \Delta_{n}(d)$, we write $\mathbf{a} \leq \mathbf{b}$ if $a_{i} \leq b_{i}$ for all i. This defines a partial order on $\Delta_{n}(d)$, and the join of \mathbf{a} and \mathbf{b} under this ordering is denoted

$$
\mathbf{a} \vee \mathbf{b}:=\left(\max \left(a_{1}, b_{1}\right), \ldots, \max \left(a_{n}, b_{n}\right)\right) .
$$

Definition 4.5. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ are two elements in $\Delta_{n}(d)$, with $A:=\left\{i: a_{i} \geq b_{i}\right\}$ and $B:=\left\{i: a_{i}<b_{i}\right\}$, then the distance between \mathbf{a} and \mathbf{b} is

$$
d(\mathbf{a}, \mathbf{b})=\sum_{i \in A} a_{i}-b_{i}=\sum_{i \in B} b_{i}-a_{i} .
$$

Intuitively, the distance between \mathbf{a} and \mathbf{b} is the minimum number of edges we need to use to construct a path from \mathbf{a} to \mathbf{b} within $\Delta_{n}(d)$.

With these definitions, we may state the main ingredient in the proof of Theorem 4.1. This is Proposition 5.3 in [AFL22]:

Proposition 4.6. Let $\mathbf{a}, \mathbf{b} \in \Delta_{n}(d)$. Suppose that for every $\mathbf{c} \in \Delta_{n}(d+1)$, the linear syzygy edges $L S(\mathbf{c})$ contains a spanning tree for the down-graph $D(\mathbf{c})$. Then there is a path

$$
\mathbf{a}=\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{N}=\mathbf{b}
$$

such that
(1) Every $\mathbf{b}_{i} \leq \mathbf{a} \vee \mathbf{b}$.
(2) Every $m\left(\mathbf{b}_{i}\right)$ divides the LCM of \mathbf{a} and \mathbf{b}.
(3) The edge from \mathbf{b}_{i-1} to \mathbf{b}_{i} is an LS-edge.

We call such a path an LS-path.
Once this result is known, Theorem 4.1 follows using Lemma 2.28. Observe that the proof of this last part does not need the fact that the ideal is a power of the maximal ideal. Therefore we want to modify this proposition to suit the strongly stable situation as follows:

Proposition 4.7. Let $I \subseteq \Delta_{n}(d)$ correspond to the monomial generators of a strongly stable ideal inside $k\left[x_{1}, \ldots, x_{n}\right]$. Suppose that for every $\mathbf{c} \in \Delta_{n}(d+1)$, the set of linear syzygy edges $L S(\mathbf{c})$ arising from isotone maps $X_{1}, \ldots, X_{n}: I \rightarrow \mathcal{B}_{d}$ contains a spanning tree for the (partial) down-graph $D(\mathbf{c}) \cap I$. Then the conclusion to Proposition 4.6 holds inside I. In other words, for any $\mathbf{a}, \mathbf{b} \in I$, we may find a restricted LS-path between \mathbf{a} and \mathbf{b}, which is an LS-path using only points in I.

Let us follow the same method of proof as in [AFL22]. The proof of Proposition 4.6 has three parts, labeled A, B, and C. We aim to reproduce the argument of each part in our situation. In the following, we always assume $\mathbf{a}, \mathbf{b} \in I$.

Part A:
Lemma 4.8. If $d(\mathbf{a}, \mathbf{b})=1$, then there is a restricted $L S$-path from \mathbf{a} to \mathbf{b}.
Proof. The proof follows the same outline as in [AFL22] (Lemma 5.4).
We may now assume that \mathbf{a}, \mathbf{b} have distance at least 2. Define

$$
B:=\left\{i: b_{i}>a_{i}\right\}, \quad A_{>}:=\left\{i: a_{i}>b_{i}\right\}, \quad A_{=}:=\left\{i: a_{i}=b_{i}\right\} .
$$

Also let $A:=A_{>} \cup A_{=}$. Now, write $P(\mathbf{b})$ for the set of all $\mathbf{b}^{\prime} \in I$ such that:
(1) For $i \in B, \mathbf{b}$ and \mathbf{b}^{\prime} have equal i th coordinate.
(2) For $i \in A, b_{i}^{\prime} \leq a_{i}$.
(3) There is a restricted LS-path from \mathbf{b}^{\prime} to \mathbf{b} where the vertices \mathbf{u} on the path satisfy $\mathbf{u} \leq \mathbf{a} \vee \mathbf{b}$ and $m(\mathbf{u}) \mid \operatorname{lcm}(m(\mathbf{a}), m(\mathbf{b}))$.
In particular, $\mathbf{b} \in P(\mathbf{b})$ (condition (3) becomes vacuous), so $P(\mathbf{b})$ is nonempty. Next, let $A_{1} \subseteq A$ be the subset of all indices $i \in A$ for which there is some $\mathbf{b}^{\prime} \in P(\mathbf{b})$ with $b_{i}^{\prime}<a_{i}$, and let $A_{0}:=A-A_{1}$. Since $\mathbf{b} \in P(\mathbf{b})$, we get $A_{>} \subseteq A_{1}$, and in particular $A_{>}$(hence A_{1}) is nonempty. We also conclude that $A_{0} \subseteq A_{=}$, and moreover that $d(\mathbf{a}, \mathbf{b})=d\left(\mathbf{a}, \mathbf{b}^{\prime}\right)$ for all $\mathbf{b}^{\prime} \in P(\mathbf{b})$, via the second sum in Definition 4.5.

We now split into two cases to make a particular choice of $\beta \in B$. If $\max A_{>}>\min B$, then pick $\beta \in B$ such that there is $\alpha \in A_{>}$with $\beta<\alpha$ (recall $A_{>} \subseteq A_{1}$). Since I is strongly stable, $\mathbf{a} \in I$ implies $\mathbf{a}+e_{\beta}-e_{\alpha} \in I$. Otherwise, we have max $A_{>}<\min B$. Then for any $\beta \in B$ and $\alpha \in A_{>}$, it follows that $\mathbf{a}+e_{\beta}-e_{\alpha}$ is reachable from \mathbf{b}, hence is in I. Therefore with $R:=A_{1} \cup\{\beta\}$ for our choice of β, we know that $D_{R}\left(\mathbf{a}+e_{\beta}\right) \cap I$ contains points other than a, and so by Lemma 4.3, there is an R-linear syzygy edge between \mathbf{a} and $\mathbf{a}+e_{\beta}-e_{\alpha}$ for some $\alpha \in A_{1}$. The rest of the arguments for Part A in [AFL22] can be repeated, with "LS-path" replaced with "restricted LS-path".

Part B: The argument for Part B in [AFL22] can be repeated, with "LS-path" replaced with "restricted LS-path".
Part C: The argument for Part C in [AFL22] can be repeated, with "LS-path" replaced with "restricted LS-path".

This proves Proposition 4.7, and hence Proposition 4.2.

5. Extending Isotone Maps and Polarizations

It is also reasonable to ask the following question: given a subset $I \subseteq \Delta_{n}(d)$ corresponding to the monomial generators of a strongly stable ideal and isotone maps $X_{1}, \ldots, X_{n}: I \rightarrow \mathcal{B}_{d}$, when can we extend the X_{i} to all of $\Delta_{n}(d)$? Indeed, this is possible when $n=3$.

Proposition 5.1. Let $I \subseteq \Delta_{3}(d)$ correspond to the monomial generators of an ideal inside $k\left[x_{1}, x_{2}, x_{3}\right]$ satisfying (${ }^{*}$). Suppose that for every $\mathbf{c} \in \Delta_{3}(n+1)$, the set of linear syzygy edges $L S(\mathbf{c})$ arising from isotone maps $X_{1}, X_{2}, X_{3}: I \rightarrow \mathcal{B}_{d}$ contains a spanning tree for the (partial) down-graph $D(\mathbf{c}) \cap I$. Then the conclusion to Proposition 6.1 holds inside I. In other words, for any $\mathbf{a}, \mathbf{b} \in I$, we may find a restricted LS-path between \mathbf{a} and \mathbf{b}, which is an LS-path using only points in I.

Lemma 5.2. Let $I \subseteq \Delta_{3}(d)$ correspond to the monomial generators of a strongly stable ideal inside $k\left[x_{1}, x_{2}, x_{3}\right]$. Suppose that for every $\mathbf{c} \in \Delta_{3}(d+1)$, the set of linear syzygy edges $L S(\mathbf{c})$ arising from isotone maps $X_{1}, X_{2}, X_{3}: I \rightarrow \mathcal{B}_{d}$ contains a spanning tree for the (partial) down-graph $D(\mathbf{c}) \cap I$. These isotone maps X_{1}, X_{2}, X_{3} from Proposition 6.4 can be extended to all of $\Delta_{3}(d)$ in a way such that the down-graph condition is preserved in the graph of linear syzygy edges for $\Delta_{3}(d)$.

Proof. Induction on the size s of $\bar{I}:=\Delta_{3}(d)-I$. Let $\mathbf{d}:=\left(d_{1}, d_{2}, d_{3}\right)$ be in I^{\prime} such that d_{1} is minimal for $\left\{x_{1}:\left(x_{1}, x_{2}, x_{3}\right) \in I^{\prime}\right\}$, and d_{3} is minimal for $\left\{x_{3}:\left(d_{1}, x_{2}, x_{3}\right) \in I^{\prime}\right\}$. There are three cases.
If $d_{3}=0$, then $\left(d_{1}+1, d_{2}-1,0\right) \in I$, and we can extend X_{1}, X_{2}, X_{3} to \mathbf{d} as $X_{1}(\mathbf{d}):=X_{1}\left(d_{1}+1, d_{2}-1,0\right)-\left\{i_{1}\right\}$ (for any i_{1} in the $d_{1}+1$-element set $X_{1}\left(d_{1}+1, d_{2}-1,0\right)$), $X_{2}(\mathbf{d}):=X_{2}\left(d_{1}+1, d_{2}-1,0\right) \cup\left\{i_{2}\right\}$ (for any i_{2} not in the $d_{2}-1$-element set $\left.X_{2}\left(d_{1}+1, d_{2}-1,0\right)\right)$, and $X_{3}:=\emptyset$. The only new nonempty partial down-graph $D(\mathbf{c}) \cap(I \cup \mathbf{d})$ that does not appear in the set of $D(\mathbf{c}) \cap I$ is $\left\{\left(d_{1}, d_{2}, 0\right) ;\left(d_{1}+1, d_{2}-1,0\right)\right\}$ (given by $\mathbf{c}=\left(d_{1}+1, d_{2}, 0\right)$), which is connected by construction.

If $d_{2}, d_{3} \neq 0$, then $\left(d_{1}, d_{2}+1, d_{3}-1\right),\left(d_{1}+1, d_{2}, d_{3}-1\right)$ and $\left(d_{1}+1, d_{2}-1, d_{3}\right)$ are all in I. The new down-graphs are $\left\{\mathbf{d},\left(d_{1}, d_{2}+1, d_{3}-1\right)\right\}$ and $\left\{\mathbf{d},\left(d_{1}+1, d_{2}, d_{3}-1\right),\left(d_{1}+1, d_{2}-1, d_{3}\right)\right\}$, and by assumption, there is a linear syzygy between $\left(d_{1}+1, d_{2}, d_{3}-1\right)$ and $\left(d_{1}+1, d_{2}-1, d_{3}\right)$ since they are the members of $D\left(\mathbf{d}+e_{1}\right) \cap I$. In particular, X_{1} is identical on those two points, so we define $X_{1}(\mathbf{d}):=X_{1}\left(d_{1}, d_{2}+1, d_{3}-1\right)$ (by isotonicity, $X_{1}\left(d_{1}, d_{2}+1, d_{3}-1\right)$ is a d_{1}-element subset of the $d_{1}+1$ element set $\left.X_{1}\left(d_{1}+1, d_{2}, d_{3}-1\right)=X_{1}\left(d_{1}+1, d_{2}-1, d_{3}\right)\right)$. Next, define $X_{2}(\mathbf{d}):=X_{2}\left(d_{1}+1, d_{2}, d_{3}-1\right)$, which, again by isotonicity, is a d_{2}-element subset of the $d_{2}+1$-element set $X_{2}\left(d_{1}, d_{2}+1, d_{3}-1\right)$ and a superset of $X_{2}\left(d_{1}+1, d_{2}-1, d_{3}\right)$. Finally, because the down-graph defined by $\left(d_{1}+1, d_{2}+1, d_{3}-1\right)$ includes $\left(d_{1}, d_{2}+1, d_{3}-1\right)$ and $\left(d_{1}+1, d_{2}, d_{3}-1\right)$ and is contained in I, it follows that $X_{3}\left(d_{1}, d_{2}+1, d_{3}-1\right)$ and $X_{3}\left(d_{1}+1, d_{2}, d_{3}-1\right)$ differ by at most one element. So define $X_{3}(\mathbf{d})$ to be $X_{3}\left(d_{1}+1, d_{2}-1, d_{3}\right)$ if they are equal, and $X_{3}\left(d_{1}, d_{2}+1, d_{3}-1\right) \cup X_{3}\left(d_{1}+1, d_{2}, d_{3}-1\right)$ if they differ (one can again see that isotonicity is preserved). Notice that there is a linear syzygy between \mathbf{d} and $\left(d_{1}, d_{2}+1, d_{3}-1\right)$: the X_{1} parts are equal by definition, the X_{2} parts differ by 1 element by construction, and the X_{3} parts differ by 1 element in either case (in particular, if we're in the $X_{3}(\mathbf{d})=X_{3}\left(d_{1}+1, d_{2}-1, d_{3}\right)$ case, then $X_{3}\left(d_{1}+1, d_{2}, d_{3}-1\right)$ differs from $X_{3}(\mathbf{d})$ by 1 element due to isotonicity, and $X_{3}\left(d_{1}, d_{2}+1, d_{3}-1\right)=X_{3}\left(d_{1}+1, d_{2}, d_{3}-1\right)$). Finally, we show that the down-graph $\left\{\mathbf{d},\left(d_{1}+1, d_{2}, d_{3}-1\right),\left(d_{1}+1, d_{2}-1, d_{3}\right)\right\}$ is connected; it suffices to check that there is a linear syzygy between \mathbf{d} and $\left(d_{1}+1, d_{2}, d_{3}-1\right)$. By definition, their X_{2}
parts are the same, and their X_{1}-parts differ by 1 element since $X_{1}(\mathbf{d})=X_{1}\left(d_{1}, d_{2}+1, d_{3}-1\right)$. Their X_{3}-parts also differ by 1 element in either case, as before.

If $d_{2}=0$ but $d_{2} \neq 0$, then the same extension procedure as in the above paragraph works; details omitted. In any case, we get an extension of our isotone maps to \mathbf{d} such that the down-graph property is preserved in the extension.

The above proof can be easily modified to remove the appearances of the down-graph condition in the hypothesis and conclusion of the lemma.

However, this extension property fails in higher dimensions. For instance:
Example 5.3. Consider the following subset I of $\Delta_{4}(3)$, which corresponds to monomial generators of a strongly stable ideal inside $k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$:

$$
\{(1,0,1,1) ;(1,1,0,1) ;(2,0,0,1) ;(1,0,2,0) ;(1,1,1,0) ;(1,2,0,0) ;(2,0,1,0) ;(2,1,0,0) ;(3,0,0,0)\} .
$$

Note that this corresponds to the strongly stable closure of the ideal generated by $x_{1} x_{3} x_{4}$. Now, define isotone maps $X_{1}, X_{2}, X_{3}, X_{4}: I \rightarrow \mathcal{B}_{3}$ which map the above points to the following list of monomials:

$$
\begin{array}{ccccc}
x_{1,1} x_{3,1} x_{4,1}, & x_{1,1} x_{2,1} x_{4,2}, & x_{1,1} x_{1,2} x_{4,3}, & x_{1,1} x_{3,1} x_{3,2}, \\
x_{1,1} x_{2,1} x_{3,1}, & x_{1,1} x_{2,1} x_{2,2}, & x_{1,1} x_{1,2} x_{3,1}, & x_{1,1} x_{1,2} x_{2,1}, & x_{1,1} x_{1,2} x_{1,3} .
\end{array}
$$

One can easily check that the X_{i} 's are isotone, and moreover the partial down-graph condition is satisfied (one can even check that this is a polarization, obtained from the standard polarization in the spirit of Lemma 4.10). The only cases we really need to check are the downgraphs corresponding to $(1,1,1,1),(2,0,1,1)$, and $(2,1,0,1)$. For instance, we have $D(1,1,1,1) \cap I=$ $\{(1,0,1,1) ;(1,1,0,1) ;(1,1,1,0)\}$, and there are linear syzygies between $(1,1,1,0)$ and the other two vertices, so the down-graph is connected (the other cases are similar). But there is no way to extend X_{4} to $(1,0,0,2)$ in an isotone manner: its x_{4}-part must be divisible by $m_{4}(1,0,1,1)=x_{4,1}$, $m_{4}(1,1,0,1)=x_{4,2}$, and $m_{4}(2,0,0,1)=x_{4,3}$, which is clearly impossible.
5.1. An Alternate Proof of Proposition 4.7 in the Three Variable Case. It turns out that we may use Lemma 5.2 to provide an alternate proof of Proposition 4.7 in the 3 -variable case. This argument is interesting because it bootstraps off of the statement of Proposition 4.6, without ever making contact with its proof.

Lemma 5.4. Let $I \subseteq \Delta_{3}(d)$ correspond to the monomial generators of an ideal inside $k\left[x_{1}, x_{2}, x_{3}\right]$ satisfying $\left(^{*}\right)$. Define the boundary B of I to consist of all $\left(d_{1}, d_{2}, d_{3}\right) \in I$ such that $d_{1}=0$ and $\left(d_{1}, d_{2}-1, d_{3}+1\right) \notin I$, or $\left(d_{1}-1, d_{2}, d_{3}+1\right) \notin I$. In other words, B is exactly the set of points in I that are distance 1 away from a point in I^{\prime}, due to the strongly stable condition.
Let $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ be in B. If $a_{3}<b_{3}$, then $a_{1} \leq b_{1}$ (and consequently $a_{2}>b_{2}$).
Proof. If $a_{1}=0$, then we are immediately done, so assume $a_{1} \geq 1$. Now, if $a_{1}>b_{1}$, then $a_{1}-1 \geq b_{1}$. Also, $a_{3}+1 \leq b_{3}$. Since I is strongly stable, $\left(b_{1}, b_{2}, b_{3}\right) \in I$ implies $\left(b_{1}, n-b_{1}-\left(a_{3}+1\right), a_{3}+1\right) \in I$, and since $a_{1}-1 \geq b_{1}$, this implies $\left(a_{1}-1, a_{2}, a_{3}+1\right) \in I$, contrary to assumption.

Lemma 5.5. Let \mathbf{c} be on an LS-path from \mathbf{a} to \mathbf{b} (here we do not need any assumptions about I). Then $d(\mathbf{a}, \mathbf{c}) \leq d(\mathbf{a}, \mathbf{b})$.

Proof. Let $A_{<}$be the set of i with $a_{i}<b_{i}$ and A_{\geq}be the set of i with $a_{i} \geq b_{i}$. Also, let $C_{>}$be the set of i with $c_{i}>a_{i}$. Then $C_{>}$cannot intersect $A \geq$, for we would have $c_{i}>\max \left(a_{i}, b_{i}\right)$ for any i in the intersection. Hence $C_{>} \subseteq A_{<}$, and for $i \in C_{>}$, we must have $b_{i} \geq c_{i}$, so

$$
d(\mathbf{a}, \mathbf{c})=\sum_{i \in C_{>}} c_{i}-a_{i} \leq \sum_{i \in C_{>}} b_{i}-a_{i} \leq \sum_{i \in A_{<}} b_{i}-a_{i}=d(\mathbf{a}, \mathbf{b}) .
$$

Lemma 5.6. Let $I \subseteq \Delta_{3}(d)$ correspond to the monomial generators of an ideal inside $k\left[x_{1}, x_{2}, x_{3}\right]$ satisfying $\left(^{*}\right)$, and let \mathbf{a}, \mathbf{b} be on the boundary B. If $\mathbf{c} \in B$ is on an LS-path from \mathbf{a} to \mathbf{b} and is not an endpoint, then $d(\mathbf{a}, \mathbf{c}), d(\mathbf{b}, \mathbf{c})<d(\mathbf{a}, \mathbf{b})$.

Proof. Note that $c_{1} \neq 0$, since there can only be one point in B with 0 in the first component.
First, consider the case $a_{3}=b_{3}$, so without loss of generality, $a_{1}<b_{1}$. If $c_{3}=a_{3}=b_{3}$, then we must have $a_{1}<c_{1}<b_{1}$ and $a_{2}>c_{2}>b_{2}$ (recall $a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+b_{3}=c_{1}+c_{2}+c_{3}=n$), so $d(\mathbf{a}, \mathbf{c})=c_{1}-a_{1}<b_{1}-a_{1}=d(\mathbf{a}, \mathbf{b})$ and $d(\mathbf{b}, \mathbf{c})=c_{2}-b_{2}>a_{2}-b_{2}=d(\mathbf{a}, \mathbf{b})$. If $c_{3}<a_{3}$, then $c_{3}+1 \leq a_{3}$, and we must have $a_{1}<c_{1}$ (if they were equal, then $c_{2}>a_{2}$, which is a contradiction as $a_{2}>b_{2}$). So $\left(a_{1}, n-a_{1}-\left(c_{3}+1\right), c_{3}+1\right) \in I$ and $\left(c_{1}-1, c_{2}, c_{3}+1\right) \in I$ by the strongly stable condition, contradicting $\mathbf{c} \in B$.

Otherwise, consider the case $a_{3}<b_{3}$. From Lemma 5.4 we know that $a_{1} \leq b_{1}$ and $a_{2}>b_{2}$, so $d(\mathbf{a}, \mathbf{b})=a_{2}-b_{2}$. We claim that $a_{3} \leq c_{3} \leq b_{3}$. If not, then $c_{3}<a_{3}$, and we must have $a_{1}<c_{1}$ (if they were equal, then $c_{2}>a_{2}$, which is a contradiction as $a_{2} \geq b_{2}$), giving a contradiction to $\mathbf{c} \in B$ as above. Now, if $a_{3}=c_{3}$, then we again must have $a_{2}>c_{2}$ and $a_{1}<c_{1} \leq b_{1}$, and Lemma 5.4 (applied to $\left.c_{3}=a_{3}<b_{3}\right)$ tells us that $c_{2}>b_{2}$. Hence $d(\mathbf{a}, \mathbf{c})=a_{2}-c_{2}<a_{2}-b_{2}=d(\mathbf{a}, \mathbf{b})$ and $d(\mathbf{b}, \mathbf{c})=c_{2}-b_{2}<a_{2}-b_{2}=d(\mathbf{a}, \mathbf{b})$. Otherwise, $a_{3}<c_{3}$, so Lemma 5.4 (applied to $a_{3}<c_{3}$) tells us that $a_{1} \leq c_{1}$ and $a_{2}>c_{2}$. The first inequality implies $c_{1} \leq b_{1}$, so $d(\mathbf{b}, \mathbf{c})=c_{2}-b_{2}<a_{2}-b_{2}=d(\mathbf{a}, \mathbf{b})$. We also claim that $c_{2}>b_{2}$. If not (so $c_{2} \leq b_{2}$), then $c_{3} \leq b_{3}$ along with Lemma 5.4 forces $b_{3}=c_{3}$, so $c_{1} \geq b_{1}$, implying $\mathbf{b}=\mathbf{c}$, contrary to assumption. Hence $a_{2}>c_{2}>b_{2}$ and $d(\mathbf{a}, \mathbf{c})=a_{2}-c_{2}<a_{2}-b_{2}=d(\mathbf{a}, \mathbf{b})$.

Proof of Proposition 4.7, $n=3$. We are now in a position to prove Proposition 4.7 when $n=3$. First, by Lemma 5.2, we may extend X_{1}, X_{2}, X_{3} to all of $\Delta_{3}(d)$ in a way preserving the down-graph condition. We claim that it suffices to verify that there is a restricted LS-path between any \mathbf{a} and \mathbf{b} on the boundary B. Indeed, if this is true, then for any other $\mathbf{a}^{\prime}, \mathbf{b}^{\prime} \in I$, we know from Proposition 4.6 that there is an LS-path in $\Delta_{3}(d)$ between \mathbf{a}^{\prime} and \mathbf{b}^{\prime}, possibly using points outside of I. But if this path leaves I, then it must contain boundary points \mathbf{b}_{i} and \mathbf{b}_{j} such that for all $k \leq i$ and $k \geq j$, $\mathbf{b}_{k} \in I$. By assumption, there is a restricted LS-path between \mathbf{b}_{i} and \mathbf{b}_{j}, so we can "patch in" this restricted path to our original LS-path, which now looks like

$$
\mathbf{a}^{\prime}=\mathbf{b}_{0}, \ldots, \mathbf{b}_{i}, \text { restricted LS-path, } \mathbf{b}_{j}, \ldots, \mathbf{b}_{N}=\mathbf{b}^{\prime} .
$$

This path lies entirely in I by construction, and consists of linear syzygy edges. Moreover, for any \mathbf{c} in the restricted LS-path, we have $\mathbf{c} \leq \mathbf{b}_{i} \vee \mathbf{b}_{j} \leq \mathbf{a}^{\prime} \vee \mathbf{b}^{\prime}$, and $m(\mathbf{c}) \mid \operatorname{lcm}\left(m\left(\mathbf{a}^{\prime}\right), m\left(\mathbf{b}^{\prime}\right)\right)$. Note that the latter claim is true because $m(\mathbf{c}) \mid \operatorname{lcm}\left(m\left(\mathbf{b}_{i}\right), m\left(\mathbf{b}_{j}\right)\right)$, and $m\left(\mathbf{b}_{i}\right), m\left(\mathbf{b}_{j}\right) \mid \operatorname{lcm}\left(m\left(\mathbf{a}^{\prime}\right), m\left(\mathbf{b}^{\prime}\right)\right)$ since they were already on the original LS-path from \mathbf{a}^{\prime} to \mathbf{b}^{\prime}. So this path is indeed a restricted LS-path from \mathbf{a}^{\prime} to \mathbf{b}^{\prime}.

Now, assume for the sake of contradiction that there is a pair of boundary points with no restricted LS-path between them. We may choose such a pair $\mathbf{a}, \mathbf{b} \in B$ with minimal distance among all such
pairs (if one is worried about edge cases, we may assume that this distance is at least 2 by Lemma 4.8). Consider an LS-path

$$
\mathbf{a}=\mathbf{b}_{0}, \ldots, \mathbf{b}_{N}=\mathbf{b}
$$

in $\Delta_{3}(d)$ between a and \mathbf{b}. We claim that for all $1 \leq i \leq N-1, \mathbf{b}_{i} \notin I$. If not, then there is some $\mathbf{b}_{i} \in B$ not equal to one of the endpoints, and by Lemma 5.6, $d\left(\mathbf{b}_{i}, \mathbf{a}\right), d\left(\mathbf{b}_{i}, \mathbf{b}\right)<d(\mathbf{a}, \mathbf{b})$. By minimality there are restricted LS-paths from \mathbf{a} to \mathbf{b}_{i} and \mathbf{b}_{i} to \mathbf{b}, and patching them together gives a restricted LS-path from \mathbf{a} to \mathbf{b}, contrary to our assumption.
We again split into cases. First, consider the case $b_{3}=a_{3}$ (so we can assume b_{3} is nonzero, otherwise we reduce to the case where \mathbf{a} and \mathbf{b} lie on the $x y$-edge, which is trivial). Assume without loss of generality that $b_{1}>a_{1}$ (so b_{1} is nonzero). By the strongly stable condition, $\left(b_{1}-1, b_{2}+1, b_{3}\right) \in I$ (since $a_{1} \leq b_{1}-1$ and $\left.\left(a_{1}, a_{2}, a_{3}\right) \in I\right)$, as is ($b_{1}, b_{2}+1, b_{3}-1$). Let us consider the possibilities for \mathbf{b}_{N-1}. It cannot be $\mathbf{b}+e_{1}-e_{2}$ or $\mathbf{b}+e_{1}-e_{3}$, as $\mathbf{b}_{N-1,1} \leq \max \left(b_{1}, a_{1}\right)=b_{1}$. It cannot be $\mathbf{b}+e_{3}-e_{1}$ or $\mathbf{b}+e_{3}-e_{2}$ for a similar reason. Finally, it cannot be $\mathbf{b}+e_{2}-e_{1}$ or $\mathbf{b}+e_{2}-e_{3}$ as those are both in I (and in the previous paragraph we saw $\mathbf{b}_{N-1} \notin I$). Here we have a contradiction.

It remains to discuss the case $b_{3}>a_{3}\left(a_{3}>b_{3}\right.$ is symmetrical), so $a_{1} \leq b_{1}$ and $a_{2}>b_{2}$ (so we can assume b_{1} is nonzero, otherwise $\mathbf{a}=\mathbf{b}$ as there is only one boundary point with first component 0). There are two possibilities. If $\left(b_{1}-1, b_{2}+1, b_{3}\right) \in I$, we get a contradiction as in the above paragraph. If $\left(b_{1}-1, b_{2}+1, b_{3}\right) \notin I$, then $\left(b_{1}, b_{2}+1, b_{3}-1\right)$ is a boundary point. Moreover, because $\left(b_{1}, b_{2}+1, b_{3}-1\right)$ is in I by the strongly stable condition and $\left\{\mathbf{b} ;\left(b_{1}-1, b_{2}+1, b_{3}\right) ;\left(b_{1}, b_{2}+1, b_{3}-1\right)\right\}$ is the down-graph defined by $\left(b_{1}, b_{2}+1, b_{3}\right)$, there must be a linear syzygy between \mathbf{b} and $\left(b_{1}, b_{2}+1, b_{3}-1\right)$. Since $a_{2} \geq b_{2}+1, a_{1} \leq b_{1}$, and $a_{3} \leq b_{3}-1, m_{2}\left(b_{1}, b_{2}+1, b_{3}-1\right) \mid m_{2}(\mathbf{a})$ by isotonicity. Moreover, the aforementioned linear syzygy forces $m_{1}\left(b_{1}, b_{2}+1, b_{3}-1\right)=m_{1}(\mathbf{b})$ and $m_{3}\left(b_{1}, b_{2}+1, b_{3}-1\right) \mid m_{3}(\mathbf{b})$, so $\left(b_{1}, b_{2}+1, b_{3}-1\right) \leq \mathbf{a} \vee \mathbf{b}$ and $m\left(b_{1}, b_{2}+1, b_{3}-1\right) \mid \operatorname{lcm}(m(\mathbf{a}), m(\mathbf{b}))$. Moreover, $d\left(\mathbf{a},\left(b_{1}, b_{2}+1, b_{3}-1\right)\right)=$ $a_{2}-\left(b_{2}+1\right)<a_{2}-b_{2}=d(\mathbf{a}, \mathbf{b})$, so by minimality, there is a restricted LS-path between a and $\left(b_{1}, b_{2}+1, b_{3}-1\right)$. Patching this path to the linear syzygy between $\left(b_{1}, b_{2}+1, b_{3}-1\right)$ and \mathbf{b} gives a restricted LS-path from \mathbf{a} to \mathbf{b}, again giving a contradiction.
In any case, we get a contradiction. Thus the proposition is proved for boundary points, and we are done.

6. Spanning Tree Condition

Let us first describe the shape of the syzygy in the strongly stable case. We impose the following partial order on the generators of a strongly stable ideal I : we say that $\mathbf{a} \geq \mathbf{b}$ if for all $k, \sum_{i=0}^{k} a_{i} \leq$ $\sum_{i=0}^{k} b_{i}$. The strongly stable condition then guarantees that for all $\mathbf{b} \in \Delta^{\mathbb{Z}}(n, d)$ such that $\mathbf{a} \geq \mathbf{b}$, \mathbf{b} must be a generator of I. Then note that here, \mathbf{a} covers \mathbf{b} when $\mathbf{b}=\mathbf{a}+e_{i}-e_{j}$ where $i<j$. In particular, this means that the monomials in $D(\mathbf{c}) \cap G_{I}$ are pairwise comparable, so that they are totally ordered.

We are interested in describing which monomials of the down-graphs are in I. To do this, take any $D(\mathbf{c}) \cap G_{I}$. Since we have a total order on the monomials, we can take a to be the largest; let $\mathbf{c}=\mathbf{a}+e_{k}$. Then, the set of monomials of $D(\mathbf{c})$ in I can be written as $\left\{\mathbf{c}-e_{i} \mid i \geq k\right\}$.

Theorem 6.1. A set of isotone maps $X_{1}, \ldots X_{n}$ determines a polarization of I if and only if for every $\mathbf{c} \in \Delta^{\mathbb{Z}}(n, d+1)$ such that $D(\mathbf{c}) \cap G_{I} \neq \varnothing$, the graph of linear syzygy edges restricted to $D(\mathbf{c}) \cap G_{I}$ contains a spanning tree for $D(\mathbf{c}) \cap G_{I}$.

Proof. The "if" direction was done in Proposition 4.2, so we prove the "only if" direction. We will use the fact (item (β) of the Corollary to Theorem 16.3, [Mat87]) that because we always work in an
\mathbb{N}-graded ring (a quotient of a polynomial ring by a homogeneous ideal) and variable differences are homogeneous of degree 1, any permutation of a regular sequence is again a regular sequence. Hence, given a polarization of a strongly stable ideal I, we may choose the order of the regular sequence of variable differences by which we quotient out to recover I.

We assume that the isotone maps $\left\{X_{i}\right\}$ give an ideal I^{\prime} which is a polarization. We shall prove that every down-graph $D(\mathbf{c})$ contains a spanning tree of linear syzygy edges for the vertices contained in G_{I}. For simplicity we shall assume $\operatorname{Supp}(\mathbf{c})$ has full support; the arguments work just as well in the general case. Write the set of monomials of $D(\mathbf{c})$ in I as $\left\{\mathbf{c}-e_{i} \mid i \geq k\right\}$. Then we treat this in two cases: in the first case, suppose $k<n-1$; in the second case, suppose $k=n-1$. (The case where $k=n$ is trivially true.)

Case 1. Note that if the distance between $m\left(\mathbf{c}-e_{v}\right)$ and $m\left(\mathbf{c}-e_{w}\right)$ is 2 , then there is a linear syzygy between these monomials. Suppose now, for the sake of contradiction, the vertices in $D(\mathbf{c}) \cap G_{I}$ can be divided into distinct subsets V_{1} and V_{2} such that there is no linear syzygy edge between a vertex in V_{1} and a vertex in V_{2}.

Let $m\left(\mathbf{c}-e_{v}\right)$ in V_{1} and $m\left(\mathbf{c}-e_{w}\right)$ in V_{2} such that the distance d between $m\left(\mathbf{c}-e_{v}\right)$ and $m\left(\mathbf{c}-e_{w}\right)$ is minimal. We must have $d \geq 3$ and the number of vertices $m \geq 3$. For simplicity we may assume $v=k$ and $w=k+1$ and that we may write

$$
\begin{gathered}
n\left(\mathbf{c}-e_{k+1}\right)=x_{1 j_{1}} \cdots x_{(k-1) j_{k-1}} x_{k j_{k}} x_{(k+2) j_{k+2}} \cdots x_{n j_{n}}, \\
n\left(\mathbf{c}-e_{k}\right)=x_{1 i_{1}} \cdots x_{(k-1) i_{k-1}} x_{(k+1) i_{k+1}} x_{(k+2) i_{k+2}} \cdots x_{n i_{n}},
\end{gathered}
$$

where $x_{p i_{p}} \neq x_{p j_{p}}$ for $p=k+2, \ldots, k+d-1$ and $x_{p i_{p}}=x_{p j_{p}}$ for $p \geq k+d$ and $p<k$.
Consider the graded ring $k\left[\check{X}_{1}, \ldots \check{X}_{n}\right] / I^{\prime}$ and quotient out by the regular sequence $x_{p i_{p}}-x_{p j_{p}}$ for $p=k+3, \ldots, k+d-1$. This is a regular sequence since we began with a polarization. We get a quotient algebra $k\left[\check{X}_{1}^{\prime}, \ldots \check{X}_{n}^{\prime}\right] / I^{\prime}$ and denote by x_{p} the class $\overline{x_{p i_{p}}}=\overline{x_{p j_{p}}}$ for $p \neq k, k+1, k+2$. In I^{\prime} we have generators

$$
\begin{gathered}
\bar{m}\left(\mathbf{c}-e_{k}\right)=\overline{\mathbf{m}} \cdot \bar{n}\left(\mathbf{c}-e_{k}\right), \quad \bar{n}\left(\mathbf{c}-e_{k}\right)=x_{1} \cdots x_{k-1} x_{(k+1) i_{k+1}} x_{(k+2) i_{k+2}} x_{k+3} \cdots x_{n}, \\
\bar{m}\left(\mathbf{c}-e_{k+1}\right)=\overline{\mathbf{m}} \cdot \bar{n}\left(\mathbf{c}-e_{k+1}\right), \quad \bar{n}\left(\mathbf{c}-e_{k+1}\right)=x_{1} \cdots x_{k-1} x_{k j_{k}} x_{(k+2) j_{k+2}} x_{k+3} \cdots x_{n} .
\end{gathered}
$$

Now, note that $x_{\left.(k+2) i_{k+2}\right)}-x_{\left.(k+2) j_{k+2}\right)}$ is a non-zero divisor of $k\left[\check{X}_{1}, \ldots \check{X}_{n}\right] / I$. Consider

$$
\left(x_{\left.(k+2) i_{k+2}\right)}-x_{\left.(k+2) j_{k+2}\right)}\right) x_{1} \cdots x_{k-1} x_{k j_{k}} x_{(k+1) i_{k+1}} x_{k+3} \cdots x_{n} \cdot \overline{\mathbf{m}} .
$$

It is zero in this quotient ring, and so

$$
\overline{\mathbf{m}^{\prime}}=x_{1} \cdots x_{k-1} x_{k j_{k}} x_{(k+1) i_{k+1}} x_{k+3} \cdots x_{n} \cdot \overline{\mathbf{m}}
$$

is zero in this quotient ring and so must be a generator of I^{\prime} of degree $\mathbf{c}-e_{k+2}$. But then the generator of this degree in the polarization I must be

$$
\mathbf{m}^{\prime}=x_{1 l_{1}} \cdots x_{(k-1) l_{k-1}} x_{k j_{k}} x_{(k+1) i_{k+1}} x_{(k+3) l_{k+3}} \cdots x_{n k_{n}} \cdot \mathbf{m}
$$

where each k_{p} is either i_{p} or j_{p}. Hence all $l_{p}=i_{p}=j_{p}$ for $p<k$ and $p \geq k+d$. But then the distance between \mathbf{m}^{\prime} and $m\left(\mathbf{c}-e_{k}\right)$ is $\leq d-1$ and similarly the distance between \mathbf{m}^{\prime} and $m\left(\mathbf{c}-e_{k+1}\right)$ is $\leq d-1$. Whether \mathbf{m}^{\prime} is in V_{1} or in V_{2}, we see that this contradicts d being the minimal distance.

Case 2. Let I^{\prime} be a polarization of I. In this case, assume there are only two vertices in $D(\mathbf{c}) \cap G_{I}$ for some \mathbf{c}. For the sake of simplicity, assume that \mathbf{c} has full support (the argument works the same more generally) so we have that the only two vertices in this intersection are $\mathbf{c}-e_{n-1}$ and $\mathbf{c}-e_{n}$. For the sake of contradiction, suppose there is no edge between them. Then $X_{i}\left(\mathbf{c}-e_{n-1}\right) \neq X_{i}\left(\mathbf{c}-e_{n}\right)$ for
some $i<n-1, n$. Let $x_{i, a}$ be a variable such that it divides $m_{i}\left(\mathbf{c}-e_{n-1}\right)$ but not $m_{i}\left(\mathbf{c}-e_{n}\right)$, and let $x_{i, b}$ be a variable dividing $m_{i}\left(\mathbf{c}-e_{n}\right)$ but not $m_{i}\left(\mathbf{c}-e_{n-1}\right)$.
Consider the graded ring \tilde{S} / I^{\prime} where $\tilde{S}=k\left[\check{X}_{1}, \ldots, \check{X}_{n}\right]$ and $\check{X}_{j}:=\left\{x_{j, 1}, \ldots, x_{j, d_{j}}\right\}$. Quotient out by the regular sequence $x_{p, 1}-x_{p, j}$ for all $p \neq i$ and $2 \leq j \leq d_{p}$, and if $d_{i} \geq 3$, then quotient again by the regular sequence $x_{i, k}-x_{i, j}$ for some fixed $k \neq a, b$ and all $j \in\left[d_{i}\right] \backslash\{a, b, k\}$. We know that the union of these two sequences of variable differences is a regular sequence because we assume we started with a polarization, and we are also allowed to choose the order of the regular sequence of variable differences by which we quotient out.

The result is that we are left with a quotient algebra R / J where $R=k\left[x_{1}, \ldots, x_{i-1}, x_{i}, x_{i, a}, x_{i, b}, x_{i+1}, \ldots, x_{n}\right]$ and J has generators which we denote $\bar{m}(\mathbf{a})$ for all exponent vectors a in the minimal generating set of I (if $d_{i}=2$ then there is no x_{i} variable, but this does not change the argument). Now, we have that

$$
\left(x_{i, a}-x_{i, b}\right) \cdot \mathbf{x}^{\mathbf{c}-e_{i}}=0
$$

because each term divides one of $\bar{m}\left(\mathbf{c}-e_{n}\right)$ or $\bar{m}\left(\mathbf{c}-e_{n-1}\right)$, but any monomial with exponent vector $\mathbf{c}-e_{i}$ where $i<n-1$ is not in I by assumption, so $\left(x_{i, a}-x_{i, b}\right)$ is a zero-divisor, yielding a contradiction.

7. Alexander Duals and Associated Primes of Polarizations

The aim of this section is to better understand the Alexander duals and associated primes of polarizations. We prove theorem 7.7, which gives us the form of Alexander duals of polarizations of any monomial ideal.

We begin this section with some background definitions and discussion of results in the literature before presenting our work.

Definition 7.1 (Associated prime). Let R be a Noetherian ring and M a finitely generated R -module. A prime ideal $P \subset R$ is an associated prime ideal of M, if there exists an element $x \in M$ such that $P=\operatorname{ann}(x)$, where $\operatorname{ann}(x)$ is the annihilator of x, that is to say, $\operatorname{ann}(x)=\{a \in R: a x=0\}$. The set of associated prime ideals of M is denoted $\operatorname{Ass}(M)$.

In our setting we know much about what these associated primes look like. In particular, for $I \subset$ $R=k\left[x_{1}, \ldots, x_{n}\right]$ a monomial ideal, $\operatorname{Ass}(R / I)$ is a finite set of prime ideals generated by monomials. Further, for I square-free, I can be written as an intersection of its associated primes, and these associated primes are all generated by variables (1.3.6 in [HH11]).

Definition 7.2 (Alexander Dual). Let I be a square-free monomial ideal in a polynomial ring S. The Alexander dual ideal I^{\vee} of I is the monomial ideal in S whose monomials are precisely those that have nontrivial common divisor with every monomial in I. Equivalently, they have a nontrivial common divisor with every generator of I

Remark 7.3. Given a square-free monomial ideal I, an important relationship exists between its Alexander dual I^{\vee} and its associated primes Ass (I). In particular, the minimal generators of the Alexander dual of I correspond to the variables that generate the associated primes of I. For example, if $I^{\vee}=\left(x_{1} x_{3} x_{4}, x_{2} x_{3} x_{5}\right)$, then $\left(x_{1}, x_{3}, x_{4}\right)$ and $\left(x_{2}, x_{3}, x_{5}\right)$ are associated primes of I.

This relationship motivates us to want to know what form the generators of our Alexander duals take. We introduce a helpful bit of terminology from [AFL22].

Definition 7.4 (Color Classes, Rainbow Monomials). We call the set of all variables sharing their first index $\left\{x_{i, 1}, \ldots, x_{i, m}\right\}$ the i-color class. We call a monomial in degree d a rainbow monomial when it is of the form $x_{1, j_{1}} \ldots x_{d, j_{d}}$, a product of exactly one variable from each color class.

Notably, in [AFL22], the authors prove that the class of degree d rainbow monomials with linear resolution are exactly the class of ideals Alexander dual to polarizations of Artinian monomial ideals.

Proposition 7.5. The class of ideals generated by rainbow monomials and with n-linear resolution is precisely the class which is Alexander dual to the class of polarizations of Artinian monomial ideals in n variables. More precisely:
a. Let J be a polarization of an Artinian monomial ideal I in $k\left[x_{1}, \ldots, x_{n}\right]$. The Alexander dual ideal of J is generated by rainbow monomials and has n-linear resolution.
b. If an ideal J' is generated by rainbow monomials and has n-linear resolution (and every variable in the ambient ring occurs in some generator of the ideal), then its Alexander dual J is a polarization of an Artinian monomial ideal in n variables.

In pursuit of a similar result for monomial ideals in general, we introduce the following definition.
Definition 7.6 (Weakly-Rainbow). We say a monomial is weakly-rainbow if it is generated by at most one variable from each color class.

We now present a result in the direction of generalizing Proposition 7.5.
Theorem 7.7. If $I \subset S=k\left[x_{1,1}, \ldots, x_{1, d}, \ldots, x_{n, 1}, \ldots, x_{n, d}\right]$ is a polarization of any monomial ideal $J \subset$ $k\left[x_{1}, \ldots, x_{n}\right]$, then the generators of I^{\vee} are weakly-rainbow.

We will need two technical lemmas to prove this result.
Lemma 7.8. Let $S=k\left[x_{1,1}, \ldots, x_{1, d}, \ldots, x_{n, 1}, \ldots, x_{n, d}\right]$, and let $I \subset S$ be a monomial ideal whose generators have degree strictly greater than 1. Let $x_{i, s}-x_{i, k}$ be a non-zerodivisor on $R=S / I$, and $x_{i, j}-x_{i, l} \neq 0$ a zerodivisor on R for some i, j, k, l. Then $x_{i, j}-x_{i, l}$ is non-zero and a zerodivisor on $R^{\prime}=R /\left(x_{i, s}-x_{i, k}\right)$.

Proof. First we check that if $x_{i, j}-x_{i, l}$ is nonzero in R, then it must also be nonzero in R^{\prime}. This follows from the following string of implications:

$$
\begin{aligned}
& x_{i, j}-x_{i, l}=0 \text { in } R^{\prime} \\
\Longrightarrow & x_{i, j}-x_{i, l} \in\left(x_{i, s}-x_{i, k}\right) I \\
\Longrightarrow & x_{i, j}-x_{i, l}+I=(v+I) *\left(x_{i, s}-x_{i, k}\right)+I \text { for some } v \in S \\
\Longrightarrow & x_{i, j}-x_{i, l}=v *\left(x_{i, s}-x_{i, k}\right)+r \text { for some } v \in S \text {, and } r \in I S .
\end{aligned}
$$

By assumption I is a monomial ideal in degree strictly greater than 1 , so r in the last line above contributes no degree 1 term. Hence the degree 1 terms of $x_{i, j}-x_{i, l}$ must equal the degree 1 terms of $v *\left(x_{i, s}-x_{i, k}\right)$. But $x_{i, s}-x_{i, k}$ already is composed of degree 1 terms, hence we must have that $x_{i, j}-x_{i, l}=t *\left(x_{i, s}-x_{i, k}\right)$ for some unit t. Then in R we have that $x_{i, j}-x_{i, l}$ a zero divisor implies that $x_{i, s}-x_{i, k}$ is a zero divisor, a contradiction. Hence $x_{i, j}-x_{i, l} \neq 0$ in R^{\prime}.
Now suppose, seeking contradiction, that $x_{i, j}-x_{i, l}$ is a non-zero divisor in R^{\prime}. Our goal is to show that this implies that it must have also been a zero divisor in R. Recall that since $x_{i, j}-x_{i, l} \neq 0$ is a zero
divisor in R, there exists an $0 \neq m \in R$ such that $\left(x_{i, j}-x_{i, l}\right) m=0 \in R$. Then since $\left(x_{i, j}-x_{i, l}\right) m=0 \in R$, $\left(x_{i, j}-x_{i, l}\right) m=0 \in R^{\prime}$. Hence for $x_{i, j}-x_{i, l} \neq 0$ to be a non-zero divisor in R^{\prime}, we need that $m=0$ in R^{\prime}.

First we check that, for any element m such that m is nonzero in R but equal to 0 in R^{\prime}, we have that $b=x_{i, s}-x_{i, k}$ must divide m. Take m in R and suppose, seeking contradiction, that $\sup \left(r \mid m=(b)^{r} * m_{r}\right)=\infty$ for some $\left.m_{r} \in R\right)$. Then given any $r \geq 0$, we have that $m_{0}=m=b^{r} * m_{r}$. Suppose that $m_{t} \neq b * m_{t}$ for all t. Then we can construct an infinite chain of ideals $\left(m_{0}\right)=\left(b * m_{1}\right) \subsetneq$ $\left(m_{1}\right) \subsetneq\left(m_{2}\right) \subsetneq \ldots$, but this contradicts that S / I is Noetherian. Thus there exists some r such that $m_{r}=b * m_{r}$ in R.
Then $(b-1) *\left(m_{r}\right)=0$ in R. Take $q=\left(x_{1,1}, \ldots, x_{1, d}, \ldots, x_{n, 1}, \ldots, x_{n, d}\right)$ to be the graded maximal ideal in S. Recall that $m_{r}=b * m_{r}$ in R implies that $m_{r}=b * m_{r}+u$ in S for some $u \in I$. Since b has no degree 0 components and I has no degree 0 components, then m_{r} has no degree zero components. Hence we have that $b, m_{r} \in q$ and $I \subset q$.

Therefore, we have that since $m_{r} \neq 0$ in R, it is also nonzero in the localization R_{q}. To see this, suppose it is not. Then there exists some element in R outside of q that multiplies m_{r} to zero. But since this element is outside of q, it must have a degree zero component. Hence we get that $u * m_{r}+v * m_{r} \in I$ for some unit u and an element $v \in S$ where v has no degree zero components (or is zero). Take s_{i} the non-zero monomial of m_{r} in R with minimal degree; since s_{i} is non-zero in R, it is not an element in I. Then since $v * m_{r}$ has components with degrees strictly greater than 0 (or else is zero), $u * s_{i}$ is a monomial of minimal degree in $u * m_{r}+v * m_{r} \in I$. But a polynomial f belongs to I if and only if all monomials in f appearing with a nonzero coefficient belong to I, hence we conclude that $u * s_{i} \in I$. But then $s_{i} \in I$, contradicting our original choice of s_{i}.

Then notice also that $b \in q$ implies that $(b-1)$ is not in q, and hence is a unit in the localization R_{q}. But then since $(b-1) * m_{r}=0$ in $S_{1_{q}}$, we get that $b-1$ is both a unit and a zero divisor in $S_{1_{q}}$, a contradiction. Hence there exists an $r=\max \left(r \mid m=b^{r} * m_{r}\right)$. Hence $m_{r} \neq 0$ in R^{\prime}.

Now we have two cases:
Case 1: suppose that $m_{r} *\left(x_{i, j}-x_{i, l}\right)=0$ in R. Then $m_{r} *\left(x_{i, j}-x_{i, l}\right)=0$ in R^{\prime}, contradicting that $x_{i, j}-x_{i, l}$ is a non-zero divisor in R^{\prime}.

Case 2: suppose that $m_{r} *\left(x_{i, j}-x_{i, l}\right) \neq 0$ in R. Then $b *\left(x_{i, j}-x_{i, l}\right) * m_{r}=0$, yet $\left(x_{i, j}-x_{i, l}\right) * m_{r} \neq 0$, contradicting that b is a non-zero divisor on R.

Hence we conclude that $x_{i, j}-x_{i, l} \neq 0$ is a zero divisor in R.

With this lemma, we now only need the following.
Lemma 7.9. Let $S=k\left[x_{1,1}, \ldots, x_{1, d}, \ldots, x_{n, 1}, \ldots, x_{n, d}\right]$. If $I \subset S$ is a polarization of some monomial ideal J, I separated in each x_{i} variable by some regular sequence $r_{i, 1}, \ldots, r_{i, d_{i}-1}$ of variable differences, and J generated by generators with degrees strictly greater than 1, then $x_{i, j}-x_{i, l}$ is a non-zero divisor in $R=S / I$.

Proof. Suppose that $x_{i, j}-x_{i, l} \neq 0$ is a zero divisor on $R=S / I$ for some i, j, k. Let $r_{i, d_{i}-1}=x_{i, s}-x_{i, l}$ for some be the first element of the regular sequence $r_{i, 1}, \ldots, r_{i, d_{i}-1}$ of variable differences separating J to I. Then notice that we are in the setting of Lemma 7.8. Applying the lemma, we obtain that $x_{i, j}-x_{i, l} \neq 0$ is a zero divisor in $R^{\prime}=R /\left(x_{i, s}-x_{i, k}\right)$. But notice that $R^{\prime} \cong S /\left(I+\left(x_{i, s}-x_{i, k}\right)\right) \cong \tilde{S} / I^{\prime}$ for \tilde{S} the polynomial ring obtained by replacing each $x_{i, s}$ by $x_{i, k}$ and I^{\prime} a monomial ideal with the
degrees of its generators the degrees of the generators of I obtained by replacing each $x_{i, s}$ in I by $x_{i, k}$. Hence the necessary conditions are satisfied to apply Lemma 7.8 again to find that $x_{i, j}-x_{i, l} \neq 0$ is a zero divisor in $R^{\prime \prime}=R^{\prime} /\left(r_{i, d_{i}-2}\right)$. Continuing in this manner, by quotienting out by our regular sequence we find that $x_{i, j}-x_{i, l} \neq 0$ is a non-zero zerodivisor in $R /\left(r_{i, 1}, \ldots, r_{i, d_{i}}\right)$. But by quotienting out our regular sequence, we have collapsed all the separations in the x_{i} variable, hence $x_{i, j}=x_{i, l}$ in $R /\left(r_{i, 1}, \ldots, r_{i, d_{i}}\right)$, contradicting that $x_{i, j}-x_{i, l} \neq 0$ in this quotient.

With these two lemmas, we are now able to prove our theorem.
Proof of Theorem 7.7. Let $I \subset S=k\left[x_{1,1}, \ldots, x_{1, d}, \ldots, x_{n, 1}, \ldots, x_{n, d}\right]$ be a polarization of a monomial ideal $J \subset \mathrm{~m}^{2}$. Suppose that the generators of I^{\vee} are not weakly-rainbow. Then there exists some generator g of I^{\vee} that contains distinct two variables from the same color class, $x_{i, j}$ divides g and $x_{i, k}$ divides g with $j \neq k$ (by remark $7.3 j \neq k$). Then by remark 7.3, $x_{i, j}, x_{i, k}$ are both contained in the same associated prime P of R / I, hence $x_{i, j}-x_{i, k} \in P$ is a zerodivisor on $R=S / I$. However, since I is a polarization of a monomial ideal J with no generators of degree less than 2 , by lemma 7.9 $x_{i, j}-x_{i, k}$ is a non-zerodivisor on S / I for all $j \neq k$. Hence we have a contradiction, and so g must be weakly-rainbow.

If $I \subset S=k\left[x_{1,1}, \ldots, x_{n, 1}\right]$ is a polarization of a monomial ideal J with some degree 1 generators, the above proof follows, noting that the degree 1 generators of J are each members of a color class containing only one variable.
Hence we conclude the generators of I^{\vee} are weakly-rainbow.

8. Stanley-Reisner complexes and shellability

In this section, we consider the shellabity of the Stanley-Reisner complexes of polarizations of the power of a maximal ideal. We first recall key definitions and lemmas, and then we present our strategy to produce a shelling order for the Stanley-Reisner complexes associated to any polarization of $I=\left(x_{1}, \ldots, x_{n}\right)^{d}$.

Notation 8.1. Let I be an Artinian monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$, for each variable i there is a minimal generator of I of the form $x_{i}^{d_{i}}$. Let $\check{X}_{i}=\left\{x_{i, 1}, \ldots, x_{i, d_{i}}\right\}$ be a set of double-indexed variables of color i, and let $X=\left\{x_{11}, \ldots, x_{n d_{n}}\right\}$ be the union of all these variables. Denote a polarization of I in $\tilde{S}=k[X]$ by \tilde{I}. As an abuse of notation, we will also often let X denote the product of all the variables in X. If a squarefree monomial m is a product of a subset of variables in X, we will say that $\mathbf{m} \subset X$. For any squarefree monomial ideal J, denote its Alexander dual by J^{\vee}.

Definition 8.2. For a squarefree monomial ideal I, the Stanley-Reisner complex of I is the simplicial complex consisting of the monomials not in I,

$$
\Delta_{I}=\{\mathbf{m} \subset X \mid \mathbf{m} \notin I\} .
$$

Remark 8.3. For any squarefree monomial ideal I, the facets of $\Delta_{\tilde{I}}$ are of the form $\frac{X}{\mathbf{m}}$, where \mathbf{m} is a monomial generator of \tilde{I}^{\vee}. Hence in this section, we talk about an ordering of the facets of $\Delta_{\tilde{I}}$ and an ordering of the generators of \tilde{I}^{\vee} synonymously.

Definition 8.4. An ordering $F_{1}, \ldots F_{t}$ of the facets of a simplicial complex Δ is a shelling if, for each j with $1<j \leq t$, the intersection

$$
\left(\bigcup_{i=1}^{j-1} F_{i}\right) \cap F_{j}
$$

is a nonempty union of facets of ∂F_{j}. If there exists a shelling of Δ, then Δ is called shellable.
The following rephrasings of the condition for shellability will be useful for our purposes.
Lemma 8.5. For a facet F_{i} of a simplicial complex I, denote by F_{i}^{c} its complement $\frac{X}{F_{i}}$. The following are equivalent:
(1) An order F_{1}, \ldots, F_{t} of the facets of a simplicial complex Δ is a shelling.
(2) For every i and k with $1 \leq i<k \leq t$, there is some j with $1 \leq j<k$ and an $x \in F_{k}$ such that $F_{i} \cap F_{k} \subseteq F_{j} \cap F_{k}=F_{k}-\{x\}$.
(3) The ordering $F_{1}^{c}, \ldots, F_{t}^{c}$ of the generators of I^{\vee} is a linear quotient ordering, that is, for any $1 \leq k \leq t$ the colon ideal $\left(F_{1}^{c}, \ldots, F_{k}^{c}\right):\left(F_{k+1}^{c}\right)$ is generated by a subset of the variables of X.

We also have the following lemma and conjecture from [AFL22].
Lemma 8.6. [AFL22, Lemma 3.1] Let $\Delta_{\tilde{I}}$ be the simplicial complex associated to the polarization \tilde{I} of an Artinian monomial ideal I. Then every codimension one face of is contained in one or two facets. If I is not a complete intersection, then at least once there is a codimension one face contained in exactly one facet.

By work of Danaraj and Klee [DK74], any shellable simplicial complex with the property in Lemma 8.6 is a simplicial ball or sphere, leading the authors of [AFL22] to conjecture the following.

Conjecture 8.7. [AFL22, Conjecture 3.2] The simplicial complex $\Delta_{\tilde{I}}$ associated to a polarization \tilde{I} of an Artinian monomial ideal I, is a simplicial ball, save for the case when I is a complete intersection, when it is a simplicial sphere.

Note that to prove Conjecture 8.7 it suffices to show that any polarization of an Artinian monomial ideal is shellable. In [AFL22], this was proven in for ideals of the form $\left(x_{1}, \ldots, x_{n}\right)^{d}$ when $n=3$. We aim to generalize this result to arbitrary n. To do this, we first present the following theorem, appearing in [AFL22], which is a reformulation of the original statement in [Nem21], which itself was a rephrasing of a result in [FGM18]. This theorem gives a complete characterization of rainbow monomial ideals with linear resolution, and it is a key tool for our strategy.

Theorem 8.8. Let I be generated by rainbow monomials in d colors. Then I has a d-linear resolution if and only if both of the following two conditions hold:
(a) Whenever m_{1} and m_{2} are two rainbow monomials in I (i.e. generators of degree d) with $\operatorname{lcm}\left(m_{1}, m_{2}\right)$ of degree $\geq d+2$, there is a third distinct rainbow monomial m_{3} in I dividing this least common multiple.
(b) Whenever m_{1} and m_{2} are two rainbow monomials not in I with lcm $\left(m_{1}, m_{2}\right)$ of degree $\geq d+2$, there is a third distinct rainbow monomial m_{3} not in I dividing this least common multiple.

By Proposition 7.5, the theorem above gives a complete characterization of Alexander duals of polarizations of Artinian monomial ideals. In particular, part (a) of the Theorem 8.8 implies that for any two monomial generators m_{1}, m_{2} of \tilde{I}^{\vee} where I is an Artinian monomial ideal, there is a sequence of monomial generators $m_{1}=p_{1}, p_{2}, \ldots, p_{t}=m_{2}$ such that there is a linear relation between p_{i} and p_{i+1}, and each p_{i} divides $\operatorname{lcm}\left(m_{1}, m_{2}\right)$: we can see this inductively - in the base case, when the distance between two monomial generators is 1 , this is automoatically true, and we canse use part (a) of the above theorem for the inductive step to strictly decrease the distance.
The following tool will be central to constructing our shelling order.
Definition 8.9 (Facet-ridge graph). Given a d-dimensional pure simplicial complex Δ, any $(d-1)$ dimensional face of it is called a ridge. The facet-ridge graph G_{Δ} of a pure simplicial complex Δ is the graph whose vertices are facets of Δ, and two facets are connected by an edge if they share a common ridge.

Remark 8.10. Notice that one can equivalently view a facet-ridge graph G_{Δ} as the graph of linear syzygies of the Alexander dual $G_{I^{\vee}}$ by viewing each vertex labeled by a facet F_{i} as instead being labeled by the generator F_{i}^{c} of the Alexander dual and each edge corresponding to a linear syzygy between two generator of I^{\vee}. More precisely, there is an edge between two vertices corresponding to the minimal generators \mathbf{a} and \mathbf{b} of I^{\vee} if $\mathbf{b}=\frac{x_{i, j}}{x_{i, k}} \mathbf{a}$ for some j, k.

Definition 8.11. Given two minimal generators \mathbf{a}, \mathbf{b} of the Alexander dual $J=\tilde{I}^{\vee}$, define their distance $d(\mathbf{a}, \mathbf{b})$ to be the length of the shortest path between them in the graph G_{J}. Equivalently, it is $n-\operatorname{deg}(\operatorname{gcd}(\mathbf{a}, \mathbf{b}))$, since there exists a linear syzygy path in G between m_{1} and m_{2} of length exactly that.

Now we will introduce a notion of well-connectedness in graphs, and show that G being wellconnected is a sufficient for the shellability of $\Delta_{\tilde{I}}$. Then we will show our reasons to suspect that G is well-connected.

Definition 8.12 (Well-connected). A graph is well-connected if for any vertices a, b, c, there exists a shortest path from b to c such that the distance from a to anything on the path is \leq $\max (d(a, b), d(a, c))$.

Notice that by repeatedly applying Definition 8.12, we actually have that if a graph G is wellconnected, for any vertices a, b, c in G, there exists such a shortest path that is monotonic in its distance to a.

Example 8.13. The hexagon graph is not well-connected since $d(a, b)=2, d(a, c)=2, d(b, c)=2$, but the only length 2 path from b to c goes through a point that is distance 3 from a. However, the hexagon graph modified by connecting a pair of antipodal points by an edge is well-connected.

This example suggests that a good heuristic for well-connectedness in G is having enough relations between the generators of \tilde{I}^{\vee}.

Question 8.14. Let \tilde{I}^{\vee} be a polarization of an Artinian monomial ideal and let Δ be its associated Stanley-Reisner complex. Is G_{Δ} well-connected?

We motivate this question with an example.
Example 8.15. We show an example of a preseparation of $I=(x, y, z)^{2}$ that leads to G being the hexagon graph, and show that it is not a polarization. Consider the preseparation

$$
J=\left(x_{1} x_{2}, x_{2} y_{2}, x_{1} z_{1}, y_{1} y_{2}, y_{1} z_{1}, z_{1} z_{2}\right) .
$$

This gives the Alexander dual

$$
J^{\vee}=\left(x_{1} y_{1} z_{1}, x_{1} y_{1} z_{2}, x_{1} y_{2} z_{2}, x_{2} y_{2} z_{2}, x_{2} y_{2} z_{1}, x_{2} y_{1} z_{1}\right),
$$

which has the hexagon graph as its linear syzygy graph. However, notice that in the linear syzygy graph of J, the down-triangle does not have a spanning tree - in fact there is no relations in the down-triangle. Hence in this sense, J is far from a valid polarization of I - it has too few relations.

This suggests that preseparations that causes the hexagonal situation don't have enough relations to be a polarization. This also motivates the following observation about relations in the Alexander dual. In particular, construct the dual of the linear syzygy graph of I by having a vertex for each up-graph and an edge between two vertices if their up-graphs share a vertex and there is at least one generator in the Alexander dual related to both up-graphs. The following is an observation about this dual graph.

Proposition 8.16. Suppose $d=3$. Then for each edge in the down-graph $D(\mathbf{c})$, there is a parallel edge in the associated up-graph in the dual graph.

Proof. We consider the edge between the vertices $\mathbf{c}-e_{2}$ and $\mathbf{c}-e_{3}$; the other cases are similar. Note that since there is an edge, $\mathbf{c}-e_{2}$ and $\mathbf{c}-e_{3}$ must have the same x-component. For simplicity, suppose x_{1} is a factor in both. This also means that the vertex $\mathbf{c}-e_{1}$ is nonzero in the y and z components; for simplicity, suppose $y_{1} z_{1}$ is a factor. Hence $\mathbf{c}-e_{1}-e_{3}+e_{2}$ has a factor of y_{1} and $\mathbf{c}-e_{1}-e_{2}+e_{3}$ has a factor of z_{1}. Then $x_{1} y_{1} z_{1}$ is a generator of the Alexander dual related to both up-triangles $U\left(\mathbf{c}-e_{1}-e_{3}\right)$ and $U\left(\mathbf{c}-e_{1}-e_{2}\right)$, so there is an edge between their associated vertices in the dual graph.

The following algorithm gives an order on the generators on the Alexander dual. This is a variant of breadth-first search. We show that if Δ is the Stanley-Reisner complex of a polarization of an Artinian monomial ideal, running this algorithm on a well-connected G_{Δ} gives a shelling order for Δ.

Algorithm 8.17. Let C be a graph. For each connected component of C, add an arbitrary vertex v not already in the order, if any, to the end of the order. When adding each v, let the set of vertices in C distance i from v that have not already been added to the order be D_{i}. Recurse on each of the subgraphs induced by D_{i}, with i in increasing order.

Note that this algorithm gives an order on the whole vertex set when we run it on G since G is connected and we only add a vertex if it has not appeared, so each vertex appears only once. It terminates since each D_{i} is of a strictly smaller size than the C it was derived from.

Example 8.18. Here is an example of a possible order generated by Algorithm 8.17 on a graph. We start at v_{1} and mark the sets D_{i} at distance i from v_{1}. Note that the induced subgraph on each D_{i} is connected, we simply choose our ordering by simple BFS on each D_{i}, successively.

Lemma 8.19. Let I be a rainbow monomial ideal with linear resolution. Let v_{1}, \ldots, v_{g} be an ordering of the generators of I generated by Algorithm 8.17. Then for each v_{i}, v_{j} where $i<j$, there is a shortest path from v_{i} to v_{j} such that each vertex on the path comes before v_{j}.

Proof. Note here that in our setting, the shortest path between two variables is the number of variable differences by the construction of the graph of linear syzygies. From the algorithm, we know that $d\left(v_{1}, v_{i}\right) \leq d\left(v_{1}, v_{j}\right)$. From well-connectedness of G, we get that there is a monotonic path $v_{i}=p_{0}, \ldots, p_{m}=v_{j}$ where $d\left(v_{1}, p_{k}\right) \leq d\left(v_{1}, v_{j}\right)$. If $d\left(v_{1}, p_{k}\right)<d\left(v_{1}, v_{j}\right), p_{k}$ necessarily comes before v_{j} since the smaller distance vertices are added to the ordering first. If $d\left(v_{1}, p_{k}\right)=d\left(v_{1}, v_{j}\right)$, we know that p_{k} and v_{j} are in the same connected component, by the monotonicity of the path. For two monomials to differ from v_{1} both by the same number of variables and to have a linear relation between them, the variables where they differ from v_{1} must be the same and these are the same between the two other than one. This means that if we have a shortest path, k is necessarily either 0 or m, so p_{k} is in the ordering. Hence, for each v_{i}, v_{j} where $i<j$, there is a monotonic shortest path from v_{i} to v_{j} such that each vertex on the path comes before v_{j}.

Theorem 8.20. Let Ĩ be a polarization of $I=\left(x_{1}, \ldots, x_{n}\right)^{d}$. If the linear syzygy graph G on the Alexander dual is well-connected, the order v_{1}, \ldots, v_{t} given by Algorithm 8.17 is a shelling order of $\Delta_{\tilde{I}}$. In other words, Δ_{I} is shellable.

Proof. We can check that this gives a shelling: F_{j} corresponding to v_{j} has a nonzero intersection with $\bigcup_{i=1}^{j-1} F_{i}$ since v_{j} is connected to the subgraph on v_{1}, \ldots, v_{j-1} since it is obtained from breadthfirst search, so there is a vertex distance 1 from it appearing before it, which corresponds to a facet sharing a boundary face with F_{j}. Further, the intersection is a union of facets of ∂F_{j} since for any F_{i} where $i<j$, the intersection $F_{i} \cap F_{j}$ is contained in the facet corresponding to p_{m-1}, which shares precisely one facet of ∂F_{j} with F_{j}. Hence, this gives a shelling, and $\Delta_{\tilde{I}}$ is shellable.

Figure 6. The pyramidal polarization $J_{3,3}$.

9. A class of rigid polarizations of strongly stable ideals

In [Loh13], Lohne shows that points on the associated Hilbert scheme $H_{\mathbb{P} n-1}^{p(z)}$ corresponding to the standard and box polarizations of an ideal of the form $\left(x_{1}, \ldots, x_{n}\right)^{d} \subset k\left[x_{1}, \ldots, x_{n}\right]$ are smooth. We ask if this is true for (those specific) polarizations of strongly stable ideals.
One idea that we can consider is determining when such polarizations I are rigid; that is, their second cotangent cohomology modules $T_{S / I}^{2}$ are 0 (see Section 3 of [Har10] for details about the T^{2} functor). While this is a sufficient condition for smoothness of the corresponding point [FGI ${ }^{+} 05$, Corollary 6.2.5], it is typically too strong. For instance, a computation with Macaulay 2 shows that T^{2} for both the standard and box polarizations of the ideal $(x, y, z)^{2}$ are nonzero (they are 3- and 1-dimensional, respectively), even though they correspond to smooth points by work of Lohne; indeed, out of the many examples we've computed, T^{2} is rarely 0 . However, we may define a specific polarization of a certain class of strongly stable ideals that indeed have vanishing T^{2} :

Definition 9.1. For each $n, d \geq 1$, define $I_{n, d}$ to be the ideal in n variables generated by the monomials corresponding to up-triangles $U\left(\mathbf{c}_{i}\right)$, where $1 \leq i \leq d$ and $\mathbf{c}_{i}=(d-i, i-1,0, \ldots, 0)$.

For instance, when $n=d=3, I_{n, d}$ is generated by $\left\{x^{3}, x^{2} y, x^{2} z, x y^{2}, x y z, y^{3}, y^{2} z\right\}$. It is easy to see that $I_{n, d}$ is always strongly stable; in fact, it is the strongly stable closure of the ideal generated by $x_{2}^{d-1} x_{n}$.

Definition 9.2. Define the pyramidal polarization $J_{n, d}$ of $I_{n, d}$ as follows: the generator of $J_{n, d}$ corresponding to $\left(d-i+\epsilon_{1}, i-1+\epsilon_{2}, \epsilon_{3}, \ldots, \epsilon_{n}\right) \in U\left(\mathbf{c}_{i}\right)$ is $x_{1,1} \ldots x_{1, d-i+1} x_{2,1} \ldots x_{2, i-1}$ if $\epsilon_{1}=1$, $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}$ if $\epsilon_{2}=1$, and $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{k, i}$ if $\epsilon_{k}=1$ for $k \geq 3$.

For instance, the graph of linear syzygies of $J_{3,3}$ is depicted above in Figure 6, and the linear syzygy graph suggests the origin of the name "pyramidal polarization". Using the down-graph criterion (Proposition 4.2) it is easily verified that $J_{n, d}$ is in general a polarization of $I_{n, d}$.

Theorem 9.3. $T_{J_{3, d}}^{2}=0$. In particular, $J_{3, d}$ determines a smooth point $x_{3, d}$ on its associated Hilbert scheme.

The proof of this theorem is mostly computational (which can be generalized to $J_{n, d}$), so we break it up into smaller steps. First, we set up the notation and prove some useful lemmas.

Let $S=k\left[x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{d}\right]$ be the polynomial ring containing $J_{3, d}$. Using the notation of [Har10], choose $F=S^{2 d+1}$ generated by $e_{1}, \ldots, e_{2 d+1}$, so there is a surjection $F \rightarrow J:=J_{3, d}$ sending e_{i} to $x_{1} \ldots x_{d-\frac{i+1}{2}+1} y_{1} \ldots y_{\frac{i+1}{2}-1}$ if i is odd, and $x_{1} \ldots x_{d-\frac{i}{2}} y_{1} \ldots y_{\frac{i}{2}-1} z_{\frac{i}{2}}$ if i is even. For instance, in the above $J_{3,3}$ example, e_{1} is sent to $x_{1} x_{2} x_{3}, e_{2}$ is sent to $x_{1} x_{2} z_{1}, e_{3}$ is sent to $x_{1} x_{2} y_{1}$, and so on in a zigzag pattern until $e_{7} \mapsto y_{1} y_{2} y_{3}$.

Let Q be the kernel of this surjection, so Q is generated by the $3 d$ linear syzygies between generators of J. In particular, Q is generated by the

$$
z_{i} e_{2 i-1}-x_{d-i+1} e_{2 i}, \quad y_{i} e_{2 i-1}-x_{d-i+1} e_{2 i+1}, \quad y_{i} e_{2 i}-z_{i} e_{2 i+1}
$$

ranging over $1 \leq i \leq d$. When we refer to "generators of Q " (or its quotient module Q / F_{0}, defined in the next paragraph), we will always mean these generators.

Let $F_{0} \subseteq Q$ be the submodule generated by the Koszul relations between the generators of $J_{3, d}$, that is, relations of the form $j_{r} e_{s}-j_{s} e_{r}$, where j_{r} is the image of e_{r} in $J_{3, d}$. Then with the natural $S / J-$ module $\operatorname{map} \theta: Q / F_{0} \rightarrow F \otimes_{S} S / J \cong F / J F \cong(S / J)^{2 d+1}$, we wish to show that $\operatorname{Hom}_{S / J}(F / J F, S / J) \rightarrow$ $\operatorname{Hom}_{S / J}\left(Q / F_{0}, S / J\right)$ is surjective. To this end, given a map $\varphi \in \operatorname{Hom}_{S / I}\left(Q / F_{0}, S / I\right)$, we wish to construct $b_{1}, \ldots, b_{2 d+1}$ such that the map $\psi:(S / J)^{2 d+1} \rightarrow S / J$ sending e_{i} to b_{i} induces φ. We will eventually construct the b_{i} 's inductively.
Write

$$
\varphi\left(z_{i} e_{2 i-1}-x_{d-i+1} e_{2 i}\right)=: a_{3 i-2}, \quad \varphi\left(y_{i} e_{2 i-1}-x_{d-i+1} e_{2 i+1}\right)=: a_{3 i-1}, \quad \varphi\left(y_{i} e_{2 i}-z_{i} e_{2 i+1}\right)=: a_{3 i} .
$$

Lemma 9.4. (1) For all $1 \leq i \leq d$, every generator of J is divisible by x_{d-i+1}, y_{i}, or z_{i}, but there are no generators of J divisible by $x_{d-i+1} y_{i}$ or $x_{d-i+1} z_{i}$.
(2) Every single generator of J is divisible by either x_{d-i} or y_{i}.

Proof. Clear from the construction.
Lemma 9.5. For all $i,-y_{i} a_{3 i-2}+z_{i} a_{3 i-1}=x_{d-i+1} a_{3 i}$. In particular, we may express the a_{k} 's in the following form:

$$
a_{3 i-2}=x_{d-i+1} f_{3 i-2}+z_{i} h_{3 i-2}, \quad a_{3 i-1}=x_{d-i+1} f_{3 i-1}+y_{i} g_{3 i-1}, \quad a_{3 i}=y_{i} g_{3 i}+z_{i} h_{3 i}
$$

for $f_{k}, g_{k}, h_{k} \in S / I$.

Proof. The first statement is immediate. For the second statement, note that $x_{1} \ldots x_{d-i} y_{1} \ldots y_{i-1}$ kills each of $a_{3 i-2}, a_{3 i-1}$ and $a_{3 i}$. Because every generator of J is either divisible by x_{d-i+1}, y_{i}, or z_{i} (Lemma 9.4), and $x_{1} \ldots x_{d-i} y_{1} \ldots y_{i-1}$ is divisible by none of those, it follows from Proposition 1.2.2 in [HH11] that $J:\left(x_{1} \ldots x_{d-i} y_{1} \ldots y_{i-1}\right) \subseteq\left(x_{d-i+1}, y_{i}, z_{i}\right)$. Each of the a_{k} 's in question is in the colon ideal, so they may be written in the form $x_{d-i+1} f_{k}+y_{i} g_{k}+z_{i} h_{k}$ for $f_{k}, g_{k}, h_{k} \in S / I$.

Hence
$-y_{i}\left(x_{d-i+1} f_{3 i-2}+y_{i} g_{3 i-2}+z_{i} h_{3 i-2}\right)+z_{i}\left(x_{d-i+1} f_{3 i-1}+y_{i} g_{3 i-1}+z_{i} h_{3 i-1}\right)=x_{d-i+1}\left(x_{d-i+1} f_{3 i}+y_{i} g_{3 i}+z_{i} h_{3 i}\right)$.
From this, we see, for instance, that $y_{i}^{2} g_{3 i-2} \in\left(z_{i}, x_{d-i+1}\right)$. Lifting up to S, we know that $\left(z_{i}, x_{d-i+1}\right)+$ J is a square-free monomial ideal, hence radical, so $y_{i} g_{3 i-2} \in\left(z_{1}, x_{d}\right)$. Similarly, we see that $z_{i} h_{3 i-1} \in\left(y_{i}, x_{d-i+1}\right)$ and $x_{d-i+1} f_{3 i} \in\left(y_{i}, z_{i}\right)$. Hence we may rewrite $a_{3 i-2}=x_{d-i+1} f_{3 i-2}+z_{i} h_{3 i-2}$, $a_{3 i-1}=x_{d-i+1} f_{3 i-1}+y_{i} g_{3 i-1}$, and $a_{3 i}=y_{i} g_{3 i}+z_{i} h_{3 i}$.

We next describe relations between generators of Q / F_{0} that form a "chain". These chains correspond to LS-paths in the graph of linear syzygies of J, and to each chain of linear syzygies we may associate a vanishing linear combination.

Definition 9.6. Let q_{1}, \ldots, q_{k} be a sequence of generators of Q / F_{0} with $k \geq 2$. We may write each q_{i} as $c_{i} e_{r_{i}}-d_{i} e_{s_{i}}$, where c_{i}, d_{i} are monomials of degree 1 and r_{i}, s_{i} are indices between 1 and $2 d-1$. We call such a sequence an LS-chain if:
(1) $s_{i}=r_{i+1}$ for each $1 \leq i \leq k-1$,
(2) $r_{1}<r_{2}<\ldots<r_{k}<s_{k}$, and
(3) r_{2}, \ldots, r_{k} are all odd.

Example 9.7. When $d=3$, one example of an LS-chain is

$$
y_{1} e_{2}-z_{1} e_{3}, \quad y_{2} e_{3}-x_{2} e_{5}, \quad y_{3} e_{5}-x_{1} e_{7}
$$

This corresponds to the unique LS-path between the generators of J corresponding to e_{2} and e_{7}, which are $x_{1} x_{2} z_{1}$ and $y_{1} y_{2} y_{3}$ respectively. The path goes $x_{1} x_{2} z_{1}, x_{1} x_{2} y_{1}, x_{1} y_{1} y_{2}, y_{1} y_{2} y_{3}$, which indeed corresponds to $e_{2}, e_{3}, e_{5}, e_{7}$ (see Figure 6).

Notice that the length of an LS-chain is at most d, and that condition (3) along with the structure of the generators implies that $r_{i+1}-r_{i}=2$ for all $2 \leq i \leq k-1$.

Lemma 9.8. Let generators q_{1}, \ldots, q_{k} be an LS-chain (still with $k \geq 2$), and let $j_{r_{1}}, \ldots, j_{r_{k}}, j_{s_{k}}$ be the generators of J corresponding to $e_{r_{1}}, \ldots, e_{r_{k}}, e_{s_{k}}$. Then:
(1) $c_{1} \mid j_{s_{k}}$.
(2) Set $w_{1}:=\frac{j_{s_{k}}}{c_{1}}$. Then $c_{2} \mid w_{1}$. In general, for $1 \leq i \leq k-1$, w_{i} is divisible by c_{i+1}, where we inductively define $w_{i+1}:=\frac{d_{i}}{c_{i+1}} \cdot w_{i}$.
(3) $\sum_{i=1}^{k} w_{i} q_{i}=0$.

Proof. For (1), we use the construction of the generators, the definition of the e_{r} 's, the condition $r_{1}<r_{2}=s_{1}$, and the fact that r_{2} is odd. We see that $q_{1}=c_{1} e_{r_{1}}-d_{1} e_{r_{2}}$ corresponds to the linear syzygy between $j_{r_{1}}$ and $j_{r_{2}}$, which means r_{1} is either $r_{2}-1$ or $r_{2}-2$. Hence $j_{r_{2}}$ is a multiple of $y_{\frac{r_{2}+1}{2}-1}$, and $j_{r_{1}}$ is not. Also, the existence of the linear syzygy between $j_{r_{1}}$ and $j_{r_{2}}$ means that $c_{1}=y_{\frac{r_{2}+1}{2}-1}$. Then because $s_{k}>r_{2}$, it follows that $j_{s_{k}}$ also is a multiple of $y_{\frac{r_{2}+1}{2}-1}$, hence (1).
For (2), we first consider the case when $1 \leq i \leq k-2$. For each such $i, s_{i+1}=r_{i+2}$ is odd, so the same logic as above applies. In other words, $q_{i+1}=c_{i+1} e_{r_{i+1}}-d_{i+1} e_{r_{i+2}}$ corresponds to the linear syzygy between $j_{r_{i+1}}$ and $j_{r_{i+2}}$, so $j_{r_{i+2}}$ is a multiple of $y_{\frac{r_{i+2}+1}{2}-1}$, and $j_{r_{i+1}}$ is not. This implies that $c_{i+1}=y_{\frac{r_{i+2+1}-1}{2}}$. But recall that we defined $w_{1}=\frac{j_{s_{k}}}{c_{1}}=\frac{j_{s_{k}}}{y_{\frac{r_{2}+1}{2}-1}}$. By the constructions and the fact that $s_{k}>r_{k}>\ldots>r_{1}$, we know that $j_{s_{k}}$ is divisible by each of the $y_{\frac{r_{i+1}^{2}-1}{}}=c_{i}$ for $1 \leq i \leq k-1$, and all of these terms are distinct as the r_{i} are distinct odd integers.

It remains to discuss the case $i=k-1$. If s_{k} is odd, then we can proceed as above. If s_{k} is even, then $j_{s_{k}}$ is divisible by $z_{\frac{s_{k}}{2}}$, and since r_{k} is odd, $j_{r_{k}}$ is not. Since $q_{k}=c_{k} e_{r_{k}}-d_{k} e_{s_{k}}$ corresponds to the linear syzygy between $j_{r_{k}}^{2}$ and $j_{s_{k}}$, we conclude that $r_{k}=z_{\frac{s_{k}^{2}}{}}$. It follows that w_{k-1} is divisible by r_{k},
since w_{k-1} is a multiple of a quotient of $j_{s_{k}}$, where the quotient is obtained by only dividing out y-indeterminants (as seen in the previous paragraph). This proves (2).

We turn to (3). Notice that if we expand out the sum in full, we have terms $-w_{i} d_{i} e_{r_{i+1}}+w_{i+1} c_{i+1} e_{r_{i+1}}$ for all $1 \leq i \leq k-1$, so these all cancel out by the definition of the w 's. Hence

$$
\sum_{i=1}^{k} w_{i} q_{i}=w_{1} c_{1} e_{r_{1}}-w_{k} d_{k} e_{s_{k}}
$$

By definition, $w_{1} c_{1}=j_{s_{k}}$. But our LS-chain of linear syzygies implies that $j_{r_{i}}=j_{r_{i+1}} \cdot \frac{d_{i}}{c_{i}}$ for each $1 \leq i \leq k-1$, and $j_{r_{k}} \cdot \frac{d_{k}}{c_{k}}=j_{s_{k}}$. Hence w_{k} turns out to be exactly $j_{r_{1}} d_{k}$, so $\sum_{i=1}^{k} w_{i} q_{i}=j_{s_{k}} e_{r_{1}}-j_{r_{1}} e_{s_{k}}$. But this is in F_{0}, so it vanishes.

With this setup, we are ready to begin the proof of Theorem 9.3. As mentioned before, the idea is to construct the b_{i} inductively. Hence:

Proposition 9.9. Let $1 \leq i \leq d$. Suppose we are given initial data $b_{1}^{\prime}, \ldots, b_{2 i-1}^{\prime} \in S / J$ such that:
(1) If $i \geq 2$, then for $1 \leq k \leq i-1$,

$$
z_{k} b_{2 k-1}^{\prime}-x_{d-k+1} b_{2 k}^{\prime}=a_{3 k-2}, \quad y_{k} b_{2 k-1}^{\prime}-x_{d-k+1} b_{2 k+1}^{\prime}=a_{3 k-1}, \quad y_{k} b_{2 k}^{\prime}-z_{k} b_{2 k+1}^{\prime}=a_{3 k} .
$$

(2) $a_{3 i-2}-z_{i} b_{2 i-1}^{\prime}$ is a multiple of x_{d-i+1}.

Then we may find $b_{1}, \ldots, b_{2 i+1} \in S / J$ such that:
I. For $1 \leq k \leq i$,

$$
z_{k} b_{2 k-1}-x_{d-k+1} b_{2 k}=a_{3 k-2}, \quad y_{k} b_{2 k-1}-x_{d-k+1} b_{2 k+1}=a_{3 k-1}, \quad y_{k} b_{2 k}-z_{k} b_{2 k+1}=a_{3 k} .
$$

II. If $i \leq d-1$, then $a_{3 i+1}-z_{i+1} b_{2 i+1}$ is a multiple of x_{d-i}.

Proof. Part I.

Recall from Lemma 9.5 that we may write

$$
a_{3 i-2}=x_{d-i+1} f_{3 i-2}+z_{i} h_{3 i-2}, \quad a_{3 i-1}=x_{d-i+1} f_{3 i-1}+y_{i} g_{3 i-1}, \quad a_{3 i}=y_{i} g_{3 i}+z_{i} h_{3 i},
$$

for some $f_{k}, g_{k}, h_{k} \in S / I$, and that

$$
\begin{equation*}
-y_{i}\left(x_{d-i+1} f_{3 i-2}+z_{i} h_{3 i-2}\right)+z_{i}\left(x_{d-i+1} f_{3 i-1}+y_{i} g_{3 i-1}\right)=x_{d-i+1}\left(y_{i} g_{3 i}+z_{i} h_{3 i}\right) \tag{1}
\end{equation*}
$$

Since we are given that $a_{3 i-2}-z_{i} b_{2 i-1}^{\prime}$ is a multiple of x_{d-i+1}, we may assume that $h_{3 i-2}=b_{2 i-1}^{\prime}$ above. Temporarily set $b_{2 i}^{\prime}:=-f_{3 i-2}$, so $z_{i} b_{2 i-1}^{\prime}-x_{d-i+1} b_{2 i}^{\prime}=a_{3 i-2}$.
We next claim that $a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}$ is a multiple of x_{d-i+1}. From Equation 1, we have

$$
z_{i}\left(a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}\right)=x_{d-i+1}\left(a_{3 i}+y_{i} f_{3 i-2}\right),
$$

and we know that $a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}$ is in $\left(x_{d-i+1}, y_{i}\right)$. Taking lifts in S, we also see that (a lift of) $a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}$ is in $\left(\left(x_{d-i+1}\right)+J\right):\left(z_{i}\right)$. Proposition 1.2.2 in [HH11] tells us that $\left(\left(x_{d-i+1}\right)+J\right):\left(z_{i}\right)$ is generated by x_{d-i+1}, J, and $x_{1} \ldots x_{d-i} y_{1} \ldots y_{i-1}$, since the only minimal generator of $\left(x_{d-i+1}\right)+J$ divisible by z_{i} is $x_{1} \ldots x_{d-i} y_{1} \ldots y_{i-1} z_{i}$. Therefore $a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}$ is in both $\left(x_{d-i+1}\right)+\left(y_{i}\right)+J$ and $\left(x_{d-i+1}\right)+\left(x_{1} \ldots x_{d-i} y_{1} \ldots y_{i-1}\right)+J$, and Proposition 1.2.1 in [HH11] tells us that the intersection of those two monomial ideals is exactly $\left(x_{d-i+1}\right)+J+\left(\operatorname{lcm}\left(y_{i}, x_{1} \ldots x_{d-i} y_{1} \ldots y_{i-1}\right)\right)=\left(x_{d-i+1}\right)+J$, as $x_{1} \ldots x_{d-i} y_{1} \ldots y_{i}$ is already in J. In other words, $a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}$ is indeed a multiple of x_{d-i+1} in S / J.

So let $b_{2 i+1}^{\prime}$ be an element of S / J such $-x_{d-i+1} b_{2 i+1}^{\prime}=a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}$. Then we indeed have $y_{i} b_{2 i-1}^{\prime}-$ $x_{d-i+1} b_{2 i+1}^{\prime}=a_{3 i-1}$. Now, we know from Equation 1 (and the fact that $h_{3 i-2}=b_{2 i-1}^{\prime}$) that

$$
x_{d-i+1}\left(y_{i} b_{2 i}^{\prime}-z_{i} b_{2 i+1}^{\prime}\right)=-x_{d-i+1} y_{i} f_{3 i-2}+z_{i}\left(a_{3 i-1}-y_{i} b_{2 i-1}^{\prime}\right)=x_{d-i+1} a_{3 i} .
$$

In other words, the difference $a_{3 i}-\left(y_{i} b_{2 i}^{\prime}-z_{i} b_{2 i+1}^{\prime}\right)$ is an element of S / J killed by x_{d-i+1}, and is also in $\left(y_{i}, z_{i}\right)$. Taking a lift $t \in S$, we see that t is in both the monomial ideals $J:\left(x_{d-i+1}\right)$ and $J+\left(y_{i}, z_{i}\right)$. Hence t is in an ideal $J+J_{1}$, where J_{1} is an ideal generated by monomials $\ell \notin J$ such that either y_{i} or z_{i} divides ℓ, and $x_{d-i+1} \ell \in J$. Moreover, in light of item (2) of Lemma 9.4, it follows that if y_{i} (resp. z_{i}) divides ℓ, then $x_{d-i+1}\left(\frac{\ell}{y_{i}}\right)$ (resp. $\left.x_{d-i+1}\left(\frac{\ell}{z_{i}}\right)\right)$ also lands in J. Indeed, if $x_{d-i+1} \ell \in J$, then it is divisible by some monomial $\mathbf{m} \in J$; say $\mathbf{m m}^{\prime}=x_{d-i+1} \ell$. If $y_{i} \nmid \mathbf{m}$, then $y_{i} \mid \mathbf{m}^{\prime}$, upon which \mathbf{m} still divides $x_{d-i+1}\left(\frac{\ell}{y_{i}}\right)$. If $y_{i} \mid \mathbf{m}$, then $x_{d-i+1} \nmid \mathbf{m}$, so that $\mathbf{m} \mid \ell$, contradicting $\ell \notin J$.
Now, passing back to the quotient, we see that $a_{3 i}-\left(y_{i} b_{2 i}^{\prime}-z_{i} b_{2 i+1}^{\prime}\right)$ is an S / J-linear combination of the aforementioned ℓ 's. In particular, we may combine terms and write $a_{3 i}-\left(y_{i} b_{2 i}^{\prime}-z_{i} b_{2 i+1}^{\prime}\right)=y_{i} r-z_{i} s$, where both $r, s \in S / J$ are killed by x_{d-i+1}. Therefore replace $b_{2 i}^{\prime}$ with $b_{2 i}^{\prime}+r$ and $b_{2 i+1}^{\prime}$ with $b_{2 i+1}^{\prime}+s$. With these new values of $b_{2 i}^{\prime}$ and $b_{2 i+1}^{\prime}$, we still have $z_{i} b_{2 i-1}^{\prime}-x_{d-i+1} b_{2 i}^{\prime}=a_{3 i-2}$ and $y_{i} b_{2 i-1}^{\prime}-$ $x_{d-i+1} b_{2 i+1}^{\prime}=a_{3 i-1}$, since the adjusted value of $b_{2 i}^{\prime}$ (resp. $b_{2 i+1}^{\prime}$) differs from the old value by some element killed by x_{d-i+1}. Moreover, $y_{i} b_{2 i}^{\prime}-z_{i} b_{2 i+1}^{\prime}=a_{3 i}$ by construction. Therefore we have $b_{1}^{\prime}, \ldots, b_{2 i+1}^{\prime}$ satisfying item I.

Part II.

Now, suppose $i<d$. We will need to adjust all of the $b_{1}^{\prime}, \ldots, b_{2 i+1}^{\prime}$ in a way that satisfies item II, but also preserves the equalities in item I.

We want to consider the following LS-chain:

$$
y_{1} e_{1}-x_{d} e_{3}, \quad y_{2} e_{3}-x_{d-1} e_{5}, \quad \ldots, \quad y_{i} e_{2 i-1}-x_{d-i+1} e_{2 i+1}, \quad z_{i+1} e_{2 i+1}-x_{d-i} e_{2 i+2} .
$$

Note that applying φ to these generators gives $a_{2}, a_{5}, \ldots, a_{3 i-1}, a_{3 i+1}$.
We now apply Lemma 9.8. This gives us a vanishing linear combination:

$$
\begin{align*}
& \left(x_{1} \ldots x_{d-i-1} y_{2} \ldots y_{i} z_{i+1}\right)\left(y_{1} e_{1}-x_{d} e_{3}\right)+\left(x_{1} \ldots x_{d-i-1} x_{d} y_{3} \ldots y_{i} z_{i+1}\right)\left(y_{2} e_{3}-x_{d-1} e_{5}\right)+\ldots \\
& +\left(x_{1} \ldots x_{d-i-1} x_{d-i+2} \ldots x_{d} z_{i+1}\right)\left(y_{i} e_{2 i-1}-x_{d-i+1} e_{2 i+1}\right)+\left(x_{1} \ldots x_{d-i-1} x_{d-i+1} \ldots x_{d}\right)\left(z_{i+1} e_{2 i+1}-x_{d-i} e_{2 i+2}\right)=0 . \tag{2}
\end{align*}
$$

Upon applying φ, we get

$$
\begin{align*}
& \left(x_{1} \ldots x_{d-i-1} y_{2} \ldots y_{i} z_{i+1}\right) a_{2}+\left(x_{1} \ldots x_{d-i-1} x_{d} y_{3} \ldots y_{i} z_{i+1}\right) a_{5}+\ldots \\
& \quad+\left(x_{1} \ldots x_{d-i-1} x_{d-i+2} \ldots x_{d} z_{i+1}\right) a_{3 i-1}+\left(x_{1} \ldots x_{d-i-1} x_{d-i+1} \ldots x_{d}\right) a_{3 i+1}=0 . \tag{3}
\end{align*}
$$

For $a_{2}, a_{5}, \ldots, a_{3 i-1}$, we may expand each in terms of b_{i}^{\prime} s (i.e. $a_{3 k-1}=y_{k} b_{2 k-1}^{\prime}-x_{d-k+1} b_{2 k+1}^{\prime}$ for $1 \leq k \leq i$), and for $a_{3 i+1}$, we may write it as $x_{d-i} f_{3 i+1}+z_{i+1} h_{3 i+1}$, due to Lemma 9.5. After mass cancellations, Equation 3 becomes

$$
\begin{aligned}
& \left(x_{1} \ldots x_{d-i-1} y_{2} \ldots y_{i} z_{i+1}\right) y_{1} b_{1}^{\prime}+\left(x_{1} \ldots x_{d-i-1} x_{d-i+2} \ldots x_{d} z_{i+1}\right)\left(-x_{d-i+1} b_{2 i+1}^{\prime}\right) \\
& +\left(x_{1} \ldots x_{d-i-1} x_{d-i+1} \ldots x_{d}\right)\left(x_{d-i} f_{3 i+1}+z_{i+1} h_{3 i+1}\right)=0 .
\end{aligned}
$$

We recognize that $x_{1} \ldots x_{d-i-1} y_{1} \ldots y_{i} z_{i+1}$ and $x_{1} \ldots x_{d}$ both vanish in the quotient ring S / J, so the above simplifies to

$$
\begin{equation*}
\left(x_{1} \ldots x_{d-i-1} x_{d-i+1} \ldots x_{d} z_{i+1}\right)\left(h_{3 i+1}-b_{2 i+1}^{\prime}\right)=0 . \tag{4}
\end{equation*}
$$

As before, consider a lift of $h_{3 i+1}-b_{2 i+1}^{\prime}$ inside S, which must be in the colon ideal

$$
J:\left(x_{1} \ldots x_{d-i-1} x_{d-i+1} \ldots x_{d} z_{i+1}\right)
$$

Recall from Lemma 9.4 that every generator of J is either divisible by x_{d-i} or y_{i}, and by the construction of J, if it is divisible by y_{i}, then it is divisible by $y_{1} \ldots y_{i}$. Then because $x_{1} \ldots x_{d-i-1} x_{d-i+1} \ldots x_{d} z_{i+1}$ is coprime to both x_{d-i} and $y_{1} \ldots y_{i}$, Proposition 1.2.2 in [HH11] shows that this colon ideal is contained in $\left(x_{d-i}, y_{1} \ldots y_{i}\right) \supseteq J$. Hence $h_{3 i+1}-b_{2 i+1}^{\prime}$ equals $x_{d-i} t+y_{1} \ldots y_{i} u$ for some $t, u \in S / J$.
Define now $b_{2 i+1}:=b_{2 i+1}^{\prime}+y_{1} \ldots y_{i} u$. Then

$$
a_{3 i+1}-z_{i+1} b_{2 i+1}=\left(x_{d-i} f_{3 i+1}+z_{i+1} h_{3 i+1}\right)-z_{i+1}\left(b_{2 i+1}^{\prime}+y_{1} \ldots y_{i} u\right)=x_{d-i} f_{3 i+1}+z_{i+1}\left(x_{d-i} t\right),
$$

so $a_{3 i+1}-z_{i+1} b_{2 i+1}$ is a multiple of x_{d-i}. Recalling that we have equations

$$
z_{i} b_{2 i-1}^{\prime}-x_{d-i+1} b_{2 i}^{\prime}=a_{3 i-2}, \quad y_{i} b_{2 i-1}^{\prime}-x_{d-i+1} b_{2 i+1}^{\prime}=a_{3 i-1}, \quad y_{i} b_{2 i}^{\prime}-z_{i} b_{2 i+1}^{\prime}=a_{3 i},
$$

we may set $b_{2 i-1}:=b_{2 i-1}^{\prime}+y_{1} \ldots y_{i-1} x_{d-i+1} u$ and $b_{2 i}:=b_{2 i}^{\prime}+y_{1} \ldots y_{i-1} z_{i} u$ to obtain

$$
z_{i} b_{2 i-1}-x_{d-i+1} b_{2 i}=a_{3 i-2}, \quad y_{i} b_{2 i-1}-x_{d-i+1} b_{2 i+1}=a_{3 i-1}, \quad y_{i} b_{2 i}-z_{i} b_{2 i+1}=a_{3 i} .
$$

Next, we have equations

$$
z_{i-1} b_{2 i-3}^{\prime}-x_{d-i+2} b_{2 i-2}^{\prime}=a_{3 i-5}, \quad y_{i-1} b_{2 i-3}^{\prime}-x_{d-i+2} b_{2 i-1}^{\prime}=a_{3 i-4}, \quad y_{i-1} b_{2 i-2}^{\prime}-z_{i-1} b_{2 i-1}^{\prime}=a_{3 i-3},
$$

so we may set $b_{2 i-3}:=b_{2 i-3}^{\prime}+y_{1} \ldots y_{i-2} x_{d-i+1} x_{n-i+2} u$ and $b_{2 i-2}:=b_{2 i-2}^{\prime}+y_{1} \ldots y_{i-2} x_{d-i+1} z_{i-1} u$ to obtain

$$
z_{i-1} b_{2 i-3}-x_{d-i+2} b_{2 i-2}=a_{3 i-5}, \quad y_{i-1} b_{2 i-3}-x_{d-i+2} b_{2 i-1}=a_{3 i-4}, \quad y_{i-1} b_{2 i-2}-z_{i-1} b_{2 i-1}=a_{3 i-3} .
$$

This procedure is easily repeated inductively: in general for $0 \leq k \leq i$, we set

$$
b_{2 k+1}=b_{2 k+1}^{\prime}+y_{1} \ldots y_{k} x_{d-i+1} \ldots x_{d-k} u, \quad b_{2 k}=b_{2 k}^{\prime}+y_{1} \ldots y_{k-1} x_{d-i+1} \ldots x_{d-k} z_{k} u .
$$

Then the equations

$$
z_{k} b_{2 k-1}^{\prime}-x_{d-k+1} b_{2 k}^{\prime}=a_{3 k-2}, \quad y_{k} b_{2 k-1}^{\prime}-x_{d-k+1} b_{2 k+1}^{\prime}=a_{3 k-1}, \quad y_{k} b_{2 k}^{\prime}-z_{k} b_{2 k+1}^{\prime}=a_{3 k}
$$

are easily seen to be preserved; i.e. we have

$$
z_{k} b_{2 k-1}-x_{d-k+1} b_{2 k}=a_{3 k-2}, \quad y_{k} b_{2 k-1}-x_{d-k+1} b_{2 k+1}=a_{3 k-1}, \quad y_{k} b_{2 k}-z_{k} b_{2 k+1}=a_{3 k} .
$$

So our construction of the b_{k} 's satisfies both item I and item II.
Proof of Theorem 9.3. By Lemma 9.5, we may write $a_{1}=x_{d} f_{1}+z_{1} h_{1}$ and set $b_{1}^{\prime}:=h_{1}$, so $a_{1}-z_{1} b_{1}^{\prime}$ is a multiple of x_{d} in S / J. By applying Proposition 9.9 inductively, we may find $b_{1}, \ldots, b_{2 d+1} \in S / J$ such that for all $1 \leq i \leq d$,

$$
\begin{gathered}
z_{i} b_{2 i-1}-x_{d-i+1} b_{2 i}=a_{3 i-2}=\varphi\left(z_{i} e_{2 i-1}-x_{d-i+1} e_{2 i}\right), \quad y_{i} b_{2 i-1}-x_{d-i+1} b_{2 i+1}=a_{3 i-1}=\varphi\left(y_{i} e_{2 i-1}-x_{d-i+1} e_{2 i+1}\right), \\
y_{i} b_{2 i}-z_{i} b_{2 i+1}=a_{3 i}=\varphi\left(y_{i} e_{2 i}-z_{i} e_{2 i+1}\right) .
\end{gathered}
$$

Hence the $\operatorname{map} \psi:(S / J)^{2 d+1} \rightarrow S / J$ sending e_{i} to b_{i} induces φ, and the map $\operatorname{Hom}_{S / J}(F / J F, S / J) \rightarrow$ $\operatorname{Hom}_{S / J}\left(Q / F_{0}, S / J\right)$ is surjective as desired.

Note that this result is quite particular to this specific polarization of $I_{3, n}$. For instance, one can define another polarization of $I_{3,3}$ that is similar to $J_{3,3}$:

$$
I^{\prime}:=\left(x_{1} x_{2} x_{3}, x_{1} x_{2} y_{1}, x_{1} x_{2} z_{1}, x_{1} y_{1} y_{2}, x_{1} y_{1} z_{2}, y_{1} y_{2} y_{3}, y_{1} y_{2} z_{1}\right) .
$$

The graph of linear syzygies of I^{\prime} is the same as that of $J_{3,3}$; the only difference is that I^{\prime} has the generator $y_{1} y_{2} z_{1}$ instead of $y_{1} y_{2} z_{3}$. But $T_{I^{\prime}}^{2} \neq 0$; a computation with Macaulay 2 shows that it has dimension 3.

In fact, the same computation can be generalized to $J_{n, d}$ with $n \geq 3$, but the details will be messier (but in the same spirit), so we will omit them. In other words,

Theorem 9.10. For $n \geq 3, T_{J_{n, d}}^{2}=0$. In particular, $J_{n, d}$ determines a smooth point $x_{n, d}$ on its associated Hilbert scheme.

Since we now know that $J_{n, d}$ corresponds to a smooth point $x_{n, d}$ on the associated Hilbert scheme, it is natural to ask for the dimension of the tangent space at $x_{n, d}$. We provide this computation below.

Proposition 9.11. For $n \geq 3$ and $d \geq 2$, the dimension of the tangent space at $x_{n, d}$ is $\operatorname{dim}_{k\left(x_{n, d}\right)} T_{x_{n, d}}=$ $d(d-1)\left(n^{2}+n-1\right)$.

Because $S / J:=S / J_{n, d}$ visibly has depth at least 2, the desired dimension is exactly $\operatorname{dim}_{k} \operatorname{Hom}_{S}(J, S / J)_{0}$, the dimension of the degree-preserving S-module maps $J \rightarrow S / J$ ([Loh13], Proposition 2.4). We will be investigating this latter dimension.

Let $\varphi \in \operatorname{Hom}_{S}(J, S / J)_{0}$. We discuss conditions that φ must satisfy. Notice first that such maps φ are exactly characterized by the criterion that the (homogeneous degree- d) images of φ on the generators of J satisfy the corresponding linear syzygy relations. Indeed, if $0 \rightarrow Q \rightarrow F \rightarrow J \rightarrow 0$ is a free presentation of J, with Q the submodule of F generated by the linear syzygies of J, then $\operatorname{Hom}_{S}(J, S / J)_{0}$ is exactly the kernel of $\operatorname{Hom}_{S}(F, S / J)_{0} \rightarrow \operatorname{Hom}_{S}(Q, S / J)_{0}$.

To begin, we prove a few useful lemmas.
Lemma 9.12. Suppose that $2 \leq i \leq d$ is such that $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$ is annihilated by $x_{2,1} \ldots x_{2, i}$, but not by $x_{2,1} \ldots x_{2, i-1}$. Pick a homogeneous representative of $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$, and let $\mathbf{m}_{1}, \ldots, \mathbf{m}_{k} \in S$ be the monomials in that representative that are not in $J:\left(x_{2,1} \ldots x_{2, i-1}\right)$. Then the \mathbf{m}_{r} are contained in $\left(x_{1, d-i+2} \ldots x_{1, d}\right)$.

Note that $x_{2,1} \ldots x_{2, d}=0$, so such an i surely exists.

Proof. We have a linear syzygy

$$
x_{2,1} \ldots x_{2, i-1} \varphi\left(x_{1,1} \ldots x_{1, d}\right)=x_{1, d-i+2} \ldots x_{1, d} \varphi\left(x_{1,1} \ldots x_{1, d-i+1} x_{2,1} \ldots x_{2, i-1}\right) .
$$

Lift this equation up to S, so we may write

$$
\begin{equation*}
x_{2,1} \ldots x_{2, i-1}\left(\mathbf{m}_{1}+\ldots+\mathbf{m}_{k}\right)+j=x_{1, d-i+2} \ldots x_{1, d} \varphi\left(x_{1,1} \ldots x_{1, d-i+1} x_{2,1} \ldots x_{2, i-1}\right), \tag{5}
\end{equation*}
$$

where $j \in J$. Note that because we assume $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$ is not annihilated by $x_{2,1} \ldots x_{2, i-1}$, there is at least one such \mathbf{m}_{r}. Since none of the monomial terms on the left hand side of Equation 5 cancel after expanding, it follows that each of the $x_{2,1} \ldots x_{2, i-1} \mathbf{m}_{r}$ terms are divisible by $x_{1, d-i+2} \ldots x_{1, d}$ in S, which implies the statement.

Lemma 9.13. Consider the same assumptions as in Lemma 9.12, but now allowing $i=1$ (in this case, $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$ is annihilated by $\left.x_{2,1}\right)$. Suppose furthermore that the \mathbf{m}_{r} are not in $J:\left(x_{2,1} \ldots x_{2, i-1} x_{3, i}\right)$ either. Then the \mathbf{m}_{r} are contained in $\left(x_{1, d-i+1} x_{1, d-i+2} \ldots x_{1, d}\right)$.

Proof. We have a linear syzygy

$$
x_{2,1} \ldots x_{2, i-1} x_{3, i} \varphi\left(x_{1,1} \ldots x_{1, d}\right)=x_{1, d-i+1} \ldots x_{1, d} \varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{3, i}\right) .
$$

Then conclude as in Lemma 9.12.

Remark 9.14. Similarly, we can show that if $2 \leq i \leq d$ is such that $\varphi\left(x_{2,1} \ldots x_{2, d}\right)$ is annihilated by $x_{1,1} \ldots x_{1, i}$ but not $x_{1,1} \ldots x_{1, i-1}$, then for each monomial $\mathbf{m}_{r} \notin J:\left(x_{1,1} \ldots x_{1, i-1}\right)$ that is in a homogeneous representative of $\varphi\left(x_{2,1} \ldots x_{2, d}\right)$, we have $\mathbf{m}_{r} \in\left(x_{2, d-i+2} \ldots x_{2, d}\right)$. If $\mathbf{m}_{r} \notin J:\left(x_{1,1} \ldots x_{1, i-1} x_{3, d-i+1}\right)$ (and allowing $i=1$), then we may even say $\mathbf{m}_{r} \in\left(x_{2, d-i+1} \ldots x_{2, d}\right)$.

Our next key idea is that the images of $x_{1,1} \ldots x_{1, d}$ and $x_{2,1} \ldots x_{2, d}$ come very close to determining the entire map $\varphi \in \operatorname{Hom}_{S}(J, S / J)_{0}$, up to the addition of possible annihilated elements.

Lemma 9.15. Suppose $\varphi \in \operatorname{Hom}_{S}(J, S / J)_{0}$ is such that φ vanishes at both $x_{1,1} \ldots x_{1, d}$ and $x_{2,1} \ldots x_{2, d}$. Then $\varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}\right)=0$ for all $0 \leq i \leq d$.

Proof. Because we have the linear syzygies

$$
\begin{aligned}
x_{2,1} \ldots x_{2, i} \varphi\left(x_{1,1} \ldots x_{1, d}\right) & =x_{1, d-i+1} \ldots x_{1, d} \varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}\right) \\
x_{1,1} \ldots x_{1, d-i} \varphi\left(x_{2,1} \ldots x_{2, d}\right) & =x_{2, i+1} \ldots x_{2, d} \varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}\right)
\end{aligned}
$$

it follows that $\varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}\right)$ is killed by both $x_{1, d-i+1} \ldots x_{1, d}$ and $x_{2, i+1} \ldots x_{2, d}$. The first condition implies that $\varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}\right)$ is a multiple of $x_{1,1} \ldots x_{1, d-i}$ in S / J; the second implies that it is a multiple of $x_{2,1} \ldots x_{2, i}$. Hence $\varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}\right)$ vanishes.

We are now in a position to describe the possible maps $\varphi \in \operatorname{Hom}_{S}(J, S / J)_{0}$. The main idea is as follows. We know that if it is nonzero, $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$ has a representative that is a sum of degree- d monomials, each of which are killed by some $x_{2,1} \ldots x_{2, i}$. Using Lemmas 9.12 and 9.13, we will seek to describe all such monomials, and show that for each, there is a "basic" map in $\operatorname{Hom}_{S}(J, S / J)_{0}$ sending $x_{1,1} \ldots x_{1, d}$ to that monomial, and $x_{2,1} \ldots x_{2, d}$ to 0 . We will do something analogous for $\varphi\left(x_{2,1} \ldots x_{2, d}\right)$. The upshot is that by Lemma 9.15, we know that any map in $\operatorname{Hom}_{S}(J, S / J)_{0}$ is equal to a k-linear combination of such basic maps, except for possibly differing at the $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{k, i}$ for $3 \leq k \leq n$. However, the maps in $\operatorname{Hom}_{S}(J, S / J)_{0}$ that vanish at the $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}$ will turn out to be easy to describe.

First, for a fixed value $2 \leq i \leq d$, consider the nonzero degree- d monomials \mathbf{m} (in S / J) killed by $x_{2,1} \ldots x_{2, i}$, not killed by $x_{2,1} \ldots x_{2, i-1}$, and in $\left(x_{1, d-i+2} \ldots x_{1, d}\right)$. We split into two cases:
Case I: $x_{2,1} \ldots x_{2, i-1} x_{3, i}$ kills \mathbf{m}.
Up to scalars, we claim that such monomials look like

$$
x_{1,1} \ldots x_{1, d-i} x_{1, d-i+2} \ldots x_{1, d} a
$$

where a is some indeterminant that we will impose restrictions on later. Let us consider the situation inside S. We want to find the degree $-d$ monomials \mathbf{m}, divisible by $x_{1, d-i+2} \ldots x_{1, d}$, in $J:\left(x_{2,1} \ldots x_{2, i}\right)$ and $J:\left(x_{2,1} \ldots x_{2, i-1} x_{3, i}\right)$ but not in $J:\left(x_{2,1} \ldots x_{2, i-1}\right)$. We know that $J:\left(x_{2,1} \ldots x_{2, i}\right)$ is generated by terms of the form $\frac{j}{\operatorname{gcd}\left(j, x_{2,1} \ldots x_{2, i}\right)}$, and due to the structure of J, if $x_{2, i} \nmid \operatorname{gcd}\left(j, x_{2,1} \ldots x_{2, i}\right)$, then $x_{2,1} \ldots x_{2, i-1} \cdot \frac{j}{\operatorname{gcd}\left(j, x_{2,1} \ldots x_{2, i}\right)} \in J$. Therefore \mathbf{m} is a multiple of something that looks like $j^{\prime}:=$ $\frac{j}{x_{2,1} \cdots x_{2, i}}$, where j is a generator of J divisible by $x_{2, i}$ (and hence $x_{2,1} \ldots x_{2, i}$). Therefore j is equal to $x_{1,1} \ldots x_{1, d-k-1} x_{2,1} \ldots x_{2, k} b$, where $i \leq k \leq d$ and b is one of $x_{1, d-k}, x_{3, k+1}, \ldots, x_{n, k+1}$ when $k \leq d-1$ (when $k=d, b=1$). Hence j^{\prime} looks like

$$
x_{1,1} \ldots x_{1, d-k-1} x_{2, i+1} \ldots x_{2, k} b
$$

and \mathbf{m} is divisible by

$$
x_{1,1} \ldots x_{1, d-k-1} x_{1, d-i+2} \ldots x_{1, d} x_{2, i+1} \ldots x_{2, k} b
$$

This is $d-1$ indeterminants, so up to scalars, \mathbf{m} is the above monomial times some indeterminant a. But if $x_{2,1} \ldots x_{2, i-1} x_{3, i}$ kills \mathbf{m} inside S / J, then

$$
x_{1,1} \ldots x_{1, d-k-1} x_{1, d-i+2} \ldots x_{1, d} x_{2, i} \ldots x_{2, i-1} x_{2, i+1} \ldots x_{2, k} x_{3, i} b a \in J .
$$

The only way this is possible is if the above is a multiple of $x_{1,1} \ldots x_{1, d-i}$. In particular, $k=$ $i, b=x_{d-k}=x_{d-i}$ (when $i=d$, this means $b=1$), and a can be any indeterminant such that $x_{1,1} \ldots x_{1, d-i} x_{1, d-i+2} \ldots x_{1, d} a \notin J$ (there is another case with $k=i+1, b=x_{d-k}=x_{d-i-1}$, and $a=x_{d-i}$, but this is subsumed). This gives the original claim, and a can be any of the $n d-1$ indeterminants in S besides $x_{1, d-i+1}$.
We now build a map $\psi \in \operatorname{Hom}_{S}(J, S / J)_{0}$ with $\psi\left(x_{1,1} \ldots x_{1, d}\right)=\mathbf{m}=x_{1,1} \ldots x_{1, d-i} x_{1, d-i+2} \ldots x_{1, d} a$. This is not so hard:

- For $0 \leq k \leq i-1, \psi$ sends $x_{1,1} \ldots x_{1, d-k} x_{2,1} \ldots x_{2, k}$ to $x_{1,1} \ldots x_{1, d-i} x_{1, d-i+2} \ldots x_{1, d-k} x_{2,1} \ldots x_{2, k} a$.
- For $0 \leq k \leq i-1$ and $3 \leq r \leq n, \psi$ sends $x_{1,1} \ldots x_{1, d-k} x_{2,1} \ldots x_{2, k-1} x_{r, k}$ to $x_{1,1} \ldots x_{1, d-i} x_{1, d-i+2} \ldots x_{1, d-k} x_{2,1} \ldots x_{2, k-1} x_{r, k} a$.
- ψ is 0 on all other generators of J. In particular, ψ is 0 on $x_{2,1} \ldots x_{2, d}$.

For each value $2 \leq i \leq d$, there are $n d-1$ such maps, and they are mutually k-linearly independent due to the \mathbf{m} visibly being linearly independent (and $\psi\left(x_{1,1} \ldots x_{1, d}\right)=\mathbf{m}$).
Case II: $x_{2,1} \ldots x_{2, i-1} x_{3, i}$ does not kill \mathbf{m}, and $\mathbf{m} \in\left(x_{1, d-i+1} \ldots x_{1, d}\right)$.
Up to scalars, we claim that such monomials look like

$$
x_{1,1} \ldots x_{1, d-k-1} x_{1, d-i+1} \ldots x_{1, d} x_{2, i+1} \ldots x_{2, k} b
$$

for $i \leq k \leq d$ and b some indeterminant that we will impose restrictions on later. As above, \mathbf{m} is a multiple of something that looks like $j^{\prime}:=\frac{j}{x_{2,1} \ldots x_{2, i}}$, where j is a generator of J divisible by $x_{2, i}$ (and hence $x_{2,1} \ldots x_{2, i}$). Therefore $j=x_{1,1} \ldots x_{1, d-k-1} x_{2,1} \ldots x_{2, k} b$, where $i \leq k \leq d$ and b is one of $x_{1, d-k}, x_{3, k+1}, \ldots, x_{n, k+1}$ when $k \leq d-1$ (when $k=d, b=1$). Hence j^{\prime} looks like

$$
x_{1,1} \ldots x_{1, d-k-1} x_{2, i+1} \ldots x_{2, k} b
$$

and \mathbf{m} is divisible by

$$
x_{1,1} \ldots x_{1, d-k-1} x_{1, d-i+1} \ldots x_{1, d} x_{2, i+1} \ldots x_{2, k} b .
$$

This is d indeterminants, so up to scalars, \mathbf{m} is exactly this type of monomial, which is the claim. Let's see how many such \mathbf{m} there are. For each fixed i, there are $d-i$ choices of $i \leq k \leq d-1$ and $n-1$ choices of b for such k. When $k=n$ and $b=1$, there is exactly one choice of b. However, note that the choice $k=i$ brings us back to Case I (here $\mathbf{m}=x_{1,1} \ldots x_{1, d-i-1} x_{1, d-i+1} \ldots x_{1, d} b$, which is subsumed under Case I), and so does the choice $k=i+1, b=x_{1, d-k}=x_{1, d-i-1}$ (here $\mathbf{m}=$ $x_{1,1} \ldots x_{1, d-i-1} x_{1, d-i+1} \ldots x_{1, d} x_{2, i+1}$, again subsumed under Case I). So we've only found ($\left.n-1\right)(d-$ $i)+1-(n-1)-1=(n-1)(d-i-1)$ new possible values of \mathbf{m}.
Again, we build a map $\psi \in \operatorname{Hom}_{S}(J, S / J)_{0}$ with

$$
\psi\left(x_{1,1} \ldots x_{1, d}\right)=\mathbf{m}=x_{1,1} \ldots x_{1, d-k-1} x_{1, d-i+1} \ldots x_{1, d} x_{2, i+1} \ldots x_{2, k} b
$$

as follows:

- For $0 \leq l \leq i-1$,

$$
\psi\left(x_{1,1} \ldots x_{1, d-l} x_{2,1} \ldots x_{2, l}\right)=x_{1,1} \ldots x_{1, d-k-1} x_{1, d-i+1} \ldots x_{1, d-l} x_{2,1} \ldots x_{2, l} x_{2, i+1} \ldots x_{2, k} b .
$$

- For $0 \leq l \leq i$ and $3 \leq r \leq n, \psi$ sends $x_{1,1} \ldots x_{1, d-l} x_{2,1} \ldots x_{2, l-1} x_{r, l}$ to
$x_{1,1} \ldots x_{1, d-k-1} x_{1, d-i+1} \ldots x_{1, d-l} x_{2,1} \ldots x_{2, l-1} x_{2, i+1} \ldots x_{2, k} x_{r, l} b$.
- ψ is 0 on all other generators of J. In particular, ψ is 0 on $x_{2,1} \ldots x_{2, d}$.

For each value $2 \leq i \leq d$, there are $(n-1)(d-i)$ new maps, and they are visibly mutually k-linearly independent.

Using an analogous procedure, we may describe all degree- d monomials \mathbf{m} satisfying the hypotheses in Remark 9.14, and for each \mathbf{m}, we may build a map $\psi \in \operatorname{Hom}_{S}(J, S / J)_{0}$ with $\psi\left(x_{2,1} \ldots x_{2, d}\right)=\mathbf{m}$ and $\psi\left(x_{1,1} \ldots x_{1, d}\right)=0$. We get the same count for the number of such k-linearly independent maps. So far, we have found a total of
$2((d-1)(n d-1)+(n-1)(d-3)+(n-1)(d-4)+\ldots+(n-1) \cdot 1)=2\left((d-1)(n d-1)+(n-1) \frac{(d-3)(d-2)}{2}\right)$
k-linearly independent maps.
So we have now reduced to the case where we want to describe maps $\varphi \in \operatorname{Hom}_{S}(J, S / J)_{0}$ where $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$ is killed by $x_{2,1}$, and $\varphi\left(x_{2,1} \ldots x_{2, d}\right)$ is killed by $x_{1,1}$. First, let $\mathbf{m} \notin J$ be a degree- d monomial in a homogeneous representative of $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$, so φ is also killed by $x_{2,1}$. If \mathbf{m} is killed by $x_{3,1}$, then \mathbf{m} must be a multiple of $x_{1,1} \ldots x_{1, d-1}$, so is a scalar multiple of a monomial $x_{1,1} \ldots x_{1, d-1} a$, where a is some indeterminant not equal to $x_{1, d}, x_{2,1}, \ldots, x_{n, 1}$ (as then \mathbf{m} would be in $J)$. As in Case I above, for each of those $n d-n$ possibilities for \mathbf{m}, there is $\psi \in \operatorname{Hom}_{S}(J, S / J)_{0}$ with $\psi\left(x_{1,1} \ldots x_{1, d}\right)=\mathbf{m}$ and $\psi\left(x_{2,1} \ldots x_{2, d}\right)=0$. On the other hand, if \mathbf{m} is not killed by $x_{3,1}$, then Lemma 9.13 applies (with $i=1$), and we can conclude as in Case II above: up to a scalar, \mathbf{m} looks like

$$
x_{1,1} \ldots x_{1, d-k-1} x_{1, d} x_{2,2} \ldots x_{2, k} b
$$

for $1 \leq k \leq d$, and b one of $x_{1, d-k}, x_{3, k+1}, \ldots, x_{m, k+1}$, unless $k=d$ (in which case $b=1$). As before, this procedure generates exactly $(n-1)(d-2)$ new monomials \mathbf{m}, and for each, we may construct a corresponding map ψ satisfying the usual conditions. All of these $(n d-n)+(n-1)(d-2)$ maps are linearly independent as they take on k-linearly independent values at $x_{1,1} \ldots x_{1, d}$.

Again, this procedure can be repeated for monomials in a representative of $\varphi\left(x_{2,1} \ldots x_{2, d}\right)$ that are killed by $x_{1,1}$. Doing this again creates $(n d-n)+(n-1)(d-2)$ new linearly independent maps in $\operatorname{Hom}_{S}(J, S / J)_{0}$, and using Equation 6, we now have a total of

$$
\begin{equation*}
2\left((n d-n)+(d-1)(n d-1)+(n-1) \frac{(d-2)(d-1)}{2}\right) \tag{7}
\end{equation*}
$$

linearly independent maps.
We have now described all possible monomials in the representatives of $\varphi\left(x_{1,1} \ldots x_{1, d}\right)$ and $\varphi\left(x_{2,1} \ldots x_{2, d}\right)$, where φ is an arbitrary element in $\operatorname{Hom}_{S}(J, S / J)_{0}$, and for each such monomial, we have constructed some map ψ that takes on that value at the corresponding generator of $J\left(x_{1,1} \ldots x_{1, d}\right.$ or $\left.x_{2,1} \ldots x_{2, d}\right)$. Subtracting off all those maps from φ, we conclude from Lemma 9.15 that we are now in the case where φ vanishes at all $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i}$. We now consider possible values for $\varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{r, i}\right)$, where $3 \leq r \leq n$. For each, we conclude from the description of the linear syzygies that

$$
0=x_{1, d-i+1} \varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{r, i}\right)=x_{2, i} \varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{r, i}\right) .
$$

Taking a lift $s \in S$ of $\varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{r, i}\right)$, we have

$$
s \in\left(J:\left(x_{1, d-i+1}\right)\right) \cap\left(J:\left(x_{1, i-1}\right)\right) \subseteq\left(J+\left(x_{1,1} \ldots x_{1, d-i}\right)\right) \cap\left(J+\left(x_{2,1} \ldots x_{2, i-1}\right)\right)=J+\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1}\right) .
$$

In other words, $\varphi\left(x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{r, i}\right)$ is a multiple of $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1}$ inside S / J. Hence if $\mathbf{m} \notin J$ is some degree- d monomial in a homogeneous representative, then

$$
\mathbf{m}=x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} a
$$

for some indeterminant a (as always, up to a scalar multiple), which can be any of the $n d$ variables besides $x_{1, d-i+1}, x_{2, i}, x_{3, i} \ldots, x_{n, i}$. For each such \mathbf{m}, there is a map $\psi \in \operatorname{Hom}_{S}(J, S / J)_{0}$ sending $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{r, i}$ to \mathbf{m} and all other generators of J to 0 . Hence our φ is a linear combination of such ψ (which are evidently linearly independent). To count the number of such ψ, we see that there are $(n-2) d$ such elements $x_{1,1} \ldots x_{1, d-i} x_{2,1} \ldots x_{2, i-1} x_{r, i}$, and to each of them we have associated $n d-n$ monomials (hence $n d-n$ maps ψ).

In summary, there is a set of

$$
\begin{equation*}
2\left((n d-m)+(d-1)(n d-1)+(n-1) \frac{(d-2)(d-1)}{2}\right)+(n d-n)(n-2) d=d(d-1)\left(n^{2}+n-1\right) \tag{8}
\end{equation*}
$$

maps in $\operatorname{Hom}_{S}(J, S / J)_{0}$ that form a k-linear spanning set. By the above constructions, they are linearly independent, so we have finished the calculation of Proposition 9.11.

We end by mentioning a question that may prove to be interesting. Besides our original question (when do polarizations of strongly stable ideals determine smooth points on their Hilbert scheme?), we may ask for properties that are preserved under further separation of a polarization, since unlike in the Artinian case, a polarization of a strongly stable ideal may be further separated (Section 3). From various computations in Macaulay 2 it seems that the dimension of tangent spaces is preserved under further separations, hence the question:

Question 9.16. Let I' be a polarization of a strongly stable ideal I, and I" a further separation of I^{\prime}. We view I^{\prime} and $I^{\prime \prime}$ as ideals in the same polynomial ring (i.e. the ambient ring of $I^{\prime \prime}$). Do the tangent spaces at the points corresponding to I^{\prime} and $I^{\prime \prime}$ (in the same Hilbert scheme H) have the same dimension?

For instance, one sees from the definition that the pyramidal polarization $J_{n, d}$ is a separation of the standard polarization of $I_{n, d}$. Then assuming an affirmative answer to the above question, we would know that $\operatorname{dim}_{k\left(y_{n, d}\right)} T_{y_{n, d}}=d(d-1)\left(n^{2}+n-1\right)$ as well, where $y_{n, d}$ is the point on the Hilbert scheme corresponding to the standard polarization.

Acknowledgements

This project was partially supported by RTG grant NSF/DMS-1745638. It was supervised as part of the University of Minnesota School of Mathematics Summer 2022 REU program. The authors would like to thank their mentor Ayah Almousa and TA John O'Brien for introducing them to this problem and their helpful guidance. They would also like to thank the University of Minnesota Department of Mathematics faculty and staff for coordinating the program. HH would like to thank Wenqi Li for helpful conversations about the ideas in this paper. Thanks also to Vic Reiner for telling us about ridge graphs of simplicial complexes.

References

[AFL22] Ayah Almousa, Gunnar Fløystad, and Henning Lohne, Polarizations of powers of graded maximal ideals, Journal of Pure and Applied Algebra 226 (2022), no. 5, 106924. $\uparrow 1,2,3,4,5,8,10,11,12,13,18,19,22$
[DK74] Gopal Danaraj and Victor Klee, Shellings of spheres and polytopes, Duke Mathematical Journal 41 (1974), no. 2, 443-451. $\uparrow 22$
[FGI ${ }^{+}$05] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck's FGA explained (2005). $\uparrow 26$
[FGM18] Giuseppe Favacchio, Elena Guardo, and Juan Migliore, On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces, Proceedings of the American Mathematical Society 146 (2018), no. 7, 2811-2825. $\uparrow 22$
[Har10] Robin Hartshorne, Deformation theory, Vol. 257, Springer, 2010. $\uparrow 26,27$
[Har66] , Connectedness of the Hilbert scheme, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 29 (1966), no. 1, 7-48. 个2
[HH11] Jürgen Herzog and Takayuki Hibi, Monomial ideals, Monomial ideals, 2011. $\uparrow 3,18,27,29,31$
[Loh13] Henning Lohne, Deformations of polarizations of powers of the maximal ideal, arXiv preprint arXiv:1303.6470 (2013). $\uparrow 26,32$
[Mat87] Hideyuki Matsumura, Commutative ring theory (Miles Reid, ed.), Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1987. $\uparrow 16$
[Nem21] Amin Nematbakhsh, Linear strands of edge ideals of multipartite uniform clutters, Journal of Pure and Applied Algebra 225 (2021), no. 10, 106690. $\uparrow 22$
[NR09] Uwe Nagel and Victor Reiner, Betti numbers of monomial ideals and shifted skew shapes, Electron. J. Combin. 16 (2009), no. 2, Special volume in honor of Anders Björner, Research Paper 3, 59. MR2515766 $\uparrow 2$, 4
[Yan12] Kohji Yanagawa, Alternative polarizations of Borel fixed ideals, Nagoya Mathematical Journal 207 (2012), 79-93. $\uparrow 2$

Stanford University
 Email address: hhao@stanford.edu

Massachusetts Institute of Technology
Email address: lyuyuan@mit.edu
URL: https://www.mit.edu/~1yuyuan/

Purdue University
Email address: ssaintra@purdue.edu

