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Abstract. In this paper, we extend the results of Almousa, Fløystad, and Lohne ([AFL22]) which
completely characterize polarizations of powers of the maximal ideal (x1, . . . ,xn)d ⊂ k[x1, . . . ,xn] to the
setting of strongly stable monomial ideals. In particular, we give a necessary and sufficient criterion
for determining when any polarization of a given strongly stable ideal is a separated model, and we
reproduce (in the strongly stable case) [AFL22]’s classification of polarizations in terms of isotone
maps. We also discuss conjectures and some results relating these polarizations to commutative
algebra, simplicial topology, and algebraic geometry in the contexts of their associated Alexander
duals, Stanley-Reisner simplicial complexes, and Hilbert schemes, respectively.
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1. Introduction

Monomial ideals play a central role in combinatorial commutative algebra, a field pioneered by the
work of Stanley that connects commutative algebra and algebraic geometry to combinatorics on
simplicial complexes. One of the main tools in their study is polarization, which was introduced in
Hartshorne’s thesis [Har66] in order to prove connectedness of the Hilbert scheme. Polarization
replaces a monomial ideal with a square-free monomial ideal sharing the same homological data,
giving access to combinatorial tools such as Stanley-Reisner theory.

Historically, polarization referred to the standard polarization (shown in the construction in the
preceding paragraph), which is a specific method to separate the variables. But it turns out that
many ideals have other, nonisomorphic polarizations. Another polarization which has been studied
in some depth, the box polarization, was first introduced by Nagel and Reiner in [NR09] and
further studied in [Yan12] as a tool to help construct the “complex of boxes.” This “complex of
boxes” is useful in that it gives a minimal, linear, cellular free resolution for the class of strongly
stable ideals that we will study in this paper.

The aim of this paper is to extend the results of Almousa, Fløystad, and Lohne ([AFL22]) regarding
polarizations of powers of the maximal ideal (x1, . . . ,xn) ⊂ k[x1, . . . ,xn] to the class of strongly stable
(monomial) ideals, and to explore the applications of this work. The class of strongly stable ideals,
which generalizes the aforementioned family of powers of the maximal ideal, is defined by the
following property: I is strongly stable if for any monomial m ∈ I and any xi dividing m, the
monomials of the form m · xjxi are in I for all 1 ≤ j < i. For example, if a strongly stable ideal contains

the monomial x1x2x
2
3, it must also contain the monomial x1x

2
2x3 obtained by swapping an x3 out

for an x2. Strongly stable ideals arise naturally in algebraic combinatorics; for instance, generic
initial ideals are always strongly stable in characteristic 0.

The main result of this paper is Theorem 6.1 and its converse Proposition 4.2, a generalization
of the spanning tree criterion for polarizations presented in the power of the maximal ideal case
in [AFL22]. This allows us to determine combinatorially when a set of isotone maps defines a
polarization for any strongly stable ideal, by looking at its graph of linear syzygies.

The paper is organized as follows. We begin with relevant background definitions and constructions
that will define our setting in Section 2. We then move to Section 3, characterizing separated
models of strongly stable ideals.

In Section 4, we introduce our definitions of down-triangles, and prove one direction of our main
theorem. Section 5 explores a bootstrapping technique in the three variable case, and discusses
why the strategy fails in higher dimensions. In Section 6, we prove the other direction of the main
theorem by generalizing a strategy from [AFL22].

We conclude our paper with our work in three applications: in Section 7 we discuss Alexander
duality and associated primes of polarizations, in Section 8 we explore the shellability of polariza-
tions of strongly stable ideals, and in Section 9 we discuss when a polarization of a strongly stable
ideal yields a smooth point on its associated Hilbert scheme.

Conventions. Unless otherwise stated, throughout the paper we will only consider equigenerated
strongly stable ideals; that is, strongly stable ideals whose minimal monomial generators are all of
the same degree d ≥ 2. When d = 1, all strongly stable ideals are in the form of the homogeneous
maximal ideal of a polynomial subring; hence the statements tend to be trivial. Unless otherwise
mentioned, we will always be adopting this setup, so “strongly stable” will mean “strongly stable
and equigenerated of degree ≥ 2”.
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2. Background

In this section we will present relevant definitions and constructions that will be useful to us
throughout this paper.

2.1. Strongly Stable ideals.

Remark 2.1. Recall from Proposition 1.1.6 in Herzog-Hibi [HH11] that a monomial ideal has a
unique minimal monomial set of generators. In the future, we mean a minimal set of generators
whenever we refer to generators of a monomial ideal.

Definition 2.2. An elementary move (also known as a Borel move) eij where i < j is the operation
sending a monomial m to the monomial m · xixj , i.e.

eij(x
a1
1 . . .x

an
n ) = xa1

1 . . .x
ai+1
i . . .x

aj−1
j . . .xann .

Such a move is admissible if aj ≥ 1 (that is, eij(x
a1
1 . . .x

an
n ) really is in our polynomial ring). We say

a monomial m′ is reachable from m if m′ can be obtained from m by a sequence of admissible
elementary moves. We say m is maximal if it is not reachable from any other generator of I .

Example 2.3. The monomial x3
1x2 is reachable from x1x

3
3 through the sequence of admissible

elementary moves e13e13e23.

Notice that a monomial with exponent vector (a1, . . . , an) is reachable from (b1, . . . , bn) exactly when∑j
i=1 ai ≥

∑j
i=1 bi for all 1 ≤ j ≤ n.

Definition 2.4. Let S = k[x1, . . . ,xn] be a polynomial ring over a field k. A monomial ideal I ⊂ S is
strongly stable if for any generator m of I , I contains every monomial that is reachable from m.

2.2. Polarizations and separations. In this subsection, we recall the definitions of polarization
and separation from [AFL22] and recall their characterization of polarizations of powers of the
graded maximal ideal.

Notation 2.5. If R is a set, let k[xR] be the polynomial ring in the variables xr where r ∈ R. If S→ R
is a map of sets, it induces a k-algebra homomorphism k[xS ]→ k[xR] by mapping xs to xr if s 7→ r.

Definition 2.6 (Separation, Separated Model). Let R′
p
−→ R be a surjection of finite sets such that

|R′ | = |R|+ 1. Let r1 and r2 be the two distinct elements of R′ which map to a single element r in R.
Let I be a monomial ideal in the polynomial ring k[xR] and J a monomial ideal in k[xR′ ]. Then J is a
simple separation of I if the following holds:

i. The monomial ideal I is the image of J by the map k[xR′ ]→ k[xR].

ii. Both the variables xr1 and xr2 occur in some minimal generators of J (usually in distinct
generators).

iii. The variable difference xr1 − xr2 is a non-zero divisor in the quotient ring k[xR′ ]/J .

More generally, if R′
p
−→ R is a surjection of finite sets and I ⊆ k[xR] and J ⊆ k[xR′ ] are monomial

ideals such that J is obtained by a succession of simple separations of I , then J is a separation of I . J
a separated model (of I) if there are no possible nontrivial separations of J .

3



Definition 2.7 (Preseparation). Define a preseparation of a monomial ideal I ⊂ k[xR] (using the
same notation as Definition 2.6) to satisfy the same conditions as that definition, except (iii): that
is, the appropriate difference of variables is not guaranteed to be a regular sequence.

Intuitively, one can think of a preseparation as a “potential” separation. Often in proofs we will
put forth preseparations and need to check that they satisfy the “nonzero divisor” condition (iii) in
Definition 2.6.

Definition 2.8. An ideal J is a polarization of an ideal I if it is a square-free separation of I .

Construction 2.9 (Standard Polarization). Let I be a monomial ideal in the polynomial ring
S = k[x1, . . . ,xn] over a field k. Let di be the largest power of the variable xi which divides a minimal
generator of I . Let Let X̌i = {xi1 , . . . ,xidi } be a set of variables for each i ∈ [n], and let S̃ = k[X̌1, . . . , X̌n]
be a polynomial ring in the union of all these variables.

Take each generator of I of the form xa1
1 x

a2
2 . . .x

an
n and make the following monomial (x11x12 . . .x1a1

) ·
(x21x22 . . .x2a2

) · · · · · (xn1xn2 . . .xnan) a minimal generator of the ideal Ĩ ⊂ S̃.

Call Ĩ the standard polarization of I. To recover the quotient ring S/I from S̃/ Ĩ , quotient successively
by the regular sequence of variable differences xi1 − xi2, . . . ,xi1 − xin for each i.

Another useful polarization, which we refer to as the box polarization, was introduced by Nagel
and Reiner in [NR09].

Construction 2.10 (Box Polarization). Let I be a monomial ideal in the polynomial ring S =
k[x1, . . . ,xn] over a field k. Let di be the largest power of the variable xi which divides a minimal
generator of I . Let Let X̌i = {xi1 , . . . ,xidi } be a set of variables for each i ∈ [n], and let S̃ = k[X̌1, . . . , X̌n]
be a polynomial ring in the union of all these variables.

Take each generator of I of the form xa1
1 x

a2
2 . . .x

an
n and make the following monomial (x11x12 . . .x1a1

) ·
(x2a1+1x2a1+2 . . .x2a1+a2

) · · · · · (xna1+···+an−1+1xna1+···+an−1+2 . . .xna1+···+an) a minimal generator of the ideal
Ĩ ⊂ S̃.

Call Ĩ the box polarization of I.

Notice that the second indices restart for each change in the first index of the standard polarization,
while the second indices keep increasing in the box polarization.

Example 2.11. Observe:

The standard polarization:
x2

1x2x
3
3 7→ x11x12x21x31x32x33

The box polarization:
x2

1x2x
3
3 7→ x11x12x23x34x35x36

This paper’s aim is to shed light on more general polarizations.

For convenience, we record here a useful lemma and its corollary on square-free monomial ideals
(Lemma 5.8 in [AFL22]):
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Lemma 2.12. Let I be a monomial ideal in k[x1, . . . ,xn] such that each generator of I is square-free in the
xi-variable. Then if j , i and (xi − xj ) · f is in I , then for every monomial m in f we have that xim and
xjm are in I .

Lemma 2.13. Let xa and xb be minimal generators of a monomial ideal I and m(a) and m(b) the
corresponding generators in a polarization of I . Fix an index i. If ai ≤ bi and aj ≥ bj for every j , i, then
the i’th part mi(a) divides mi(b).

The lemma above is important in motivating the construction of isotone maps on a partial order
encoding divisibility of the generators of a polarization, which will be crucial to the statement and
proof of many of our results. We will now transition into providing background constructions and
results from the original paper [AFL22].

The goal of the original paper was to study polarizations of powers of the maximal ideal, and while
we concern ourselves with polarizations of strongly stable ideals, we will be borrowing much of
the terminology and techniques introduced in [AFL22].

2.3. Constructions and results from the literature. In this section we summarize the characteri-
zation of polarizations of powers of the graded maximal ideal from [AFL22]

Notation 2.14. Fix integers n and d, and let S = k[x1, . . . ,xn] be a polynomial over a field k. Let
X̌i = {xi1, . . . ,xid} be a set of variables, and let S̃ = k[X̌1, . . . , X̌n] be a polynomial ring in the union of
all these variables. Denote by m = (x1, . . . ,xn) the graded maximal ideal of S.

Denote by ∆Z(n,d) = ∆(n,d)∩Zn the set of lattice points of the dilated simplex d ·∆n−1, i.e., the
set of tuples a = (a1, . . . , an) of non-negative integers with

∑n
i ai = d. Consider the polytopal CW-

complex with the underlying space d ·∆n−1, with CW-complex structure induced by intersection
with the cubical CW-complex structure on Rn given by the integer lattice Zn. Denote by T(n,d) the
one-skeleton of this cell complex.

Observation 2.15. The elements of ∆Z(n,d) are exactly the exponent vectors of the minimal
generating set of the ideal md .

Notation 2.16. Let ei ∈ Nn be the ith unit vector in Nn. For a given a, denote by Supp(a) the support
of a, that is, the set of all i such that ai > 0. If B is a subset of [n], denote by 1B the n-tuple

∑
i∈B ei .

For example, if B = [n], then 1B = (1, . . . ,1).

In the following definitions, we recall from [AFL22] some key subgraphs of T(n,d) which will be
critical for characterizing polarizations combinatorially.

Definition 2.17 (Complete down-graph). Given c ∈ ∆Z(n,d + 1) and i, j ∈ Supp(c), there is an edge
between c − ei and c − ej in T(n,d) denoted (c; i, j). Every edge in T(n,d) can be realized as an
edge (c; i, j) for unique c, i, and j. An n-tuple c ∈ ∆Z(n,d + 1) induces a subgraph of T(n,d) called
the complete down-graph D(c) on the points c− ei for i ∈ Supp(c). If R ⊆ [n], denote by DR(c) the
complete graph with edges (c;r, s) for r, s ∈ R.

Definition 2.18 (Complete up-graph). Any a ∈ ∆Z(n,d − 1) also determines a subgraph of T(n,d):
the complete up-graph U (a) consisting of points a + ei for i = 1, . . . ,n with edges (a + ei + ej ; i, j) for
i , j.
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Remark 2.19. The complete down-graph D(c) induces a simplex of full dimension d − 1 if and
only if ci ≥ 1 for all i, i.e., c has full support. For each a in ∆Z(n,d − 1), the induced simplex of the
up-graph U (a) always has full dimension d − 1.

(3,0,0)

(0,3,0) (0,0,3)

Figure 1. The graph T(3,3).

Example 2.20. The graph T(3,3) pictured in Figure 1 has three “complete down-triangles” with
full support corresponding to the vectors (2,1,1), (1,2,1), and (1,1,2) in ∆Z(n,d + 1). It also has six
“complete up-triangles”.

We now introduce a set of partial orders ≥i for each i ∈ [n].

Definition 2.21 (The Partial Order ≥i). Adopt notation and hypotheses of Notation 2.14. Fix an
index 1 ≤ i ≤ n. Define (∆Z(n,d),≥i) to be the poset with ground set ∆Z(n,d) and partial order ≥i
such that b ≥i a if bi ≥ ai and bj ≤ aj for j , i.

Observation 2.22. The partial order ≥i as in Definition 2.21 is graded, where a ∈ ∆Z(n,d) has rank
ai .

The maps in the following construction will play an important role in our efforts to combinatorially
characterize polarizations throughout this paper.

Construction 2.23 (Isotone Maps). Adopt notation and hypotheses of Notation 2.14. Let Bd be the
Boolean poset on [d] and {Xi}1≤i≤n be a set of rank-preserving isotone maps

Xi : (∆Z(n,d),≤i)→Bd .

For any a ∈ ∆Z(n,d), let mi(a) =
∏
j∈Xi (a) xij and m(a) =

∏n
i=1mi(a). Let J be the ideal in k[X̌1, . . . , X̌n]

generated by the m(a).

Definition 2.24 (Linear Syzygy Edge). Let (c; i, j) be an edge of T(n,d), where c ∈ ∆Z(n,d + 1). Then
(c; i, j) is a linear syzygy edge (or LS-edge) if there is a monomial m of degree d − 1 such that

m(c− ei) = xjr ·m and m(c− ej ) = xis ·m,
6



(c1, c2, c3 − 1)
(c;2,3) (c1, c2 − 1, c3)

(c;1,3)

(c1 − 1, c2, c3)

(c;1,2)

n · x1i3x2j3 n · x1i2x3j2

n · x2i1x3j1

Figure 2. A down-triangle and its labeled monomials

for suitable variables xjr ∈ X̌j and xis ∈ X̌i . This edge gives a linear syzygy between the monomials
m(c− ei) and m(c− ej ). Equivalently, in terms of the isotone maps,

Xp(c− ei) = Xp(c− ej )

for every p , i, j. Observe that both mi(c− ei) and mj(c− ej) are common factors of m(c− ei) and
m(c− ej ).

Sometimes, one may wish to consider whether two elements of ∆Z(n,d) would share a linear syzygy
edge with respect to a subset of [n].

Definition 2.25 (R-Linear Syzygy Edge). Let R ⊆ [n] and c ∈ ∆Z(n,d + 1) with R contained in the
support of c. Let r, s ∈ R. Define (c;r, s) to be an R-linear syzygy edge if

Xp(c− er ) = Xp(c− es) for p ∈ R \ {r, s}.

By the isotonicity of the Xp, for p = r, s,

Xr(c− er ) ⊆ Xr(c− es), Xs(c− es) ⊆ Xs(c− er ).

Let DR(c) be the complete graph with edges (c;r, s) for r, s ∈ R.

The following lemma tells us that the monomials assigned to vertices of a down-triangle by a set of
isotone maps must have a common factor which is easy to describe.

Lemma 2.26. Let c ∈ ∆Z(n,d) have support C ⊆ {1,2, . . . ,n}. The monomials assigned to the vertices
in the down-graph D(c) by the maps Xi have a common factor of degree c− 1C . This common factor is∏
i∈Cmi(c− ei).

Example 2.27. Let m = 3 and c = (c1, c2, c3) be in ∆+
3 (n + 1). On the left in Figure 2 is the down

triangle D(c). Let
n =m1(c− e1) ·m2(c− e2) ·m3(c− e3).

Then the monomials associated to the vertices of this down-triangle are shown to the right in Figure
2.

The following lemma turns out to be a useful tool for induction, and for applications in later
sections.

Lemma 2.28. Let c ∈ ∆Z(n,d + 1). If the set of linear syzygy edges in LS(c) contains a spanning tree for
D(c), then for each R ⊆ supp(c), the set of R-linear syzygy edges contains a spanning tree for DR(c).
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x1y1w1

x1z1w1

x2y1z2

y1z2w1

x1y1w1

x1z1w1

x2y1z2

Figure 3. R-linear syzygy edges where R = {2,3,4}.

x1x2y2 x1x2z2

x1x2x3

y1y2y3 z1z2z3

x1z1z2x2y1y2

y1y2z2 y1z2z3

x1y1z2

Figure 4. An example of a polarization of (x,y,z)3.

Example 2.29. Consider the case of four variables and c = (1,1,1,1). Write x,y,z,w for x1,x2,x3,x4,
respectively. On the left of Figure 3 is the down-graph D(c) with the three thick edges the linear
syzygy edges.

Let R = {2,3,4}. On the right is the down-graph DR(c) where the two thick edges are the R-linear
syzygy edges and the relevant variables marked in bold.

We conclude this section by recalling the main result of [AFL22] which offers a complete combina-
torial characterization of all polarizations of md in terms of their graphs of linear syzygies.

Theorem 2.30. Adopt notation 2.14. A set of isotone maps X1, . . . ,Xn as in Construction 2.23 determines
a polarization of the ideal (x1, . . . ,xn)d if and only if for every c ∈ ∆Z(n,d + 1), the linear syzygy edges
LS(c) contain a spanning tree for the down-graph D(c).

Example 2.31. Figure 4 depicts the graph of linear syzygies for a polarization of (x,y,z)3. Notice
that at most one edge is removed from each down-triangle, so it satisfies the spanning tree condition
of Theorem 2.30.

3. Polarizations and Separated Models of Strongly Stable Ideals

In Section 2.2 of [AFL22], it is determined (Corollary 2.6) that any polarization of an Artinian
monomial ideal is a separated model. Recall from Definition 2.6 that this means a polarization
cannot be separated any further by “splitting” one of the variables that appear in it. However, this
does not hold for strongly stable ideals, as the following example shows:
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x1y1

x1x2

y1y2

x1z

y1z

(a) The standard polarization of the ideal in Exam-
ple 3.1.

x1y1

x1x2

y1y2

x1z1

y1z2

(b) A separation of the standard polarization of the
ideal in Example 3.1.

Figure 5. Two polarizations of a strongly stable ideal with linear syzygy edges
marked, the second of which is a separation of the first.

Example 3.1. The standard polarization of the strongly stable ideal (x2,xy,xz,y2, yz) ⊂ k[x,y,z] is
not a separated model. The standard polarization is

I B (x1x2,x1y1,x1z,y1y2, y1z) ⊂ S ′ B k[x1,x2, y1, y2, z].

This has a further separation

J B (x1x2,x1y1,x1z1, y1y2, y1z2) ⊂ S ′′ B k[x1,x2, y1, y2, z1, z2].

Indeed, the natural surjection of polynomial rings sends J onto I , and if f ∈ S ′′ is such that
f (z1 − z2) ∈ J , then Lemma 2.12 shows that for every monomial m of f , both mz1 and mz2 are in
J . One sees from the generators of J that mz1 ∈ J implies x1|m or m is a multiple of a monomial
generator of J , and that mz2 ∈ J implies y1|m or m is a multiple of a monomial generator of J . Since
x1y1 ∈ J , it follows that m ∈ J , so f ∈ J . Hence z1 − z2 is not a zero divisor in S ′′/J . See Figure 5 for
the graphs of linear syzygies for the polarizations I and J .

It is therefore interesting to characterize the strongly stable ideals for which any polarization is a
separated model. In particular, for strongly stable I , we will see that either any polarization of I is
a separated model, or the standard polarization of I will not be a separated model.

For the setup, consider a function ρ, acting on the set of monomials as ρ(xa1
1 . . .x

an
n ) = xaii , where

i is the largest index with ai strictly positive. For instance, ρ(x5
1x3x

2
4) = x2

4, regardless of what
polynomial ring in which we consider the monomial x5

1x3x
2
4.

Lemma 3.2. Suppose I is strongly stable with minimal generators (a1, . . . ,ak) each of degree d. Suppose
there exists a maximal generator aj such that there is a distinct generator ak (not necessarily maximal)
with ρ(aj )|ak . Then the standard polarization of I is not a separated model.

Proof. Let aj = xb1
1 . . .xbii and ak = xc1

1 . . .x
cn
n , where ci ≥ bi ≥ 1. In the standard polarization I ′ ⊂ S ′,

the indeterminant xi,bi appears in at least two different monomials (preimages of aj and ak).
Consider the preseparation I ′′ inside S ′′ B k[x1,1, . . . , x̂i,bi , . . . ,xn,en , y1, y2], such that I ′′ has the same
generators as I ′, but we replace every instance of xi,bi with y1 except the xi,bi appearing in m(aj),
which we replace with y2.

We claim that y1 − y2 is not a zero divisor in S ′′/I ′′, so this preseparation is actually a separation.
Indeed, suppose f ∈ S ′′ with f (y1 − y2) ∈ I ′′. Since I ′′ is equigenerated of degree d ≥ 2, y1 − y2 < I

′′.
We want f ∈ I ′′, so it suffices to show that every monomial m of f is in I ′′. Since I ′′ is square-free,
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by Lemma 2.12, we must have my1,my2 ∈ I ′′. We see from the latter condition that either m is
divisible by a generator of I ′′, or it is divisible by x1,1 . . .xi,bi−1, so consider the second case.

The indeterminant y1 can only appear in a generator I ′′ as a result of pre-separating m(ak), where
ak = xc1

1 . . .x
cn
n , ak , aj , and ci ≥ bi . Notice that it is not possible to have ci′ ≤ bi′ for all 1 ≤ i′ ≤ i,

since
∑
bl = d =

∑
cl and bi ≤ ci + . . .+ cn, so this would contradict maximality of aj . Therefore pick

i′ with ci′ > bi′ .

The point is as follows. For my1 to be in I ′′, m is either divisible by a generator of I ′′, or my1 is divis-
ible by some x1,1 . . . x̂i,bi . . .xn,cny1 induced by an ak as above. So m is divisible by x1,1 . . . x̂i,bi . . .xn,cn ,

and in particular it is divisible by xi′ ,bi′+1. Hence x1,1 . . .xi,bi−1xi′ ,bi′+1 |m. But xb1
1 . . .xbi

′+1
i′ . . .xbi−1

i is
in I because it is strongly stable, so m ∈ I ′′. □

It turns out that the criterion given in Lemma 3.2 is in fact precisely the right condition needed to
describe those strongly stable I whose polarizations are all separated models.

Lemma 3.3. Suppose I is strongly stable with minimal generators (a1, . . . ,ak) each of degree d. Let ei ≥ 1
be the maximal power of xi that appears in any aj . Suppose that for any maximal generator aj , the only
generator divisible by ρ(aj ) is aj . Then any polarization of I is a separated model.

Proof. Let I ′ ⊂ S ′ be some polarization of I ⊂ S. Suppose that I ′′ ⊂ S ′′ is a further simple separation
of I ′, so I ′′ is again a polarization of I .

First, if aji is a maximal generator with ρ(aji ) = xbii , then we must have bi = ei , and aji is the unique

generator divisible by xeii . This uniqueness also implies that aji = xd−ei1 xeii . Moreover, notice that

we must have d = e1 ≥ e2 ≥ . . . ≥ en (if ei < ej with i > j, then x
d−ej
1 x

ej
j ∈ I implies x

d−ej
1 x

ej
i ∈ I ,

contradicting maximality of ei).

We now claim that, if i > 1 and ak = xc1
1 . . .x

cn
n is a generator divisible by xi , then c1 ≥ d − ei . If not,

then c1 < d − ei , so ak is not maximal as the only maximal generator divisible by xi is aji = xd−ei1 xeii .
But then ak is not reachable from any of the maximal generators: surely it is not reachable from
any of the ajl with l ≤ i, and it is not reachable from any ajl = xd−el1 xeli with l > i as c1 < d − ei ≤ d − el .
This implies that ak is maximal, a contradiction.

In particular, we see that if ak is divisible by xi (for any fixed i > 1), then ci < ei and cl is greater
than or equal to the lth exponent of aji . It follows from Lemma 2.4 and Remark 2.5 in [AFL22]
that if the polarization of aji is x1,1 . . .x1,d−eixi,1 . . .xi,ei (after a possible re-indexing) inside I ′′, then
every indeterminant of S ′′ mapping to xi under a sequence of simple separations is one of the
{xi,1, . . . ,xi,ei }. Then the proof of Corollary 2.6 in [AFL22] shows that the “split” indeterminant in
the simple separation S ′′↠ S ′ cannot be any of the xi,l .

It remains to discuss x1. But we know aj1 = xd1 is in I , so again Corollary 2.6 tells us that the “split”
indeterminant in the simple separation S ′′ ↠ S ′ cannot be any of the x1,l . This contradicts the
existence of the further simple separation I ′′. □

Note that an ideal satisfying the hypotheses of Lemma 3.3 need not be Artinian: consider
(x2,xy,y2,xz) ⊂ k[x,y,z].
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4. Down-triangles in the Strongly Stable Case

Recall Theorem 2.30, which gives an explicit combinatorial description of all possible polarizations
of a power of a maximal ideal (x1, . . . ,xn)d :

Theorem 4.1. Adopt notation 2.14. A set of isotone maps X1, . . . ,Xn as in Construction 2.23 determines
a polarization of the ideal (x1, . . . ,xn)d if and only if for every c ∈ ∆Z(n,d + 1), the linear syzygy edges
LS(c) contain a spanning tree for the down-graph D(c).

We wish to extend this proposition to the case where the ideal in question is strongly stable. It
turns out that the directly analogous criterion in the strongly stable case is the correct one:

Proposition 4.2. Let I ⊆ ∆n(d) correspond to the monomial generators of an ideal inside k[x1, . . . ,xn]
satisfying (*). Suppose that for every c ∈ ∆n(d + 1), the set of linear syzygy edges LS(c) arising from
isotone maps X1, . . . ,Xn : I →Bd contains a spanning tree for the (partial) down-graph D(c)∩ I . Then
the Xi determine a polarization of I .

We now recall the proof of Theorem 4.1 as outlined in Section 5 of [AFL22]. The first key ingredient
is Lemma 2.28, which may be reformulated in our situation as follows:

Lemma 4.3. Let c ∈ ∆Z(n,d + 1). If the set of linear syzygy edges in LS(c) contains a spanning tree
for D(c)∩ I , then for each R ⊆ supp(c), the set of R-linear syzygy edges contains a spanning tree for
DR(c)∩ I .

Proof. Exactly as in Lemma 2.28. The only needed ingredient is that for any a,b ∈D(c)∩ I , there is
a path consisting of linear syzygy edges between a and b. It does not matter that D(c)∩ I might be
smaller than D(c) (a point which we will return to many times). □

4.1. Linear Syzygy Paths. It remains to discuss the main ingredient of the argument, which is a
combinatorial lemma describing paths in ∆n(d). We first have to make two definitions.

Definition 4.4. For points a,b ∈ ∆n(d), we write a ≤ b if ai ≤ bi for all i. This defines a partial order
on ∆n(d), and the join of a and b under this ordering is denoted

a∨bB (max(a1,b1), . . . ,max(an,bn)).

Definition 4.5. If a = (a1, . . . , an) and b = (b1, . . . , bn) are two elements in ∆n(d), with AB {i : ai ≥ bi}
and BB {i : ai < bi}, then the distance between a and b is

d(a,b) =
∑
i∈A

ai − bi =
∑
i∈B

bi − ai .

Intuitively, the distance between a and b is the minimum number of edges we need to use to
construct a path from a to b within ∆n(d).

With these definitions, we may state the main ingredient in the proof of Theorem 4.1. This is
Proposition 5.3 in [AFL22]:

Proposition 4.6. Let a,b ∈ ∆n(d). Suppose that for every c ∈ ∆n(d + 1), the linear syzygy edges LS(c)
contains a spanning tree for the down-graph D(c). Then there is a path

a = b0,b1, . . . ,bN = b

such that
11



(1) Every bi ≤ a∨b.

(2) Every m(bi) divides the LCM of a and b.

(3) The edge from bi−1 to bi is an LS-edge.

We call such a path an LS-path.

Once this result is known, Theorem 4.1 follows using Lemma 2.28. Observe that the proof of this
last part does not need the fact that the ideal is a power of the maximal ideal. Therefore we want to
modify this proposition to suit the strongly stable situation as follows:

Proposition 4.7. Let I ⊆ ∆n(d) correspond to the monomial generators of a strongly stable ideal inside
k[x1, . . . ,xn]. Suppose that for every c ∈ ∆n(d+1), the set of linear syzygy edges LS(c) arising from isotone
maps X1, . . . ,Xn : I → Bd contains a spanning tree for the (partial) down-graph D(c) ∩ I . Then the
conclusion to Proposition 4.6 holds inside I . In other words, for any a,b ∈ I , we may find a restricted
LS-path between a and b, which is an LS-path using only points in I .

Let us follow the same method of proof as in [AFL22]. The proof of Proposition 4.6 has three
parts, labeled A, B, and C. We aim to reproduce the argument of each part in our situation. In the
following, we always assume a,b ∈ I .

Part A:

Lemma 4.8. If d(a,b) = 1, then there is a restricted LS-path from a to b.

Proof. The proof follows the same outline as in [AFL22] (Lemma 5.4). □

We may now assume that a,b have distance at least 2. Define

BB {i : bi > ai}, A> B {i : ai > bi}, A= B {i : ai = bi}.

Also let AB A> ∪A=. Now, write P (b) for the set of all b′ ∈ I such that:

(1) For i ∈ B, b and b′ have equal ith coordinate.

(2) For i ∈ A, b′i ≤ ai .

(3) There is a restricted LS-path from b′ to b where the vertices u on the path satisfy u ≤ a∨b
and m(u) | lcm(m(a),m(b)).

In particular, b ∈ P (b) (condition (3) becomes vacuous), so P (b) is nonempty. Next, let A1 ⊆ A be
the subset of all indices i ∈ A for which there is some b′ ∈ P (b) with b′i < ai , and let A0 B A−A1.
Since b ∈ P (b), we get A> ⊆ A1, and in particular A> (hence A1) is nonempty. We also conclude that
A0 ⊆ A=, and moreover that d(a,b) = d(a,b′) for all b′ ∈ P (b), via the second sum in Definition 4.5.

We now split into two cases to make a particular choice of β ∈ B. If maxA> > minB, then pick
β ∈ B such that there is α ∈ A> with β < α (recall A> ⊆ A1). Since I is strongly stable, a ∈ I implies
a + eβ − eα ∈ I . Otherwise, we have maxA> <minB. Then for any β ∈ B and α ∈ A>, it follows that
a + eβ − eα is reachable from b, hence is in I . Therefore with RB A1 ∪ {β} for our choice of β, we
know that DR(a + eβ)∩ I contains points other than a, and so by Lemma 4.3, there is an R-linear
syzygy edge between a and a + eβ − eα for some α ∈ A1. The rest of the arguments for Part A in
[AFL22] can be repeated, with “LS-path” replaced with “restricted LS-path”.
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Part B: The argument for Part B in [AFL22] can be repeated, with “LS-path” replaced with “restricted
LS-path”.

Part C: The argument for Part C in [AFL22] can be repeated, with “LS-path” replaced with “re-
stricted LS-path”.

This proves Proposition 4.7, and hence Proposition 4.2.

5. Extending Isotone Maps and Polarizations

It is also reasonable to ask the following question: given a subset I ⊆ ∆n(d) corresponding to the
monomial generators of a strongly stable ideal and isotone maps X1, . . . ,Xn : I →Bd , when can we
extend the Xi to all of ∆n(d)? Indeed, this is possible when n = 3.

Proposition 5.1. Let I ⊆ ∆3(d) correspond to the monomial generators of an ideal inside k[x1,x2,x3]
satisfying (*). Suppose that for every c ∈ ∆3(n + 1), the set of linear syzygy edges LS(c) arising from
isotone maps X1,X2,X3 : I →Bd contains a spanning tree for the (partial) down-graph D(c)∩ I . Then
the conclusion to Proposition 6.1 holds inside I . In other words, for any a,b ∈ I , we may find a restricted
LS-path between a and b, which is an LS-path using only points in I .

Lemma 5.2. Let I ⊆ ∆3(d) correspond to the monomial generators of a strongly stable ideal inside
k[x1,x2,x3]. Suppose that for every c ∈ ∆3(d + 1), the set of linear syzygy edges LS(c) arising from isotone
maps X1,X2,X3 : I →Bd contains a spanning tree for the (partial) down-graph D(c)∩ I . These isotone
maps X1,X2,X3 from Proposition 6.4 can be extended to all of ∆3(d) in a way such that the down-graph
condition is preserved in the graph of linear syzygy edges for ∆3(d).

Proof. Induction on the size s of I B ∆3(d)− I . Let dB (d1,d2,d3) be in I ′ such that d1 is minimal
for {x1 : (x1,x2,x3) ∈ I ′}, and d3 is minimal for {x3 : (d1,x2,x3) ∈ I ′}. There are three cases.

If d3 = 0, then (d1+1,d2−1,0) ∈ I , and we can extendX1,X2,X3 to d asX1(d)B X1(d1+1,d2−1,0)−{i1}
(for any i1 in the d1 + 1-element set X1(d1 + 1,d2 − 1,0)), X2(d)B X2(d1 + 1,d2 − 1,0)∪ {i2} (for any
i2 not in the d2 − 1-element set X2(d1 + 1,d2 − 1,0)), and X3 B ∅. The only new nonempty partial
down-graph D(c)∩ (I ∪d) that does not appear in the set of D(c)∩ I is {(d1,d2,0); (d1 + 1,d2 − 1,0)}
(given by c = (d1 + 1,d2,0)), which is connected by construction.

If d2,d3 , 0, then (d1,d2 + 1,d3 − 1), (d1 + 1,d2,d3 − 1) and (d1 + 1,d2 − 1,d3) are all in I . The
new down-graphs are {d, (d1,d2 + 1,d3 − 1)} and {d, (d1 + 1,d2,d3 − 1), (d1 + 1,d2 − 1,d3)}, and by
assumption, there is a linear syzygy between (d1 + 1,d2,d3 − 1) and (d1 + 1,d2 − 1,d3) since they
are the members of D(d + e1)∩ I . In particular, X1 is identical on those two points, so we define
X1(d)B X1(d1,d2 + 1,d3 − 1) (by isotonicity, X1(d1,d2 + 1,d3 − 1) is a d1-element subset of the d1 + 1-
element setX1(d1+1,d2,d3−1) = X1(d1+1,d2−1,d3)). Next, defineX2(d)B X2(d1+1,d2,d3−1), which,
again by isotonicity, is a d2-element subset of the d2+1-element setX2(d1,d2+1,d3−1) and a superset
of X2(d1 + 1,d2 − 1,d3). Finally, because the down-graph defined by (d1 + 1,d2 + 1,d3 − 1) includes
(d1,d2 + 1,d3 −1) and (d1 + 1,d2,d3 −1) and is contained in I , it follows that X3(d1,d2 + 1,d3 −1) and
X3(d1+1,d2,d3−1) differ by at most one element. So define X3(d) to be X3(d1+1,d2−1,d3) if they are
equal, and X3(d1,d2 +1,d3−1)∪X3(d1 +1,d2,d3−1) if they differ (one can again see that isotonicity is
preserved). Notice that there is a linear syzygy between d and (d1,d2+1,d3−1): theX1 parts are equal
by definition, the X2 parts differ by 1 element by construction, and the X3 parts differ by 1 element
in either case (in particular, if we’re in the X3(d) = X3(d1 +1,d2−1,d3) case, then X3(d1 +1,d2,d3−1)
differs from X3(d) by 1 element due to isotonicity, and X3(d1,d2 + 1,d3 − 1) = X3(d1 + 1,d2,d3 − 1)).
Finally, we show that the down-graph {d, (d1 +1,d2,d3−1), (d1 +1,d2−1,d3)} is connected; it suffices
to check that there is a linear syzygy between d and (d1 + 1,d2,d3 − 1). By definition, their X2
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parts are the same, and their X1-parts differ by 1 element since X1(d) = X1(d1,d2 + 1,d3 − 1). Their
X3-parts also differ by 1 element in either case, as before.

If d2 = 0 but d2 , 0, then the same extension procedure as in the above paragraph works; details
omitted. In any case, we get an extension of our isotone maps to d such that the down-graph
property is preserved in the extension. □

The above proof can be easily modified to remove the appearances of the down-graph condition in
the hypothesis and conclusion of the lemma.

However, this extension property fails in higher dimensions. For instance:

Example 5.3. Consider the following subset I of ∆4(3), which corresponds to monomial generators
of a strongly stable ideal inside k[x1,x2,x3,x4]:

{(1,0,1,1); (1,1,0,1); (2,0,0,1); (1,0,2,0); (1,1,1,0); (1,2,0,0); (2,0,1,0); (2,1,0,0); (3,0,0,0)}.

Note that this corresponds to the strongly stable closure of the ideal generated by x1x3x4. Now,
define isotone maps X1,X2,X3,X4 : I → B3 which map the above points to the following list of
monomials:

x1,1x3,1x4,1, x1,1x2,1x4,2, x1,1x1,2x4,3, x1,1x3,1x3,2,

x1,1x2,1x3,1, x1,1x2,1x2,2, x1,1x1,2x3,1, x1,1x1,2x2,1, x1,1x1,2x1,3.

One can easily check that the Xi ’s are isotone, and moreover the partial down-graph condition
is satisfied (one can even check that this is a polarization, obtained from the standard polar-
ization in the spirit of Lemma 4.10). The only cases we really need to check are the down-
graphs corresponding to (1,1,1,1), (2,0,1,1), and (2,1,0,1). For instance, we have D(1,1,1,1)∩ I =
{(1,0,1,1); (1,1,0,1); (1,1,1,0)}, and there are linear syzygies between (1,1,1,0) and the other two
vertices, so the down-graph is connected (the other cases are similar). But there is no way to
extend X4 to (1,0,0,2) in an isotone manner: its x4-part must be divisible by m4(1,0,1,1) = x4,1,
m4(1,1,0,1) = x4,2, and m4(2,0,0,1) = x4,3, which is clearly impossible.

5.1. An Alternate Proof of Proposition 4.7 in the Three Variable Case. It turns out that we
may use Lemma 5.2 to provide an alternate proof of Proposition 4.7 in the 3-variable case. This
argument is interesting because it bootstraps off of the statement of Proposition 4.6, without ever
making contact with its proof.

Lemma 5.4. Let I ⊆ ∆3(d) correspond to the monomial generators of an ideal inside k[x1,x2,x3] satisfying
(*). Define the boundary B of I to consist of all (d1,d2,d3) ∈ I such that d1 = 0 and (d1,d2 −1,d3 + 1) < I ,
or (d1 −1,d2,d3 + 1) < I . In other words, B is exactly the set of points in I that are distance 1 away from a
point in I ′, due to the strongly stable condition.

Let (a1, a2, a3) and (b1,b2,b3) be in B. If a3 < b3, then a1 ≤ b1 (and consequently a2 > b2).

Proof. If a1 = 0, then we are immediately done, so assume a1 ≥ 1. Now, if a1 > b1, then a1 −1 ≥ b1.
Also, a3 + 1 ≤ b3. Since I is strongly stable, (b1,b2,b3) ∈ I implies (b1,n− b1 − (a3 + 1), a3 + 1) ∈ I , and
since a1 − 1 ≥ b1, this implies (a1 − 1, a2, a3 + 1) ∈ I , contrary to assumption. □

Lemma 5.5. Let c be on an LS-path from a to b (here we do not need any assumptions about I). Then
d(a,c) ≤ d(a,b).
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Proof. Let A< be the set of i with ai < bi and A≥ be the set of i with ai ≥ bi . Also, let C> be the set
of i with ci > ai . Then C> cannot intersect A ≥, for we would have ci >max(ai ,bi) for any i in the
intersection. Hence C> ⊆ A<, and for i ∈ C>, we must have bi ≥ ci , so

d(a,c) =
∑
i∈C>

ci − ai ≤
∑
i∈C>

bi − ai ≤
∑
i∈A<

bi − ai = d(a,b).

□

Lemma 5.6. Let I ⊆ ∆3(d) correspond to the monomial generators of an ideal inside k[x1,x2,x3] satisfying
(*), and let a,b be on the boundary B. If c ∈ B is on an LS-path from a to b and is not an endpoint, then
d(a,c),d(b,c) < d(a,b).

Proof. Note that c1 , 0, since there can only be one point in B with 0 in the first component.

First, consider the case a3 = b3, so without loss of generality, a1 < b1. If c3 = a3 = b3, then we
must have a1 < c1 < b1 and a2 > c2 > b2 (recall a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = n), so
d(a,c) = c1 − a1 < b1 − a1 = d(a,b) and d(b,c) = c2 − b2 > a2 − b2 = d(a,b). If c3 < a3, then c3 + 1 ≤ a3,
and we must have a1 < c1 (if they were equal, then c2 > a2, which is a contradiction as a2 > b2). So
(a1,n−a1− (c3 + 1), c3 + 1) ∈ I and (c1−1, c2, c3 + 1) ∈ I by the strongly stable condition, contradicting
c ∈ B.

Otherwise, consider the case a3 < b3. From Lemma 5.4 we know that a1 ≤ b1 and a2 > b2, so
d(a,b) = a2 − b2. We claim that a3 ≤ c3 ≤ b3. If not, then c3 < a3, and we must have a1 < c1
(if they were equal, then c2 > a2, which is a contradiction as a2 ≥ b2), giving a contradiction to
c ∈ B as above. Now, if a3 = c3, then we again must have a2 > c2 and a1 < c1 ≤ b1, and Lemma
5.4 (applied to c3 = a3 < b3) tells us that c2 > b2. Hence d(a,c) = a2 − c2 < a2 − b2 = d(a,b) and
d(b,c) = c2 − b2 < a2 − b2 = d(a,b). Otherwise, a3 < c3, so Lemma 5.4 (applied to a3 < c3) tells us that
a1 ≤ c1 and a2 > c2. The first inequality implies c1 ≤ b1, so d(b,c) = c2−b2 < a2−b2 = d(a,b). We also
claim that c2 > b2. If not (so c2 ≤ b2), then c3 ≤ b3 along with Lemma 5.4 forces b3 = c3, so c1 ≥ b1,
implying b = c, contrary to assumption. Hence a2 > c2 > b2 and d(a,c) = a2−c2 < a2−b2 = d(a,b). □

Proof of Proposition 4.7, n = 3. We are now in a position to prove Proposition 4.7 when n = 3. First,
by Lemma 5.2, we may extend X1,X2,X3 to all of ∆3(d) in a way preserving the down-graph
condition. We claim that it suffices to verify that there is a restricted LS-path between any a and b
on the boundary B. Indeed, if this is true, then for any other a′ ,b′ ∈ I , we know from Proposition
4.6 that there is an LS-path in ∆3(d) between a′ and b′, possibly using points outside of I . But if
this path leaves I , then it must contain boundary points bi and bj such that for all k ≤ i and k ≥ j,
bk ∈ I . By assumption, there is a restricted LS-path between bi and bj , so we can “patch in” this
restricted path to our original LS-path, which now looks like

a′ = b0, . . . ,bi ,restricted LS-path,bj , . . . ,bN = b′ .

This path lies entirely in I by construction, and consists of linear syzygy edges. Moreover, for any c
in the restricted LS-path, we have c ≤ bi ∨bj ≤ a′ ∨b′, and m(c) | lcm(m(a′),m(b′)). Note that the
latter claim is true because m(c) | lcm(m(bi),m(bj)), and m(bi),m(bj) | lcm(m(a′),m(b′)) since they
were already on the original LS-path from a′ to b′. So this path is indeed a restricted LS-path from
a′ to b′.

Now, assume for the sake of contradiction that there is a pair of boundary points with no restricted
LS-path between them. We may choose such a pair a,b ∈ B with minimal distance among all such
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pairs (if one is worried about edge cases, we may assume that this distance is at least 2 by Lemma
4.8). Consider an LS-path

a = b0, . . . ,bN = b
in ∆3(d) between a and b. We claim that for all 1 ≤ i ≤N −1, bi < I . If not, then there is some bi ∈ B
not equal to one of the endpoints, and by Lemma 5.6, d(bi ,a),d(bi ,b) < d(a,b). By minimality there
are restricted LS-paths from a to bi and bi to b, and patching them together gives a restricted
LS-path from a to b, contrary to our assumption.

We again split into cases. First, consider the case b3 = a3 (so we can assume b3 is nonzero, otherwise
we reduce to the case where a and b lie on the xy-edge, which is trivial). Assume without loss of
generality that b1 > a1 (so b1 is nonzero). By the strongly stable condition, (b1 − 1,b2 + 1,b3) ∈ I
(since a1 ≤ b1 − 1 and (a1, a2, a3) ∈ I), as is (b1,b2 + 1,b3 − 1). Let us consider the possibilities for
bN−1. It cannot be b + e1 − e2 or b + e1 − e3, as bN−1,1 ≤max(b1, a1) = b1. It cannot be b + e3 − e1 or
b + e3 − e2 for a similar reason. Finally, it cannot be b + e2 − e1 or b + e2 − e3 as those are both in I
(and in the previous paragraph we saw bN−1 < I). Here we have a contradiction.

It remains to discuss the case b3 > a3 (a3 > b3 is symmetrical), so a1 ≤ b1 and a2 > b2 (so we can
assume b1 is nonzero, otherwise a = b as there is only one boundary point with first component 0).
There are two possibilities. If (b1−1,b2 + 1,b3) ∈ I , we get a contradiction as in the above paragraph.
If (b1−1,b2 +1,b3) < I , then (b1,b2 +1,b3−1) is a boundary point. Moreover, because (b1,b2 +1,b3−1)
is in I by the strongly stable condition and {b; (b1−1,b2 + 1,b3); (b1,b2 + 1,b3−1)} is the down-graph
defined by (b1,b2 + 1,b3), there must be a linear syzygy between b and (b1,b2 + 1,b3 − 1). Since
a2 ≥ b2 + 1, a1 ≤ b1, and a3 ≤ b3 − 1, m2(b1,b2 + 1,b3 − 1) | m2(a) by isotonicity. Moreover, the
aforementioned linear syzygy forces m1(b1,b2 + 1,b3−1) =m1(b) and m3(b1,b2 + 1,b3−1) |m3(b), so
(b1,b2 + 1,b3 −1) ≤ a∨b and m(b1,b2 + 1,b3 −1) | lcm(m(a),m(b)). Moreover, d(a, (b1,b2 + 1,b3 −1)) =
a2 − (b2 + 1) < a2 − b2 = d(a,b), so by minimality, there is a restricted LS-path between a and
(b1,b2 + 1,b3 − 1). Patching this path to the linear syzygy between (b1,b2 + 1,b3 − 1) and b gives a
restricted LS-path from a to b, again giving a contradiction.

In any case, we get a contradiction. Thus the proposition is proved for boundary points, and we are
done. □

6. Spanning Tree Condition

Let us first describe the shape of the syzygy in the strongly stable case. We impose the following
partial order on the generators of a strongly stable ideal I : we say that a ≥ b if for all k,

∑k
i=0 ai ≤∑k

i=0 bi . The strongly stable condition then guarantees that for all b ∈ ∆Z(n,d) such that a ≥ b,
b must be a generator of I . Then note that here, a covers b when b = a + ei − ej where i < j. In
particular, this means that the monomials in D(c)∩GI are pairwise comparable, so that they are
totally ordered.

We are interested in describing which monomials of the down-graphs are in I . To do this, take
any D(c)∩GI . Since we have a total order on the monomials, we can take a to be the largest; let
c = a + ek . Then, the set of monomials of D(c) in I can be written as {c− ei |i ≥ k}.

Theorem 6.1. A set of isotone maps X1, . . .Xn determines a polarization of I if and only if for every
c ∈ ∆Z(n,d + 1) such that D(c)∩GI , ∅, the graph of linear syzygy edges restricted to D(c)∩GI contains
a spanning tree for D(c)∩GI .

Proof. The “if” direction was done in Proposition 4.2, so we prove the “only if” direction. We will
use the fact (item (β) of the Corollary to Theorem 16.3, [Mat87]) that because we always work in an
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N-graded ring (a quotient of a polynomial ring by a homogeneous ideal) and variable differences
are homogeneous of degree 1, any permutation of a regular sequence is again a regular sequence.
Hence, given a polarization of a strongly stable ideal I , we may choose the order of the regular
sequence of variable differences by which we quotient out to recover I .

We assume that the isotone maps {Xi} give an ideal I ′ which is a polarization. We shall prove that
every down-graph D(c) contains a spanning tree of linear syzygy edges for the vertices contained
in GI . For simplicity we shall assume Supp(c) has full support; the arguments work just as well in
the general case. Write the set of monomials of D(c) in I as {c− ei |i ≥ k}. Then we treat this in two
cases: in the first case, suppose k < n− 1; in the second case, suppose k = n− 1. (The case where
k = n is trivially true.)

Case 1. Note that if the distance between m(c− ev) and m(c− ew) is 2, then there is a linear syzygy
between these monomials. Suppose now, for the sake of contradiction, the vertices in D(c)∩GI can
be divided into distinct subsets V1 and V2 such that there is no linear syzygy edge between a vertex
in V1 and a vertex in V2.

Let m(c− ev) in V1 and m(c− ew) in V2 such that the distance d between m(c− ev) and m(c− ew) is
minimal. We must have d ≥ 3 and the number of vertices m ≥ 3. For simplicity we may assume
v = k and w = k + 1 and that we may write

n(c− ek+1) = x1j1 · · ·x(k−1)jk−1
xkjkx(k+2)jk+2

· · ·xnjn ,

n(c− ek) = x1i1 · · ·x(k−1)ik−1
x(k+1)ik+1

x(k+2)ik+2
· · ·xnin ,

where xpip , xpjp for p = k + 2, . . . , k + d − 1 and xpip = xpjp for p ≥ k + d and p < k.

Consider the graded ring k[X̌1, . . . X̌n]/I ′ and quotient out by the regular sequence xpip − xpjp for
p = k + 3, . . . , k + d − 1. This is a regular sequence since we began with a polarization. We get a
quotient algebra k[X̌ ′1, . . . X̌

′
n]/I ′ and denote by xp the class xpip = xpjp for p , k,k + 1, k + 2. In I ′ we

have generators

m(c− ek) = m ·n(c− ek), n(c− ek) = x1 · · ·xk−1x(k+1)ik+1
x(k+2)ik+2

xk+3 · · ·xn,

m(c− ek+1) = m ·n(c− ek+1), n(c− ek+1) = x1 · · ·xk−1xkjkx(k+2)jk+2
xk+3 · · ·xn.

Now, note that x(k+2)ik+2) − x(k+2)jk+2) is a non-zero divisor of k[X̌1, . . . X̌n]/I . Consider

(x(k+2)ik+2) − x(k+2)jk+2))x1 · · ·xk−1xkjkx(k+1)ik+1
xk+3 · · ·xn ·m.

It is zero in this quotient ring, and so

m′ = x1 · · ·xk−1xkjkx(k+1)ik+1
xk+3 · · ·xn ·m

is zero in this quotient ring and so must be a generator of I ′ of degree c−ek+2. But then the generator
of this degree in the polarization I must be

m′ = x1l1 · · ·x(k−1)lk−1
xkjkx(k+1)ik+1

x(k+3)lk+3
· · ·xnkn ·m

where each kp is either ip or jp. Hence all lp = ip = jp for p < k and p ≥ k + d. But then the distance
between m′ and m(c− ek) is ≤ d − 1 and similarly the distance between m′ and m(c− ek+1) is ≤ d − 1.
Whether m′ is in V1 or in V2, we see that this contradicts d being the minimal distance.

Case 2. Let I ′ be a polarization of I . In this case, assume there are only two vertices in D(c)∩GI for
some c. For the sake of simplicity, assume that c has full support (the argument works the same
more generally) so we have that the only two vertices in this intersection are c− en−1 and c− en. For
the sake of contradiction, suppose there is no edge between them. Then Xi(c− en−1) , Xi(c− en) for
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some i < n− 1,n. Let xi,a be a variable such that it divides mi(c− en−1) but not mi(c− en), and let xi,b
be a variable dividing mi(c− en) but not mi(c− en−1).

Consider the graded ring S̃/I ′ where S̃ = k[X̌1, . . . , X̌n] and X̌j B {xj,1, . . . ,xj,dj }. Quotient out by the
regular sequence xp,1 − xp,j for all p , i and 2 ≤ j ≤ dp, and if di ≥ 3, then quotient again by the
regular sequence xi,k − xi,j for some fixed k , a,b and all j ∈ [di] \ {a,b,k}. We know that the union
of these two sequences of variable differences is a regular sequence because we assume we started
with a polarization, and we are also allowed to choose the order of the regular sequence of variable
differences by which we quotient out.

The result is that we are left with a quotient algebraR/J whereR = k[x1, . . . ,xi−1,xi ,xi,a,xi,b,xi+1, . . . ,xn]
and J has generators which we denote m(a) for all exponent vectors a in the minimal generating set
of I (if di = 2 then there is no xi variable, but this does not change the argument). Now, we have
that

(xi,a − xi,b) · xc−ei = 0
because each term divides one of m(c− en) or m(c− en−1), but any monomial with exponent vector
c−ei where i < n−1 is not in I by assumption, so (xi,a−xi,b) is a zero-divisor, yielding a contradiction.

□

7. Alexander Duals and Associated Primes of Polarizations

The aim of this section is to better understand the Alexander duals and associated primes of
polarizations. We prove theorem 7.7, which gives us the form of Alexander duals of polarizations
of any monomial ideal.

We begin this section with some background definitions and discussion of results in the literature
before presenting our work.

Definition 7.1 (Associated prime). Let R be a Noetherian ring and M a finitely generated R-module.
A prime ideal P ⊂ R is an associated prime ideal of M, if there exists an element x ∈M such that
P = ann(x), where ann(x) is the annihilator of x, that is to say, ann(x) = {a ∈ R : ax = 0}. The set of
associated prime ideals of M is denoted Ass(M).

In our setting we know much about what these associated primes look like. In particular, for I ⊂
R = k[x1, . . . ,xn] a monomial ideal, Ass(R/I) is a finite set of prime ideals generated by monomials.
Further, for I square-free, I can be written as an intersection of its associated primes, and these
associated primes are all generated by variables ( 1.3.6 in [HH11]).

Definition 7.2 (Alexander Dual). Let I be a square-free monomial ideal in a polynomial ring S .
The Alexander dual ideal I∨ of I is the monomial ideal in S whose monomials are precisely those
that have nontrivial common divisor with every monomial in I . Equivalently, they have a nontrivial
common divisor with every generator of I

Remark 7.3. Given a square-free monomial ideal I , an important relationship exists between
its Alexander dual I∨ and its associated primes Ass(I). In particular, the minimal generators of
the Alexander dual of I correspond to the variables that generate the associated primes of I . For
example, if I∨ = (x1x3x4,x2x3x5), then (x1,x3,x4) and (x2,x3,x5) are associated primes of I.

This relationship motivates us to want to know what form the generators of our Alexander duals
take. We introduce a helpful bit of terminology from [AFL22].
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Definition 7.4 (Color Classes, Rainbow Monomials). We call the set of all variables sharing their
first index {xi,1, . . . ,xi,m} the i−color class. We call a monomial in degree d a rainbow monomial
when it is of the form x1,j1 . . .xd,jd , a product of exactly one variable from each color class.

Notably, in [AFL22], the authors prove that the class of degree d rainbow monomials with linear
resolution are exactly the class of ideals Alexander dual to polarizations of Artinian monomial
ideals.

Proposition 7.5. The class of ideals generated by rainbow monomials and with n-linear resolution is
precisely the class which is Alexander dual to the class of polarizations of Artinian monomial ideals in n
variables. More precisely:

a. Let J be a polarization of an Artinian monomial ideal I in k[x1, . . . ,xn]. The Alexander dual ideal
of J is generated by rainbow monomials and has n-linear resolution.

b. If an ideal J ′ is generated by rainbow monomials and has n-linear resolution (and every variable in
the ambient ring occurs in some generator of the ideal), then its Alexander dual J is a polarization
of an Artinian monomial ideal in n variables.

In pursuit of a similar result for monomial ideals in general, we introduce the following definition.

Definition 7.6 (Weakly-Rainbow). We say a monomial is weakly-rainbow if it is generated by at
most one variable from each color class.

We now present a result in the direction of generalizing Proposition 7.5.

Theorem 7.7. If I ⊂ S = k[x1,1, . . . ,x1,d , . . . ,xn,1, . . . ,xn,d] is a polarization of any monomial ideal J ⊂
k[x1, . . . ,xn], then the generators of I∨ are weakly-rainbow.

We will need two technical lemmas to prove this result.

Lemma 7.8. Let S = k[x1,1, . . . ,x1,d , . . . ,xn,1, . . . ,xn,d], and let I ⊂ S be a monomial ideal whose generators
have degree strictly greater than 1. Let xi,s − xi,k be a non-zerodivisor on R = S/I , and xi,j − xi,l , 0 a
zerodivisor on R for some i, j,k, l. Then xi,j − xi,l is non-zero and a zerodivisor on R′ = R/(xi,s − xi,k).

Proof. First we check that if xi,j − xi,l is nonzero in R, then it must also be nonzero in R′. This
follows from the following string of implications:

xi,j − xi,l = 0 in R′

=⇒ xi,j − xi,l ∈ (xi,s − xi,k)I
=⇒ xi,j − xi,l + I = (v + I) ∗ (xi,s − xi,k) + I for some v ∈ S
=⇒ xi,j − xi,l = v ∗ (xi,s − xi,k) + r for some v ∈ S, and r ∈ IS.

By assumption I is a monomial ideal in degree strictly greater than 1, so r in the last line above
contributes no degree 1 term. Hence the degree 1 terms of xi,j − xi,l must equal the degree 1 terms
of v ∗ (xi,s − xi,k). But xi,s − xi,k already is composed of degree 1 terms, hence we must have that
xi,j − xi,l = t ∗ (xi,s − xi,k) for some unit t. Then in R we have that xi,j − xi,l a zero divisor implies that
xi,s − xi,k is a zero divisor, a contradiction. Hence xi,j − xi,l , 0 in R′.

Now suppose, seeking contradiction, that xi,j − xi,l is a non-zero divisor in R′. Our goal is to show
that this implies that it must have also been a zero divisor in R. Recall that since xi,j−xi,l , 0 is a zero
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divisor in R, there exists an 0 ,m ∈ R such that (xi,j − xi,l)m = 0 ∈ R. Then since (xi,j − xi,l)m = 0 ∈ R,
(xi,j − xi,l)m = 0 ∈ R′. Hence for xi,j − xi,l , 0 to be a non-zero divisor in R′, we need that m = 0 in R′.

First we check that, for any element m such that m is nonzero in R but equal to 0 in R′, we
have that b = xi,s − xi,k must divide m. Take m in R and suppose, seeking contradiction, that
sup(r |m = (b)r ∗mr) =∞ for some mr ∈ R). Then given any r ≥ 0, we have that m0 = m = br ∗mr .
Suppose that mt , b ∗mt for all t. Then we can construct an infinite chain of ideals (m0) = (b ∗m1) ⊊
(m1) ⊊ (m2) ⊊ . . . , but this contradicts that S/I is Noetherian. Thus there exists some r such that
mr = b ∗mr in R.

Then (b−1) ∗ (mr ) = 0 in R. Take q = (x1,1, . . . ,x1,d , . . . ,xn,1, . . . ,xn,d) to be the graded maximal ideal in
S. Recall that mr = b ∗mr in R implies that mr = b ∗mr +u in S for some u ∈ I . Since b has no degree
0 components and I has no degree 0 components, then mr has no degree zero components. Hence
we have that b,mr ∈ q and I ⊂ q.

Therefore, we have that since mr , 0 in R, it is also nonzero in the localization Rq. To see this,
suppose it is not. Then there exists some element in R outside of q that multiplies mr to zero.
But since this element is outside of q, it must have a degree zero component. Hence we get that
u ∗mr + v ∗mr ∈ I for some unit u and an element v ∈ S where v has no degree zero components
(or is zero). Take si the non-zero monomial of mr in R with minimal degree; since si is non-zero in
R, it is not an element in I . Then since v ∗mr has components with degrees strictly greater than
0 (or else is zero), u ∗ si is a monomial of minimal degree in u ∗mr + v ∗mr ∈ I . But a polynomial
f belongs to I if and only if all monomials in f appearing with a nonzero coefficient belong to I ,
hence we conclude that u ∗ si ∈ I . But then si ∈ I , contradicting our original choice of si .

Then notice also that b ∈ q implies that (b − 1) is not in q, and hence is a unit in the localization
Rq. But then since (b − 1) ∗mr = 0 in S1q , we get that b − 1 is both a unit and a zero divisor in S1q , a
contradiction. Hence there exists an r =max(r |m = br ∗mr ). Hence mr , 0 in R′.

Now we have two cases:

Case 1: suppose that mr ∗ (xi,j − xi,l) = 0 in R. Then mr ∗ (xi,j − xi,l) = 0 in R′, contradicting that
xi,j − xi,l is a non-zero divisor in R′.

Case 2: suppose that mr ∗ (xi,j − xi,l) , 0 in R. Then b ∗ (xi,j − xi,l) ∗mr = 0, yet (xi,j − xi,l) ∗mr , 0,
contradicting that b is a non-zero divisor on R.

Hence we conclude that xi,j − xi,l , 0 is a zero divisor in R.

□

With this lemma, we now only need the following.

Lemma 7.9. Let S = k[x1,1, . . . ,x1,d , . . . ,xn,1, . . . ,xn,d]. If I ⊂ S is a polarization of some monomial ideal
J , I separated in each xi variable by some regular sequence ri,1, . . . , ri,di−1 of variable differences, and
J generated by generators with degrees strictly greater than 1, then xi,j − xi,l is a non-zero divisor in
R = S/I .

Proof. Suppose that xi,j − xi,l , 0 is a zero divisor on R = S/I for some i, j,k. Let ri,di−1 = xi,s − xi,l for
some be the first element of the regular sequence ri,1, . . . , ri,di−1 of variable differences separating
J to I . Then notice that we are in the setting of Lemma 7.8. Applying the lemma, we obtain that
xi,j − xi,l , 0 is a zero divisor in R′ = R/(xi,s − xi,k). But notice that R′ � S/(I + (xi,s − xi,k)) � S̃/I ′ for
S̃ the polynomial ring obtained by replacing each xi,s by xi,k and I ′ a monomial ideal with the
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degrees of its generators the degrees of the generators of I obtained by replacing each xi,s in I by
xi,k . Hence the necessary conditions are satisfied to apply Lemma 7.8 again to find that xi,j −xi,l , 0
is a zero divisor in R′′ = R′/(ri,di−2). Continuing in this manner, by quotienting out by our regular
sequence we find that xi,j − xi,l , 0 is a non-zero zerodivisor in R/(ri,1, ..., ri,di ). But by quotienting
out our regular sequence, we have collapsed all the separations in the xi variable, hence xi,j = xi,l
in R/(ri,1, ..., ri,di ), contradicting that xi,j − xi,l , 0 in this quotient.

□

With these two lemmas, we are now able to prove our theorem.

Proof of Theorem 7.7. Let I ⊂ S = k[x1,1, . . . ,x1,d , . . . ,xn,1, . . . ,xn,d] be a polarization of a monomial
ideal J ⊂m2. Suppose that the generators of I∨ are not weakly-rainbow. Then there exists some
generator g of I∨ that contains distinct two variables from the same color class, xi,j divides g and
xi,k divides g with j , k (by remark 7.3 j , k). Then by remark 7.3, xi,j ,xi,k are both contained in
the same associated prime P of R/I , hence xi,j − xi,k ∈ P is a zerodivisor on R = S/I . However, since
I is a polarization of a monomial ideal J with no generators of degree less than 2, by lemma 7.9
xi,j − xi,k is a non-zerodivisor on S/I for all j , k. Hence we have a contradiction, and so g must be
weakly-rainbow.

If I ⊂ S = k[x1,1, . . . ,xn,1] is a polarization of a monomial ideal J with some degree 1 generators, the
above proof follows, noting that the degree 1 generators of J are each members of a color class
containing only one variable.

Hence we conclude the generators of I∨ are weakly-rainbow.

□

8. Stanley-Reisner complexes and shellability

In this section, we consider the shellabity of the Stanley-Reisner complexes of polarizations of
the power of a maximal ideal. We first recall key definitions and lemmas, and then we present
our strategy to produce a shelling order for the Stanley-Reisner complexes associated to any
polarization of I = (x1, . . . ,xn)d .

Notation 8.1. Let I be an Artinian monomial ideal in S = k[x1, . . . ,xn], for each variable i there is a
minimal generator of I of the form xdii . Let X̌i = {xi,1, . . . ,xi,di } be a set of double-indexed variables
of color i, and let X = {x11, . . . ,xndn} be the union of all these variables. Denote a polarization of I
in S̃ = k[X] by Ĩ . As an abuse of notation, we will also often let X denote the product of all the
variables in X. If a squarefree monomial m is a product of a subset of variables in X, we will say
that m ⊂ X. For any squarefree monomial ideal J , denote its Alexander dual by J∨.

Definition 8.2. For a squarefree monomial ideal I , the Stanley-Reisner complex of I is the simplicial
complex consisting of the monomials not in I ,

∆I = {m ⊂ X |m < I}.

Remark 8.3. For any squarefree monomial ideal I , the facets of ∆Ĩ are of the form X
m , where m is a

monomial generator of Ĩ∨. Hence in this section, we talk about an ordering of the facets of ∆Ĩ and
an ordering of the generators of Ĩ∨ synonymously.
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Definition 8.4. An ordering F1, . . .Ft of the facets of a simplicial complex ∆ is a shelling if, for each
j with 1 < j ≤ t, the intersection 

j−1⋃
i=1

Fi

∩Fj
is a nonempty union of facets of ∂Fj . If there exists a shelling of ∆, then ∆ is called shellable.

The following rephrasings of the condition for shellability will be useful for our purposes.

Lemma 8.5. For a facet Fi of a simplicial complex I , denote by Fci its complement X
Fi

. The following are
equivalent:

(1) An order F1, . . . ,Ft of the facets of a simplicial complex ∆ is a shelling.

(2) For every i and k with 1 ≤ i < k ≤ t, there is some j with 1 ≤ j < k and an x ∈ Fk such that
Fi ∩Fk ⊆ Fj ∩Fk = Fk − {x}.

(3) The ordering Fc1, . . . ,F
c
t of the generators of I∨ is a linear quotient ordering, that is, for any

1 ≤ k ≤ t the colon ideal (Fc1, . . . ,F
c
k) : (Fck+1) is generated by a subset of the variables of X.

We also have the following lemma and conjecture from [AFL22].

Lemma 8.6. [AFL22, Lemma 3.1] Let ∆Ĩ be the simplicial complex associated to the polarization Ĩ of an
Artinian monomial ideal I . Then every codimension one face of is contained in one or two facets. If I is
not a complete intersection, then at least once there is a codimension one face contained in exactly one
facet.

By work of Danaraj and Klee [DK74], any shellable simplicial complex with the property in Lemma
8.6 is a simplicial ball or sphere, leading the authors of [AFL22] to conjecture the following.

Conjecture 8.7. [AFL22, Conjecture 3.2] The simplicial complex ∆Ĩ associated to a polarization Ĩ of an
Artinian monomial ideal I , is a simplicial ball, save for the case when I is a complete intersection, when
it is a simplicial sphere.

Note that to prove Conjecture 8.7 it suffices to show that any polarization of an Artinian monomial
ideal is shellable. In [AFL22], this was proven in for ideals of the form (x1, . . . ,xn)d when n = 3.
We aim to generalize this result to arbitrary n. To do this, we first present the following theorem,
appearing in [AFL22], which is a reformulation of the original statement in [Nem21], which itself
was a rephrasing of a result in [FGM18]. This theorem gives a complete characterization of rainbow
monomial ideals with linear resolution, and it is a key tool for our strategy.

Theorem 8.8. Let I be generated by rainbow monomials in d colors. Then I has a d-linear resolution if
and only if both of the following two conditions hold:

(a) Whenever m1 and m2 are two rainbow monomials in I (i.e. generators of degree d) with
lcm(m1,m2) of degree ≥ d + 2, there is a third distinct rainbow monomial m3 in I dividing this
least common multiple.

(b) Whenever m1 and m2 are two rainbow monomials not in I with lcm(m1,m2) of degree ≥ d + 2,
there is a third distinct rainbow monomial m3 not in I dividing this least common multiple.
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By Proposition 7.5, the theorem above gives a complete characterization of Alexander duals of
polarizations of Artinian monomial ideals. In particular, part (a) of the Theorem 8.8 implies that
for any two monomial generators m1,m2 of Ĩ∨ where I is an Artinian monomial ideal, there is a
sequence of monomial generatorsm1 = p1,p2, . . . ,pt =m2 such that there is a linear relation between
pi and pi+1, and each pi divides lcm(m1,m2): we can see this inductively – in the base case, when
the distance between two monomial generators is 1, this is automoatically true, and we canse use
part (a) of the above theorem for the inductive step to strictly decrease the distance.

The following tool will be central to constructing our shelling order.

Definition 8.9 (Facet-ridge graph). Given a d-dimensional pure simplicial complex ∆, any (d − 1)-
dimensional face of it is called a ridge. The facet-ridge graph G∆ of a pure simplicial complex ∆ is
the graph whose vertices are facets of ∆, and two facets are connected by an edge if they share a
common ridge.

Remark 8.10. Notice that one can equivalently view a facet-ridge graph G∆ as the graph of linear
syzygies of the Alexander dual GI∨ by viewing each vertex labeled by a facet Fi as instead being
labeled by the generator Fci of the Alexander dual and each edge corresponding to a linear syzygy
between two generator of I∨. More precisely, there is an edge between two vertices corresponding
to the minimal generators a and b of I∨ if b =

xi,j
xi,k

a for some j,k.

Definition 8.11. Given two minimal generators a,b of the Alexander dual J = Ĩ∨, define their
distance d(a,b) to be the length of the shortest path between them in the graph GJ . Equivalently,
it is n− deg(gcd(a,b)), since there exists a linear syzygy path in G between m1 and m2 of length
exactly that.

Now we will introduce a notion of well-connectedness in graphs, and show that G being well-
connected is a sufficient for the shellability of ∆Ĩ . Then we will show our reasons to suspect that G
is well-connected.

Definition 8.12 (Well-connected). A graph is well-connected if for any vertices a,b,c, there ex-
ists a shortest path from b to c such that the distance from a to anything on the path is ≤
max(d(a,b),d(a,c)).

Notice that by repeatedly applying Definition 8.12, we actually have that if a graph G is well-
connected, for any vertices a,b,c in G, there exists such a shortest path that is monotonic in its
distance to a.

Example 8.13. The hexagon graph is not well-connected since d(a,b) = 2,d(a,c) = 2,d(b,c) = 2, but
the only length 2 path from b to c goes through a point that is distance 3 from a. However, the
hexagon graph modified by connecting a pair of antipodal points by an edge is well-connected.
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This example suggests that a good heuristic for well-connectedness in G is having enough relations
between the generators of Ĩ∨.

Question 8.14. Let Ĩ∨ be a polarization of an Artinian monomial ideal and let ∆ be its associated
Stanley-Reisner complex. Is G∆ well-connected?

We motivate this question with an example.

Example 8.15. We show an example of a preseparation of I = (x,y,z)2 that leads to G being the
hexagon graph, and show that it is not a polarization. Consider the preseparation

J = (x1x2,x2y2,x1z1, y1y2, y1z1, z1z2).

This gives the Alexander dual

J∨ = (x1y1z1,x1y1z2,x1y2z2,x2y2z2,x2y2z1,x2y1z1),

which has the hexagon graph as its linear syzygy graph. However, notice that in the linear syzygy
graph of J , the down-triangle does not have a spanning tree – in fact there is no relations in the
down-triangle. Hence in this sense, J is far from a valid polarization of I – it has too few relations.

This suggests that preseparations that causes the hexagonal situation don’t have enough relations
to be a polarization. This also motivates the following observation about relations in the Alexander
dual. In particular, construct the dual of the linear syzygy graph of I by having a vertex for each
up-graph and an edge between two vertices if their up-graphs share a vertex and there is at least
one generator in the Alexander dual related to both up-graphs. The following is an observation
about this dual graph.

Proposition 8.16. Suppose d = 3. Then for each edge in the down-graph D(c), there is a parallel edge in
the associated up-graph in the dual graph.

Proof. We consider the edge between the vertices c− e2 and c− e3; the other cases are similar. Note
that since there is an edge, c−e2 and c−e3 must have the same x-component. For simplicity, suppose
x1 is a factor in both. This also means that the vertex c− e1 is nonzero in the y and z components;
for simplicity, suppose y1z1 is a factor. Hence c− e1 − e3 + e2 has a factor of y1 and c− e1 − e2 + e3
has a factor of z1. Then x1y1z1 is a generator of the Alexander dual related to both up-triangles
U (c− e1 − e3) and U (c− e1 − e2), so there is an edge between their associated vertices in the dual
graph. □

The following algorithm gives an order on the generators on the Alexander dual. This is a variant
of breadth-first search. We show that if ∆ is the Stanley-Reisner complex of a polarization of an
Artinian monomial ideal, running this algorithm on a well-connected G∆ gives a shelling order for
∆.
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Algorithm 8.17. Let C be a graph. For each connected component of C, add an arbitrary vertex v not
already in the order, if any, to the end of the order. When adding each v, let the set of vertices in C
distance i from v that have not already been added to the order be Di . Recurse on each of the subgraphs
induced by Di , with i in increasing order.

Note that this algorithm gives an order on the whole vertex set when we run it on G since G is
connected and we only add a vertex if it has not appeared, so each vertex appears only once. It
terminates since each Di is of a strictly smaller size than the C it was derived from.

Example 8.18. Here is an example of a possible order generated by Algorithm 8.17 on a graph. We
start at v1 and mark the sets Di at distance i from v1. Note that the induced subgraph on each Di is
connected, we simply choose our ordering by simple BFS on each Di , successively.

Lemma 8.19. Let I be a rainbow monomial ideal with linear resolution. Let v1, . . . , vg be an ordering of
the generators of I generated by Algorithm 8.17. Then for each vi ,vj where i < j, there is a shortest path
from vi to vj such that each vertex on the path comes before vj .

Proof. Note here that in our setting, the shortest path between two variables is the number of
variable differences by the construction of the graph of linear syzygies. From the algorithm, we
know that d(v1,vi) ≤ d(v1,vj ). From well-connectedness of G, we get that there is a monotonic path
vi = p0, . . . ,pm = vj where d(v1,pk) ≤ d(v1,vj). If d(v1,pk) < d(v1,vj), pk necessarily comes before vj
since the smaller distance vertices are added to the ordering first. If d(v1,pk) = d(v1,vj ), we know
that pk and vj are in the same connected component, by the monotonicity of the path. For two
monomials to differ from v1 both by the same number of variables and to have a linear relation
between them, the variables where they differ from v1 must be the same and these are the same
between the two other than one. This means that if we have a shortest path, k is necessarily either
0 or m, so pk is in the ordering. Hence, for each vi ,vj where i < j, there is a monotonic shortest path
from vi to vj such that each vertex on the path comes before vj . □

Theorem 8.20. Let Ĩ be a polarization of I = (x1, . . . ,xn)d . If the linear syzygy graph G on the Alexander
dual is well-connected, the order v1, . . . , vt given by Algorithm 8.17 is a shelling order of ∆Ĩ . In other
words, ∆Ĩ is shellable.

Proof. We can check that this gives a shelling: Fj corresponding to vj has a nonzero intersection

with
⋃j−1
i=1Fi since vj is connected to the subgraph on v1, . . . , vj−1 since it is obtained from breadth-

first search, so there is a vertex distance 1 from it appearing before it, which corresponds to a facet
sharing a boundary face with Fj . Further, the intersection is a union of facets of ∂Fj since for any
Fi where i < j, the intersection Fi ∩Fj is contained in the facet corresponding to pm−1, which shares
precisely one facet of ∂Fj with Fj . Hence, this gives a shelling, and ∆Ĩ is shellable. □
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Figure 6. The pyramidal polarization J3,3.

9. A class of rigid polarizations of strongly stable ideals

In [Loh13], Lohne shows that points on the associated Hilbert scheme Hp(z)
Pn−1 corresponding to the

standard and box polarizations of an ideal of the form (x1, . . . ,xn)d ⊂ k[x1, . . . ,xn] are smooth. We
ask if this is true for (those specific) polarizations of strongly stable ideals.

One idea that we can consider is determining when such polarizations I are rigid; that is, their
second cotangent cohomology modules T 2

S/I are 0 (see Section 3 of [Har10] for details about
the T 2 functor). While this is a sufficient condition for smoothness of the corresponding point
[FGI+05, Corollary 6.2.5], it is typically too strong. For instance, a computation with Macaulay2
shows that T 2 for both the standard and box polarizations of the ideal (x,y,z)2 are nonzero (they
are 3- and 1-dimensional, respectively), even though they correspond to smooth points by work of
Lohne; indeed, out of the many examples we’ve computed, T 2 is rarely 0. However, we may define
a specific polarization of a certain class of strongly stable ideals that indeed have vanishing T 2:

Definition 9.1. For each n,d ≥ 1, define In,d to be the ideal in n variables generated by the
monomials corresponding to up-triangles U (ci), where 1 ≤ i ≤ d and ci = (d − i, i − 1,0, . . . ,0).

For instance, when n = d = 3, In,d is generated by {x3,x2y,x2z,xy2,xyz,y3, y2z}. It is easy to see
that In,d is always strongly stable; in fact, it is the strongly stable closure of the ideal generated by
xd−1

2 xn.

Definition 9.2. Define the pyramidal polarization Jn,d of In,d as follows: the generator of Jn,d
corresponding to (d − i + ϵ1, i − 1 + ϵ2,ϵ3, . . . ,ϵn) ∈ U (ci) is x1,1 . . .x1,d−i+1x2,1 . . .x2,i−1 if ϵ1 = 1,
x1,1 . . .x1,d−ix2,1 . . .x2,i if ϵ2 = 1, and x1,1 . . .x1,d−ix2,1 . . .x2,i−1xk,i if ϵk = 1 for k ≥ 3.

For instance, the graph of linear syzygies of J3,3 is depicted above in Figure 6, and the linear syzygy
graph suggests the origin of the name “pyramidal polarization”. Using the down-graph criterion
(Proposition 4.2) it is easily verified that Jn,d is in general a polarization of In,d .

Theorem 9.3. T 2
J3,d

= 0. In particular, J3,d determines a smooth point x3,d on its associated Hilbert
scheme.

The proof of this theorem is mostly computational (which can be generalized to Jn,d), so we break it
up into smaller steps. First, we set up the notation and prove some useful lemmas.
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Let S = k[x1, . . . ,xd , y1, . . . , yd , z1, . . . , zd] be the polynomial ring containing J3,d . Using the notation of
[Har10], choose F = S2d+1 generated by e1, . . . , e2d+1, so there is a surjection F↠ J B J3,d sending
ei to x1 . . .xd− i+1

2 +1y1 . . . y i+1
2 −1 if i is odd, and x1 . . .xd− i2

y1 . . . y i
2−1z i2

if i is even. For instance, in the
above J3,3 example, e1 is sent to x1x2x3, e2 is sent to x1x2z1, e3 is sent to x1x2y1, and so on in a
zigzag pattern until e7 7→ y1y2y3.

LetQ be the kernel of this surjection, soQ is generated by the 3d linear syzygies between generators
of J . In particular, Q is generated by the

zie2i−1 − xd−i+1e2i , yie2i−1 − xd−i+1e2i+1, yie2i − zie2i+1,

ranging over 1 ≤ i ≤ d. When we refer to “generators of Q” (or its quotient module Q/F0, defined
in the next paragraph), we will always mean these generators.

Let F0 ⊆Q be the submodule generated by the Koszul relations between the generators of J3,d , that
is, relations of the form jres − jser , where jr is the image of er in J3,d . Then with the natural S/J-
module map θ : Q/F0 → F ⊗S S/J � F/JF � (S/J)2d+1, we wish to show that HomS/J (F/JF,S/J)→
HomS/J (Q/F0,S/J) is surjective. To this end, given a map ϕ ∈ HomS/I (Q/F0,S/I), we wish to
construct b1, . . . , b2d+1 such that the map ψ : (S/J)2d+1 → S/J sending ei to bi induces ϕ. We will
eventually construct the bi ’s inductively.

Write

ϕ(zie2i−1 − xd−i+1e2i)C a3i−2, ϕ(yie2i−1 − xd−i+1e2i+1)C a3i−1, ϕ(yie2i − zie2i+1)C a3i .

Lemma 9.4. (1) For all 1 ≤ i ≤ d, every generator of J is divisible by xd−i+1, yi , or zi , but there are
no generators of J divisible by xd−i+1yi or xd−i+1zi .

(2) Every single generator of J is divisible by either xd−i or yi .

Proof. Clear from the construction. □

Lemma 9.5. For all i, −yia3i−2 + zia3i−1 = xd−i+1a3i . In particular, we may express the ak’s in the
following form:

a3i−2 = xd−i+1f3i−2 + zih3i−2, a3i−1 = xd−i+1f3i−1 + yig3i−1, a3i = yig3i + zih3i ,

for fk , gk ,hk ∈ S/I .

Proof. The first statement is immediate. For the second statement, note that x1 . . .xd−iy1 . . . yi−1
kills each of a3i−2, a3i−1 and a3i . Because every generator of J is either divisible by xd−i+1, yi , or zi
(Lemma 9.4), and x1 . . .xd−iy1 . . . yi−1 is divisible by none of those, it follows from Proposition 1.2.2
in [HH11] that J : (x1 . . .xd−iy1 . . . yi−1) ⊆ (xd−i+1, yi , zi). Each of the ak’s in question is in the colon
ideal, so they may be written in the form xd−i+1fk + yigk + zihk for fk , gk ,hk ∈ S/I .

Hence

−yi(xd−i+1f3i−2 +yig3i−2 +zih3i−2)+zi(xd−i+1f3i−1 +yig3i−1 +zih3i−1) = xd−i+1(xd−i+1f3i +yig3i +zih3i).

From this, we see, for instance, that y2
i g3i−2 ∈ (zi ,xd−i+1). Lifting up to S, we know that (zi ,xd−i+1) +

J is a square-free monomial ideal, hence radical, so yig3i−2 ∈ (z1,xd). Similarly, we see that
zih3i−1 ∈ (yi ,xd−i+1) and xd−i+1f3i ∈ (yi , zi). Hence we may rewrite a3i−2 = xd−i+1f3i−2 + zih3i−2,
a3i−1 = xd−i+1f3i−1 + yig3i−1, and a3i = yig3i + zih3i . □
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We next describe relations between generators ofQ/F0 that form a “chain”. These chains correspond
to LS-paths in the graph of linear syzygies of J , and to each chain of linear syzygies we may associate
a vanishing linear combination.

Definition 9.6. Let q1, . . . , qk be a sequence of generators of Q/F0 with k ≥ 2. We may write each qi
as cieri − diesi , where ci ,di are monomials of degree 1 and ri , si are indices between 1 and 2d − 1. We
call such a sequence an LS-chain if:

(1) si = ri+1 for each 1 ≤ i ≤ k − 1,

(2) r1 < r2 < . . . < rk < sk , and

(3) r2, . . . , rk are all odd.

Example 9.7. When d = 3, one example of an LS-chain is

y1e2 − z1e3, y2e3 − x2e5, y3e5 − x1e7.

This corresponds to the unique LS-path between the generators of J corresponding to e2 and e7,
which are x1x2z1 and y1y2y3 respectively. The path goes x1x2z1, x1x2y1, x1y1y2, y1y2y3, which
indeed corresponds to e2, e3, e5, e7 (see Figure 6).

Notice that the length of an LS-chain is at most d, and that condition (3) along with the structure
of the generators implies that ri+1 − ri = 2 for all 2 ≤ i ≤ k − 1.

Lemma 9.8. Let generators q1, . . . , qk be an LS-chain (still with k ≥ 2), and let jr1 , . . . , jrk , jsk be the
generators of J corresponding to er1 , . . . , erk , esk . Then:

(1) c1 | jsk .

(2) Set w1 B
jsk
c1

. Then c2 | w1. In general, for 1 ≤ i ≤ k − 1, wi is divisible by ci+1, where we

inductively define wi+1 B
di
ci+1
·wi .

(3)
∑k
i=1wiqi = 0.

Proof. For (1), we use the construction of the generators, the definition of the er ’s, the condition
r1 < r2 = s1, and the fact that r2 is odd. We see that q1 = c1er1 −d1er2 corresponds to the linear syzygy
between jr1 and jr2 , which means r1 is either r2 − 1 or r2 − 2. Hence jr2 is a multiple of y r2+1

2 −1, and
jr1 is not. Also, the existence of the linear syzygy between jr1 and jr2 means that c1 = y r2+1

2 −1. Then

because sk > r2, it follows that jsk also is a multiple of y r2+1
2 −1, hence (1).

For (2), we first consider the case when 1 ≤ i ≤ k − 2. For each such i, si+1 = ri+2 is odd, so the
same logic as above applies. In other words, qi+1 = ci+1eri+1

− di+1eri+2
corresponds to the linear

syzygy between jri+1
and jri+2

, so jri+2
is a multiple of y ri+2+1

2 −1, and jri+1
is not. This implies that

ci+1 = y ri+2+1
2 −1. But recall that we defined w1 =

jsk
c1

=
jsk

y r2+1
2 −1

. By the constructions and the fact that

sk > rk > . . . > r1, we know that jsk is divisible by each of the y ri+1+1
2 −1 = ci for 1 ≤ i ≤ k − 1, and all of

these terms are distinct as the ri are distinct odd integers.

It remains to discuss the case i = k − 1. If sk is odd, then we can proceed as above. If sk is even,
then jsk is divisible by z sk

2
, and since rk is odd, jrk is not. Since qk = ckerk − dkesk corresponds to the

linear syzygy between jrk and jsk , we conclude that rk = z sk
2

. It follows that wk−1 is divisible by rk,
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since wk−1 is a multiple of a quotient of jsk , where the quotient is obtained by only dividing out
y-indeterminants (as seen in the previous paragraph). This proves (2).

We turn to (3). Notice that if we expand out the sum in full, we have terms −widieri+1
+wi+1ci+1eri+1

for all 1 ≤ i ≤ k − 1, so these all cancel out by the definition of the w’s. Hence

k∑
i=1

wiqi = w1c1er1 −wkdkesk .

By definition, w1c1 = jsk . But our LS-chain of linear syzygies implies that jri = jri+1
· dici for each

1 ≤ i ≤ k−1, and jrk ·
dk
ck

= jsk . Hence wk turns out to be exactly jr1dk , so
∑k
i=1wiqi = jsker1 − jr1esk . But

this is in F0, so it vanishes. □

With this setup, we are ready to begin the proof of Theorem 9.3. As mentioned before, the idea is
to construct the bi inductively. Hence:

Proposition 9.9. Let 1 ≤ i ≤ d. Suppose we are given initial data b′1, . . . , b
′
2i−1 ∈ S/J such that:

(1) If i ≥ 2, then for 1 ≤ k ≤ i − 1,

zkb
′
2k−1 − xd−k+1b

′
2k = a3k−2, ykb

′
2k−1 − xd−k+1b

′
2k+1 = a3k−1, ykb

′
2k − zkb

′
2k+1 = a3k .

(2) a3i−2 − zib′2i−1 is a multiple of xd−i+1.

Then we may find b1, . . . , b2i+1 ∈ S/J such that:

I. For 1 ≤ k ≤ i,
zkb2k−1 − xd−k+1b2k = a3k−2, ykb2k−1 − xd−k+1b2k+1 = a3k−1, ykb2k − zkb2k+1 = a3k .

II. If i ≤ d − 1, then a3i+1 − zi+1b2i+1 is a multiple of xd−i .

Proof. Part I.

Recall from Lemma 9.5 that we may write

a3i−2 = xd−i+1f3i−2 + zih3i−2, a3i−1 = xd−i+1f3i−1 + yig3i−1, a3i = yig3i + zih3i ,

for some fk , gk ,hk ∈ S/I , and that

− yi(xd−i+1f3i−2 + zih3i−2) + zi(xd−i+1f3i−1 + yig3i−1) = xd−i+1(yig3i + zih3i). (1)

Since we are given that a3i−2 − zib′2i−1 is a multiple of xd−i+1, we may assume that h3i−2 = b′2i−1
above. Temporarily set b′2i B −f3i−2, so zib′2i−1 − xd−i+1b

′
2i = a3i−2.

We next claim that a3i−1 − yib′2i−1 is a multiple of xd−i+1. From Equation 1, we have

zi(a3i−1 − yib′2i−1) = xd−i+1(a3i + yif3i−2),

and we know that a3i−1 − yib′2i−1 is in (xd−i+1, yi). Taking lifts in S, we also see that (a lift of)
a3i−1 − yib′2i−1 is in ((xd−i+1) + J) : (zi). Proposition 1.2.2 in [HH11] tells us that ((xd−i+1) + J) : (zi)
is generated by xd−i+1, J , and x1 . . .xd−iy1 . . . yi−1, since the only minimal generator of (xd−i+1) + J
divisible by zi is x1 . . .xd−iy1 . . . yi−1zi . Therefore a3i−1 − yib′2i−1 is in both (xd−i+1) + (yi) + J and
(xd−i+1) + (x1 . . .xd−iy1 . . . yi−1) + J , and Proposition 1.2.1 in [HH11] tells us that the intersection
of those two monomial ideals is exactly (xd−i+1) + J + (lcm(yi ,x1 . . .xd−iy1 . . . yi−1)) = (xd−i+1) + J , as
x1 . . .xd−iy1 . . . yi is already in J . In other words, a3i−1 − yib′2i−1 is indeed a multiple of xd−i+1 in S/J .
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So let b′2i+1 be an element of S/J such −xd−i+1b
′
2i+1 = a3i−1 − yib′2i−1. Then we indeed have yib′2i−1 −

xd−i+1b
′
2i+1 = a3i−1. Now, we know from Equation 1 (and the fact that h3i−2 = b′2i−1) that

xd−i+1(yib
′
2i − zib

′
2i+1) = −xd−i+1yif3i−2 + zi(a3i−1 − yib′2i−1) = xd−i+1a3i .

In other words, the difference a3i − (yib′2i − zib
′
2i+1) is an element of S/J killed by xd−i+1, and is also

in (yi , zi). Taking a lift t ∈ S, we see that t is in both the monomial ideals J : (xd−i+1) and J + (yi , zi).
Hence t is in an ideal J + J1, where J1 is an ideal generated by monomials ℓ < J such that either yi
or zi divides ℓ, and xd−i+1ℓ ∈ J . Moreover, in light of item (2) of Lemma 9.4, it follows that if yi
(resp. zi) divides ℓ, then xd−i+1

(
ℓ
yi

)
(resp. xd−i+1

(
ℓ
zi

)
) also lands in J . Indeed, if xd−i+1ℓ ∈ J , then it is

divisible by some monomial m ∈ J ; say mm′ = xd−i+1ℓ. If yi ∤ m, then yi |m′, upon which m still
divides xd−i+1

(
ℓ
yi

)
. If yi |m, then xd−i+1 ∤ m, so that m | ℓ, contradicting ℓ < J .

Now, passing back to the quotient, we see that a3i−(yib′2i−zib
′
2i+1) is an S/J-linear combination of the

aforementioned ℓ’s. In particular, we may combine terms and write a3i − (yib′2i − zib
′
2i+1) = yir − zis,

where both r, s ∈ S/J are killed by xd−i+1. Therefore replace b′2i with b′2i + r and b′2i+1 with b′2i+1 + s.

With these new values of b′2i and b′2i+1, we still have zib′2i−1 − xd−i+1b
′
2i = a3i−2 and yib

′
2i−1 −

xd−i+1b
′
2i+1 = a3i−1, since the adjusted value of b′2i (resp. b′2i+1) differs from the old value by

some element killed by xd−i+1. Moreover, yib′2i − zib
′
2i+1 = a3i by construction. Therefore we have

b′1, . . . , b
′
2i+1 satisfying item I.

Part II.

Now, suppose i < d. We will need to adjust all of the b′1, . . . , b
′
2i+1 in a way that satisfies item II, but

also preserves the equalities in item I.

We want to consider the following LS-chain:

y1e1 − xde3, y2e3 − xd−1e5, . . . , yie2i−1 − xd−i+1e2i+1, zi+1e2i+1 − xd−ie2i+2.

Note that applying ϕ to these generators gives a2, a5, . . . , a3i−1, a3i+1.

We now apply Lemma 9.8. This gives us a vanishing linear combination:

(x1 . . .xd−i−1y2 . . . yizi+1)(y1e1 − xde3) + (x1 . . .xd−i−1xdy3 . . . yizi+1)(y2e3 − xd−1e5) + . . .

+ (x1 . . .xd−i−1xd−i+2 . . .xdzi+1)(yie2i−1 − xd−i+1e2i+1) + (x1 . . .xd−i−1xd−i+1 . . .xd)(zi+1e2i+1 − xd−ie2i+2) = 0.
(2)

Upon applying ϕ, we get

(x1 . . .xd−i−1y2 . . . yizi+1)a2 + (x1 . . .xd−i−1xdy3 . . . yizi+1)a5 + . . .

+ (x1 . . .xd−i−1xd−i+2 . . .xdzi+1)a3i−1 + (x1 . . .xd−i−1xd−i+1 . . .xd)a3i+1 = 0.
(3)

For a2, a5, . . . , a3i−1, we may expand each in terms of b′is (i.e. a3k−1 = ykb
′
2k−1 − xd−k+1b

′
2k+1 for

1 ≤ k ≤ i), and for a3i+1, we may write it as xd−if3i+1 + zi+1h3i+1, due to Lemma 9.5. After mass
cancellations, Equation 3 becomes

(x1 . . .xd−i−1y2 . . . yizi+1)y1b
′
1 + (x1 . . .xd−i−1xd−i+2 . . .xdzi+1)(−xd−i+1b

′
2i+1)

+ (x1 . . .xd−i−1xd−i+1 . . .xd)(xd−if3i+1 + zi+1h3i+1) = 0.

We recognize that x1 . . .xd−i−1y1 . . . yizi+1 and x1 . . .xd both vanish in the quotient ring S/J , so the
above simplifies to

(x1 . . .xd−i−1xd−i+1 . . .xdzi+1)(h3i+1 − b′2i+1) = 0. (4)
As before, consider a lift of h3i+1 − b′2i+1 inside S, which must be in the colon ideal

J : (x1 . . .xd−i−1xd−i+1 . . .xdzi+1).
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Recall from Lemma 9.4 that every generator of J is either divisible by xd−i or yi , and by the construc-
tion of J , if it is divisible by yi , then it is divisible by y1 . . . yi . Then because x1 . . .xd−i−1xd−i+1 . . .xdzi+1
is coprime to both xd−i and y1 . . . yi , Proposition 1.2.2 in [HH11] shows that this colon ideal is con-
tained in (xd−i , y1 . . . yi) ⊇ J . Hence h3i+1 − b′2i+1 equals xd−it + y1 . . . yiu for some t,u ∈ S/J .

Define now b2i+1 B b′2i+1 + y1 . . . yiu. Then

a3i+1 − zi+1b2i+1 = (xd−if3i+1 + zi+1h3i+1)− zi+1(b′2i+1 + y1 . . . yiu) = xd−if3i+1 + zi+1(xd−it),

so a3i+1 − zi+1b2i+1 is a multiple of xd−i . Recalling that we have equations

zib
′
2i−1 − xd−i+1b

′
2i = a3i−2, yib

′
2i−1 − xd−i+1b

′
2i+1 = a3i−1, yib

′
2i − zib

′
2i+1 = a3i ,

we may set b2i−1 B b′2i−1 + y1 . . . yi−1xd−i+1u and b2i B b′2i + y1 . . . yi−1ziu to obtain

zib2i−1 − xd−i+1b2i = a3i−2, yib2i−1 − xd−i+1b2i+1 = a3i−1, yib2i − zib2i+1 = a3i .

Next, we have equations

zi−1b
′
2i−3 − xd−i+2b

′
2i−2 = a3i−5, yi−1b

′
2i−3 − xd−i+2b

′
2i−1 = a3i−4, yi−1b

′
2i−2 − zi−1b

′
2i−1 = a3i−3,

so we may set b2i−3 B b′2i−3 + y1 . . . yi−2xd−i+1xn−i+2u and b2i−2 B b′2i−2 + y1 . . . yi−2xd−i+1zi−1u to
obtain

zi−1b2i−3 − xd−i+2b2i−2 = a3i−5, yi−1b2i−3 − xd−i+2b2i−1 = a3i−4, yi−1b2i−2 − zi−1b2i−1 = a3i−3.

This procedure is easily repeated inductively: in general for 0 ≤ k ≤ i, we set

b2k+1 = b′2k+1 + y1 . . . ykxd−i+1 . . .xd−ku, b2k = b′2k + y1 . . . yk−1xd−i+1 . . .xd−kzku.

Then the equations

zkb
′
2k−1 − xd−k+1b

′
2k = a3k−2, ykb

′
2k−1 − xd−k+1b

′
2k+1 = a3k−1, ykb

′
2k − zkb

′
2k+1 = a3k

are easily seen to be preserved; i.e. we have

zkb2k−1 − xd−k+1b2k = a3k−2, ykb2k−1 − xd−k+1b2k+1 = a3k−1, ykb2k − zkb2k+1 = a3k .

So our construction of the bk’s satisfies both item I and item II. □

Proof of Theorem 9.3. By Lemma 9.5, we may write a1 = xdf1 + z1h1 and set b′1 B h1, so a1 − z1b
′
1 is a

multiple of xd in S/J . By applying Proposition 9.9 inductively, we may find b1, . . . , b2d+1 ∈ S/J such
that for all 1 ≤ i ≤ d,

zib2i−1−xd−i+1b2i = a3i−2 = ϕ(zie2i−1−xd−i+1e2i), yib2i−1−xd−i+1b2i+1 = a3i−1 = ϕ(yie2i−1−xd−i+1e2i+1),

yib2i − zib2i+1 = a3i = ϕ(yie2i − zie2i+1).

Hence the map ψ : (S/J)2d+1→ S/J sending ei to bi induces ϕ, and the map HomS/J (F/JF,S/J)→
HomS/J (Q/F0,S/J) is surjective as desired. □

Note that this result is quite particular to this specific polarization of I3,n. For instance, one can
define another polarization of I3,3 that is similar to J3,3:

I ′ B (x1x2x3,x1x2y1,x1x2z1,x1y1y2,x1y1z2, y1y2y3, y1y2z1).

The graph of linear syzygies of I ′ is the same as that of J3,3; the only difference is that I ′ has the
generator y1y2z1 instead of y1y2z3. But T 2

I ′ , 0; a computation with Macaulay2 shows that it has
dimension 3.

In fact, the same computation can be generalized to Jn,d with n ≥ 3, but the details will be messier
(but in the same spirit), so we will omit them. In other words,
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Theorem 9.10. For n ≥ 3, T 2
Jn,d

= 0. In particular, Jn,d determines a smooth point xn,d on its associated
Hilbert scheme.

Since we now know that Jn,d corresponds to a smooth point xn,d on the associated Hilbert scheme, it
is natural to ask for the dimension of the tangent space at xn,d . We provide this computation below.

Proposition 9.11. For n ≥ 3 and d ≥ 2, the dimension of the tangent space at xn,d is dimk(xn,d )Txn,d =
d(d − 1)(n2 +n− 1).

Because S/J B S/Jn,d visibly has depth at least 2, the desired dimension is exactly dimkHomS(J,S/J)0,
the dimension of the degree-preserving S-module maps J → S/J ([Loh13], Proposition 2.4). We
will be investigating this latter dimension.

Let ϕ ∈ HomS(J,S/J)0. We discuss conditions that ϕ must satisfy. Notice first that such maps ϕ
are exactly characterized by the criterion that the (homogeneous degree-d) images of ϕ on the
generators of J satisfy the corresponding linear syzygy relations. Indeed, if 0→ Q→ F→ J → 0
is a free presentation of J , with Q the submodule of F generated by the linear syzygies of J , then
HomS(J,S/J)0 is exactly the kernel of HomS(F,S/J)0→HomS(Q,S/J)0.

To begin, we prove a few useful lemmas.

Lemma 9.12. Suppose that 2 ≤ i ≤ d is such that ϕ(x1,1 . . .x1,d) is annihilated by x2,1 . . .x2,i , but
not by x2,1 . . .x2,i−1. Pick a homogeneous representative of ϕ(x1,1 . . .x1,d), and let m1, . . . ,mk ∈ S be
the monomials in that representative that are not in J : (x2,1 . . .x2,i−1). Then the mr are contained in
(x1,d−i+2 . . .x1,d).

Note that x2,1 . . .x2,d = 0, so such an i surely exists.

Proof. We have a linear syzygy

x2,1 . . .x2,i−1ϕ(x1,1 . . .x1,d) = x1,d−i+2 . . .x1,dϕ(x1,1 . . .x1,d−i+1x2,1 . . .x2,i−1).

Lift this equation up to S, so we may write

x2,1 . . .x2,i−1(m1 + . . .+ mk) + j = x1,d−i+2 . . .x1,dϕ(x1,1 . . .x1,d−i+1x2,1 . . .x2,i−1), (5)

where j ∈ J . Note that because we assume ϕ(x1,1 . . .x1,d) is not annihilated by x2,1 . . .x2,i−1, there is
at least one such mr . Since none of the monomial terms on the left hand side of Equation 5 cancel
after expanding, it follows that each of the x2,1 . . .x2,i−1mr terms are divisible by x1,d−i+2 . . .x1,d in S,
which implies the statement. □

Lemma 9.13. Consider the same assumptions as in Lemma 9.12, but now allowing i = 1 (in this case,
ϕ(x1,1 . . .x1,d) is annihilated by x2,1). Suppose furthermore that the mr are not in J : (x2,1 . . .x2,i−1x3,i)
either. Then the mr are contained in (x1,d−i+1x1,d−i+2 . . .x1,d).

Proof. We have a linear syzygy

x2,1 . . .x2,i−1x3,iϕ(x1,1 . . .x1,d) = x1,d−i+1 . . .x1,dϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i−1x3,i).

Then conclude as in Lemma 9.12. □
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Remark 9.14. Similarly, we can show that if 2 ≤ i ≤ d is such that ϕ(x2,1 . . .x2,d) is annihilated by
x1,1 . . .x1,i but not x1,1 . . .x1,i−1, then for each monomial mr < J : (x1,1 . . .x1,i−1) that is in a homoge-
neous representative of ϕ(x2,1 . . .x2,d), we have mr ∈ (x2,d−i+2 . . .x2,d). If mr < J : (x1,1 . . .x1,i−1x3,d−i+1)
(and allowing i = 1), then we may even say mr ∈ (x2,d−i+1 . . .x2,d).

Our next key idea is that the images of x1,1 . . .x1,d and x2,1 . . .x2,d come very close to determining
the entire map ϕ ∈HomS(J,S/J)0, up to the addition of possible annihilated elements.

Lemma 9.15. Suppose ϕ ∈ HomS(J,S/J)0 is such that ϕ vanishes at both x1,1 . . .x1,d and x2,1 . . .x2,d .
Then ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i) = 0 for all 0 ≤ i ≤ d.

Proof. Because we have the linear syzygies

x2,1 . . .x2,iϕ(x1,1 . . .x1,d) = x1,d−i+1 . . .x1,dϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i)

x1,1 . . .x1,d−iϕ(x2,1 . . .x2,d) = x2,i+1 . . .x2,dϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i),

it follows that ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i) is killed by both x1,d−i+1 . . .x1,d and x2,i+1 . . .x2,d . The first
condition implies that ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i) is a multiple of x1,1 . . .x1,d−i in S/J ; the second
implies that it is a multiple of x2,1 . . .x2,i . Hence ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i) vanishes. □

We are now in a position to describe the possible maps ϕ ∈ HomS(J,S/J)0. The main idea is
as follows. We know that if it is nonzero, ϕ(x1,1 . . .x1,d) has a representative that is a sum of
degree-d monomials, each of which are killed by some x2,1 . . .x2,i . Using Lemmas 9.12 and 9.13,
we will seek to describe all such monomials, and show that for each, there is a “basic” map
in HomS(J,S/J)0 sending x1,1 . . .x1,d to that monomial, and x2,1 . . .x2,d to 0. We will do some-
thing analogous for ϕ(x2,1 . . .x2,d). The upshot is that by Lemma 9.15, we know that any map in
HomS(J,S/J)0 is equal to a k-linear combination of such basic maps, except for possibly differing at
the x1,1 . . .x1,d−ix2,1 . . .x2,i−1xk,i for 3 ≤ k ≤ n. However, the maps in HomS(J,S/J)0 that vanish at the
x1,1 . . .x1,d−ix2,1 . . .x2,i will turn out to be easy to describe.

First, for a fixed value 2 ≤ i ≤ d, consider the nonzero degree-d monomials m (in S/J) killed by
x2,1 . . .x2,i , not killed by x2,1 . . .x2,i−1, and in (x1,d−i+2 . . .x1,d). We split into two cases:

Case I: x2,1 . . .x2,i−1x3,i kills m.

Up to scalars, we claim that such monomials look like

x1,1 . . .x1,d−ix1,d−i+2 . . .x1,da,

where a is some indeterminant that we will impose restrictions on later. Let us consider the
situation inside S. We want to find the degree-d monomials m, divisible by x1,d−i+2 . . .x1,d , in
J : (x2,1 . . .x2,i) and J : (x2,1 . . .x2,i−1x3,i) but not in J : (x2,1 . . .x2,i−1). We know that J : (x2,1 . . .x2,i) is
generated by terms of the form j

gcd(j,x2,1...x2,i )
, and due to the structure of J , if x2,i ∤ gcd(j,x2,1 . . .x2,i),

then x2,1 . . .x2,i−1 ·
j

gcd(j,x2,1...x2,i )
∈ J . Therefore m is a multiple of something that looks like j ′ B

j
x2,1...x2,i

, where j is a generator of J divisible by x2,i (and hence x2,1 . . .x2,i). Therefore j is equal
to x1,1 . . .x1,d−k−1x2,1 . . .x2,kb, where i ≤ k ≤ d and b is one of x1,d−k ,x3,k+1, . . . ,xn,k+1 when k ≤ d − 1
(when k = d, b = 1). Hence j ′ looks like

x1,1 . . .x1,d−k−1x2,i+1 . . .x2,kb,

and m is divisible by
x1,1 . . .x1,d−k−1x1,d−i+2 . . .x1,dx2,i+1 . . .x2,kb.
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This is d −1 indeterminants, so up to scalars, m is the above monomial times some indeterminant a.
But if x2,1 . . .x2,i−1x3,i kills m inside S/J , then

x1,1 . . .x1,d−k−1x1,d−i+2 . . .x1,dx2,i . . .x2,i−1x2,i+1 . . .x2,kx3,iba ∈ J.
The only way this is possible is if the above is a multiple of x1,1 . . .x1,d−i . In particular, k =
i, b = xd−k = xd−i (when i = d, this means b = 1), and a can be any indeterminant such that
x1,1 . . .x1,d−ix1,d−i+2 . . .x1,da < J (there is another case with k = i + 1,b = xd−k = xd−i−1, and a = xd−i ,
but this is subsumed). This gives the original claim, and a can be any of the nd − 1 indeterminants
in S besides x1,d−i+1.

We now build a map ψ ∈HomS(J,S/J)0 with ψ(x1,1 . . .x1,d) = m = x1,1 . . .x1,d−ix1,d−i+2 . . .x1,da. This
is not so hard:

• For 0 ≤ k ≤ i − 1, ψ sends x1,1 . . .x1,d−kx2,1 . . .x2,k to x1,1 . . .x1,d−ix1,d−i+2 . . .x1,d−kx2,1 . . .x2,ka.

• For 0 ≤ k ≤ i − 1 and 3 ≤ r ≤ n, ψ sends x1,1 . . .x1,d−kx2,1 . . .x2,k−1xr,k to
x1,1 . . .x1,d−ix1,d−i+2 . . .x1,d−kx2,1 . . .x2,k−1xr,ka.

• ψ is 0 on all other generators of J . In particular, ψ is 0 on x2,1 . . .x2,d .

For each value 2 ≤ i ≤ d, there are nd − 1 such maps, and they are mutually k-linearly independent
due to the m visibly being linearly independent (and ψ(x1,1 . . .x1,d) = m).

Case II: x2,1 . . .x2,i−1x3,i does not kill m, and m ∈ (x1,d−i+1 . . .x1,d).

Up to scalars, we claim that such monomials look like

x1,1 . . .x1,d−k−1x1,d−i+1 . . .x1,dx2,i+1 . . .x2,kb,

for i ≤ k ≤ d and b some indeterminant that we will impose restrictions on later. As above, m is
a multiple of something that looks like j ′ B j

x2,1...x2,i
, where j is a generator of J divisible by x2,i

(and hence x2,1 . . .x2,i). Therefore j = x1,1 . . .x1,d−k−1x2,1 . . .x2,kb, where i ≤ k ≤ d and b is one of
x1,d−k ,x3,k+1, . . . ,xn,k+1 when k ≤ d − 1 (when k = d, b = 1). Hence j ′ looks like

x1,1 . . .x1,d−k−1x2,i+1 . . .x2,kb,

and m is divisible by
x1,1 . . .x1,d−k−1x1,d−i+1 . . .x1,dx2,i+1 . . .x2,kb.

This is d indeterminants, so up to scalars, m is exactly this type of monomial, which is the claim.
Let’s see how many such m there are. For each fixed i, there are d − i choices of i ≤ k ≤ d − 1 and
n − 1 choices of b for such k. When k = n and b = 1, there is exactly one choice of b. However,
note that the choice k = i brings us back to Case I (here m = x1,1 . . .x1,d−i−1x1,d−i+1 . . .x1,db, which
is subsumed under Case I), and so does the choice k = i + 1, b = x1,d−k = x1,d−i−1 (here m =
x1,1 . . .x1,d−i−1x1,d−i+1 . . .x1,dx2,i+1, again subsumed under Case I). So we’ve only found (n− 1)(d −
i) + 1− (n− 1)− 1 = (n− 1)(d − i − 1) new possible values of m.

Again, we build a map ψ ∈HomS(J,S/J)0 with

ψ(x1,1 . . .x1,d) = m = x1,1 . . .x1,d−k−1x1,d−i+1 . . .x1,dx2,i+1 . . .x2,kb

as follows:

• For 0 ≤ l ≤ i − 1,

ψ(x1,1 . . .x1,d−lx2,1 . . .x2,l) = x1,1 . . .x1,d−k−1x1,d−i+1 . . .x1,d−lx2,1 . . .x2,lx2,i+1 . . .x2,kb.

• For 0 ≤ l ≤ i and 3 ≤ r ≤ n, ψ sends x1,1 . . .x1,d−lx2,1 . . .x2,l−1xr,l to
x1,1 . . .x1,d−k−1x1,d−i+1 . . .x1,d−lx2,1 . . .x2,l−1x2,i+1 . . .x2,kxr,lb.

34



• ψ is 0 on all other generators of J . In particular, ψ is 0 on x2,1 . . .x2,d .

For each value 2 ≤ i ≤ d, there are (n− 1)(d − i) new maps, and they are visibly mutually k-linearly
independent.

Using an analogous procedure, we may describe all degree-d monomials m satisfying the hypotheses
in Remark 9.14, and for each m, we may build a map ψ ∈HomS(J,S/J)0 with ψ(x2,1 . . .x2,d) = m and
ψ(x1,1 . . .x1,d) = 0. We get the same count for the number of such k-linearly independent maps. So
far, we have found a total of

2
(
(d−1)(nd−1)+(n−1)(d−3)+(n−1)(d−4)+ . . .+(n−1) ·1

)
= 2

(
(d − 1)(nd − 1) + (n− 1)

(d − 3)(d − 2)
2

)
(6)

k-linearly independent maps.

So we have now reduced to the case where we want to describe maps ϕ ∈ HomS(J,S/J)0 where
ϕ(x1,1 . . .x1,d) is killed by x2,1, and ϕ(x2,1 . . .x2,d) is killed by x1,1. First, let m < J be a degree-d
monomial in a homogeneous representative of ϕ(x1,1 . . .x1,d), so ϕ is also killed by x2,1. If m is
killed by x3,1, then m must be a multiple of x1,1 . . .x1,d−1, so is a scalar multiple of a monomial
x1,1 . . .x1,d−1a, where a is some indeterminant not equal to x1,d , x2,1, . . . ,xn,1 (as then m would be in
J). As in Case I above, for each of those nd −n possibilities for m, there is ψ ∈HomS(J,S/J)0 with
ψ(x1,1 . . .x1,d) = m and ψ(x2,1 . . .x2,d) = 0. On the other hand, if m is not killed by x3,1, then Lemma
9.13 applies (with i = 1), and we can conclude as in Case II above: up to a scalar, m looks like

x1,1 . . .x1,d−k−1x1,dx2,2 . . .x2,kb

for 1 ≤ k ≤ d, and b one of x1,d−k ,x3,k+1, . . . ,xm,k+1, unless k = d (in which case b = 1). As before, this
procedure generates exactly (n − 1)(d − 2) new monomials m, and for each, we may construct a
corresponding map ψ satisfying the usual conditions. All of these (nd −n) + (n− 1)(d − 2) maps are
linearly independent as they take on k-linearly independent values at x1,1 . . .x1,d .

Again, this procedure can be repeated for monomials in a representative of ϕ(x2,1 . . .x2,d) that are
killed by x1,1. Doing this again creates (nd −n) + (n− 1)(d − 2) new linearly independent maps in
HomS(J,S/J)0, and using Equation 6, we now have a total of

2
(
(nd −n) + (d − 1)(nd − 1) + (n− 1)

(d − 2)(d − 1)
2

)
(7)

linearly independent maps.

We have now described all possible monomials in the representatives ofϕ(x1,1 . . .x1,d) andϕ(x2,1 . . .x2,d),
where ϕ is an arbitrary element in HomS(J,S/J)0, and for each such monomial, we have con-
structed some map ψ that takes on that value at the corresponding generator of J (x1,1 . . .x1,d or
x2,1 . . .x2,d). Subtracting off all those maps from ϕ, we conclude from Lemma 9.15 that we are
now in the case where ϕ vanishes at all x1,1 . . .x1,d−ix2,1 . . .x2,i . We now consider possible values for
ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i−1xr,i), where 3 ≤ r ≤ n. For each, we conclude from the description of the
linear syzygies that

0 = x1,d−i+1ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i−1xr,i) = x2,iϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i−1xr,i).

Taking a lift s ∈ S of ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i−1xr,i), we have

s ∈ (J : (x1,d−i+1))∩(J : (x1,i−1)) ⊆ (J+(x1,1 . . .x1,d−i))∩(J+(x2,1 . . .x2,i−1)) = J+(x1,1 . . .x1,d−ix2,1 . . .x2,i−1).

In other words, ϕ(x1,1 . . .x1,d−ix2,1 . . .x2,i−1xr,i) is a multiple of x1,1 . . .x1,d−ix2,1 . . .x2,i−1 inside S/J .
Hence if m < J is some degree-d monomial in a homogeneous representative, then

m = x1,1 . . .x1,d−ix2,1 . . .x2,i−1a
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for some indeterminant a (as always, up to a scalar multiple), which can be any of the nd vari-
ables besides x1,d−i+1, x2,i ,x3,i . . . ,xn,i . For each such m, there is a map ψ ∈HomS(J,S/J)0 sending
x1,1 . . .x1,d−ix2,1 . . .x2,i−1xr,i to m and all other generators of J to 0. Hence our ϕ is a linear combi-
nation of such ψ (which are evidently linearly independent). To count the number of such ψ, we
see that there are (n− 2)d such elements x1,1 . . .x1,d−ix2,1 . . .x2,i−1xr,i , and to each of them we have
associated nd −n monomials (hence nd −n maps ψ).

In summary, there is a set of

2
(
(nd −m) + (d − 1)(nd − 1) + (n− 1)

(d − 2)(d − 1)
2

)
+ (nd −n)(n− 2)d = d(d − 1)(n2 +n− 1) (8)

maps in HomS(J,S/J)0 that form a k-linear spanning set. By the above constructions, they are
linearly independent, so we have finished the calculation of Proposition 9.11.

We end by mentioning a question that may prove to be interesting. Besides our original question
(when do polarizations of strongly stable ideals determine smooth points on their Hilbert scheme?),
we may ask for properties that are preserved under further separation of a polarization, since
unlike in the Artinian case, a polarization of a strongly stable ideal may be further separated
(Section 3). From various computations in Macaulay2 it seems that the dimension of tangent spaces
is preserved under further separations, hence the question:

Question 9.16. Let I ′ be a polarization of a strongly stable ideal I , and I ′′ a further separation of I ′. We
view I ′ and I ′′ as ideals in the same polynomial ring (i.e. the ambient ring of I ′′). Do the tangent spaces
at the points corresponding to I ′ and I ′′ (in the same Hilbert scheme H) have the same dimension?

For instance, one sees from the definition that the pyramidal polarization Jn,d is a separation of
the standard polarization of In,d . Then assuming an affirmative answer to the above question, we
would know that dimk(yn,d )Tyn,d = d(d − 1)(n2 +n− 1) as well, where yn,d is the point on the Hilbert
scheme corresponding to the standard polarization.
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