### Mutation-Finite Doodles

# Pranjal Dangwal, Ryan Lynch, Son Van Thanh Nguyen, Ethan Pesikoff;

Mentor: Pavlo Pylyavskyy; TA: Sylvester Zhang

August 3, 2022





Mutation-Finite Doodles

Pranjal Dangwal, Ryan Lynch, Son Van Thanh Nguyen, Ethan Pesikoff;

Mentor: Pavlo Pylyavskyy; TA: Sylvester Zhang

August 3, 2022



### Contents

### 1

#### Introduction & Background

- Quivers
- Singularities & Morsifications
- Main Results
- Scannable Divides
  - Scannable Divides to Words
  - Uncrossing Lemma
  - Main Theorem
- Towards a Complete Classification of General Divides
  - Gauss Diagrams
  - Rules of evolution

### Conclusion & Thanks

### Contents

### 1

### Introduction & Background

- Quivers
- Singularities & Morsifications
- Main Results

### Scannable Divides

- Scannable Divides to Words
- Uncrossing Lemma
- Main Theorem
- Towards a Complete Classification of General Divides • Gauss Diagrams
  - Rules of evolution

### Conclusion & Thanks

A *quiver* is an oriented graph which can have multiple edges between two vertices but 1-cycles (loops) and 2-cycles are disallowed.

#### Definition

Let Q be a quiver containing a vertex j. The quiver mutation  $\mu_j$  transforms Q into a new quiver  $Q' = \mu_j(Q)$  via a sequence of three steps:

- For each oriented two-arrow path  $k \to j \to i$ , introduce a new arrow  $k \to i$ .
- **2** Reverse the direction of all arrows incident to the vertex *j*.
- 8 Remove all oriented 2-cycles.

The quiver mutation  $\mu_j$  transforms Q into a new quiver  $Q' = \mu_j(Q)$ 



Figure: Original quiver

The quiver mutation  $\mu_j$  transforms Q into a new quiver  $Q' = \mu_j(Q)$  via a sequence of three steps:

• For each oriented two-arrow path  $k \to j \to i$ , introduce a new arrow  $k \to i$ .



The quiver mutation  $\mu_j$  transforms Q into a new quiver  $Q' = \mu_j(Q)$  via a sequence of three steps:

- For each oriented two-arrow path  $k \to j \to i$ , introduce a new arrow  $k \to i$ .
- Reverse the direction of all arrows incident to the vertex j.



The quiver mutation  $\mu_j$  transforms Q into a new quiver  $Q' = \mu_j(Q)$  via a sequence of three steps:

- For each oriented two-arrow path  $k \rightarrow j \rightarrow i$ , introduce a new arrow  $ki \rightarrow i$ .
- Preverse the direction of all arrows incident to the vertex j.
- 8 Remove all oriented 2-cycles.



Figure: Mutated quiver

If two quivers are related to each other by a sequence of mutations, we call them *mutation equivalent*. The set of all quivers mutation equivalent to a given quiver is known as its *mutation class*.

#### Definition

A quiver is *mutation* (*in*)*finite* if its mutation equivalence class is (in)finite.

## Block Decomposability

### Definition

A *block* is one of the following six quivers.



### Definition

A quiver is *block* decomposable if it can be obtained by gluing together blocks at their white vertices, with each vertex part of at most two blocks.



### Quivers from Surfaces

We can get quivers from triangulations of surfaces.



#### Theorem

Any quiver from a surface is of finite mutation type.

#### Theorem

A quiver arises from a surface if and only if it is block decomposable. Furthermore, if a quiver arises from a surface, so do all elements of its mutation class.

### Theorem (Felikson, Shapiro, Tumarkin; 2009)

A quiver is mutation finite iff it is either block decomposable or mutation equivalent to one of the following exceptional quivers.



Figure: Exceptional Case Mutation Finite Quivers [FST12]

## Singularities and Morsifications

### Definition

An isolated singularity  $(C, z) \in \mathbb{C}^2$  is *real* if  $C \subset \mathbb{C}^2$  is an analytic curve invariant under conjugations, and z is its real singular point.

### Theorem (Gusein-Zade, 1974)

Any plane curve singularity is topologically equivalent to a real one.

### Definition

A nodal deformation of a singularity (C, z) inside the Milnor ball **B** is an analytic family of curves  $C_t \cup \mathbf{B}$  such that

- the complex parameter t varies in a (small) disk centered at  $0 \in \mathbb{C}$ ;
- for t = 0, we recover the original curve  $C_0 = C$ ;
- each curve  $C_t$  is smooth along  $\partial \mathbf{B}$ , and intersects  $\partial \mathbf{B}$  transversally;
- for any  $t \neq 0$ , the curve  $C_t$  has only ordinary nodes inside **B**;
- the number of these nodes does not depend on *t*.

a real morsification of a real singularity (C, z) is obtained by taking a nodal deformation  $(C_t \cap \mathbf{B})$  which is equivariant with respect to complex conjugation, and restricting t to a (small) interval  $[0, \tau) \in \mathbb{R}$ . We also impose non-degeneracy conditions.



Figure: A Singularity and its morsification [FPST22]

A *divide* is a an immersion of lines and circles into a disk with only simple intersections. Basically, a doodle without tangency or triple intersections!

### Quivers from Doodles

From a morsification, we draw a quiver.



Figure: Obtaining quivers from divides [FPST22].

For a divide D we shall denote the quiver obtained from D by Q(D).

#### Conjecture ([FPST22], 2022)

Given two real morsifications of real isolated plane curve singularities: same complex topological type  $\iff$  quivers are mutation equivalent.

### Results

### Question

Can we classify which divides yield mutation finite quivers?

Not yet, but...

#### Question

Can we classify which scannable divides yield mutation finite quivers?

### Theorem (UMNREU, 2022)

**YES!** (We have a list.)

As for the general case, we have some partial progress...

### Theorem (UMNREU, 2022)

Any divide has an associated 'Gauss diagram', which is a discrete object that allows us to analyse divides combinatorially.

### Contents

#### Introduction & Background

- Quivers
- Singularities & Morsifications
- Main Results
- Scannable Divides
- Scannable Divides to Words
- Uncrossing Lemma
- Main Theorem
- Towards a Complete Classification of General Divides
  - Gauss Diagrams
  - Rules of evolution

### Conclusion & Thanks

A scannable divide on n strands consists of n parallel lines and finitely-many crossings between adjacent strands. We may also "cap" adjacent strands by connecting them together on the left or the right.



Figure: A scannable divide on 4 strands [FPST22].

Given an uncapped scannable divide D on n strands, we number the gaps between then from 1 to n - 1. The *word* associated to D is the sequence of crossings, from left to right.



Figure: A scannable divide on 4 strands with word 2321 [FPST22].

We obtain a *sub-word* by removing any subset of the letters of a word. Ex. 231 and 22 are sub-words of 2321.

We say two words are *equivalent* if one may be transformed into the other by horizontal or vertical reflection, by a braid move, or by commutation of non-consecutive letters. A word is *reducible* if it is equivalent to one which may be decomposed into parts on disjoint intervals of letters.



### The Uncrossing Lemmas



Figure: Uncrossing

### Conjecture (Fomin, Pylyavskyy)

Given any divide D uncrossing an intersection gives a quiver which is a subtype of the original quiver.

### Theorem (UMNREU, 2022)

If a divide D has block decomposable quiver, then 'uncrossing' one intersection preserves block decomposability.

### Corollary

If a scannable word is block decomposable, so is any sub-word.

### Theorem (UMNREU 2022)

Any uncapped scannable divide D which is mutation finite is composed of irreducible words, each of which are of one of the following forms, up to word equivalence.



### Theorem (UMNREU 2022)

Any scannable divide D which is mutation finite is obtained from an uncapped divide by capping in one of finitely many allowable ways.



### The Complete Classification

The capping cases are **long**.

ま Eng Bourd \$ 30 to . A 委 the. 4 to will state heldt aby Rec 45-107-30

### The Complete Classification

#### The capping cases are **loong**.

ACON ISt Con Enes 121 -- Clat Carlot No Horas BO valant to the

### The Complete Classification

The capping cases are **looong**.

000 2h 4 Kg x

### Contents

### 1

### Introduction & Background

- Quivers
- Singularities & Morsifications
- Main Results
- Scannable Divides
- Scannable Divides to Words
- Uncrossing Lemma
- Main Theorem

Towards a Complete Classification of General Divides

- Gauss Diagrams
- Rules of evolution



A *generalized Gauss diagram* is a combinatorial picture which describes a general divide.

### Theorem (UMN REU 2022)

There is a one-to-one correspondence between valid Gauss diagrams and general divides under certain combinatorial and topological equivalences respectively.

We know how to get from Gauss diagrams to quivers!



### Rules of Evolution

We define Reidemeister moves for divides in the natural way.



Figure: The three Reidemeister moves

#### Lemma

Any 1-strand unbounded divide is equivalent to any other through Reidemeister moves.

The Reidemeister moves along with the newly defined operations of *gluing* and *splitting* allow us to recursively construct all divides from the trivial divide!

### Final steps?

More excitingly, we have a complete list of equivalent rules of evolution for Gauss diagrams.

Gauss diagrams retain all the topological information from a divide in a completely discrete structure. We can now analyze divides with a computer.

#### Question

*Can we use these two properties together to find a finite set of 'minimal infinite' subdiagrams?* 

#### Answer

Hopefully!

### Contents

#### Introduction & Background

- Quivers
- Singularities & Morsifications
- Main Results
- Scannable Divides
- Scannable Divides to Words
- Uncrossing Lemma
- Main Theorem
- Towards a Complete Classification of General Divides • Gauss Diagrams
  - Rules of evolution

### Conclusion & Thanks

### Conclusion & Thanks

Thank you to our mentor Pasha Pylyavskyy and our TA Sylvester Zhang! This project was partially supported by RTG grant NSF/DMS-1745638, and it was supervised as part of the University of Minnesota School of Mathematics Summer 2022 REU program. Thanks to Gregg Musiker and everybody else for making the REU possible!



### [FPST22] Sergey Fomin, Pavlo Pylyavskyy, Eugenii Shustin, and Dylan Thurston. Morsifications and mutations. Journal of the London Mathematical Society, 105(4):2478–2554, April 2022.

[FST12] Anna Felikson, Michael Shapiro, and Pavel Tumarkin. Skew-symmetric cluster algebras of finite mutation type. Journal of the European Mathematical Society, pages 1135–1180, 2012.