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Abstract. In this report, we study the Bender–Knuth involutions on tableaux

and linear extensions of posets. We introduce the linear extension group of
a poset, the permutation group generated by Bender–Knuth involutions on

the set of its linear extensions, and study posets according to properties of
their linear extension groups. We also study relations satisfied by the Bender–

Knuth involutions on linear extensions, with special attention to the cactus

relations. Finally, we prove sufficient conditions the Berenstein–Kirillov group
of a tableau to be transitive.
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1. Introduction

First introduced by Bender and Knuth in their study of enumerations of plane
partitions and Schur polynomials [BK72], the Bender–Knuth (BK) involutions on
the set of column-strict (semi-standard) Young tableaux have seen a wide range
of applications across different areas of combinatorics. They were studied in the
context of Gelfand-Tsetlin patterns by Berenstein and Kirillov [KB95] and by Ha-
lacheva [Hal20]. They have also been studied in the context of Grothendieck polyno-
mials (by, e.g., Ikeda-Shimazaki [IS14] and Galashin-Grinberg-Liu [GGL16]), and
shifted tableaux (by, e.g., Stembridge [Ste90] and Rodrigues [Rod21]). More re-
cently in [CGP20], Chmutov, Glick, and Pylyavskyy showed that the action of the
Bender–Knuth involutions on column-strict tableaux satisfies the cactus relations,
a group of relations satisfied by interval reversals in a coboundary category studied
by Henriques and Kamnitzer [HK06]; see also [Dev99, DJS03].

Recall that given a partition λ and a tuple α = (α1, . . . , αn), a column-strict
(semi-standard) tableau T of shape λ and content α is a filling of the squares of
the Ferrers diagram of λ, such that the labels are increasing weakly along rows
and strictly along columns, and there are αi occurrences of i in T for i = 1, . . . , n.
Informally, for i = 1, . . . , n−1, the BK involution ti acts on a column-strict tableau
of content α of length n by swapping the contents of i and i+1 in each row, fixing
an i (resp. i + 1) when there is an i + 1 below (resp. i above). Alternatively, BK
involutions can be treated as permutations of order 2 in the set of all column-strict
tableaux of shape λ. For example, Figure 1 shows the action of the BK involutions
t1 and t2 on the set of column-strict tableaux of shape (2, 1) and content in {1, 2, 3}.
Observe that the orbit on the right contains all standard Young tableaux of shape
(2, 1), i.e. column-strict tableaux with content (1, . . . , 1), and that on the left
contains all column-strict tableaux of shape (2, 1) and content being a permutation
of (2, 1). This transitive behavior is not always exhibited in general; the second
part of this report will be dedicated to study the orbits of the BK involutions on
the set of column-strict tableaux of any given shape λ and content drawing from
all permutations of a given tuple µ.
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Figure 1. The action of BK involutions on column-strict
tableaux.

We can also generalize the BK action on standard Young tableaux to an action
on the set of linear extensions of a poset. Recall that the set of standard Young
tableaux of shape λ is in bijection with the set of linear extensions of a Ferrers poset
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of shape λ. In this case, the BK involution ti swaps the labels i and i + 1 if they
label incomparable elements of the poset, and fixes them otherwise. This action
on linear extensions of a Ferrers poset can be naturally extended to define the BK
involutions on the set of linear extensions of an arbitrary poset. This generalization
was first introduced by Stanley [Sta09] to study promotion and evacuation, which
are operators on linear extensions going back to Schützenberger [Sch72, Sch76].
Figure 2 shows an example of the action of BK involutions on the set of linear
extensions of the ordinal sum of two antichains of size 2.
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Figure 2. BK action on linear extensions of a poset

Given a poset P , the BK involutions ti on the set of linear extensions of P satisfy
the relations for the infinite Coxeter group

Wn = ⟨t1, . . . , tn−1 : t2i = 1 and titj = tjti if |i− j| ≥ 2⟩,

which induces a group homomorphism φP : Wn → SLinExt(P ). We call the image
of this map the linear extension group of P and denote it by HP . For a poset
P , the linear extension graph or adjacent transposition graph of P is defined to
be the graph with vertices given by linear extensions of P and edges given by
Bender–Knuth involutions; historically, it has been used in the study of linear
extension generation since the 1990s [PR91, Rus92, Sta92, Wes93, Naa00, BM13].
In this report, we will study the properties of HP as well as the kernel of φP , i.e.
identifying the relations that are satisfied by the BK involutions.

1.1. Outline of the paper. In section 2, we define the Bender–Knuth involutions
on column strict tableaux and on linear extensions of a poset. We also briefly
discuss the cactus group and the cactus relations.

In section 3, we study the properties of the linear extension group. In subsec-
tion 3.1, we develop some general properties of HP with respect to basic construc-
tions of posets, such as the ordinal sum, disjoint union, and dual. In subsection 3.3,
we show that the Bender–Knuth involutions satisfy the braid relations if and only
if the underlying poset is a disjoint union of chains, and use the to prove that an n-
element disjoint union of chains has linear extension group Sn. In subsection 3.4, we
study which posets P have HP isomorphic to the symmetric group on all linear ex-
tensions, which we call LE-symmetric posets. We show that the only disconnected
LE-symmetric posets are the disjoint union of a singleton and a chain. Then in
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subsection 3.5, we study posets P for which HP is a primitive permutation group,
which we call LE-primitive. We show that a disconnected poset is LE-primitive if
and only if it is a disjoint union of two chains of different lengths or an antichain
of size 2. In subsection 3.6, we study the order k(P ) of the stabilizer subgroup of
HP . We show that k(P ) is either 1 or even for all posets P , and further classify the
posets P for which 24 ∤ k(P ). We also establish a lower bound for k(P ) in terms
the height of the poset P .

In section 4, we study the properties of LE-cactus posets whose linear extension
group satisfies a family of relations called the cactus relations. In subsection 4.1, we
give several constructions of posets that preserves this property, e.g, disjoint union
and ordinal sum with an antichain of size 1 or 2. In subsection 4.2, we consider non-
LE-cactus posets and prove that no LE-cactus poset has three bottom elements.
Lastly, in subsection 4.3, we detailed our attempts to generate LE-cactus preserving
constructions for posets, featuring a plethora of examples, counterexamples, and
conjectures.

In section 5, we return to the Bender–Knuth action on column-strict tableaux,
where we are particularly interested in finding column-strict tableaux for which the
Bender–Knuth action is transitive. In subsection 5.1, we give a few criterion to
identify posets for which this transitivity holds. We provide data on the number of
the Bender–Knuth action in subsection 5.2.

Finally in section 6, we investigate the order of promotion acting on column-
strict tableaux of staircase shapes with various contents. The motivating example
is a result due to Haiman’s that that the order of promotion on a standard Young
tableau of staircase shape has order 2N , where N =

(
n
2

)
is the number of blocks in

the staircase. We give a column-strict tableau with staircase shape and entries in
{1, . . . , N} which does not have order 2N . In subsection 6.1, we provide data for
the order of promotion for staircases of length at most five.

2. Basic definitions and constructions

In this section, we provide the backgrounds on several algebraic and combina-
torial objects that are fundamental to this report, including column-strict (semi-
standard) and standard Young tableaux, poset operations, and linear extensions.

2.1. Column-strict tableaux and Bender–Knuth involutions. Given a par-
tition λ = (λ1, λ2, . . . , λn) such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, a column-strict
(semi-standard) tableau T is a filling of the squares of the Ferrers diagram of λ,
increasing weakly along rows and strictly along columns. We say T has content
α = (α1, . . . , αn) if there are αi occurences of i in T for i = 1, . . . , n/. The set of
all column-strict tableaux of shape λ and content α is denoted by CST(λ, α). For
example,

CST((3, 2), (1, 2, 1, 1)) =

{
1 2 2

3 4
,

1 2 3

2 4
,

1 2 4

2 3

}
.

Denote the set of all column-strict tableaux T of shape λ and entries in [n] =
{1, 2, . . . , n} by CST(λ, [n]), and the set of standard Young tableaux of shape λ by
SYT(λ) := CST(λ, (1, 1, . . . , 1)). Historically, the study of column-strict tableaux
arose from investigating Schur polynomials [BK72].
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Following [CGP20], we define the Bender–Knuth involutions ti for 1 ≤ i ≤ n− 1
to be are operators on the set of column-strict Young tableaux. Let T be such a
column-strict Young tableau and let S be the skew tableau obtained by taking only
the boxes of T with entry equal to i and i + 1. Each row of S, read from left to
right, consists of

(1) a entries equal to i that lie directly above an i+ 1,
(2) b entries equal to i that are alone in their columns,
(3) c entries equal to i+ 1 that are alone in their columns, and
(4) d entries equal to i+ 1 that lie directly below an i

for some a, b, c, d ≥ 0. Define a tableau S′ by switching the b and c values in each
row of S. Note that the new tableaux is still column-strict. We define ti(T ) to be
the tableaux obtained by replacing S with S′ in T .

Consequently, the ti also act on each of these sets where the shape λ is fixed,
and the content varies through the permutations w(α) of α:⊔

w∈Sn

CST(λ,w(α)).

2.2. Poset operations. First we introduce some notation. Let P be poset with
n elements. Let LinExt(P ) denote set of linear extensions of P . For any linear
extension ℓ ∈ LinExt(P ) and any subset S ⊆ P , let ℓ(S) denote the image of S
under ℓ. Let P ⊕Q denote the ordinal sum of posets P and Q, where all elements
of P are less than every element of Q. Note that P ⊕Q ̸= Q⊕P . Let P +Q denote
the disjoint union of posets P and Q. Note that disjoint union is commutative. Let
P ∗ be the dual of the poset P : the relation x ≤ y holds in P ∗ if and only if y ≤ x
holds in P . Let SX denote the symmetric group of all permutations of a set X.

2.3. The cactus relations. Henriques and Kamnitzer [HK06] gave the name cac-
tus group Cn to a group that naturally acts on a coboundary category, a special
monoidal category. The cactus group Cn is generated by qij for 1 ≤ i < j ≤ n with
the relations

(1) q2ij = 1,
(2) qijqkl = qklqij if j < k,
(3) qijqklqij = qi+j−l,i+j−k if i ≤ k < l ≤ j.

The cactus group has topological significance, which first appeared in the work
of Devadoss [Dev99] and Davis-Januszkiewicz-Scott [DJS03]. The cactus group
surjects onto the symmetric group Sn and its kernel is the fundamental group of
the Deligne-Mumford compactification of the moduli space of real genus 0 curves
with n+1 marked points. A useful presentation presentation of the cactus group Cn
was given in Berenstein-Kirillov [KB95] and in Chmutov-Glick-Pylyavskyy [CGP20,
Theorem 1.8]. Namely, Cn is isomorphic to another presentation generated by
t1, . . . , tn−1, where the isomorphism sends

qij 7→ qj−1qj−iqj−1, where qi = t1(t2t1)(t3t2t1) · · · (titi−1 · · · t1),

and the ti are subject to the relations

(C1) t2i = 1,
(C2) titj = tjti if |i− j| > 1,
(C3) (tiqjk)

2 = 1, where i+ 1 < j < k.
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Of particular importance to us is the result in Chmutov-Glick-Pylyavskyy [CGP20,
Theorem 1.4], stating that Cn acts on the set of column-strict tableaux CST(λ, [n])
of a given shape λ. Put another way, the Bender–Knuth involutions ti acting on
column-strict tableaux satisfy the relations (C1), (C2), and (C3). With the rela-
tions (C1), (C2), and (C3), we see that Cn is a quotient of the infinite Coxeter
group Wn defined in (1).

Observe that the action the Bender–Knuth action on SYT(λ) can be extended
to a Bender–Knuth action on the set of linear extensions of a given poset. Given
an n-element poset P , let LinExt(P ) be the set of its linear extensions, where
ℓ ∈ LinExt(P ) is an order-preserving bijection from P to [n]. For i ∈ [n− 1], define
the operator ti : LinExt(P ) → LinExt(P ) by

tiℓ =

{
ℓ if ℓ−1(i) < ℓ−1(i+ 1)

(i, i+ 1) ◦ ℓ otherwise,

where (i, i+1) transposes i and i+1. In other words, ti transposes adjacent labels
in the linear extension if and only if it is possible.

As mentioned above, the ti satisfy the relations for the infinite Coxeter group

(1) Wn = ⟨t1, . . . , tn−1 : t2i = 1 and titj = tjti if |i− j| ≥ 2⟩,
so the BK involutions give a group homomorphism φ : Wn → SX for the various
sets X on which the ti act. This motivated us to ask the following questions about
ker(φ) and im(φ).

Question 2.1. What further relations hold among the ti acting on LinExt(P ) de-
pending on the structure of P?

Question 2.2. For which posets P is the the image of the Bender–Knuth involutions
ti on LinExt(P ) the symmetric group SLinExt(P )? In other words, which posets P
are LE-symmetric?

We also call im(φ) the linear extension group of P , and we denote it HP .

3. Properties of the linear extension group

We introduce the linear extension group of a poset, the permutation group gen-
erated by Bender–Knuth involutions on the set of its linear extensions, and study
posets according to properties of their linear extension groups. In particular, we
discuss properties and examaples of LE-symmetric posets, which are posets for
which the linear extension group is SLinExt(P ), LE-braided posets, which are posets
for which the linear extension group satisfies the braid relations, and study the size
of the stabilizer subgroup of a linear extension.

3.1. Linear extension group properties. In this section, we prove two basic
properties of HP : it is a transitive subgroup of SLinExt(P ) (Proposition 3.2) and
that the linear extension group of an ordinal sum of posets is the direct product of
the linear extension groups of the posets (Proposition 3.3).

We consider linear extensions on poset P of size n as order-preserving bijections
ℓ : P → {1, 2, . . . , n}. For any subset S ⊆ P , let ℓ(S) denote the image of S under
this bijection.

Definition 3.1. Call the poset P LE-symmetric if HP = SLinExt(P ).

Proposition 3.2. HP is a transitive subgroup of SLinExt(P ).
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Proof. To show that HP is a transitive subgroup of SLinExt(P ), it suffices to show
that for any two linear extensions ℓi, ℓj ∈ LinExt(P ), there exists some w ∈ HP

such that wℓi = ℓj .
We proceed by induction on the size of P . Our base case is when P is a singleton

element, so HP is clearly transitive.
Now suppose HP is transitive for any poset P where |P | ≤ n. It suffices to show

that HP is transitive for any poset of size |P | = n. Let m be a maximal element of
P , and define M = {ℓ ∈ LinExt(P ) | ℓ(m) = n} to be the set of linear extensions
of P in which m is the maximum element. By induction, we know that for any
two linear extensions ℓi, ℓj ∈ M , there exists some w ∈ HP such that wℓi = ℓj .
Thus to show transitivity, it suffices to show that for any linear extension ℓ /∈ M ,
there exists some ℓ′ ∈ M and some w ∈ HP such that wℓ = ℓ′. Suppose that
ℓ(m) = i, where i < n by definition of M . Then note that since m was a maximal
element of P , we have that all the elements ℓ−1(i + 1), ℓ−1(i + 1), . . . , ℓ−1(n) are
incomparable with m, as otherwise ℓ would not be a linear extension. Thus, we
have that tn−1tn−2 . . . tiℓ ∈ M , as desired. □

Proposition 3.3. HP⊕Q = HP ×HQ.

Proof. We have that any linear extension of P⊕Q is composed of a linear extension
of P and a linear extension of Q. Formally, let |P | = m and |Q| = n. Then there
is a bijection

L : LinExt(P )× LinExt(Q) → LinExt(P ⊕Q)

L(ℓi, ℓj) 7→ ℓij(P ⊕Q)

where

ℓij(p) = ℓi(p) ∀p ∈ P

ℓij(q) = ℓj(q) +m ∀q ∈ Q.

Note that ℓij must be a linear extension of P ⊕Q since it respects the ordering of P
and Q by construction, and ℓ(p) ≤ m < m+1 ≤ ℓ(q) for any p ∈ P, q ∈ Q. Clearly
this map is injective, so it suffices to show that it is surjective. Indeed, for any linear
extension ℓ ∈ LinExt(P ⊕Q), we must have ℓ(p) ∈ [m] for all p ∈ P . Suppose not.
Then there exists q ∈ Q such that ℓ(q) ∈ [m] and there exists p ∈ P such that
ℓ(p) ∈ {m+ 1, . . . ,m+ n}, but p < q in our ordinal sum, which is a contradiction.
Then we take the linear extension ℓi ∈ LinExt(P ) where ℓi(p) = ℓ(p) for all p ∈ P
and the linear extension ℓj ∈ LinExt(Q) where ℓj(q) = ℓ(q) − m. These must be
linear extensions because ℓ(p) respects the ordering on P , and if ℓ(q) respects the
ordering on Q, then subtracting m from all labels still respects the ordering on Q.
Then L(ℓi, ℓj) = ℓ, so our map is surjective as desired.

Define TP := ⟨t1, . . . , tm−1⟩ and TQ := tm+1, . . . , tm+n−1 as actions on LinExt(P⊕
Q)). Since the indices are far apart, elements of TP and TQ commute, so any group
element ti1ti2 . . . tik can be rewritten as TPTQ. Thus HP⊕Q

∼= TP × TQ. Note that
tm is in the kernel, since for any linear extension of P ⊕ Q we have the element
with label m is in P and that with label m+ 1 is in Q, and thus are comparable.

Note that on linear extensions, TP acts on P and TP act on Q independently
of each other. Then by our bijection above, the action of TP on LinExt(P ⊕Q) is
isomorphic to the action of TP on LinExt(P ), which is precisely HP , and similarly
the action of TQ on LinExt(P ⊕Q) is isomorphic to the action of TQ on LinExt(Q),
which is precisely HQ. □
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3.2. Relations in the linear extension group. In this section, we find more
relations that the generators ti satisfy in HP . Then we show that if convex in-
duced sub-posets enjoy special properties of the linear extension group, see Subsec-
tion 3.2.1.

Let Hn be the free group on t1, . . . , tn−1 modulo the relations satisfied by every
n-element poset. Clearly, the ti satisfy

(ti)
2 = 1

(titj)
2 = 1, where |i− j| ≥ 2.

Furthermore, by examining all linear extensions of all posets of size 3, we can see
that Hn satisfies

(titi+1)
6 = 1.

(Stanley notes this in his paper; see [Sta09, Note, p.6]) This relation does not follow
from the two above because the braid group satisfies the latter but not the former.
There are no other relations satisfied in Hn involving only ti and ti+1.

It turns out that these are not the only relations satisfied in Hn. Here are some
more we have found with the help of a computer:

(titi+1ti+2)
24 = 1(2)

(titi+1ti+2ti+1)
30 = 1(3)

(titi+1titi+1ti+2)
60 = 1(4)

(titi+1ti+2ti+1ti+2)
60 = 1(5)

(titi+1ti+2ti+3)
840 = 1.(6)

None of these relations are implied by the three relations above. Note that these
may not be independent relations themselves, though we see no obvious relation
that subsumes any subset of the relations above.

3.2.1. Convex induced sub-posets. An induced poset Q ⊂ P is a subset of vertices
in P such that if x, y ∈ Q and x ≤ y in P , then x ≤ y in Q. A convex induced poset
is an induced poset such that if x, z ∈ Q and y ∈ P satisfy x ≤ y ≤ z in P , then
z ∈ Q. We study which relations in the linear extension group of a convex induced
subposet remain relations in the larger poset.

Lemma 3.4. Let P1 be a convex induced sub-poset of P2 and ℓ1 ∈ LinExt(P1).
Then, there is an ℓ2 ∈ LinExt(P2) such that for some j ∈ Z, ℓ2(v) = ℓ1(v) + j for
all v ∈ P1.

Proof. We will augment our poset P2 by adding additional order relations. First,
we add order relations between the vertices in P1 to make P1 a total order with
the order given by ℓ1. By the definition of a linear extension, adding such order
relations is permissible. Let vi be the vertex in P1 such that ℓ1(vi) = i, so that vi
is the minimum vertex in P1 with these new order relations. Then, for every vertex
v ∈ P2 incomparable with v1, add an order relation to make v < v1. Finally, for
every vertex v ∈ P2 such that v > vi and v ̸∈ P1, add an order relation to make
v′ < v for every v′ ∈ P1. We claim it is permissible to add such relations. The only
way it could not be is if we already had v′ > v for some v′ ∈ P1. Then, v′ ̸= vi,
since v > vi by assumption. Thus, v′ > v > vi. Since P1 is a convex induced
sub-poset containing v′ and vi, v ∈ P1, contradicting our assumption. Thus, our
augmented poset is a valid poset.
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Let ℓ2 be a linear extension of our augmented poset. Then, ℓ2(v1) = j+1 for some
integer j. We claim that ℓ2(v) = ℓ1(v) + j for all v ∈ P1. Suppose this is true for
vi. Then we need to show that ℓ2(vi+1) = ℓ2(vi)+1. We have ℓ2(vi+1) ≥ ℓ2(vi)+1,
since vi+1 > vi. If some w ∈ P2 is such that ℓ2(w) = ℓ2(vi) + 1, then w ̸≤ vi, and
there are no vertices incomparable with vi, so w > vi. If w ∈ P1, then w ≥ vi+1,
since we imposed a total order on P1 with our order relations. And if w ̸∈ P1, then
w > vi+1 by our order relations. Therefore, w = vi+1 as desired. Since ℓ2 is also a
linear extension of the unaugmented version of P2, the proof is complete. □

Corollary 3.5. If P1 is a convex induced sub-poset of P2, then HP1
≤ HP2

. In
particular, if ℓ1 ∈ LinExt(P1) and ℓ2 ∈ LinExt(P2), then Stab(ℓ1) ≤ Stab(ℓ2).

Definition 3.6. A relation is an equation w = 1, where w is a word with the
letters t1, . . . , tn−1. We say a relation is satisfied for a poset if it is satisfied for
every linear extension of the poset.

Definition 3.7. A relation type is a set of relations wi = 1, where wi is obtained
by translating all the indices of t terms by i, and i is taken over all integers for
which the t terms are among t1, . . . , tn−1. Equivalently, a relation type is a set of
relations wi = 1 where each wi is generated by ⟨ti, ti+1, . . . , tk⟩ where k is constant.
We say a relation type is satisfied for a poset if all of its relations are satisfied.

For example, (t1t2)
6 = 1 is a relation, and the relations (titi+1)

6 = 1 form a
relation type.

Lemma 3.8. If a relation type is satisfied for a poset, then it is also satisfied for
every convex induced sub-poset.

Proof. We prove the contrapositive. Suppose there is a convex induced sub-poset
P1 ⊆ P2 for which the relation type fails. That is, some relation w in the relation
type fails for some linear extension ℓ1 of P1. (Here ℓ1 is a bijection from vertices
to labels.) By Lemma 3.4, for some j, wj fails for the larger poset. □

3.3. Braid relation. Here we show that the Bender–Knuth involutions satisfy the
braid relations if and only if the underlying poset is a disjoint union of chains. Then
we show that a n-element disjoint union of chains has linear extension group Sn.

Definition 3.9. Call a poset P LE-braided if the Bender–Knuth involutions ti
satisfy the braid relation (titi+1)

3 = 1 for all i = 1, 2, . . . , n− 1.

Proposition 3.10. The only posets whose linear extension groups satisfy the braid
relations with respect to t1, . . . , tn−1 are disjoint unions of chains.

Proof. One can check that the only posets of size 3 that fail to satisfy (t1t2)
3 = 1

are the upward facing triangle and the downward facing triangle. The posets not
containing one of these two posets are exactly disjoint unions of chains. Any poset
that contains one of these two posets as induced sub-posets (and therefore convex
induced sub-posets) will fail to satisfy (titi+1)

3 = 1 for some i by Lemma 3.8.
Conversely, suppose for the sake of contradiction that a disjoint union of chains
fails to satisfy (titi+1)

3 = 1 for some i. Then the induced poset on the elements
with labels i, i + 1, and i + 2 fails to satisfy (t1t2)

3 = 1, and hence is one of the
two posets mentioned above. But a disjoint union of chains does not have such an
induced poset, so we have a contradiction. □
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Proposition 3.11. A disjoint union of two or more chains has Sn as its linear
extension group (up to isomorphism), where n is the number of elements in the
poset.

Proof. By the previous proposition, we know the linear extension group of a disjoint
union of two or more chains is a quotient of Sn. Thus, it suffices to show that the
group is not trivial, is not C2 for n ≥ 3, and is not S3 for n = 4. Each of these is
easily checked. □

Remark 3.12. In general, a disjoint union of two or more chains will have more
than n linear extensions, so it will not be LE-symmetric.

3.4. Properties of LE-symmetric posets. In this section, we ask which posets
are LE-symmetric, i.e. which posets P have HP = SLinExt(P ). We also investigate
which poset constructions (duality, ordinal sum, disjoint union) preserve the LE-
symmetric property. Then we conjecture that a certain family of posets is LE-
symmetric.

Question 3.13. Which posets P are LE-symmetric?

We know that there exist posets P such thatHP ⊊ SLinExt(P ), since Kamnitzer’s
students gave us a table of data on this question for Ferrers posets Fλ, already
containing counterexamples. The smallest countere

Example 3.14. Figure 3 contains a list of LE-symmetric posets of size at most 5,
where none can be constructed from another LE-symmetric poset in the list by
either Proposition 3.15 or Proposition 3.16.

Figure 3. Posets P such that HP = SLinExt(P )

Proposition 3.15. If P is LE-symmetric, then P ∗ is LE-symmetric.

Proof. The set LinExt(P ∗) is in bijection with LinExt(P ) by reversing the order
of the labels of a given linear extension. It suffices to show that one can generate
any transposition of two given linear extensions f1, f2 ∈ LinExt(P ∗). Under the
bijection, these correspond to linear extensions g1, g2 ∈ LinExt(P ). Since P is
LE-symmetric, there is an element w ∈ HP that interchanges g1 and g2. The
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map HP → HP∗ sending ti acting on LinExt(P ) to tn−i acting on LinExt(P ∗) for
i = 1, . . . , n − 1 sends the w ∈ HP to a word w′ ∈ HP∗ interchanging f1 and f2.
This suffices for the proof. □

Proposition 3.16. Let 1 be the poset with a single element. If P is LE-symmetric,
then P ⊕ 1 and 1⊕ P are LE-symmetric.

Proof. The linear extensions of P and P ⊕ 1 and 1⊕ P are all isomorphic - any
linear extension of P ⊕ 1 is simply a linear extension of P and with the largest
element labelled n+ 1 (and symmetrically for 1⊕ P ). □

From Proposition 3.16, it thus suffices to classify all posets P without either a
unique minimal or maximal element such that P is LE-symmetric. We list some
small examples in Figure 3.

Proposition 3.17. If P and Q are posets such that P ⊕Q is LE-symmetric, then
at least one of P,Q is a chain.

Proof. Let P ⊕Q be LE-symmetric, so that HP⊕Q is some symmetric group. We
have that HP⊕Q = HP × HQ is a direct product of groups. Then at least one of
HP , HQ is the trivial group. This happens when at least one of P,Q has only one
linear extension, and thus one of P,Q must be a chain. □

One example of an infinite family of LE-symmetric posets is the following.

Lemma 3.18. If P = Q+ 1 where Q is a chain, then P is LE-symmetric.

Proof. Let the chain Q consist of the elements x1, . . . , xn−1 with relations xn−1 <
xn−2 < · · · < x1, and let xn be the extra point.

Note that there are exactly n linear extensions ℓ. To see this, there are n choices
for ℓ(xn), and once ℓ(xn) is fixed, we have ℓ(x1), . . . , ℓ(xn−1) is also fixed by the
total ordering xn−1 < · · · < x2 < x1. Furthermore, for any i we have that ti is the
identity on all linear extensions except for the linear extension that labels element
xn with i and the corresponding linear extension that labels element xn with i+1,
as any other linear extension has labels i, i + 1 in the chain, and thus they are
comparable. Therefore, each ti acts as a transposition on LinExt(P ), and so we
generate all of SLinExt(P ). □

Question 3.19. Does P LE-symmetric imply P + 1 LE-symmetric?

No, P = 1 + 1 is LE-symmetric, but P + 1 = 1 + 1 + 1 is not LE-symmetric.

Question 3.20. Are the only LE-symmetric posets with two connected components
ones in the family above?

The answer is yes. To show this, we will first need a few definitions.

Definition 3.21. Let K = (A,B) denote a partition of [m+ n] into sets A and B
where |A| = m and |B| = n. Throughout, we will simply refer to K as a partition.

Let P and Q be posets such that |P | = m and |Q| = n.

Definition 3.22. For any partition K = (A,B), let L(K) denote the set of linear
extensions of P +Q such that f(P ) = A and f(Q) = B. We call these sets of linear
extensions partition sets.
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Figure 4. Posets P,Q for Example 3.23

Figure 5. L(K) where K = ({1, 2, 3}, {4, 5})

Figure 6. L(K) where K = ({2, 3, 5}, {1, 4})

Example 3.23. The figures below illustrates an example of Definition 3.22 when
P,Q are the posets in Figure 4.

Lemma 3.24. We have |L(K)| = |LinExt(P )||LinExt(Q)| for any partition K.

Proof. First note that if K∗ = (A∗, B∗) is the partition where A∗ = [m] and
B∗ = {m + 1,m + 2, . . . ,m + n}, then we have that L(K∗) ∼= L(P ⊕ Q), and we
know by Proposition 3.3 that this is isomorphic to L(P )× L(Q). Thus |L(K∗)| =
|LinExt(P )||LinExt(Q)|. Then it remains to show that |L(Ki)| = |L(K∗)| for any
partition K. Indeed, we have a bijection between L(K) and L(K∗) for any partition
K = (A,B). There is a natural bijection from elements A to the set [m] that
preserves the relative ordering of elements, and a natural bijection from elements
B to the set {m + 1,m + 2, . . . ,m + n}. Thus for any linear extension f ∈ L(K)
we map the labels A in P to their relative elements in [m] under this bijection, and
symmetrically for B. □

Lemma 3.25. Let T ∈ ⟨t1, . . . , tm+n−1⟩ be a word representing a group element.
Then for any two linear extensions f, f ′ in the same partition set, then T (f), T (f ′)
are in the same partition set.

Proof. We can decompose T into a product of generators ti, and so it suffices to
show that for any ti, if f, f

′ are in the same partition set L(K) where K = (A,B),
then ti(f) and ti(f

′) are in the same partition set L(K ′) for some K ′. Indeed,
suppose labels i, i+1 are both in A or both in B, i.e. both labels appear in P or Q
in the linear extensions f, f ′. Then both ti(f) and ti(f

′) stay in L(K). If the label i
is in P and the label i+1 is in Q (or vice versa), then the action of ti will take both
ti(f) and ti(f

′) to L(K ′) where K ′ = (A−{i}+{i+1}, B−{i+1}+{i}). Since f, f ′
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stay in the same partition set of linear extension after any ti action, they stay in
the same partition set after the action by any group element T ∈ ⟨t1, . . . , tm+n−1⟩,
as desired. □

Lemma 3.26. If P,Q are posets such that at least one of |LinExt(P )| and |LinExt(Q)|
is not equal to 1, then P +Q is not LE-symmetric.

Proof. Using Lemma 3.25, we know that any element of the group maps any entire
set of linear extensions L(Ki) to an entire set of linear extensions L(Kj). Unless
|L(Ki)| = 1, we cannot generate the whole symmetric group on LinExt(P + Q),
since the permutation group is not primitive. In other words, let f1, f2 ∈ L(Kj)
and f3 ∈ L(Ki), then we can never generate the permutation that takes f1 to f3
and f2 to itself. However, at least one of |LinExt(P )| and |LinExt(Q)| is not equal
to 1, so indeed |L(Ki)| ≠ 1 and thus P +Q is not LE-symmetric. □

Theorem 3.27. The only LE-symmetric posets P with at least two connected com-
ponents are of the form P = Q+ 1, where Q is a chain.

Proof. By Lemma 3.26, we have that if P,Q are not both chains, then P + Q is
not LE-symmetric. Thus it suffices to consider when P and Q are both chains.
Let |P | = m and |Q| = n. By Proposition 3.11, we know that HP+Q = Sn+m,

but there are
(
m+n
n

)
linear extensions. Thus P + Q LE-symmetric implies that(

m+n
n

)
= m+ n, which only occurs when n = 1 or Q = 1. This family is described

by Lemma 3.18. □

Aside from the fact that P +Q is not LE-symmetric unless P and Q are a chain
and a singleton element, we can say something even stronger about HP+Q. We
provide the following upper bound on the size of the permutation group HP+Q.

Proposition 3.28. Let |P | = m, |Q| = n. Then

|HP+Q| ≤ (|HP ||HQ|)(
m+n

n )(m+ n)!

Proof. We bound |HP+Q| by directly bounding the number of permutations on
LinExt(P +Q) we can obtain. By Lemma 3.25, we have that the total number of
permutations on LinExt(P +Q) is bounded by the number of ways to permute the(
m+n
n

)
partition sets (treating each partition set as an element) and permute the

elements within the partition sets.
For any partition K = (A,B), let HK be the subgroup of HP acting on L(K).

Then for each permutation of the partition sets, the number of ways to permute
within the partition sets is bounded above by

∏
K |HK |.

First, we claim that |HK | ≤ |HK∗ |, where K∗ = ([m], [m + 1,m + n]). For
any partition set L(K) where K = (A,B), consider any permutation within L(K)
generated by a ti. Without loss of generality, let i, i+1 ∈ A. Then this permutation
on L(K) can be achieved by w−1ti∗w, where i

∗ = |A∩ [i]| and w ∈ ⟨t1, . . . , tm+n−1⟩
is the sequence that maps L(K∗) to L(K). Thus any permutation on a partition
set L(K) can be generated from a permutation on L(K∗). The number of ways
to permute within L([m], [m+ 1,m+ n]) is the number of ways to permute within
L([m], [m+1,m+n]) without using tm. This permutation group is then isomorphic
to the HP ×HQ with size |HP ||HQ|. Since there are

(
m+n
n

)
partition sets, we have∏

K

|HK | ≤ (|HP ||HQ|)(
m+n

n )



14 J. CHIANG, M. KENDALL, R. LYNCH, S. NGUYEN, B. PRZYBOCKI, AND J. XIA

Finally, note that the action of the ti on the partition sets themselves is isomor-
phic to the action of ti the poset P = Cm + Cn, i.e. the disjoint union of a chain
of size m and a chain of size n. To see this, any partition set K = (A,B) corre-
sponds to the linear extension f on Cm+Cn such that f(Cm) = A and f(Cn) = B.
By Proposition 3.11, this group is precisely Sn+m, so the number of ways to per-
mute the partition sets is given by |Sm+n| = (m + n)!. Thus the total number of

permutations on LinExt(P+Q) is at most (|HP ||HQ|)(
m+n

n )(m+n)!, as desired. □

Using the bound above, we can characterize how far from LE-symmetric a dis-
joint union P +Q is. More specifically, we have the following lower bound on the
index [SLinExt(P+Q) : HP ], which follows from Proposition 3.28.

Corollary 3.29. Let |P | = m, |Q| = n, a = |LinExt(P )|, b = |LinExt(Q)|. Then

[SLinExt(P+Q) : HP ] ≥ (a!)(b−2)(m+n
n )

((
b

(
m+ n

n

))
!

)a−1

Conjecture 3.30. For n ≥ 4, let Nn be a poset on n elements with the relations
v1 > v2 < v3 < · · · < vn−2 < vn−1 > vn. (For example, N4 is the N -poset.) Then,
Nn is LE-symmetric.

Remark 3.31. The conjecture is true for 4 ≤ n ≤ 75.

Remark 3.32. We have |LinExt(Nn)| = n2 − 3n+ 1.

Question 3.33. For a, c ≥ 1 and b ≥ 2, let Na,b,c be a poset on a + b + c elements
with the relations

v1 > v2 > · · · > va+1 < va+2 < · · · < va+b > va+b+1 > · · · > va+b+c.

(For example, N1,n−2,1 = Nn.) Is Na,b,c LE-symmetric?

Definition 3.34. A poset is series-parallel if it can be built from the singleton
poset using ordinal sums and disjoint unions.

The class of posets in Conjecture 3.30 is interesting because every non-series-
parallel poset contains some Nn as a convex induced sub-poset. Using Proposi-
tion 3.3 and Lemma 3.26, we can achieve a classification of LE-symmetric (or even
LE-primitive) series-parallel posets. Thus, Conjecture 3.30 may be a first step to
understanding the linear extension groups of non-series-parallel posets.

3.5. Primitive posets. Here we characterize which disconnected posets are LE-
primitive, or in other words, have a primitive permutation group.

Definition 3.35. A group G acting on a set X is primitive if there is no partition
of X that is preserved by G other than the trivial partitions (the partition with a
single part, and the partition into singletons).

Definition 3.36. We say a poset is LE-primitive if its linear extension group is a
primitive permutation group.

Lemma 3.37. Let P be a disjoint union of chains of lengths n1, n2, . . . , nr. Then,
the stabilizer of any linear extension of P is isomorphic to Sn1 × Sn2 × · · · × Snr .

Proof. The stabilizers of linear extensions are conjugate to each other, hence iso-
morphic. So it suffices to consider one linear extension. Let ℓ be the linear extension
that assigns the labels {nj−1 + 1, nj−1 + 2, . . . , nj} to the jth chain (where here
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n0 = 0). Then, ti ∈ Stab(ℓ) if i ̸= nj for any j. Recall that by Proposition 3.11,
t1, . . . , tn−1 yield a presentation for the symmetric group Sn, where

n =

r∑
j=1

nj .

Thus, the group generated by {ti | i ̸= nj for any j} is isomorphic to Sn1
× Sn2

×
· · · × Snr . It remains to show that Sn1 × Sn2 × · · · × Snr exhausts Stab(ℓ), which
follows from the following.

|LinExt(P )| · Stab(ℓ) = |HP |
n!

n1! · · ·nr!
· Stab(ℓ) = n!

Stab(ℓ) = n1! · · ·nr! = |Sn1
× Sn2

× · · · × Snr
|

□

Theorem 3.38. Let P be a poset with at least 2 components. Then P is primitive
if and only if P is a disjoint union of 2 chains of different lengths or P is an
antichain of size 2.

Proof. First, if one component of P is not a chain, then P is not primitive by
Lemma 3.26. If every component is a chain, then the stabilizer of any linear
extension is isomorphic to a direct product of symmetric groups as described in
Lemma 3.37. Such a direct product of symmetric groups is a maximal proper
subgroup of Sn if and only if r = 2 and either n1 ̸= n2 or n1 = n2 = 1. Since
a permutation group is primitive if and only if the stabilizer of any element is a
maximal subgroup, this completes the proof. □

3.6. The stabilizer size of a poset. In this section, we investigate the order of
the stabilizer of any linear extension of P , a parameter we call the stabilizer size
k(P ) of P . We characterize the posets with k = 1. Then we find a lower bound for
k in terms of another parameter which we call the comparability c(P ) of P , which
is the maximum number of ti ∈ Stab(ℓ) over all linear extensions ℓ ∈ LinExt(P ).
Then we completely classify posets P with 24 ∤ k(P ).

We call the linear extension group HP of P just H when context is clear.

Definition 3.39. For a poset P , its stabilizer size k(P ) is the k such that

|H| = k|LinExt(P )|.

Proposition 3.40. We have k(P ⊕Q) = k(P ) · k(Q).

Proof. We know the order of linear extension groups is multiplicative:

|HP⊕Q| = |HP ×HQ| = |HP | · |HQ|.

Since the number of linear extensions is also multiplicative, the proposition follows.
□

Since H is transitive, we have k ≥ 1. From the orbit-stabilizer theorem, we also
have that k is the size of the stabilizer of any linear extension of P , so k ∈ N. In
fact, something stronger is true.

Proposition 3.41. We have k = 1 or k is even.
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Before we prove it, we need the following lemma. If a poset is the ordinal sum
of two or more non-empty posets, we say that it is a non-trivial ordinal sum.

Lemma 3.42. The operator ti lies in the kernel of Wn → SLinExt(P ) if and only
if one can write P as a nontrivial ordinal sum P = P1 ⊕ P2 where |P1| = i.

Proof. When P = P1 ⊕ P2 with |P1| = i, every linear extension ℓ has ℓ(P1) =
{1, 2, . . . , i} and ℓ(P2) = {i+ 1, i+ 2, . . . , n}, so u = ℓ−1(i) <P ℓ−1(i+ 1) = v, and
ti fixes ℓ.

Conversely, if P ̸= P1 ⊕ P2 for any |P1| = i, create a linear extension ℓ having
ti(ℓ) ̸= ℓ as follows. Pick any down-set (order ideal) I ⊂ P with cardinality
|I| = i; for example, choosing the inverse image I := f−1({1, 2, . . . , ℓ}) for any
linear extension f of P will work. Then there exists at least one incomparable
pair of elements u, v in P , with u a maximal element of the down-set I, and v a
minimal element of up-set P \ I. Otherwise, every maximal element u of I and
minimal element v of P \ I would have u <P v, as v <P u is not allowed given I is
a down-set. Therefore, P = I ⊕ (P \ I), a contradiction.

Once one has found such an incomparable pair u, v, create the linear extension
ℓ by labeling ℓ(u) = i, ℓ(v) = i+ 1 and using any linear extensions to label I \ {u}
with {1, 2, . . . , i− 1} and (P \ I) \ {v} with {i+ 2, i+ 3 . . . , n}. □

Now we can prove Proposition 3.41.

Proof of Proposition 3.41. By Proposition 3.40, it suffices to consider when P is
not a non-trivial ordinal sum. When k ̸= 1, there is some linear extension ℓ fixed
by some ti. Otherwise, there are no relations in the poset, in which case k = 1.
Then, the function x 7→ ti ·x is an involutory permutation of the stabilizer of ℓ with
no fixed points, since ti is not in the kernel. Hence, the stabilizer of ℓ has even size.
By the remark above, this means k is even. □

Proposition 3.43. The posets P satisfying k(P ) = 1 are exactly the ordinal sums
of antichains.

Proof. By Proposition 3.40, it suffices to prove that the posets P satisfying k(P ) = 1
that are not non-trivial ordinal sums are exactly antichains. If k = 1, the size of
the stabilizer of any linear extension of P is of size 1. Suppose for the sake of
contradiction that P has some order relation, say v < w. We may assume that w
covers v. We claim there is a linear extension in which v and w have consecutive
labels. Indeed, let I be the ideal consisting of the elements strictly less than w and
not equal to v. Then, there is a linear extension ℓ of I. We can extend ℓ by setting
ℓ(v) = |I|+ 1 and ℓ(w) = |I|+ 2, from which it can then be extended into a linear
extension of all of P .

Now, t|I|+1 is in the stabilizer of ℓ. Hence, t|I|+1 is in the kernel, contradicting
Lemma 3.42.

Finally, one can check that for an antichain, we have k = 1. □

Now that we have classified which posets have a given stabilizer-size k(P ) = 1,
we turn to the direction of characterizing what possible values k(P ) can take. This
motivates the following definition.

Definition 3.44. The Jordan-Pólya numbers are numbers that can be expressed
as a product of factorials.
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Proposition 3.45. For any Jordan-Pólya number J , we can find a poset P such
that kP = J .

Proof. The proof is a simple calculation. Let J = n1!n2! . . . nk!, then P = Cn1
+

Cn2
+ · · ·+Cnk

, where Cni
is a chain of size ni. Let N =

∑k
i=1 ni. By Proposition

3.11, we know that |HP | = |SN | = N !. We also have |LinExtP | =
(

N
n1,n2,...,nk

)
, since

any linear extension is uniquely defined by the partition of the labels {1, 2, . . . , N}
to the k chains of size n1, . . . , nk. Then

kP =
|HP |

|LinExt(P )|
=

N !(
N

n1,n2,...,nk

) = n1!n2! . . . nk! = J,

as desired. □

Conjecture 3.46. For any poset P , let kP = 2α2 · 3α3 · 5α5 · · · · · pαp , where p is
the largest prime factor of kP . Then α2 ≥ α3 ≥ α5 ≥ · · · ≥ αp, or in other words,
the exponents of the prime factors are weakly decreasing.

We now define a poset parameter that gives us useful information about the
point-stabilizer, which in particular gives us a lower bound for the stabilizer size.

Definition 3.47. For a poset P and ℓ ∈ LinExt(P ), define

c(P, ℓ) := |{i ∈ [1, |P | − 1] | ℓ−1(i) < ℓ−1(i+ 1)}|.
Then, the comparability of P is

c(P ) := max
ℓ

c(P, ℓ).

In other words, c(P ) is the maximum number of ti such that ti ∈ Stab(ℓ).

Remark 3.48. We have c(P ) = |P | − 1 − j(P ), where j(P ) is the jump number of
P .

Definition 3.49. For a group G, let m(G) be the maximum size of an independent
set of involutions in G.

Example 3.50. We have m(Sn) = n− 1.

Proposition 3.51. We have m(G) ≤ log2(|G|).

Proof. Given an independent set {g1, . . . , gm(G)} ⊆ G, we have

⟨g1⟩ < ⟨g1, g2⟩ < · · · < ⟨g1, g2, . . . , gm(G)⟩,
where each subgroup is at least twice as large as the previous one by Lagrange’s
theorem. □

Lemma 3.52. Let |P | = n. If P is not a nontrivial ordinal sum, then the action
of any ti is independent, i.e. {t1, . . . , tn−1} is an independent set.

Proof. By Lemma 3.42, there is some linear extension f on which ti is not in
the kernel. Let |P | = n. Suppose for contradiction that wf = tif for some
w ∈ ⟨t1, t2, . . . , t̂i, . . . , tn−1⟩. Then consider the order ideal I such that f(I) = [i],
i.e. the elements of P with labels {1, 2, . . . , i}. Then any action that is not ti
preserves this image f(I), so i + 1 /∈ wf . However, we have i + 1 ∈ tif(I), a
contradiction. □

Proposition 3.53. If P is not a non-trivial ordinal sum, then c(P ) ≤ m(Stab(ℓ)).
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Proof. By Lemma 3.42 and Lemma 3.52, ℓ has at least c(P ) independent involutions
in Stab(ℓ). □

Corollary 3.54. If P is not a non-trivial ordinal sum, then k(P ) ≥ 2c(P ).

Proof. This immediate from Propositions 3.51 and 3.53. □

Proposition 3.55. If P is not a non-trivial ordinal sum and c(P ) ≥ 2n− 1, then
(Z/2Z)n ≤ Stab(ℓ).

Proof. If c(P ) ≥ 2n−1, then there are at least ⌈(2n−1)/2⌉ = n pairwise commuting
involutions in Stab(ℓ), which generate (Z/2Z)n. □

Proposition 3.56. If P is not a non-trivial ordinal sum and (Z/2Z)n ̸≤ Stab(ℓ),
then there are at least c(P )− n+ 1 pairs ti, ti+1 ∈ Stab(ℓ).

Proof. Suppose there are at most c(P )−n pairs ti, ti+1 ∈ Stab(ℓ). Then, there are
at least c(P ) − (c(P ) − n) = n pairwise commuting involutions in Stab(ℓ), which
generate (Z/2Z)n. □

Corollary 3.57. If P is not a non-trivial ordinal sum, c(P ) ≥ n, and (Z/2Z)n ̸≤
Stab(ℓ), then S3 ≤ Stab(ℓ).

Proof. By Proposition 3.56, there is at least one pair ti, ti+1 ∈ Stab(ℓ). If (titi+1)
3 =

1, then ⟨ti, ti+1⟩ ∼= S3. If (titi+1)
6 = 1, then ⟨ti, ti+1⟩ ∼= Z/2Z× S3. □

Remark 3.58. Observe that c(P ⊔Q) = c(P )+c(Q) and c(P⊕Q) = c(P )+c(Q)+1.

Remark 3.59. Observe that a poset P satisfies c(P ) = 0 if and only if P is an
antichain, in which case k = 1.

Proposition 3.60. We have h(P ) − 1 ≤ c(P ) ≤ |P | − w(P ), where h(P ) is the
height of P and w(P ) is the width of P .

Proof. The first inequality is equivalent to j(P ) ≤ |P |−h(P ). Let P ′ be a subposet
of P obtained by removing a maximum chain C from P , so |P ′| = |P | − h(P ). We
construct ℓ ∈ LinExt(P ) as follows. At each step, if label i can be assigned to the
least element in C without a label, then do so; otherwise, assign the label i to any
other element for which it is possible. Then, by construction, we have ℓ−1(i) ∼
ℓ−1(i+1) only if ℓ−1(i) ∈ P ′ or ℓ−1(i+1) ∈ P ′. Further, if ℓ−1(i) ∼ ℓ−1(i+1) and
ℓ−1(i + 1) ∼ ℓ−1(i + 2), we never have ℓ−1(i), ℓ−1(i + 2) ∈ C and ℓ−1(i + 1) ∈ P ′.
It follows that j(P ) ≤ |P | − h(P ).

We now prove the second inequality, which is equivalent to j(P ) ≥ w(P ) − 1.
Let A be a maximum antichain in P . Order the elements in A according to any
ℓ ∈ LinExt(P ). Then, between any consecutive elements in A, there must be a
jump in ℓ, so j(P ) ≥ w(P )− 1. □

Proposition 3.61. A poset P satisfies c(P ) = 1 if and only if P = (A1⊕A2)⊔A3,
where Ai is an antichain and A1, A2 are non-empty.

Proof. It is easy to check that a poset of the form P = (A1 ⊕ A2) ⊔ A3 satisfies
c(P ) = 1. So suppose that P is a poset satisfying c(P ) = 1. By Proposition 3.60,
h(P ) ≤ 2. In fact, since P is not an antichain, h(P ) = 2. By the additivity of
comparability under disjoint unions, exactly one component P ′ of P has c(P ′) = 1,
so P = P ′ ⊔A, where A is an antichain. Thus, h(P ′) = 2. Suppose for the sake of
contradiction that P ′ is not an ordinal sum of two non-empty posets. Let v be a
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maximal element in P ′. Since P ′ is not a non-trivial ordinal sum, there is a child of
v, call it v′, that is incomparable to some w ∼ v. Since P ′ is connected, w has a child
w′. Then, there is an ℓ ∈ LinExt(P ) such that ℓ(w′) + 1 = ℓ(w) < ℓ(v′) = ℓ(v)− 1,
in which case c(P ′) ≥ 2, a contradiction. So P ′ is an ordinal sum of two non-empty
posets: P ′ = P1 ⊕ P2. Since c(P1 ⊕ P2) = c(P1) + c(P2) + 1 = 1, we have that P1

and P2 are antichains, as desired. □

Proposition 3.62. If c(P ) = 1 and k ̸= 1, 2, then Z/2Z× S4 ≤ Stab(ℓ).

Proof. By Proposition 3.61, P = (A1 ⊕ A2) ⊔ A3. Since k ̸= 1, |A3| ≥ 1. Since
k ̸= 2, |A1| ≥ 2 or |A2| ≥ 2. By duality, we may assume |A1| ≥ 2. But then, the
poset with |A1| = 2 and |A2| = |A3| = 1 is a convex induced sub-poset of P . A
computation shows that this poset has Stab(ℓ) ∼= Z/2Z × S4, so the proposition
follows by Corollary 3.5. □

Proposition 3.63. If P is not a non-trivial ordinal sum and not a disjoint union
of chains, then S4 ≤ Stab(ℓ).

Proof. We may assume that P is not a non-trivial ordinal sum. If P is a disjoint
union of chains, the proposition follows from Lemma 3.37. Thus, we may assume
that P either has an up-triangle or a down-triangle as an induced sub-poset. By
duality, we may assume P has an up-triangle as an induced sub-poset. That is, there
are u, v, w ∈ P with the only relations among them being v < u and w < u. Since
P is not a non-trivial ordinal sum, there is an immediate child of u incomparable
to some x ∼ u. Without loss of generality, assume this immediate child is w. If
x ∼ v, then u, v, w, and x form a convex induced sub-poset of P with Stab(ℓ) ∼=
Z/2Z × S4. If x > v, then u, v, w, and x form a convex induced sub-poset of P
with Stab(ℓ) ∼= S4. In either case, the proposition follows by Corollary 3.5. □

Corollary 3.64. If k ̸= 6, 12, 36, 2n, then either (Z/2Z)2 × S3 ≤ Stab(ℓ) or S4 ≤
Stab(ℓ). In particular, 24 | k.

Proof. We may assume that P is not a non-trivial ordinal sum. If P is a dis-
joint union of chains, the proposition follows from Lemma 3.37. Otherwise, the
proposition follows from Proposition 3.63. □

We can completely classify posets P with 24 ∤ k. By the multiplicativity of
k under ordinal sums, it suffices to classify P that are not a non-trivial ordinal
sum. If 24 ∤ k, then by Proposition 3.63, P is a disjoint union of chains. Then, a
classification follows from Lemma 3.37.

4. LE-cactus posets

The cactus relations on the group generated by t1, . . . , tn−1 are (tiqjk)
2 = 1,

where qij = qj−1qj−iqj−1 and qi = t1(t2t1) . . . (ti . . . t1). Call a poset P cactus if P
satisfies the cactus relations. Otherwise, P is called non-cactus.

In this section, we construct posets that satisfy cactus relations, termed LE-
cactus posets. In Section 4.1, we provee several properties that hold in LE-cactus
posets. Aside from previous results that Ferrers posets are LE-cactus [CGP20,
Theorem 1.4], we show that a disjoint union of two LE-cactus posets is LE-cactus
(Proposition 4.14) and the ordinal sum of one or two element anti-chain with a
LE-cactus poset is LE-cactus (Proposition 4.15 and Proposition 4.16). In Section
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4.2, we consider posets that do not satisfy cactus relations and proved that no LE-
cactus poset has three bottom elements (Proposition 4.21). Lastly, in Section 4.3,
we attempt to construct LE-cactus posets and listed out our conjectures along with
examples and counterexamples.

Definition 4.1. Call a poset P LE-cactus if the ti satisfy the cactus relations.

4.1. Cactus group properties on posets.

Definition 4.2. We define promotion, denoted δi, to be the action of ti−1 . . . t2t1.

Definition 4.3. We define evacuation to be the action of

qi−1 = t1(t2t1) . . . (ti−1 . . . t1) = δ1δ2 . . . δi.

Thus, evacuation qi−1 can be thought of as i rounds of promotion.

Note that by this definition of promotion and evacuation is equivalent to the
definition of promotion and evacuation in Stanley [Sta09].

Proposition 4.4 ([Sta09]). Evacuation qi is an involution.

Corollary 4.5. qjk = qk−1qk−jqk−1 is an involution.

Thus to show that a poset P is LE-cactus, it suffices to show that the actions ti
and qjk commute for i+ 1 < j < k.

REU problem 3a (i) asked whether the ti give a LE-cactus group action (i.e.,
whether HP is a quotient of Cn). Son and Matthew’s code found some counterex-
amples.

Example 4.6. The minimal counterexamples appear when n = 4:

Figure 7. Minimal non-cactus posets

Question 4.7. For which P do the ti give a cactus group action?

Proposition 4.8. Ferrers posets Fλ are LE-cactus.

See [CGP20, Theorem 1.4] for a proof.

Lemma 4.9. A poset P is LE-cactus if and only if every ideal I of P is LE-cactus.

Recall that in Proposition 3.8, we showed that if a relation type fails on the
linear extensions of some convex induced subposet of P , then the relation type fails
on P . However, the LE-cactus relations (tiqjk)

2 = 1 do not form a relation type.
Thus, we cannot say that if some convex induced subposet of P is not LE-cactus,
then P is not LE-cactus. However, we have the following condition is sufficient for
showing a poset P is not LE-cactus.
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Proof of Lemma 4.9. By contrapositive, suppose that there exists an ideal I of P
such that I is not LE-cactus. We can construct a linear extension f∗ by taking
any linear extension on I and on the shifted induced poset P \ I, where the shifted
induced poset is the induced poset P \ I with its label adding m = |I|. Then, we
can construct a linear extension of P such that im(f(I)) = [m]. Moreover, there
exists no element p ∈ I, q ∈ P \ I such that p > q. Otherwise, it contradicts with
I being an ideal.

Since we assumed I is not LE-cactus, there exists indices i, j, k satisfying 2 ≤
i + 1 < j < k ≤ m − 1 and (tiqjk)

2 ̸= 1. Given the construction we have for f∗,
(tiqjk)

2(f) ̸= 1 also holds on linear extension f∗. Thus, since the cactus relations
fail on a linear extension of P , they cannot hold on LinExt(P ). □

Thus when classifying which posets are LE-cactus, we can eliminate any poset
that contains a not LE-cactus poset as an ideal.

4.1.1. Cactus relations under disjoint union. Now we can show that the disjoint
union of LE-cactus posets remains LE-cactus. To do so, we first define a bijection
that will help us break down showing commutativity on an entire linear extension
of P +Q.

Definition 4.10. We define a map T from linear extensions to tuples by

T (f) = (P ∗, Q∗, f(P ), f(Q))

for any f ∈ LinExt(P +Q), where P ∗, Q∗ are independent linear extensions on P,Q
with the same relative ordering of elements as in f , and f(P ), f(Q) are defined in
Definition 3.22.

Example 4.11. Under T , the union in figure 8 is mapped to the tuple containing
P ∗, Q∗ in figure 9 and f(P ) = {1, 2, 4, 5, 6, 9}, f(Q) = {3, 7, 8, 10}.

1

42

6 5 9

3 7

8 10

Figure 8. P ⊔Q

It is easy to see that T is injective.

We also need the following lemma describing the action of qi−1 on f(P ) and
f(Q).

Lemma 4.12. Let f be a linear extension of P +Q. If element j ∈ f(P ), then

i) i− j ∈ (qi−1f)(P ) for all i ≥ j
ii) j ∈ (qi−1f)(P ) for all i < j.
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1

32

5 4 6

1 2

3 4

Figure 9. P ∗ and Q∗

In other words, if label j is assigned to an element of P in the linear extension
f , then label i− j is assigned to an element of P in the linear extension qi−1f when
i ≥ j, and label j is assigned to an element of P in linear extension qi−1f when
i < j.

Proof. Consider the action of qi−1 = δ1δ2 . . . δi−1 on a fixed linear extension f .
Observe that by Stanley’s definition of promotion, for any δj , we only act on either
P or Q.

Note that ii) is immediate, as qi−1 only acts on elements in [i], so j remains as
a label in P .

It remains to show i). If 1 ∈ f(P ), then after the first round of promotion
δi = ti−1 . . . t1, we have i ∈ (δif)(P ). Since we fix the label i after round δi in
evacuation, we thus have i ∈ (qif)(P ). Similarly, if 2 ∈ f(P ), then after two
rounds of promotion δi−2δi−1, we have i − 2 ∈ (δi−2δi−1f)(P ), and thus i − 2 ∈
(qi−1f)(P ). In general, j ∈ f(P ) where j < i, then we have after j − 1 rounds of
promotion that 1 ∈ (δi+1−j . . . δi−2δi−1)f(P ), since we decrease the label j of by 1
in each round of promotion. Thus, applying δi−j for round j of promotion gives us
i − j ∈ (δi−j . . . δi−2δi−1)f(P ). Since the label i − j is frozen for any subsequent
rounds of promotion, we have

j ∈ f(P ) ⇒ i− j ∈ (qi−1f)(P )

as desired. □

We also need the following lemma describing the action of qjk on P ∗ and Q∗.

Lemma 4.13. Let f ∈ LinExt(P +Q), and let T (f) = (P ∗, Q∗, f(P ), f(Q)). Then

T (qjkf) = (qm−n,m(P ∗), qjk(Q
∗), (qjkf)(P ), (qjkf)(Q)).

where m = |f(P ) ∩ [k]| and n = |f(P ) ∩ [j + 1, k]| − 1.

Proof. Note that in each round of promotion during evacuation, we only act on
either P or Q, which follows immediately from Stanley’s definition. Furthermore,
the number of rounds of promotion that act on P is equal to the number of times
the label 1 appears in P , which is precisely |f(P ) ∩ [k]|. From this, we see that
acting on f by qk−1 = δ1 . . . δk−1 gets mapped under T to acting on P ∗ by qm−1,
where m = |f(P ) ∩ [k]|.

Now we consider the action of qk−j on qk−1f . By the same argument above, we
have the induced action of qk−j on qm−1P

∗ is equivalent to the action of qn′−1 on
qm−1P

∗ where n′ = |(qk−1f)(P )∩ [k− j]|. Using Lemma 4.12, e ∈ f(P ) ⇒ k− e ∈
(qk−1f)(P ). Thus, n′ = |(qk−1f)(P ) ∩ [k − j]| = |f(P ) ∩ [j + k + 1, k]|.
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Finally, we act again by qk−1 on qk−jqk−1f . The induced action of qk−1 on
qn′−1qm−1P

∗ is equivalent to the action of qm′−1 on qn′−1qm−1P
∗, where m′ =

|(qk−jqk−1f)(P ) ∩ [k]|. However, by Lemma 4.12, we have that |(qk−jqk−1f)(P ) ∩
[k]| = |f(P ) ∩ [k]|, so our action of qk−1 is really equivalent to the action of qm−1

on qn′−1qm−1P
∗.

Thus we have

T (qjkf) = (qm−1qn′−1qm−1(P
∗), qjk(Q

∗), (qjkf)(P ), (qjkf)(Q))

where m = |f(P )∩ [k]| and n′ = |f(P )∩ [j+k+1, k]|, and note that qm−1qn′−1qm−1

is equivalent to qm−n,m = qm−1qnqm−1, where n = n′−1 = |f(P )∩[j+k+1, k]|−1.
Hence

T (qjkf) = (qm−n,m(P ∗), qjk(Q
∗), (qjkf)(P ), (qjkf)(Q))

where m = |f(P ) ∩ [k]| and n = |f(P ) ∩ [j + k + 1, k]| − 1 as desired. □

Now we are ready to prove our main proposition.

Proposition 4.14. If P and Q are LE-cactus, then P +Q is LE-cactus.

Proof. Let f ∈ LinExt(P + Q) be any linear extension of P + Q, and let T (f) =
(P ∗, Q∗, f(P ), f(Q)). Since our map T is injective, it suffices to show that ti and
qjk commute with respect to each of P ∗, Q∗, f(P ), f(Q). First we show that ti and
qjk commute with respect to f(P ) and f(Q).

Case 1: Assume without loss of generality that i, i+ 1 ∈ f(P ). Then ti acts as
the identity on f(P ) and f(Q), so clearly ti and qjk commute.

Case 2: Assume without loss of generality that i ∈ f(P ) and i + 1 ∈ f(Q),
which will simply denote as (i, i+ 1). All other elements are unaffected by ti, so it
suffices to consider where (i, i+ 1) gets taken under ti and qjk. Suppose we act on
f by qjkti. Then ti takes (i, i+ 1) to (i+ 1, i). Using Lemma 4.12, since k − 1 > i
and k − j < k − i, we have

(i, i+ 1)
ti→ (i+ 1, i)

qk−1→ (k − (i+ 1), k − i)
qk−j→ (k − (i+ 1), k − i)

qk−1→ (i+ 1, i).

Now suppose we act f by tiqjk, which gives

(i, i+ 1)
qk−1→ (k − i, k − (i+ 1))

qk−j→ (k − i, k − (i+ 1))
qk−1→ (i, i+ 1)

ti→ (i+ 1, i).

Thus ti and qjk commute with respect to f(P ), f(Q), as desired.
It remains to show that ti and qjk commute with respect to P ∗ and Q∗.
Case 1: Assume without loss of generality that i, i + 1 ∈ f(P ). Then ti does

not affect Q∗, so it suffices to show that ti and qjk commute with respect to P ∗.
Note that by Lemma 4.13, we have the induced actions of tiqjk and qjkti on P ∗ are
equivalent to ti′qm−n,m(P ∗) and qm−n,mti′(P

∗), respectively, wherem = |f(P )∩[k]|
and n = |f(P ) ∩ [j, k]| and i′ = |f(P ) ∩ [i]|. Further note that

(m− n)− i′ = |f(P ) ∩ [k]| − (|f(P ) ∩ [j + 1, k]| − 1)− |f(P ) ∩ [i]|
⇒ (m− n)− i′ = |f(P ) ∩ [j]| − |f(P ) ∩ [i]|+ 1 ≥ 2

⇒ i′ + 1 < m− n

where the second to last equation follows from our assumption that i, i+1 are both
in f(P ) and j > i + 1. Then ti′qm−n,m(P ∗) = qm−n,mti′(P

∗), since P itself is
LE-cactus, so ti and qjk commute on P ∗ and Q∗ in this case.



24 J. CHIANG, M. KENDALL, R. LYNCH, S. NGUYEN, B. PRZYBOCKI, AND J. XIA

Case 2: Assume without loss of generality that i ∈ f(P ) and i+1 ∈ f(Q). Then
ti acts as the identity on P ∗ and Q∗, as swapping elements i, i+1 does not change
the relative ordering within f(P ) and f(Q). Then clearly ti and qjk commute.

Thus, ti and qjk also commute with respect to P ∗ and Q∗. Hence ti and qjk
commute with respect to the linear extension f ∈ LinExt(P + Q), so P + Q is
LE-cactus. □

4.1.2. Cactus relations under ordinal sums. Now that we have looked at what hap-
pens to the cactus relations under ordinal sums, another natural question to ask is
when the cactus relations are preserved under taking ordinal sums of posets. We
have the following two ordinal sum constructions that preserve the cactus property.

Proposition 4.15. If P is LE-cactus, then 1⊕ P is LE-cactus.

Proof. Assume |P | = n − 1, so |1 ⊕ P | = n. Since P is LE-cactus, the relations
(tiqjk)

2 = 1 hold for 3 ≤ i + 1 < j < k ≤ n with k − j > 1. Moreover, in any
linear extension of 1⊕P , the unique minimum element must be labelled 1 since it is
comparable with all other elements, so t1 is the identity. Since qjk is an involution
for all j < k ≤ n, it then holds that (t1qjk)

2 = 1 for all j, k. It then remains to
check the relations (tiqjk)

2 when k − j = 1. In this case, we have

qjk = qk−1qk−jqk−1 = qk−1q1qk−1 = qk−1t1qk−1.

As above, t1 is the identity, and since qk−1 is an involution, qjk is the identity as
well. From this the relation (tiqjk)

2 = 1 follows. □

Proposition 4.16. If P is LE-cactus, then (1 + 1)⊕ P is LE-cactus.

Proof. Given i+1 < j < k ≤ n, one only need to check (tiqjk)
2 = 1 on three cases:

k − j > 2, k − j = 2, and k − j = 1.
When k − j > 2, the argument is analogous to Proposition 4.15, where this result
is implied by P being LE-cactus since t2 acts trivially. When k − j = 2, t2 is the
identity. Therefore,

(tiqjk(t2t1)(t1)qjk)
2 = (tiqjk(t2)qjk)

2

= (tiqjkqjk)
2, (since t2 is the identity)

= 1

When k− j = 1, since t1 in general commutes with everything except t2, and t2 in
this case is the identity, so we have

(tiqjkt2t1qjk)
2 = (tit1qjkqjk)

2 = (tit1)
2 = 1.

□

4.1.3. Minimal cactus generators. We now explore a conjecture about the connec-
tion between different relations (tiqjk)

2. In particular, we explore whether there
are “small” sets of triples (i, j, k) such that a poset P is LE-cactus if and only if P
satisfies all relations in this small set.

Definition 4.17. For 2 ≤ i+1 < j < k ≤ n, a poset P of size n is (i, j, k)-LE-cactus
if (tiqjk)

2 ∈ kerϕP .

Proposition 4.18. Let P be a poset with |P | = n, where n ∈ {5, 6, 7, 8}. Then P
is LE-cactus if and only if:

• When n = 5, P is (1, 3, 5)-LE-cactus.
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• When n = 6, P is (2, 4, 6)-LE-cactus and at least one of (1, 3, 6), (1, 4, 6),
or (1, 5, 6)-LE-cactus.

• When n = 7, P is (2, 4, 7)-LE-cactus and is at least one of (1, 3, 7), (1, 4, 7),
or (1, 6, 7)-LE-cactus.

• When n = 8, P is (1, A, 8), (2, B, 8), and (3, 5, 8)-LE-cactus for at least
one of the following pairs (A,B):

(3, 4) (3, 5) (3, 6)

(4, 4) (4, 5)

(5, 4) (5, 5) (5, 6)

(6, 4) (6, 5) (6, 6)

(7, 4) (7, 5)

Proof. To obtain this result for a particular n ∈ {5, 6, 7, 8}, we used SAGE to
generate a list of all pairs (P,CP ), where P is a poset of size n, and CP consists of
all triples (i, j, k) with 2 ≤ i+ 1 < j < k ≤ n and (tiqjk)

2 ∈ kerϕP . Let Tn be the
set of all such possible triples (i, j, k). For each subset T ′ ⊂ Tn of size 1, 2, 2, or 3
respectively, we include T ′ in our list iff CP = Tn for all P with T ′ ⊂ CP . That is,
we include T ′ if for any poset P satisfying each triple in T ′, P is LE-cactus. □

Question 4.19. Can we find other small sets of (i, j, k)-triples for n = 6, 7, 8 that to-
gether imply P is LE-cactus, potentially sets that allow for easier pattern spotting?
Can we find similar small sets for n ≥ 9?

4.2. Non-LE-cactus poset properties.

Proposition 4.20. If P is an order ideal of a poset Q ⊃ P and P is not LE-cactus,
then Q is not LE-cactus.

Proof. This is equivalent to Lemma 4.9. □

Proposition 4.21. Given any P , n⊕ P is non-LE-cactus if n ≥ 3.

Proof. By proposition 4.20, Q is non-LE-cactus if it is an order ideal of a non-
LE-cactus poset. Since Example 4.6 shows that 3 ⊕ 1 is non-LE-cactus, 3 ⊕ P is
non-LE-cactus. Similarly, n⊕ P is non-LE-cactus for n ≥ 3. □

Definition 4.22. Define Pn := 1n1⊕1n2⊕· · ·⊕1nl as the ordinal sum of anti-chains,
where 1ni is the anti-chain of ni vertices, and n = (n1, n2, . . . , nℓ).

Question: When is Pn LE-cactus?

Remark 4.23. By observing the data, we know the followings: if Pn is LE-cactus,
under certain (unknown) criteria, Pn ⊕ 1 and Pn ⊕ 2 will become non-LE-cactus.
Likewise, if P ′

n is non-LE-cactus, under certain (unknown) criteria, 1 ⊕ P ′
n and

2⊕ P ′
n will make it LE-cactus.

We already knew that Pn ni ≤ 2 is always LE-cactus, therefore we listed out the
ones when ni ≤ 3 for l ≤ 4 in table 1.

Conjecture 4.24. Given an antichain P , 1⊕P ⊕1 is non-LE-cactus if P has size
l ≥ 4.

Remark 4.25. When n := |P | = 4, 5, 6, 7, the LE-cactus relations that fail are
precisely (2, ℓ, n+ 2) for 4 ≤ ℓ ≤ n.
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LE-cactus non-LE-cactus

l = 1 3 N/A

l = 2 (1⊕ 3), (2⊕ 3) (3⊕ 1), (3⊕ 2)
(3⊕ 3)

l = 3 (1⊕ 1⊕ 3), (1⊕ 2⊕ 3) (3⊕ 1⊕ 1), (3⊕ 1⊕ 2)
(2⊕ 1⊕ 3), (2⊕ 2⊕ 3) (3⊕ 2⊕ 1), (3⊕ 2⊕ 2)

(1⊕ 3⊕ 1) (3⊕ 3⊕ 1)
(1⊕ 3⊕ 2) (3⊕ 3⊕ 2)
(2⊕ 3⊕ 1) (1⊕ 3⊕ 3)
(2⊕ 3⊕ 2) (2⊕ 3⊕ 3)

(3⊕ 3⊕ 3)

l = 4 (1⊕ 1⊕ 1⊕ 3), (1⊕ 1⊕ 2⊕ 3) (3⊕ 1⊕ 1⊕ 1), (3⊕ 1⊕ 1⊕ 2)
(1⊕ 2⊕ 1⊕ 3), (1⊕ 2⊕ 2⊕ 3) (3⊕ 1⊕ 2⊕ 1), (3⊕ 1⊕ 2⊕ 2)
(2⊕ 1⊕ 1⊕ 3), (2⊕ 1⊕ 2⊕ 3) (3⊕ 2⊕ 1⊕ 1), (3⊕ 2⊕ 1⊕ 2)
(2⊕ 2⊕ 1⊕ 3), (2⊕ 2⊕ 2⊕ 3) (3⊕ 2⊕ 2⊕ 1), (3⊕ 2⊕ 2⊕ 2)
(1⊕ 1⊕ 3⊕ 1), (1⊕ 1⊕ 3⊕ 2) (1⊕ 3⊕ 2⊕ 1), (2⊕ 3⊕ 2⊕ 1)
(1⊕ 2⊕ 3⊕ 1), (1⊕ 2⊕ 3⊕ 2) (1⊕ 3⊕ 2⊕ 2), (2⊕ 3⊕ 2⊕ 2)
(2⊕ 1⊕ 3⊕ 1), (2⊕ 1⊕ 3⊕ 2) (1⊕ 3⊕ 1⊕ 2), (2⊕ 3⊕ 1⊕ 2)
(2⊕ 2⊕ 3⊕ 1), (2⊕ 2⊕ 3⊕ 2)

(1⊕ 2⊕ 3⊕ 3), (2⊕ 1⊕ 3⊕ 3), (2⊕ 2⊕ 3⊕ 3) (1⊕ 1⊕ 3⊕ 3)
(1⊕ 3⊕ 1⊕ 1), (2⊕ 3⊕ 1⊕ 1)

Table 1

Conjecture 4.26. Given an antichain P , (1 + 1) ⊕ P ⊕ 1 is non-LE-cactus if P
has size ≥ 5.

Remark 4.27. When n := |P | = 5, 6, 7, the LE-cactus relations that fail are precisely
(3, ℓ, n+ 3) for 5 ≤ ℓ ≤ n.

4.3. Potential LE-cactus constructions.

Question 4.28. If P is LE-cactus and contains an order ideal I for which I ⊕ {x}
is a rectangular Ferrers poset, is P ∪I {x} LE-cactus1?

This is not true in general, as seen by the following example.

Example 4.29. In this example, P is LE-cactus, but P ∪I {6} is not cactus, where
I is the order ideal generated by 1.

1The notation P ∪I {x} means that x is greater than all elements in I and x is incomparable
with elements of P not in I.
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P P ∪I {6}

0

1 2

3

4 5

0

1 2

6 3

4 5

One may wonder what adding a maximal and minimal element does to LE-cactus
posets. Proposition 4.15 tells us that adding a minimal element to a LE-cactus
poset keeps the poset LE-cactus. However, adding a maximal element to a LE-
cactus poset does not always give a LE-cactus poset, as seen by the left poset in
Example 4.6. A few related questions are the following:

Question 4.30. If P is LE-cactus, is 1 ⊕ P ⊕ 1 LE-cactus? If P is LE-cactus, is
(1 + 1)⊕ P ⊕ 1 LE-cactus?

This is not true in general, as seen by the following example.

Example 4.31. Neither of the following posets are LE-cactus:

1⊕ 4⊕ 1 (1 + 1)⊕ 5⊕ 1

0

1 2 3 4

5

1

23 4 5 6

0

7

Related to Question 4.30 is the following:

Question 4.32. If P is a Ferrers poset, does Question 4.30 hold?

Question 4.33. Are there sufficient conditions on LE-cactus P so that P ⊕ 1 is
LE-cactus?

Question 4.34. If Q⊕ 1 is LE-cactus, do we have Q⊕ 1⊕ 1 is LE-cactus?

This is not always true, as shown in the example below.

Example 4.35. In this case, Q⊕ 1 is LE-cactus, but Q⊕ 1⊕ 1 is not LE-cactus.
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Q Q⊕ 1 Q⊕ 1⊕ 1

0

1 3

2 4

0

1 3

2 4

5

0

1 3

2 4

5

6

If P and Q are posets, the Cartesian product poset P × Q consists of elements
(p, q) for all p ∈ P and q ∈ Q such that (p1, q1) ≤ (p2, q2) if and only if p1 ≤ p2 in
P and q1 ≤ q2 in Q.

Question 4.36. If P and Q are LE-cactus, is P ×Q LE-cactus?

This is not always true, as shown in the example below.

Example 4.37. In this example, P and Q are LE-cactus, but P ×Q is not.

P Q P ×Q

0

1 2

0

1

0

12 4

3 5

Question 4.38. If A1 ⊕ A2 ⊕ P is LE-cactus, where each Ai is either 1 or 1 + 1, is
A2 ⊕ P LE-cactus?

This does not hold in any of the four cases, as seen in this example:

Example 4.39. In each of the following cases, A1⊕A2⊕P is LE-cactus, but A2⊕P
is not LE-cactus. These are of minimal size.
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A1 = A2 = 1 A1 = 1, A2 = 1 + 1 A1 = 1 + 1, A2 = 1 A1 = A2 = 1 + 1

0

1

2 3 4 5

6

0

1 2

3 4 5

6

7 8

1

2

0

3 4 5 6

7

1

2 3

0

4 5 6

7

8 9

4.4. Speculation on d-complete posets. Starting with the unique poset 1 on
one element, when one iterates the constructs of disjoint union and P 7→ 1⊕P , one
produces a family of LE-cactus posets consisting of all rooted forest posets (with
roots at the bottom). Knuth observed a famous hook-length formula for counting
the linear extensions of such forest posets. Knuth was motivated by the family
of Ferrers posets for which the Frame-Robinson-Thrall hook-length formula counts
their linear extensions, another family of posets that we know are LE-cactus.

Motivated by these two families with hook formulas, R. Proctor introduced
the family of d-complete posets having such a hook-length formula for their lin-
ear extensions– see Proctor and Scoppetta [PS19] and Kim and Yoo [KY19] for
definitions and the hook-length formulas. This raises an intriguing question.

Question 4.40. Are all d-complete posets LE-cactus?

Preliminary investigations point to an affirmative answer. For example,

• Small computations with exceptional minuscule posets (a subfamily of d-
complete posets) indicate that they are LE-cactus.

• It is not too hard to show that all shifted Ferrers posets, which form an-
other motivating subfamily of d-complete posets, are all LE-cactus. The
idea is to embed standard shifted tableaux (= linear extensions of shifted
Ferrers posets) by “doubling” them into what Sagan [Sag87, §4] calls a
shift-symmetric column-strict tableaux. Then the usual ti action on the
standard shifted tableaux commutes with ti action on the shift-symmetric
tableaux, where one knows that the ti satisfy cactus relations.

5. Bender–Knuth action on column-strict tableaux

In this section, we return to the Bender–Knuth action on column-strict tableaux.
We are particularly interested in finding column-strict tableaux for which the Bender–
Knuth action is transitive. We find multiple families in Proposition 5.7, Theo-
rem 5.11, or Theorem 5.13, and provide further data in Subsection 5.2.
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The set of all column strict tableaux of shape λ and entries contained in [n] is
denoted by CST(λ, [n]). We denoted by CST(λ, α) the subset of CST(λ, [n]) having
content α = (α1, . . . , αn), that is, αi occurrences of i for each i = 1, 2, . . . , N . The
Bender-Knuth involutions t1, . . . , tn−1 are involutions acting on CST(λ, [n]) that
were defined on Day 6, and send a tableaux T of content α to a tableaux ti(T )
having content

si(α) = (α1, . . . , αi−1, αi+1, αi, aαi+2 , . . . , αn).

Consequently, the ti also act on each of these sets where the shape λ is fixed, and
the content varies through the permutations w(α) of α:⊔

w∈Sn

CST(λ,w(α)).

Definition 5.1. Fix a shape λ and a content α of the same size N = |λ| = |α|.
Call the action of t1, . . . , tN−1 on the CSTs with shape λ and permutations of a
fixed content α the Bender-Knuth (BK) action.

Question 5.2. Is this action always transitive, as in the case where α = (1, 1, . . . , 1)?

We do not always get a transitive action, as shown by the below example.

Example 5.3. The column-strict tableaux with shape λ = (4, 2) and content µ =
(2, 2, 2) has two orbits, as shown in Figure 10.

1 1 2 2

3 3

1 1 3 3

2 2

1 1 3

2

2

3

t2

Figure 10. Two orbits in the BK action

We can, however, restrict ourselves to the Bender–Knuth action on the column-
strict tableaux of content µ. To form a precise statement, recall the infinite Coxeter
group

Wn = ⟨t1, . . . , tn−1 : t2i = 1 and titj = tjti if |i− j| ≥ 2⟩.
The group Wn acts on SX , where X =

⊔
w∈Sn

CST(λ,w(α)), via the Bender–
Knuth involutions. If p : Wn → Sn is the quotient map, let

W (µ) = p−1({w ∈ Sn : w(µ) = µ}),

which is the set of subgroup of Wn whose image under p fixes µ.

Proposition 5.4. The set of Wn-orbits on
⊔

w∈Sn
CST(λ,w(µ)) is in bijection

with the set of W (µ)-orbits on CST(λ, µ).

Proof. Fix an orbit O of the Wn-action on
⊔

w∈Sn
CST(λ,w(µ)). Every tableau in

O has some Wn-orbit representative lying in CST(λ, µ) because the action of Wn

on Sn is transitive. Whenever two tableaux in CST(λ, µ) lie in the same Wn-orbit,
they actually also lie in the same W (µ)-orbit, because the element that carried one
to the other had to fix the content µ. Conversely, if we take an orbit Oµ of the
W (µ)-action on CST(λ, µ), the subset of

⊔
w∈Sn

CST(λ,w(µ)) whose representative
lies in Oµ is a Wn-orbit. □
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Lemma 5.5. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µm).
If ℓ(λ) = ℓ(µ) then the BK action on⊔

w∈Sm

CST (λ,w(µ))

is isomorphic to the BK action on⊔
w∈Sm

CST (λ′, w(µ′))

where λ′ = (λ1 − 1, . . . , λn − 1) and µ′ = (µ1 − 1, . . . , µm − 1).

Proof. If ℓ(λ) = ℓ(µ) then the first column has to be filled with 1, 2, . . . , ℓ(µ). This
means that every BK involution fixes the first column, and so we only concern the
rest of the CST which has shape (λ1− 1, . . . , λn− 1) and content (µ1− 1, . . . , µm−
1). □

Thus, we will only consider either λ = ∅ or ℓ(λ) < ℓ(µ).

5.1. Transitivity.

Definition 5.6. The Kostka number is the number of column-strict tableaux with
shape λ and content α.

Proposition 5.7. For the following pairs of (λ, α), the BK action is transitive.

(1) The Kostka number Kλα = 1.
(2) The content α = (1, 1, . . . , 1).
(3) Let λ be an a × b rectangle, with content α = (b − 1, b − 1, . . . , b − 1, ab

(mod b−1)). Then the action of the Bender-Knuth involutions t1, . . . , tN−1,
where N = |α|, is transitive on

⊔
w∈SN

CST(λ,w(α))

Remark 5.8. The Kostka number Kλα = 1 has a combinatorial description given by
Berenstein-Zelevinski [BZ90] and by Naylor-Vinroot [JNV17]. The combinatorial
Kostka number criteria is related to a decomposition of the partition λ into almost
rectangular parts, which suggests that there might be a generalization of Case 3
for transitivity. For reference, we write the criteria as written in [JNV17, Theorem
3.1].

Theorem 5.9 ([JNV17]). Let λ and µ be partitions of n, and suppose ℓ(µ) = l. Then
Kλµ = 1 if and only if there exists a choice of indices 0 = i0 < i1 < · · · < it = l
such that, for k = 1, . . . , t, the partitions

λk = (λik−1+1, λik−1+2, . . . , λik) and µk = (µik−1+1, µik−1+2, . . . , µik),

where we define λi = 0 if i > ℓ(λ), satisfy the following:

(1) λk dominates µk, written λk ⊵ µk, which means that for each j ≥ 1,∑
i≤j λ

k
i ≥

∑
i≤j µ

k
i .

(2) Either λik−1+1 = λik−1+2 = · · · = λik−1 or λik−1+1 > λik−1+2 = λik−1+3 =
· · · = λik .

What this theorem says is that Kλµ = 1 if and only if we can decompose the
shape λ into tableaux (λ1, µ1), . . . , (λt, µt) such that each (λk, µk) has λk ⊵µk and
the shape λk satisfies one of

(1) λik−1+1 = λik−1+2 = · · · = λik ,
(2) λik−1+1 > λik−1+2 = λik−1+3 = · · · = λik (λik can be zero),
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(3) λik−1+1 = λik−1+2 = · · · = λik−1 > λik (λik can be zero).

Note that in each of the three cases, the shape λk of the tableau (λk, µk) is almost
rectangular.

We briefly explain why this condition is equivalent. Let |λ| =
∑

k≥1 λi. Since∑t
k=1 |λi| = |λ| = |µ| =

∑t
k=1 |µi|, the condition λk ⊵ µk implies that |λk| = |µk|

for all k = 1, . . . , t. Now we can translate condition (2) in Theorem 5.9 into the
above three conditions.

Proof of Proposition 5.7. (1) If Kλα = 1, then a tableau in CST(λ,w(α)) cor-
responds uniquely to the permutation w(α). Since the action of SN on the
content α by left multiplication is transitive, this implies that BK action
on the disjoint union CST(λ,w(α)) for w ∈ SN is transitive.

(2) When the content α = (1, . . . , 1), the tableau x ∈ CST(λ,w(α)) is a Stan-
dard Young Tableau. This means that x uniquely corresponds to a linear
extension x ∈ LinExt(Fλ), where Fλ is the Ferrers poset of shape λ. More-
over, the Bender-Knuth action ti on

⊔
w∈SN

CST(λ, α) corresponds to the

action of ti on LinExt(Fλ). By Proposition 3.2, the group HFλ
is transitive.

This implies that the BK action on
⊔

w∈SN
CST(λ,w(α)) is transitive.

(3) We will prove by induction on a that 1) the BK action is transitive, and 2)
we can get any CST with content α from one CST with content α without
using tN−1.

The cases where a = 1 and a = 2 are trivial since Kλα = 1. Also, when
a = 2, since there is only 1 CST with content α, we do not need to use t1
to get all CST with content α.

Suppose the statement is true for a = k, consider λ an (k + 1) × b
rectangle. Let α be the corresponding content and N = |α|. Let i = ab
mod (b− 1), and let m be the largest number in column b− i+ 1, i.e. the
leftmost column that contains N , such that m− 1 is not in that column.

If m < N − 1, we will prove that we can increase m by 1 using tm−1.
Since m − 1 is not in column b − i + 1, and there are b − 1 squares in
different columns containing m and m− 1, there is exactly 1 column j that
contains m − 1 and does not contain m, and every other column contains
both m−1 and m. Furthermore, the m in column b− i+1 and the m−1 in
column j cannot be in the same row. This is because otherwise the square
(k+1, b− i) must contain N (due to column strictness), which is impossible
since b − i + 1 is the left most column that contains N . Thus, tm−1 will
swap these two squares, and so we can increase m by 1. Therefore, we
can always increase m to N − 1. This means that from every CST shape
(k+1)× b with content α, we can get to a CST with m = N − 1, and note
that we do not have to use tN−1 yet.

When m = N − 1, then there is N − 1 in every other column. Thus,
row k + 1 only contains N and N − 1, and so the first k rows form a CST
of shape k × b with content α0 = (b − 1, b − 1, ..., kb mod (b − 1)). By
the induction hypothesis, we can get all CST of shape α0 without using
tl(α0)−1. This fact is important since we do not interfere with row k + 1.
And since from every CST shape (k+ 1)× b with content α, we can get to
a CST with row k + 1 only contains N and N − 1, we can get from any
CST of shape (k + 1) × b with content α to another, so the BK action is
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transitive. Finally, note that at no point in these steps that we have to use
tN−1. This completes the inductive step.

□

Remark 5.10. Case 3 is separate from Case 1. This can be seen by taking λ, α to
be a 3 × 4 rectangle and content α = (2, 2, 2, 2, 2, 2). Then Kλα = 5. (There are
many other similar λ, α).

Theorem 5.11. For any shape λ, if the content µ is of the form µ = (1, µ̂), then
the BK action is transitive.

Proof. We induct on the length of the content µ. Our base case is µ has length
2, i.e. µ = (1, µ2) for some positive integer µ2. In this case, the Kostka number
Kλµ = 1, so the BK action is transitive by Proposition 5.7 Case 1.

Let λ = (λ1, . . . , λm). Now suppose µ = (1, µ2, . . . , µi−1, µi) where i > m and,
without loss of generality, µ2 ≥ . . . ≥ µi. Define the greedy tableau of CST(λ, µ) to
be a tableau formed by putting the numbers j = i, i− 1, i− 2, . . . , 1 in the tableau
by the following process: fill the lowest part λr with as many j’s as possible, then
fill λr−1 with as many j’s as possible, and continue until there are no j’s left. For
example, the greedy tableau with shape λ = (4, 2, 1) and content µ = (3, 2, 2) is
shown in Figure 11.

1 1 1 2

2 3

3

Figure 11. Greedy tableau example

Consider a tableau T ∈ CST(λ, µ). Let S ∈ CST(λ′, µ′) be the tableau formed
by only considering the entries in T containing the numbers 1, 2, . . . , i− 1. Let S′

be the greedy tableau of CST(λ′, µ′). By inductive hypothesis, we can find a word
w in the tj for j < i− 1 such that when we apply w to T , we obtain a tableau T ′

containing S′. We show that there is a word in t1, . . . , ti−1 such that when we apply
the word to T ′, we obtain the greedy tableau of CST(λ, µ̃ = (1, µ1, . . . , µi, µi−1).
This will show that every tableau can be moved to the greedy tableau, which suffices
to show the BK action is transitive.

Let r be the smallest r such that row r contains an i−1. We will prove that after
a sequence of BK actions, we can get a CST with µi−1 i’s in the greedy position,
i.e. we fill λm with as many i’s as possible, then λm−1 with as many i’s as possible,
and continue until we run out of i’s. Starting with T ′, there are a few cases to
consider.

(1) Let k be the leftmost column that contains an i− 1 in row r. Then column
k − 1 has an i− 1.

(2) We are not in case (1).
(2a) For all i in row (r + 1), there is an i− 1 above it.
(2b) For all i− 1 in row r, there is an i below it.
(2c) Neither Case (2a) nor Case (2b) is true.

We prove each case separately.
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(1) Applying ti−1 is enough for this case, as illustrated in figure 12. Precisely,
any i above row r will be changed to i − 1. Below row r, every i has an
i − 1 above it and so will not be changed to i − 1. Any i − 1 that does
not have an i below will be changed to i, creating a continuous filling of i.
Finally, row r may have a mix of i and i− 1, but since this is the last row
that contains i, this does not affect the greediness of i.

Figure 12. Case (1)

(2) From now on, we assume that column k − 1 does not contain an i− 1.
(2a) This case is actually either case (1), or there is no i in row r+ 1. The

argument is the same as case (1), and applying ti−1 is sufficient.
(2b) This case is only slightly different from 2a, but applying ti−1 is once

again enough. In this case, since for all i − 1 in row r, there is an i
below it, ti−1 will change all i in row r to i− 1, as illustrated in figure
14, which makes row r + 1 the last row containing i. Thus, a mix of i
and i− 1 on row r + 1 does not affect the greediness.

(2c) If neither Case 1 nor Case 2 is true, there exists a leftmost i in row
r + 1 that has no i− 1 above, and a rightmost i− 1 in row r that has
no i. Let the leftmost i be in square (r+1, a) and the rightmost i− 1
be in square (r, b), where the first entry is the row number and the
second entry is the column number in the shape λ. We certainly have
b > a. We will show that there is a word in t1, . . . , ti−1 such that the
resulting word has a smaller distance b− a.
We can suppose that the entries containing i − 1 and i in row r and
r+1 can be split into blocks of the following form shown in Figure 15.
Now we perform the following moves shown in Figure 16.
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Figure 13. Case (2a)

Figure 14. Case (2b)

The only move that needs extra explanation is move 2. We are using
the fact that, let C ∈ CST(λ′′, µ′′) be the CST formed by considering
only the entries in ti−1(T

′), i.e. the CST after move 1, containing
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Figure 15. Case (2c)

Figure 16. Steps for Case (2c)

1, 2, . . . , i− 1, there exists a CST with entries 1, 2, . . . , i− 1, shape λ′′

and content (µ2, . . . , µi−2, µi, 1) such that there is only one i − 1 in
row r + 1, and any other entry in C that originally contains an i − 1
now contains an i− 2.

Lemma 5.12. The above CST exists.

Proof of lemma. We first do promotion on C, i.e. we act t1, . . . ti−2.
Since at first we have only one 1, in the promotion process, tj will
decrease all but one j + 1 by 1. Connecting the squares that does not
decrease during promotion, we get the “promotion path”. Note that
in each step, this path either goes down 1 row, or goes right some
columns (can be zero column).
If this path ends in row r + 1, then we get the desired CST, since the
i− 1 in this row stays i− 1, and every other i− 1 decreases.
Before continuing, we want to make a quick observation that if the
promotion path does not end in row r + 1, then C also has l(λ′′) <
l(µ′′). This is because otherwise, the first column of C is filled with
1, . . . , i − 1. Then in T ′, there is either an i on row i, or an i on row
i − 1 that has no i − 1 above it. The former is impossible since we
assume that l(λ) < l(µ), and the latter is impossible since this means
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row r + 1 is row i − 1, and so the promotion path ends in this row.
Thus, l(λ′′) < l(µ′′), which leads to an important corollary that is the
promotion path has to goes right at some point.
Continuing with the proof, suppose the promotion path ends in some
row below r + 1, then we will decrease the i − 1 at the end of the
promotion path by 1. This is only problematic when the i− 1 has an
i − 2 above it, which means that the promotion path goes up at the
end. If this is true, we “fix” by decreasing the above i − 2 by one,
and repeat if until there is no more problem. This is where the above
corollary comes in handy. Since the promotion path goes right at some
point, we only need to fix up to some t, and this t is not 1.
Now we can add 1 to the rightmost i− 2 on row r + 1. Then we pick
an i − 3 that has no i − 2 below and add 1 to it. The easiest way to
pick this i− 3 is to look at the row right above the above i− 2. This
i− 3 exists since the content is decrease. We repeat this process until
we add 1 to some t, and since t ̸= 1, we can always do this.
Finally, observe that in the first step, we take away one i− 1 and add
in one t, and in the second step, we add in one i − 1 and take away
one t. Thus, the content stays the same, and we get the desired CST.
Figure 17 gives a summary of the above construction.

□

□

Theorem 5.13. When the tableau has shape (n, 1, . . . , 1), the BK action is tran-
sitive.

Proof. We will prove by induction on the length of the content µ. The base case
when l(µ) = 1 and l(µ) = 2 is trivial since the Kostka number is 1.

Before going to the inductive case, we want to make a quick observation. Since
the tableau has an L-shape, the tableau is uniquely determined by the set of number
on the first column. This is because given the set of number of the first column,
we have a unique way to fill these number in, and also a unique way to fill the
remaining number into the first row.

Now we will prove the inductive case. Specifically, we will prove that given a
fixed content µ = (µ1, . . . , µn), we can get from any CST to the CST in which there
are µn n’s, one of which is in the first column. If this is not already true, we will
perform the following two steps.

• Step 1: Let i be the number in square (2, 1), i.e. the first square on row 2.
If i ̸= 2, we do ti−1, . . . , t2 so that 2 is in (2, 1).

• Step 2: We do promotion n times, i.e. Pn.

First of all, step 1 brings 2 into (2, 1), and does not change the number of n. In
step 2, since 2 is in (2, 1), during the first promotion, the empty square (1, 1) will
move up, and so there is an n in the first column after the first promotion. This n
will slide down to (2, 1) before the last promotion. Finally, in the last promotion,
this square will slide down to (1, 1), which means that an empty square has to move
up, which in turn create an n in the first column after the last promotion.

Furthermore, after step 1, there are µn n’s, and after n rounds of promotion,
there will still be µn n’s. Thus, we have successfully get to the desired CST. Fixing
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Figure 17. Lemma 5.12 summary

the squares containing n, the remaining CST is transitive under BK action by the
inductive hypothesis. Therefore, BK action is transitive. □

5.2. Data on the number of orbits. Table 2 contains rectangular shapes on
the left column, content on the top row, and number of orbits in the box. In
Table 1 through Table 6, we put a bold 1 if it is not explained by Proposition 5.7,
Theorem 5.11, or Theorem 5.13.

6. Order of promotion on staircase shapes

In this section, we investigate the order of promotion acting on staircase shapes
with various contents. Haiman [Hai92] proved that the order of promotion on a
Young tableau of staircase shape has order 2N , where N =

(
n
2

)
is the number of

blocks in the staircase. In Example 6.2, we provide a column-strict tableau with
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[2, . . .] [3, . . .] [4, . . .] [5, . . .] [6, . . .] [7, . . .] [8, . . .]
[2, 2] 1
[3, 3] 1 1
[4, 4] 2 1 1
[5, 5] 2 1 1 1
[6, 6] 3 2 1 1 1
[7, 7] 3 2 2 1 1 1
[8, 8] 4 1 3 1 1 1 1
[9, 9] 4 3 3 2 1 1 1
[10, 10] 2 4 3 2 1 1
[11, 11] 4 3 3 1 1
[12, 12] 6 3 4 2 1
[13, 13] 5 1 4 3 2
[14, 14] 2 5 4 3
[15, 15] 5 6 4 4
[16, 16] 4 5
[17, 17] 4 5
[18, 18] 6
[19, 19] 6

Table 2. Number of orbits given shape (left column) and content
(top row)

[2, 2, 2]
[4, 2] 2

Table 3. Number of orbits given shape (left column) and content
(top row) for n = 6

[3, 2, 2]
[5, 2] 2
[4, 3] 1

Table 4. Number of orbits given shape (left column) and content
(top row) for n = 7

[4, 2, 2] [3, 3, 2] [2, 2, 2, 2]
[6, 2] 2 2 2
[5, 3] 1 2 2
[5, 2, 1] 2
[4, 4] 2
[4, 3, 1] 2
[4, 2, 2] 2
[3, 3, 2] 1

Table 5. Number of orbits given shape (left column) and content
(top row) for n = 8
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[5, 2, 2] [4, 3, 2] [3, 3, 3] [3, 2, 2, 2]
[7, 2] 2 2 2 2
[6, 3] 1 2 2 2
[6, 2, 1] 2
[5, 4] 1 1 1
[5, 3, 1] 1
[5, 2, 2] 2
[4, 4, 1] 1
[4, 3, 2] 1

Table 6. Number of orbits given shape (left column) and content
(top row) for n = 9

[6, 2, 2] [5, 3, 2] [4, 4, 2] [4, 3, 3] [4, 2, 2, 2] [3, 3, 2, 2] [2, 2, 2, 2, 2]

[8, 2] 2 2 2 2 2 2 2

[7, 3] 1 2 2 2 2 2 2

[7, 2, 1] 2 2 2

[6, 4] 1 2 2 2 2 3

[6, 3, 1] 1 1 2

[6, 2, 2] 2 2 3

[6, 2, 1, 1] 2

[5, 5] 1 2 2

[5, 4, 1] 1 1 1

[5, 3, 2] 1 1 1

[5, 3, 1, 1] 2

[5, 2, 2, 1] 2

[4, 4, 2] 2 1 3

[4, 4, 1, 1] 1

[4, 3, 3] 1 1

[4, 3, 2, 1] 2

[4, 2, 2, 2] 2

[3, 3, 3, 1] 1

[3, 3, 2, 2] 1

Table 7. Number of orbits given shape (left column) and content
(top row) for n = 10

staircase shape and entries in [N ] which does not have order 2N . In Section 6.1,
we provide data for the order of promotion for staircases of length at most five.

Definition 6.1. A staircase shape λ is a shape that has the form λ = (n, n −
1, . . . , 1) for some positive integer n.

Example 6.2. For the staircase shape with n = 4, the CST

1 2 3

2 4

4

has order 12 = 3N .

6.1. Order of promotion data. Tables 8, 9, 10 show the order of promotion for
each content µ. When the order of promotion k is a multiple of ℓ(µ), we show the
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quotient k/ℓ(µ). When the order of promotion k is not a multiple of ℓ(µ), we show
the greatest common divisor gcd(k, ℓ(µ)).

From the tables, it can be seen that there are few cases when the order of
promotion is not a multiple of ℓ(µ). The two main cases are [1, 1, 1] and [1, 2, 1, 2],
and the other two are basically the same. Bigger data seems to suggest that there
are no other instance except [4, 1, 4, 1, 4, 1] and [5, 2, 5, 2, 5, 2]. Thus, we make the
following conjecture.

Conjecture 6.3. The order of promotion on a staircase shape diagram and content
µ is a multiple of ℓ(µ), except for µ in this list:

[1, 1, 1], [2, 2, 2], [1, 2, 1, 2], [2, 3, 2, 3], [4, 1, 4, 1, 4, 1], [5, 2, 5, 2, 5, 2].

Content (µ) Order (k) ℓ(µ) k/ℓ(µ) gcd(k, ℓ(µ))
[1, 1, 1] 2 3 1
[1, 2] 2 2 1

Table 8. Order of promotion on staircase, n = 3

Content (µ) Order (k) ℓ(µ) k/ℓ(µ) gcd(k, ℓ(µ))
[1, 1, 1, 1, 1, 1] 12 6 2
[1, 1, 1, 1, 2] 10 5 2
[1, 1, 1, 3] 8 4 2
[1, 1, 2, 2] 8 4 2
[1, 2, 1, 2] 6 4 2
[1, 2, 3] 3 3 1
[1, 3, 2] 3 3 1
[2, 2, 2] 2 3 1

Table 9. Order of promotion on staircase, n = 4

Content (µ) Order (k) ℓ(µ) k/ℓ(µ) gcd(k, ℓ(µ))
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 20 10 2
[1, 1, 1, 1, 1, 1, 1, 1, 2] 18 9 2
[1, 1, 1, 1, 1, 1, 1, 3] 16 8 2
[1, 1, 1, 1, 1, 1, 2, 2] 16 8 2
[1, 1, 1, 1, 1, 1, 4] 14 7 2
[1, 1, 1, 1, 1, 2, 1, 2] 48 8 6
[1, 1, 1, 1, 1, 2, 3] 14 7 2
[1, 1, 1, 1, 1, 3, 2] 14 7 2
[1, 1, 1, 1, 2, 1, 1, 2] 48 8 6
[1, 1, 1, 1, 2, 1, 3] 42 7 6
[1, 1, 1, 1, 2, 2, 2] 42 7 6
[1, 1, 1, 1, 2, 4] 12 6 2
[1, 1, 1, 1, 3, 1, 2] 42 7 6
[1, 1, 1, 1, 3, 3] 12 6 2
[1, 1, 1, 1, 4, 2] 12 6 2
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[1, 1, 1, 2, 1, 1, 1, 2] 112 8 14
[1, 1, 1, 2, 1, 1, 3] 70 7 10
[1, 1, 1, 2, 1, 2, 2] 294 7 42
[1, 1, 1, 2, 1, 4] 12 6 2
[1, 1, 1, 2, 2, 1, 2] 294 7 42
[1, 1, 1, 2, 2, 3] 60 6 10
[1, 1, 1, 2, 3, 2] 12 6 2
[1, 1, 1, 3, 1, 1, 2] 70 7 10
[1, 1, 1, 3, 1, 3] 36 6 6
[1, 1, 1, 3, 2, 2] 60 6 10
[1, 1, 1, 3, 4] 10 5 2
[1, 1, 1, 4, 1, 2] 12 6 2
[1, 1, 1, 4, 3] 10 5 2

[1, 1, 2, 1, 1, 2, 2] 210 7 30
[1, 1, 2, 1, 1, 4] 12 6 2
[1, 1, 2, 1, 2, 1, 2] 210 7 30
[1, 1, 2, 1, 2, 3] 60 6 10
[1, 1, 2, 1, 3, 2] 60 6 10
[1, 1, 2, 2, 1, 3] 84 6 14
[1, 1, 2, 2, 2, 2] 60 6 10
[1, 1, 2, 2, 4] 10 5 2
[1, 1, 2, 3, 1, 2] 60 6 10
[1, 1, 2, 3, 3] 10 5 2
[1, 1, 2, 4, 2] 10 5 2
[1, 1, 3, 1, 1, 3] 36 6 6
[1, 1, 3, 1, 2, 2] 84 6 14
[1, 1, 3, 1, 4] 10 5 2
[1, 1, 3, 2, 1, 2] 60 6 10
[1, 1, 3, 2, 3] 30 5 6
[1, 1, 3, 3, 2] 10 5 2
[1, 1, 4, 1, 3] 10 5 2
[1, 1, 4, 2, 2] 10 5 2
[1, 2, 1, 2, 1, 3] 108 6 18
[1, 2, 1, 2, 2, 2] 924 6 154
[1, 2, 1, 2, 4] 15 5 3
[1, 2, 1, 3, 3] 30 5 6
[1, 2, 1, 4, 2] 15 5 3
[1, 2, 2, 1, 2, 2] 84 6 14
[1, 2, 2, 1, 4] 10 5 2
[1, 2, 2, 2, 3] 40 5 8
[1, 2, 2, 3, 2] 50 5 10
[1, 2, 3, 1, 3] 30 5 6
[1, 2, 3, 2, 2] 50 5 10
[1, 2, 3, 4] 4 4 1
[1, 2, 4, 3] 4 4 1
[1, 3, 1, 3, 2] 30 5 6
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[1, 3, 2, 2, 2] 40 5 8
[1, 3, 2, 4] 4 4 1
[1, 3, 3, 3] 8 4 2
[1, 3, 4, 2] 4 4 1
[1, 4, 2, 3] 4 4 1
[1, 4, 3, 2] 4 4 1
[2, 2, 2, 2, 2] 40 5 8
[2, 2, 2, 4] 8 4 2
[2, 2, 3, 3] 8 4 2
[2, 3, 2, 3] 6 4 2

Table 10. Order of promotion on staircase, n = 5
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