Cohen–Macaulayness of ASM Ideals

Ilani Axelrod-Freed, Hanson Hao, Matthew Kendall, Yuyuan Luo

UMN Twin Cities REU in Algebra and Combinatorics
Mentor: Tricia Klein, TA: John O’Brien

August 5, 2022
Table of Contents

1 Introduction and motivation

2 Results

3 Data Summary
Introduction and motivation
Alternating sign matrices

Definition

An alternating sign matrix (ASM) is an $n \times n$ matrix with the following properties:

1. Each entry is taken from the set \{-1, 0, 1\}.
2. The sum of the entries in each row (resp. column) sum to 1.
3. The nonzero entries in a row (resp. column) alternate between 1 and -1.

Examples include permutation matrices and

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}.
\]
ASM ideals and ASM varieties

Definition (Weigandt [Wei18])

We can associate an ASM ideal I_A to an ASM A, which is a certain generalized determinental, radical ideal. The variety associated to I_A is called the ASM variety.

- I_w for a permutation $w \in S_n$ are called Schubert determinental ideals, first studied by Fulton [Ful92].

Let $S = k[z_{ij}]_{i,j=1}^{n}$, where k is any field.

1. Can talk about whether S/I_A is Cohen–Macaulay,
2. Can talk about when I_A is height unmixed (the associated variety is equidimensional)

Definition

Call an ASM A Cohen–Macaulay (resp. equidimensional) if I_A is Cohen–Macaulay (resp. height unmixed).
Cohen–Macaulayness

Theorem (Fulton [Ful92])

Matrix Schubert varieties are Cohen–Macaulay.

Question

Are all ASM varieties Cohen–Macaulay?

Example

No. For example, if

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix},
\]

then

\[
I_A = (z_{11}, z_{21}, z_{12}z_{31}, z_{31}z_{22}, z_{22}z_{13}),
\]

which is not Cohen–Macaulay.
What is previously known about ASM ideals

An *anti-diagonal initial ideal* in I_A is generated by the product of terms along the antidiagonals of each minor.

Example

If

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

then $I_A = \langle z_{11}z_{12}z_{21}z_{22}, z_{11}z_{12}z_{13}, z_{21}z_{22}z_{23}, z_{31}z_{32}z_{33} \rangle$.

Corollary of Conca–Varbaro [CV20]

I_A is Cohen–Macaulay if and only if the antidiagonal initial ideal in I_A is Cohen–Macaulay.
What is previously known about ASM ideals

Theorem (Weigandt [Wei18] and Fulton [Ful92]):

I_A has an irredundant prime decomposition

$$I_A = \bigcap_{w \in \text{Perm}(A)} I_w,$$

I_w is prime and the height of I_w is the Coxeter length $\ell(w)$.

- $\text{Perm}(A)$ is a set of permutation matrices associated to A (not defined here).
Previously known implications for Cohen-Macaulayness

\[\Delta_{\text{in} I_A} \text{ vertex decomposable} \]

\[\downarrow \]

\[A \text{ CM} \iff I_A \text{ CM} \iff \text{in} I_A \text{ CM} \iff \Delta_{\text{in} I_A} \text{ CM} \]

\[\downarrow \]

\[A \text{ equidim.} \iff I_A \text{ (in } I_A \text{) unmixed} \iff \Delta_{\text{in} I_A} \text{ pure} \]
Obtaining I_A and $\text{in} I_A$ from A

Generators of I_A are the determinants of the minors.
Generators of $\text{in} I_A$ are product of anti-diagonal elements in the minors.
Results
A family of non-equidimensional ASMs

Theorem (AF,H,K,L)

Let A be an ASM which satisfies the following properties:

1. A contains the block $B = \begin{bmatrix} 0 & \vdots \\ 1 & -1 \end{bmatrix}$, with the 1 falling in row r and column c.
2. All entries of A northwest of the 1 in B are zeros.
3. All essential boxes of $\text{rk} A$ which don’t correspond to a box from B are either rank 0 or rank at least $r - 1$.
4. Column c has no essential boxes.

Then A is not equidimensional.
A family of non-equidimensional ASMs (illustrated)
When is Cohen-Macaulayness preserved?

Conjecture

Let \(A \) be a Cohen-Macaulay ASM. Then submatrix of \(A \) which is an ASM is also Cohen-Macaulay.

This has been checked for all ASM’s through ASM 6.

Question

How can we add or take away rows and columns from an ASM to preserve Cohen-Macaulayness?
When is Cohen-Macaulayness Preserved?

\[\begin{align*}
A & \quad \text{CM} \quad A^T \\
A_1 & \quad 0 \quad 1 \\
0 & \quad 0 \\
\end{align*} \]
Diagonal Block Decomposition for ASMs

Conjecture

Let $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ be a block diagonal matrix, where A_1 and A_2 are ASMs. Then A is CM \iff both A_1 and A_2 are CM.

We have proved the \implies direction.

Conjecture

Let A be CM and $A' = \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$. Then A is CM.

This implies the \iff direction of the previous conjecture.

Theorem (AF,H,K,L)

This is true when ”CM” is replaced with the condition ”height unmixed”.
ASM\(s\) are more complicated than matrix Schubert varieties.

Example

Let \(A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \) and \(\tilde{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \). Then \(A \) is Cohen–Macaulay but \(\tilde{A} \) is not.

- There is an ASM in ASM(5) which is equidimensional but not CM.
- Knutson and Miller used a specific vertex decomposition to show that all matrix Schubert varieties are CM. This does not work for ASMs.

Question

Are all Cohen-Macaulay ASM’s vertex decomposable?
Data Summary
Counting ASMs

<table>
<thead>
<tr>
<th>dimension</th>
<th># CM ASMs</th>
<th># non-CM ASMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>328</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>4028</td>
<td>3408</td>
</tr>
<tr>
<td>7*</td>
<td>37625</td>
<td>91222</td>
</tr>
</tbody>
</table>

*partial, excludes certain nice classes of CM ASMs.
For all ASMs up through ASM(6), if A is CM then any submatrix of A which is an ASM is also CM.

For all ASMs up through ASM(5), whenever A is Cohen–Macaulay, $\Delta_{\text{in} I_A}$ is vertex decomposable.

For all ASMs up through ASM(5), whenever A is Cohen–Macaulay, then $\frac{1}{A}$ is Cohen–Macaulay.
Aldo Conca and Matteo Varbaro.
Square-free Gröbner degenerations.

William Fulton.
Flags, Schubert polynomials, degeneracy loci, and determinantal formulas.

Anna Weigandt.
Prism tableaux for alternating sign matrix varieties.
Acknowledgements

Thank you to:

- Our mentor, Tricia Klein
- Our TA, John O’Brien
- Our REU organizer, Gregg Musiker
- Twin Cities REU Staff
- RTG grant NSF/DMS-1745638