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1. Introduction

In [FZ02], cluster algebras were introduced by Fomin and Zelevinsky. They are rather
ubiquitous throughout math, appearing in Lie theory, triangulations of surfaces, Teichmüller
theory, and many other contexts. In [LP16a], Lam and Pylyavskyy define a generalization
of cluster algebras, where the exchange polynomials are allowed to have arbitrarily many
monomials, rather than being strictly binomial. Then, in [LP16b], Lam and Pylyavskyy
define a particularly nice class of LP algebras arising from graphs. LP algebras arising from
undirected paths in this way are also cluster algebras, but paths are the only graphs whose
associated LP algebras are cluster algebras.

In [LP16b], Lam and Pylyavskyy pose Conjecture 1.1.

Conjecture 1.1 ([LP16b, Conjecture 7.3]). Let Γ be a graph, and let AΓ be its associated
LP algebra with coefficient ring R.

(i) The cluster monomials of AΓ form a basis over R.
1
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(ii) (Positivity) Any monomial in the cluster variables can be written as a R-linear com-
bination of cluster monomials with positive coefficients.

The analogues of these conjectures for cluster algebras are well-known statements (some
parts are proved, some are still conjectural). In this report, we give a partial positive answer
to this conjecture.

1.1. Organization of the Report. In Section 2, we give more in-depth background on
graph LP algebras. In Section 3, we introduce some quick but useful lemmas which apply
to all graphs Γ. In Section 4, we show:

Theorem 1.2. For all graphs, the cluster monomials form a Z[A1 . . . An]-linear spanning set
for the associated LP algebra.

In Section 5, we prove formulas for expanding some monomials as positive linear combina-
tions: specifically, we show how to write YIYJ as a linear combination of cluster monomials
with positive coefficients when the subgraphs corresponding to I, J satisfy |I ∩ J | ≤ 2. We
also conjecture a general method of expanding YIYJ into a positive linear combination of
cluster monomials. We also show that when Γ is an undirected graph, in order to prove the
general conjecture, it suffices to show that the product of two cluster variables YIYJ is a
positive linear combination of cluster monomials. Finally, in Section 6 we show:

Theorem 1.3. Positivity holds for LP algebras given by undirected trees.

Theorem 1.4. Positivity holds for LP algebras given by undirected cycles.

2. Preliminaries

2.1. Background on LP Algebras. Laurent phenomenon algebras (LP algebras), intro-
duced by Lam and Pylyavskyy [LP16a], are an extension of cluster algebras. The main idea
behind cluster algebras is that the generators of a commutative algebra, called cluster vari-
ables, can be grouped into sets called clusters. A seed consists of a cluster and a polynomial
associated to each variable in the cluster, called exchange polynomials. For cluster algebras,
the exchange polynomial is a polynomial in the other variables of the cluster, and is always
a binomial. One can then mutate the seed to obtain another seed via the following rule:

old variable× new variable = exchange binomial

In the more general LP setting, we instead have a mutation rule:

old variable× new variable = exchange Laurent polynomial

This exchange Laurent polynomial no longer needs to be binomial, and it can be a Laurent
polynomial in the cluster variables (so, we may divide by a monomial in the cluster variables).
The motivation for working in this general setting is that many desirable properties that hold
for cluster algebras also hold, or seem to hold, for LP algebras. For instance, the Laurent
phenomenon (from which LP algebras get their name), a remarkable property of cluster
algebras, extends to all LP algebras. As another example, it appears that for finite type LP
algebras, the cluster monomials form linear bases. Moreover, it appears that for finite type
algebras, all monomials can be written as a linear combination of cluster monomials with
positive coefficients. These statements generalize well known properties, some proved and
some still conjectural, about cluster algebras.
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Our project is interested in proving these kinds of statements for particularly nice classes of
LP algebras, which arise from graphs in a manner defined by Lam and Pylyavskyy [LP16b].
We summarize their construction in the next subsection.

2.2. Graph LP Algebras. First, we recall some graph theory terminology:

Definition 2.1 (Induced subgraphs). Let Γ be a directed graph with vertex set [n]. Given
a subset I ⊂ [n], the subgraph induced by I is the maximal subgraph whose vertices are
I, and whose edges are all of the edges in Γ between vertices in I.
Unless otherwise stated, all subgraphs in this report are induced subgraphs. So, by abuse

of notation, we will sometimes refer to ‘the’ subgraph on I or refer to a subgraph and its
vertex set interchangeably.

Definition 2.2 (Strongly connected subset). Let Γ be a directed graph with vertex set [n].
A subset I ⊂ [n] is said to be strongly connected if for all v, w ∈ I, there is a directed
path from v to w with edges in I.

Now, we can define graph LP algebras following [LP16b]:

Definition 2.3 (Graph LP Algebra). Let Γ be a strongly connected, directed graph with
vertex set [n] with edge set E and let R be the ring Z[A1, A2, ..., An]. For each i ∈ [n], let Ei

denote the set of edges in E that are directed from i to some other vertex in [n]. Let t be the
seed with cluster variables {X1, X2, ..., Xn} and exchange polynomials Fi = Ai+

∑
(i,j)∈Ei

Xj.
The graph LP algebra AΓ asscociated to Γ is the LP algebra generated by the seed t.

Throughout this report, whenever we refer to an undirected Γ, we really mean a bidirected
Γ, in which each edge has both possible orientations. Similarly, in our diagrams, every
undirected edge is really a bidirected edge.

In [LP16b], Lam and Pylyavskyy show that graph LP algebras have an especially nice
structure; in particular, they give a characterization of the cluster variables and clusters.
To describe this structure, we define nested collections of subsets and acyclic functions on
subsets.

Definition 2.4 (Nested collections). Let Γ be a directed graph with vertex set [n]. Let I
be the set of strongly connected subsets of [n]. We say that S ⊂ I is nested if

(i) for every pair I, J ∈ S,

I ⊂ J or J ⊂ I or I ∩ J = ∅
(ii) for any T ⊂ S such that I ∩ J = ∅ for all I, J ∈ T , each I ∈ T is a strongly

connected component of the subgraph induced by
⋃

J∈T J .

Example 2.5. Suppose that Γ is the graph

2

3

1

4

.

The set {{1, 2, 4}, {4}} is a nested set, since {4} ⊂ {1, 2, 4}. However, {{1, 2}, {4}} is not a
nested set since {1, 2} and {4} are not the connected components of the subgraph induced
by {1, 2} ∪ {4}.
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For the purposes of this paper, we consider certain types of multigraphs that are defined
in terms of Γ. We describe these multigraphs in the definition below.

Definition 2.6 (Multifunctions). Let Γ be a directed graph with edge set E and vertex set
[n]. Let I be a multiset with support on V . A multifunction f of Γ on I is a directed
multigraph with vertex set V and edge multiset E ′ such that

(i) for a vertex v ∈ V , the outdegree of v in f is its multiplicity in I, and
(ii) each edge in E ′ is either a loop or an edge in E. or a loop

When it is clear what the underlying graph Γ is, we will just say that f is a multifunction
on I.

Example 2.7. Let Γ be the graph below.

2

3

1

4

.

Let I be the multiset {1, 1, 1, 2}. The directed multigraph below is a multifunction on I.

2

3

1

4

.

Note that when I is a set, any multifunction of Γ on I corresponds to a function f : I → V .
For a function f : I → V we denote by f both the multigraph corresponding to f and the
function f . The following definition formalizes this notion.

Definition 2.8. Suppose that Γ is a graph with vertex set V and edge set E. For I ⊆ V , let
f : I → V be a function such that for each i ∈ I, either the edge (i, f(i)) is in E or i = f(i).
The multifunction corresponding to f is the graph with vertex set V and edge set E ′ where
E ′ is the set of edges of the form (i, f(i)).

Example 2.9. Let Γ be the same graph as Examples 2.5 and 2.7. Let I be the set {1, 2, 3}
and define f : I → [4] by

f(i) =


1 if i = 1

3 if i = 2

1 if i = 3

.

The multifunction corresponding to f is
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2

3

1

4

.

We shall say a multifunction f is acyclic if the only cycles in f are loops. We will say
that f is acyclic over a subset of its vertices I if the induced subgraph on I is acyclic as a
multifunction on I. We are now able to define acyclic functions over G.

Definition 2.10 (Acyclic functions). Let I ⊆ V and let f : I → V be a function for which
there exists a corresponding multifunction m of I. Then, we say that f is an acyclic function
over Γ on I if m is acyclic.

Observe that the function from Example 2.9 is an acyclic function.

Definition 2.11 (Weight of a function). Let I ⊆ [n], for a function f : I → [n], we denote
the weight of f by w(f). We define w(f) by

w(f) =
∏
i∈I

x̃(i,f(i)), x̃(i,f(i)) =

{
x(f(i) if f(i) ̸= i,

Ai if f(i) = i.

This definition can be extended to multifunctions.

Definition 2.12 (Weight of a Multifunction). Let Γ be a directed graph with edge set E
and vertex set V and let I be a multiset with support on J ⊆ V . Let f be a multifunction
on I with edge set E ′. The weight of f is defined by

w(f) =
∏

(i,j)∈E′

x̃(i,j), x̃(i,j) =

{
xj if j ̸= i,

Ai if j = i.

We shall now define certain Laurent polynomials which shall later be used to define the
cluster variables of Graph LP algebras explicitly.

Definition 2.13. Let Γ be a graph with vertex set V and edge set E and let I ⊆ V . Let F
denote the set of acyclic functions on I We define the Laurent polynomial YI by

YI =

∑
f∈F w(f)∏
i∈I Xi

.

We will often write the polynomial Y{s1,s2,...,sk} as Ys1s2...sk .

Example 2.14. Suppose that Γ is the graph

2

3

1

4

.
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Then, the Laurent polynomial Y13 is

A1A3+A1X1+A1x2+A1x3+A3x2+A3x3+A3x4+x2x1+x2
2++2x2x3+x2

3+x4x1+x4x2+x4x3

x1x3
.

In [LP16b], Lam and Pylyavskyy prove the following description of clusters and cluster
variables:

Theorem 2.15. The cluster algebra associated to a graph Γ has:

(i) Cluster variables of the form

{X1, X2 . . . Xn} ∪ {YI |I is strongly connected} (1)

(ii) Clusters of the form

{Xi1 , Xi2 . . . Xik} ∪ {YS|S ∈ S} (2)

where S is a maximal nested collection on Γ \ {i1, i2 . . . ik}

3. Introductory Lemmas

Lemma 3.1 allows us to express a single cluster variable as a cluster monomial.

Lemma 3.1 ([LP16b, Lemma 4.2]). Let I1, I2 . . . Ik ∈ I be the strongly connected compo-
nents of I. Then,

YI =
k∏

j=1

YIj .

Proof. Any combination of acyclic functions on the Ijs yields an acyclic function on I by
taking their disjoint union, as there are no additional cycles between the Ijs. Conversely, any
acyclic function on I yields a family of acyclic functions on the Ijs by taking restrictions. □

Lemma 3.2 allows us to express XiYj as a positive linear combination of cluster monomials:

Lemma 3.2 ([LP16b, Lemma 4.7]). Let S ⊂ Γ, and let i ∈ Γ be a vertex. Furthermore, let
P i,j
I =

∑
p:i→Ij

YI\p, where p is a path from i to j with all intermediary vertices are in I (but

i, j are not necessarily in I). Then,

XiYS∪i =
∑
j∈S∪i

P i,j
S Xj +

∑
j∈S∪i

P i,j
S Aj.

Proof. For every acyclic function counted in the numerator of YS∪i, follow the outputs of i
until either the function leaves S ∪ i or ends in a loop. □

Lemmas 3.1 and 3.2 guarantee that, in order to show Conjecture 1.1(ii) for a graph LP
algebra AΓ, it suffices to show that any product of Y variables can be written as a sum of
cluster monomials.
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3.1. The preimages method.

Lemma 3.3. Let S,R be sets of tuples of multifunctions. If ϕ : S → R preserves weights,
that is, w(s) = w(ϕ(s)) for all s ∈ S, then∑

s∈S

w(s) =
∑
r∈R

∣∣ϕ−1(r)
∣∣w(r).

Proof. Apply the weight-preserving property and double-count pairs (s, r) ∈ S×R such that
f(s) = r to obtain ∑

s∈S

w(s) =
∑
s∈S

w(ϕ(s)) =
∑
r∈R

∣∣ϕ−1(r)
∣∣w(r). □

Lemma 3.4 (Preimages Lemma). Let S1,S2,R be sets of tuples of multifunctions. If
ϕ1 : S1 → R and ϕ2 : S2 → R preserve weights, and |ϕ−1

1 (r)| = |ϕ−1
2 (r)| for all r ∈ R,

then ∑
s∈S1

w(s) =
∑
s∈S2

w(s).

Proof. Apply Lemma 3.3 on ϕ1 and on ϕ2 to obtain∑
s∈S1

w(s) =
∑
r∈R

∣∣ϕ−1
1 (r)

∣∣w(r) = ∑
r∈R

∣∣ϕ−1
2 (r)

∣∣w(r) = ∑
s∈S2

w(s). □

4. Integer Coefficients

In the following paragraphs, we introduce technical notation that we will use in this section.
A Y -monomial is a monomial of the form

∏
J∈J YJ , where J is a multiset of sets

of vertices. For example, Y1Y2Y
2
3 Y123 is a Y -monomial. We define a partial order on Y -

monomials. Let YJ1 =
∏

J∈J1
YJ and YJ2 =

∏
J∈J2

YJ be Y -monomials. Let the cardinality
vector of J be the tuple of the cardinalities of the elements of J , sorted increasingly. For
example, the cardinality vector of Y1Y

2
34 is (1, 2, 2). Since Y∅ = 1, assume J1 has the same

number of elements as J2, by adding ∅ to one of them. We say that YJ1 is larger than
YJ2 if

∑
J∈J1

|J | >
∑

J∈J2
|J |, or if

∑
J∈J1

|J | =
∑

J∈J2
|J | and the cardinality vector of

J1 is lexicographically larger than J2. For example, Y1234Y3456 is larger than Y16Y
2
34, since

|1234| + |3456| = 8 > 6 = |16| + |34| + |34|; and Y1234Y3456 is larger than Y34123456, since
|1234|+ |3456| = 8 = |34|+ |123456| and (4, 4) is lexicographically larger than (2, 6).
The important properties of this order are that a Y -monomial with more elements among

its indices than another is larger, that YIYJ is larger YI∪JYI∩J , and that YJ1 being larger
than YJ2 implies that YJYJ1 is larger than YJYJ2 .
Given a set S of vertices, let YS denote the set of acyclic functions on S. Given a multiset

S of vertices, let WS denote the set of multifunctions on S. Given a tuple (f1, ..., fn) of
multifunctions, the weight of the tuple is the product

∏
i∈[n]w(fi). Given a set S of tuples

of multifunctions, its weight sum is the sum of the weights of its elements. Given sets S1,S2

of tuples of multifunctions, we say that S1 ∼ S2 if they have the same weight sums.
The goal of this section is to prove Theorem 4.1.

Theorem 4.1. A Y -monomial can be written as a linear combination, with integer coeffi-
cients, of cluster Y -monomials.

Theorem 4.1 follows from Lemma 4.2 by applying induction on the order of Y -monomials.
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Lemma 4.2. A Y -monomial can be written as a linear combination, with integer coefficients,
of cluster monomials or smaller Y -monomials.

Let J be a multiset of sets of vertices, with cardinality k. Let U =
⊔

J∈J J be the
multiunion of these sets of vertices. Let L = {L1, L2, . . . , Lk}, where Li denotes the set of
vertices that appear at least i times in U .

Proposition 4.3. Let J be a multiset of sets of vertices, with cardinality k. Let U =
⊔

J∈J J
be the multiunion of these sets of vertices. Let L = {L1, L2, . . . , Lk}, where Li denotes the
set of vertices that appear at least i times in U . Then,

×
J∈J

WJ ∼ ×
L∈L

WL.

Proof. Note that U =
⊔

L∈L L =
⊔

J∈J J . Consider the functions

ϕJ : ×
J∈J

WJ → WU

and

ϕL : ×
L∈L

WL → WU

where both functions send a tuple of functions to the multifunction obtaining by taking the
union (as a multiset) of the edges of each function. Note that, for all r ∈ WI⊔J ,

|ϕ−1
J (r)| =

∏
v∈V

#(colorings of the t edges from v into t distinct colors) = |ϕ−1
L (r)|.

Hence, applying the Preimages Lemma on ϕJ and ϕL, we obtain that

×
J∈J

WJ ∼ ×
L∈L

WL. □

Proposition 4.4. Let S be a set of vertices. Then,

WS ∼
⊔

F∈FS

YS\F ,

where F ranges over all families of vertex-disjoint cycles in the restriction of Γ to S.

Proof. We prove that these sets have the same weight sum by constructing a weight-preserv-
ing bijection ϕ between them. Let w ∈ WS be a function on S. Let F denote the family
of cycles in w. Since the outdegree in w of every vertex v ∈ S is 1, the cycles in w are
vertex-disjoint. Let ϕ(w) be the function obtained by removing the edges of F from the
function w. Note that ϕ(w) ∈ YS\F . Moreover, since F consists of a union of disjoint cycles,
each of which has weight 1; therefore, ϕ is weight-preserving. Finally, this map is invertible,
since ϕ−1 can be defined by adding to an acyclic function y ∈ YS\F the edges in the cycles
of F . □

Corollary 4.5. Let J be a multiset of sets of vertices, with cardinality k. Let U =
⊔

J∈J J
be the multiunion of these sets of vertices. Let L = {L1, L2, . . . , Lk}, where Li denotes the
set of vertices that appear at least i times in U . Then,

×
J∈J

⊔
F∈FJ

YJ\F ∼ ×
L∈L

⊔
F∈FL

YL\F .
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Moreover, ∏
J∈J

∑
F∈FJ

YJ\F =
∏
L∈L

∑
F∈FL

YL\F .

Note that the largest Y -monomial on the left-hand expression is
∏

J∈J YJ , the largest
Y -monomial on the right-hand expression is

∏
L∈L YL, and all other expressions are smaller

than these. Therefore, Lemma 4.2 follows.

5. Multiplying Monomials with Small Intersection

5.1. The Disjoint Case. Let I, J be sets of vertices. Given a multiset S of vertices, let
ZS denote the set of multifunctions on S which are with no cycles in I and no cycles in J .

Lemma 5.1. Let I, J be disjoint sets of vertices. Then,

YI × YJ ∼ ZI∪J .

Proof. We prove these sets have the same weight sum by constructing a weight preserving
bijection from YI × YJ to ZI∪J . Define ψ : YI × YJ → ZI∪J such that

ψ(fI , fJ) = g(fI ,fJ )

where g(fI ,fJ ) satisfies

g(fI ,fJ )(i) =

{
fI(i) if i ∈ I

fJ(i) if i ∈ J
.

Note that g(fI ,fJ ) contains no cycles in I or J since that would contradict the fact that fI
and fJ are acyclic. Thus, ψ is a well defined map from YI × YJ to ZI∪J since I and J
are disjoint. Observe that ψ is weight preserving by Lemma 3.1. Finally, we note that ψ is
invertible since ψ−1 can be constructed by mapping g ∈ ZI∪J to a tuple (fI , fJ) ∈ YI × YJ
satisfying

g(fI ,fJ )(i) =

{
fI(i) if i ∈ I

fJ(i) if i ∈ J
.

Proposition 5.2 is very similar to Proposition 4.4, as well as their proofs.

Proposition 5.2. Let S be a set of vertices. Then,

ZS ∼
⊔
F

YS\F ,

where F ranges over all families of vertex-disjoint cycles in the restriction of Γ to S. that
are not entirely in I nor entirely in J .

Proof. The proof is similar to the proof of Lemma 5.1. Let w ∈ ZS be a function on S with
no cycles in I and no cycles in J . Let F denote the family of cycles in w, which consists of
cycles not entirely in I nor entirely in J . Since the outdegree in w of every vertex v ∈ S is 1,
the cycles in w are vertex-disjoint. Let ϕ(w) be the function obtained by removing the edges
of F from the function w. Note that ϕ(w) ∈ YS\F . Moreover, since F consists of a union
of disjoint cycles, each of which has weight 1; therefore, ϕ is weight-preserving. Finally, this
map is invertible, since ϕ−1 can be defined by adding to an acyclic function y ∈ YS\F the
edges in the cycles of F . □
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Theorem 5.3. Let I, J be disjoint sets of vertices. Let F denote the collection of families
of vertex-disjoint cycles in the restriction of Γ to I ∪ J that are not entirely in I nor entirely
in J . Then,

YI × YJ ∼
⊔
F∈F

YI∪J\F .

Moreover,

YIYJ =
∑
F∈F

YI∪J\F ,

Proof. The first part of the theorem follows from Proposition 5.2 and Lemma 5.1. The
second part follows from the fact that the weight sum of YI × YJ is YIYJ and

∑
F∈F YI∪J\F

is the weight sum of ⊔F∈FYI∪J\F . □

Remark. If we let ϕ be the function in 5.2 (taking S to be I ∪ J) and let ψ be the function
in 5.1, the map ϕ ◦ ψ is a weight preserving bijection from YI × YJ to ⊔F∈FYI∪J\F .

5.2. The Intersection 1 Case. In this subsection, we prove Theorem 5.4 using Lemma
3.4.

Theorem 5.4. Let I and J be sets of vertices and suppose that I ∩ J = {v}. Define CI and
CJ as the sets of cycles in I containing v and in J containing v respectively. Also define F
as the collection of families of vertex disjoint cycles in I ∪J not contained entirely in I or J ,
and similarly define F ′ as the subset of F containing only families of cycles in I ∪J \C1 \C2.
Then,

YIYJ =
∑
F∈F

YI∪J\F +
∑
CICI

∑
CJ∈CJ

∑
F ′∈F ′

YI∪J\CI\CJ\F ′ .

Proof. Let S1 be the set YI×YJ , let S2 be the set Yv×ZI∪J and let S3 be the set of functions
mapping I ⊔ J to [n] which have exactly one cycle in J containing v, exactly one cycle in
I containing v, and no other cycles contained in I or J , v having outdegree 2 and all other
vertices having outdegree 1. We have the following observations

(i) Observe that S2 and S3 are disjoint.
(ii) The weight sum of S1 is YIYJ
(iii) The weight sum of S2 is

∑
F∈F YI∪J\F

(iv) The weight sum of S3 is
∑

CI∈CI

∑
CJ∈CJ

∑
F ′∈F ′ YI∪J\CI\CJ\F ′

Finally, we let R denote the set of multifunctions from I ∪J to [n] for which v has outdegree
2 and all other vertices in I ∪ J have outdegree 1.

We now define ϕ1 : S1 → R by (fI , fJ) maps to g = (I ∪ J,E) where E the multiset of
edges containing the edge (i, j) with multiplicity equal to the number of times fI(i) = j or
fJ = (i). Define ϕ2 similarly. Finally define ϕ3 by inclusion. Note that ϕ1, ϕ2, and ϕ3 are all
weight preserving. We will now show that |ϕ−1

1 (g)| = |ϕ−1
2 (g)|+ |ϕ−1

3 (g)|. First we note that
if g has a cycle contained entirely in I \ v or J \ v, then |ϕ−1

1 (g)| = |ϕ−1
2 (g)| = |ϕ−1

3 (g)| = 0.
We will now assume that g has no cycles contained entirely in I or J . Similarly, note that if
g has 2 cycles in I or two cycles in J , then |ϕ−1

1 (g)| = |ϕ−1
2 (g)| = |ϕ−1

3 (g)| = 0. This leaves us
with four cases where at least one of |ϕ−1

1 (g)|, |ϕ−1
2 (g)|, or |ϕ−1

3 (g)| is non-zero. These cases
are

Case 1: When g has one cycle in I and one cycle in J , we have |ϕ−1
1 (g)| = 1, |ϕ−1

2 (g)| = 0,
and |ϕ−1

3 (g)| = 1.
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Case 2: When g has one cycle in I and no cycles in J , we have |ϕ−1
1 | = 1, |ϕ−1

2 (g)| = 1, and
|ϕ−1

3 (g)| = 0.
Case 3: When g has no cycles in I and no cycles in J , we have |ϕ−1

1 (g)| = 1, |ϕ−1
2 (g)| = 1,

and |ϕ−1
3 (g)| = 0.

Case 4: When g has no cycles in I nor in J , we have |ϕ−1
1 (g)| = 2, |ϕ−1

2 (g)| = 2, and
|ϕ−1

3 (g)| = 0.

Thus, for all g ∈ R, we have |ϕ−1
1 (g)| = |ϕ−1

2 (g)|+|ϕ−1
3 (g)|. Since each ϕi is weight preserving,

by Lemma 3.4 we have that the weight sum of S1 is equal to the weight o fS2∪S2. Therefore,

YIYJ =
∑
F∈F

YI∪J\F +
∑
CICI

∑
CJ∈CJ

∑
F ′∈F ′

YI∪J\CI\CJ\F ′ . □

In the case where |I ∩ J | = 2, we can apply a similar method to find a formula for YIYJ
that has all positive coefficients; however, this proof is much longer and more computational
than the previous two cases, so for brevity we omit it from this report. As |I ∩ J | gets
larger, in principle this method would still work, but the computations become much more
complicated quickly.

6. Proving Positivity for Special Graphs

The goal of this section is to prove Theorem 1.3 and 1.4:

Theorem 6.1. When Γ is an undirected tree or an undirected cycle, the LP algebra associ-
ated to Γ satisfies [LP16b, Conjecture 7.3(2)]: every monomial can be expressed as a linear
combination of cluster monomials with positive coefficients.

First, we provide a general overview of the strategy and introduce some helpful vocabulary.

6.1. Multiplying Monomials in the Undirected Graph case. Let Γ be an undirected
graph.

Recall the definition of the order on the Y -monomials from Section 4. The important
properties of this order are that a Y -monomial with more elements among its indices than
another is larger, that YIYJ is larger YI∪JYI∩J , and that YJ1 being larger than YJ2 implies
that YJYJ1 is larger than YJYJ2 .

Lemma 6.2. Let Γ be an undirected graph. Assume that any non-cluster monomial YIYJ
can be written as a sum of smaller Y -monomials. Then, any Y -monomial can be written as
a sum of cluster monomials.

Proof. We prove it by induction on the order of the Y -monomial. Consider an Y -monomial∏
K∈K YK . Assume, by induction hypothesis, that any smaller Y -monomial can be written

as a sum of cluster monomials.
If

∏
K∈K YK is a cluster monomial, we are done. Otherwise, we claim that, because Γ is

undirected, there exists distinct sets I, J ∈ J such that {I, J} is non-nested. To see why,
suppose that J is non-nested. Then, either there must be a pair I, J with I ∩ J ̸= ∅ and
I ̸⊂ J, J ̸⊂ I, or there is some collection I1 . . . Ik ∈ J which are pairwise disjoint but not the
strongly connected components of their intersection. In the first case, {I, J} is non-nested.
In the second case, since Γ is strongly connected, there must be some path from Ii to Ij
for some I, I ∈ {I1 . . . Ik}. But, since Γ is undirected, this path is also a path from J to I.
Therefore, the only strongly connected component of I ∪ J is I ∪ J , and so the pair {I, J}
is not nested.
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By the assumption, we can write the non-cluster monomial YIYJ as a sum of smaller
Y -monomials. Hence, we can write

∏
K∈K YK = YIYJ

∏
K∈K\{I,J} YK as a sum of smaller

Y -monomials, for which we can apply the induction hypothesis and finally write
∏

K∈K YK
as a sum of cluster monomials. □

Therefore, for the rest of this section we will focus on multiplying two cluster variables
YIYJ .

The general strategy is to use the preimages method. We use the following notation for
the rest of this section:

(i) We let S0 denote the set of pairs of functions (fI , fJ) where fI is an acyclic function
on I and fJ is an acyclic function on J .

(ii) Similarly, S1 will denote the set of pairs of functions (fI∪J , fI∩J) where fI∪J is an
acyclic function on I ∪ J and fI∩J is an acyclic function on I ∩ J .

(iii) We let R denote the set of multifunctions on I ∪ J such that every vertex in I ∩ J
has outdegree 2, and every vertex in (I ∪ J) \ (I ∩ J) has outdegree 1. (Intuitively,
all the multifunctions we could possibly obtain by gluing together pairs of functions
in S0 or S1).

(iv) There are natural maps ϕ0 : S0 → R and ϕ1 : S1 → R taking multiunions of edges.

Remark. We can think of r ∈ R either as a multifunction, where each vertex in I ∩ J has
two outputs, or as a directed (not necessarily simple) graph where each vertex in I ∩ J has
outdegree 2. Thus, by abuse of notation when we say ‘cycles in r,’ we mean cycles that
appear in r when we think of r as a graph.

We can see that ϕ0 and ϕ1 are weight-preserving maps. So, in order to apply the preimages
method, we will want to compare |ϕ−1

0 (r)| and |ϕ−1
1 (r)| for a given r ∈ R. We will not

generally have |ϕ−1
0 (r)| = |ϕ−1

1 (r)|; the idea is that we always will have |ϕ−1
0 (r)| ≥ |ϕ−1

1 (r)|,
and in cases where the inequality is strict, we will add in suitable ‘correction terms.’ We do
this by analyzing the possible collections of cycles that can appear in r; in principal, this
method applies to every undirected graph, but this step is relatively simple for trees and
cycles, and can be much more complicated for general graphs.

In order to investigate these preimage sizes, we will use the convenient language of color-
ings:

6.2. Colorings. Fix some r ∈ R. The tools in this subsection in principal apply

Definition 6.3. A S0-valid coloring of r is a labeling of the edges of r with either I or J
such that:

(i) Every edge originating from a vertex in I \ J is colored with I.
(ii) Every edge originating from a vertex in J \ I is colored with J .
(iii) For every vertex v ∈ I ∩ J , the to edges originating from v are colored differently.

Similarly, a S1-valid coloring of r is a labeling of the edges of r with either I ∩ J or I ∪ J
such that:

(i) Every edge originating from a vertex in (I ∪ J) \ (I ∩ J) is colored with I ∪ J .
(ii) For every vertex v ∈ I ∩ J , the to edges originating from v are colored differently.

We call a coloring acyclic if there is no monochromatic cycle.

Example 6.4. In the example below, I-colored edges are represented with red and J-colored
edges are represented with blue. Refer to Figure 1.
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I J

(a) Graph Γ. (b) A multifunction r on I⊔J . (c) An acyclic S0-valid color-
ing of I ⊔ J .

Figure 1. Example of S0-valid coloring. I-colored edges are represented with
red and J-colored edges are represented with blue.

Notice that the number of acyclic, Si-valid colorings of r is just exactly |ϕ−1
i (r)|.

In order to give a Si-valid acyclic coloring on some r, it essentially suffices to color the
‘connected components’ of cycles independently. Below we rigorize this notion:

Definition 6.5. Say that two cycles are adjacent if they have at least one vertex in common.
We can draw an auxiliary graph G, where cycles are represented by vertices and edges are
given by cycle adjacencies. We say that connected families of cycles correspond to the
connected components of this graph G.

Notice that, by definition, connected families of cycles are pairwise vertex disjoint.

Lemma 6.6. Let C1, C2 . . . Ck be the connected families of cycles of some r, and say that
|(I ∩ J) \

⊔
i Ci| = k. Then,

#(Si-valid acyclic colorings of r) = 2k
∏
j

#(Si-valid acyclic colorings of Cj)

Proof. Choose a coloring of each Ci; since these cycles are vertex disjoint, these colorings
can be chosen independently. Then, choose colorings for the remaining vertices; there are no
more cycles left in r once we have already colored all of the connected families, so any valid
coloring will be acyclic. □

Lemma 6.7. Let C be a connected family of cycles such that C ⊂ I (or C ⊂ J). Then,

#(S0-valid acyclic colorings of C) = #(S0-valid acyclic colorings of C)
Proof. There is a bijection between acyclic S0-colorings and acyclic S1-colorings of C by
sending edges colored with I (respectively, J if C ⊂ J) to edges colored with I ∪J and edges
colored with J (respectively I) to edges colored with I ∩ J . □

In particular, if for some r ∈ R, each connected families of cycles is contained either in I
or in J , then Lemmas 6.7 and 6.6 imply that |ϕ−1

0 (r)| = |ϕ−1
1 (r)|.

6.3. Trees. In this subsection, we apply the ideas of the previous section to the case where
Γ is an undirected (really, bidirected) tree. So, we want to be able to multiply two cluster
variables YIYJ . The only cycles in Γ are thus the 2-cycles associated to every edge of Γ.

Definition 6.8. Let v1, v2 . . . vk be the vertices of a path in I∪J , where v1 ∈ I \J , vk ∈ J \I,
and vi ∈ I ∩ J for 1 < i < k. Then, an anchored chain is given by all of the two-cycles
(v1, v2) . . . (vk−1, vk).
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Intuitively, an anchored chain is a ‘path of cycles’ that travels from I to J .

Lemma 6.9. Let I, J be strongly connected induced subgraphs in Γ with nontrivial inter-
section. We can compute the product of their corresponding cluster variables as follows:

Let P be the set of all families of disjoint anchored chains. Then

YIYJ =
∑
P∈P

YI∪J\PYI∩J\P (3)

Example 6.10. This lemma gives a second proof of the formula by Lam and Pylyavskyy
[LP16b] for multiplying two monomials in the case where Γ is an undirected path. Let I and
J be overlapping segments with vertices 1, 2 . . . k and l . . .m: then their formula gives

YIYJ = YI∪JYI∩J + Y1,2...l−2Yk+2...m (4)

In this case, the only anchored chain between I and J is the chain on the vertices l −
1, l . . . k, k + 1. Thus, the second term corresponds to removing this chain from I ∪ J and
I ∩ J , and the first term corresponds to the empty family of chains.

Example 6.11. Let Γ be the following tree:

1 2 3

4 5 6

Let I = {1, 2, 4, 5} and let J = {2, 3, 5, 6}. Then the possible collections of disjoint anchored
chains between I and J are given by:

(i) {(12), (23)}
(ii) {(45), (56)}
(iii) {(12), (23)} and {(45), (56)} (as they are disjoint)
(iv) {(12), (25), (56)}
By the lemma, we compute

Y1245Y2356 = Y123456Y25 + Y456 + Y123 + Y43 + Y16 + 1. (5)

Now, we prove Lemma 6.9:

Proof. For a given family P of disjoint anchored chains in P , let SP denote the set of pairs
of functions (fI∪J , fI∩J) such that:

(i) fI∪J is a function on I ∪ J such that for every path v1 → v2 · · · → vk ∈ P , we
have fI∪J(vi) = vi+1 for i < k and fI∪J(vk) = vk−1. Furthermore, fI∪J is acyclic on
I ∪ J \ P .

(ii) fI∩J is a function on I ∩ J such that for every path v1 → · · · → vk ∈ P , we have
fI∩J(vi) = vi−1 for 1 < i < k. Furthermore, fI∩J is acyclic on I ∩ J \ P .

Let ϕP : SP → R be the usual multiunion function, which is weight preserving. Further-
more, notice that ∑

(fI∪J ,fI∩J )∈P

w(fI∪J)w(fI∩J) (6)

is the same as the numerator of YI∪J\PYI∩J\P .
We will show that for all r ∈ R:
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|ϕ−1
0 (r)| = |ϕ−1

1 (r)|+
∑
P∈P

|ϕ−1
P (r)| (7)

By the preimages method, the lemma will then follow.
As outlined in the overview previously, we start by classifying possible arrangements of

cycles for some r ∈ R. We have the following observations:

(i) Since Γ is an undirected (i.e. bidirected) tree, the only cycles in Γ are the two-cycles
corresponding to every edge.

(ii) Since I and J are strongly connected and Γ is a tree, there can be no edges in I ∪ J
that are not contained in either I or J . (If there were such an edge between v ∈ I
and w ∈ J , then there would be a cycle in Γ containing v and w).

(iii) The only possibly connected families of cycles which are not entirely contained in
either I or J are of the following form: choose a path v1, v2 . . . vk between I and J
as specified in the statement of Lemma 6.9, and take the two-cycles (v1, v2), (v2, v3),
. . . , (vk−1, vk).

To justify the last observation: by definition, the maximum outdegree of a vertex in r ∈ R
is 2. Therefore, each two-cycle C can be adjacent to at most two other two-cycles, because
each vertex of C can be in at most one other two-cycle. Furthermore, any cycles in I \ J or
J \ I cannot be adjacent to any other two-cycles, since vertices not in I ∩ J have outdegree
one. Therefore, any connected family of cycles not in I and not in J must have: one cycle
in I with exactly one vertex in I ∩ J , one cycle in J with exactly one vertex in I ∩ J , and
all other cycles in the intersection forming a path between them.

Now, let’s look at the possible colorings of an anchored chain p on v1, v2 . . . vk, where
v1 ∈ I and vk ∈ J .

Claim 6.12. The number of acyclic S0-valid colorings of p is 1. The number of acyclic
S1-valid colorings of p is 0.

To show this claim, first, we count the number of acyclic S0-valid colorings. We must
color the edge v1 → v2 with I, since it originates from a vertex in I \ J . To avoid a
monochromatic I-cycle between v1, v2, we must then color v2 → v1 with J . Now, because
the edges originating from v2 ∈ I ∩ J must have two different colors and v2 → v1 is colored
with J , v2 → v3 must be colored with I. Inductively, all edges vi → vi+1 must be colored
with I, and all edges vi → vi−1 must be colored with J . When we color the last cycle
(vk−1, vk), we must color vk → vk−1 with J , since vk ∈ J \ I, and this condition is satisfied
by coloring vi → vi+1 with I and vi → vi−1 with J . All of our choices were forced, so there
is 1 coloring of p which is acyclic and S0-valid.

Now, we count the number of acyclic S1-valid colorings. Since v1 /∈ I ∩ J , we must color
v1 → v2 with I ∪ J . To avoid a monochromatic I ∪ J-cycle between v1, v2, we must color
v2 → v1 with I ∩ J . By analogous reasoning to before, we must color vi → vi+1 with I ∪ J
and vi → vi−1 with I ∩ J . However, the last edge we color, vk → vk−1, cannot be colored
with I ∩ J since vk /∈ I ∩ J . Therefore, there are no colorings of p which are acyclic and
S1-valid.

Now, fix r ∈ R. If every connected family of cycles is either in I or in J , then by Lemma
6.7 and Lemma 6.6, we have

|ϕ−1
0 (r)| = |ϕ−1

1 (r)|
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Furthermore, for all other SP , by definition the image of any ϕP (fI∪J , fI∩J) ∈ R contains
some connected family of cycles not in I and not in J . Thus, we have |ϕ−1

P (r)| = 0. In this
case,

|ϕ−1
0 (r)| = |ϕ−1

1 (r)|+
∑
P∈P

|ϕ−1
P (r)|

With similar reasoning, we do casework on which families of anchored chains can occur in
r. Such families of anchored chains are given exactly by disjoint families of paths from I to
J in P . By the same reasoning as the above paragraph, we have

|ϕ−1
P (r)| = |ϕ−1

0 (r)|

Furthermore, we claim that |ϕ−1
P ′ (r)| = 0 for P ′ ̸= P . This is because for any paths p ∈ P

and p′ ∈ P ′, if p ̸= p′ we have p ̸⊂ p′ and p′ ̸⊂ p. Therefore, for any P ′ ̸= P , we have that
either:

(i) There is some p′ ∈ P ′ which is not in P . In this case, ϕP ′((fI∪J , fI∩J)) has cycles
which are not in r (so that |ϕ−1

P ′ (r)| = 0
(ii) Every p′ ∈ P ′ is also found in P , but there is some p ∈ P not in P ′ (otherwise,

P ′ = P ). In this case, every path in P ′ is disjoint from p. But then, |ϕ−1
P ′ (r)| = 0,

because of the fact that the number of ways to give an acyclic S1-valid coloring of an
anchored chain is 0.

Therefore, we have that |ϕ−1
0 (r)| = |ϕ−1

1 (r)|+
∑

P∈P |ϕ−1
P (r)| for all r ∈ R, as desired. □

Remark. A key observation that makes this argument for trees work, somewhat hidden
in this proof, is the fact that for any two distinct paths p1, p2, p1 ̸⊂ p2 and p2 ̸⊂ p1. This
observation allows us to show that |ϕ−1

P ′ (r)| = 0 when the family of anchored chains appearing
in r is P ̸= P ′, and in general this is the difficult step to generalize to all graphs.

Now, we can prove Theorem 1.3:

Proof. By Lemma 6.2, it is sufficient to expand the product of any two cluster variables YIYJ
as a linear combination of cluster monomials with positive coefficients. We induct on |I ∩J |.
When I ∩ J = ∅, we showed in the previous section how to expand YIYJ , proving the base
case. Now, by Lemma 6.9, we can expand

YIYJ = YI∪JYI∩J +
∑
P∈P

YI∪J\PYI∩J\P

The term YI∪JYI∩J is already a cluster monomial, but the terms YI∪J\PYI∩J\P need not be.
Furthermore, I ∪ J \P and I ∩ J \P are no longer strongly connected. However, by Lemma
3.1, we can expand each monomial YI∪J\PYI∩J\P into YA1YA2 . . . YAk

YB1YB2 . . . YBk′
, where

Ai’s are the connected components of I ∪ J \ P and the Bi’s are the connected components
of I ∩J \P . Furthermore, since each P contains vertices in I ∩J , we have for all Ai, Bj that
|Ai ∩ Bj| < |I ∩ J |. Therefore, by induction on the size of the intersection, we may express
any YAi

YBj
as a positive linear combination of cluster monomials. Finally, applying Lemma

6.2 one more time shows that we can expand YA1 . . . YBk′
= YI∪J\PYI∩J\P as a positive linear

combination of cluster monomials, as desired. □
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6.4. Cycles. Finally, we apply similar methods to prove that positivity holds for LP algebras
arising from undirected cycles. In this case, for every edge of Γ, there is a directed cycle of
length 2, and there are also two directed cycles that each contain all of the vertices of Γ.

Remark. Studying LP algebras arising from undirected cycles is motivated by an obser-
vation in [LP16b]. In [LP16b, Corollary 6.2], Lam and Pylyavskyy show that LP algebras
arising from undirected paths can be identified with Type A cluster algebras, proving pos-
itivity for paths. They do so by giving a correspondence between cluster monomials and
triangulations of polygons, and showing that a Ptolemy-like formula for expanding YIYJ into
cluster monomials holds.

However, although LP algebras coming from undirected cycles have the same cluster com-
plexes as Type B cluster algebras, they cannot be identified with Type B cluster algebras
since their exchange polynomials are no longer binomial.

Lemma 6.13. Suppose I, J are connected segments of an undirected cycle Γ such that I∩J
consists of two disjoint segments, K1, K2. Let K ′

1 be K1 together with the vertex to the
left and the vertex to the right of K1, and let K ′

2 be defined similarly. First, suppose that
K ′

1 ∩K ′
2 ̸= ∅. Then, we have:

YIYJ = YI∪JYI∩J + Y(I∪J)\K′
1
YK2 + Y(I∪J)\K′

2
YK1 + 2YI∩J (8)

If K ′
1 ∩K ′

2 = ∅, we get the same equation with one more term:

YIYJ = YI∪JYI∩J + Y(I∪J)\K′
1
YK2 + Y(I∪J)\K′

2
YK1 + Y(I∪J)\K′

1\K′
2
+ 2YI∩J (9)

Example 6.14. Suppose Γ is a 4-cycle as below. Let I = {1, 2, 3} and J = {1, 4, 3}. Then,
K1 = {1}, K2 = {3}, K ′

1 = {1, 2, 4} and K ′
2 = {2, 3, 4}. In this case, K ′

1 ∩K ′
2 ̸= ∅.

1

2

4

3

By Lemma 6.13, we obtain:

YIYJ = Y1234Y13 + Y2 + Y4 + 2Y13 (10)

Proof. We first assume that K ′
1 ∩ K ′

2 ̸= ∅. Similarly to the case for trees, there are three
kinds of connected families of cycles which are not contained in I and not contained in J
which can appear in any r ∈ R:

(i) One of the two cycles C1, C2 containing every vertex of Γ (as there are two possible
orientations of this cycle).

(ii) The anchored chain P1 whose vertices are the vertices of K ′
1.

(iii) The anchored chain P2 whose vertices are the vertices of K ′
2.

Because of the fact that vertices not in I∩J have outdegree one in r, we cannot have both
Pi and Cj appearing in r or both C1, C2 appearing in r; furthermore, since K ′

1 ∩K ′
2 ̸= ∅, we

cannot have both P1 and P2 appearing in r. So, at most one of the above three families of
cycles occurs in r.
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Similarly to the proof for trees, we will let SCi
consist of pairs (fI∪J , fI∩J) of functions on

I ∪ J , I ∩ J respectively, where fI∪J is just exactly the cyclic function given by Ci and fI∩J
is acyclic. Notice that

w(fI∪J)w(fI∩J) = w(fI∩J)

so that
∑

(fI∪J ,fI∩J )∈SCi
w((fI∪J , fI∩J)) is the numerator of YI∩J . We define SPi

in the same

way as we did for trees, and ϕPi
, ϕCi

are, as usual, the weight-preserving functions taking
multiunions of edges. By the preimages method, it will suffice to show that for all r ∈ R:

|ϕ−1
0 (r)| = |ϕ−1

1 (r)|+ |ϕ−1
P1
(r)|+ |ϕ−1

P2
(r)|+ |ϕ−1

C1
(r)|+ |ϕ−1

C2
(r)| (11)

We do this by splitting into cases on which connected families of cycles appear in r. If all
connected families of cycles in r are contained either in I or in J , then we have

|ϕ−1
0 (r)| = |ϕ−1

1 (r)|, |ϕ−1
Pi
(r)| = |ϕ−1

Ci
(r)| = 0

and we are done. If C1 (or symmetrically, C2) appears in r, then we have

|ϕ−1
0 (r)| − 1 = |ϕ−1

1 (r)|
This is because every S0-valid coloring of C1 is acyclic, as C1 has vertices both in J \ I
and I \ J , hence has edges colored both with I and with J . However, there is one S1-valid
coloring of C1 which is not acyclic, namely, when every edge is colored with I ∪ J . Then,
Lemma 6.6 implies that |ϕ−1

0 (r)| − 1 = |ϕ−1
1 (r)|. Furthermore, we have:

|ϕ−1
C1
(r)| = 1, |ϕ−1

Pi
(r)| = |ϕ−1

C2
(r)| = 0 (12)

Finally, if P1 (or symmetrically, P2) appears in r, then by the same reasoning as the case
with trees, we have

|ϕ−1
1 (r)| = |ϕ−1

Ci
(r)| = |ϕ−1

P2
(r)| = 0, |ϕ−1

0 (r)| = |ϕ−1
P1
(r)| (13)

Thus, Equation 11 holds in all cases, and we are done.
When K ′

1 ∩K ′
2 = ∅, we could also have both anchored chains P1 and P2 appearing in r.

So, we add in another term corresponding to excising both chains at once, and the argument
is exactly the same. □

Now, we can prove that positivity holds for LP algebras arising from undirected cycles:

Proof. By Lemma 6.2, it suffices to show that products of two cluster variables YIYJ can be
expanded as a positive linear combination of cluster monomials. If I, J are disjoint, we know
how to expand this product since we can always multiply YIYJ when I ∩ J = ∅. If I ∩ J
has one connected component, we know how to do this by the formula for paths in [LP16b,
Theorem 6.1]. So, it suffices to look at cases where I ∩J has two connected components. We
use the same argument as in the case for trees: inducting on the size of I ∩J , we can rewrite
YIYJ as a sum of monomials of the form YA1YA2 . . . YAk

YB1 . . . YBk′
, where |Ai∩Bj| < |I ∩J |.

Then, by Lemma 6.2, we can further expand each YA1 . . . YBk′
as a positive linear combination

of cluster monomials, as desired. □

6.5. Future Work. In the future, we hope to extend these arguments to show positivity
for all graphs Γ, or to show positivity for undirected Γ. If not, it may also be interesting
to look at other special classes of graphs; possible directions to explore are planar graphs,
graphs with small maximal degree, or edges of polytopes.
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