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Background



Diagrams and Tableaux

The representation theory of Sn is based on Diagrams and Tableaux.

Loosely, a diagram is a collection of boxes in N× N:

, , and

A tableau of a diagram D with n boxes is a filling of the boxes of D with

numbers 1, . . . , n, such that each number appears only once:

5 3 2 7

6 4

1

,

4

2

1 3 5 6

, and

7

4 6 5

1 2 3

are tableaux of the above diagrams.
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Diagrams and Tableaux

For n ∈ N, a partition λ = (λ1, . . . , λℓ) is a sequence of integers such

that λ1 ≥ · · · ≥ λℓ ≥ 0 and λ1 + · · ·+ λℓ = n. A partition corresponds to

a Young diagram in which the i th row has λi boxes, aligned to the left.

corresponds to λ = (3, 3, 1).

A skew partition λ/µ is the diagram obtained by removing boxes of µ

from the diagram of λ.

corresponds to s = (3, 3, 1)/(2).
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Specht Polynomials

For a polynomial ring R = k[x1, . . . , xn] and a tableau T of size n, we

define the Specht polynomial fT ∈ R:

T =

3

1 4 5

2

=⇒ fT =

(x3 − x5)(x1 − x2)x1x2x4

In general, the Specht polynomial of T is

fT =
∏

1≤i,j≤n
i above j in T

(xi − xj) ·
∏

1≤i≤n

xpii ,

where pi is the number of empty spaces above i in T .
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Specht Polynomials

For a diagram D with n boxes, the symmetric group Sn acts on the

tableau of D by permuting the labels 1, . . . , n:

(1, 5, 4)(2, 3)

 3

1 4 5

2

 =

2

5 1 4

3

This extends to an action on Specht polynomials.

The Specht module of D is the k-linear span of the Specht polynomials

of D:

SD = spank{fT | T is a tableau of shape D}

The Specht modules of partitions λ of n are precisely the irreducible

representations of Sn over C.
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Specht Ideals

Question: What happens if, instead, we take the R-span of the Specht

polynomials, i.e. the ideal they generate?

We get Specht ideals!

Definition
For a diagram D with n boxes, the Specht ideal of D is

ID = ⟨fT | T is a tableau of D⟩ ⊆ R.

Specht ideals have appeared in work related to subspace arrangements

[ZGS14; Bro+16; BPS05], graph theory [LL81; Lov94; Loe95],

combinatorial Hilbert schemes [Woo05; DK24], and symmetric systems of

equations [MRV21].

Our research: What can we say about the homological structure of a

Specht ideal ID in terms of the combinatorics of the diagram D?
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Free Resolutions

Let M be a finitely generated graded module over a graded k-algebra R,

and suppose that we have a finite group G acting on R by graded

k-algebra automorphisms and on M so that g(rm) = g(r)g(m).

1. Goal: Understand the structure of M.
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Generators and Relations

We can’t find a basis for M, but we can do the next best thing: find a

(finite) collection g1, . . . , gn0 ∈ M of elements of M that generate M as

an R-module.

Thanks to all the additional structure we’ve given M on

the last slide, we can ask for g1, . . . , gn0 to have any of the following

additional properties:

1. Each of the elements g1, . . . , gn are Homogenous

2. The k-span, V0 of g1, · · · , gn0 is an n0-dimensional Representation

of G over k

3. None of the gi are redundant. i.e., {g1, . . . , gn0} is a Minimal

Generating Set for M.

If we can find suitable g1, . . . , gn0 , then we will have reduced the problem

of understanding M to understanding the relations between the

g1, . . . , gn0 .
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Generators and Relations (cont’d)

Thus far, we have 0 ker(∂0) R ⊗ V0 M 0
∂0

ker(∂0) is a finitely generated R-module, and furthermore,

1. If the g1, . . . , gn are Homogenous, then ker(∂0) is Graded

2. If V0 is a Representation of G , then ker(∂0) has a G -action

satisfying g(rα) = g(r)g(α) for any α ∈ ker(d0)

Just Like M

1. So we can repeat this strategy recursively!

2. Under a few technical conditions, we are guaranteed to end up with

the 0 module after finitely many steps.
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Free Resolutions

If we do this, we end up with a sequence of maps,

F• : 0 Fd · · · F1 F0 M 0
∂d ∂2 ∂1 ∂0

Such that

ker(∂i ) = im(∂i+1) for all i

• F• is called a Free Resolution of M.

• If our choices of generators at each step are Resolution, we get a

Minimal Free Resolution

• If our generators are all Homogenous, then we can introduce degree

shifts di for each Fi so that the ∂i preserve the grading.

• If our choices of generators each have k-spans that are

Representations of G , then we can give each Fi a G -module

structure so that the ∂i are G -equivariant.

• If we have all of the above, then we’ve got a G -equivariant

(graded) minimal free resolution on our hands!
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Example: The Koszul Complex

• R = k[x1, x2, x3]

• G = S3

• M = k = R/⟨x1, x2, x3⟩
•

0 S ⊗ R(−3) S ⊗ R(−2)

S ⊗ R(−1) S ⊗ R k 0.

• Maps:

∂2

(
3

1
2

)
= 3 1

2 ⊗ x1 − 3 2
1 ⊗ x2

11
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Hilbert Series

Given a graded module M over a graded k-algebra R, one can define a

generating function called the Hilbert Series of M which turns the

homological algebraic structure of M into the arithmetic structure of a

power series.

Definition
Let M be a graded R-module. The Hilbert series of M over R is the

formal power series

HSR(M, t) =
∑
j∈N

dimk Mj t
j .

12
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χMj (g) t
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Example

HSeq,k[x1,x2,x3](I , t) =
χ t − χ t2

(1− t)3
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Two-row ribbons



Two row shapes

• In [SY23b], Shibata and Yanagawa found the minimal free resolution

for I(n−d,d).

• Can we generalize the resolution for two-row skew shapes?
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Ribbons

Definition

A ribbon is a connected skew shape containing no 2× 2 boxes.

Example

The diagram is a ribbon, but is not

Notation

Given a composition (α1, . . . , αk), let Ribb(α1, . . . , αk) denote the

unique ribbon having αi boxes in row i .
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The Free Modules, an example

Example

Consider the ribbon Ribb(3, 3) = and let R = k[x1, . . . , x6].

The free R-modules in the resolution are:

S ⊗ R(−8) S ⊗ R(−7)

S ⊗ R(−5) S ⊗ R(−4) S ⊗ R(−3)
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The Free Modules

Definition

More generally, for Ribb(k , ℓ), we have

FRibb(k,ℓ)
• : 0 Fk+ℓ−2 · · · F1 F0 0,

∂k+ℓ−2 ∂2 ∂1

where if 0 ≤ i ≤ k − 1

Fi = SRibb(k−i,ℓ,1i ) ⊗ R(−ℓ− i),

and if k ≤ i ≤ k + ℓ− 2

Fi = SRibb(k+ℓ−i−1,1i+1) ⊗ R(−ℓ− i − 1).
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Boundary Maps

Example

For Ribb(2, 2), we have

0 S ⊗ R(−5) S ⊗ R(−3) S ⊗ R(−2) I 0.
∂2 ∂1

Then

∂2

 1
2
3
4

⊗ 1

 =
1

3 2
4

⊗ x1x2 −
1

2 3
4

⊗ x1x3 +
1

2 4
3

⊗ x1x4

+
2

1 3
4

⊗ x2x3 −
2

1 4
3

⊗ x2x4 +
3

1 4
2

⊗ x3x4,

and

∂1

(
1

2 3
4

⊗ 1

)
= 1 2

4 3 ⊗ x2 − 1 4
2 3 ⊗ x4.
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Conjecture

Conjecture

FRibb(k,ℓ)
• is a minimal free resolution for IRibb(k,ℓ)

19



Progress

We make partial progress towards proving the conjecture above.

Theorem

The maps ∂i are well-defined.

Theorem

FRibb(k,ℓ)
• is a chain complex, i.e. ∂i−1∂i = 0.
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Towards exactness

In the direction of proving exactness, we proved the prime decomposition

of two-row ribbon Specht ideals.

Theorem

A two-row ribbon Specht ideal has the following prime decomposition:

IRibb(k,ℓ) = ⟨xi − xj | 1 ≤ i < j ≤ k + ℓ⟩ ∩

 ⋂
#F=d−1
F⊆[k+ℓ]

PF

 ,

where PF = ⟨xi | i /∈ F ⟩ for F ⊆ {1, . . . , k + ℓ}.
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Sn-equivariant Hilbert series

0

1 + + +

2 + 2 + 2 + 2 + 2 + 2 + 2

3 + 2 + 4 + 4 + 2 + 4 + 4 + 2 + 4 + 4

Table 1: Stabilization of R/IRibb(n,3)

0

1 + + +

2 + 2 + 2 + 2 + 2 + 2 + 2

3 + 2 + 4 + 3 + + 2 + 4 + 2 + + 2 + 4 + 2

Table 2: Stabilization of R/IRibb(n,4)
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Table 2: Stabilization of R/IRibb(n,4)
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Representation Stability

Definition

The phenomenon described above is known as representation stability

Conjecture

Let k be a fixed positive integer. For each n ≥ 1, let

V i
n = (R/IRibb(n−k,k))i ,

considered as a Sn-representation. Then, {V i
n} is representation stable

for all i ≥ 0. Moreover, it stabilizes at n ≥ 2(k − 1).

23



Generalized Hooks



Sn Equivariant Resolutions of Hooks

The Eagon-Northcott complex can be used to construct the minimal free

Sn equivariant resolutions of hooks.

Example

0 S ⊗ (R(−5)⊕ R(−6)⊕ R(−7))

S ⊗ (R(−4)⊕ R(−5))

S ⊗ R(−3) I(3,1,1)

∂3

∂2

∂1

24



2-Column Generalized Hooks

We also investigated generalizations of hooks, and spotted clear patterns

in their Betti tables.

In the 2 column case, we were able to find explicit conjectural minimal

free resolutions which explain the pattern in their Betti Tables.
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Vandermonde Determinants and the Jacobi Bialternant For-

mula

Given variables z1, . . . , zn, we let

VD(z1, . . . , zn) :=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 · · · 1

z1 z2 · · · zi · · · zn
z21 z22 · · · z2i · · · z2n
...

...
...

...

zn−1
1 zn−1

2 · · · zn−1
i · · · zn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣
Theorem (Jacobi Bialternant formula)
Let λ = (λ1, . . . , λn), with λ1 ≥ · · · ≥ λn ≥ 0. Then we have

∣∣∣∣∣∣∣∣∣
z
λn
1

z
λn
2

· · · z
λn
i

· · · z
λn
n

z
λn−1+1

1
z
λn−1+1

2
· · · z

λn−1+1

i
· · · z

λn−1+1
n

z
λn−2+2

1
z
λn−2+2

2
· · · z

λn−+2

i
· · · z

λn−2+2
n

.

.

.

.

.

.

.

.

.

.

.

.

z
λ1+n−1
1

z
λ1+n−1
2

· · · z
λ1+n−1
i

· · · z
λ1+n−1
n

∣∣∣∣∣∣∣∣∣ = VD(z1, . . . , zn)sλ(z1, . . . , zn)
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2-Column Hooks: Jacobi Bialternant Relations

The gi ’s are equal to the Specht polynomials of 2-column generalized

hooks with row d + 1 of the diagram being the 2-box row

gi = xdi ·

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1̂ · · · 1

x1 x2 · · · xi · · · xn
x21 x22 · · · x2i · · · x2n
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
i · · · xn−2

n

∣∣∣∣∣∣∣∣∣∣∣∣
n∑

i=1

(−1)i−1gi · x ji =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 · · · 1

x1 x2 · · · xi · · · xn
x21 x22 · · · x2i · · · x2n
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
i · · · xn−2

n

xd+j
1 xd+j

2 · · · xd+j
i · · · xd+j

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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2-Column Hooks: Jacobi Bialternant Relations

The gi ’s are equal to the Specht polynomials of 2-column generalized

hooks with row d + 1 of the diagram being the 2-box row

gi = xdi ·

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1̂ · · · 1

x1 x2 · · · xi · · · xn
x21 x22 · · · x2i · · · x2n
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
i · · · xn−2

n

∣∣∣∣∣∣∣∣∣∣∣∣
n∑

i=1

(−1)i−1gi ·x ji =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 · · · 1

x1 x2 · · · xi · · · xn
x21 x22 · · · x2i · · · x2n
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
i · · · xn−2

n

x
n−1+(d+j−n+1)
1 x

n−1+(d+j−n+1)
2 · · · x

n−1+(d+j−n+1)
i · · · x

n−1+(d+j−n+1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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2-Column Hooks: Jacobi Bialternant Relations

The gi ’s are equal to the Specht polynomials of 2-column generalized

hooks with row d + 1 of the diagram being the 2-box row

gi = xdi ·

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1̂ · · · 1

x1 x2 · · · xi · · · xn
x21 x22 · · · x2i · · · x2n
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
i · · · xn−2

n

∣∣∣∣∣∣∣∣∣∣∣∣
n∑

i=1

(−1)i−1gi · x ji = VD(x1, . . . , xn)s(d+j−n+1)(x1, . . . , xn)

= VD(x1, . . . , xn)hd+j−n+1(x1, . . . , xn)
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J.B. relations example

• D =

• f1 := x1

∣∣∣∣∣∣∣
1 1 1

x2 x3 x4
x22 x23 x24

∣∣∣∣∣∣∣ = x1 VD(x2, x3, x4)

• f2 := x2

∣∣∣∣∣∣∣
1 1 1

x1 x3 x4
x21 x23 x24

∣∣∣∣∣∣∣ = x2 VD(x1, x3, x4)

• . . .
1 −1 1 −1

x1 −x2 x3 −x4
x21 −x22 x23 −x24
x31 −x32 x33 −x34



f1
f2
f3
f4

 = VD(x1, x2, x3, x4)


0

0

1

x1 + x2 + x3 + x4


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Further directions



Generalizations and Explorations

1. Proving the Betti numbers for MFR of Ribb(k , ℓ).

2. Approach representation stability conjecture.

3. Generalizations of (d , d , 1)

• Skew shape (d , d , 1)/(a)

• (d1, d2, 1)

4. MFR for two-column generalized hooks.
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(d , d , 1)/(a)

Example

Consider (3, 3, 1)/(2) = . The MFR for R/I is

0 S ⊗ R(−7) S ⊗ R(−6) S ⊗ R(−5) R 0.
∂3 ∂2 ∂1

Conjecture

The minimal free resolution of R/I(d,d,1)/(a) for a < d has free modules

F0 = R and

Fi = S(d,d−i+1,1i )/(a) ⊗ R(−d − i − 1)

for 1 ≤ i ≤ d. Furthermore, the maps ∂i are defined the same way as in

[SY23a].
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(d1, d2, 1)

Here is the MFR for the partition :

0 S ⊗ R(−9)

S ⊗ (R(−6)⊕ R(−7)) (S ⊕ S ⊕ S )⊗ R(−5)

S ⊗ R(−4) I

0.

There is almost a pattern in these partitions in terms of moving boxes,

but it fails in an interesting way.
39
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