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What is a Numerical Semigroup?

Definition (Numerical Semigroups)

A numerical semigroup is a cofinite subset S ⊆ Z≥0 of the natural
numbers closed under addition.

Notation

S = ⟨n1, ..., nk⟩ = {a1n1 + ...+ aknk : ai ∈ Z≥0}

where ni are generators.

Example

S = ⟨13, 40, 54, 68, 82⟩ = {0, 13, 26, 39, 40, 53 . . . }.
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Embedding Dimension

S = ⟨13, 40, 54, 68, 82⟩ = {0, 13, 26, 39, 40, 53 . . . }.

Definition (Embedding dimension)

The embedding dimension of a numerical semigroup is the number
of minimal generators.

Example

The embedding dimension of S is 5.
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Multiplicity

S = ⟨13, 40, 54, 68, 82⟩ = {0, 13, 26, 39, 40, 53 . . . }.

Definition (Multiplicity)

The multiplicity of a numerical semigroup is its smallest generator
m.

Example

The multiplicity m of S is 13.
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Apery Set

S = ⟨13, 40, 54, 68, 82⟩ = {0, 13, 26, 39, 40, 53 . . . }.

Definition (Apéry Set)

The Apéry set of a semigroup S is given by
Ap(S) = {n ∈ S : n −m /∈ S}, where m is its smallest generator.

Example

Ap(S) = {0, 40, 54, 68, 82, 122, 136, 150, 164, 204, 218, 232, 246}.
We order the elements by equivalence class mod m (here 13).
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Apéry Poset

Definition (Apéry Poset)

The poset (Ap(S),⪯), where a ⪯ a′ if and only if a′ − a ∈ S .

Figure: Apéry Poset of S
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Factorizations

Definition (Apéry Poset)

The poset (Ap(S),⪯), where a ⪯ a′ if and only if a′ − a ∈ S .

Figure: Apéry Poset of S
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Kunz Poset

Definition (Kunz Poset)

The Kunz poset of a numerical semigroup S is the poset obtained
by replacing each element of the Apéry poset with its equivalence
class in Zm.

Figure: Kunz Poset of S
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Additive Structure

Figure: Kunz Poset of S
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Maximal Embedding Dimension

Definition

A semigroup has maximal embedding dimension (MED) if it has m
generators.

0

1 2 3 4 5 6 7 8 9 10 11 12
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Semigroups Sharing Posets

0

1 2 3 4 5 6 7 8 9 10 11 12

Example

S = ⟨13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25⟩

S = ⟨13, 53, 67, 55, 82, 96, 58, 72, 60, 87, 75, 50, 90⟩
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Toric Ideal and Semigroup Algebra

We construct a ring that captures the structure of a semigroup S :

Example

S = ⟨6, 9, 20⟩ (minimal generating set)

φ : K[y , x1, x2]→ K[t]

y 7→ t6

x1 7→ t9

x2 7→ t20

▶ Defining toric ideal: IS = ker(φ) = ⟨y3 − x21 , y
4x41 − x32 ⟩

▶ Semigroup algebra: K[S ] = Im(φ) ∼= K[y , x1, ..., xk ]/IS
▶ K[S ] is graded: deg(yx1) = deg(t6t9) = 6 + 9 = 15
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Free Resolutions

We aim to give combinatorial descriptions for minimal infinite free
resolutions of the base field K over the semigroup algebra K[S ]:

0←− K ∂0←− F0
∂1←− F1

∂2←− F2
∂3←− · · ·

Theorem (Gomes, O’Neill, Sobieska, Torres Dávila ’24)

Numerical semigroups with the same Kunz poset have essentially
the same minimal free resolution.
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Apéry Resolution

We can alternatively define K[S ] using {m} ∪ Ap(S):

▶ K[S ] ∼= K[y , x1, ..., xm−1]/JS

Definition

The Apéry resolution is an infinite free resolution of K over K[S ]:

0←− K ϵ←− F0
∂1←− F1

∂2←− F2
∂3←− · · ·

▶ Basis {ew} of Fd corresponds to words w = (w1, ...,wd)

▶ wi ∈ {0, ...,m − 1} avoiding 0s after first position

▶ Grading: deg(ew) =
∑

wi∈W deg(xi )
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Apéry Resolution

Definition

∂d(ew) = xwd
eŵ +

∑d−1
i=1 (−1)d−iy•eτiw where

▶ ŵ = (w1, ...,wd−1)

▶ τiw = (w1, ...,wi−1,wi + wi+1,wi+2, ...,wd)

Example

S = ⟨13, 14, 15, 16, 17⟩

e32121

7→ x1e3212 − y•e3213 + y•e3231 − y•e3321 + y•e5121

7→ 0
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Apéry Resolution

▶ The Apéry resolution is minimal only when S has maximal
embedding dimension

0

1 2 3 4 5 6 7 8 9 10 11 12

▶ A minimal resolution in non-MED cases can be found by
row-reducing the Apéry resolution
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Extra-Generalized Arithmetical Numerical Semigroups

Definition

An extra-generalized arithmetical numerical semigroup
(EGANS) is a numerical semigroup of the form

S = ⟨m,mh + δ,mh + 2δ, . . . ,mh + kδ⟩,

where m < mh + kδ, h, k > 0 and gcd(m, δ) = 1.

Example

S = ⟨13, 47, 42, 37, 32, 27⟩ = ⟨13, 13 · 4− 5, . . . , 13 · 4− 5 · 5⟩
▶ m = 13

▶ h = 4

▶ k = 5

▶ δ = −5
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Kunz Posets for EGANS

S1 = ⟨13, 14, 15, 16, 17⟩,
S2 = ⟨13, 27, 28, 29, 30⟩
▶ Same m = 13, k = 4, δ = 1

▶ h1 = 1, h2 = 2

▶ Same Kunz poset: true in
general

0

1 2 3 4

5 6 7 8

9 10 11 12
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Kunz Posets for EGANS

0

1 2 3 4

5 6 7 8

9 10 11 12

Poset for S1 = ⟨13, 14, 15, 16, 17⟩
δ = 1

0

2 4 6 8

10 12 1 3

5 7 9 11

Poset for S4 = ⟨13, 15, 17, 19, 21⟩
δ = 2
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Kunz Posets for EGANS

Example

S = ⟨15, 31, 32, 33, 34⟩
▶ m − 1 = q · k + r

▶ 15− 1 = 3 · 4 + 2

▶ q = 3, r = 2

▶ From bottom to top:

1. 0 in bottom row

2. q = 3 full rows with k = 4
elements each

3. Top row has r = 2 elements

13 14

0

1 2 3 4

5 6 7 8

9 10 11 12
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Kunz Posets and Pattern-Avoiding Words

▶ Apéry resolution: basis elements indexed by words from
alphabet Zm, pattern avoidance rule wi ̸= 0 for all i ≥ 2

▶ Apéry is minimal iff S is MED; otherwise, too many words
and letters

Example

In m = 13, k = 4, poset relation a1 + a4 = a5 =⇒ 5 is bad

0

5

1 2 3 4

New alphabet: {0, 1, 2, . . . , k ,−α} ⊆ Zm, m ≡ α (mod k)
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Kunz Posets and Pattern-Avoiding Words

Example

m = 15, k = 4 =⇒ α = 3, our
new alphabet is
{0, 1, 2, 3, 4,−3} ⊆ Z15

Pattern Avoidance Rules

Bad:

1. wi = 0 for all i ≥ 2

2. w1 = −3
3. 14, 24, 34, 44

4. 0−, 1−, 2−

0

1 2 3 4

5 6 7 8

9 10 11 12

13 14

0, 4−, 03−433, 3−4−1, 321123

(((((hhhhh3210123, ����XXXX−4333, ���H
HH21−, ���XXX5121, ��HH142
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A New Minimal Resolution

Theorem (CFJJM ’24)

Given an EGANS S = ⟨m,mh + δ,mh + 2δ, . . . ,mh + kδ⟩ with
k ∤ m, we have a minimal free resolution

F ′
• : 0←− K

∂′
0←−− F ′

0

∂′
1←−− F ′

1

∂′
2←−− F ′

2 ←− · · · ,

wherein F ′
d = ⟨ew : w a new word of length d⟩ for all d , of the

base field K over the semigroup algebra of S .
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The Maps ∂′ - Translation Manual

Example

For m = 13 and k = 4 : S = ⟨13, 14, 15, 16, 17⟩,
Alphabet: {0, 1, 2, 3, 4,−1}
∂(e32121) = x1e3212 −y•e3213 +y•e3231 −y•e3321 +y•e5121

∂′(e32121) = x1e3212 −y•e3213 +y•e3231 −y•e3321 +x4e1121
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The Maps ∂′ - Translation Manual

Example

For m = 13 and k = 4 : S = ⟨13, 14, 15, 16, 17⟩,
Alphabet: {0, 1, 2, 3, 4,−1}
∂(e32121) = x1e3212 −y•e3213 +y•e3231 −y•e3321 +y•e5121

∂′(e32121) = x1e3212 −y•e3213 +y•e3231 −y•e3321 +x4e1121

∂(e123−2) = x2e123− −y•e1231 +y•e1222 −y•e15−2 +y•e33−2

∂′(e123−2) = x2e123− −y•e1231 +y•e1222 −y•e1132 +y•e33−2
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From Apéry to Minimal

Theorem (CFJJM ’24)

Given an EGANS S = ⟨m,mh + δ,mh + 2δ, . . . ,mh + kδ⟩ with
k ∤ m, the sequence

F ′
• : 0←− K

∂′
0←−− F ′

0

∂′
1←−− F ′

1

∂′
2←−− F ′

2 ←− · · · ,

wherein F ′
d = ⟨ew : w a new word of length d⟩ and the maps ∂′ are

given by the Apéry maps together with our translation rules, is a
minimal free resolution of K over the semigroup algebra of S .

Our translation rules amount to applying a chain map to the Apéry
resolution:

0 K R F1 F2 · · ·

0 K R F ′
1 F ′

2 · · ·

∂0

p0

∂1

p1

∂2

p2

∂′
0 ∂′

1 ∂′
2
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Counting the Betti Numbers

Corollary

Let S = ⟨m,mh + δ, . . . ,mh + kδ⟩ with m ≡ α (mod k) and
α ̸= 0. The Betti numbers (ranks) of the modules resolving K over
K[S ] are given by β0 = 1, β1 = k + 1, and, for all n ≥ 2,

βn = kβn−1 − (α− 1)βn−2.

As a Poincaré series:

P
K[S]
K (z) =

∞∑
n=1

βnz
n =

1 + z

1− kz + (α− 1)z2

Example

For S = ⟨13, 14, 15, 16, 17⟩,
Apéry resolution: β0 = 1, β1 = 13, β2 = 156, β3 = 1872, . . .
New (minimal) resolution: β0 = 1, β1 = 5, β2 = 20, β3 = 80, . . .
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Enumerating the posets with m=5

0

1 2 3 4

0

21

3 4

0

321

4

1

2

3

4

0

Kunz posets for m = 5 for which infinite free resolutions are
known: the leftmost one describes an MED semigroup, and the
other three are posets which describe extra-generalized arithmetical
semigroups.
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Enumerating the posets with m = 5

0

1

2
4

3

P1

0

1 3 2

4

P2

0

1

2

3 4

P3

0

1
2
3

4

P4

0

1

2

4

3

P5

All of the posets of multiplicity 5 that do not correspond to
EGANS semigroups.
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Forbidden Words

0

1
2

4

3

P1

0

1 3 2

4

P2

0

1
2

3 4

P3

0

1
2
3

4

P4

0

1
2

4
3

P5

Conjecture

Poset Forbidden subwords

P1 {∗0} ∪ {2, 3, 11, 144}
P2 {∗0} ∪ {4, 13}
P3 {∗0} ∪ {02, 11, 22, 32, 42}
P4 {∗0} ∪ {2, 00, 03, 11, 33, 43}
P5 {∗0} ∪ {02, 03, 11, 13, 22, 23, 32, 33, 42, 44}

Cho, Favazza, Jones, Joseph, and MacDonald Infinite Free Resolutions



Interesting Observation

0

1 2 3

4

P2

⟨5, 11, 17, 8⟩
0

1 2 3

4

Similar EGANS Poset

⟨5, 6, 7, 8⟩

Second Matrix of Free Resolution:

01 02 03 11 12 21 22 23 31 32 33


0 x1 x2 x3 −y• −y•

1 −y x1 x2 x3 −y•

2 −y −y• x1 x2 x3
3 −y −y• −y• −y•x1 x1 x2 x3
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Interesting Observation (Continued)

0

1 2 3

4

P2

⟨5, 11, 17, 8⟩
0

1 2 3

4

Similar EGANS Poset

⟨5, 6, 7, 8⟩

Relation in P2 is x22 − y3x1x3 = 0 because:

▶ 2 · 17 = 34, 3 · 5 + 11 + 8 = 34

Relation in Similar EGANS Posets is x22 − x1x3 = 0 because:

▶ 2 · 7 = 14, 6 + 8 = 14
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Recursive Definition

0

1 3 2

4

P2

0

1 3 2

4

5

Expanded Poset

Conjecture

Poset Forbidden subwords

P2 {4, 00, 10, 13, 20, 30}
Expanded Poset {4, 00, 10, 13, 20, 30, 50}
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Kunz Cone

Definition (Kunz cone)

The Kunz cone Pm is a pointed rational cone whose integer points
correspond to numerical semigroups with smallest generator m.

Figure: Kunz cone for semigroups with smallest element 4
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Kunz Cone

Figure: Kunz cone for semigroups with smallest element 4

Fact

Two numerical semigroups lie in the same face of Pm

if and only if they have identical Kunz posets.
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