Mixed Dimers and Sub-Dimension Vectors for Type E Quiver Representations

Serena An, Casey Appleton, and Sogol Cyrusian Mentor: Kayla Wright TA: Elise Catania

UMN Combinatorics and Algebra REU

August 1, 2024

Outline

- Motivation
- Quiver representations
- Orrespondence between dimers and subrepresentations
- Type E results

Motivation

Our project focuses on creating *dimer models* for cluster algebras from type E quivers.

Main idea: we study polynomials associated to type *E* quiver representations using *dimer combinatorics*.

Quiver Representations

Definition

A *quiver* is a directed graph. A *quiver representation* associates a vector space to each vertex and a linear transformation to each arrow.

Definition

A subrepresentation M' of a quiver representation M consists of the same linear transformations assigned to each arrow as in M, and subspaces of the originally assigned vector spaces for each vertex.

Dynkin Diagrams

The Dynkin diagrams are A_m ($m \ge 1$), D_n ($n \ge 4$), E_6 , E_7 , and E_8 .

Theorem (Gabriel's Theorem)

A quiver has finitely many isomorphism classes of indecomposable representations if and only if its underlying graph is a Dynkin diagram.

Serena, Casey, and Sogol

Mixed Dimers for Type E Quivers

F-polynomials are special polynomials associated to indecomposable representations $M(\underline{d})$ for a dimension vector \underline{d} :

$$F_{\underline{d}} = \sum_{\underline{e}} \chi(Gr_{\underline{e}}(M(\underline{d})))\underline{u}^{\underline{e}}$$

where \underline{e} is the dimension vector of a subrepresentation of M.

Modeling Subrepresentations Combinatorially

Defining the Base Graph

We are inspired by the type D_n case done by Musiker and Wright (2023). Begin with a quiver of Dynkin type E_6 .

- Our of the second se
- Attach square tiles for all other quiver vertices such that quiver arrows see "white on the right."

Mixed Dimer Configurations

Definition

A mixed dimer configuration for a dimension vector $\underline{d} \in \{0, 1, 2, 3\}^6$ is a multiset of the edges of the base graph (called *dimers*) such that for all vertices v adjacent to a tile *i*,

- If $d_i = 3$, then v is contained in exactly 3 dimers.
- If $d_i = 2$, then v is contained in at least 2 dimers.

• If $d_i = 1$, then v is contained in at least 1 dimer.

The following is a mixed dimer configuration for $\underline{d} = (1, 2, 3, 2, 2, 1)$.

Flip Operations

Definition

A *flip* on a square or hexagon swaps dimers on black-to-white-clockwise edges for dimers on all white-to-black-clockwise edges.

Observe that flips preserve the degree of every vertex of the base graph.

Definition

Definition

Definition

Definition

Poset of Mixed Dimer Configurations

Definition

The *poset of mixed dimer configurations* contains all dimer configurations that can be obtained from the minimal matching by flips.

Correspondence between dimension vectors $\underline{e} = (e_0, e_1, \dots, e_5)$ and mixed dimer configurations D_e , where tile *i* has been flipped e_i times in D_e :

$$F_{d} = 1 + 2u_{3} + 2u_{4} + u_{2}u_{3} + u_{2}u_{4} + u_{3}^{2} + 4u_{3}u_{4} + u_{4}^{2} + u_{4}u_{5} + \cdots$$

Sub-dimension Vector Conditions

Theorem (Tran '09)

For type D_n quivers Q, the term $u_0^{e_0} \cdots u_{n-1}^{e_{n-1}}$ appears in the F-polynomial for <u>d</u> if and only if

- **○** 0 ≤ <u>e</u> ≤ <u>d</u>
- $i \rightarrow j \implies e_i e_j \leq \max(d_i d_j, 0)$

③ *Q* avoids having too many type D_n critical arrows $(d_i, e_i) \rightarrow (d_j, e_j)$.

Type D_n critical arrows are $(1,1) \rightarrow (2,1)$ or $(2,1) \rightarrow (1,0)$.

15 / 27

Theorem (AAC '24+)

For type E_6 quivers Q, the term $u_0^{e_0} \cdots u_5^{e_5}$ appears in the F-polynomial for $\underline{d} = (1, 2, 3, 2, 2, 1)$ if and only if

- $0 \leq \underline{e} \leq \underline{d}$
- $\ 2 \ \ i \rightarrow j \implies e_i e_j \le \max(d_i d_j, 0)$

3 *Q* avoids having too many type E₆ critical arrows $(d_i, e_i) \rightarrow (d_j, e_j)$.

Theorem (AAC '24+)

For type E_6 quivers Q, the term $u_0^{e_0} \cdots u_5^{e_5}$ appears in the F-polynomial for $\underline{d} = (1, 2, 3, 2, 2, 1)$ if and only if

• $0 \le \underline{e} \le \underline{d} \iff N_i$ is a subspace of $M(\underline{d})_i$

$$i \rightarrow j \implies e_i - e_j \le \max(d_i - d_j, 0)$$

③ *Q* avoids having too many type E_6 critical arrows $(d_i, e_i) \rightarrow (d_j, e_j)$.

Theorem (AAC '24+)

For type E_6 quivers Q, the term $u_0^{e_0} \cdots u_5^{e_5}$ appears in the F-polynomial for $\underline{d} = (1, 2, 3, 2, 2, 1)$ if and only if

- $0 \leq \underline{e} \leq \underline{d} \iff N_i$ is a subspace of $M(\underline{d})_i$
- $i \rightarrow j \implies e_i e_j \le \max(d_i d_j, 0) \iff maps in M(\underline{d}) are full rank$
- **③** *Q* avoids having too many type E_6 critical arrows $(d_i, e_i) \rightarrow (d_j, e_j)$.

Theorem (AAC '24+)

For type E_6 quivers Q, the term $u_0^{e_0} \cdots u_5^{e_5}$ appears in the F-polynomial for $\underline{d} = (1, 2, 3, 2, 2, 1)$ if and only if

- $0 \leq \underline{e} \leq \underline{d} \iff N_i$ is a subspace of $M(\underline{d})_i$
- $i \rightarrow j \implies e_i e_j \le \max(d_i d_j, 0) \iff maps in M(\underline{d}) are full rank$
- **3** Q avoids having too many type E_6 critical arrows $(d_i, e_i) \rightarrow (d_j, e_j)$. *

Forbidden Critical Arrow Combinations

We separate type E_6 critical arrows into three categories.

- (1,1)
 ightarrow (2,1) and (2,1)
 ightarrow (1,0)
- (2,1) ightarrow (3,1) and (3,2) ightarrow (2,1)
- (2,2) \rightarrow (3,2) and (3,1) \rightarrow (2,0)

The forbidden combinations of critical arrows for $\underline{d} = (1, 2, 3, 2, 2, 1)$:

Critical Arrows Example

(0,1,2,1,1,0) appears in the F-polynomial, but (0,0,2,1,1,1) does not.

Forbidden Combinations of Critical Arrows

Critical Arrows and Mixed Dimers

Proposition (Musiker and Wright '23)

The number of dimers in $D_{\underline{e}}$ on the edge between tiles i and j is

$$\max(d_i-d_j,0)+(e_j-e_i).$$

Proposition (AAC '24+)

For a type E_6 critical arrow $i \rightarrow j$, there are no dimers along the edge between tiles i and j.

For the critical arrow $(3,1) \rightarrow (2,0)$,

$$\max(d_i - d_j, 0) + (e_j - e_i) = (3 - 2) + (0 - 1) = 0.$$

Serena, Casey, and Sogol

Mixed Dimers for Type E Quivers

M(<u>d</u>) can be visualized as the following labeled diagram of points and lines in the plane

M(<u>d</u>) can be visualized as the following labeled diagram of points and lines in the plane (how? → ask us after the talk!):

21 / 27

M(<u>d</u>) can be visualized as the following labeled diagram of points and lines in the plane (how? → ask us after the talk!):

Representation Theoretic Justification for Critical Arrows

Q avoids having "too many" type E_6 critical arrows $(d_i, e_i) \rightarrow (d_j, e_j)^*$.

Representation Theoretic Justification for Critical Arrows

Q avoids having "too many" type E_6 critical arrows $(d_i, e_i)
ightarrow (d_j, e_j)^*$.

The forbidden critical arrow combinations correspond to the maps in $M(\underline{d})$ having "unusual" relationships with each other.

For example, the kernels of two maps may be equal, or the image of one map may contain the image of another.

Representation Theoretic Justification for Critical Arrows

• $\ker(c) \neq \ker(d) \iff$ Two $(3,1) \rightarrow (2,0)$ arrows is forbidden

Mixed Dimers for Type E Quiver

F-polynomial Coefficients

 $F_{\underline{d}} = 1 + 2u_3 + 2u_4 + u_2u_3 + u_2u_4 + u_3^2 + 4u_3u_4 + u_4^2 + u_4u_5 + \cdots$

Coefficients Conjecture

Conjecture

Coefficients greater than 1 in the F-polynomial for $\underline{d} = (1, 2, 3, 2, 2, 1)$ correspond to the following cycles in the mixed dimer configuration.

Future Directions

- Analyze the $\underline{d} = (1, 2, 3, 1, 2, 1)$ case for type E_6 quivers
- Look into type E_7 and E_8 quivers
- Characterize the F-polynomial coefficients by dimer cycles
- Find a combinatorial description in terms of dimer paths for forbidden configurations

We would like to thank

- Kayla Wright, our mentor, and Elise Catania, our TA, for their continuous guidance and enthusiasm
- Katherine Tung and Elise Catania for assisting with diagrams
- Ayah Almousa and Vic Reiner for organizing this amazing REU experience