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k-triangulation definition

Definition (k-triangulation of a convex polygon)

A k-triangulation of a convex n-gon is a maximal set of edges such that no k + 1
pairwise intersect.

Figure 1: A 2-triangulation of the 8-gon. Note there are no 3-crossings.
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k-stars: relevant for k-triangulations

Figure 2: A 2-star, a 3-star, and a 4 star

A k-star consists of 2k + 1 vertices and 2k + 1 edges of length k.
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k-triangulations as complexes of k-stars

Theorem (Pilaud-Santos ’04)

Any k-triangulation of the n-gon contains exactly n − 2k k-stars, k(n − 2k − 1) k
edges of length > k , and k(2n − 2k − 1) total edges.

Figure 3: A 2-triangulation of the 8-gon has 6 edges of length > 2 and 22 total edges.
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Definition
A k-relevant angle of a k-triangulation consists of edges of length ≥ k and has no
intermediate ”bisector” edges.

Theorem (Pilaud-Santos ’04)

In a k-triangulation, every k-relevant angle is contained in a unique k-star:
▶ length > k (relevant) edges: in exactly 2 k-stars
▶ length = k (boundary) edges: in exactly 1 k-star
▶ length < k (irrelevant) edges: in exactly 0
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length > k edge: in exactly 2 k-stars

Ex: length 3 edge, k = 2-triangulation
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length = k edge: in exactly 1 k-star

Ex: length 2 edge
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length < k edge: in 0 k-stars

Ex: length 1 edge
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k-triangulations on surface

Let S denote a surface and S its universal cover with natural projection
π : S → S.

Definition
A k-triangulation T on a surface S with marked points on boundaries is a
maximal set of edges such that π−1(T ) is (k + 1)-crossing free.

For convenience, we say π−1(T ) is a k-triangulation of S denoted T .

Figure 4: A 2-triangulation on the universal cover of the (2 + 1)-annulus
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Results for 2-triangulations on the (n + 0)-annulus

Let T denote a 2-triangulation on the (n + 0) annulus corresponding to T on the
universal cover.

Lemma
Every such T has exactly one edge of length 2n.

Definition
An angle of T is 2-relevant if it contains at least one edge of length > 2 and < 2n
and additionally has no intermediate ”bisector” edges.

Theorem (STYZ 24)

Every 2-relevant angle of T is contained in a unique 2-star.
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star decomposition example

Figure 5: A 2-triangulation on the universal cover of the (3 + 0)-annulus and the stars
that comprise it
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Theorem (STYZ 24)

There is a bijection between 2-triangulations of the (n + 0)-annulus and
2-triangulations of the 4n-gon invariant under rotation by π/n.

Figure 6: A 2-triangulation on the universal cover of the (3 + 0)-annulus and the
corresponding 2-triangulation of the 4n-gon

Corollary

For k = 2, any k-triangulation of the (n + 0)-annulus contains exactly n − 1
k-stars, k(n − 1) k-relevant edges, and k(2n − 1) edges.
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Lemma (Pilaud-Santos ’04)

A pair of stars in T has a unique bisector edge.
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Theorem (Pilaud-Santos ’04)

For any k-relevant edge e ∈ T there is a unique flip edge f such that
(T \ e) ∪ {f } is a k-triangulation.
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Cylindrical Polyominoes

Definition (STYZ ’24+)

A cylindrical polyomino Y of type (n, k) is an infinite skew Young diagram

(reflected along the y -axis) with a box centered at every point in
{(i , j) ∈ Z2 | k ≤ j − i ≤ kn} ⊆ Z2.

Example

(n, k) = (3, 2)
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Cylindrical Pipe Dreams

Definition (STYZ ’24+)

A cylindrical pipe dream of type (n, k) is a tiling of the cylindrical polyomino Y of

type (n, k) by four kinds of pieces , , , and such that

▶ The pipe dream is n-cylindrical, that is, all the piles at the position
(i + rn, j + rn) for arbitrary r ∈ Z≥0 is the same as a pile at the position (i , j);

▶ There is a tiled at the position (i , k − i) for all i ∈ Z≥0;

▶ For every pipe, the number of , or it passes through is 2k + 1;

▶ Each pipe connects (i , kn − i) and (i + kn,−i) for some i ∈ Z≥0;

▶ For every pair of pipes, they do not cross twice, that is, the number of

piles both pipes pass through is no more than 1;
▶ There is exactly one in each successive n rows, tiled at the position

(i , kn − i) for some i ∈ Z≥0.
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Cylindrical Pipe Dreams: Examples

Definition (STYZ ’24+)

A cylindrical pipe dream of type

(n, k) is a tiling using , ,

, and such that

▶ n-periodic;
▶ tiled at left boundary;

▶ each pipe has k “ ”;
▶ each pipe horizontally and

vertically crosses kn;
▶ two pipes don’t cross twice;
▶ one in each n-period,

tiled at right boundary.

Example

(n, k) = (3, 2)
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Cylindrical Pipe Dreams: Correspondence with
Multi-Triangulations

Theorem (STYZ ’24+)

For k = 2, there is a bijection between k-triangulation of the (n + 0)-annulus and
cylindrical pipe dreams of type (n, k):
▶ a length k edge connects i and j : tile at (i , j)

▶ a length kn edge connects i and j : tile at (i , j)

▶ an edge of length between k and kn connects i and j : tile at (i , j)

▶ tile a in every other

Moreover, in this bijection, each pipe corresponds to a k-star on T .

Conjecture (STYZ ’24+)

The previous theorem can be generalized to arbitrary k .
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Cylindrical Pipe Dreams: Correspondence with
Multi-Triangulations

Example

Figure 7: A 2-triangulation on the universal cover of the (3 + 0)-annulus and the stars
that comprise it
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Cylindrical Pipe Dreams: Purity

Given a cylindrical pipe dream of type (n, k):

Lemma (STYZ ’24+)

Two pipes cross once if and only if
they have distance ≤ kn.

Lemma (STYZ ’24+)

There are exactly 2k · (n − 1) pipes
intersects with a given pipe.

Theorem (STYZ ’24+)

The number of and in each n-period is k · (n − 1).

Corollary (STYZ ’24+)

The number of 2-relevant edges in a 2-triangulation of (n + 0)-annulus is 2n − 2.
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Cylindrical Pipe Dreams: Regular Pipe Flips

Definition (STYZ ’24)

Regular pipe flip: A flip for . Select the two pipes passing through ,

identify their intersection , mutate from to for every translation.

Example
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Cylindrical Pipe Dreams: Exceptional Pipe Flips

Definition (STYZ ’24+)

Exceptional pipe flip: A flip for . Select the pipe passing through and its

“+kn” translation, mutate from to their intersection for every translation.

Example
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Cylindrical Pipe Dreams: Flip Property

Theorem (STYZ ’24+)

Cylindrical pipe dreams of type (n, k) have flip property.

Theorem (STYZ ’24+)

2-triangulations of (n + 0) annulus have flip property.

Conjecture (STYZ ’24+)

k-triangulations of (n + 0) annulus have flip property.
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Cylindrical Pipe Dreams: Regular Cylindrical Pipe Dreams

Definition (STYZ ’24+)

Regular cylindrical pipe dream: for every , there exists a at the same row.

Example
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Cylindrical Pipe Dreams: Connectedness of Flip Graph

Lemma (STYZ ’24+)

Cylindrical pipe dreams can be flipped to regular cylindrical pipe dreams.

Example
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Cylindrical Pipe Dreams: Connectedness of Flip Graph

Theorem (STYZ ’24+)

Cylindrical pipe dreams have connected flip graph.

Example
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Cylindrical Pipe Dreams: Connectedness of Flip Graph

Theorem (STYZ ’24+)

2-triangulations of (n + 0) annulus have connected flip graph.

Conjecture (STYZ ’24+)

k-triangulations of (n + 0) annulus have connected flip graph.
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Cylindrical Pipe Dreams: Enumeration

Theorem (STYZ ’24+)

There exists a canonical bijection between cylindrical pipe dreams of type (n, k)
and nonnegative integer k-tuples valuations v0, v1, . . . vn−1 on n vertices such that

n−1∑
i=0

vi = (n − 1, n − 1, . . . , n − 1).

Example
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Cylindrical Pipe Dreams: Enumeration

Lemma (STYZ ’24+)

There are
(2(n−1)
(n−1)

)k
nonnegative k-tuples valuations v0, v1, . . . vn−1 such that

n−1∑
i=0

vi = (n − 1, n − 1, . . . , n − 1).

Corollary (STYZ 24+)

The number of cylindrical pipe dreams of type (n, k) is
(2(n−1)
(n−1)

)k
.

Corollary (STYZ ’24+)

The number of 2-triangulations of (n + 0) annulus is
(2(n−1)
(n−1)

)2
.

Conjecture (STYZ ’24+)

The number of k-triangulations of (n + 0) annulus is
(2(n−1)
(n−1)

)k
.
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q-analog

Definition
A q-analog is a mathematical expression parameterized by q that generalizes some
expression and reduces to it when we take the limit as q → 1.

Example

▶ n and [n]q = 1 + q + · · ·+ qn−1

▶ n! and [n]q! = [1]q[2]q · · · [n]q
▶
[
n
k

]
and

[
n
k

]
q

=
[n]q!

[n−k]q![k]q!

▶ ∏
1≤a≤b≤2nk−2k−1

a+ b + 2k

a+ b

and ∏
1≤a≤b≤2nk−2k−1

[a+ b + 2k]q
[a+ b]q

(secretly q-analog for cardinality of set)
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The cyclic sieving phenomenon

Definition (Reiner-Stanton-White ’04)

If we have
▶ a finite set X ,
▶ with a cyclic group C = {1, c , c2, . . . , cn−1} permuting X ,
▶ and a q-analog polynomial X (q) ∈ Z[q],

such that

∀cd ∈ C , |{x ∈ X : cd(x) = x}| = X

(
exp

(
2πid

n

))
then (X ,C ,X (q)) is said to exhibit CSP.
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Cyclic sieving results

(X ,C ,X (q)) is CSP for

▶ (Reiner-Stanton-White ’04) X = k-element subsets of Zn, C = ⟨c⟩ = Zn

where c acts on k-element set by adding 1 to each element, X (q) =

[
n
k

]
q

▶ (Stanton ’04) X = set of n × n ASMs, C = ⟨c⟩ = Z4 where c acts on an
ASM by rotating it 90 degrees, X (q) = q-analog of enumeration formula for
ASMs.

▶ (Reiner-Stanton-White ’04) X = triangulations of (n + 2)-gon,

C = ⟨c⟩ = Zn+2 where c is rotation by 2π
n+2 radians, X (q) = 1

[n+1]q

[
2n
n

]
q

(q-Catalan)

Solotko, Tung, Yang, Zhang Triangulations August 1, 2024 47 / 54



Cyclic sieving results

(X ,C ,X (q)) is CSP for

▶ (Reiner-Stanton-White ’04) X = k-element subsets of Zn, C = ⟨c⟩ = Zn

where c acts on k-element set by adding 1 to each element, X (q) =

[
n
k

]
q

▶ (Stanton ’04) X = set of n × n ASMs, C = ⟨c⟩ = Z4 where c acts on an
ASM by rotating it 90 degrees, X (q) = q-analog of enumeration formula for
ASMs.

▶ (Reiner-Stanton-White ’04) X = triangulations of (n + 2)-gon,

C = ⟨c⟩ = Zn+2 where c is rotation by 2π
n+2 radians, X (q) = 1

[n+1]q

[
2n
n

]
q

(q-Catalan)

Solotko, Tung, Yang, Zhang Triangulations August 1, 2024 47 / 54



Cyclic sieving results

(X ,C ,X (q)) is CSP for

▶ (Reiner-Stanton-White ’04) X = k-element subsets of Zn, C = ⟨c⟩ = Zn

where c acts on k-element set by adding 1 to each element, X (q) =

[
n
k

]
q

▶ (Stanton ’04) X = set of n × n ASMs, C = ⟨c⟩ = Z4 where c acts on an
ASM by rotating it 90 degrees, X (q) = q-analog of enumeration formula for
ASMs.

▶ (Reiner-Stanton-White ’04) X = triangulations of (n + 2)-gon,

C = ⟨c⟩ = Zn+2 where c is rotation by 2π
n+2 radians, X (q) = 1

[n+1]q

[
2n
n

]
q

(q-Catalan)

Solotko, Tung, Yang, Zhang Triangulations August 1, 2024 47 / 54



Cyclic sieving results

(X ,C ,X (q)) is CSP for

▶ (Reiner-Stanton-White ’04) X = k-element subsets of Zn, C = ⟨c⟩ = Zn

where c acts on k-element set by adding 1 to each element, X (q) =

[
n
k

]
q

▶ (Stanton ’04) X = set of n × n ASMs, C = ⟨c⟩ = Z4 where c acts on an
ASM by rotating it 90 degrees, X (q) = q-analog of enumeration formula for
ASMs.

▶ (Reiner-Stanton-White ’04) X = triangulations of (n + 2)-gon,

C = ⟨c⟩ = Zn+2 where c is rotation by 2π
n+2 radians, X (q) = 1

[n+1]q

[
2n
n

]
q

(q-Catalan)

Solotko, Tung, Yang, Zhang Triangulations August 1, 2024 47 / 54



Triangulation example

X = triangulations of 6-gon, C = ⟨exp(2πi/6)⟩ = Z6, X (q) = 1
[5]q

[
8
4

]
q

.

▶ X (1) = 14

▶ X (exp(2πi/6)) = 0

▶ X (exp(4πi/6)) = 2

▶ X (exp(6πi/6)) = 6
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Cyclic sieving for 2-triangulation of (n + 0)-annulus

Definition

Let M2nk,k be the set of k-triangulations of a 2nk-gon. Let C = ⟨exp(πi/k)⟩ act
on these triangulations.

Lemma

When k = 2, the triple (M2nk,k ,C ,M2nk,k(q)) is CSP.

Proof.
It suffices to show that
(a) M2nk,k(i) =

(
2(n−1)
n−1

)2
.

(b) M2nk,k(−1) = (4n − 3)
(

(4n−4)!
(2n−1)!(2n−2)!

)2
.

(c) M2nk,k(−i) =
(
2(n−1)
n−1

)2
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Cyclic sieving for k-triangulation of (n + 0)-annulus

Definition

Let M2nk,k be the set of k-triangulations of a 2nk-gon. Let C = ⟨exp(πi/k)⟩ act
on these triangulations.

Conjecture

The number of k-triangulations of 2kn-gon invariant under rotation by 2π
2k · j

radians is
k∏

a=1

((2n − 1)d − ⌈ 2a
m ⌉)!

((n − 1)d + ⌈ a
m⌉ − 1)!

·
(⌈ 2a

m ⌉ − 1)!

(nd − ⌈ a
m⌉)!

where d = gcd(2k, j) and m = 2k/d .

Corollary

The triple (M2nk,k ,C ,M2nk,k(q)) is CSP.
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Future Works: Topology

Let ∆n,k denote the simplicial complex for the k-triangulations of the
(n, 0)-annulus.

Conjecture

∆n,k is a piecewise linear sphere.

Vertex Decomposable ⇒ Shellable ⇒ Spheric
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Future Works: Topology

Conjecture

The h-polynomial of ∆n,k is
(∑n−1

i=0

(
n−1
i

)2
t i
)k

.
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Group Photo

Figure 8: A 2-star, a 3-star, and a 4 star
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