Equality and Saturated Newton Polytope Property for Postnikov-Stanley Polynomials

Serena An, Katherine Tung, and Yuchong Zhang Mentor: Shiyun Wang

TA: Meagan Kenney

UMN Combinatorics and Algebra REU

July 31, 2024

The Symmetric Group S_n

- S_n : permutations of $\{1, \ldots, n\}$
- Bottom element 1 2 · · · n
- Top element $n(n-1)\cdots 1$
- Inv(u): the set of all inversions (a, b) of u such that a < b and u(a) > u(b)

The (Strong) Bruhat Order of S_n

- $\ell(u)$: count of inversions in u
- t_{ab} swaps the numbers in positions a, b (not values a, b)
- Covering relation: $u \le v$ if $v = ut_{ab}$ and $\ell(v) = \ell(u) + 1$
- Interval [u, w] : $\{v \mid u \le v \le w\}$

Edge Weights

Definition

For $u \leqslant v$ and $v = ut_{ab}$, the weight $m(u \leqslant v)$ is $x_a + x_{a+1} + \cdots + x_{b-1}$.

Example

Since $312 = 213t_{13}$, we have $m(213 \le 312) = x_1 + x_2$.

Chain Weights

Definition

Let $u_0 \le u_\ell$ and $C = (u_0 \lessdot u_1 \lessdot \cdots \lessdot u_\ell)$ be a saturated chain of $[u_0, u_\ell]$. Define the *weight* $m_C(x)$ of the chain C by $\prod_{i=1}^\ell m(u_{i-1} \lessdot u_i)$.

Example

For [213, 321], the weight of the saturated chain 213 < 312 < 321 is $(x_1 + x_2) \cdot x_2$.

Skew Dual Schubert Polynomials

Definition (Postnikov-Stanley '09)

For $u \leq w$, the skew dual Schubert polynomial or *Postnikov-Stanley* polynomial D_u^w is defined by

$$D_{u}^{w} = \frac{1}{(\ell(w) - \ell(u))!} \sum_{C: u = u_{0} < u_{1} < \dots < u_{\ell} = w} m_{C}(x).$$

Example

$$D_{213}^{321} = \frac{1}{2!} (x_1 x_2 + (x_1 + x_2) \cdot x_2)$$

Definition (Bernstein et al '73)

When u = id, D_u^w is called a *dual* Schubert polynomial.

Saturated Newton Polytope (SNP)

For a tuple $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{Z}_{\geq 0}^n$, let $x^\alpha:=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$.

Definition

The Newton polytope Newton(f) of $f = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} c_{\alpha} x^{\alpha}$ is the convex hull of its exponent vectors α in \mathbb{R}^n .

Example

$$D_{213}^{321} = x_1 x_2 + \frac{1}{2} x_2^2 = x^{(1,1)} + \frac{1}{2} x^{(0,2)}$$

Newton(D_{213}^{321}) is the segment from $(1,1)$ to $(0,2)$ in \mathbb{R}^2

Definition (Monical-Tokcan-Yong '19)

f has *Saturated Newton Polytope (SNP)* if $c_{\alpha} \neq 0$ for every integer point $\alpha \in \text{Newton}(f)$.

SNP in Algebraic Combinatorics

Theorem (Rado '52)

Schur polynomials have SNP.

Theorem (Fink-Mézsaros-St. Dizier '18)

Key polynomials and Schubert polynomials have SNP.

Theorem (Monical-Tokcan-Yong '19)

Cycle index polynomials, Reutenauer's symmetric polynomials, Stembridge's symmetric polynomials, and symmetric Macdonald polynomials have SNP.

Theorem (ATZ '24+)

Dual Schubert polynomials have SNP.

Nontrivial Equalities

Definition

An equality between two P-S polynomials is *nontrivial* if the two polynomials are obtained from distinct multisets of saturated chains.

The equality $D_{1234}^{2341} = D_{2134}^{3241}$ is nontrivial.

Nontrivial Equalities, cont.

Definition

An equality between two P-S polynomials is *nontrivial* if the two polynomials are obtained from distinct multisets of saturated chains.

The equality $D_{1234}^{2341} = D_{2134}^{3241}$ is nontrivial.

The Rank 2 Case

Lemma

There are no nontrivial equalities between P-S polynomials of rank 2.

All intervals of rank 2 are of one of the following forms (up to a rotation or reflection).

Note that rank 2 intervals contain two parallel sides with the same label u_1 . The other two sides u_2 , u_3 are either equal or satisfy $u_2 - u_3 = \pm u_1$.

The Rank 3 Case

Theorem (Jantzen '79)

The only rank 3 Bruhat intervals are 2-crowns, 3-crowns, and 4-crowns.

The Rank 3 Case, cont.

Proposition (ATZ '24+)

There are no nontrivial equalities between P-S polynomials of 2-crowns.

Proposition (ATZ '24+)

There is never equality between P-S polynomials of a 2-crown and a cube.

$$3(x_a + \cdots + x_{b-1})(x_b + \cdots + x_{c-1})(x_a + \cdots + x_{c-1})$$

Equalities from Cube Rotations

Lemma (ATZ '24+)

Every cube in the Bruhat order has four parallel edges with the same label.

Theorem (ATZ '24+)

All rotations of a given cube have equal P-S polynomials.

Equality Conjectures

Conjecture (ATZ '24+)

Nontrivial equalities between two rank 3 P-S polynomials only occur between two cubes that are rotations of each other.

Conjecture (ATZ '24+)

Nontrivial equalities between P-S polynomials of the same poset structure only occur when these posets have the same multisets of edge weights.

Chain Weights have SNP

Definition (Postnikov-Stanley '09)

$$D_{u}^{w} = \frac{1}{(\ell(w) - \ell(u))!} \sum_{C: u = u_{0} \leqslant u_{1} \leqslant \cdots \leqslant u_{\ell} = w} m_{C}(x).$$

Proposition (ATZ '24+)

Any product of linear factors in x_1, \ldots, x_n with all coefficients nonnegative has SNP.

Single Chain Newton Polytope (SCNP)

Definition (ATZ '24+)

 D_u^w has single-chain Newton polytope (SCNP) if there exists a saturated chain C in the interval [u,w] such that

$$Newton(m_C) = Newton(D_u^w).$$

We call such a C a dominant chain of the interval [u, w].

Proposition (ATZ '24+)

If D_u^w has SCNP, then D_u^w has SNP.

Examples and Nonexamples for SCNP

Example

$$D_{213}^{321} = \frac{1}{2!} (x_1 x_2 + (x_1 + x_2) \cdot x_2)$$
 has SCNP
 $C := (213 \leqslant 312 \leqslant 321)$
 $m_C = (x_1 + x_2) \cdot x_2$

$$\operatorname{Newton}(m_C) = \operatorname{Newton}(D_{213}^{321})$$

Example

 D_{1324}^{4231} does not have SCNP

Dual Schubert Polynomials have SCNP

Definition (ATZ '24+)

$$u=w_0\lessdot w_1\lessdot w_2\lessdot\cdots\lessdot w_\ell=w$$

is called *greedy* in [u, w] if for all $i \in [\ell]$: writing $w_{i-1}t_{ab} = w_i$ for a < b, there does not exist $w'_{i-1} \lessdot w_i$ with $w'_{i-1} \in [u, w]$ such that

$$w'_{i-1}t_{ab'} = w_i \text{ for } b' > b, \text{ or } w'_{i-1}t_{a'b} = w_i \text{ for } a' < a.$$

Example

In [123, 321],

 $123 \lessdot 132 \lessdot 231 \lessdot 321$ is greedy

123 < 213 < 312 < 321 is also greedy 123 < 213 < 231 < 321 is not greedy

Dual Schubert Polynomials have SCNP, cont.

Definition (ATZ '24+)

The global weight GW(w) of $w \in S_n$ is

$$GW(w) = \prod_{(a,b)\in Inv(w)} (x_a + x_{a+1} + \cdots + x_{b-1}).$$

Example

$$Inv(231) = \{(1,3), (2,3)\}, GW(231) = (x_1 + x_2) \cdot x_2$$

Theorem (ATZ '24+)

For all $w \in S_n$, the dual Schubert polynomial D^w has SCNP. Moreover, every greedy chain of $[\mathrm{id},w]$ is a dominant chain of D^w , and

$$Newton(D^w) = Newton(GW(w)).$$

Newton Polytopes for Dual Schubert Polynomials

Theorem (ATZ '24+)

The point $\alpha \in \mathbb{Z}_{\geq 0}^n$ is a vertex of Newton(D^w) if and only if x^{α} has a coefficient of 1 in GW(w).

Theorem (ATZ '24+)

Given a product q of linear factors in x_1, x_2, \ldots, x_n with all coefficients 1, the point $\alpha \in \mathbb{Z}_{\geq 0}^n$ is a vertex of $\operatorname{Newton}(q)$ if and only if x^{α} has a coefficient of 1 in q.

Example

$$q = (x_1 + x_2)(x_2 + x_3)(x_1 + x_3)(x_1 + x_2 + x_3)$$

$$= x_1^3 x_2 + x_1^3 x_3 + 2x_1^2 x_2^2 + 4x_1^2 x_2 x_3 + 2x_1^2 x_3^2$$

$$+ x_1 x_2^3 + 4x_1 x_2^2 x_3 + 4x_1 x_2 x_3^2 + x_1 x_3^3 + x_2^3 x_3 + 2x_2^2 x_3^2 + x_2 x_3^3$$

Vertices: $\{(3,1,0),(3,0,1),(1,3,0),(1,0,3),(0,3,1),(0,1,3)\}$

Newton Polytopes for Dual Schubert Polynomials, cont.

A generalized permutahedron $P_n^z(\{z_l\})$, parameterized by collections of real numbers $\{z_l\}$ for $I \subseteq [n]$, is given by

$$P_n^z(\lbrace z_I\rbrace) = \left\{t \in \mathbb{R}^n : \sum_{i \in I} t_i \geq z_I \text{ for } I \neq [n], \sum_{i=1}^n t_i = z_{[n]}\right\}.$$

Theorem (ATZ '24+)

For $w \in S_n$, Newton (D^w) is a generalized permutahedron with

$$z_I = \sum_{(a,b) \in \text{Inv}(w)} \mathbb{1}_{I \supseteq \{a,a+1...,b-1\}}$$

for all $I \subseteq [n]$.

Conjectures about SCNP and SNP

Conjecture (Pylyavskyy '24+)

For an interval [u, w], if the number of t_{ab} such that $u < t_{ab}u \le w$ equals $\ell(w) - \ell(u)$, then D_u^w has SCNP.

Conjecture (ATZ '24+)

For $u \in S_n$, there exists $w \in S_n$ such that D_u^w does not have SCNP if and only if u contains a 1324-pattern.

Conjecture (ATZ '24+)

For all Bruhat intervals [u, w], D_u^w has SNP.

Acknowledgments

We would like to thank

- Shiyun Wang, our mentor, and Meagan Kenney, our TA for their continuous support and guidance throughout the program
- Pavlo Pylyavskyy for his mentorship and regular check-ins with us
- Casey Appleton and Victor Reiner for helpful conversations
- Ayah Almousa and Victor Reiner for organizing this wonderful REU experience!