Differential Powers of Semigroup and Polynomial Rings

Sogol Cyrusian, Nzingha Joseph, Zachary Chance Medlin, Saskia Solotko, Philip Yang

July 31, 2024

Mentor: Christine Berkesch TA: Eduardo Torres Dâvila
1. Introduction/Motivation

2. Combinatorial Results

3. Asymptotic Results

4. Questions?
Introduction/Motivation
In our research, we are concerned with the algebraic properties of *affine semigroups*, which we visualize as integer lattices in \mathbb{R}^d.

We leverage the combinatorial structure of affine semigroups to obtain new results about algebraic objects defined over them.
Definition (Affine Semigroup)

Let $A = [a_1 \cdots a_n] \in \mathbb{Z}^{d \times n}$ be a matrix whose columns have \mathbb{Z}-span \mathbb{Z}^d. The set

$$\mathbb{N} A = \{ k_1 a_1 + \cdots + k_n a_n \mid k_1, \ldots, k_n \in \mathbb{N} \}$$

is the affine semigroup generated by A.

\[\mathbb{N} A \quad \mathbb{Z} A \quad \mathbb{R}_{\geq 0} A \]
Definition (Affine Semigroup)

Let \(A = [a_1 \cdots a_n] \in \mathbb{Z}^{d \times n} \) be a matrix whose columns have \(\mathbb{Z} \)-span \(\mathbb{Z}^d \). The set

\[
\mathbb{N}A = \{ k_1 a_1 + \cdots + k_n a_n \mid k_1, \ldots, k_n \in \mathbb{N} \}
\]

is the affine semigroup generated by \(A \).

We suppose that the cone \(\mathbb{R}_{\geq 0} A \) is strongly convex, meaning that \(\mathbf{0} \) is a face of \(\mathbb{R}_{\geq 0} A \), and is saturated, meaning \(\mathbb{R}_{\geq 0} A \cap \mathbb{Z}^d = \mathbb{N}A \), i.e. the semigroup \(\mathbb{N}A \) has no holes.
The semigroup generated by $A = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$, which is not saturated.

The semigroup generated by $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, with its maximal proper faces ρ, σ.
Definition (Semigroup Rings)

For a matrix $A \in \mathbb{Z}^{d \times n}$, the semigroup ring of A is the ring

$$R = \mathbb{C}[\mathbb{N}A] = \mathbb{C}[t^{a_1}, \ldots, t^{a_n}],$$

where $t^b = t_1^{b_1} \cdots t_d^{b_d}$.

Many algebraic objects corresponding to R can be analyzed purely in terms of the semigroup $\mathbb{N}A$:

- Monomials $t^a \in R \iff$ lattice points $a \in \mathbb{N}A$
- Multiplication in $R \iff$ addition in $\mathbb{N}A$
- Monomial prime ideals $P \subseteq R \iff$ faces F of $\mathbb{R}_{\geq 0}A$
Semigroup Rings

$I = \langle s, st \rangle = P_\tau$
Note that the *polynomial ring* $S = \mathbb{C}[x_1, \ldots, x_n]$ is the semigroup ring corresponding to the identity matrix. In particular, the faces associated to S are subsets F of the variables $\{x_1, \ldots, x_n\}$.
The semigroup ring R lives inside the ring of Laurent polynomials $L = \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$, which naturally has differential operators defined in terms of partial derivatives $\partial_i = \frac{\partial}{\partial t_i}$.

The semigroup ring R lives inside the ring of Laurent polynomials $L = \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$, which naturally has differential operators defined in terms of partial derivatives $\partial_i = \frac{\partial}{\partial t_i}$.

The general definition of differential operators is abstract and difficult to work with. Luckily, in the case of normal affine semigroup rings, differential operators have a nice combinatorial description.
The ring of differential operators $D(R)$ of R are generated by certain operators D_a for $a \in \mathbb{Z}^d$, where D_a acts on $\mathbb{N}A$ by sending a lattice point $b \in \mathbb{N}A$ to the translate $a + b$.
The *order* of the differential operator D_a is determined by the distance of a from the *hyperplanes* corresponding to the faces of $\mathbb{R}_{\geq 0} A$.

![Graph showing order of differential operators](image)
Differential Powers

Definition (Differential Powers)

The \(N \)-th differential power \(I^{(N)} \) of ideal \(I \subseteq R \) is defined as

\[I^{(N)} = \{ f \in R : \delta(f) \in I \text{ for all } \delta \in D(R) \text{ of order } < N \}. \]
Definition (Differential Powers)

The N-th differential power $I^{(N)}$ of ideal $I \subseteq R$ is defined as

$$I^{(N)} = \{ f \in R : \delta(f) \in I \text{ for all } \delta \in D(R) \text{ of order } < N \}.$$

Differential powers are closely related to ordinary powers $I^N = \{a_1 \cdots a_N \mid a_i \in I\}$ and symbolic powers $I^{(N)}$, but are often much easier to compute and comprehend.
Combinatorial Results
Definition (Standard Monomials)
The *standard monomials* of an ideal $I \subseteq \mathbb{C}[x_1, x_2, \ldots, x_n]$ consists of the set of monomials in $\mathbb{C}[x_1, x_2, \ldots, x_n]$ not in I.

Definition (Standard Pairs)
A *standard pair* (\mathbf{a}, Z) is an ordered pair containing a vector \mathbf{a} corresponding to a monomial, and a set Z of vectors corresponding to the generators of a face.
I = (x^2y^2, x^4y) \subseteq \mathbb{C}[x, y]
Sample Results with Standard Pairs

Figure 1: Caption
Theorem

Let P_F be a prime monomial ideal corresponding to a face F, which is given by some subset of the variables $\{x_1, \ldots, x_n\}$. Then $P_F = \langle x_i \mid x_i \notin F \rangle$, and

$$\text{stdPairs}(P_F^{(\ell)}) = \left\{ (a, F) \mid \sum_{i=1}^{n} a_i < \ell, a_i = 0 \text{ if } x_i \in F \right\}.$$

In terms of differential operators, the inequality $\sum_{i=1}^{n} a_i < \ell$ expresses that the order of \mathcal{D}_a is less than ℓ.
Theorem

Let I be a radical ideal, so that I is given by the intersection of prime ideals $I = P_{F_1} \cap P_{F_2} \cap \cdots \cap P_{F_n}$. Then

$$\text{stdPairs}(I^{(\ell)}) = \bigcup_{i=1}^{n} \text{stdPairs}(P_{F_i}^{(\ell)}).$$

In essence, this is because the standard monomials of an intersection of ideals is equal to the union of the standard monomials of each ideal.
Asymptotic Results
Let $S = \mathbb{C}[x_1, \ldots, x_n]$ be a polynomial ring and $I \subseteq S$ be a monomial ideal.
Let $S = \mathbb{C}[x_1, \ldots, x_n]$ be a polynomial ring and $I \subseteq S$ be a monomial ideal. For example, $S = \mathbb{C}[x, y]$ and $I = \langle xy^3, x^3y^2, x^4y \rangle$.
Theorem

If $\sqrt{I} = \langle x_1 \cdots x_n \rangle$, then there exists $N \in \mathbb{N}$ such that $I^{(m)}$ is principal for all $m \geq N$.

$\sqrt{I} = \langle x_1 \cdots x_n \rangle \iff I$ lies in the interior of the first orthant
Non-example: \(I = \langle x, y \rangle \).
Let \(A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & n \end{bmatrix} \) and \(R \) be the corresponding semigroup ring, that is, \(R = \mathbb{C}[s, st, \ldots, st^n] \). Let \(I \subseteq R \) be a monomial ideal in the interior of \(\mathbb{R}_{\geq 0} A \). For example, \(n = 3 \) and \(I = \langle s^3t^6, s^3t^4, s^4t^2 \rangle \).
The analogues of principal ideals in R is of the form $I_{a,r} = \langle s^{a_1} t^{a_2}, s^{a_1} t^{a_2+1}, \ldots, s^{a_1} t^{a_2+r-1} \rangle$ for $a = (a_1, a_2) \in \mathbb{N}A$ and $r \in \mathbb{N}$.
Theorem

There exists $N \in \mathbb{N}$ such that $I^{\langle N \rangle}$ is of the shape $I_{a,r}$ for some $a \in \mathbb{N}A$ and $1 \leq r \leq n$.

Lemma

\[
(I_{a,r})^{\langle 2 \rangle} = \begin{cases}
I_{a+(1,1),n-1}, & \text{if } r = 1; \\
I_{a+(1,1),n}, & \text{if } r = 2; \\
I_{a+(0,1),r-2}, & \text{if } 3 \leq r \leq n.
\end{cases}
\]
Semigroup Ring

Theorem

There exists $N \in \mathbb{N}$ such that $I^{\langle N \rangle}$ is of the shape $I_{a,r}$ for some $a \in \mathbb{NA}$ and $1 \leq r \leq n$.

Lemma

$$(I_{a,r})^{\langle 2 \rangle} = \begin{cases} I_{a+(1,1),n-1}, & \text{if } r = 1; \\ I_{a+(1,1),n}, & \text{if } r = 2; \\ I_{a+(0,1),r-2}, & \text{if } 3 \leq r \leq n. \end{cases}$$

Corollary

There exists $N \in \mathbb{N}$ such that if n is odd, $I^{\langle N \rangle}$ is principal; if n is even, $I^{\langle N \rangle}$ is principal or is generated by 2 elements. The number of generators of I^m for $m \geq N$ is periodic.
Questions?
This project was supported in large part by a grant from the D.E. Shaw group, and also by NSF grant DMS-2053288. It was supervised as part of the University of Minnesota School of Mathematics Summer 2024 REU program.

We would also like to thank Christine Berkesch and Eduardo Torres Dávila for their guidance and support.

Laura Felicia Matusevich and Byeongsu Yu. “Graded local cohomology of modules over semigroup rings”. In: Journal of Algebra 641 (2024), pp. 147–172. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2023.11.023.
