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Triangulations, Circuits, and Flips

▶ Given a d-dimensional convex polytope A, a triangulation of A is a
subdivision of A into a collection of d-simplices (d-dimensional
generalizations of a triangle).

▶ A triangulation T is regular if there are heights h1, ...,hd ∈ R such that

the projection of the upper convex hull of Â =

{[
a1
h1

]
, . . . ,

[
ad
hd

]}
⊆ Rd+1

back down to Rd is T .
▶ A subset C of the vertices of A is a circuit if it is affinely dependent.

There are exactly 2 ways to triangulate a circuit, and switching between
them is called a bistellar flip.
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Figure: Triangulation T1 (left) is obtained by flipping T2 (right) at circuit ACEF .

Theorem ([GKZ08])

Let A be a d-dimensional convex polytope. Then there exists a
(#A− d − 1)-dimensional polytope called the secondary polytope,
denoted ΣA, whose vertices are in correspondence with the regular
triangulations of A and whose edges correspond to flips between them.

Order Polytopes and Snake Posets

▶ Snake posets are posets of the pattern shown below. The snake poset
with k + 1 squares is denoted Sk .

S1 S2 S3 S4

▶ An order filter of a poset is a subset of elements closed under going
upwards. We denote by J(Sk) the poset of order filters of Sk ordered by
inclusion. Each order filter has corresponding to coordinates:
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▶ The order polytope O(Sk) is conv({vA : A ∈ J(Sk)}). This is what we’re
going to triangulate!

▶ For any poset P, O(P) has a canonical triangulation T , where the
maximal simplices of T are in bijection with maximal chains of J(P).

The Twist Group

▶ Consider S1 and J(S1) below and the ladder L1.
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▶ Lemma 5.4 of [Bel+22] implies that the set of all τi generate a
commutative subgroup of S|J(Sk)|, hence the following definition.

▶ The twist group Tk ≤ S|J(Sk)| is defined by:

Tk = ⟨τi | τ2
i = 1, τiτj = τjτi⟩ ∼= (Z/2Z)d ,

where d is the number of ladders.
▶ Theorem (Corollary 5.12 [Bel+22]): the twist group Tk acts on the

regular triangulations of O(Sk).

Twist Eigenbasis

▶ We can define vectors in the space containing ΣO(Sk) by giving a
coefficient to each vertex of J(Sk).

▶ We want a subspace V ∼= R2k+1 in which the twists are linear.
▶ We define one basis element vi for each square wi in J(Sk):
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Let V ∼= R2k+1 be the linear subspace of R4k+6 parallel to the subspace
containing ΣO(Sk). v1, v2, . . . , vn+1 is an eigenbasis of V and each
elementary twist τi negates exactly the basis elements that correspond
to the squares in the ladder τi reflects.
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On ΣO(S1) the elementary twists are 180◦ rotations.

Conjecture ([Bel+22], Conjecture 6.5)

The number of regular triangulations of O(Sk) is 2k+1 · Cat(2k + 1).

Theorem

The twist group acts freely on the regular triangulations of O(Sk).

Corollary

Each orbit under the twist group action on regular triangulations of O(Sk)
has 2k+1 elements.

Valence-Regularity of O(Sk)

Conjecture 6.1 [Bel+22]: The 1-skeleton of the secondary polytope of
O(Sk) is (2k + 1)-regular.
Theorem: Let T be a triangulation of O(Sk) obtained by applying one flip
to the canonical triangulation Tk . Then, T admits the same number of flips
as Tk , namely 2k + 1 flips.

Conjecture

The 2-dimensional faces of ΣO(Sk) are squares, pentagons and hexagons

A Poset Structure on Triangulations

The triangulations of O(Sk) admit a nice poset structure. For k = 1:

Conjecture: Every face of the poset contains a unique sink vertex, i.e. it is
a good orientation [Kal88].
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