MINIMAL INFINITE FREE RESOLUTIONS OVER CERTAIN FAMILIES OF NUMERICAL SEMIGROUP ALGEBRAS Timothy Cho, Kieran Favazza, Aleister Jones, Nzingha Joseph, Molly MacDonald University of Minnesota, Twin Cities REU Program 2024

Background

We've got a hankering for exactly N chicken nuggets. The nuggets, however, only come in packs of $m, n_1, n_2, \ldots, n_k \in \mathbb{N}$. Using only these, can we satisfy our exact hankering? And if so, what are the different ways we can do it?

We can capture much of the additive structure of a semigroup by considering the elements that are in some sense minimal. The **Apéry set** of a semigroup *S* is given by $Ap(S) = {n \in S : n - m \notin S}$, where *m* is the multiplicity of *S*.

 $\{Ap(S) = \{0, 16, 7, 18, 14\}, Ap(R) = \{0, 13, 26, 39, 52, 65\}.$

Numerical Semigroups

A **numerical semigroup** *S* is a subset of the non-negative integers $\mathbb{Z}_{\geq 0}$ such that: $1.0 \in S$

- 2. *S* is closed under addition, and
- $3. |\mathbb{Z}_{\geq 0} \setminus S| < \infty.$

A numerical semigroup always has a unique minimal set of generators. We write :

 $S = \langle m, n_1, ..., n_k \rangle = \{a_0m + a_1n_1 + ... + a_kn_k : a_i \in \mathbb{Z}_{\geq 0}\}.$

The smallest generator *m* is called the **multiplicity** of the semigroup.

Examples

 $S = \langle 5, 7, 9 \rangle = \{5, 7, 9, 10, 12, 14, 16, 18, \dots\}$ $R = \langle 6, 12, 13 \rangle = \{6, 12, 13, 18, 19, 24, 25, 26, \dots\}$

The Apéry Set

With a clever homomorphism, we can transform the additive structure of a semigroup into the multiplicative structure of a ring. Let K be a field. The homomorphism is clear through an example:

EGANS

An **extra-generalized arithmetical numerical semigroup** (EGANS) is a numerical semigroup of the form

 $S = \langle m, mh + \delta, mh + 2\delta, \ldots, mh + k\delta \rangle$

where $h, k > 0, m < mh + k\delta$, and $gcd(m, \delta) = 1$.

Examples

 $S = \langle 5, 7, 9 \rangle = \langle 5, 5 \cdot 1 + 2, 5 \cdot 1 + 2 \cdot 2 \rangle$ $T = \langle 13, 47, 42, 37, 32, 27 \rangle = \langle 13, 13 \cdot 4 - 5, \dots, 13 \cdot 4 - 5 \cdot 5 \rangle$

The Kunz Poset

The Semigroup Algebra

This process seems to hint at a more general method of computing free resolutions over numerical semigroup algebras: if one can use the Kunz poset of a numerical semigroup to identify multiplication patterns avoided by generators of its toric ideal, one need only translate short words from the alphabet $\{0, 1, \ldots, m-1\}$ to words in the constructed language, and the rest of the resolution follows.

groups with $m = 5$.

Example

For
$$
S = \langle 5, 7, 9 \rangle
$$
, define
\n
$$
\varphi : \mathbb{K}[y, x_1, x_2] \to \mathbb{K}[t]
$$
\n
$$
y \mapsto t^5
$$
\n
$$
x_1 \mapsto t^7
$$
\n
$$
x_2 \mapsto t^9
$$
\n• The toric ideal of $S: I_S = \ker(\varphi) = \langle x_1^2 - yx_2, x \rangle$
\n• The semigroup algebra of $S: \mathbb{K}[S] = \text{Im}(\varphi) \cong$
\n• $\mathbb{K}[S]$ is graded: deg $(yx_1) = \text{deg}(t^5t^7) = 5 + 7 = 12$

Acknowledgements

This project was supported in large part by a grant from the D.E. Shaw group, and also by NSF grant DMS-2053288. The authors would like to thank Christopher O'Neill, our research advisor, and Tara Gomes, our graduate student teaching assistant for their wonderful guidance and attention.

 $\frac{2}{1} - yx_2, x_2^3 - y^4x_1, x_1x_2^2 - y^5$ $(\varphi) \cong \mathbb{K}[y, x_1, ..., x_k]/I_S$

Free Resolutions

A great way to study a ring is to study modules over it. The simplest kinds of modules are free modules, and a **free resolution** is a long exact sequence that constructs a module from free modules. For EGANS semigroups, we provide a combinatorial method of constructing minimal resolutions:

Theorem

words built from the alphabet $\{0, 1, \ldots, m-1\}$ to words built from the alphabet

2. $(j, m - \alpha)$ for any $j \in \{0, 1, ..., \alpha - 1, m - \alpha\}.$

 $\{0, 1, \ldots, k, m - \alpha\}$ that avoid the patterns 1. (*j*, *k*) for any $j \in \{1, 2, ..., k\}$, and

The free modules above have bases indexed by these words.

For $S = \langle 5, 6, 7 \rangle$, we have the following translations: $(4) \mapsto x_2^2$ $\frac{2}{2} \cdot (0)$ (13) $\mapsto y^2 \cdot (02)$ (133) $\mapsto y^4 \cdot (012)$

Resolving the ground field K affords us substantial information about resolutions of other modules: for any $\mathbb{K}[S]$ −module M, the rank of the free module F_i in its free resolution over $\mathbb{K}[S]$ is given by $\dim_{\mathbb{K}}(\text{Tor}_i^{\mathbb{K}[S]}(M,\mathbb{K}))$.

Example

We have been able to use this observation to conjecture the resolutions of all semi-

Further Research

References

[1] Tara Gomes et al. *Infinite free resolutions over numerical semigroup algebras via specialization.* 2024. arXiv: 2405.01700 [math.AC].

[2] J. C. Rosales and P. A. García-Sánchez. *Numerical semigroups.* Vol. 20. Developments in Mathematics. Springer, New York, 2009, pp. x+181. isbn: 978-1- 4419-0159-0. doi: 10.1007/978-1-4419-0160-6.