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Background

We’ve got a hankering for exactly N chicken nuggets. The nuggets, however, only
come in packs of m, n1, n2, . . . , nk ∈ N. Using only these, can we satisfy our exact
hankering? And if so, what are the different ways we can do it?
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Numerical Semigroups

A numerical semigroup S is a subset of the non-negative integers Z≥0 such that:
1. 0 ∈ S

2. S is closed under addition, and
3. |Z≥0 \ S| < ∞.

A numerical semigroup always has a unique minimal set of generators. We write :
S = ⟨m, n1, ..., nk⟩ = {a0m + a1n1 + ... + aknk : ai ∈ Z≥0}.

The smallest generator m is called the multiplicity of the semigroup.
Examples

S = ⟨5, 7, 9⟩ = {5, 7, 9, 10, 12, 14, 16, 18, . . . }
R = ⟨6, 12, 13⟩ = {6, 12, 13, 18, 19, 24, 25, 26, . . . }

The Apéry Set

We can capture much of the additive structure of a semigroup by considering the
elements that are in some sense minimal. The Apéry set of a semigroup S is given
by Ap(S) = {n ∈ S : n − m /∈ S}, where m is the multiplicity of S.

Ap(S) = {0, 16, 7, 18, 14}, Ap(R) = {0, 13, 26, 39, 52, 65}.

EGANS
An extra-generalized arithmetical numerical semigroup (EGANS) is a
numerical semigroup of the form

S = ⟨m, mh + δ, mh + 2δ, . . . , mh + kδ⟩,
where h, k > 0, m < mh + kδ, and gcd(m, δ) = 1.

Examples
S = ⟨5, 7, 9⟩ = ⟨5, 5 · 1 + 2, 5 · 1 + 2 · 2⟩
T = ⟨13, 47, 42, 37, 32, 27⟩ = ⟨13, 13 · 4 − 5, . . . , 13 · 4 − 5 · 5⟩

The Kunz Poset
The Apéry poset of S is (Ap(S), ⪯), where a ⪯ a′ if and only if a′ − a ∈ S. The
Kunz poset is the poset obtained by replacing each element of the Apéry poset
with its equivalence class in Zm.

Example
For U = ⟨13, 40, 54, 68, 82⟩ = {0, 13, 26, 39, 40, 53 . . . },

Apéry Poset Kunz Poset

The Semigroup Algebra

With a clever homomorphism, we can transform the additive structure of a semigroup
into the multiplicative structure of a ring. Let K be a field. The homomorphism is
clear through an example:

Example
For S = ⟨5, 7, 9⟩, define

φ : K[y, x1, x2] → K[t]
y 7→ t5

x1 7→ t7

x2 7→ t9

• The toric ideal of S: IS = ker(φ) = ⟨x2
1 − yx2, x3

2 − y4x1, x1x
2
2 − y5⟩

• The semigroup algebra of S: K[S] = Im(φ) ∼= K[y, x1, ..., xk]/IS

•K[S] is graded: deg(yx1) = deg(t5t7) = 5 + 7 = 12
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Free Resolutions
A great way to study a ring is to study modules over it. The simplest kinds of modules
are free modules, and a free resolution is a long exact sequence that constructs
a module from free modules. For EGANS semigroups, we provide a combinatorial
method of constructing minimal resolutions:

Theorem
Let S = ⟨m, mh + δ, . . . , mh + kδ⟩ be an EGANS with k ≡ α (mod m). There
exists a chain map
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that converts the top row, a non-minimal free resolution of K over K[S], to the
bottom row, a minimal free resolution over K[S]. The chain map above translates
words built from the alphabet {0, 1, . . . , m − 1} to words built from the alphabet
{0, 1, . . . , k, m − α} that avoid the patterns

1. (j, k) for any j ∈ {1, 2, . . . , k}, and
2. (j, m − α) for any j ∈ {0, 1, . . . , α − 1, m − α}.

The free modules above have bases indexed by these words.
Example

For S = ⟨5, 6, 7⟩, we have the following translations:
(4) 7→ x2

2 · (0) (13) 7→ y2 · (02) (133) 7→ y4 · (012)

Resolving the ground field K affords us substantial information about resolutions of
other modules: for any K[S]−module M, the rank of the free module Fi in its free
resolution over K[S] is given by dimK(TorK[S]

i (M,K)).

Further Research
This process seems to hint at a more general method of computing free resolutions
over numerical semigroup algebras: if one can use the Kunz poset of a numerical
semigroup to identify multiplication patterns avoided by generators of its toric ideal,
one need only translate short words from the alphabet {0, 1, . . . , m − 1} to words in
the constructed language, and the rest of the resolution follows.
We have been able to use this observation to conjecture the resolutions of all semi-
groups with m = 5.
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