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Dual Schubert Polynomials

In the (strong) Bruhat order on the symmetric group Sn, let the
edge u ⋖ utab have weight

m(u ⋖ utab) := xa + xa+1 + · · · + xb−1,

and let the saturated chain C = (u0⋖u1⋖ · · ·⋖uℓ) have weight
mC := m(u0 ⋖ u1)m(u1 ⋖ u2) · · · m(uℓ−1 ⋖ uℓ).

Definition [BGG73, PS09]

For w ∈ Sn, the dual Schubert polynomial Dw is defined by

Dw(x1, . . . , xn−1) := 1
ℓ(w)!

∑
C

mC(x1, . . . , xn−1),

where ℓ(w) denotes the Coxeter length of w, and the sum is
over all saturated chains C from id to w.
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D231 = 1
2!(x1x2 + x2(x1 + x2)).

Newton Polytopes

• For a tuple α = (α1, . . . , αn) ∈ Zn
≥0, let xα denote the

monomial xα := xα1
1 · · · xαn

n ∈ R[x1, . . . , xn]. We call α the
exponent vector of xα.

• Let f = ∑
α∈Zn

≥0
cαxα ∈ R[x1, . . . , xn] be a polynomial. The

support of f , denoted supp(f ), is the set of exponent vectors
α of the nonzero terms of f .

Definition

The Newton polytope of a polynomial f ∈ R[x1, . . . , xn],
denoted Newton(f ), is the convex hull of supp(f ) in Rn.

• [MTY19] A polynomial f ∈ R[x1, . . . , xn] has saturated
Newton polytope (SNP) if supp(f ) consists of all integer
points in Newton(f ).

• Example: Since D231 = x1x2 + 0.5x2
2 = x(1,1) + 0.5x(0,2),

Newton(D231) is the line segment from (1, 1) to (0, 2) in R2.
There are no integer points on this line segment besides the
endpoints, so D231 has SNP.

• Non-example: the polynomial f = x2
1 + x2x3 + x2x4 + x3x4

has SNP but f 2 does not.

Previous Results on SNP

Many polynomials with algebraic combinatorial significance are
now known to have SNP, such as
• Schur polynomials [Rad52],
• resultants [GKZ90],
• cycle index polynomials and Reutenauer’s symmetric

polynomials and Stembridge’s symmetric polynomials and
symmetric Macdonald polynomials [MTY19],

• key polynomials and Schubert polynomials [FMD18], and
• double Schubert polynomials [CRMM23].
Work of Huh, Matherne, Mészáros, and St. Dizier [HMMSD22]
proved Lorentzian-ness, which implies SNP, for dual Schubert
polynomials. We offer the first elementary proof of SNP for dual
Schuberts by fully characterizing their supports.

Main Theorem (ATZ ’24)

The support of the dual Schubert polynomial Dw is
supp(Dw) =

∑
(a,b)∈Inv(w)

{ea, ea+1, . . . , eb−1},

where the right-hand side is a Minkowski sum of sets of ele-
mentary basis vectors. The sum is over pairs of indices (a, b)
for which there is an inversion in w.

Proof Outline

We say that Dw has single chain Newton polytope (SCNP) if
there exists a saturated chain C in the interval [id, w] such that
supp(mC) = supp(Dw). Such a saturated chain C is called a
dominant chain of the interval [id, w]. We show that for each
w ∈ Sn, there exists a dominant chain, so Dw has SCNP. We also
show that SCNP implies SNP, completing the proof of SNP. It
turns out that any dominant chain has weight ∏

(a,b)∈Inv(w)(xa +
xa+1 + · · · + xb−1), yielding the characterization in our theorem.

Corollaries of the Main Theorem

Corollary 1. Dw has SNP.

The generalized permutahedron P z
n({zI}) associated to the col-

lection of real numbers {zI} for I ⊆ [n], is given by

P z
n({zI}) =

t ∈ Rn :
∑
i∈I

ti ≥ zI for I ̸= [n],
n∑

i=1
ti = z[n]

 .

Corollary 2. The Newton polytope of Dw is a generalized
permutahedron.

Proposition. ([Mur03, Theorem 4.15], [HMMSD22]) A homo-
geneous polynomial f has M-convex support if and only if f has
SNP and Newton(f ) is a generalized permutahedron.

Corollary 3. Dw has M-convex support.

Corollary 4 (ATZ ’24). The vertices of Newton(Dw) are
{α ∈ Zn−1

≥0 | xα has coeff. 1 in
∏

(a,b)∈Inv(w)
(xa+xa+1+· · ·+xb−1)}.

Characterizing Vertices of Newton(Dw)

1 Construct a Young diagram of staircase shape
(n − 1, n − 2, . . . , 1), and label the boxes by the following
pairs of inversions: in the ith row of the diagram for
1 ≤ i ≤ n − 1, label the boxes from left to right by
(i, n), (i, n − 1), . . . , (i, i + 1).

2 In each box, write a 1 if the inversion pair is in Inv(w), and a
0 otherwise.

3 Construct 1
n+1

(
2n
n

)
tilings of the staircase by n − 1 rectangles.

4 For each tiling, sum the entries of each rectangle and write the
sum at the bottom right corner of the rectangle. Reading the
summands from top to bottom gives a vertex of Newton(Dw).

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

Step 1: Build a staircase Young diagram with n = 6.

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

Step 2: When w = 253641, the above boxes are filled with 1’s.

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

Step 3: We consider a tiling by n − 1 rectangles.

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

0

1

0

6

1

Step 4: We find that Newton(D253641) has vertex (0, 1, 0, 6, 1).

The Vanishing Problem for Dw

Given a Schubert polynomial Sw = ∑
α∈Z≥0 cα,wxα for w ∈ Sn,

Adve, Robichaux, and Yong give a polynomial-time algorithm to
determine, given some α, whether cα,w = 0 [ARY21]. We prove
an analogous result for dual Schubert polynomials.

Theorem (ATZ ’24++)

For w ∈ Sn and α ∈ Zn−1
≥0 , there is an O(n4) algorithm to

determine whether α ∈ supp(Dw).

The idea is to construct a certain bipartite graph with inversions
of w as left vertices and variables of Dw as right vertices. The
vanishing problem reduces to determining if a flow of ℓ(w) units
can pass from left to right. Using Dinic’s algorithm, this max-
flow problem has complexity O(n4).
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The network testing the term x1x
2
2x3x

3
4x5 in D253641.
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