A Combinatorial Characterization of Newton Polytopes of Dual Schubert Polynomials

Serena An, Katherine Tung, and Yuchong Zhang

Dual Schubert Polynomials

In the (strong) Bruhat order on the symmetric group S_n , let the edge $u \leq u t_{ab}$ have weight

 $m(u \leq ut_{ab}) \coloneqq x_a + x_{a+1} + \cdots + x_{b-1}$

and let the saturated chain $C = (u_0 \le u_1 \le \cdots \le u_\ell)$ have weight

 $m_C \coloneqq m(u_0 \leq u_1)m(u_1 \leq u_2)\cdots m(u_{\ell-1} \leq u_{\ell}).$

where $\ell(w)$ denotes the Coxeter length of w, and the sum is over all saturated chains *C* from id to *w*.

Definition [\[BGG73,](#page-0-0) [PS09\]](#page-0-1)

For $w \in S_n$, the *dual Schubert polynomial* D^w is defined by $D^{w}(x_1, \ldots, x_{n-1}) \coloneqq$ 1 $\ell(w)!$ \sum *C* $m_C(x_1,\ldots,x_{n-1}),$

- For a tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_>^n$ $\sum_{n=0}^{\infty}$, let x^{α} denote the monomial $x^{\alpha} \coloneqq x_1^{\alpha_1}$ $\alpha_1 \cdots \alpha_n^{\alpha_n} \in \mathbb{R}[x_1, \ldots, x_n]$. We call α the *exponent vector* of x^{α} .
- Let $f = \sum_{\alpha \in \mathbb{Z}_{>}^n}$ $\sum_{n=0}^n c_\alpha x^\alpha \in \mathbb{R}[x_1, \ldots, x_n]$ be a polynomial. The *support* of f , denoted supp (f) , is the set of exponent vectors *α* of the nonzero terms of *f*.

Newton Polytopes

- Schur polynomials [\[Rad52\]](#page-0-3),
- resultants [\[GKZ90\]](#page-0-4),
- cycle index polynomials and Reutenauer's symmetric polynomials and Stembridge's symmetric polynomials and symmetric Macdonald polynomials [\[MTY19\]](#page-0-2),
- key polynomials and Schubert polynomials [\[FMD18\]](#page-0-5), and
- double Schubert polynomials [\[CRMM23\]](#page-0-6).

Definition

The *Newton polytope* of a polynomial $f \in \mathbb{R}[x_1, \ldots, x_n],$ denoted $\text{Newton}(f)$, is the convex hull of $\text{supp}(f)$ in \mathbb{R}^n .

- [\[MTY19\]](#page-0-2) A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]$ has *saturated Newton polytope (SNP)* if supp(*f*) consists of all integer points in Newton(*f*).
- Example: Since $D^{231} = x_1x_2 + 0.5x_2^2 = x^{(1,1)} + 0.5x^{(0,2)}$, Newton(D^{231}) is the line segment from $(1, 1)$ to $(0, 2)$ in \mathbb{R}^2 . There are no integer points on this line segment besides the endpoints, so D^{231} has SNP.
- Non-example: the polynomial $f = x_1^2 + x_2x_3 + x_2x_4 + x_3x_4$ has SNP but f^2 does not.

The support of the dual Schubert polynomial *D^w* is $\supp(D^w) = \sum \{e_a, e_{a+1}, \ldots, e_{b-1}\},$ $(a,b)∈Inv(w)$

We say that *D^w* has *single chain Newton polytope (SCNP)* if there exists a saturated chain *C* in the interval [id*, w*] such that $supp(m_C) = supp(D^w)$. Such a saturated chain *C* is called a *dominant chain* of the interval [id*, w*]. We show that for each $w \in S_n$, there exists a dominant chain, so D^w has SCNP. We also show that SCNP implies SNP, completing the proof of SNP. It turns out that any dominant chain has weight $\prod_{(a,b)\in \text{Inv}(w)} (x_a +$ $x_{a+1} + \cdots + x_{b-1}$, yielding the characterization in our theorem.

Previous Results on SNP

Many polynomials with algebraic combinatorial significance are now known to have SNP, such as

Corollary 4 (ATZ '24). The vertices of Newton (D^w) are $\{\alpha \in \mathbb{Z}_{\geq 0}^{n-1}\}$ $\sum_{\geq 0}^{n-1} |x^{\alpha}|$ has coeff. 1 in $\prod (x_a + x_{a+1} + \cdots + x_{b-1})$. (*a,b*)∈Inv(*w*)

Step 2: When $w = 253641$, the above boxes are filled with 1's.

¹ Construct a Young diagram of staircase shape $(n-1, n-2, \ldots, 1)$, and label the boxes by the following pairs of inversions: in the *i*th row of the diagram for $1 \leq i \leq n-1$, label the boxes from left to right by

 $(i, n), (i, n - 1), \ldots, (i, i + 1).$

2 In each box, write a 1 if the inversion pair is in $Inv(w)$, and a 0 otherwise.

Work of Huh, Matherne, Mészáros, and St. Dizier [\[HMMSD22\]](#page-0-7) proved Lorentzian-ness, which implies SNP, for dual Schubert polynomials. We offer the first elementary proof of SNP for dual Schuberts by fully characterizing their supports.

 3 Construct $\frac{1}{n+1}$ *n*+1 $\sqrt{2n}$ *n*) tilings of the staircase by $n-1$ rectangles. ⁴ For each tiling, sum the entries of each rectangle and write the sum at the bottom right corner of the rectangle. Reading the summands from top to bottom gives a vertex of Newton(*D^w*).

Main Theorem (ATZ '24)

where the right-hand side is a Minkowski sum of sets of elementary basis vectors. The sum is over pairs of indices (a, b) for which there is an inversion in *w*.

Proof Outline

Given a Schubert polynomial $\mathfrak{S}_w = \sum_{\alpha \in \mathbb{Z}_{\geq 0}} c_{\alpha,w} x^{\alpha}$ for $w \in S_n$, Adve, Robichaux, and Yong give a polynomial-time algorithm to determine, given some α , whether $c_{\alpha,w} = 0$ [\[ARY21\]](#page-0-9). We prove an analogous result for dual Schubert polynomials.

For $w \in S_n$ and $\alpha \in \mathbb{Z}_{\geq 0}^{n-1}$ $\sum_{n=0}^{n-1}$, there is an $O(n^4)$ algorithm to determine whether $\alpha \in \text{supp}(D^w)$.

The idea is to construct a certain bipartite graph with inversions of *w* as left vertices and variables of D^w as right vertices. The vanishing problem reduces to determining if a flow of $\ell(w)$ units can pass from left to right. Using Dinic's algorithm, this maxflow problem has complexity $O(n^4)$.

Step 1: Build a staircase Young diagram with $n = 6$.

Corollaries of the Main Theorem

Corollary 1. *D^w* has SNP.

The *generalized permutahedron* P_n^z $\binom{2z}{n}$ associated to the collection of real numbers $\{z_I\}$ for $I \subseteq [n]$, is given by

$$
P_n^z({z_I}) = \left\{ t \in \mathbb{R}^n : \sum_{i \in I} t_i \ge z_I \text{ for } I \neq [n], \sum_{i=1}^n t_i = z_{[n]} \right\}.
$$

Corollary 2. The Newton polytope of *D^w* is a generalized permutahedron.

Proposition. (Mur03, Theorem 4.15], [\[HMMSD22\]](#page-0-7)) A homogeneous polynomial *f* has M-convex support if and only if *f* has SNP and Newton(f) is a generalized permutahedron.

Corollary 3. *D^w* has M-convex support.

Anshul Adve, Colleen Robichaux, and Alexander Yong. An efficient algorithm for deciding vanishing of Schubert polynomial coefficients. *Adv. Math.*, 383:Paper No. 107669, 38, 2021. [BGG73] Bernstein, Gelfand, and Gelfand. Schubert cells and cohomology of the spaces G/P. *Russian Mathematical Surveys*, 28:1–26, 1973. [CRMM23] Castillo, Cid Ruiz, Mohammadi, and Montano. Double Schubert polynomials do have saturated Newton polytopes. *Forum Math Sigma*, 11:e100, 2023. [FMD18] Fink, Mézśaros, and St. Dizier. Schubert polynomials as integer point transforms of generalized permutahedra. *Advances in Math*, 332:465–475, 2018. [GKZ90] Gelfand, Kapranov, and Zelevinsky. Newton polytopes of the classical resultant and discriminant. *Advances in Math*, 84:237–254, 1990. [HMMSD22] June Huh, Jacob P. Matherne, Karola Mészáros, and Avery St. Dizier. Logarithmic concavity of Schur and related polynomials. *Trans. Amer. Math. Soc.*, 375(6):4411–4427, 2022. [MTY19] Cara Monical, Neriman Tokcan, and Alexander Yong. Newton polytopes in algebraic combinatorics. *Selecta Mathematica*, 25, 2019. Kazuo Murota. *Discrete Convex Analysis*. Society for Industrial and Applied Mathematics, 2003. Alexander Postnikov and Richard P. Stanley. Chains in the Bruhat order. *J. Algebraic Combin.*, 29(2):133–174, 2009. Richard Rado. An inequality. *J. London Math. Soc.*, 27:1–6, 1952. **Acknowledgements**

Characterizing Vertices of Newton(*D^w*)

Step 3: We consider a tiling by $n-1$ rectangles.

Step 4: We find that $Newton(D^{253641})$ has vertex $(0, 1, 0, 6, 1)$.

The Vanishing Problem for *D^w*

Theorem (ATZ '24++)

The network testing the term $x_1x_2^2x_3x_4^3x_5$ in D^{253641} .

References

This research was conducted through the University of Minnesota Combinatorics and Algebra REU and supported by NSF grant DMS-2053288 and the D.E. Shaw group. We thank Ayah Almousa, Casey Appleton, Meagan Kenney, Pavlo Pylyavskyy, Victor Reiner, Shiyun Wang, and Alexander Yong.