Newton polytopes of dual Schubert polynomials (arXiv:2411.16654)

Yuchong Zhang University of Michigan

Collaborators: Serena An, Katherine Tung Mentor: Shiyun Wang TA: Meagan Kenney

2025 Joint Mathematics Meetings, Seattle, WA

January 10, 2025

The Symmetric Group S_n

- S_n : permutations of $\{1, \ldots, n\}$
- Bottom element $1 \ 2 \cdots n$
- Top element $n \ (n-1) \cdots 1$
- Inv(u): the set of all inversions

 (a, b) of u such that a < b and
 u(a) > u(b)

The (Strong) Bruhat Order of S_n

- $\ell(u)$: count of inversions in u
- t_{ab} swaps the numbers in positions a, b (not values a, b)
- Covering relation: u ≤ v if
 v = ut_{ab} and ℓ(v) = ℓ(u) + 1
- Interval [u, w] : $\{v \mid u \le v \le w\}$

Edge Weights

Definition

For $u \lt v$ and $v = ut_{ab}$, the weight $m(u \lt v)$ is $x_a + x_{a+1} + \cdots + x_{b-1}$.

Example

Since $312 = 213t_{13}$, we have $m(213 < 312) = x_1 + x_2$.

Chain Weights

Definition

Let $u_0 \leq u_\ell$ and $C = (u_0 < u_1 < \cdots < u_\ell)$ be a saturated chain of $[u_0, u_\ell]$. Define the *weight* $m_C(x)$ of the chain C by $\prod_{i=1}^{\ell} m(u_{i-1} < u_i)$.

Example

For [213, 321], the weight of the saturated chain 213 < 312 < 321 is $(x_1 + x_2) \cdot x_2$.

Skew Dual Schubert Polynomials

Definition (Postnikov–Stanley '09)

For $u \le w$, the skew dual Schubert polynomial or *Postnikov–Stanley* polynomial D_u^w is defined by

$$D_{u}^{w} = \frac{1}{(\ell(w) - \ell(u))!} \sum_{C: u = u_{0} \leqslant u_{1} \leqslant \cdots \leqslant u_{\ell} = w} m_{C}(x).$$

Example

$$D_{213}^{321} = \frac{1}{2!} (x_1 x_2 + (x_1 + x_2) \cdot x_2)$$

Definition (Bernstein–Galfand–Galfand '73) When u = id, D_u^w is called a *dual Schubert polynomial*.

Saturated Newton Polytope (SNP)

For a tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, let $x^{\alpha} \coloneqq x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

Definition

The support supp(f) of $f = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} c_{\alpha} x^{\alpha}$ is the set of vectors α such that $c_{\alpha} \neq 0$. The Newton polytope Newton(f) of f is the convex hull of supp(f) in \mathbb{R}^n .

Example

$$D_{213}^{321} = x_1 x_2 + \frac{1}{2} x_2^2 = x^{(1,1)} + \frac{1}{2} x^{(0,2)}$$

Newton (D_{213}^{321}) is the segment from (1,1)
to (0,2) in \mathbb{R}^2

Definition (Monical-Tokcan-Yong '19)

f has Saturated Newton Polytope (SNP) if supp(f) is the set of integer points in Newton(f).

An, Tung, and Zhang

Dual Schubert Polynomial

SNP in Algebraic Combinatorics

Theorem (Rado '52)

Schur polynomials have SNP.

Theorem (Fink-Mézśaros-St. Dizier '18)

Key polynomials and Schubert polynomials have SNP.

Theorem (Monical-Tokcan-Yong '19)

Cycle index polynomials, Reutenauer's symmetric polynomials, Stembridge's symmetric polynomials, and symmetric Macdonald polynomials have SNP.

Theorem (Huh–Matherne–Mészáros–St. Dizier '19; An–Tung–Z. '24) Dual Schubert polynomials have SNP.

Chain Weights have SNP

Definition (Postnikov–Stanley '09)

$$D_{u}^{w} = \frac{1}{(\ell(w) - \ell(u))!} \sum_{C: u = u_{0} < u_{1} < \dots < u_{\ell} = w} m_{C}(x).$$

Proposition (An–Tung–Z. '24)

Any product of linear factors in x_1, \ldots, x_n with all coefficients nonnegative has SNP.

Single-Chain Newton Polytope (SCNP)

Definition (An-Tung-Z. '24)

 D_u^w has single-chain Newton polytope (SCNP) if there exists a saturated chain C in the interval [u, w] such that

 $\operatorname{supp}(m_C) = \operatorname{supp}(D_u^w).$

We call such a C a *dominant chain* of the interval [u, w].

Proposition (An–Tung–Z. '24)

If D_u^w has SCNP, then D_u^w has SNP.

Examples and Nonexamples for SCNP

Example $D_{213}^{321} = \frac{1}{2!}(x_1x_2 + (x_1 + x_2) \cdot x_2)$ has SCNP C := (213 < 312 < 321) $m_C = (x_1 + x_2) \cdot x_2$ $\mathrm{supp}(m_C) = \mathrm{supp}(D_{213}^{321})$

Example

 D^{4231}_{1324} does not have SCNP

Dual Schubert Polynomials have SCNP

Definition (An-Tung-Z. '24)

$$u = w_0 \lessdot w_1 \lessdot w_2 \lessdot \cdots \lessdot w_\ell = w$$

is called greedy in [u, w] if for all $i \in [\ell]$: writing $w_{i-1}t_{ab} = w_i$ for a < b, there does not exist $w'_{i-1} < w_i$ with $w'_{i-1} \in [u, w]$ such that

$$w_{i-1}'t_{ab'} = w_i$$
 for $b' > b$, or $w_{i-1}'t_{a'b} = w_i$ for $a' < a$.

Example

In [123, 321], 123 < 132 < 231 < 321 is greedy 123 < 213 < 312 < 321 is also greedy 123 < 213 < 231 < 321 is not greedy

Dual Schubert Polynomials have SCNP, cont.

Definition (An-Tung-Z. '24)

The global weight GW(w) of $w \in S_n$ is

$$\mathrm{GW}(w) = \prod_{(a,b)\in\mathrm{Inv}(w)} (x_a + x_{a+1} + \dots + x_{b-1}).$$

Example

$$Inv(231) = \{(1,3), (2,3)\}, GW(231) = (x_1 + x_2) \cdot x_2$$

Theorem (An–Tung–Z. '24)

For all $w \in S_n$, the dual Schubert polynomial D^w has SCNP. Moreover, every greedy chain of [id, w] is a dominant chain of D^w , and

$$\operatorname{supp}(D^w) = \operatorname{supp}(\operatorname{GW}(w)) = \sum_{(a,b)\in\operatorname{Inv}(w)} \{e_a, e_{a+1}, \ldots, e_{b-1}\}.$$

Newton Polytopes as Generalized Permutahedra

A generalized permutahedron $P_n^z(\{z_l\})$, parameterized by collections of real numbers $\{z_l\}$ for $l \subseteq [n]$, is given by

$$P_n^z(\{z_I\}) = \left\{ t \in \mathbb{R}^n : \sum_{i \in I} t_i \ge z_I \text{ for } I \neq [n], \sum_{i=1}^n t_i = z_{[n]} \right\}.$$

Theorem (Postnikov '05)

A polytope is a generalized permutahedron if and only if every edge is parallel to a vector $e_i - e_j$.

Theorem (An–Tung–Z. '24)

For $w \in S_n$, $Newton(D^w)$ is a generalized permutahedron with

$$z_I = \sum_{(a,b)\in \mathrm{Inv}(w)} \mathbb{1}_{I\supseteq\{a,a+1\dots,b-1\}}$$

for all $I \subseteq [n]$.

Vertices of Newton Polytopes

Theorem (An-Tung-Z. '24)

The point $\alpha \in \mathbb{Z}_{\geq 0}^n$ is a vertex of $\operatorname{Newton}(D^w)$ if and only if x^{α} has a coefficient of 1 in $\operatorname{GW}(w)$.

Theorem (An–Tung–Z. '24)

Given a product q of linear factors in x_1, x_2, \ldots, x_n with all coefficients 1, the point $\alpha \in \mathbb{Z}_{\geq 0}^n$ is a vertex of Newton(q) if and only if x^{α} has a coefficient of 1 in q.

Example

$$q = (x_1 + x_2)(x_2 + x_3)(x_1 + x_3)(x_1 + x_2 + x_3)$$

= $x_1^3 x_2 + x_1^3 x_3 + 2x_1^2 x_2^2 + 4x_1^2 x_2 x_3 + 2x_1^2 x_3^2$
+ $x_1 x_2^3 + 4x_1 x_2^2 x_3 + 4x_1 x_2 x_3^2 + x_1 x_3^3 + x_2^3 x_3 + 2x_2^2 x_3^2 + x_2 x_3^3$
Vertices: {(3, 1, 0), (3, 0, 1), (1, 3, 0), (1, 0, 3), (0, 3, 1), (0, 1, 3)}

Vertices of Newton Polytopes (2)

(1,6)	(1,5)	(1,4)	(1,3)	(1,2)
(2,6)	(2,5)	(2,4)	(2,3)	
(3,6)	(3,5)	(3,4)		
(4,6)	(4,5)		-	
(5,6)		_		

Step 1: Build a staircase Young diagram with n = 6.

16/23

Vertices of Newton Polytopes (3)

(1,6) 1	(1,5) 0	(1,4) 0	(1,3) 0	(1,2) 0
(2,6) 1	(2,5) 1	(2,4) 0	(2,3) 1	
(3,6) 1	(3,5) 0	(3,4) 0		ı
(4,6) 1	(4,5) 1			
(5,6) 1				

Step 2: When w = 253641, the above boxes are filled with 1's.

Vertices of Newton Polytopes (4)

(1,6) 1	(1,5) 0	(1,4) 0	(1,3) 0	(1,2) 0
(2,6) 1	(2,5) 1	(2,4) 0	(2,3) 1	
(3,6) 1	(3,5) 0	(3,4) 0		
(4,6) 1	(4,5) 1			
(5,6) 1				

Step 3: We consider a tiling by n-1 rectangles.

Vertices of Newton Polytopes (5)

Step 4: We find that $Newton(D^{253641})$ has vertex (0, 1, 0, 6, 1).

Vertices of Newton Polytopes (6)

Newton (D^{4213}) has vertices (3, 1, 0), (1, 3, 0), (1, 2, 1), (2, 1, 1).

The Vanishing Problem for Dual Schubert Polynomials

Theorem (Adve–Robichaux–Yong '21)

For $w \in S_n$, Schubert polynomial \mathfrak{S}_w , and $\alpha \in \mathbb{Z}_{\geq 0}^{n-1}$, there is a polynomial-time algorithm to determine whether $\alpha \in \operatorname{supp}(\mathfrak{S}_w)$.

Theorem (An–Tung–Z. '25+)

For $w \in S_n$ and $\alpha \in \mathbb{Z}_{\geq 0}^{n-1}$, there is an $O(n^4)$ algorithm to determine whether $\alpha \in \operatorname{supp}(D^w)$.

The network testing the term $x_1^2 x_2$ in D^{321} .

An, Tung, and Zhang

Dual Schubert Polynomials

Further Results and Conjectures

Theorem (An–Tung–Z. '24)

For all Bruhat intervals [u, w] in S_n , D_u^w has SNP, and Newton (D_u^w) is a generalized permutahedron.

Conjecture (An-Tung-Z. '24)

For $u \in S_n$, there exists $w \in S_n$ such that D_u^w does not have SCNP if and only if u contains a 1324-pattern.

We would like to thank

- Shiyun Wang, our mentor, and Meagan Kenney, our TA for their continuous support and guidance throughout the program
- Pavlo Pylyavskyy for his mentorship and regular check-ins with us
- Ayah Almousa, Casey Appleton, Meagan Kenney, Pavlo Pylyavskyy, Victor Reiner, Shiyun Wang, and Alexander Yong for helpful conversations.