Newton polytopes of dual Schubert polynomials (arXiv:2411.16654)

Yuchong Zhang University of Michigan

Collaborators: Serena An, Katherine Tung Mentor: Shiyun Wang TA: Meagan Kenney

2025 Joint Mathematics Meetings, Seattle, WA

January 10, 2025

The Symmetric Group S_n

- \bullet S_n: permutations of $\{1, \ldots, n\}$
- \bullet Bottom element $1 \ 2 \cdots n$
- Top element $n(n-1)\cdots 1$
- Inv(u): the set of all inversions (a, b) of u such that $a < b$ and $u(a) > u(b)$

The (Strong) Bruhat Order of S_n

- $\circ \ell(u)$: count of inversions in u
- \bullet t_{ab} swaps the numbers in positions a, b (not values a, b)
- Covering relation: $u \ll v$ if $v = ut_{ab}$ and $\ell(v) = \ell(u) + 1$
- Interval $[u, w] : \{v \mid u \le v \le w\}$

Edge Weights

Definition

For $u \ll v$ and $v = ut_{ab}$, the weight $m(u \ll v)$ is $x_a + x_{a+1} + \cdots + x_{b-1}$.

Example

Since $312 = 213t_{13}$, we have $m(213 \le 312) = x_1 + x_2$.

Chain Weights

Definition

Let $u_0 \le u_\ell$ and $C = (u_0 \ll u_1 \ll \cdots \ll u_\ell)$ be a saturated chain of $[u_0, u_\ell]$. Define the weight $m_C(x)$ of the chain C by $\prod_{i=1}^{\ell} m(u_{i-1} \lt u_i)$.

Example

For [213, 321], the weight of the saturated chain $213 \le 312 \le 321$ is $(x_1 + x_2) \cdot x_2$.

Skew Dual Schubert Polynomials

Definition (Postnikov–Stanley '09)

For $u \leq w$, the skew dual Schubert polynomial or *Postnikov–Stanley polynomial* D_u^w is defined by

$$
D_{u}^{w}=\frac{1}{(\ell(w)-\ell(u))!}\sum_{C:u=u_{0}\leq u_{1}\leq\cdots\leq u_{\ell}=w}m_{C}(x).
$$

Example

$$
D_{213}^{321} = \frac{1}{2!} (x_1 x_2 + (x_1 + x_2) \cdot x_2)
$$

Definition (Bernstein–Galfand–Galfand '73) When $u = id$, D_u^w is called a *dual* Schubert polynomial.

Saturated Newton Polytope (SNP)

For a tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, let $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

Definition

The *support* $\mathrm{supp}(f)$ of $f = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} c_\alpha x^\alpha$ is the set of vectors α such that $c_{\alpha} \neq 0$. The Newton polytope $Newton(f)$ of f is the convex hull of $\mathrm{supp}(f)$ in \mathbb{R}^n .

Example

$$
D_{213}^{321} = x_1x_2 + \frac{1}{2}x_2^2 = x^{(1,1)} + \frac{1}{2}x^{(0,2)}
$$

Newton (D_{213}^{321}) is the segment from (1, 1)
to (0, 2) in \mathbb{R}^2

Definition (Monical–Tokcan–Yong '19)

f has Saturated Newton Polytope (SNP) if $supp(f)$ is the set of integer points in Newton(f).

An, Tung, and Zhang The [Dual Schubert Polynomials](#page-0-0) The January 10, 2025 7/23

SNP in Algebraic Combinatorics

Theorem (Rado '52)

Schur polynomials have SNP.

Theorem (Fink–Mézśaros–St. Dizier '18)

Key polynomials and Schubert polynomials have SNP.

Theorem (Monical–Tokcan–Yong '19)

Cycle index polynomials, Reutenauer's symmetric polynomials, Stembridge's symmetric polynomials, and symmetric Macdonald polynomials have SNP.

Theorem (Huh–Matherne–Mészáros–St. Dizier '19; An–Tung–Z. '24) Dual Schubert polynomials have SNP.

Chain Weights have SNP

Definition (Postnikov–Stanley '09)

$$
D_{u}^{w}=\frac{1}{(\ell(w)-\ell(u))!}\sum_{C:u=u_{0}\leq u_{1}\leq\cdots\leq u_{\ell}=w}m_{C}(x).
$$

Proposition (An–Tung–Z. '24)

Any product of linear factors in x_1, \ldots, x_n with all coefficients nonnegative has SNP.

Single-Chain Newton Polytope (SCNP)

Definition (An–Tung–Z. '24)

 D_u^w has single-chain Newton polytope (SCNP) if there exists a saturated chain C in the interval $[u, w]$ such that

 $\text{supp}(m_{\mathcal{C}}) = \text{supp}(D_u^w).$

We call such a C a dominant chain of the interval $[u, w]$.

Proposition (An–Tung–Z. '24)

If D_u^w has SCNP, then D_u^w has SNP.

Examples and Nonexamples for SCNP

Example

 D_{1324}^{4231} does not have SCNP

Dual Schubert Polynomials have SCNP

Definition (An–Tung–Z. '24)

$$
u = w_0 \lessdot w_1 \lessdot w_2 \lessdot \cdots \lessdot w_\ell = w
$$

is called greedy in [u, w] if for all $i \in [\ell]$: writing $w_{i-1}t_{ab} = w_i$ for $a < b$, there does not exist $w'_{i-1} < w_i$ with $w'_{i-1} \in [u, w]$ such that

$$
w'_{i-1}t_{ab'} = w_i \text{ for } b' > b, \text{ or } w'_{i-1}t_{a'b} = w_i \text{ for } a' < a.
$$

Example

In [123, 321], $123 \le 132 \le 231 \le 321$ is greedy $123 \le 213 \le 312 \le 321$ is also greedy $123 < 213 < 231 < 321$ is not greedy 213 \sim 213

Dual Schubert Polynomials have SCNP, cont.

Definition (An–Tung–Z. '24)

The global weight GW(w) of $w \in S_n$ is

GW(w) =
$$
\prod_{(a,b)\in\text{Inv}(w)} (x_a + x_{a+1} + \cdots + x_{b-1}).
$$

Example

$$
\mathrm{Inv}(231) = \{(1,3), (2,3)\},\ \mathrm{GW}(231) = (x_1 + x_2) \cdot x_2
$$

Theorem (An–Tung–Z. '24)

For all $w \in S_n$, the dual Schubert polynomial D^w has SCNP. Moreover, every greedy chain of $[\mathrm{id},w]$ is a dominant chain of D^w , and

$$
\mathrm{supp}(D^w)=\mathrm{supp}(\mathrm{GW}(w))=\sum_{(a,b)\in\mathrm{Inv}(w)}\{e_a,e_{a+1},\ldots,e_{b-1}\}.
$$

Newton Polytopes as Generalized Permutahedra

A *generalized permutahedron* $P_n^z({z_I})$), parameterized by collections of real numbers $\{z_l\}$ for $l \subseteq [n]$, is given by

$$
P_n^z({z_1}) = \left\{ t \in \mathbb{R}^n : \sum_{i \in I} t_i \geq z_I \text{ for } I \neq [n], \sum_{i=1}^n t_i = z_{[n]} \right\}.
$$

Theorem (Postnikov '05)

A polytope is a generalized permutahedron if and only if every edge is parallel to a vector $e_i - e_j$.

Theorem (An–Tung–Z. '24)

For $w \in S_n$, Newton (D^w) is a generalized permutahedron with

$$
z_I=\sum_{(a,b)\in\operatorname{Inv}(w)}1\!\!1_{I\supseteq\{a,a+1...,b-1\}}
$$

for all $I \subseteq [n]$.

Vertices of Newton Polytopes

Theorem (An–Tung–Z. '24)

The point $\alpha \in \mathbb{Z}_{\geq 0}^n$ is a vertex of $\mathrm{Newton}(D^w)$ if and only if x^{α} has a coefficient of 1 in $GW(w)$.

Theorem (An–Tung–Z. '24)

Given a product q of linear factors in x_1, x_2, \ldots, x_n with all coefficients 1, the point $\alpha\in\mathbb{Z}_{\geq0}^n$ is a vertex of $\mathrm{Newton}(\bm{\mathsf{q}})$ if and only if x^α has a coefficient of 1 in q.

Example

$$
q = (x_1 + x_2)(x_2 + x_3)(x_1 + x_3)(x_1 + x_2 + x_3)
$$

= $x_1^3x_2 + x_1^3x_3 + 2x_1^2x_2^2 + 4x_1^2x_2x_3 + 2x_1^2x_3^2$
+ $x_1x_2^3 + 4x_1x_2^2x_3 + 4x_1x_2x_3^2 + x_1x_3^3 + x_2^3x_3 + 2x_2^2x_3^2 + x_2x_3^3$
Vertices: {(3, 1, 0), (3, 0, 1), (1, 3, 0), (1, 0, 3), (0, 3, 1), (0, 1, 3)}

Vertices of Newton Polytopes (2)

Step 1: Build a staircase Young diagram with $n = 6$.

Vertices of Newton Polytopes (3)

Step 2: When $w = 253641$, the above boxes are filled with 1's.

Vertices of Newton Polytopes (4)

Step 3: We consider a tiling by $n - 1$ rectangles.

Vertices of Newton Polytopes (5)

Step 4: We find that $\mathrm{Newton}(D^{253641})$ has vertex $(0,1,0,6,1)$.

Vertices of Newton Polytopes (6)

Newton (D^{4213}) has vertices $(3,1,0),(1,3,0),(1,2,1),(2,1,1).$

The Vanishing Problem for Dual Schubert Polynomials

Theorem (Adve–Robichaux–Yong '21)

For $w\in S_n$, Schubert polynomial \mathfrak{S}_w , and $\alpha\in\mathbb{Z}_{\geq 0}^{n-1}$, there is a polynomial-time algorithm to determine whether $\alpha \in \text{supp}(\mathfrak{S}_w)$.

Theorem (An–Tung–Z. '25+)

For $w\in S_n$ and $\alpha\in\mathbb{Z}_{\geq 0}^{n-1}$, there is an $O(n^4)$ algorithm to determine whether $\alpha \in \mathrm{supp}(D^w)$.

The network testing the term $x_1^2x_2$ in D^{321} .

Further Results and Conjectures

Theorem (An–Tung–Z. '24)

For all Bruhat intervals $[u, w]$ in S_n , D_u^w has SNP, and $\mathrm{Newton}(D_u^w)$ is a generalized permutahedron.

Conjecture (An–Tung–Z. '24)

For $u \in S_n$, there exists $w \in S_n$ such that D_u^w does not have SCNP if and only if u contains a 1324-pattern.

We would like to thank

- Shiyun Wang, our mentor, and Meagan Kenney, our TA for their continuous support and guidance throughout the program
- Pavlo Pylyavskyy for his mentorship and regular check-ins with us
- Ayah Almousa, Casey Appleton, Meagan Kenney, Pavlo Pylyavskyy, Victor Reiner, Shiyun Wang, and Alexander Yong for helpful conversations.