
Newton polytopes of dual Schubert polynomials
(arXiv:2411.16654)

Yuchong Zhang

University of Michigan

Collaborators: Serena An, Katherine Tung

Mentor: Shiyun Wang

TA: Meagan Kenney

2025 Joint Mathematics Meetings, Seattle, WA

January 10, 2025

An, Tung, and Zhang Dual Schubert Polynomials January 10, 2025 1 / 23



The Symmetric Group Sn

Sn: permutations of {1, . . . , n}

Bottom element 1 2 · · · n

Top element n (n − 1) · · · 1

Inv(u): the set of all inversions
(a, b) of u such that a < b and
u(a) > u(b)
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An, Tung, and Zhang Dual Schubert Polynomials January 10, 2025 2 / 23



The (Strong) Bruhat Order of Sn

ℓ(u): count of inversions in u

tab swaps the numbers in
positions a, b (not values a, b)

Covering relation: u ⋖ v if
v = utab and ℓ(v) = ℓ(u) + 1

Interval [u,w ] : {v | u ≤ v ≤ w}

213 132

231 312

123

321
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Edge Weights

Definition

For u ⋖ v and v = utab, the weight m(u ⋖ v) is xa + xa+1 + · · ·+ xb−1.

Example

Since 312 = 213t13, we have m(213⋖ 312) = x1 + x2.

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2
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Chain Weights

Definition

Let u0 ≤ uℓ and C = (u0 ⋖ u1 ⋖ · · ·⋖ uℓ) be a saturated chain of [u0, uℓ].
Define the weight mC (x) of the chain C by

∏ℓ
i=1m(ui−1 ⋖ ui ).

Example

For [213, 321], the weight of the saturated chain 213⋖ 312⋖ 321 is
(x1 + x2) · x2.

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2
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Skew Dual Schubert Polynomials

Definition (Postnikov–Stanley ’09)

For u ≤ w , the skew dual Schubert polynomial or Postnikov–Stanley
polynomial Dw

u is defined by

Dw
u =

1

(ℓ(w)− ℓ(u))!

∑
C :u=u0⋖u1⋖···⋖uℓ=w

mC (x).

Example

D321
213 = 1

2!(x1x2 + (x1 + x2) · x2)

Definition
(Bernstein–Galfand–Galfand ’73)

When u = id, Dw
u is called a dual

Schubert polynomial.

213 132

231 312
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321
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x2

x1 x2

x1
x1 + x2x1 + x2
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Saturated Newton Polytope (SNP)
For a tuple α = (α1, . . . , αn) ∈ Zn

≥0, let x
α := xα1

1 · · · xαn
n .

Definition

The support supp(f ) of f =
∑

α∈Zn
≥0

cαx
α

is the set of vectors α such that cα ̸= 0.
The Newton polytope Newton(f ) of f is
the convex hull of supp(f ) in Rn.

Example

D321
213 = x1x2 +

1
2x

2
2 = x (1,1) + 1

2x
(0,2)

Newton(D321
213 ) is the segment from (1, 1)

to (0, 2) in R2

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2

Definition (Monical–Tokcan–Yong ’19)

f has Saturated Newton Polytope (SNP) if supp(f ) is the set of integer
points in Newton(f ).
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SNP in Algebraic Combinatorics

Theorem (Rado ’52)

Schur polynomials have SNP.

Theorem (Fink–Mézśaros–St. Dizier ’18)

Key polynomials and Schubert polynomials have SNP.

Theorem (Monical–Tokcan–Yong ’19)

Cycle index polynomials, Reutenauer’s symmetric polynomials,
Stembridge’s symmetric polynomials, and symmetric Macdonald
polynomials have SNP.

Theorem (Huh–Matherne–Mészáros–St. Dizier ’19; An–Tung–Z. ’24)

Dual Schubert polynomials have SNP.
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Chain Weights have SNP

Definition (Postnikov–Stanley ’09)

Dw
u =

1

(ℓ(w)− ℓ(u))!

∑
C :u=u0⋖u1⋖···⋖uℓ=w

mC (x).

Proposition (An–Tung–Z. ’24)

Any product of linear factors in x1, . . . , xn with all coefficients nonnegative
has SNP.
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Single-Chain Newton Polytope (SCNP)

Definition (An–Tung–Z. ’24)

Dw
u has single-chain Newton polytope (SCNP) if there exists a saturated

chain C in the interval [u,w ] such that

supp(mC ) = supp(Dw
u ).

We call such a C a dominant chain of the interval [u,w ].

Proposition (An–Tung–Z. ’24)

If Dw
u has SCNP, then Dw

u has SNP.
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Examples and Nonexamples for SCNP

Example

D321
213 = 1

2!(x1x2 + (x1 + x2) · x2) has SCNP

C := (213⋖ 312⋖ 321)

mC = (x1 + x2) · x2
supp(mC ) = supp(D321

213 )

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2

Example

D4231
1324 does not have SCNP
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Dual Schubert Polynomials have SCNP

Definition (An–Tung–Z. ’24)

u = w0 ⋖ w1 ⋖ w2 ⋖ · · ·⋖ wℓ = w

is called greedy in [u,w ] if for all i ∈ [ℓ]:
writing wi−1tab = wi for a < b, there does not exist w ′

i−1 ⋖ wi with
w ′
i−1 ∈ [u,w ] such that

w ′
i−1tab′ = wi for b

′ > b, or w ′
i−1ta′b = wi for a

′ < a.

Example

In [123, 321],
123⋖ 132⋖ 231⋖ 321 is greedy
123⋖ 213⋖ 312⋖ 321 is also greedy
123⋖ 213⋖ 231⋖ 321 is not greedy 213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2
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Dual Schubert Polynomials have SCNP, cont.

Definition (An–Tung–Z. ’24)

The global weight GW(w) of w ∈ Sn is

GW(w) =
∏

(a,b)∈Inv(w)

(xa + xa+1 + · · ·+ xb−1).

Example

Inv(231) = {(1, 3), (2, 3)}, GW(231) = (x1 + x2) · x2

Theorem (An–Tung–Z. ’24)

For all w ∈ Sn, the dual Schubert polynomial Dw has SCNP. Moreover,
every greedy chain of [id,w ] is a dominant chain of Dw , and

supp(Dw ) = supp(GW(w)) =
∑

(a,b)∈Inv(w)

{ea, ea+1, . . . , eb−1}.
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Newton Polytopes as Generalized Permutahedra
A generalized permutahedron Pz

n ({zI}), parameterized by collections of
real numbers {zI} for I ⊆ [n], is given by

Pz
n ({zI}) =

{
t ∈ Rn :

∑
i∈I

ti ≥ zI for I ̸= [n],
n∑

i=1

ti = z[n]

}
.

Theorem (Postnikov ’05)

A polytope is a generalized permutahedron if and only if every edge is
parallel to a vector ei − ej .

Theorem (An–Tung–Z. ’24)

For w ∈ Sn, Newton(D
w ) is a generalized permutahedron with

zI =
∑

(a,b)∈Inv(w)

1I⊇{a,a+1...,b−1}

for all I ⊆ [n].
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Vertices of Newton Polytopes

Theorem (An–Tung–Z. ’24)

The point α ∈ Zn
≥0 is a vertex of Newton(Dw ) if and only if xα has a

coefficient of 1 in GW(w).

Theorem (An–Tung–Z. ’24)

Given a product q of linear factors in x1, x2, . . . , xn with all coefficients 1,
the point α ∈ Zn

≥0 is a vertex of Newton(q) if and only if xα has a
coefficient of 1 in q.

Example

q = (x1 + x2)(x2 + x3)(x1 + x3)(x1 + x2 + x3)

= x31x2 + x31x3 + 2x21x
2
2 + 4x21x2x3 + 2x21x

2
3

+ x1x
3
2 + 4x1x

2
2x3 + 4x1x2x

2
3 + x1x

3
3 + x32x3 + 2x22x

2
3 + x2x

3
3

Vertices:{(3, 1, 0), (3, 0, 1), (1, 3, 0), (1, 0, 3), (0, 3, 1), (0, 1, 3)}
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Vertices of Newton Polytopes (2)

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

Step 1: Build a staircase Young diagram with n = 6.
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Vertices of Newton Polytopes (3)

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

Step 2: When w = 253641, the above boxes are filled with 1’s.
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Vertices of Newton Polytopes (4)

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

Step 3: We consider a tiling by n − 1 rectangles.
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Vertices of Newton Polytopes (5)
(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

0

1

0

6

1

Step 4: We find that Newton(D253641) has vertex (0, 1, 0, 6, 1).
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Vertices of Newton Polytopes (6)

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

3

1

0

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

1

3

0

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

3

1

0

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

1

2

1

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

2

1

1

Newton(D4213) has vertices (3, 1, 0), (1, 3, 0), (1, 2, 1), (2, 1, 1).
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The Vanishing Problem for Dual Schubert Polynomials

Theorem (Adve–Robichaux–Yong ’21)

For w ∈ Sn, Schubert polynomial Sw , and α ∈ Zn−1
≥0 , there is a

polynomial-time algorithm to determine whether α ∈ supp(Sw ).

Theorem (An–Tung–Z. ’25+)

For w ∈ Sn and α ∈ Zn−1
≥0 , there is an O(n4) algorithm to determine

whether α ∈ supp(Dw ).

(1, 2)• •x1

S • (1, 3)• • T

(2, 3)• •x2

2

The network testing the term x21x2 in D321.
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Further Results and Conjectures

Theorem (An–Tung–Z. ’24)

For all Bruhat intervals [u,w ] in Sn, D
w
u has SNP, and Newton(Dw

u ) is a
generalized permutahedron.

Conjecture (An–Tung–Z. ’24)

For u ∈ Sn, there exists w ∈ Sn such that Dw
u does not have SCNP if and

only if u contains a 1324-pattern.
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