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Abstract. Motivated by recent work by von Bell et al., we study triangulations of the
order polytopes of generalized snake posets. We impose a partial ordering on the regular
triangulations of this order polytope, and conjecture that it is a lattice and that it induces
a good orientation as defined by Kalai. We explore the geometry of the secondary polytope
of the order polytope and make progress towards proving that all two-dimensional faces
are quadrilaterals, pentagons, and hexagons. We also investigate the “twist group”, as
introduced by von Bell et al., which acts on the set of regular triangulations. We prove the
twist action is free and give an eigenbasis for the action of the twist group on the secondary
polytope. Lastly, we show that a subset of the triangulations admit the same number of
bistellar flips. Our results make partial progress towards proving certain conjectures posed
by von Bell et al.
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1. Introduction

Triangulations of point configurations have been studied for centuries as a natural method
of breaking up a given space into smaller pieces which are easier to understand. While
triangulations have applications in many fields, including computer science and algebra, we
are primarily concerned with their usefulness in the field of combinatorics. For example, the
nth Catalan number

Cat(n) :=
1

n + 1

(
2n

n

)
,

which counts many combinatorial objects including parenthesizations of the product of n+1
factors and Dyck paths of length 2n, also counts triangulations of a convex (n+2)−gon. We
refer the reader to the book by De Loera, Rambau and Santos [DRS10] for more background
and history.
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Another connection between geometry and combinatorics can be found in the study of
order polytopes. Order polytopes of finite posets were first introduced by Richard Stanley
in [Sta86], motivated by a link between the geometric structure of these objects and the
combinatorial structure of finite posets. Triangulations of order polytopes are currently an
area of interest.

Much of our work is motivated by a 2022 paper of von Bell, Braun, Hanely, Serhiyenko,
Vega, Vindas-Meléndez, and Yip, titled Triangulations, Order Polytopes, and Generalized
Snake Posets [Bel+22]. In this paper, the authors study a family of generalized snake posets
P (w) and the triangulations of the corresponding order polytope O(Qw), where Qw is the
poset of meet-irreducibles of a modification of P (w). In one section of their paper, the
authors classify the circuits of the vertex set of these order polytopes. In another section,
they introduce a “twist” action on triangulations of O(Qw). They prove several initial results
about this action, namely that twists preserve regular triangulations and twists commute
with bistellar flips.

Their paper concludes with several conjectures on a specific class of generalized snake
posets, which is denoted by V . For further detail on this class, see Definition 2.14. In
particular, our paper focuses on the following three conjectures:

Conjecture 1.1 ([Bel+22], Conjecture 6.1). For w ∈ V , the flip graph of regular trian-
gulations for O(Qw) is k-regular, where k is the dimension of the secondary polytope of
O(Qw).

Conjecture 1.2 ([Bel+22], Conjecture 6.4). For w ∈ V , all triangulations of O(Qw) are
regular.

Conjecture 1.3 ([Bel+22], Conjecture 6.5). The number of regular triangulations of O(Sk)
is 2k+1 · Cat(2k + 1).

In working towards proving these conjectures, we pose some of our own conjectures about
triangulations of order polytopes of snake posets. In Section 4, we make several remarks
about the secondary polytope ΣO(Sk) which lead us to the following conjecture about its
dual polytope.

Conjecture 1.4. The dual polytope of ΣO(Sk) is a flag simplicial complex.

In Section 3.2, we define a partial ordering on triangulations of O(Sk) that satisfies inter-
esting properties. Specifically, we have the following conjectures, which we have verified for
k = 1, 2, 3.

Conjecture 1.5. For any snake poset Sk, the set of triangulations of O(Sk) under the partial
ordering given in Definition 3.2 is a lattice.

Conjecture 1.6. The orientation on the flip graph induced by the partial ordering is a good
orientation in the sense of Kalai [Kal88]: every face of the polytope contains a unique sink
vertex.

In studying the secondary polytope ΣO(Sk), it is natural to consider the 2-dimensional
faces, as these correspond to certain cycles in the bistellar flip graph. This leads us to our
final conjecture:

Conjecture 1.7. The 2-dimensional faces of ΣO(Sk) are quadrilaterals, pentagons and hexagons.
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We prove four main theorems which relate to the conjectures above. In Section 4, we
classify all of the squares which appear in the secondary polytope via the following theorem,
where the notion of “commuting” is defined in Definition 4.3.

Theorem 1.8. Let Z1 and Z2 be circuits of O(Qw), where w ∈ V . Then Z1 and Z2 commute
at T if and only if T can be flipped at Z1 and Z2 and at least one of the following hold:

(i) Z1 and Z2 appear on different maximal simplices in T , or
(ii) Z1 and Z2 share no vertex

We also make progress towards similar theorems for pentagonal and hexagonal faces. In
Section 5, we make partial progress towards the valence-regularity of the flip graph of O(Sk).

Theorem 1.9. Let T be a triangulation of O(Qw) obtained by applying one flip to the
canonical triangulation Tw, where w = w0w1 · · ·wn ∈ V . Then, T admits n + 1 flips.

In the context of stating their Conjecture 1.3, the authors of [Bel+22] implicitly conjecture
that nonidentity elements of the twist groups has no fixed triangulations. We give a proof
of the following statement in Section 6.

Theorem 1.10. The twist group acts freely on the regular triangulations of O(Qw).

Finally, in Section 7, we construct an eigenbasis for the twist group that arises from a
combinatorial interpretation of P (w).

Theorem 1.11. Let w = εw1 · · ·wn ∈ V . Let V ∼= Rn+1 be the linear subspace of R2n+6

parallel to the affine subspace containing the secondary polytope ΣO(Qw). Then the twist
group acts on V in some eigenbasis v1, v2, . . . , vn+1 in which each vi corresponds with a letter
ε or wi in w and each twist τi negates exactly the basis elements that correspond to the wi

in the ladder that τi reflects.

1.1. Main Results and Organization. We organize this report as follows. In Section
2.1, we provide background on triangulations, circuits and flips, in Section 2.2 we provide
background on order polytopes and snake posets, in Section 2.3, we characterize the circuits
of O(Qw), and in Section 2.4 we provide background on the twist group. In Section 3, we
enumerate the circuits of O(Sk) and we define a partial ordering on triangulations of O(Qw),
conjecturing that this partial ordering satisfies certain interesting properties. In Section 4,
we study the geometry of the secondary polytope of O(Sk), introducing several conjectures
and making progress towards proving Conjecture 1.7. In Section 5, we prove that a subset
of triangulations of O(Sk) admit 2k + 1 flips, and precisely describe which flips are possible.
In Section 6, we prove that the twist action on the set of regular triangulations of order
polytopes O(Qw) is free. In Section 7, we analyze the geometric interpretation of the twist
action and we describe its eigenbasis. Finally, in Section 8, we discuss work in progress on
towards some of the conjectures above and discuss further directions.

2. Background

2.1. Triangulations, circuits and flips. In this section, we briefly explain the basic con-
cepts that are needed for this problem such as simplicial complexes, triangulations and
circuits, among others. We follow the exposition given in [DRS10].

A d-simplex is the convex hull of d + 1 affinely independent points in Rn for some n.
Simplices generalize the concept of a triangle. For instance, a 1-simplex is a line segment, a
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2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on. More importantly, simplices
are the basic elements of simplicial complexes.

Definition 2.1. A (geometric) simplicial complex ∆ is a set of simplices in Rn satisfying
two properties: (1) if σ ∈ ∆ and τ is a subsimplex of σ, meaning τ is the convex hull of a
subset of the vertices of σ), then τ ∈ ∆, and (2) if a pair of simplices in T intersect, then
they intersect exactly at a shared face of each.

We say that σ ∈ ∆ is a face and, if σ is a maximal simplex, we say that it is a facet.

A particular case of a simplicial complex is the triangulation of a given point configuration,
which will be the main object of study of our paper.

Definition 2.2. Given a point configuration A ⊆ Rd with convex hull conv(A), a triangu-
lation of A is a collection T of d-simplices such that

(i) The union of all simplices in T is conv(A).
(ii) The collection T forms a geometric simplicial complex.

(iii) Every simplex in T has vertices only from A.

We say that T is unimodular if every simplex has normalized volume one, and we say that
it is regular if there are heights h1, ..., hd ∈ R such that the projection of the upper convex

hull of Â =

{[
a1
h1

]
, . . . ,

[
ad
hd

]}
⊆ Rd+1 to Rd is T .

Often we might identify a triangulation with its maximal simplices, since these encode all
the information of the triangulation. Further, we might sometimes only specify the vertices
of the maximal simplices instead of the convex hull of them.

Example 2.3. Consider the polytope in R3 defined by the convex hull of the point configu-
ration A = {(1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}. A triangulation of this polytope
consists of the maximal simplices:

σ1 = conv{(1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1)}
σ2 = conv{(1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0,−1)}

Example 2.4. Let A = {A,B,C,D,E, F} ⊂ R2 where

A = (1, 0), B =
(1

2
,

√
3

2

)
, C =

(
− 1

2
,

√
3

2

)
, D = (−1, 0), E =

(
− 1

2
,−

√
3

2

)
, F =

(1

2
,−

√
3

2

)
.

Let T1 = {ABC,CDE,EFA,ACE}. This triangulation is regular: we may place vertices
A,C,E at height 2 and vertices B,D, F at height 1. Then the projection of the convex hull
of Â to R2 is T1.

Definition 2.5. A point configuration A = {aj : j ∈ J} ⊆ Rd is said to have corank one if
it has a unique affine dependence

∑
j∈Z λjaj = 0 with

∑
j∈Z λj = 0, up to multiplication by

a constant.
If A has corank one, we can partition J into the following three sets

J+ = {j ∈ J : λj > 0}, J0 = {j ∈ J : λj = 0}, J− = {j ∈ J : λj < 0}

The pair (J+, J−) is called the Radon partition of J , and these are the only subsets of J
whose relative interiors intersect at a point.
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A

BC

D

E F

Figure 1. An illustration of T1, a triangulation of a regular hexagon.

Definition 2.6. A subset Z ⊆ J is called a circuit if it is a minimal affinely dependent set.
The partition of Z into the pair (Z+, Z−) such that conv(Z+) ∩ conv(Z−) ̸= ∅ is called an
oriented circuit.

Note that, as in the definitions above, we sometimes abuse notation and refer to the circuit
Z as the set points of A indexed by Z.

Lemma 2.7 ([DRS10], Lemma 2.4.2). Let A be a point configuration of corank one with
index set J = J+ ∪ J0 ∪ J−. Then, there are only two triangulations of A, namely:

T + = {J \ {j} : j ∈ J+} and T − = {J \ {j} : j ∈ J−},
where we have only specified the maximal simplices of each triangulation.

Remark. Note that the lemma above implies that, in particular, there are only two trian-
gulations of a given circuit. That is, given a circuit Z with oriented circuit (Z+, Z−), the
only two triangulations of Z are T +

Z = {Z \ {z} : z ∈ Z+} and T −
Z = {Z \ {z} : z ∈ Z−}.

We will use this fact in various sections of this paper.

These results are particularly interesting since they guarantee that one can move between
triangulations of a larger point configuration A by swapping between triangulations of the
circuits that appear in it. This is the notion of a bistellar flip. However, to precisely define
a flip, we need some more background.

Definition 2.8. Given a simplicial complex ∆ and a face σ ∈ ∆, the link of σ in ∆ is the
simplicial complex

lk∆(σ) = {τ ∈ ∆ : σ ∪ τ ∈ ∆, σ ∩ τ = ∅}.
Given two simplicial complexes ∆ and ∆′, their join is ∆ ∗ ∆′ = {σ ∪ σ′ : σ ∈ ∆, σ′ ∈ ∆′}

We can now precisely define the flip of a triangulation. We note that there are several
different equivalent definitions of a bistellar flip, but here we use the definition given in
[DRS10, Theorem 4.4.1].

Definition 2.9. Let T1 and T2 be two triangulations of a point configuration A. Then T1

and T2 differ by a flip if and only if there is a circuit Z of A such that

(i) They contain, respectively, the two triangulations T +
Z and T −

Z of Z.
(ii) All the maximal simplices of T +

Z and T −
Z have the same link L in T1 and T2, respec-

tively.
(iii) Removing the subcomplex T +

Z ∗ L from T1 and replacing it with T −
Z ∗ L gives T2.
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Figure 2. The triangulation T2 (right) obtained by flipping T1 (left) at circuit
ACEF .

Lastly, we define the flip graph of a point configuration A as the graph whose vertices are
the triangulations of A and where two vertices are connected by an edge if there is a bistellar
flip between their corresponding triangulations.

Example 2.10. Continuing the example of the hexagon from 2.4, let A = {A,B,C,D,E, F}
consist of the vertices of a regular hexagon. Let T1 = {ABC,CDE,EFA,ACE}. Let T2 =
{ABC,CDE,CEF, FAC}. Then T1, T2 differ by a flip: the circuit Z satisfying (i), (ii), and
(iii) is ACEF.

The subgraph of flip graph induced by regular triangulations is closely related to the
secondary polytope introduced by Gelfand, Kapranov and Zelevinsky in 1991. Even though
the secondary polytope admits a very precise description, we do not need it here and we
shall only use the following the following results about it.

Theorem 2.11 ([GKZ08]). Let A be a d-dimensional point configuration. Then, there
exists a (#A − d − 1)-dimensional polytope ΣA whose vertices are in correspondence with
the regular triangulations of A and whose edges correspond to bistellar flips between them.
The polytope ΣA is called the secondary polytope of A.

2.2. Order polytopes and snake posets. The order polytope was first introduced and
defined by Richard Stanley in [Sta86]. Here, we will define O(P ) for any poset P using
notation from [Bel+22, Section 2.2]. We define an upper order ideal A ⊂ P to be any subset
such that i ∈ A and j >P i implies j ∈ A. We let J(P ) denote the poset of upper order ideals
of P , where the partial ordering is by reverse inclusion. For any A ∈ J(P ), we define the
characteristic vector vA :=

∑
i∈A ei, where ei is the standard basis vector of Rd and d = |P |.

We define O(P ) := conv(V ), where V = {vA : A ∈ J(P )}.
For any poset P , O(P ) has a canonical triangulation T , which satisfies the following

property: the maximal simplices of T are in bijection with maximal chains of J(P ), such
that given a maximal chain C = {A1, A2, ...An} in J(P ), the corresponding maximal simplex
of T is given by conv(V ) where V = {vA : A ∈ C}.

In our project, we study triangulations of a certain family of order polytopes. We begin
by defining the family of generalized snake posets P (w) as introduced in [Bel+22].

Definition 2.12. [Bel+22, Definition 3.1] For n in Z≥0, a generalized snake word is a word
of the form w = w0w1 · · · wn where w0 = ε is the empty letter and wi is in the alphabet
{L,R} for i = 1, ..., n.
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ε

R

L

R

Figure 3. The snake poset S3 = P (εRLR).

Definition 2.13. [Bel+22, Definition 3.2] Given a generalized snake word, we define the
generalized snake poset P (w) recursively in the following way:

• P (w0) = P (ε) is the poset on elements {0, 1, 2, 3} with cover relations 1 ⋖ 0, 2 ⋖ 0,
3 ⋖ 1, and 3 ⋖ 2.

• P (w0w1 · · · wn) is the poset P (w0w1 · · · wn−1) with the added cover relations 2n +
3 ⋖ 2n + 1, 2n + 3 ⋖ 2n + 2, and{

2n + 2 ⋖ 2n− 1 if n = 1 and wn = L, or n ≥ 2 and wn−1wn ∈ {RL,LR}
2n + 2 ⋖ 2n if n = 1 and wn = R, or n ≥ 2 and wn−1wn ∈ {LL,RR}.

We often restrict our attention to a subset of generalized snake posets V , as classified in
the following definition.

Definition 2.14. Let V be the set of generalized snake words w that contain neither RLR
nor LRL.

We are also particularly interested in a special case of generalized snake posets: the snake
poset. We define a snake poset Sk = P (w) where w = w0w1 · · ·wk such that wi = R if i is odd
and wi = L if i is even and not equal to 0. For instance, the snake poset S3 is represented in
Figure 3. We note in particular that J(Sk) = P̂ (w) for w = ϵ(RL)(LR)(RL)... with k pairs
of the form (RL) or (LR), and that w ∈ V .

Definition 2.15. Given w a generalized snake word, let P̂ (w) be P (w) with 0̂ and 1̂

adjoined. Define Qw as the poset of meet-irreducibles of P̂ (w).

Here we note that by the fundamental theorem of finite distributive lattices, P̂ (w) ∼=
J(Qw). Thus, every element in P̂ (w) is associated with an order filter of Qw. In our project
we primarily study the order polytope of Qw, denoted O(Qw). We denote the canonical
triangulation of O(Qw) by Tw.

2.3. Characterization of circuits. In this section, we discuss a result from [Bel+22] which
will allow us to characterize the circuits of the vertex set of O(Qw).

We let C(Qw) be the set of circuits of the vertex set of O(Qw), which are the objects we
are primarily concerned with. Here we recall that the set of vertices of O(Qw) is precisely

the set of characteristic vectors vA corresponding to each A ∈ P̂ (w).
We define the graph G(w) as follows. If w = w0w1 · · ·wn, then the set of vertices of

G(w) is V (G) = {w0, w1, . . . , wn}. The set of edges of G(w) is E(G) = {(wi, wi + 1) :
i = 0, . . . , n − 1} ∪ {(wi, wi+2) : wi+1wi+2 ∈ {RL,LR}}. We denote the set of nonempty
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connected induced subgraphs of G(w) by G(w). Here we note that we can identify each
induced subgraph uniquely as a subword of w, but not all subwords of w correspond to
elements of G(w).

If we embed the Hasse diagram of P̂ (w) onto the plane such that no two edges cross, we
note that each bounded face has degree 4, and we call each such bounded face a square of
P̂ (w). In this notation, there is a one-to-one correspondence between the squares of P̂ (w)

and the letters of w. We denote by Sq(wi) the four elements of P̂ (w) which are contained
in the i-th bounded face, labelling from top to bottom.

We define a map Γ: G(w) → C(Qw) as follows. Given some H ∈ G(w), we consider the
subword corresponding to H. We consider the set of squares Sq(wi) corresponding to each

letter wi in H. For any A ∈ P̂ (w), we say A is compatible with H if A is an element of an
odd number of squares {Sq(wi) : wi ∈ H}. We say Γ(H) is precisely the set of all vA such
that A is compatible with H.

Theorem 2.16. [Bel+22, Theorem 4.5] Let w ∈ V be a generalized snake word of length n.
The map Γ: G(w) → C(Qw) is a bijection.

In their proof of the above theorem, the authors introduce a convention for assigning signs
to the vertices in each circuit. They construct their definition by assigning a sign to each
square. Figure 4 shows the signs of vertices in a square corresponding to a square with
sgn(Sq(wi)) = 1.

wi

+

−−

+

Figure 4. Signs of vertices corresponding to a square with sgn(Sq(wi)) = 1

If sgn(Sq(wi1)) = −1, then we swap the positive and negative vertices of the square. This
leads us to the following definition.

Definition 2.17. Suppose H = {wi1 , . . . , wiℓ} ∈ G(w). We assign signs to the squares as
follows: sgn(Sq(wi1)) = 1. For j = 2, . . . , ℓ, we have the following:

sgn(Sq(wij)) =

{
sgn(Sq(wij−1

)) if ij − ij−1 = 1

−sgn(Sq(wij−1
)) if ij − ij−1 = 2.

We note that when w = ε(RL)(LR)(RL) · · · , the poset Qw = P (εRLRL · · · ) = Sk. We
can therefore characterize the circuits of the vertex set of O(Sk) by examining the elements
of G(w) for w = ε(RL)(LR)(RL) · · · . Given a circuit Z of the vertex set of O(Sk), we say
Z belongs to exactly one of the following four categories:

(i) Z is a square if Z = Sq(wi) for some wi.
(ii) Z is a rectangle if Z has four elements and is not a square.

(iii) Z avoids a corner if its corresponding subgraph contains wiwi+2.
(iv) Z contains corners if it has more than four elements and its corresponding subgraph

can be denoted wiwi+1 · · ·wi+r for some r.
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2.4. The twist group.

Definition 2.18. Let w = w0w1 · · ·wn ∈ V , and say wij is the jth index such that

wijwij+1
wij+2

= RRL or LLR. We define the ladders Lj on P̂ (w) by

L1 =

i1+1⋃
k=0

Sq(wk), Lj =

ij+1⋃
k=ij−1+1

Sq(wi).

Visually, the ladders are simply the diagonal lines of squares in the Hasse diagram of
P̂ (w):

w1

w2

w3

w4

w5

L1 :
w1

w2

w3

w4

w5

L2 :

w1

w2

w3

w4

w5

L3 :

Let V be the set of vertices of P̂ (w). Given a ladder, we want to permute these vertices as
though we were reflecting them over the center line of the ladder. First, we label the vertices
of the ladder x1, . . . , xs as follows, with odd indices on the top line and even indices on the
bottom:

wp−1

wp

wp+1

wq−1

wq

wq+1

wp−1

wp

wp+1

wq−1

wq

wq+1

..
.

. .
.

..
.

. .
.

..
.

. .
.

x1

x2x3

x4x5

x6

xs−5

xs−4
xs−3

xs−2xs−1

xs

x1

x2 x3

x4 x5

x6

xs−5

xs−4 xs−3

xs−2 xs−1

xs

Definition 2.19. [Bel+22, Definition 5.3] We define the permutation τi ∈ S|V | of V by

τi(v) =


xj−1 if v = xj and j even

xj+1 if v = xj and j odd

v otherwise.

Lemma 2.20. [Bel+22, Lemma 5.4] For all τi, τj ∈ S|V |, the following properties hold:

(i) τ 2i = 1
(ii) τiτj = τjτi
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This means the set of all τi generate a commutative subgroup of S|V |. In particular,

Definition 2.21. [Bel+22, Definition 5.5] Let T(w) be the subgroup of S|V | generated by

{τi : 1 ≤ i ≤ s} where s is the number of ladders in P̂ (w). We call T(w) the twist group

of P̂ (w). Elements of T(w) are called twists, and the elements τi corresponding to ladder
reflections are called elementary twists.

By the previous lemma, T(w) ∼= (Z/2)s. In particular, the twist group of J(Sk) is isomor-
phic to (Z/2)k+1.

Example 2.22. Consider Qw = S1 and J(S1) below. The first elementary twist τ1 reflects
the vertices of J(S1) across the dotted line.

0

1 2

3 4

5

⇝

1

111110

111100 111010

111000 101010

101000110000

100000

0

One of the simplices in Tw is {0, 100000, 110000, 111000, 111100, 111110,1}. Twisting by
τ1, we obtain {0, 100000, 110000, 111010, 111100, 111110,1}.

It’s important to note that even if T is a triangulation of O(Qw), τ(T ) for τ ∈ T(w) may
not be a triangulation, meaning T(w) doesn’t necessarily act on the set of triangulations of
O(Qw). However, twisting does preserve circuits:

Lemma 2.23. [Bel+22, Lemma 5.11] If Z = (Z+, Z−) is a circuit of O(Qw), then for any
τ ∈ T(w), τ(Z) = (τ(Z+), τ(Z−)) is also a circuit.

Another key property of the twist group is that twists and flips commute.

Theorem 2.24. [Bel+22, Theorem 5.6] Suppose T and τ(T ) are triangulations of O(Qw)
for some τ ∈ T(w). If T = T +

Z can be flipped at a circuit Z, then the following diagram
commutes:

T +
Z T −

Z

τ(T +
Z ) = τ(T +

Z )+τ(Z) τ(T −
Z ) = τ(T +

Z )−τ(Z)

flip in Z

twist twist

flip in τ(Z)

This implies that if τ is a twist and T and τ(T ) are both triangulations, T and τ(T ) admit
the same number of flips. The action of the twist group on the canonical triangulation is
particularly interesting.

Theorem 2.25. [Bel+22, Theorem 5.1] Let w ∈ V have length k. The canonical triangula-
tion of O(Qw) admits exactly k + 1 flips.
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Theorem 2.26. [Bel+22, Theorem 5.8] The canonical triangulation Tw of O(Qw) is a regular
triangulation, and for any twist τ , τ(Tw) is also a regular triangulation.

Finally, combining Theorem 2.24 and Theorem 2.26, we get

Corollary 2.27. [Bel+22, Corollary 5.12] The component of the flip graph of O(Qw) con-
taining all regular triangulations admits a T(w)-action by twists.

3. Circuits and a partial ordering on triangulations

3.1. Enumeration of circuits. Since circuits of J(Sk) correspond to connected induced
subgraphs as described in Theorem 2.16, it is possible to find a recurrence and a closed
formula that enumerates the number of such circuits.

Theorem 3.1. The number of circuits of J(Sk) is precisely 9 · 2k − 3k − 8.

Proof. From Theorem 2.16, we know that the number of circuits of the vertex set of O(Sk)
is precisely the number of nonempty connected induced subgraphs of G(w). If J(Sk) cor-
responds to a snake word of the form w = ε(RL)(LR) · · · where there are k such sets of
parentheses, then we can represent any element of G(w) as a subword of w. We write
w = w0 · · ·w2k.

Let Ck be the number of induced subgraphs of G(w). We can verify easily that in the S0

case we have one induced subgraph, so C0 = 1. We now prove a recursive formula for Ck

in terms of Ck−1. All of the induced subgraphs which were present in J(Sk−1) will clearly
also be present in J(Sk). We now notice that J(Sk) has two more squares than J(Sk−1),
and the corresponding snake word has two more letters: w2k−1 and w2k. The three subwords
w2k−1, w2k, and w2k−1w2k will each correspond to induced subgraphs which were clearly not
in J(Sk−1). We also add the set of subwords which can be described as a concatenation of
a subword of J(Sk−1) ending with w2k−2 and one of these three new subwords. We let Bk−1

be the number of induced subgraphs which include the bottom square – in other words, the
number of induced subgraphs which correspond to a subwords which contains w2k−2. We see
now that Ck = Ck−1 + 3 + 3 ·Bk−1.

We now prove a recursive formula for Bk in terms of Bk−1. We see that B0 = 1. We see
that there are two new words in Bk which were not in Bk−1 – w2k and w2k−1w2k. We also
see that we can construct all remaining subwords in Bk by adding w2k or w2k−1w2k to any
subword in Bk−1. So Bk = 2 + 3 ·Bk−1.

Combining these formulas, we solve recursively to get Ck = 9 · 2k − 3k − 8. □

3.2. A partial order on triangulations. In this section, we describe a partial order de-
fined on triangulations of O(Qw) that is defined in terms of circuits and bistellar flips between
them.

Definition 3.2. We define a relation ordering on our set of triangulations of O(Qw) as
follows: given two triangulations T and T ′, we say that T ⋖O T ′ if there exists a bistellar
flip between T and T ′ at some circuit Z such that T contains the triangulation T −

Z and
T ′ contains T +

Z . It is clear that the cover relations of this partial ordering will correspond
precisely to edges in the bistellar flip graph. Taking the transitive closure of this cover
relation, we say that T ≤O T ′ if there exists some sequence of flips to get from T to T ′

where each flip at some circuit Z exchanges a simplex in T −
Z for a simplex in T +

Z .
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Figure 5. The poset of triangulations of O(S1). The circuits are enumerated,
so an arrow labelled Zi indicates a flip on circuit Zi, as labelled in the bottom
diagram. The arrow points from the triangulation containing T −

Zi
to the one

containing T +
Zi

. The bottom triangulation (13) is the canonical triangulation.

Figure 6. The poset of triangulations of O(S2).

For example, Figure 5 shows the poset obtained by the ordering above applied to Qw = S1.
It is not trivial that this ordering relation is indeed a partial ordering, which we prove below.

Proposition 3.3. The relation defined in Definition 3.2 is a partial ordering on the set of
triangulations of O(Qw), where w = w0w1 · · ·wn ∈ V .

Proof. It is immediate that the relation is both reflexive and transitive, so we only need to
prove that it is antisymmetric.
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Let T be a triangulation of O(Qw). Each maximal simplex ω ∈ T corresponds to a set

of vertices in P̂ (w). Since P̂ (w) is a ranked poset, for any ω ∈ T we can define a weight
ρ(ω) = (xn+5, xn+4, . . . , x1, x0), where xi is the number of vertices of rank i in ω. We define
a weight function wt on triangulations of O(Qw).

wt(T ) :=
∑
ω∈T

ρ(ω)

Since the weights are sequences of non-negative integers, we can order lexicographically. Let
≤ℓ denote lexicographic order. If T ⋖O T ′, then T ′ = fZ(T ) for some circuit Z such that
T contains T −

Z and T ′ contains T +
Z . Following Theorem 2.16, the circuit Z corresponds to

a subword wi1 · · ·wiℓ of w. We know the top vertex A ∈ Sq(wi1) will have strictly higher
rank than any other vertex in Z and by Definition 2.17, A ∈ Z+. Hence, every simplex
ω ∈ T containing T −

Z contains A. In T ′, A is contained in exactly one less simplex, and
every other vertex of rank greater than or equal to the rank of A is not affected by the flip.
Therefore, wt(T ′) <ℓ wt(T ). So for any triangulations T , T ′ with T ≠ T ′, if T ≤O T ′ we
have the strict inequality wt(T ′) < wt(T ), so we cannot also have T ′ ≤O T , confirming ≤O
is antisymmetric. □

The above partial ordering seems to satisfy nice properties. In [Kal88], the author describes
a useful property that certain orientations of the graph of a polytope satisfy. Let P be a
polytope and G(P ) be its graph. If O is an acyclic orientation of G(P ) then we say that
O is a good orientation if for every nonempty face F of P , G(F ) has exactly one sink. We
conjecture that the partial ordering in Definition 3.2 is a lattice, as stated in Conjecture 1.5
and that it has good orientation, as stated in Conjecture 1.7.

It is worth remarking that if the above conjectures hold, along with Conjecture 1.1 that the
secondary polytope for O(Sk) is simple, then the orientation induced by our partial ordering
satisfies certain hypothesis described in [Her23]. In particular, the orientation satisfies the
hypothesis from Theorems 1.1, 1.2 by Hersh and Theorem 7.4 by Preuss in the appendix of
[Her23].

If P is a d-dimensional polytope, the cost of a vector v ∈ P is the dot product c · v, where
c ∈ Rd is a fixed vector known as the cost vector. A cost vector, induces an orientation on
the edges of P by following the direction in which the cost of the vertices increases. The
directed graph obtained by this orientation on the 1-skeleta of P is denoted by G(P, c).

In our setting, we let c = wt(Tw) be the cost vector, where w = ϵ(RL)(LR) · · · is the word
inducing Qw = Sk. Then, G(O(Sk), c) is the Hasse diagram of the partial ordering described
earlier in this section. The aforementioned theorems from [Her23] rely on the hypothesis
that G(O(Sk), c) is the Hasse diagram of a lattice L (which is our conjecture above), and
they conclude that the Möbius function µL only takes values 0, 1,−1 and that every directed
path in L has length at most n−d, where n is the number of facets and d is the dimension of
the polytope. For a more detailed description of these results, we refer the reader to [Her23].

4. Geometry of the secondary polytope

4.1. Dual polytopes and flag simplicial complexes. We begin this section by including
a picture of the secondary polytope of triangulations of O(S1).

In studying a secondary polytope, it is sometimes also natural to consider its dual polytope,
defined as follows:
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Figure 7. ΣO(S1).

Definition 4.1. Given a polytope P ⊆ Rd, the polar dual of P is

P ∗ := {c ∈ (Rd)∗ : cx ≤ 1 for all x ∈ P}

We refer to the polar dual of a polytope P simply as the dual polytope of P.
In the dual polytope of ΣO(Sk), the facets correspond to triangulations of O(Sk) and the

vertices correspond to facets of O(Sk). The dual polytope of a simple polytope is always a
simplicial complex. In order to better understand the structure of the secondary polytope,
it is natural to try and understand the structure of this corresponding simplicial complex.
This leads us to the following definition:

Definition 4.2. A flag simplicial complex is a simplicial complex with the property that if
all facets of some simplex are part of the simplical complex, the simplex itself is as well.

For instance, there cannot be three vertices {a, b, c} for which the edges {a, b}, {b, c} and
{a, c} are all in the complex but the full triangle {a, b, c} is not, as in the following example
where we take our simplicial complex to be the boundary of a bipyramid.

a

b c

d

e

Our study of the secondary polytopes ΣO(Sk) for k = 1, 2, 3 lead us to conjecture that the
dual of ΣO(Sk) is always a flag complex, as stated in Conjecture 1.4.

Figure 8 shows the planar embedding of the dual polytope of ΣO(S1). One can check from
the figure that it is a flag simplicial complex, as every 3-cycle of edges in its 1-skeleton
actually bounds a triangular boundary face.
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Figure 8. Planar embedding of Σ∗
O(S1)

4.2. 2D faces of the secondary polytope. After studying the first few examples of snake
posets, we are led to conjecture that the 2D faces of the secondary polytope ΣO(Sk) are all
quadrilaterals, pentagons, and hexagons as stated in Conjecture 1.7.

Remark. Conjecture 1.7 bears a strong spiritual similarity to a result of Zelevinsky [Zel06,
Prop. 4.6], where the author shows that certain simple polytopes called nestohedra have
only triangles, quadrangles, pentagons and hexagons as 2-faces. The nestohedra are the
polar duals to certain simplicial polytopes whose boundary complexes are what Zelevinsky
calls a nested complex, and what other authors have called the complex of nested sets, asso-
ciated to a building set. Those nestohedra contain as special cases the associahedra and the
permutohedra. This similarity may suggest that the secondary polytope of O(Sk) has a rich
geometric structure.

In order to prove this conjecture, we investigate which sequences of flips cause 4-cycles,
5-cycles, and 6-cycles to appear in the bistellar flip graph. We prove a statement that tells
us precisely when a given triangulation T will appear as a vertex of a quadrilateral in the
secondary polytope. In Section 8, we make progress towards similar results for pentagons
and hexagons. We expect that proving Conjecture 1.7, with careful attention to the direction
of arrows in each cycle, should lead to a proof of Conjecture 1.5 that the poset is a lattice
via Lemma 2.1 of [Bjö+-6].

4.2.1. Quadrilaterals. We begin by introducing notation that we will use throughout this
section. If a triangulation T can be flipped at a circuit Z, we denote the triangulation
obtained after flipping at Z by fZ(T ). Further, we denote by TZ the triangulation of the
circuit Z contained in T . Observe that this notation drops the sign of the triangulation of
Z to avoid losing generality.

Definition 4.3. We say that two circuits Z1, Z2 commute at a triangulation T if:

(a) T contains TZ1 , TZ2 and can be flipped at these circuits, and
(b) fZ1(T ) contains TZ2 and can be flipped at Z2, and fZ2(T ) contains TZ1 and can be

flipped at Z1, and
(c) fZ2(fZ1(T )) = fZ1(fZ2(T ))
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The following proposition relates the notion of commutation of circuits defined above to
the flip graph of O(Qw). In particular, it relates commuting circuits to faces with 4 elements
in the flip graph that are oriented in a particularly interesting way following Definition 3.2.

Proposition 4.4. If two circuits Z1 and Z2 commute at a triangulation T of O(Qw), then
there exist four triangulations T1, T2, T3, T4 such that:

• T1 contains T −
Z1

and T −
Z2

• T2 contains T −
Z1

and T +
Z2

• T3 contains T +
Z1

and T −
Z2

• T4 contains T +
Z1

and T +
Z2

and fZ2(T1) = T2, fZ1(T2) = T4, and fZ2(T4) = T3.

T4

T2 T3

T1

Z1 Z2

Z2 Z1

Proof. By Definition 4.3, if two circuits Z1 and Z2 commute at a triangulation T , then T
can be flipped at Z1 and Z2. So fZ1(T ) exists and contains TZ1 with the opposite sign, and
fZ2(T ) exists and contains TZ2 with the opposite sign. Since Z1 and Z2 commute at T , we
also know that fZ1(T ) can be flipped at Z2 and fZ2(T ) can be flipped at Z1, and in particular
fZ2(fZ1(T )) = fZ1(fZ2(T )). By construction, this triangulation will contain both TZ1 and
TZ2 , each with the opposite sign to how they appear in T . So we see that we have four
triangulations T , fZ1(T ), fZ2(T ), and fZ1(fZ2(T )) such that there exists one triangulation
for every configuration of positive and negative in TZ1 and TZ2 and, once these are assigned,
it is not hard to check that they satisfy the relations above. □

We now give a sufficient condition for a pair of circuits to be preserved after a flip in either
of them, and also show that this sufficient condition implies commutation as well.

Proposition 4.5. If a triangulation T of O(Qw) can be flipped at two circuits Z1, Z2 such
that Z1 ∩ Z2 = ∅, then fZ1(T ) and fZ2(T ) can be flipped at Z2 and Z1, respectively.
Moreover, fZ1(fZ2(T )) = fZ2(fZ1(T ))

Proof. We assume that T can be flipped at Z1, Z2 and that it contains T −
Z1

and T −
Z2

, the
other cases following by the same argument. For the first statement, it suffices to show that
fZ1(T ) can be flipped at Z2. Since Z1 ∩ Z2 = ∅, then fZ1(T ) contains T −

Z2
. Thus, we only

need to prove that any two simplices of T −
Z2

have the same link in fZ1(T ). Let σ ∈ T −
Z2

, and
define

Bσ = {ω \ δ : ω ∈ lkT (σ) and δ ∈ ω for some δ ∈ T −
Z1
}

By definition of the link, we obtain

lkfZ1
(T )(σ) = {ω : ω ∈ lkT (σ) and δ /∈ ω for all δ ∈ T −

Z1
}

∪
⋃
ξ∈Bσ

{ξ ∪ δ : δ ∈ T +
Z1
}
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Since lkT (σ) = lkT (δ) for any δ ∈ T −
Z2

, then we have Bσ = Bδ and thus lkfZ1
(T )(σ) =

lkfZ1
(T )(δ). Therefore, fZ1(T ) can be flipped at Z2, and by the same argument we conclude

that fZ2(T ) can be flipped at Z1.
We now prove that fZ2(fZ1(T )) = fZ1(fZ2(T )) by showing that they have the same

maximal simplices. Since we can replace Z1 by Z2 and viceversa, it suffices to show that
fZ1(fZ2(T )) ⊆ fZ2(fZ1(T )). Let σ ∈ fZ1(fZ2(T )).

If σ does not contain any simplex in T +
Z1

or in T +
Z2

, then since Z1 ∩ Z2 = ∅ we must have
σ ∈ T and σ is not affected by either of the flips, so σ ∈ fZ2(fZ1(T )).

If σ contains a simplex δ1 ∈ T +
Z1

but no simplex in T +
Z2

, then for all ω ∈ T −
Z1

, we have

(σ \ δ1) ∪ ω ∈ T and so (((σ \ δ1) ∪ ω) \ ω) ∪ δ ∈ fZ1(T ) for all δ ∈ T +
Z1

. In particular,
(((σ \ δ1) ∪ ω) \ ω) ∪ δ1 = σ ∈ fZ1(T ) and since σ is not changed after flipping at Z2, we
obtain σ ∈ fZ2(fZ1(T )).

If σ contains a simplex δ2 ∈ T +
Z2

but no simplex in T +
Z1

, then a similar argument as above
implies that σ ∈ fZ2(fZ1(T )).

Lastly, suppose that σ contains δ1 ∈ T +
Z1

and δ2 ∈ T +
Z2

. Then, (σ \ δ2) ∪ ω2 ∈ fZ1(T ) for

all ω2 ∈ T −
Z2

. Since Z1 ∩ Z2 = ∅, then δ1 ∈ (σ \ δ2) ∪ ω2. Thus (σ \ (δ1 ∪ δ2)) ∪ (ω1 ∪ ω2) ∈
T for all ω1 ∈ T −

Z1
and all ω2 ∈ T −

Z2
. Hence, for all ξ1 ∈ T +

Z1
and ξ2 ∈ T +

Z2
, we have

(σ\(δ1∪δ2))∪(ξ1∪ξ2) ∈ fZ1(fZ2(T )) and choosing ξ1 = δ1 and ξ2 = δ2 yields σ ∈ fZ2(fZ1(T )),
finishing the proof. □

In the previous proposition, we gave a sufficient condition for a pair of circuits to commute.
However, we can improve this result and prove sufficient and necessary conditions for two
circuits to commute at a given triangulation.

Theorem 1.8. Let Z1 and Z2 be circuits of O(Qw), where w ∈ V . Then Z1 and Z2 commute
at T if and only if T can be flipped at Z1 and Z2 and at least one of the following hold:

(i) Z1 and Z2 appear on different maximal simplices in T , or
(ii) Z1 and Z2 share no vertex

Proof. We prove the forward direction by contrapositive. Assume that Z1 and Z2 occur in
the same simplex. Then, the link condition implies that for all δ1 ∈ T −

Z1
and δ2 ∈ T −

Z2
, there

exists some maximal simplex S ∈ T such that δ1, δ2 ∈ S.
Suppose that there exist some subsets z1 ⊊ Z1 and z2 ⊊ Z2 such that z1 ∪ z2 is a circuit.

Since z1 and z2 are strictly smaller than Z1 and Z2, respectively, then there must exist some
simplex σ1 in T −

Z1
or T +

Z1
which contains z1. Similarly, there must be some simplex σ2 in T −

Z2

or T +
Z2

which contains z2. Finally, there must be some maximal simplex in Ti for i = 1, 2, 3
or 4 which contains σ1 and σ2, which is a contradiction.

Now suppose v is a vertex such that v ∈ Z1 ∩ Z2. By Proposition 4.4, we can assume
without loss of generality that T contains T −

Z1
and T −

Z2
. If v is negative in at least one of these

circuits, without loss of generality Z1, then there exists some σ1 ∈ T −
Z1

such that v /∈ σ1.

However, there clearly exists some σ2 ∈ T −
Z2

such that v ∈ σ2, so these two simplices σ1 and
σ2 cannot both be contained in some maximal simplex S and we have already reached a
contradiction.

Therefore, any v ∈ Z1 ∩Z2 must be positive in both circuits. Fix some arbitrary δ1 ∈ T −
Z1

and δ2 ∈ T −
Z2

and consider the maximal simplex S ∈ T which contains both δ1 and δ2. We
imagine first applying a flip at Z1 to T . We choose some v ∈ Z1 ∩Z2. We know there exists
precisely one simplex δ ∈ T +

Z1
such that δ does not contain v. After flipping at Z1, we know
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that the resulting triangulation will have some maximal simplex S ′ which is our original S
but with δ instead of δ1. In particular, v /∈ S ′. We know that v is also a positive vertex in
Z2, so all simplices in T −

Z2
contain v. Hence, S ′ does not contain any simplex in T −

Z2
and will

not be changed when we flip at Z2.
We now show that if we instead flipped at Z2 and then flipped at Z1, the resulting trian-

gulation would not contain S ′. Assume for the sake of contradiction that S ′ ∈ fZ1(fZ2(T )),
where fi represents flipping at circuit Z−

i and f−
i is flipping at circuit Z+

i . By construction,
S ′ contains δ ∈ T +

Z1
, so f−1

Z1
(fZ1(fZ2(T ))) = fZ2(T ) must contain S. However, S contains δ2,

which is in T −
Z2

, which forces a contradiction. Therefore, Z1 and Z2 do not commute.
For the converse, we assume that T can be flipped at Z1 and Z2 and that it contains

T −
Z1

and T −
Z2

. Since a flip at a given circuit Z only changes those simplices containing TZ ,

it is straightforward to see that if T −
Z1

and T −
Z2

are contained in different simplices of T ,
then fZ1(fZ2(T )) = fZ2(fZ1(T )). On the other hand, if Z1 ∩ Z2 = ∅, then Proposition 4.5
immediately implies that Z1 and Z2 commute at T . □

5. Valence-regularity of the bistellar flip graph

We recall Conjecture 1.1. In order to make progress towards proving this conjecture, it is
natural to begin by considering a subset of triangulations T in O(Qw). This leads us to the
following result.

Theorem 1.9. Let T be a triangulation of O(Qw) obtained by applying one flip to the
canonical triangulation Tw, where w = w0w1 · · ·wn ∈ V . Then, T admits n + 1 flips.

Proof. We know from Theorem 2.25 that the canonical triangulation of O(Qw) admits n+ 1
flips, and these occur precisely at the squares. Let Ti be the triangulation obtained by
applying a flip to Tw at the circuit Zi = Sq(wi).

Let Zj = Sq(wj) be such that Zj ∩ Zi = ∅. By Proposition 4.5, it follows that Ti can be
flipped at Zj.

Suppose then that Zj ∩ Zi ̸= ∅ and that j ̸= i + 1 and j ̸= i − 1. Let A be the unique
vertex of intersection in Zj ∩ Zi and let σ ∈ T −

Zj
. Let T −

Z1
= {δ1, δ2} and T +

Z1
= {δ3, δ4}.

Without loss of generality, we might assume that σ ∪ δ4 contains Zi. Hence, no element in
lkTi(σ) contains δ4. See Figure 9 for an illustration.

wj

wi

A

BC

D

Figure 9. The case |Zj ∩ Zi| = 1, with δ4 = {B,C,D}

Then, the link of σ in Ti is given by:

lkTi(σ) = {S : S ∈ lkTw(σ) and δ1, δ2 /∈ S ∪ {A}}
∪ {(S \ δ1) ∪ (δ3 \ {A}) : S ∈ lkTw and δ1 ∈ S}.
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Since all simplices in T −
Zj

have the same link in Tw, it follows that Ti admits flips at squares

Sq(wj) where j ̸= i + 1 and j ̸= i− 1.
It is also clear that Ti contains T +

Zi
. We now show that Ti can be flipped at precisely two

more circuits, or one more circuit if i = 0 or i = 2k. We claim that Ti can be flipped at the
rectangles wiwi+1 and wi−1wi. We show this for wiwi+1, and the other case follows by the
same argument,

Let Z be the circuit corresponding to the rectangle wiwi+1. In Figure 10, the two sets of
red vertices are the two simplices σ1, σ2 ∈ T −

Z , where σ1 = {A,B,E} and σ2 = {B,E, F}.
We consider the links of each of these two simplices in Ti. We take ω1 to be a maximal
simplex in Ti which contains σ1. If ω1 doesn’t contain C or D, then it does not contain
any triangulation of Sq(wi) and was not changed by the flip at Sq(wi), so it is a maximal
chain. However, no maximal chain exists which passes through A and B but avoids C, so
we have reached a contradiction. If ω1 contains C, then it contains a simplex in T −

Zi
, so we

have reached a contradiction since Ti does not contain any such simplex. Thus, we must
have that D ∈ ω1. We now consider σ2 and take ω2 to be any maximal simplex in Ti which
contains σ2. If ω2 contained A, then it would contain a circuit, so ω2 does not contain T +

Zi

since all the simplices in this triangulation contain A. Hence, ω2 must be a maximal chain,
so it must contain D and avoid C. It then readily follows that lkTi(σ1) = lkTi(σ2).

A

B

C

D

E

F

wi

wi+1

wi

wi+1

Figure 10. The rectangle wiwi+1

We have now proven that Ti admits at least 2k+1 flips. It remains to show that Ti cannot
be flipped at any other circuit. We begin by considering any circuit Z which has more than
4 elements. To prove that Ti cannot be flipped at Z, it suffices to show that Z contains at
least one pair of incomparable elements {A,B} which have the same sign in Z and are not
both contained in Sq(wi). To justify this, we begin by noting that since Z has at least six
elements, there must exist at least one simplex in T −

Z and at least one simplex in T +
Z which

contains both A and B. We assume for the sake of contradiction that Ti can be flipped at
Z and let ω be a maximal simplex which contains both A and B. If neither A nor B are
contained in Sq(wi), then we conclude that A and B are both contained in some maximal
chain and reach a contradiction. If B ∈ Sq(wi) without loss of generality, then we consider
two cases: either ω contains a simplex σ ∈ T +

Zi
or it does not. If it does not, then ω is a

maximal chain and we reach a contradiction. If it does, we begin by noting that there must
exist some simplex ς ∈ T −

Zi
which contains B. Since lkTi(σ) = lkTw(ς), we know there exists

some maximal chain in Tw which contains B and A, and we again reach a contradiction.
It is not hard to check that if Z has more than four elements, it will have two pairs of

incomparable elements, where the elements of each pair has the same sign in the circuit.
Since there are two such pairs, one of them is not entirely contained in Sq(wi).
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We now prove that Ti cannot be flipped at Sq(wi+1) or Sq(wi−1), if these squares exist. If
Ti contains a simplex in T +

Z for either of these circuits, then Ti will have an incomparable
pair of elements not entirely contained in Sq(wi), so we reach a contradiction. We show that
it cannot be flipped at T −

Zi+1
for Zi+1 = Sq(wi+1), and the other case follows similarly.

B

A

C

D

E

Fwi+1

wi

Figure 11. The case Zi+1 = Sq(wi+1)

Let σ1 = {D,C,E} and σ2 = {D,F,E} be the two simplices of T −
Zi+1

as shown in Figure

11. We know there exists some maximal chain in Tw which includes {B,D,C,E}, and since
{B,C,D} ∈ T −

Zi
, we conclude that there exists a maximal simplex ω1 ∈ Ti which contains

{A,D,C,E}. Thus, lkTi(σ1) has some element which contains A. Now assume for the sake
of contradiction that there exists a maximal simplex ω2 ∈ Ti which contains A. Note that
ω2 is therefore not a maximal chain, so it must contain some simplex in T +

Zi
. Then, there

exists some maximal chain in Tw which contains a simplex in T −
Zi

and also contains {E,F},

since these are not affected by the flip at Sq(wi). However, all simplices in T −
Zi

contain C, so
we have reached a contradiction since C and F are incomparable. Therefore, lkTi(σ2) does
not contain any element which contains A, so lkTi(σ1) ̸= lkTi(σ2) and so it is not possible to
flip at Zi+1.

Lastly, we consider the rectangles that share some vertices with Sq(wi) and that we have
not considered earlier in the proof. In particular, these are the 4-element circuits containing
wi−2wi−1, or wi−1wiwi+1, or wi+1wi+2. In these cases, it is not hard to check that for T −

Z , the
simplices fail to meet the link condition. In the two examples below, each set of red vertices
represents a simplex σ in T −

Z for some rectangle Z, and the corresponding blue vertices
represent elements in lkTi

(σ) which are not in link of the unique other simplex in T −
Z . For

T +
Z , neither simplex can appear in Ti since any simplex contains a pair of incomparable

elements which is not contained in Sq(wi).

wi

wi

□

6. Freeness of the twist action on regular triangulations

In this section, we focus our attention on Conjecture 1.3. In order to prove that the
number of regular triangulations of O(Sk) is 2k+1 · Cat(2k + 1), one approach could be to
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prove that the orbit of each twist in the twist group contains precisely 2k+1 elements. In
order for this to be true, we need the twist action to be free. With this motivation in mind,
we introduce the following series of definitions and propositions, which culminate in a proof
of Theorem 1.10. Throughout this section, we assume that w ∈ V as in Definition 2.14.

Definition 6.1. Given a generalized snake poset P̂ (w) and a twist τ ∈ T(w), we define the

twisted poset τ(P̂ (w)) to have the covering relations given by τ(a)⋖ τ(b) in τ(P̂ (w)) if and

only if a⋖ b in P̂ (w).

Proposition 6.2. Let Tw be the canonical triangulation of O(Qw) and let τ be a twist.
Then, the maximal simplices of the triangulation τ(Tw) correspond to the maximal chains
of τ(J(Qw)).

Proof. We begin by noticing that Theorem 2.26 implies that the maximal simplices of τ(Tw)
are given by

{τ(σ) : σ ∈ Tw a maximal simplex}
Let σ = {v∅,v{a1}, . . . ,v{a1,...,aℓ},vSk

} be a maximal simplex in Tw indexed by a maximal
chain of J(Sk). By definition of the twist action on the elements of J(Sk), we have

τ(σ) = {v∅,v{τ(a1)}, . . . ,v{τ(a1),...,τ(aℓ)},vSk
}

By the covering relation given in Definition 6.1, (∅, {τ(a1)}, . . . , {a1, . . . , aℓ}, Sk) is a maxi-
mal chain in τ(J(Sk)). Hence, τ(σ) corresponds to a maximal chain of τ(J(Sk)). □

Proposition 6.3. Let Qw be a generalized snake poset and let Tw be its canonical triangu-
lation. For any twist τ ∈ T(w), we have τ(Tw) ̸= Tw

Proof. We assume for the sake of contradiction that there exists some τ = τi1 · · · τik such
that τ(Tw) = Tw.

Let i = min{i1, ..., ik}. We first consider the case where i ̸= 1. By construction, τi
corresponds to twisting the ladder Li, the “highest” ladder in our poset such that τ acts
non-trivially on all of its vertices. We can assume without loss of generality that the topmost
square of Li corresponds to an L in the word w = εRLLR . . .. Now consider the vertices
A,B,C in the topmost square of Li as shown in the figure below, where left-hand side is in
J(Qw) and the right-hand side is in τ(J(Qw)). Here we note that since Li is the topmost
ladder, then {A,B,C} are not contained in any other ladders permuted by τ .

C

B

A

−→τ

C

B A

We know that simplices of the Tw correspond to maximal chains of J(Qw). Hence, there
exists some simplex of Tw which contains the set of vertices {vA,vB,vC}.

By Proposition 6.2, the maximal simplices of τ(Tw) correspond to the maximal chains
of τ(J(Qw)). However, in τ(J(Qw)), the elements A,B are incomparable, which implies
that there is no maximal chain that contains both of them. It is not hard to see that if
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i = 1, the same argument applies, with a few modifications. In particular, A and B will
also be incomparable in τ(Qw). Thus, no maximal simplex in τ(Tw) contains the vertices
{vA,vB,vC}, which contradicts τ(Tw) = Tw. □

Theorem 1.10. The twist group acts freely on the regular triangulations of O(Qw).

Proof. Assume for the sake of contradiction that the twist action is not free, so there exists
some triangulation T of O(Sk) and some twist τ such that τ(T ) = T . Since the bistellar
flip graph is connected, there exists some finite set of flips fZ1 , fZ2 , ...fn such that (fn ◦ ... ◦
fZ2 ◦ fZ1)(T ) = Tw, where Tw denotes the canonical triangulation for O(Qw). By Theorem
2.26, it follows that every square in the following diagram commutes.

T T

fZ1(T ) fZ1(T )

...
...

fn−1 ◦ · · · ◦ fZ1(T ) fn−1 ◦ · · · ◦ fZ1(T )

Tw Tw

τ

fZ1
fZ1

τ

fZ2
fZ2

τ

fn fn

τ

Therefore, we must have τ(Tw) = Tw, so by Proposition 6.3 we have reached a contradiction.
□

Corollary 6.4. Each orbit under the twist group action on regular triangulations of O(Sk)
has 2k+1 elements.

7. Eigenbasis of the twist action

Viewed in 3D, the actions of the elementary twists τ1 and τ2 on the secondary polytope
of S1 are both 180◦ rotations through axes that pass through the centers of two hexagons.
τ1 ◦ τ2 = τ2 ◦ τ1 is just the composition of these two rotations. The axes of rotation pass
through the centers of distinct pairs of opposing hexagons.
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τ1

Figure 12. Planar embedding of the secondary polytope of S1 in which the
twist τ1 is a 180◦ rotation. For example, τ1(T13) = T12.

This is isomorphic to Z/2 × Z/2 as expected. This suggests there may be a nice general
description of the action of the twist group on the secondary polytope of any Qw.

Proposition 7.1. Let τ1, . . . , τr be commuting diagonalizable operators on a vector space
V over a field k, and v1, . . . , vs be simultaneous eigenvectors for all of the τi, say

τivj = λijvj.

Assume also that no two vj, vj′ share the same list of τi-eigenvalues, that is, for all j ̸= j′,
there exists some i with λi,j ̸= λi,j′ . Then the v1, . . . , vs are linearly independent.

Proof. Create a new operator τ = c1τ1 + · · · + crτr with coefficients ci ∈ k, and note that
v1, . . . , vr are eigenvectors for τ , with vj having eigenvalue

∑r
i=1 ciλij. By extending the

field k if necessary, one can pick the ci so that these eigenvalues are all distinct (by our
assumption about the lists of τi-eigenvalues on the vj being distinct). But then v1, . . . , vs
are eigenvectors for distinct eigenvalues of τ , and hence linearly independent. □

Since the twists τi are involutions, their eigenvalues acting on any space lie in the set
{+1,−1}. And since the elements of the twist group commute, so do the corresponding
matrices. This implies the matrices of the elementary twists can be simultaneously diago-
nalized, i.e. there is an eigenbasis in which all are diagonal. Then the eigenvalues are simply
the diagonals. Such a basis is particularly nice because the eigenvalues of the non-elementary
twists are easily computed by matrix multiplication, which (because the matrices are diago-
nal) works out to multiplying the eigenvalues place by place in the order they appear on the
diagonal.

Say w ∈ V . O(Qw) is a |Qw|-dimensional polytope. If w = εw1 · · ·wn, then |Qw| = n + 4

([Bel+22] Lemma 4.3). The number of vertices in O(Qw) is |J(Qw)| = |P̂ (w)| = 2n+6. So by
Theorem 2.11, the secondary polytope ΣO(Qw) has dimension 2n+6−(n+4)−1 = n+1. This
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is exactly the number of squares in P̂ (w). In particular, if Qw = Sk, w = ε(RL)(LR)(RL) · · ·
with k parentheses, so n = 2k.

Theorem 1.11. Let w = εw1 · · ·wn ∈ V . Let V ∼= Rn+1 be the linear subspace of R2n+6

parallel to the affine subspace containing the secondary polytope ΣO(Qw). Then the twist
group acts on V in some eigenbasis v1, v2, . . . , vn+1 in which each vi corresponds with a letter
ε or wi in w and each elementary twist τi negates exactly the basis elements that correspond
to the wi in the ladder that τi reflects.

Proof. P̂ (w) ∼= J(Qw) is the order filter poset of Qw, so each vertex of P̂ (w) is associated
with an order filter of Qw, i.e. a vector of length |Qw|. The order polytope O(Qw) can be
expressed as a homogeneous matrix A where the columns correspond to the vertices (order

filters) in P̂ (w). The top entry of each column is a 1, and the remaining n + 4 entries are
the order filter. [DRS10] Theorem 5.1.10 states that V is the kernel of A.

We build a basis of V as follows. Recall that each coordinate in R2n+6 corresponds to one
vertex of P̂ (w), so we can define vectors in R2n+6 by assigning a coefficient to each vertex

of P̂ (w). The basis will contain one element for every letter in w, with v1 corresponding to
w0 = ε and vi corresponding to wi−1. We define the basis element of a letter wi based on its
relationship to corners of P̂ (w).

A “corner” of P̂ (w) is a square that is contained in 2 ladders. Since w ∈ V , no corner is

next to/touching another corner. If the square in P̂ (w) corresponding to wi is a corner or is
not next to any corners, the corresponding basis element vi+1 is

−1

+1 +1

−1

. . .

. .
.

wi

−1

+1+1

−1

. .
.

or

. .
.

wi

or a horizontal reflection of the above, whichever matches the squares surrounding wi in
P̂ (w). Every vertex outside of the ladder gets coefficient 0. If wi is directly next to one
corner, vi+1 is the appropriate vertical or horizontal reflection of

−2

+1+2

−1 +1

−1
. .
.

. . .

wi

Finally, if wi is directly in between 2 corners, vi+1 is the appropriate horizontal reflection
of
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−1

−1

+1

+1

+1

+1

−1

−1

. . .

. . .

wi

To prove {v1, ..., vn+1} ⊂ V = kerA, we simply need to prove that for each coordinate

in the order filters in P̂ (w), the products of the coefficients in each vi by the value of the

coordinate (0 or 1) at the corresponding vertex of P̂ (w) is 0. We notice first that the total
sum of all coefficients in each vi is 0, ensuring their products with the row of all 1s at the
top of A are 0, and that their products with any coordinate that is the same for all vertices
with non-zero coefficients in vi are 0. We also notice that the vertices of any square in P̂ (w)
share all but 2 coordinates, and similarly that length 2 ladders/sub-ladders share all but 3
coordinates and length 3 ladders/sub-ladders share all but 4. So we can restrict our attention
to these coordinates.

We observe that every ladder/sub-ladder of a given length and direction must have the
same structure of 0s and 1s on its non-identical coordinates (up to reordering the coor-
dinates/relabelling the vertices of Qw, which does not impact whether vi is in the kernel

because if we reorder the coordinates in P̂ (w) we reorder the coordinates in A in the same
way):

1111

1110

1010

0010

1101

1100

1000

0000

111

011101

100 001

000

11

10 01

00

The reflected versions of these ladders/corners have the same coordinate structures re-
flected in the obvious way.

Looking at vi with wi−1 next to one corner, we see that the sum of the products over the
first coordinate is −2(1) + 2(1) + 1(1) − 1(1) + 1(0) − 1(0) = 0, the sum over the second
coordinate is −2(1) + 2(1) + 1(0) − 1(0) + 1(0) − 1(0) = 0, and the sum over the third
coordinate is −2(1)+2(0)+1(1)−1(0)+1(1)−1(0) = 0. So vi ∈ kerA. The other two cases
for vi similarly sum to 0 over every coordinate that is not identical on the non-zero vertices
of vi, so {v1, ..., vn+1} ⊂ kerA.
{v1, ..., vn+1} is a set of n+1 vectors in V , so if they are linearly independent they are indeed

a basis. Linear independence follows from Proposition 7.1 once we confirm the eigenvalues
of the elementary twists are distinct.

We now characterize the twist group using this basis. Say P̂ (w) has k ladders, giving it k
elementary twists. Say τj twists the jth ladder. If the square corresponding to wi is in the
jth ladder, τj inverts the corresponding basis element vi+1:
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−2

+1+2

−1 +1

−1

−1

+1 +1

−1

−1

−1

+1

+1
+1

+1
−1

−1

On the other hand, τj does not impact any other basis element. In particular, it sends the
basis elements corresponding to squares wi not contained in the jth ladder that nonetheless
intersect the jth ladder to themselves:

+1

−1+1

−1

−2

+2

This completes the proof. □

8. Further thoughts and work in progress

8.1. Face numbers: f-, h- and γ-vectors. We have also explored the face numbers
of the secondary polytopes ΣO(Sk). Given a d-dimensional polytope P , its f -vector is the
integer sequence (f0, . . . , fd) where fi is the number of i-dimensional faces. Since ΣO(Sk) is
conjecturally a simple d-dimensional (with d = 2k + 1), it is appropriate to re-encode its

f -vector (f0, f1, . . . , fd) and f -polynomial f(t) :=
∑d

i=0 fit
i to an h-vector (h0, h1, . . . , hd)

and h-polynomial h(t) :=
∑d

i=0 hit
i via the transformations

f(t) = h(t + 1) and h(t) = f(t− 1).

The h-vector has provably nonnegative entries, with h0 = 1 and
∑d

i=0 hi = f0 and satisfies
the Dehn-Somerville relations hi = hd−i.

Furthermore, since ∂Σ∗
O(Sk)

is conjecturally flag, it might be appropriate to re-encode the

h-vector into something even more compact, called the γ-vector γ = (γ0, γ1, . . . , γ⌊d/2⌋) and

γ-polynomial γ(t) :=
∑⌊d/2⌋

i=0 γit
i, via the transformation

h(t) =

⌊d/2⌋∑
i=0

γit
i(1 + t)d−2i = (1 + t)dγ

(
t

(1 + t)2

)
.

The point of this last transformation is two-fold:

• the γ-vector again only records half as many numbers, so it is more compact, and
• nonnegativity of all of the entries in γ = (γ0, . . . , γ⌊d/2⌋) for flag simplicial spheres is

known as the Charney-Davis-Gal Conjecture. It was conjectured, first by Charney
and Davis [CD95] for γ⌊d/2⌋, and then for the rest of the entries of γ by Gal [Gal05].

For further information about the f and h-vectors, we refer the reader to [Zie95, Section
8]. For a more detailed exposition about the γ-vector, see [Gal05]. Table 1 shows the data
we have gathered for some values of k.
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k f -vector h-vector γ-vector
(f0, f1, . . . , f2k+1) (h0, h1, . . . , h2k+1) (γ0, . . . , γk)

0 (2, 1) (1, 1) (1)
1 (20, 30, 12, 1) (1, 9, 9, 1) (1, 6)
2 (336, 840, 744, 276, 38, 1) (1, 33, 134, 134, 33, 1) (1, 28, 40)
3 (6864, 24024, 33184, 22900, 8212, 1430, 96, 1) (1, 89, 875, 2467, 2467, 875, 89, 1) (1, 82, 444, 280)

Table 1. f, h and γ-vector data gathered for ΣO(Sk)

Similarly, we have explored the factorizations of the f -polynomial of the facets of ΣO(Sk) to
see if these facets are prisms over certain polytopes. Tables 4 and 3 show the f -polynomials
of the facets of the secondary polytopes of O(S2) and O(S3). We remark that all facets with
the same number of vertices have the same f -polynomial.

Number of vertices in facet f -polynomial

25 (x2 + 5x+ 5)2

28 (x+ 2)2 · (x2 + 7x+ 7)
36 (x2 + 6x+ 6)2

40 (x+ 2)2 · (x2 + 10x+ 10)
64 x4 + 19x3 + 83x2 + 128x+ 64
88 x4 + 24x3 + 112x2 + 176x+ 88

Table 2. f -polynomials of facets of ΣO(S2)

Number of vertices in facet f -polynomial

196 (x+ 2)2 · (x2 + 7x+ 7)2

210 (x2 + 5x+ 5) · (x4 + 14x3 + 56x2 + 84x+ 42)
320 (x2 + 5x+ 5) · (x4 + 19x3 + 83x2 + 128x+ 64)
400 (x+ 2)2 · (x2 + 10x+ 10)2

416 (x+ 2)2 · (x4 + 25x3 + 129x2 + 208x+ 104)
528 (x2 + 6x+ 6) · (x4 + 24x3 + 112x2 + 176x+ 88)
672 (x+ 2)2 · (x4 + 36x3 + 204x2 + 336x+ 168)
1124 x6 + 49x5 + 505x4 + 2036x3 + 3828x2 + 3372x+ 1124
1180 x6 + 53x5 + 539x4 + 2152x3 + 4026x2 + 3540x+ 1180
1688 x6 + 66x5 + 726x4 + 3008x3 + 5724x2 + 5064x+ 1688

Table 3. f -polynomials of facets of ΣO(S3)

Some interesting observations can be drawn from this data. In particular, the facets with
28 vertices in ΣO(S2) seem to be prisms over 3-associahedra. Similarly, the facets with 210 ver-
tices in ΣO(S2) seem to be cartesian products of pentagons (2-dimensional associahedra) with
4-dimensional associahedra. It might be interesting to investigate whether the irreducible
f -polynomials correspond the order polytopes of some class of posets.

8.2. Work towards Conjecture 1.7. In order to prove that all 2D faces of the secondary
polytope are quadrilaterals, pentagons, and hexagons, we consider a triangulation T which
can be flipped at two circuits Z1 and Z2. From Theorem 1.8, if there does not exist a
maximal simplex ω ∈ T ω ∈ T such that for some σ ∈ TZ1 and some δ ∈ TZ2 , σ, δ ⊂ ω,
then T , fZ1(T ), and fZ2(T ) will appear on a quadrilateral face of the secondary polytope.
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If there does exist some such maximal simplex ω, then we also know from Theorem 1.8 that
if Z1 ∩ Z2 = ∅, they will still appear on a quadrilateral. Otherwise, we conjecture that if
Z1∩Z2 = {x} or Z1∩Z2 = Z1\{x} for some vertex x, then T , fZ1(T ), and fZ2(T ) appear be
on a pentagonal face. Similarly, we conjecture that if Z1∩Z2 = {x, y} or Z1∩Z2 = Z1\{x, y}
for some vertices x, y, then T , fZ1(T ), and fZ2(T ) appear be on a hexagonal face. We claim
that no other possible configuration of circuits will occur.

We provide reasoning for one example, which can be generalized, where the circuits Z1

and Z2 induce a pentagonal cycle in the bistellar flip graph. Let the yellow vertex denote
x, the red vertices denote remaining elements in Z1, and the blue vertices denote remaining
elements in Z2. Let Z3 = Z1 ∪ Z2 \ {x}.

We see that x ∈ Z+
1 and x ∈ Z+

2 and we assume for the example that T −
Z1
, T −

Z2
⊂ T .

We know that for all σ ∈ T −
Z1

and δ ∈ T −
Z2

, x ∈ σ and x ∈ δ. We also know that there

exists at least one maximal simplex ω1 ∈ T such that for some σ1 ∈ T −
Z1

and some δ1 ∈ T −
Z2

,
σ1, δ1 ⊂ ω1, and from the above, we also have x ∈ ω1. By the link condition, for all remaining
σ′ ∈ T −

Z1
, there must exist some ω′ such that σ′ ∈ ω′ and all vertices in Z2 \ {x} are also

in ω′. Since x ∈ σ′, this means that δ1 ∈ ω′. Following this logic, we conclude that for all
σ ∈ T −

Z1
and δ ∈ T −

Z2
, there exists some maximal simplex ω such that σ, δ ⊂ ω.

We label each vertex in our diagram with the sign it has in Z3 = (Z1 ∪ Z2) \ {x}. In
particular, we note that since x was positive in both circuits, the signs of the vertices in Z2

will be opposite to the signs of the vertices in Z3. We now choose some arbitrary σ1 ∈ T −
Z1

and δ1 ∈ T −
Z2

and draw the simplex ω1 they must appear on in T .

+

−

+ −

−

+

+

−

Here we make a key observation: ω1 almost contains an element of T +
Z3

or T −
Z3

. In particular,
ω1 contains all but two elements of Z3. We now imagine flipping at Z1 and see we produce
the following two types of simplices in fZ1(T ): those which contain x and those which do
not.
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+

−

+ −

−

+

+

−

+

−

+ −

−

+

+

−

We note that any simplex which doesn’t contain x will now contain a simplex in T +
Z3

because it will be precisely “gaining” the negative vertex it was missing from before. We
can characterize all simplices in T +

Z3
by which positive vertex in Z3 they do not contain. We

thus see that any simplex in T +
Z3

whose missing positive vertex belongs to Z2 will be appear

in fZ1(T ). Further, it will no longer contain a simplex in T −
Z2

, so it will not change when we
flip at Z2.

The remaining simplices in T +
Z3

are those whose missing positive vertex belongs to Z1.
These will be precisely generated once we flip at Z2, and we can see an example of this
below:

+

−

+ −

−

+

+

−

We are now in fZ2(fZ1(T )). It is clear from our above reasoning that all simplices of
T +
Z3

will appear in fZ2(fZ1(T )), further that they will have the same link since their link is
contained in the links of TZ1 and TZ2 and x does not appear in any of the maximal simplices.
We also note the following: there will be some maximal simplices in fZ2(fZ1(T )) generated
by our series of flips which still contain x. One example appears below:

+

−

+ −

−

+

+

−

In particular, these maximal simplices contain simplices in T +
Z1

and T +
Z2

which both contain

x. If we had flipped at Z2 and then at Z1, we would have produced all simplices in T −
Z3

by the
same logic as above. In particular, we see that flipping first at Z1 either moves the vertex at
x to a positive vertex, thereby creating a simplex in T −

Z3
, or creates a new “missing” negative
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vertex which can then be taken by flipping at Z1. Further, all resulting maximal simplices
which do not contain T −

Z3
are the same in both cases. It follows from the link condition that

these two triangulations fZ2(fZ1(T )) and fZ1(fZ2(T )) are equivalent up to whether they
include T −

Z3
or T +

Z3
, so we conclude that fZ3(fZ2(fZ1(T ))) = fZ1(fZ2(T )).

8.3. Work towards Conjecture 1.4. To better understand the structure of the dual of
the secondary polytope, we need to find a combinatorial interpretation for the vertices of the
dual polytope, as well as for the edges between them. Currently we are trying to find a way
to represent the vertices of the dual as some set of simplices that all the triangulations in
a given facet of the secondary polytope share. This could provide an understanding of the
dual polytope analogue to the simplicial dual of the associahedron.

To show that the dual simplicial polytope is a flag complex, we would need to prove that
if we have a set of vertices and there is an edge between every pair, then there must be a
face containing all of these vertices. Perhaps, this face would represent a triangulation which
shares all the shared simplices. We have collected data on shared simplices in the faces of
the secondary polytope for some of the smaller cases.

In the S1 case, all the quadrilaterals and pentagonal faces have the property that all the
triangulations at their vertices intersect at a maximal simplex. However, the hexagonal faces
do not all have exactly one simplex in common. In particular, they have four codimension-1
simplices in common.

In higher cases, there are a higher number of low-dimensional simplices shared by elements
on the same face. We include the following table of shared simplices on facets of S2.

Number of vertices in facet Dimension of shared simplices Number of shared simplices

25 7 12
28 8 2
36 6 16
40 7 3
64 7 4
88 7 1

Table 4. Shared simplices of facets of ΣO(S2)

8.3.1. Vertices in the dual simplicial polytope. We have computed the number of facets (i.e.
2k-dimensional faces) in ΣO(Sk) for the first values of k, obtaining the sequence 2, 12, 38, 96, . . ..
Since these are the number of vertices in the simplicial boundary complex of the polar dual
polytope Σ∗

O(Sk)
and that simplicial complex Bd(Σ∗

O(Sk)
) is currently conjectured to be a

flag/clique complex, it would be very helpful to have some combinatorial objects counted by
2, 12, 38, 96, . . . to model those vertices, and then some sort of pairwise compatibility relation
among those vertices that tells us when a subset of them forms a simplex in Bd(Σ∗

O(Sk)
).

Interestingly, OEIS and its email lookup service superseeker are suggesting that this
sequence might continue as follows:

an = 2(2n+2 − 3n− 4) (1)

(a0, a1, a2, . . .) = (0, 2, 12, 38, 96, 218, 468, 974, 1992, 4034, 8124, . . .). (2)

However, we have been unable to gather more data to support this conjecture due to
computational limitations.
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8.4. Facet normals in the eigenbasis coordinates? A general difficulty in describing
the facets of the secondary polytope ΣA for a point configuration A ⊂ Rd is the following:
in seeking facet normal vectors nj that define ΣA as an intersection of half-space inequalities

ΣA =
⋂
j

{x ∈ R|A| : nj · x ≤ bj},

there is no canonical choice when doing this in the ambient space R|A|. Recall ΣA has
dimension |A| − (d + 1), and lives in the subspace R|A|−(d+1) which is the kernel of the
homogeneous matrix for A. So there are infinitely many choices for each normal vector nj.

However, if one had some natural R-basis {vi}i=1,2,...,|A|−(d+1) for this subspace R|A|−(d+1)

in which ΣA is embedded as a full-dimensional polytope, one could instead use coordinates
x = (x1, . . . , x|A|−(d+1)) with respect to this basis. Then the normal vectors nj here

ΣA =
⋂
j

{x ∈ R|A|−(d+1) : nj · x ≤ bj}

will be unique up to scaling.
Fortunately, having proven Theorem 1.11, we find ourselves having exactly such a natural

R-basis for the space Rn+1 containing ΣO(Qw) with w = εw1 · · ·wn ∈ V . The twist group
simultaneous eigenbasis {vi}i=1,2,...,n+1 seems like a great candidate in which to compute those
facet normal vectors {nj}, and see how their coordinates look, when plotted on the n + 1
“squares” of the generalized snake for w. It might even suggest the mysterious combinatorial
objects that should parametrize those facets of ΣO(Qw) (= vertices of Σ∗

O(Qw)).

8.5. Work towards Conjecture 1.3. After proving that the twist action is free, we conjec-
ture that Cat(2k+1) counts the number of orbits of the twist action on regular triangulations
of O(Sk). We might consider choosing one “representative” for each orbit and finding a bi-
jection between these orbit representatives and a set of objects counted by the Catalan
numbers. Using edge-distance from the canonical triangulation, we can pick candidates for
our orbit representatives. In the S1 case, with the exception of orbit #5, everything other
choice is well-defined. We had several ideas about how to biject these orbit representatives
with various sets of objects counted by the Catalan numbers, including Dyck paths and poset
labellings. At this point, it is unclear to us how a bijection such as this one would proceed
into higher cases. We include a brief description of our bijection between Dyck paths of
length 6 and orbit representatives of triangulations of O(S1).

8.5.1. Bijection between Dyck paths Orbit Representatives in S1. We note that the five orbit
representatives in S1 can be described by Tw, the three triangulations obtained by applying
a flip at Sq(w1), Sq(w2), or Sq(w3) to Tw, and one of the two triangulations obtained by
either applying a flip at Sq(w1) and then Sq(w3) or vice versa.

We consider Dyck paths of length 3. Let P be a Dyck path. Then, we define three Dyck
path “operations”.

(i) If P contains a vertex at (1, 3), then ϕ1(P ) is the path obtained by moving the
vertex (1, 3) to (2, 2) and applying the minimum number of moves to other vertices
until obtaining a valid Dyck path. For example, if P = NNNEEE, then ϕ1(P ) =
NNEENE

(ii) If P contains a vertex at (0, 3), i.e. P = NNNEEE, then ϕ2(P ) is the Dyck path
obtained by moving the vertex from (0, 3) to (1, 2), i.e ϕ1(P ) = NNENEE.
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(iii) If P contains a vertex at (0, 2), then ϕ3(P ) is the path obtained by moving this vertex
to (1, 1) and applying the minimum number of diagonal moves to other vertices until
obtaining a Dyck path. For example, if P = NNNEEE, then ϕ3(P ) = NENNEE

The illustrations below show these operations. Note that the vertex colored red represents
the vertex that initiates the move, with corresponding red arrow showing the position after
the move. The dashed black arrows represent the minimal move that needs to be made to
adjust the path to the new position of the vertex in red so as to obtain a Dyck path.

−→ϕ1

Figure 13. Operation (i)

−→ϕ2

Figure 14. Operation (ii)

−→ϕ3

Figure 15. Operation (iii)

We will associate ϕ1 to flipping at Sq(w1), ϕ2 to flipping at Sq(w2), and ϕ3 to Sq(w3). Note
that this assignment is not arbitrary. The circuits Sq(w1), Sq(w2), and Sq(w3) correspond
to the squares in J(S1) read from top to bottom, and ϕ1, ϕ2, ϕ3 correspond to the moves on
the admissible vertices read from top-right to bottom-left

To map our orbit representatives to Dyck paths, we begin by mapping the canonical
triangulation to the canonical Dyck path P = NNNEEE. With the operations above, the
orbit representative corresponding to the flip at Sq(w1) maps to ϕ1(P ), and so on so forth.
For the orbit representative which lies two flips away from Tw, we can imagine that we have
applied two operations to our “canonical” Dyck path – we have moved the vertex below
the top left one and then we have moved the vertex to the right of the top left one. Both
double-operations would result in our fifth and final length-3 Dyck path. In other words,
this orbit representative maps to ϕ1ϕ3(NNNEEE) = NENENE = ϕ3ϕ1(NNNEEE)

So we have established a bijection between Dyck paths of length 3 and orbit representatives
of triangulations by mapping the operation of moving a special Dyck path ”vertex” (the top



REFERENCES 33

left one and its two closest ones in either direction) to the operation of doing a bistellar flip
at one of the three squares Sq(w1), Sq(w2), Sq(w3).

8.6. Numerical recurrence. Conjecture 1.3 asserts that the number tk of (regular) trian-
gulations of O(Sk) has this formula

tk = 2k+1Cat(2k + 1) =
2k+1

2k + 2

(
4k + 2

2k + 1

)
.

For k ≥ 1, one can check that it satisfies this recurrence

tk
tk−1

=
8(4k + 1)(4k − 1)

(2k + 2)(2k + 1)
,

which by clearing denominators, can be written in this equivalent form:

(2k + 2)(2k + 1) · tk = 8(4k + 1)(4k − 1) · tk−1. (3)

Is there some way to prove (3) in the spirit of some of the proofs of the Catalan formula
for triangulations of a polygon?

8.7. Other symmetries. Proving Theorem 1.11 leads us to wonder if the secondary poly-
tope of O(Sk) has any other linear symmetries, or if the linear symmetry group of the
secondary polytope of O(Sk) is isomorphic to (Z/2)k+1.
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