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Abstract. A numerical semigroup (cofinite subsemigroup of Z≥0) has an associated finite
poset, the Kunz poset, which encodes much of its additive structure. Recent work has
shown that numerical semigroups with the same Kunz poset have semigroup algebras with
similar infinite free resolutions of the base field. We expand on this by investigating such
infinite free resolutions for certain notable families of numerical semigroups. We provide
a combinatorial construction, using pattern-avoiding words, for a minimal free resolution
of the base field K over the semigroup algebra K[S] when S is generated by a generalized
arithmetic progression. We also conjecture minimal resolutions when S has smallest positive
element 5 or 6.
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3.2. Valid Words 12
3.3. Modules and Maps 14
3.4. One Constructive Case: A Complete Top Row 18
4. Numerical Semigroups with Small Multiplicity 20
4.1. Conjectured Resolutions for Multiplicity 5 21
4.2. Future Work for m = 6 23
Code 25
Acknowledgements 25
References 25

1. Introduction

A numerical semigroup is a cofinite subset of the natural numbers that is closed under
addition and contains 0. These semigroups have numerous connections to the study of planar
curves and of singularities of algebraic varieties; they appear in both the theoretical setting of
algebraic geometry and in the applied setting of cryptography. Given a numerical semigroup,
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we have a natural interpretation of its elements as exponents of monomials in a certain
polynomial ring quotient known as the semigroup algebra. We gain a deeper understanding
of the semigroup algebra by studying modules over it, and a principal tool in the study of
modules is a free resolution.

Prior work defined the resolution of a certain ideal associated with a given numerical
semigroup over a polynomial ring, resulting in a finite free resolution. The structure of infinite
free resolutions associated with numerical semigroups, however, is less well-understood.

This project aims to understand the behavior of infinite free resolutions resolving a ground
field over a numerical semigroup algebra, and we build on work developing infinite free reso-
lutions in [Gom+24]. Free resolutions of various modules over different rings are computable
but often offer no natural combinatorial interpretation. In fact, there are very few families
of numerical semigroup algebras for which infinite free resolutions have been obtained from
combinatorial data.

We aim to increase the number of families of numerical semigroups for which the behavior
of infinite free resolutions is well-understood. In particular, we consider extra-generalized
arithmetical numerical semigroups, which are generated by a generalized arithmetic sequence
of the form

⟨m,mh+ δ,mh+ 2δ, . . . ,mh+ kδ⟩,

where m,h, k ∈ Z>0, and δ is any integer with gcd(m, δ) = 1 and mh + kδ > m. For
extra-generalized arithmetical numerical semigroups, we provide a combinatorial method
rooted in the theory of pattern-avoiding words to construct free resolutions. Further, for
numerical semigroups with small multiplicity and for numerical semigroups with a single
maximal element, we provide conjectures for the words which index basis vectors in the free
modules comprising free resolutions of a base field over the numerical semigroup algebra.

In Section 2, we provide much of the combinatorial background needed from semigroup
theory, and we give a broad survey of the additive structure of a numerical semigroup S.
In Section 3, we provide a (somewhat non-constructive) minimal free resolution of a ground
field over an extra-generalized arithmetical numerical semigroup algebra (Theorem 3.8), and
we give an explicit construction (Corollary 3.14) in a special case. Finally, Section 4 provides
a survey of resolutions for semigroups of small multiplicities m = 5, 6, 7, as well as standing
conjectures for such semigroups.

2. Background

2.1. Numerical Semigroups and the Kunz Cone. Let S be a numerical semigroup. We
typically specify S by giving a list of generators: we write S = ⟨n1, n2, . . . , nk⟩ to mean

S = {z1n1 + z2n2 + · · ·+ zknk : zi ∈ Z≥0}.

Because S has finite complement, we necessarily have gcd(n1, . . . , nk) = 1. It is well-known
(see [RG09]) that a numerical semigroup S has a unique minimal generating set (which is
finite) with respect to both size and inclusion. Elements of this minimal generating set
are called minimal generators, and the smallest such generator, which is also the smallest
positive element of S, is called the multiplicity of S and is denoted m(S). The cardinality
of the minimal generating set is the embedding dimension of S and is denoted e(S).
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Because a numerical semigroup S eventually contains every positive integer, it seems
worthwhile to understand the elements of S that are minimal in some respect. For a numer-
ical semigroup S with multiplicity m, we define its Apéry set Ap(S) by

Ap(S) := {n ∈ S : n−m ̸∈ S}.
Note that Ap(S) necessarily contains exactly one representative from each equivalence class
modulo m (in fact, the smallest representative in S), so it follows that |Ap(S)| = m; in
particular, it is always true that 0 ∈ Ap(S). Additionally, Ap(S) contains all minimal
generators of S exceptm; therefore, S is generated by its nonzero Apéry set elements together
with m, though this may or may not be the minimal generating set. This demonstrates the
following:

Proposition 2.1. For any numerical semigroup S, we have e(S) ≤ m(S).

When e(S) = m(S), the nonzero elements of Ap(S) together with the multiplicity m
form the minimal generating set of S, and we say that S has maximal embedding dimension
(MED).

Example 2.2. Consider the numerical semigroup S = ⟨6, 9, 20, 29⟩. This choice of generat-
ing set is obviously not minimal, though one can check that {6, 9, 20} is indeed a minimal
generating set. Hence, m(S) = 6 and e(S) = 3, so this semigroup is not MED. We compute
its Apéry set, which, by convention, we list in order of equivalence class modulo m = 6:

Ap(S) = {0, 49, 20, 9, 40, 29}.
Given a semigroup S, define the relation ⪯ on Ap(S) = {0, a1, a2, . . . , am−1} by ai ⪯ aj if

and only if aj − ai ∈ S. It is readily checked that ⪯ is a well-defined partial order. In the
example above, the Apéry poset has the diagram given in Figure 1. Observe that each cover
relation ai ⪯ aj in the poset in that figure corresponds to adding a minimal generator to ai
to get to aj.

0

9 20

29 40

49

0

3 2

5

1

4

Figure 1. The Apéry poset (left) and Kunz poset (right) for S = ⟨6, 9, 20⟩.

The Kunz poset of a numerical semigroup S is derived by reducing every element of the
Apéry poset to its entry modulo the multiplicity. The power of the Kunz poset lies in the
fact that they capture the additive structure of many semigroups at once; to see this, we
turn to some geometry. Let Ap(S) = {0, a1, a2, . . . , am−1}, where ai ≡ i (mod m). Define
the Apéry tuple of S to be (a1, a2, . . . , am−1) ∈ Rm−1; note that S is uniquely determined by
its Apéry tuple. Observe that for any semigroup S, we must have ai + aj ≥ ai+j (where the
sum i + j is taken modulo m) whenever i + j ̸≡ 0 (mod m) by minimality of each element
in Ap(S). Hence, all Apéry tuples must reside within the following region:

Definition 2.3. Let m ≥ 2. We define the Kunz cone Cm ⊆ Rm−1
≥0 as the region satisfying

the inequalities
xi + xj ≥ xi+j
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for all 1 ≤ i ≤ j ≤ m − 1 with i + j ̸≡ 0 (mod m), where we add the subscripts above
modulo m. A face F of the Kunz cone is a region F ⊆ Cm defined by the inequalities above,
where some of the inequalites are possibly equalities.

We shall often say that a face F ⊆ Cm contains a numerical semigroup S of multiplicity
m if F (set-wise) contains the Apéry tuple of S.

Example 2.4. The Kunz cone C4 ⊆ R3
≥0 is defined by the four inequalities

2x1 ≥ x2, x1 + x2 ≥ x3, x2 + x3 ≥ x1, and 2x3 ≥ x2

and contains (the Apéry tuples for) all numerical semigroups of multiplicity 4. We give a
few examples of numerical semigroups on C4:

• The semigroup S = ⟨4, 5, 6⟩ has Apéry tuple (5, 6, 11), which evidently sits on the
two-dimensional face F of the Kunz cone C4 given by x1 + x2 = x3. Similarly,
T = ⟨4, 9, 10⟩ has Apéry tuple (9, 10, 19), which also sits on F . Since both S and T
lie on the same face, they have the same Kunz poset P — the equality x1 + x2 = x3

on F dictates a cover relation 3 ≥ 1 and 3 ≥ 2 in P .
• The semigroup S ′ = ⟨4, 5, 7⟩ has Apéry tuple (5, 10, 7), which lies on a different two-
dimensional face F ′ ⊆ C4 given by 2x1 = x2. Therefore, S ′ has a Kunz poset P ′

different from P .
• Finally, the semigroup S ′′ = ⟨4, 5⟩ has Apéry tuple (5, 10, 15) that sits on the one-
dimensional face F ′′ of the Kunz cone given by x1+x2 = x3 and 2x1 = x2. The facet
equalities of F and F ′ immediately give F ′′ = F ∩ F ′, and so the Kunz poset P ′′ of
S ′′ consists of the union of relations present in P and P ′.

These observations lead to the following proposition:

Proposition 2.5. Any two semigroups on the same face of the Kunz cone have the same
Kunz poset, and if a face of the Kunz cone F is the intersection of two faces F ′ and F ′′, then
the Kunz poset of semigroups that lie on F consist of the union of relations present in the
Kunz posets of semigroups that lie on either F ′ or F ′′.

Thus, we see that the Kunz poset is an understandable combinatorial object that encodes
fundamental information about a numerical semigroup. We will attempt to use this object
to glean even more information about the semigroup.

2.2. Factorizations, Trades, and Betti Elements. We now give a quick survey of the
additive structure of a numerical semigroup, which will motivate our constructions in Section
3. Throughout, let S be a numerical semigroup of multiplicitym, with S = ⟨m,n1, n2, . . . , nk⟩
where each ni is a minimal generator.

Definition 2.6. Let n ∈ S. A factorization of n is an expression n = z0m + z1n1 +
z2n2 + · · · + zknk, where zi ≥ 0 for all 1 ≤ i ≤ k. We will often specify a factorization
by giving its factorization tuple (z0, z1, . . . , zk) ∈ Zk+1

≥0 . The factorization homomorphism

φS : Zk+1
≥0 → S is the homomorphism that maps factorization tuples to their corresponding

semigroup elements, i.e. φS(z0, z1, ..., zk) = z0m + z1n1 + z2n2 + · · · + zknk. The preimage
φ−1
S (n) =: ZS(n) is the set of factorizations of a semigroup element n ∈ S.

Example 2.7. Observe that factorizations are not necessarily unique. Take S = ⟨6, 9, 20⟩,
and notice 18 = 2 · 9 = 3 · 6 has two distinct factorizations. In contrast, 15 = 6 + 9 does
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have a unique factorization. Observe that as n increases, the number of factorizations of n
generally increases: taking n = 63, we have

63 = 7 · 9 = 3 · 6 + 5 · 9 = 6 · 6 + 3 · 9 = 9 · 6 + 9;

The existence of two distinct factorizations of 18 gives us four factorizations of 63. In terms
of the factorization homomorphism φS, we have

φS(0, 7, 0) = φS(3, 5, 0) = φS(6, 3, 0) = φ(9, 1, 0) = 63, or

ZS(63) = {(0, 7, 0), (3, 5, 0), (6, 3, 0), (9, 1, 0)}.
For an alternative viewpoint, take the homomorphism φ : K[y, x1, x2] → K[t] by y 7→

t6, x1 7→ t9, and x2 7→ t20. Now, the equation 2 · 9 − 3 · 6 = 0 may be represented as
the claim x2

1 − y3 ∈ kerφ. Rearranging the previous statement as x2
1 ≡ y3 (mod kerφ),

this corresponds to an equality x2
1 = y3 in the quotient K[y, x1, x2]/ kerφ. Thus, the four

factorizations of 63 may be succinctly denoted

t63 = x7
1 = y3x5

1 = y6x3
1 = y9x1.

Here, the first equality is an abuse of notation stemming from the first isomorphism theorem:
imφ ∼= K[y, x1, x2]/ kerφ, where we identify t63 with x7

1 under the canonical isomorphism,
but the other equalities are true equalities in the quotient above. Observe that φ and φS

behave rather similarly; however, φ has the advantage of being a ring homomorphism, while
φS is a semigroup homomorphism — it is this advantage (of preserving more structure) that
we will exploit later.

Definition 2.8. The kernel of φS is a relation ∼ on the domain of φS, and relates z ∼ z′

whenever φS(z) = φS(z
′), i.e., z and z′ are both factorizations of one n ∈ S. If z ∼ z′, we

call the pair (z, z′) a trade.

We remark that the relation ∼ defined by the kernel of φS is an equivalence relation, and
in fact a congruence: we have z ∼ z′ implies z + z′′ ∼ z′ + z′′ for all z, z′, z′′ ∈ Zk+1

≥0 .

A particularly important concept for understanding numerical semigroups and their posets
is outer Betti elements, which help us discuss the additive structure of S that lies slightly
beyond the Apéry set Ap(S). Before we can define outer Betti elements, we need some
background definitions.

A nilsemigroup is a commutative semigroup (N,+) with an element ∞ ∈ N (called the
nil of N) such that a +∞ =∞ for all a ∈ N . Let S be a numerical semigroup, and define
the congruence ≈ on S by a ≈ b whenever a = b or a, b /∈ Ap(S). Observe that ≈ partitions
S into the subset S \ Ap(S) and singletons {a} for each a ∈ Ap(S), i.e., the quotient S/≈
has a natural nilsemigroup structure with ∞ = S \Ap(S), and one non-nil element for each
element of Ap(S).

Definition 2.9. The Kunz nilsemigroup N of S is obtained from S/≈ by replacing each
non-nil element with its equivalence class modulo m.

Observe that N = Z/mZ ∪ {∞} as sets, and that N is partially cancellative, meaning
a + b = a + c ̸= ∞ implies b = c. The divisibility poset of the non-nil elements of N , the
poset in which a ≼ b when b = a+ c for some c ∈ N , is exactly the Kunz poset of S.

We may also define factorization within the Kunz nilsemigroup N , which is analogous to
the situation within the semigroup S itself.
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Definition 2.10. Let S be a semigroup with associated Kunz nilsemigroup N . Suppose
n1, . . . , nk are the atoms of N , so that {n1, . . . , nk} is the minimal generating set for N . We
define the factorization homomorphism on N by

φN : Zk
≥0 → N with (z1, z2, . . . , zk) 7→

k∑
i=1

zini.

Similarly, define the set of factorizations of some Kunz nilsemigroup element n ∈ N by
ZN(n) := φ−1

N (n).

Partial cancellativity of N ensures |ZN(n)| < ∞ for n ̸= ∞. If ai ∈ Ap(S), omitting the
first coordinate of each factorization of ZS(ai) (which is always 0) gets us ZN(i), and ZN(∞)
contains all other elements of Zk

≥0.
We also make the following useful definition.

Definition 2.11. The support of a factorization z ∈ Zk
≥0 is supp(z) := {i : zi > 0}, and the

support of a subset Z ⊆ Zk
≥0 is supp(Z) := {i : zi > 0 for some z ∈ Z}.

For such a set Z ⊆ Zk
≥0, let ∇Z be the graph with vertex set Z where z, z′ are connected

by an edge when z ̸= z′ and supp(z) ∩ supp(z′) ̸= ∅. For each i ∈ supp(Z), define Z − ei =
{z − ei : z ∈ Z with i ∈ supp(z)}, where ei = (z1, z2, . . . , zk) is 1 in the ith component and
0 everywhere else. Now we are ready to define outer Betti elements:

Definition 2.12. Let S be a numerical semigroup and let N be its Kunz nilsemigroup. An
outer Betti element B of S is a subset B ⊆ ZN(∞) such that

(i) for every i ∈ supp(B), B − ei = ZN(n) for some n ∈ N \ {∞}, and
(ii) the graph ∇B is connected.

The outer Betti elements of S are essentially the things that live just outside of the Kunz
poset: very loosely speaking, Betti elements may be identified with sums of the elements of
the Kunz poset that do not occur within the Kunz poset, but for which removing one atom
from any factorization of the sum gives something within the Kunz poset. They necessarily
encode trades in S, and their sense of minimality indicates fundamental importance to the
structure of the semigroup S.

Example 2.13. Let S = ⟨13, 14, 15, 16, 17⟩, with Apéry set

Ap(S) = {0, 14, 15, 16, 17, 31, 32, 33, 34, 48, 49, 50, 51}.
We give the Kunz poset for S in Figure 2. Then as sets, the Kunz nilsemigroup N of S
satisfies N = Z13 ∪ {∞} with the following addition law: a +∞ = ∞ for all a ∈ N , and if
b, c ∈ N \ {∞}, we read off the sum b+ c using the Kunz poset as follows:

• If ab + ac = ab+c ∈ Ap(S), then b+ c is just the sum in Z/13Z.
• If ab + ac ̸∈ Ap(S), then b+ c =∞.

The atoms of N are evidently 1̄, 2̄, 3̄, and 4̄, so the factorization homomorphism φN : Zk
≥0 →

N is given by (z1, z2, z3, z4) 7→ 1̄z1 + 2̄z2 + 3̄z3 + 4̄z4. For example, we may compute the set
of factorizatioins for 10 ∈ N :

ZN(10) = φ−1
N (10) = {(0, 1, 0, 2), (0, 0, 2, 1)}.

Now, each sum of any two atoms among 1̄, 2̄, 3̄ gives an outer Betti element, and we have
four outer Betti elements which “fill in” a new row of the poset in Figure 2 — these points
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are marked in red. Within this particular numerical semigroup S, the outer Betti elements
correspond to the following factorizations of semigroup elements in S:

28 = a1 + a1,

29 = a1 + a2,

30 = a1 + a3 = a2 + a2,

65 = a12 + a1 = a11 + a2 = a10 + a3 = a9 + a4,

66 = a12 + a2 = a11 + a3 = a10 + a4,

67 = a12 + a3 = a11 + a4,

68 = a12 + a4.

We notice the trades occurring at several of these outer Betti elements — it is these trades
that will dictate our constructions in Section 3.

2 3 4

0 1 2 3

0

1
2 3 4

5 6 7 8

9 10 11 12

Figure 2. The Kunz poset for S = ⟨13, 14, 15, 16, 17⟩. Outer Betti elements,
connected by dashed lines, are in red, and we identify them with their equiv-
alence class modulo 13.

2.3. Toric Ideals and Semigroup Algebras. Numerical semigroups, by their very nomen-
clature, have less access to properties that are present in other algebraic structures. Luckily,
however, we have a clever homomorphism that allows us to examine the properties of a nu-
merical semigroup by looking at monomials within a polynomial ring quotient. In particular,
this allows us to utilize tools from ring theory and commutative algebra to study numerical
semigroups. Let S = ⟨m,n1, n2, . . . , nk⟩, where S has multiplicity m and {m,n1, . . . , nk} is
a minimal generating set. Fix a field K and define the ring homomorphism

φ : K[y, x1, x2, . . . , xk]→ K[t] by y 7→ tm and xi 7→ tni .

We also grade the polynomial ring K[y, x1, . . . , xk] by setting deg(y) = m and deg(xi) = ni.
Notice that tn ∈ imφ if and only if n ∈ S, so the image imφ captures precisely the elements
of S, endowed now with the richer structure of a ring whose multiplicative behavior is exactly
the additive structure of S. Hence, we make the following definition.

Definition 2.14. The semigroup algebra R = K[S] is defined to be the image imφ of the
homomorphism given above, and the toric ideal IS is defined as the kernel kerφ.
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By the first isomorphism theorem, we have K[y, x1, x2, . . . , xk]/IS ∼= R. Thus, understand-
ing the toric ideal IS is crucial to understanding the semigroup S. Clearly, no monomials in
K[y, x1, . . . , xk] are in kerφ, so what elements are in the toric ideal IS? It turns out that IS
is generated by binomials — differences of monomials that correspond precisely to distinct
factorizations of the same element of S. Thus, the polynomials generating IS are exactly
those encoded by trades of elements in S. It is here we see the combinatorial power of the
Kunz poset: from the Kunz poset of a numerical semigroup S, we can trace distinct paths in
the poset to find trades of Apéry set elements, and we can quite easily “jump off” the poset
to find outer Betti elements, thereby finding the minimal trades that seem to be needed to
generate the important ideal IS. The following proposition legitimizes this intuition.

Proposition 2.15 ([GOD23]). The toric ideal IS is minimally generated by differences of
monomials corresponding to distinct factorizations of Apéry set elements and differences of
monomials corresponding to members of a shared outer Betti element, and in particular, one
such binomial generator from each outer Betti element is contained in a minimal generating
set for IS.

The flavor of this intuition provides the motivation for our work. What more information
about a semigroup does the Kunz poset provide? How does it encode larger trades or even
trades between trades?

Example 2.16. Let S = ⟨5, 6, 7⟩. Clearly, {5, 6, 7} is a minimal generating set, so the
homomorphism that defines the toric ideal is φ : K[y, x1, x2]→ K[t] by y 7→ t5, x1 7→ t6, and
x2 7→ t7. Notice that elements in semigroups may have different factorizations; for example,
12 = 5 + 7 = 6 + 6. This is reflected in the fact that φ(yx2) = t12 = φ(x2

1); in particular,
yx2 − x2

1 ∈ kerφ = IS. Here, yx2 − x2
1 encodes a trade between the factorizations of 12, and

as such, the defining toric ideal is generated by trades of factorizations of elements in S.

It will also be useful for us to consider a generalized type of toric ideal, defined as follows.
Fix a numerical semigroup S with multiplicity m, and as usual, we denote its Apéry set by
listing its elements in equivalence class order: Ap(S) = {0, a1, a2, . . . , am−1}, with ai ≡ i
(mod m), and we set a0 := m. Consider the polynomial ring K[y, x1, . . . , xm−1] together
with the grading deg(y) := m and deg(xi) := ai. Setting x0 := y, define the homomorphism

φ : K[y, x1, . . . , xm−1]→ K[t] by xi 7→ tai .

From here, we get two analogous definitions.

Definition 2.17. The Apéry toric ideal is JS := kerφ, and the semigroup algebra R is:

R := K[y, x1, . . . , xm−1]/JS ∼= imφ.

The use of the term semigroup algebra for two seemingly different quotients is quite dis-
concerting, but it need not be, for the two semigroup algebras R are isomorphic. This is a
result of the following relationship between IS and JS:

Proposition 2.18. We have IS = JS ∩K[y, xi : ai is a minimal generator].

In particular, IS ⊆ JS, and from this, also note that IS = JS if and only if S has maximal
embedding dimension. This is because when S is MED, all nonzero Apéry set elements are
minimal generators, as we have mentioned before.

The following fact about the Apéry toric ideal is well-known, and is useful as a computation
aid as well as for understanding outer Betti elements.
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Proposition 2.19. Let S be a numerical semigroup with multiplicity m. Then

JS = ⟨xixj − ybi,jxi+j : 1 ≤ i ≤ j ≤ m− 1⟩,

where bi,j :=
1
m
(ai + aj − ai+j).

Observe that each generator xixj − ybi,jxi+j represents a trade corresponding to an outer
Betti element whenever bi+j > 0.

Example 2.20. Let S = ⟨5, 6, 7⟩. Then Ap(S) = {0, 6, 7, 13, 14}, and we compute the
Apéry toric ideal using the proposition above:

JS = ⟨x2
1 − yx2, x1x2 − x3, x1x3 − yx4, x1x4 − y4, x2

2 − x4, x2x3 − y4,

x2x4 − y3x1, x
2
3 − y4x1, x3x4 − y4x3, x

2
4 − y3x3⟩.

Here, the binomial x2
1 − yx2 corresponds to a trade of 10, which corresponds to an outer

Betti element. We may also compute the defining toric ideal by noting y, x1, x2 correspond to
minimal generators: under the canonical isomorphismK[y, x1, x2, x3, x4]/JS ∼= K[y, x1, x2]/IS
we may (abusively) identify x3 = x1x2 and x4 = x2

2. Making these replacements in JS above
and eliminating redundant generators yields

IS = ⟨x2
1 − yx2, y

3x1 − x3
2, y

4 − x1x
2
2⟩.

To study the semigroup algebra R, we will examine modules over R; to do this, we
introduce some terminology.

Definition 2.21. LetM be an R-module. A free resolution ofM over R is an exact sequence
of R-linear maps

F• : 0←−M ←− F0 ←− F1 ←− F2 ←− · · · ,

where each Fd is a free R-module. IfM is a graded module, then F• is a graded free resolution
if each boundary map ∂d : Fd → Fd−1 is homogeneous. If the number of free modules that
occur in the free resolution is finite, we say F• is a finite free resolution; otherwise, it is an
infinite free resolution. Finally, F• is minimal if ∂d(Fd) ⊆ (y, x1, . . . , xk)Fd−1 for all d ≥ 1.

This fact follows immediately from the definition of minimality:

Proposition 2.22. Let M be an R-module. Then a free resolution F• of M is minimal
if and only if the matrices representing the boundary maps ∂d have no nonzero constant
entries.

In particular, we will study the infinite free resolution of the ground field K, over the
semigroup algebra R. Results about such resolutions may be found in [Gom+24] in the
case that the numerical semigroup S is MED; in particular, the results construct the infinite
Apéry resolution F•, which is minimal if and only if S is MED. When S is not MED, minimal
resolutions may be found by row reducing the matrices in F•, and this row reduction depends
only on the Kunz poset of S. However, the proof of this fact is nonconstructive, but the
hope is that the “niceness” of the Kunz poset in certain cases will allow us to construct an
explicit resolution for certain non-MED semigroups S.
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2.4. Extra-Generalized Arithmetical Numerical Semigroups. One important family
of numerical semigroups is of interest to us, due to the symmetry and predictability of their
Kunz poset structure.

Definition 2.23. An extra-generalized arithmetical numerical semigroup S takes the form

S = ⟨m,mh+ δ,mh+ 2δ, . . . ,mh+ kδ⟩,
where m,h, k, δ are integers such that 0 < k < m, h ≥ 1, gcd(m, δ) = 1, and mh+ kδ > m.
If δ < 0, we say that S is pessimistic.

Remark 2.24. The semigroup S above is generalized arithmetical because of the “scaling”
term h; if h = 1, then S is generated by an arithmetic progression and is called simply
arithmetical. S is “extra-generalized” because δ is allowed to be negative.

Example 2.25. The semigroup S = ⟨13, 14, 15, 16, 17⟩ is an arithmetical semigroup, as we
have h = 1. Here, m = 13, k = 4, and d = 1. Recall that

Ap(S) = {0, 14, 15, 16, 17, 31, 32, 33, 34, 48, 49, 50, 51}.
As usual, we list the elements in order of their equivalence classes, but notice that this is the
same as listing the elements in increasing order. Examining the Kunz poset of S (Figure 2)
explains why: we observe a nice, graded “staircase” structure, which essentially “counts up”
the equivalence classes in order. This nice structure holds for the Kunz poset of any extra-
generalized arithmetical numerical semigroup, which follows from an explicit description of
the elements of Ap(S), together with its poset relations:

Theorem 2.26 (Theorem 3.4 from [Aut+21]). Let S = ⟨m,mh+ δ,mh+ 2δ, . . . ,mh+ kδ⟩
be an extra-generalized arithmetical numerical semigroup, and write a − 1 = qk + r for
q, r ∈ Z≥0 with r < k, and write Ap(S) = {0, a1, . . . , am−1}.

(i) Each nonzero element ai ∈ Ap(S) takes the form ai = ximh +
(
(xi − 1)k + yi

)
δ, for

either xi ∈ {1, 2, . . . , q} and yi ∈ {1, 2, . . . , k}, or xi = q + 1 and yi ∈ {1, r}.
(ii) In Ap(S), ai ⪯ aj if and only if xi < xj and yi ≥ yj.
(iii) In Ap(S), aj covers ai if and only if xj = xi + 1 and yi ≥ yj.

Reading the theorem sufficiently carefully reveals that we are stating that the Apéry (or
Kunz) poset of S has the “tower” structure demonstrated in Figure 2, with q full rows, each
full row having a width of k, with the top (possibly incomplete) row containing r elements.
Note that the top row is a complete row with k elements if and only if m ≡ 1 (mod k).
In particular, the structure of the poset only depends on m and k, and the labeling of each

vertex depends only on the equivalence class of δ modulo m. The relations between Apéry
set elements in the theorem simply tell us how the elements are placed within each row.

Proposition 2.27 (Lemma 4.1 from [Aut+21]). Let S = ⟨m,mh+ δ,mh+2δ, . . . ,mh+kδ⟩
be an extra-generalized arithmetical numerical semigroup, whose Apéry tuple is contained
in a face F ⊆ Cm. Applying an automorphism on Cm induced by multiplication of a unit
u ∈ Z×

m to F yields a face F ′ ⊆ Cm, and F ′ contains the Apéry tuple corresponding to

S ′ = ⟨m,mh+ u′δ,mh+ 2u′δ, . . . ,mh+ ku′δ⟩,
where u′ is an integer in the equivalence class u.

This proposition greatly simplifies the work we must do to understand an extra-generalized
arithmetical numerical semigroup — hence, without loss of generality, we fix δ ≡ 1 (mod m);
this is reflected in our construction in Section 3.
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3. Minimal Free Resolutions for Extra-Generalized Arithmetical
Numerical Semigroups

3.1. The Infinite Apéry Resolution. In this section, we prove a result about the Betti
numbers (Corollary 3.10) for the minimal free resolution for an extra-generalized arithmeti-
cal numerical semigroup ⟨m,mh + δ,mh + 2δ, . . . ,mh + kδ⟩, where k ∤ m. Our proof is
somewhat nonconstructive, but it utilizes the chain-mapping technique employed in Section
4 of [Gom+24]. We also borrow the strategy of indexing our free modules by permissible
words, which correspond to a specific grading on said modules, used to define the infinite
Apéry resolution in the same source.

First, we define the infinite Apéry resolution, as this will form the basis of our proof.
Throughout, let S be any numerical semigroup with multiplicity m, and as per convention
write

Ap(S) = {0, a1, a2, . . . , am−1} with ai ≡ i mod m,

and also set a0 := m. Let R = K[S] be the semigroup algebra of S, setting y := x0. We
define the grading on R by deg(xi) := ai.

Definition 3.1 ([Gom+24] Definition 3.1). The infinite Apéry resolution of the ground field
K over R is the free resolution

F• : 0←− K←− F0 ←− F1 ←− F2 ←− F3 ←− · · · ,

where each Fd is a free module with basis

{ew : w = (w1, w2, . . . , wd) ∈ Zd
m, wi ̸= 0 for all i ≥ 2} with deg(ew) :=

d∑
i=1

deg(xwi
).

The boundary maps ∂d : Fd → Fd−1 for d ≥ 2 are given by

∂d : ew 7→ xwd
eŵ +

d−1∑
i=1

(−1)d−iybwi,wi+1eτiw,

where for w = (w1, w2, . . . , wn), we define ŵ := (w1, w2, . . . , wn−1) and

τiw := (w1, . . . , wi−1, wi + wi+1, wi+2, . . . , wn),

both of which shorten the length of w by one letter. The exponents bwi,wi+1
are given by

bwi,wi+1
:=

1

m
(awi

+ awi+1
− awi+wi+1

).

The map ∂0 : F0 → K is the quotient map taking F0 = R ∼= K[y, x1, x2, . . . , xm−1]/JS to K,
and ∂1 : F1 → R is simply the map sending ei 7→ xi.

It was proven in [Gom+24] that the infinite Apéry resolution is indeed a resolution, and
that it is minimal precisely when S has maximal embedding dimension.
Given a numerical semigroup S = ⟨m,mh+δ,mh+2δ, . . . ,mh+kδ⟩ with m ̸≡ 0 (mod k),

we construct a minimal infinite free resolution of the base field K over the semigroup algebra
R = K[y, x1, x2, . . . , xk]/IS via a chain map applied to the Apéry resolution of that field. In
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other words, we construct the following commutative diagram:

0 K R F1 F2 · · ·

0 K R F ′
1 F ′

2 · · ·

∂0

p0

∂1

p1

∂2

p2

∂′
0 ∂′

1 ∂′
2

wherein the top row is the Apéry resolution of K over R and the bottom row is our desired
resolution. The power of our method is attained in virtue of the fact that the words which
will index basis elements in the free modules F ′

d also index basis elements in the original
Apéry modules Fd.

Throughout the remainder of this section, fix S = ⟨m,mh + δ,mh + 2δ, . . . ,mh + kδ⟩ to
be an extra-generalized arithmetical numerical semigroup with k ∤ m and gcd(m, δ) = 1, and
write m = qk + α, for 0 < α < k and q ∈ Z. Without loss of generality, take h = δ = 1 —
this has no effect on the Betti numbers of the free resolutions which we will study, by virtue
of Proposition 2.27.

3.2. Valid Words. The construction of our minimal free resolutions relies on pattern-
avoiding words of a given length, which gives our study a combinatorial flavor.

Definition 3.2. A valid word of length d ≥ 0 is an element w = (w1, w2, . . . , wd) ∈ Zd
m such

that

(i) wi ∈ {0, 1, . . . , k,m− α} for all i.
(ii) wi ̸= 0 for all i > 1 and w1 ̸= m− α,
(iii) w does not contain the subword (j, k) for any j ∈ {1, 2, . . . , k}, and
(iv) w does not contain the subword (j,m− α) for any j ∈ {0, 1, . . . , α− 1,m− α}.

The set of all valid words of length d is denoted Wd, and we take the empty word ∅ to
be the only valid word of length 0. We will often omit the tuple notation and write w =
(w1, w2, . . . , wd) = w1w2 · · ·wd, where the letter m− α is abbreviated with “−”.

Detailed inspection of these words reveals a sharp connection between concatenations of
letters with paths in the Kunz poset of S.

Example 3.3. Let S = ⟨13, 14, 15, 16, 17⟩, so m = 13 and k = 4. In this case, m = 3k + 1,
so q = 3 and α = 1. Thus, our valid words w = (w1, w2, . . . , wd) of length d are elements of
Zd

13, with the following forbidden subwords:

• Any subword containing a letter among {5, 6, 7, . . . , 11}.
• 0 occurring after w1,
• − occurring at w1,
• 14, 24, 34, 44 anywhere in w, and
• 0− anywhere in w.

For example, there are 20 valid words of length 2, and we may compute the 80 valid words
of length 3:

011 012 013 01− 021 022 023 02− 031 032 033 03− 041 042 043 04−
111 112 113 11− 121 122 123 12− 131 132 133 13− 1−1 1−2 1−3 1−4
211 212 213 21− 221 222 223 22− 231 232 233 23− 2−1 2−2 2−3 2−4
311 312 313 31− 321 322 323 32− 331 332 333 33− 3−1 3−2 3−3 3−4
411 412 413 41− 421 422 423 42− 431 432 433 43− 4−1 4−2 4−3 4−4
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Now, consider a free module F ′
3, generated by basis elements F ′

3 = ⟨ew : w ∈ W3⟩. In the
resolutions that follow, we will grade each basis element by setting

deg(ew) = aw1 + aw2 + aw3 ,

similar to the situation for the infinite Apéry resolution. Hence, each valid word corresponds
to a graded degree; in particular, different valid words of each graded degree will reflect the
additive structure of the semigroup. As an example,

deg(e21−) = a2 + a1 + a−1 = 80 = a0 + a3 + a−1 = deg(e03−),

which, after canceling the a−1, gives the relation a2 + a1 = 29 = a0 + a3, which by Example
2.13, represents something pertaining to the outer Betti element corresponding to trades of
29 ∈ S.

Example 3.4. For larger values of α, the number of valid words decreases, with the effect
being much larger on the number of longer words. Take S = ⟨11, 12, 13, 14, 15⟩, so m = 11
and k = 4. Here, α = 3, and thus our valid words w = (w1, w2, . . . , wd) of length d are
elements of Zd

11, with the following forbidden subwords:

• Any subword containing a letter among {5, 6, 7, 8, 9}.
• 0 occurring after w1,
• − occurring at w1,
• 14, 24, 34, 44 anywhere in w, and
• 0−, 1−, 2− anywhere in w.

Notice that when compared to the previous example, the list of forbidden rules is nearly the
same, except that we now eliminate the two substrings 1− and 2−, both of length 2. We
have 18 valid words of length 2, which is a small decrease from the k = 4, α = 1 case in the
previous example, but this non-existence of certain length 2 (otherwise) valid words (in the
case α = 1) has a propagating effect on the length 3 valid words:

011 012 013 021 022 023 031 032 033 03− 041 042 043 04−
111 112 113 121 122 123 131 132 133 13−
211 212 213 221 222 223 231 232 233 23−
311 312 313 321 322 323 331 332 333 33− 3−1 3−2 3−3 3−4
411 412 413 421 422 423 431 432 433 43− 4−1 4−2 4−3 4−4
In general, counting valid words is a routine combinatorial task:

Proposition 3.5. Fix m, k ≥ 2 and a corresponding 1 ≤ α < k, and let βd = |Wd|. Then
β0 = 1, β1 = k + 1, and βd = kβd−1 − (α− 1)βd−2 for all d ≥ 2.

Proof. The empty word ∅ is the unique valid word of length 0, and W1 = {0, 1, . . . , k}. Now,
we proceed by induction on d, and it is not too hard to check β2 = k(k+1)−(α−1). Suppose
βd = kβd−1−(α−1)βd−2 holds for some d ≥ 2. Let w = (w1, . . . , wd) be a valid word of length
d, and consider the concatenation wr = (w1, . . . , wd, r) for some r ∈ {0, 1, 2, . . . , k,−α}. If
wd = −α, observe that any choice of r ̸= −α gives a valid word. Otherwise, if wd ̸= −α,
observe that any choice of r ̸= k gives a word satisfying all conditions of being a valid
word, except possibly condition (iv) given in Definition 3.2 — which is failed if and only if
wd ∈ {0, 1, 2, . . . , α−1}. Now, careful counting gives the recurrence relation by induction. □

In particular, we stress that when m ≡ 1 (mod k), the second-order linear recurrence
given in the proposition above becomes first-order, (as α − 1 = 0), from which the number
of non-empty valid words grows strictly exponentially as a function of length.
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3.3. Modules and Maps. In what follows, for all d ≥ 0, the free R-module F ′
d has the

basis {ew : w ∈ Wd}, again with the grading deg(ew) =
d∑

i=1

deg(xwi
) =

d∑
i=1

awi
.

Definition 3.6. Given a term pwew ∈ F ′
d with pw ∈ R, the class of pwew, denoted C(pwew),

is the equivalence class of deg(pw) modulo m. We call a term pwew reduced if

(i) C(pwew) ∈ {0, k, 2k, 3k, . . . , (q − 1)k, qk};
(ii) if C(pwew) ̸= 0, then wd /∈ {0,m− α}, and
(iii) if C(pwew) = m− α, then wd ∈ {1, 2, . . . , α− 1}.

An element f =
∑
w∈Wd

pwew ∈ F ′
d is reduced if all of its terms pwew are reduced.

Lemma 3.7. Suppose ∂′ : F ′
d → F ′

d−1 is an R-linear map such that for all w ∈ Wd,

(i) the term xwd
eŵ appears in ∂′ew, and

(ii) each term of ∂′ew not involving eŵ is reduced.

Then for each f ∈ F ′
d−1, there exists some reduced g ∈ F ′

d such that f − ∂′g is reduced, and
if h ∈ ker ∂′ is reduced, then h = 0.

Proof. Consider a term pwew of f with class not among {0, k, 2k, 3k, . . . ,m − α}, so that
pwew = ℓybxc

kxrew for ℓ ∈ K, b, c ≥ 0, and r ∈ {1, 2, 3, . . . , k − 1}. Then wr is a valid word,
so by hypothesis on ∂′, replacing f by f −∂′(ℓybxc

kewr) results in an expression with one less
term of this type. Repeating this process finitely many times, we may assume that f only
has terms with classes among {0, k, 2k, 3k, . . . , qk}.
Let pwew be a term of f with class among {k, 2k, . . . , (q − 1)k} where wd ∈ {0,m − α},

so pw = ℓybxc
k for 1 ≤ c ≤ q − 1. Replacing f by f − ∂′(ℓybxc−1

k ewk) results in an expression
with one less term of this type. Repeating this process finitely often, we may assume that f
does not have any terms of this type.

Next, consider a term pwew of f with class qk = m − α, so that pwew = ybxq
kew. If

wd ∈ {1, 2, . . . , α−1}, then we are done as this term is already reduced; otherwise, replace f
with f −∂′ybew(m−α). The result is now that f is reduced, and we only applied ∂′ to reduced
elements, which proves the first claim in the lemma.

For the second claim in the lemma, suppose h ∈ ker ∂′ is reduced, and write h = h1+h2+
· · ·+hn ∈ ker ∂′, where each hi is a term. We first claim that h only has terms of class 0. Say
that h has some term pwew of nonzero class. Since h is reduced, write pwew = ℓybxc

kew for
b ≥ 0, 0 < c < q, and wd ̸∈ {0,m − α}. Now, ∂′(pwew) must contain the term ℓybxc

kxwd
eŵ;

since h ∈ ker ∂′, there must exist some other term−pw′ew′ = −ℓ′yb′xc′

k ew′ of h such that either
ℓybxc

kxwd
eŵ cancels with the “leading term” −ℓ′yb′xc′

k xw′
d
e
ŵ′ of ∂

′(−pw′ew′), or some reduced

term of ∂′(−pw′ew′) multiplied by −ℓ′yb′xc′

k ; we consider these cases separately (without
regard to ℓ).

Case I: ybxc
kxwd

eŵ = yb
′
xc′

k xw′
d
e
ŵ′ . When wd ̸∈ {0, k,m− α}, the equality w = w′ follows

immediately, so pwew = pw′ew′ . When wd = 0, then d = 1 and w = 0, from which the
same claim follows easily. Now, if wd = m − α, then this forces w′

d = k or w′
d = m − α.

In the latter case, the claim follows; in the former, note wd−1 ∈ {α, α + 1, . . . , k} = w′
d−1,

which contradicts the assumption that w′ is a valid word. A completely symmetric argument
follows for the case where wd = k.
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Case II: ybxc
kxwd

eŵ cancels with a reduced term g of ∂′(−ew′) multiplied by yb
′
xc′

k . Write

g = ysxj
kev, where 0 ≤ j ≤ q, so that

ybxc
kxwd

eŵ = yb
′+sxc′+j

k ev

Notice that when wd ̸∈ {0, k,m − α}, this case cannot happen by comparing the classes
of the terms, and when wd = 0, a straightforward verification shows that this also cannot
happen. When wd = m−α, notice that ybxc

kxwd
eŵ has class ck+m−α = ck−α; since c > 0

(by class nonzero) and α ̸= 0 we have ck − α ̸∈ {k, 2k, . . . , qk}, contradicting reducedness.
Finally, when wd = k, we are forced to have c ≤ q − 1 by reducedness. Because the term

involving ev is reduced, we have vd−1 ̸∈ {0,−α}. But this forces vd−1 = wd−1 ∈ {1, 2, . . . , k},
contradicting the validity of w, so Case II is impossible.
Hence, f consists only of terms of class zero. Take a term ybew of f , so that the “lead-

ing” term of ∂′ybew is ybxwd
eŵ. Again, the term −ybxwd

eŵ must appear in ∂(f) to cause
cancellation, which can happen in two ways: given a term yb

′
e
ŵ′ of f , we again consider two

cases:
Case I ′: ybxwd

eŵ = yb
′
xw′

d
eŵ′ . Here, the same argument as Case I from before shows that

ybew = yb
′
e
ŵ′ .

Case II ′: ybxwd
eŵ cancels with a reduced term g of ∂′(−e

ŵ′), multiplied by yb
′
. In this case,

write g = ysxj
kev, where 0 ≤ j ≤ q, so that ybxwd

eŵ = yb
′+sxj

kev. When wd ̸∈ {0, k,m− α},
this case cannot happen by comparing classes of the terms; similarly, when wd = 0, it is easy
to show that this case cannot happen. When wd = m − α, we have j = q; by reducedness
of g we have a similar contradiction to Case II above. Finally, when wd = k, we have j = 1,
but the same contradiction as Case II follows. This establishes the second claim of the
lemma. □

Theorem 3.8. Given a numerical semigroup S = ⟨m,mh + δ,mh + 2δ, . . . ,mh + kδ⟩ with
k ∤ m, under the above definitions, applying a chain map to the infinite Apéry resolution
of K over K[y, x1, x2, . . . , xm−1]/JS ∼= K[y, x1, x2, . . . , xk]/IS = R, the numerical semigroup
algebra of S, yields a free resolution

F ′
• : 0←− K←− R←− F ′

1 ←− F ′
2 ←− F ′

3 ←− · · ·
of K over R.

Proof. Recall that we aim to construct the following commutative diagram:

0 K R F1 F2 · · ·

0 K R F ′
1 F ′

2 · · ·

∂0

p0

∂1

p1

∂2

p2

∂′
0 ∂′

1 ∂′
2

First, define ∂′
0 to again be the usual quotient map, surjecting K[y, x1, . . . , xk]/IS onto

K, and define p0 to be the canonical isomorphism of K[y, x1, . . . , xm−1]/JS ∼= R with R =
K[y, x1, . . . , xk]/IS. Similarly to the Apéry resolution, define the R-linear map ∂′

1 by ∂′
1(ew) =

xw1 for all w = (w1) ∈ W1. It is clear that the image of ∂′
1 in R is the ideal (y, x1, x2, . . . , xk);

thus, the bottom row is exact at R = F ′
0. Further, we define p1 : F1 → F ′

1 by

p1(ei) =

{
ei, i ∈ {0, 1, 2, . . . , k}
xc
ker if i > k, where i = qc+ r with 0 ≤ r < k,
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wherein we might allow r = k in the case that i = m − α (implying an R-coefficient of
xq−1
k ) to ensure that p1 outputs strictly reduced terms. Note that our definition of p1 implies

p0(∂1(ei)) = ∂′
1(p1(ei)) for all ei ∈ F1; indeed, if i ∈ {0, 1, . . . , k}, then both p0∂1 and ∂′

1p1
map ei to xi, and if otherwise, writing i = kq′+r for q′ ∈ {1, 2, . . . , q} and r ∈ {0, 1, 2, . . . , k},
then ∂′

1(p1(ei)) = xq′

k xr, the isomorphic copy of ∂1(ei) = xi in R = K[y, x1, . . . , xk]/IS. This
shows that the leftmost square in our diagram commutes.

Next, define ∂′
2 : F

′
2 → F ′

1 by, for all w = (w1, w2) ∈ W2,

∂′
2(ew) = xw2ew1 − ybw1,w2p1ew1+w2 .

Note that by our construction and the definition of ∂2 in the Apéry resolution, p1∂2(ew) =
∂′
2(ew) for all w ∈ W2. Thus, commutativity of the leftmost square and the exactness of the

top row show clearly that im(∂′
2) ⊆ ker(∂′

1). To see that ker(∂′
1) ⊆ ker(∂′

2), note that both
∂′
1 and ∂′

2 satisfy the conditions of Lemma 3.7, so for all f ∈ ker(∂′
1), f − ∂′

2g is reduced
and in ker(∂′

1) by our earlier claim that ∂′
2 ⊆ ker(∂′

1) and R-linearity of ∂′
1. Thus, we have

f − ∂′
2g = 0 and hence f ∈ im(∂′

2). Thus, im(∂′
2) = ker(∂′

1) and the bottom row is exact
at F ′

1. Careful inspection reveals that the images of basis vectors in F ′
2 under ∂′

2 precisely
encode minimal trades between monomials that generate the toric ideal IS and ones of basic
commutativity of the variables y, x1, . . . , xk.
We define the rest of the chain map and resolution inductively: let n ≥ 2, and assume

that

(i) ∂′
d is defined and degree-preserving (homogeneous) for all d ∈ {0, 1, . . . , n} and

im(∂′
d) = ker(∂′

d−1) for all d ∈ {1, . . . , n},
(ii) the term xwd

eŵ appears in ∂′
d(ew), and each term of ∂′

d(ew) not involving ew is reduced
for all ew ∈ F ′

d, for all d ∈ {1, 2, . . . , n},
(iii) pd is defined for all d ∈ {0, 1, . . . , n− 1} and pd−1∂d = ∂′

dpd for all d ∈ {1, . . . , n− 1},
(iv) pd∂d+1(ew) = ∂′

d+1(ew) for all w ∈ Wd+1, for all d ∈ {0, 1, . . . , n− 1}, and
(v) the maps pd are homogeneous and pd(ew) is reduced for all ew ∈ Fd, for all d ∈
{0, 1, . . . , n− 1}.

We define pn and ∂′
n+1 in such a way that the diagram again commutes and the bottom row

is exact at F ′
n. We first define pn. Given ew ∈ Fn, we have ∂n−1∂n(ew) = 0 by exactness

of the top row; thus, pn−2∂n−1∂n(ew) = 0, so by part (iii) of the inductive hypothesis,
∂′
n−1pn−1∂n(ew) = 0. Thus, pn−1∂n(ew) ∈ ker(∂′

n−1). By exactness of the bottom row at F ′
n−1

(part (i) of the inductive hypothesis), there exists aw′ ∈ F ′
n such that ∂′

n(aw′) = pn−1∂n(ew).
Thus, set pn(ew) = aw′ . If w ∈ Wn, let aw′ = ew, which we may do by part (iv) of the
inductive hypothesis, and if w /∈ Wn, let pn(ew) = aw′ be reduced, which we may do by part
(ii) of the inductive hypothesis and Lemma 3.7. Thus, we have defined pn, and note that
our construction forces pn−1∂n = ∂′

npn; thus, pn is homogeneous. We now define ∂′
n+1 in the

natural way: for all ew ∈ F ′
n+1, define

∂′
n+1(ew) = xwn+1pn(eŵ) +

n∑
i=1

(−1)n+1−iybwi,wi+1pn(eτiw).

Thus, by definition of ∂n+1 in the Apéry resolution and since ŵ ∈ Wn if w ∈ Wn+1, we
again have ∂′

n+1(ew) = pn∂n+1(ew) for all w ∈ Wn+1 (implying homogeneity again), and we
leverage this fact to show that im(∂′

n+1) ⊆ ker(∂′
n).
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Let ew ∈ F ′
n+1. Then ∂′

n∂
′
n+1(ew) = ∂′

npn∂n+1(ew) by the above claim, and since we
have shown that pn−1∂n = ∂′

npn, we have ∂′
n∂

′
n+1(ew) = pn−1∂n∂n+1(ew) = pn−1(0) = 0 by

exactness of the Apéry resolution in the top row. Thus, ∂′
n∂

′
n+1(ew) = 0 for all ew ∈ F ′

n+1,
which shows that im(∂′

n+1) ⊆ ker(∂′
n). This can be seen by chasing the diagram below.

· · · Fn−1 Fn Fn+1 · · ·

· · · F ′
n−1 F ′

n Fn+1 · · ·

pn−1

∂n

pn

∂n+1

∂′
n ∂′

n+1

Now, we show ker(∂′
n) ⊆ im(∂′

n+1). Note that if w ∈ Wn+1, then ŵ ∈ Wn, so by our
construction of both pn and ∂′

n+1, the term xwn+1eŵ appears in ∂′
n+1(ew), and each term

of ∂′
n+1(ew) not involving eŵ is reduced. Thus, by Lemma (3.7), for all f ∈ ker(∂′

n), we
have f − ∂′

n+1g is reduced for some g ∈ F ′
n+1. Thus, ∂

′
n(f − ∂′

n+1g) = ∂′
nf − ∂′

n∂
′
n+1g = 0

by our earlier claim that im(∂′
n+1) ⊆ ker(∂′

n). Thus, f − ∂′
n+1g ∈ ker(∂′

n) and f − ∂′
n+1g

is reduced, implying f = ∂′
n+1g by Lemma 3.7, which shows that f ∈ im(∂′

n+1). Thus,
im(∂′

n+1) = ker(∂′
n). This completes the inductive step. Thus, the bottom row of our desired

commutative diagram is a free resolution of K over R. □

Conjecture 3.9. The above resolution of K over R is minimal.

Recall that the Poincaré series of R is the formal power series

PR
K (z) =

∞∑
d=0

βdz
d,

where βd are the Betti numbers of the minimal free resolution of K over R. Assuming the
conjecture above, we record our Betti numbers for the resolution given in Theorem 3.8 in a
clean way:

Corollary 3.10. Let S = ⟨m,mh+ δ,mh+2δ, . . . ,mh+kδ⟩ be a numerical semigroup with
k ∤ m. If Conjecture 3.9 holds, then the Poincaré series of the semigroup algebra R is

PR
K (z) =

1 + z

1− kz + (α− 1)z2
.

Proof. We have already established a minimal free resolution when δ ≡ 1 (mod m). Now, for
a general δ with gcd(δ,m) = 1, Proposition 2.27 tells us that the equivalence class of δ modulo
m induces an Z×

m automorphism on the Kunz poset of S. Applying this automorphism to
the minimal free resolution obviously does not change the degrees of the free modules, so
the result follows after noticing that |Wd| = βd, where βd are the Betti numbers for K over
R. Finally, apply Proposition 3.5 to finish the proof, noting that the generating function of
the recursion given in that proposition is exactly the Poincaré series claimed here. □

The careful reader will notice that the assumption α ̸= 0 (equivalently, k ∤ m) is only
used twice throughout this entire proof — namely, in Case II of the proof of Lemma 3.7,
where we needed to conclude ck−α ̸∈ {k, 2k, . . . , qk} to derive a contradiction and in small
considerations of the minimality of our constructed resolution. The usage of this condition
at these specific stages in the proof is quite strange, and seemingly arbitrary. In fact, when
k | m, we have the following conjecture:
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Conjecture 3.11. Let S = ⟨m,mh + δ,mh + 2δ, . . . ,mh + kδ⟩ be a numerical semigroup
with k | m. Then the Poincaré series of the semigroup algebra R is

PR
K (z) =

1 + z

1− kz + (k − 1)z2
.

In actuality, this is an extension of the corollary, as in this case m ≡ 0 ≡ k (mod k), so
we simply take the “shifted” remainder α = k.

Example 3.12. Let S = ⟨10, 11, 12, 13, 14⟩, so m = 10, k = 4, and α = 2. Though Theorem
2.26 does not give an explicit expression for the maps ∂′

d : F ′
d → F ′

d−1, but we can still
construct the first two matrices from scratch. Theorem 3.8 gives the free resolution

F ′
• : 0←− K←− R

[
y x1 x2 x3 x4

]
←−−−−−−−−−−−−−−− R5 ∂′

2←−− R19 ∂′
3←−− R71 ←− · · · ,

where the matrix for ∂′
2 : R

19 → R5 is given by

01 02 03 04 11 12 13 21 22 23 2− 31 32 33 3− 41 42 43 4−


0 x1 x2 x3 x4 −y4

1 −y x1 x2 x3 −x4 −x4 −y3 −x4

2 −y −y x1 x2 x3 x2
4 −x4 −x4 −y3

3 −y −y −y x1 x2 x3 x2
4 −x4

4 −y −y −y −y x1 x2 x3 x2
4

Observe that our 19 columns are indexed by precisely the elements of W2; in particular,
the 1∗ “block” (with the asterisk denoting a letter among {0, 1, 2, 3, 4,−1}) is three columns
wide, instead of four (as with the 0∗, 2∗, 3∗, and 4∗ blocks), as the word 1− is forbidden.

Remark 3.13. Let S = ⟨m,mh+ δ,mh+ 2δ, . . . ,mh+ kδ⟩ be a numerical semigroup with
k ∤ m. As usual, let α ∈ {1, . . . , k− 1} denote the remainder of m when divided by k. Then
generalizing the previous example, the existence of the term xwd

eŵ in the map definition for
∂′
d : F ′

d → F ′
d−1 guarantees a block form specified as follows: only the three following row

matrices can fill the (w,w∗)-entry of the block matrix (here, the columns are blocked, as
represented by the asterisk):

(i) If wd−1 = −α, then X̃ =
[
x1 x2 · · · xk−1 xk

]
appears.

(ii) Else, if wd−1 ∈ {1, 2, . . . , α − 1}, then X̂ =
[
x1 x2 · · · xk−1

]
appears. Note that

if α = 1, then X̂ never appears down a block diagonal.
(iii) Otherwise, X =

[
x1 x2 · · · xk−1 xq

k

]
appears, where q = 1

k
(m− α).

Again, the behavior of the other entries varies, based on the maps pd : Fd → F ′
d.

3.4. One Constructive Case: A Complete Top Row. We remark that the proof of
Theorem 3.8 is somewhat nonconstructive, in that the “replacement” maps pd : Fd → F ′

d are
not explicitly defined. However, in the case where S = ⟨m,mh+δ,mh+2δ, . . . ,mh+kδ⟩ with
m ≡ 1 (mod k), we have explicit definitions of the maps pd. Notice that this is precisely the
case where the Kunz poset of S has a complete top row, as per our comment after Theorem
2.26.

Throughout (except where specified), take α = 1, Wd as the set of valid words of length d
corresponding to α = 1, Fd to be the free modules in the Apéry resolution of S, and F ′

d as
defined in the previous subsection.
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Corollary 3.14. Let S = ⟨m,mh+ δ,mh+ 2δ, . . . ,mh+ kδ⟩ be an extra-generalized arith-
metical numerical semigroup with δ ≡ 1 (mod m) and m ≡ 1 (mod k). Then a minimal
infinite free resolution of the ground field K over the semigroup algebra R is

F ′
• : 0←− K←− F ′

0 ←− F ′
1 ←− F ′

2 ←− F ′
3 ←− · · · ,

where the free modules F ′
d are defined by F ′

d = ⟨ew : w ∈ Wd⟩, and each boundary map
∂′
d : F

′
d → Fd−1 is given by

∂′
d(ew) = xwd+1

pd−1(eŵ) +
d−1∑
i=1

(−1)d−iybwi,wi+1pd−1(eτiw),

with ŵ, τiw, and bwi,wi+1
are as defined in the Apéry resolution. The maps pd : Fd → F ′

d

are given by pd(ew) := ew for all w ∈ Wd. In the case that w contains exactly one letter wi

with wi ∈ {k + 1, k + 2, . . . , 2k − 1}, with wj ∈ {0, 1, 2, . . . , k,−1} for all j ̸= i, we define

w̃ :=

{
(w1, w2, . . . , wi − k, wi+1, wd) if wj ̸= −1 for all j > i

(w1, w2, . . . , wi − k, . . . , wj0 + k, . . . , wd) if j0 is the minimal j > i with wj = −1,

so that

pd(ew) :=

{
xkew̃ if wj ̸= −1 for all j > i

yqh+δew̃ otherwise,

where q = 1
k
(m− 1).

Proof. Simply observe that this choice of pd satisfies pd−1∂d = ∂′
dpd and pd∂d+1(ew) =

∂′
d+1(ew) for all w ∈ Wd+1. Finally, our choice of pd restricts to the identity on F ′

d, and
for w ̸∈ Wd, pd(ew) is clearly reduced. □

Notice that we have only specified the linear maps pd : Fd → F ′
d for certain words w;

however, even with pd partially constructed, this still gives a complex explicit description of
the minimal free resolution for S, as the words w for which we specified pd are exactly the
ones that appear in the calculation of the maps ∂′

d.

Example 3.15. Let S = ⟨13, 14, 15, 16, 17⟩, so m = 13 and k = 4. Then Corollary 3.14
gives the free resolution

F ′
• : 0←− K←− R

[
y x1 x2 x3 x4

]
←−−−−−−−−−−−−−−− R5 ∂′

2←−− R20 ∂′
3←−− R80 ←− · · · ,

where the matrix for ∂′
2 : R

20 → R5 is given by
01 02 03 04 11 12 13 1− 21 22 23 2− 31 32 33 3− 41 42 43 4−


0 x1 x2 x3 x4 −y5

1 −y x1 x2 x3 x3
4 −x4 −y4 −x4 −x4

2 −y −y x1 x2 x3 x3
4 −x4 −y4 −x4

3 −y −y −y x1 x2 x3 x3
4 −x4 −y4

4 −y −y −y −y x1 x2 x3 x3
4

Notice that the graded degrees corresponding to each ew, where w ∈ W2, relates to either
a basic commutativity relation within the poset, a trade of factorizations within the Kunz
poset, or a trade corresponding to an outer Betti element in the Kunz poset of S (Figure 2,
also cf. the discussion of Example 3.3). This is listed in Table 1:
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Degree n Words w ∈ W2 with deg(ew) = n Type
27 01 Commutativity: a0 + a1 = a1 + a0
28 02 Commutativity: a0 + a2 = a2 + a0
29 03 Commutativity: a0 + a3 = a3 + a0
30 04 Commutativity: a0 + a4 = a4 + a0
28 11 Outer Betti: a1 + a1 = 28
29 12, 21 Outer Betti: a1 + a2
30 13, 22, 31 Outer Betti: a1 + a3 and a2 + a2
31 23, 32 Inner Trade: a2 + a3 = a1 + a4 = 31
32 33, 42 Inner Trade: a3 + a3 = a2 + a4 = 32
33 43 Commutativity: a3 + a4 = a4 + a3
65 1− Outer Betti: a1 + a−1

66 2− Outer Betti: a2 + a−1

67 3− Outer Betti: a3 + a−1

68 4− Outer Betti: a4 + a−1

Table 1. Words indexing the columns of ∂′
2, S = ⟨13, 14, 15, 16, 17⟩.

To demonstrate the replacement maps pd, we compute

∂′
3(e23−) = x−1p2e23 − y4p2e22 + y0p2e5−

= x−1e23 − y4e22 + y0(y4e13)

= x−1e23 − y4e22 + y4e13,

with each term above having graded degree 82, and

∂′
5(e42212) = x2p4e4221 − y1p4e4223 + y1p4e4232 − y1p4e4412 + y0p4e6212

= x2e4221 − ye4223 + ye4232 − y · 0 + y0(y1e6212)

= x2e4221 − ye4223 + ye4232 + ye6212,

with each term above (including the zero term) having graded degree 76.

4. Numerical Semigroups with Small Multiplicity

The infinite resolutions ofK over all numerical semigroup algebras withm ≤ 4 have already
been categorized in previous papers (e.g., [Gom+24]) In this section we aim to categorize
the infinite resolutions of all numerical semigroups with m ∈ {5, 6, 7}. Since semigroups
with the same Kunz poset have the same resolution up to changes in the exponent of y,
and Kunz posets that are permutations of each other have identical resolutions up to an
automorphism of Z×

m given in Proposition 2.27, we can limit our work to one Kunz poset in
each permutation orbit within the Kunz cone. Emily O’Sullivan provides the m = 5 Kunz
cone in [OSu23], and other poset data may be readily computed. As demonstrated in the
extra-generalized arithmetical case, pattern-avoiding words provide a useful combinatorial
framework for understanding the maps that define free resolutions of the base field over the
semigroup algebra. In this section, we provide conjectures for the valid words that define
free resolutions of semigroups with small multiplicity. In particular, we consider semigroups
with 5, 6, and 7 generators. For each number of generators we consider each possible Kunz
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poset and provide a conjecture for the set of patterns that must be avoided by its valid
words. These conjectures are supported by computational data.

In the following section, the alphabet of letters in a word is Zm, where m is the multiplicity
of the poset, and in each case, the valid words of length 1 are {0, 1, 2, . . . ,m − 1}. For all
conjectures, the valid words of length d correspond exactly to the graded Betti numbers of
Fd via deg(w1, . . . , wd) =

∑d
i=1 awi

.

4.1. Conjectured Resolutions for Multiplicity 5. In this section, we give a short survey
of all Kunz posets corresponding to faces of the Kunz cone C5. Note that we have catego-
rizations for four of the posets on C5: three are the posets of extra generalized arithmetical
numerical semigroups, so their resolutions are categorized earlier in this paper, and the to-
tal order Kunz poset resolution is also already known. These four posets are illustrated in
Figure 3.

0

1 2 3 4

0

21

3 4

0

321

4

1
2
3
4

0

Figure 3. Kunz posets for m = 5 for which infinite free resolutions are
known.

Figure 4 provides the five Kunz posets, up to an Z×
5 automorphism, that do not correspond

to extra-generalized arithmetical numerical semigroups.
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1
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0

1
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P4

0

1
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4

3

P5

Figure 4. Kunz posets for m = 5 for which infinite free resolutions are not
known.

Poset Betti numbers Forbidden subwords

P1 βd = 2d+ 1 Φ = {2, 3, 00, 10, 11, 40, 144}
P2 β1 = 4, βd = 3βd−1 − βd−2 Φ = {4, 00, 10, 13, 20, 30}
P3 β1 = 4, βd = 3βd−1 Φ = {00, 02, 10, 11, 20, 22, 30, 32, 40, 42}
P4 β1 = 3, βd = 2βd−1 Φ = {2, 00, 03, 10, 11, 30, 33, 40, 43}
P5 β1 = 3, βd = 2βd−1 Φ = {00, 02, 03, 10, 11, 13, 20, 22, 23, 30, 32, 33, 40, 42, 44}

Table 2. m = 5 Betti Number Conjectures



22 T. CHO, K. FAVAZZA, A. JONES, N. JOSEPH, AND M. MACDONALD

We now give a conjecture for infinite free resolutions of K over R, where S corresponds to
the posets Pi above.

Conjecture 4.1. The valid words of the above posets are all possible words except those
containing the following forbidden subwords, given in Table 2, with the beginning of conjec-
tured minimal resolutions in Table 3.

P1
...←− R3

01 04 14 41 44


0 x1 x4 −y• −y•

1 −y x4 −x2
1

4 −y x1 x4

←−−−−−−−−−−−−−−−−−−−− R5

014 041 044 141 414 441 444



01 x4 −x2
1 y• −y•x1

04 x1 x4 y• y•

14 y x1 x4

41 y x4 −x2
1

44 y x1 x4

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R7 ...←−

P2
...←− R4

01 02 03 11 12 21 22 23 31 32 33


0 x1 x2 x3 −y• −y•

1 −y x1 x2 x3 −y•

2 −y −y• x1 x2 x3

3 −y −y• −y• −y•x1 x1 x2 x3

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R11 ...←−

P3
...←− R4

01 03 04 12 13 14 31 33 34 41 43 44


0 x1 x3 x4 −y• −y•

1 −y x2
1 x3 x4 −y• −y•x1 −y•x1

3 −y −y• x1 x3 x4 −y•

4 −y −y• −y• x1 x3 x4

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R12 ...←−

P4 0←− R

0 1 4[ ]
y x1 x4

←−−−−−−−−− R3

01 04 13 14 41 44


0 x1 x4 −y• −y•

1 −y x3
1 x4 −y•x2

1

4 −y −y• x1 x4

←−−−−−−−−−−−−−−−−−−−−−−−−−− R6 ...←−

P5 0←− R

0 1 4[ ]
y x1 x4

←−−−−−−−−− R3

01 04 12 14 41 43


0 x1 x4 −y• −y•

1 −y x2
1 x4 −y•x4

4 −y −y•x1 x1 x2
4

←−−−−−−−−−−−−−−−−−−−−−−−−−−− R6 ...←−

Table 3. m = 5 Resolution Conjectures
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4.1.1. Notes on Connections to Known Cases. Consider the poset P2 and the following poset
E that corresponds to an extra-generalized arithmetical numerical semigroup.

0

321

4

P2

0

321

4

E

The conjectured resolution of K over the semigroup algebra described by P2 is very similar
to the resolution of K over the semigroup algebra described by E. In particular, the two
resolutions appear to have the same ungraded Betti numbers. We suspect that they also
have the same graded Betti numbers because E is on a lower dimensional subface of the face
containing P2, meaning the resolution of K over the semigroup algebra associated with P2

must be a resolution of the semigroup algebra of E as well, albeit not necessarily a minimal
one.

An algebraic argument for why resolutions are likely to be similar is because the inner
trade x1x3 = x2

2 in the EGANS case becomes an outer Betti element x2
2 = y•x1x3 in P2

case. Since outer Betti elements and inner trades play essentially the same role in the second
matrix of the resolution, the second matrices of the two resolutions differ only by the power
of y appearing in the corresponding column, which is 0 in the EGANS case and must be
non-zero in the P2 case.

Similar patterns seem to occur in other situations where one starts with an EGANS
poset and moves to a higher dimensional face by removing inner trades. For example,
the corresponding minimal resolutions of these three posets have the same Betti numbers,
suggesting they have the same structure:

0

6 7

1 2 3 4 5

0

6 7

1 2 3 4 5

0

6 7

1 2 3 4 5

These observations suggest that the minimal resolutions we have constructed here corre-
sponding to EGANS posets may also give us the corresponding resolutions of a wider set
of posets. Of course, one cannot remove inner trades indefinitely without impacting the
minimal resolution. In future work, we hope to examine this pattern further and determine
exactly when it occurs.

4.2. Future Work for m = 6. Figure 6 shows the five posets (up to the unique non-trivial
automorphism of Z×

6 ) for which we know minimal free resolutions over their corresponding
semigroup algebras — the chain has an easy resolution with βd = 2 for all d, and the rest
correspond to posets for extra-generalized arithmetical numerical semigroups.

Figure 5 contains all remaining multiplicity 6 Kunz posets corresponding (up to a Z×
6

automorphism). The infinite free resolutions over their corresponding semigroup algebras
are known. In future work, we aim to find subword avoidance rules that govern the infinite
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Figure 5. Kunz posets for m = 6, up to a Z×
6 automorphism, for which

infinite free resolutions are not known.

free resolutions of K over the semigroup algebras associated with the above posets. We
suspect that many of the above sets of forbidden words are predictable extensions of the sets
of forbidden words in corresponding m = 4 cases. We hope to uncover similar resolutions
for embedding dimension 7.
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Figure 6. Kunz posets for m = 6 for which infinite free resolutions are
known, up to a Z×

6 automorphism.

Code

We used Macaulay2 to generate minimal free resolutions and Betti numbers in order to
formulate conjectures. The reader may find the code used at this GitHub repository:

https://github.com/aljones3/NSFreeResolutions/tree/main
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