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Abstract. We study k-triangulations on the half cylinder with arbitrarily many marked
points on a single boundary, generalizing the work of V. Pilaud and F. Santos and expand-
ing upon work of M. Lepoutre. Extending work of C. Stump, we develop a theory of pipe
dreams on cylindrical polyominoes, enumerate these pipe dreams, and show that the corre-
sponding pipe complexes are pure, connected, and pseudomanifolds. We conjecture there is
a bijection between these cylindrical pipe dreams and periodic triangulations of polygons.
We prove the purity of the simplicial complexes corresponding to k-triangulations on the
half cylinder when k = 2. We additionally conjecture a bijection between k-triangulations
on the half cylinder and pipe dreams on cylindrical polyominoes. Assuming enumeration
of k-triangulations of the half-cylinder with n marked points, we prove the existence of a
cyclic sieving phenomenon.
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1. Introduction

A k-triangulation of an n-gon is a maximal set of diagonals that forbids any subset of
k + 1 pairwise crossing diagonals. The usual notion of triangulation is a 1-triangulation. V.
Pilaud, F.Santos, J. Jonsson, and many other authors have proved various structural results
about k-triangulations of polygons:

(i) Every k-triangulation is star decomposable, that is, it is a complex of k-stars, which
are a generalization of triangles.

(ii) The simplicial complex of k-triangulations of a polygon is pure.
1
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(iii) The simplicial complex of k-triangulations of a polygon has flip property, that is,
there always exists a unique way to replace a diagonal in one k-triangulation and
obtain another k-triangulation. Furthermore, this flip graph is connected.

(iv) The number of k-triangulations of a polygon is given by a Catalan determinantal
formula.

(v) The simplicial complex for k-triangulations of a polygon is a vertex-decomposable
sphere.

In [Lep19], multitriangulations on surfaces are introduced as projections of periodic multi-
triangulations of the infinite polygons. Since k-triangulations on the half-cylinder with n
marked points on a single boundary do not correspond to k-triangulations on its universal
cover, however, a different approach is needed. In this report we define k-triangulations on
surfaces in a more natural way as a subset of edges on a surface S that do not yield (k + 1)
crossings when lifted to the universal cover S. As noted in [Lep19], the primary obstacle
in proving the flip property on general surfaces comes in proving the flip property on the
half cylinder. As such, the flip property on the half cylinder is the primary focus of our
work. To that end, Theorem 3.9 shows that 2-triangulations on half cylinder decompose
as complexes of 2-stars. Using a bijection between 2-triangulations of the half cylinder and
triangulations of a regular polygon invariant under certain rotations, Corollary 4.3 shows
that the corresponding complexes are pure using the corresponding result in [PS08].

2. Background

Definition 2.1. Let Cn denote the annulus with n marked points α[0], . . . , α[n−1] on its outer
boundary, where [i] is the modulo class of i mod n. We refer to Cn as a half-cylinder or
(n, 0)-annulus.

In general, we will let S denote a surface and S its universal cover. For most of this
section, we will only consider Cn, the half cylinder as defined above. The universal cover of
Cn, denoted Cn, has vertices {αi | i ∈ Z}. Take any vertex v = αi ∈ Cn, we define v+j := αi+j

for any integer j. An edge e on Cn is given by two distinct vertices u, v and is denoted by
[u, v] or [v, u]. Similarly we define e + n := [u + n, v + n]. We say an edge e is a translation
of an edge f if e = f + ℓn for some ℓ ∈ Z, equivalently π(e) = π(f).
There is a natural projection map π : Cn → Cn. Note that on vertices, we have π(v+n) =

π(v) for any vertex v ∈ Cn.
Moving forward, we will not refer to vertices of Cn or Cn using the subscripts in the

definition.
Note that there is a natural order of edges on Cn where u < v if and only if u = v + n

for some n ∈ Z+ consistent with a counterclockwise orientation on Cn. When considering a
subset of vertices of Cn, we have a cyclic order ≺ given by the counterclockwise cyclic order
on the corresponding finite or infinite polygon.

On Cn, edges e1 and e2 intersect if a1 ≺ b1 ≺ a2 ≺ b2 for some labeling of vertices
e = [a1, b1], e2 = [a2, b2]. A k-crossing on Cn is given by a set of edges E = {e1, e2, · · · , ek}
that pairwise intersect.

Take a subset {z0, · · · , z2k} of vertices on Cn ordered such that

z0 ≺ z1 ≺ · · · ≺ z2k.

A k-star polygon S defined on this subset contains all vertices zi and edges [zi, zi+k] on Cn

with subscripts reduced modulo n. Moving forward, the vertices of S will be denoted in
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star order as s0, · · · , s2k where sj = zkj. This numbering is unique given a choice of s0. We
use these definitions of k-crossings and k-stars on Cn to define analogously k-crossings and
k-stars on Cn.
Definition 2.2. A k-crossing on Cn is the projection π(E) of a k-crossing E = {e1, · · · , ek}
on Cn.

Definition 2.3. A k-star on Cn is the projection π(S) of a k-star S on Cn.

We define a k-triangulation T on Cn to be a maximal set of n-periodic edges on Cn, that
is v ∈ T ⇐⇒ v + n ∈ T . As with k-crossings and k-stars, the definition of a k-triangulation
on Cn follows from that on Cn.

Definition 2.4. A k-triangulation T of Cn is the projection π(T ) of a k-triangulation T on
Cn.

For edges u, v ∈ Cn, we say v−u = j if u+j = v. The length of an edge [u, v] ∈ Cn is given
by |v−u|. We also say π−1([v, u]) has length |v−u|. This informs the following 3-definitions.

Definition 2.5. An edge [u, v] ∈ T is a k-irrelevant edge if |v − u| < k

Note that no k-irrelevant edge is contained in a k-crossing E ⊂ Cn. Thus every k-
triangulation T (resp. T ) will contain every k-irrelevant edge.

Definition 2.6. An edge [u, v] ∈ T is a k-boundary edge if |v − u| = k.

As with irrelevant edges, no edge of length k is contained in a k-crossing E ⊂ Cn. Thus
every k-triangulation T (resp. T ) will contain every edge of length k.

Definition 2.7. An edge [u, v] ∈ T is a k-relevant edge if k < |v − u| ≤ nk.

In Lemma 3.2 we show that every k-triangulation T on Cn contains exactly one edge of
length kn.

Definition 2.8. The rank of a k-triangulation T on Cn is the number of k-relevant edges in
T.

Definition 2.9. An angle of a k-triangulation T on Cn is given by a pair of edges [u, v], [v, w] ∈
T such that u ≺ v ≺ w and there exist no angle bisectors [v, w0] in T with w0 ≺ u ≺ v ≺ w.
We will denote such an angle by ∠(u, v, w). An angle ∠(u, v, w) of T is k-relevant if [u, v] or
[v, w] is k-relevant.

Note that by the above, every k-relevant angle will either contain two k-relevant edges or
a k-relevant edge and a k-boundary edge.

Many of the above definitions can be extended to orientable surfaces. In the future when we
consider k-triangulations beyond Cn, we will let S denote a surface and S its universal cover.
[Lep19] notes that similar the half-cylinder, the combinatorial information of k-crossings on
the universal cover for general surfaces with finitely many marked points on finitely many
boundaries is modeled by an infinite polygon.

3. Multitriangulations on the half cylinder

3.1. Preliminary Lemmas. In this subsection, let T denote a 2-triangulation of Cn, the half
cylinder or (n, 0)-annulus corresponding to a k-triangulation π−1(T ) = T on the universal
cover Cn.
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Lemma 3.1. A k-triangulation T on Cn contains no edges of length ℓ > kn.

Proof. Suppose otherwise, let e = [v, v + ℓ] be an element of the preimage of this length
ℓ > kn edge on Cn. We have

v < v + n < · · · < v + kn < v + ℓ < v + ℓ+ n < v + ℓ+ 2n < . . . v + ℓ+ kn,

showing that {e, e+n, e+2n, . . . , e+kn} forms a (k+1)-crossing, which cannot be the case
since T is (k + 1)-crossing free. □

Lemma 3.2. Every k-triangulation T on Cn has exactly one edge of length kn.

Proof. Existence: Suppose otherwise, we pick an edge in T with maximal length and take
e+ tn, t ∈ Z to be the lifting of this edge in T . Denote e = [v, v+ ℓ]. We claim: T ∪{f + tn |
t ∈ Z} is (k + 1)-crossing free for the edge f := [v, v + 2kn].
Suppose there exists a (k + 1)-crossings in T ∪ {f + tn | t ∈ Z}. Note that if a (k + 1)-

crossing E involves f + t1n and f + t2n, then for every r ∈ [t1n, t2n] such that f + rn /∈ E,
we have that f + rn intersects with every edges in E. Let j ≥ 1 be minimal such that there
exists a (k + 1)-crossing involving only j translations of f + tn. Without loss of generality,
let them be f, f+n, . . . , f+(j−1)n. Note that f+(j−1)n and e+(j−1)n do not intersect.
So we can replace f + (j − 1)n by e+ (j − 1)n, and then we get a (k+ 1)-crossing involving
j − 1 translations of f + tn, contradicting with the minimality of j. So we have proved the
claim. By the claim, T is not maximal, and we get a contradiction. Hence there exists an
edge of length kn in T .
Uniqueness: Suppose there are two distinct edges of length kn in T , let e = [v, v+kn] and

f = [v+r, v+r+kn] be a copy of these two edges respectively on the universal cover S such
that 0 ≤ r ≤ n−1. Then the edges e, f, e+n, e+2n, . . . e+(k−1)n form a (k+1)-crossing,
which cannot be the case since T is (k + 1)-crossing free. □

Lemma 3.3. Let [u, v] and [w, z] be k-boundary or k-relevant diagonals with v > u and
z > w. If u < z and w + kn < v, then [u, v] and [w + kn, z + kn] cross.

Proof. We will show that u < w + kn < v < z + kn. Since the middle inequality is given by
the assumption, if suffices to show u−w < kn and v− z < kn. Because [u, v] and [w, z] are
k-boundary or k-relevant diagonals, we have v−u ≤ kn and z−w ≤ kn, which implies that

u− w < z − w ≤ kn,

and

v − z < v − u ≤ kn.

□

Lemma 3.4. Let T be the lift of a k-triangulation T of Cn. Let ∠(u, v, w) be an angle of
T such one of [u, v] and [v, w] is not of length kn. Let E = {[a1, b1], . . . , [ak−1, bk−1]} ⊆ T
be the v-maximal (k − 1)-crossing intersecting ∠(u, v, w) with order u ≺ a1 ≺ a2 ≺ · · · ≺
ak−1 ≺ v ≺ b1 ≺ b2 ≺ · · · ≺ bk−1 ≺ w. Then |w − ak−1| ≤ kn, and similarly, |b1 − u| ≤ kn.

Proof. Case 1: Suppose u < v < w. Then u < a1 < · · · < ak−1 < v < b1 < · · · < bk−1 < w.
For the sake of contradiction, suppose w − ak−1 > kn. We claim that [u + kn, v + kn],
[a1+kn, b1+kn], . . . , [ak−1+kn, bk−1+kn], and [v, w] form a (k+1)-crossing. Since the first
k diagonals form a shift of k-crossing by kn, it suffices to show that they also cross [v, w].



k-TRIANGULATIONS ON SURFACES 5

We first show that [u+kn, v+kn] and [v, w] cross. Notice that in this case, if one of [u, v]
and [v, w] is of length kn, then the other one is necessarily of length kn. Hence, both of them
have length strictly less than kn. In other words, v < u + kn and w < v + kn. Combining
with the fact that u + kn < ak−1 + kn < w, we have v < u + kn < w < v + kn and thus
[u + kn, v + kn] and [v, w] cross. Second, by Lemma 3.3, for each 1 ≤ i ≤ k − 1, we know
[ai + kn, bi + kn] and [v, w] cross because v < bi and ai + kn < ak−1 + kn < w.
Case 2: Suppose w < u < v. Then w < u < ak−1 < v. Since [v, w] is k-relevant or

k-boundary, we have v − w ≤ kn. Because ak−1 < v, we have ak−1 − w < kn as desired.
Case 3: Suppose v < w < u. Then v < b1 < · · · < bk−1 < w. If u < ak−1, given

that [ak−1, bk−1] is k-relevant or k-boundary, we obtain ak−1 − w < ak−1 − bk−1 ≤ kn.
Hence, we further assume that ak−1 < v. Then there exists some 1 ≤ i ≤ k − 1 such
that ai < · · · < ak−1 < v < b1 < · · · < bk−1 < w < u < a1 < · · · < ai−1. For the sake of
contradiction, suppose w−ak−1 > kn. We claim that [a1, b1], . . . , [ai−1, bi−1], [ai+kn, bi+kn],
. . . , and [ak−1 + kn, bk−1 + kn] form a (k− 1)-crossing intersecting ∠(u, v, w), which violates
the v-maximality of E. Since the first i− 1 and the last k− i diagonals are already mutually
crossing, it suffices to show the following three things:

(i) [bj, aj] and [aℓ + kn, bℓ + kn] cross for 1 ≤ j ≤ i− 1 and i ≤ ℓ ≤ k − 1.
(ii) [aℓ + kn, bℓ + kn] and [v, u] cross for i ≤ ℓ ≤ k − 1.
(iii) [aℓ + kn, bℓ + kn] and [v, w] cross for i ≤ ℓ ≤ k − 1.

By Lemma 3.3, (i) is true because bj < bℓ and aℓ + kn ≤ ak−1 + kn < w < aj; (ii) is true
because v < bℓ and aℓ + kn ≤ ak−1 + kn < w < u; and (iii) is true because v < bℓ and
aℓ + kn ≤ ak−1 + kn < w. □

3.2. 2-triangulations on the half-cylinder. The following lemmas and theorems only
relate to 2-triangulations on the half cylinder Cn. We begin with some preliminary lemmas
about 3-crossings on Cn before proving the star decomposition and a key maximality lemma.

Lemma 3.5. Let e = [u1, u2], f = [w1, w2] be edges in T annulus positioned such that
u1 < w1 < u2 < w2. Then u2 − w1 ≤ n.

Proof. Assuming that u2 − w2 > n gives w1 − u1, w2 − u2 < n. Then we have u1 < w1 <
u1 +n < u2 < w2 < u2 +n, yielding a 3-crossing [u1, u2], [w1, w2], [u1 +n, u2 +n]. Thus since
T is 3-crossing free we must have u2 − w1 ≤ n. □

Lemma 3.6. Let e = [u1, u2], f = [w1, w2] ∈ T be edges on the n+ 0 annulus of length > n
positioned such that u1 < w1 < u2 < w2. Then w2 − u1 ≥ 2n.

Proof. Assume for contradiction that w2 − u1 < 2n, we will produce a 3-crossing in T . Since
u2 − u1 > n and w2 − u1 < 2n, we must have w2 − u2 < n. Similarly, w1 − u1 < n, giving

w1 − n < u1 < w1 < w2 − n < u2 < w2

and yielding a 3-crossing [u1, u2], [w1, w2], [w1 − n,w2 − n]. □

Lemma 3.7. Let e, f be edges of length > n on the (n, 0)-annulus such that e, f, f +n gives
a 3-crossing. Then there exists a 3-crossing containing two elements of π−1(π(e)) and one
copy of π−1(π(f))

Proof. Let e = [a, b] with a < b and f = [c, d] with c < d. We have three cases:
Case 1: a < c < c + n < b < d < d + n : We have b − c > n, as such we also have

a− n < a < c < b− n < b < d, giving a 3-crossing e, e− n, f.
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Case 2: c < c + n < a < d < d + n < b : Again we have b − c > n, then also c < a <
a+ n < d+ n < b < b+ n, giving a 3-crossing e, e+ n, f + n.
Case 3: c < a < d < c+n < b < d+n : If a+n < d, we get c < a < a+n < d < b < b+n,

yielding a 3-crossing e, e + n, f. If a + n ≥ d, note that b + n > d + n since b > d, giving a
3-crossing e, e+ n, f + n. □

In the following let ∠(u, v, w) denote an angle of T such that [u, v] or [v, w] are not of
length 2n. Let e = [a, b] ∈ T be the unique v-maximal edge intersecting ∠(u, v, w) labeled
such that u ≺ a ≺ v ≺ b ≺ w.

Lemma 3.8. Assume there exists a 2-crossing f1, f2 intersecting [u, b] with f1 ∈ T and
f2 ∈ π−1(π([u, b])). Then there also exists a 3-crossing [u, b], f ′

1, f
′
2 for some f ′

1, f
′
2 ∈ T

Proof. By Lemma 3.4 we know that either f1 or f2 is not contained in π−1(π([u, b])). Without
loss of generality we can then assume that f1 ∈ T . By the conditions laid out in the claim,
we can then determine that w ⪯ c1 ≺ u ≺ d1 ⪯ a or v ⪯ d1 ≺ b ≺ c1 ≺ w where f1 = [c1, d1].
Note that if f2 ∈ T as well the claim is satisfied under (iii), so we will proceed assuming
f2 ∈ π−1(π([u, b])). If there exists a 3-crossing amongst the edges f2, [a, b], [v, w], [v, u] then
(iii) is satisfied. Otherwise we have four possibilities:

(i) w ⪯ ci ≺ u ≺ di ⪯ a for i ∈ {1, 2}
(ii) v ⪯ di ≺ b ≺ ci ≺ w for i ∈ {1, 2}
(iii) f2 bisects ∠(u, v, w) and w ⪯ c1 ≺ u ≺ d1 ⪯ a
(iv) f2 intersects ∠(u, v, w) positioned v-farther than [a, b].

In case (i), a translation of the 3-crossing [v, u], f1, f2 will satisfy the claim. Likewise in
case (ii), a translation of the 3-crossing [b, a], f1, f2 will satisfy the claim.

In case (iii), let f2 = [v, c2]. If c2 ∈ π(π−1(u)) then c1 < c2 < u < d1 or d1 < v < b < c1,
giving |c1 − d1| > n and satisfying the claim by Lemma 3.7. If v ∈ π(π−1(u)), we have two
possibilities: u < c1 ≤ a < v < b < w ≤ d1 and b < w ≤ c1 < u < d1 < a < v < b, if
|c1 − d1| > n we again are done by Lemma 3.7. Thus we proceed assuming |c1 − d1| ≤ n
and v = u ± n. We have two possibilities: u < d1 ≤ a < v < b < w ≤ c1 and b < w ≤
c1 < u < d1 < a < v < b. If u < d1 ≤ a < v < b < w ≤ c1, we additionally have
u < d1 < v = u + n < b < c1 < v + n, giving a 3-crossing [u + n, v + n], [u, b], [c1, d1],
satisfying the claim. If b < w ≤ c1 < u < d1 < a < v < b, since a − b > u − b > n we get
a 3-crossing [b, a], [b + n, a + n], [c1, d1], which cannot be the case since T is 3-crossing free.
This concludes case (iii).
For case (iv), we need only consider the position of f2. Set f2 = [c2, d2] with u ≺ d2 ⪯

a ≺ v ≺ b ⪯ c2 ≺ w ≺ u. Again if |d2 − c2| > n we are done by Lemma 3.7, so we
proceed assuming |d2 − c2| ≤ n. If c2 = b ± n, then we must have |v − w| > n. Then
since [v, w], [b, u], [c2, d2] gives a 3-crossing, Lemma 3.7 produces a 3-crossing containing one
translate of [b, u] and two translates of [v, w], in which case we are done If d2 = b ± n and
|v−w| > n, again we can use Lemma 3.7 to produce a 3-crossing satisfying the claim. Thus
we proceed assuming |v − w| ≤ n. We have two cases: c2 ≤ w < u < d2 ≤ a < v < b and
d2 ≤ a < v < b < c2 ≤ w < u. Assuming c2 ≤ w < u < d2 ≤ a < v < b, we have that
b − a < b − u and b − n = d1. This gives a − n < w < u < b − n = d2 < v, showing that
[a− n, b− n] intersects ∠(u, v, w) is v-farther than [a, b] (which is positioned a < v < b) and
contradicting the conditions of the claim. In the case that d1 ≤ a < v < b < c2 ≤ w < u,
since u− v > u− b > n and [v, u], f2, [u, b] yields a 3-crossing, Lemma 3.7 gives a 3-crossing
which translated will satisfy the claim. This completes case (iv). □
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α0

α1 α2

β0

β1

x−3x−2x−1x0x1x2x3

y−2 y−1 y0 y1 y2

Figure 1. A (3, 2)-annulus with two edges (left) and the lifts of the vertices
and edges on the universal cover (right)

Theorem 3.9. Every angle ∠(u, v, w) ⊂ of T with |u− v| < 2n or |w − v| < 2n belongs to
a unique 2-star contained in T .

Proof. Let e = [a, b] denote the unique v-maximal edge intersecting ∠(u, v, w) labeled such
that u ≺ a ≺ b ≺ v ≺ w. Suppose that [u, b] /∈ T . Then there exists a 2-crossing {f1, f2} that
prevents the edge [u, b]. By Lemma 3.4 we know that f1T or f2 ∈ T , then by Lemma 3.8 we
may additionally assume that f1, f2 ∈ T . However every possible positioning of f1, f2 will
yield a 3-crossing {f1, f2, [u, v]}, {f1, f2, [w, v]}, or {f1, f2, [a, b]}, which cannot be the case
since T is 3-crossing free. Thus we conclude that [u, b] (and likewise [a, w]) are contained in T .
This shows that T contains the 2-star polygon about vertices {u, a, v, b, w}. Similarly to the
polygon case, any angle of a 2-star polygon must be an angle of T , showing uniqueness. □

Theorem 3.10. Let e be an edge on the universal cover of the (n, 0)-annulus of length < 2n
not contained in the preimage T of a 2-triangulation T. Then T ∪ {e} yields a 3-crossing.

Proof. Set e = [v1, v2]. Since |v2 − v1| < 2n, e bisects an angle ∠(u, v1, w) of T such that
[u, v1] or [v1, w] has length < 2n. Then by Theorem 3.9, ∠(u, v1, w) is contained in a 2-star
about vertices v ≺ b ≺ w ≺ u ≺ a. Since [v1, v2] bisects ∠(u, v1, w), [v1, v2], [a, w], [b, u] gives
our desired 3-crossing. □

4. Bijection: k-triangulations of annulus and periodic k-triangulations of
polygon

Definition 4.1. An n-periodic k-triangulation of a 2kn-gon is a k-triangulation of the poly-
gon that is invariant under rotation by 2π

2k
= π

k
radians and all its integer multiples.

As in the definition of k-triangulation on a polygon, in the definition of n-periodic k-
triangulation, we assume that it is a maximal collection of diagonals that avoids a (k + 1)-
crossing. The following theorem will shows n-periodic k-triangulations of the 2kn-gon exist.
The remainder of theorems in this section depend on Theorem 3.9 and Theorem 3.10. As
such, for the remainder of this section we will set k = 2. In the future we hope to generalize
Theorem 3.9 and Theorem 3.10, allowing the work in this section to apply for general k.

Theorem 4.2. For k = 2, There is a bijection ϕ between k-triangulations of Cn and n-
periodic triangulations of the 2kn-gon.
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The bijection is as follows: Let E be a k-triangulation of Cn corresponding to E on Cn.
Label all the vertices of the 2kn-gon counter-clockwise by α[i] where [i] is the congruence

class of i modulo 2kn. We define ϕ(E) = {[α[i], α[j]] | [αi, αj] ∈ E}. When restricted to

k-triangulations T on Cn, ϕ gives our desired bijection

Proof. Observe that ϕ yields a bijection between subsets of edges of Cn and n-periodic subsets
of edges on the 2kn-gon. Thus it will suffice to show ϕ and ϕ−1 preserve (k + 1)-crossings
and maximality.

First note that a (k + 1)-crossing on Cn is given by edges [u1, v1], [u2, v2], · · · , [uk+1, vk+1]
with vertices {u1 · · ·uk+1, v1, · · · , vk+1} in some cyclic order, for example u1 ≺ v1 ≺ u2 ≺ v2
when k = 2. Since the span of these vertices is less than 2kn on Cn, the given cyclic orientation
is preserved by projection to Cn and ϕ. Since information about crossing is uniquely given
by cyclic order on the endpoints, or (k+1)-crossing E on Cn will yield a (k+1)-crossing on
the 2kn-gon. Similarly, a (k+1)-crossing F on the 2kn-gon corresponds to a unique (k+1)
crossing ϕ−1(E) = F on Cn. From this we determine that a collection of edges E ⊂ Cn is
(k + 1)-crossing free if and only if ϕ(E) is (k + 1) crossing free.

Now consider a k-triangulation T of Cn. If e ∪ ϕ(T ) is (k + 1)-crossing free, we can use
Theorem 3.10 and the above to show that ϕ−1(e) ∪ T is (k + 1)-crossing free, showing
ϕ−1(e) ∈ T and thus e ∈ ϕ(T ). Thus ϕ preserves k-triangulations, specifically the maximality
property. Similarly we can show ϕ−1 preserves k-triangulations. □

As illustrated in the proof of Theorem 4.2, ϕ sends edges of Cn of length ≤ 2n to edges
of the 2kn-gon: In particular, when applied to a k-triangulation T of Cn, ϕ will yield a
k-triangulation of the 2kn-gon that is also n-periodic. For the below proofs, note that the
size of the orbit of an edge e of the 2kn-gon under our action of Z/2kZ via rotation is 2k if e
has length < nk and k if e has length = nk. Additionally, the size of the orbit of any k-star
is 2k. Using the bijection outlined in Theorem 4.2 and this information about orbits, we can
determine the number of k-stars, k-relevant edges, and edges in a given k-triangulation of
Cn.

Corollary 4.3. For k = 2, any k-triangulation of Cn contains exactly n− 1 k-stars, k(n− 1)
k-relevant edges, and k(2n− 1) edges.

Proof. Corollary 4.4 of [PS08] states that every k-triangulation of the 2kn-gon has exactly
2nk−2k k-stars, k(2nk−2k−1) k-relevant edges, and k(4kn−2k−1) edges. This gives that
every k-triangulation of Cn has (2nk − 2k)/2k = n− 1 k-stars, ((2nk2 − 2k2 − k) + k)/2k =
k(n− 1) k-relevant edges, and ((4nk2 − 2k2 − k) + k)/2k = k(2n− 1) total edges. □

Corollary 4.4. For k = 2, the k-triangulations of Cn are exactly the (k + 1)-crossing free
subsets of edges on Cn of cardinality k(2n− 1).

Proof. This follows directly from Corollary 4.3, Theorem 4.2, and [PS08] corollary 4.4. □

5. Cylindrical Polyominoes

In this section, we transform the problem of k-triangulations of Cn into an equivalent
problem framed in terms of subsets of a specified polyomino, as introduced by [Jon05]. This
language may help us visualize some technical proofs.

We start with a special polyomino P = {(i, j) ∈ Z2 | i < j} ⊆ Z2, in which every pair
(i, j) represents a diagonal [αi, αj] on the universal cover Cn. To be consistent with the next
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section of pipe dreams, we think of the y-axis in the opposite direction, as shown by the figure
below. Visually, P contains the lattice points in a half plane above the line {(−i, i) | i ∈ R}.

On the universal cover, a k-crossing is a set of diagonals (αi1 , αj1), . . . , (αik , αjk) such that
i1 < i2 < · · · < ik < j1 < j2 < · · · < jk. The inequalities of the form i1 < i2 and j1 < j2
hold if and only if (i1, j1) lies in the northwest section of (i2, j2) in P . The middle inequality
ik < j1 holds if and only if the smallest rectangle containing (i1, j1) and (ik, jk) is contained
in P . For example, in the figure above, (−3, 0) and (−1, 3) forms a 2-crossing as the red box
is contained in P ; however, they do not form a 3-crossing with (1, 4).

Definition 5.1. A k-crossing in P is a set of lattice points (i1, j1), . . . , (ik, jk) ∈ P satisfying

i1 < i2 < · · · < ik < j1 < j2 < · · · < jk.

For a k-triangulation of Cn, we know that every diagonal on the universal cover repeats
itself after shifting its endpoints by n. Similarly, we make the following definition for trian-
gulations of P .

Definition 5.2. An n-cylindrical k-triangulation of P is a maximal subset T ⊆ P that
satisfies:

(i) T is free of (k + 1)-crossing, and
(ii) for each (i, j) ∈ T , we have (i± n, j ± n) ∈ T .

Here are some observations on n-cylindrical (k + 1)-crossing-free subsets of P .
First, for (i, j) ∈ Z2 with j− i > kn, it always forms a (k+1)-crossing with k translational

copies of itself, so it is never contained in an n-cylindrical k-triangulation. In the previous
section, such a diagonal is called k-irrelevant. Second, for (i, j) ∈ Z2 with 0 < j − i < k, it
never forms a (k+1)-crossing with other diagonals, so it is contained in every n-cylindrical k-
triangulation, and it is also called k-irrelevant in the previous section. Then the k-boundary
diagonals are of the form (i, i+k) ∈ Z, and the k-relevant diagonals are of the form (i, j) ∈ Z2

with k+1 ≤ j−i ≤ kn. Visually, all possible k-relevant diagonals form a bi-infinite staircase,
and each level has length kn− k − 1.

Because P contains all the translational copies of each of its element, one can easily show
the following proposition.
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Proposition 5.3. There is a bijection between k-triangulations of Cn and n-cylindrical k-
triangulations of P .

Proof. This bijection is induced by the fact that every (i, j) corresponds to the diagonal
[αi, αj] on the universal cover Cn. □

Next, we will define k-relevant angles and k-stars on P . Let T ⊆ P be an n-cylindrical k-
triangulation. Then we define a k-relevant angle to be a pair of lattice points {(i, j), (r, s)} ⊆
T if (i, j) and (r, s) are k-relevant or k-boundary, and if they satisfy one of the following
condition:

(1) i = r, j < s, and (i, ℓ) ̸∈ T for all j < ℓ < s;
(2) j = s, i < r, and (ℓ, j) ̸∈ T for all i < ℓ < r;
(3) j = r, and (ℓ, j), (r, ℓ) ̸∈ T for all ℓ < i or ℓ > s, respectively.

This definition is tiresome, but visually, a k-relevant angle is:

(1) a pair of lattice points on the same row with no elements of T in between;
(2) a pair of lattice points on the same column with no elements of T in between;
(3) the column of one point and the row of the other intersects at some (i, i) ∈ Z2, and

no elements of T are beyond these two points.

In the universal cover, these three cases are:

(1) two diagonals with common end on the left;
(2) two diagonals with common end on the right;
(3) two diagonals with common end in the middle.

Now we walk zigzag on the k-relevant angles according to the following rule:

(1) Choose some element in T .
(2) Increase the second entry until reaching an element in T . If it terminates, go to step

(3); if not, go to step (4).
(3) Increase the first entry until reaching an element in T . Go to step (2).
(4) Move the first entry to the second. Find the element in T with this fixed second

entry and the smallest first entry. Go to step (2).

Intuitively, we travel rightwards on P , hit some element in T , travel downwards, hit another
element, and repeat. In a special case, we sometimes need to “loop” to the top. The
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equivalent process on the universal cover is that we travel along diagonals, and at each
endpoint, we rotate counter-clockwise until hitting another diagonal in the k-triangulation
and travel again. Because of the existence of k-boundary diagonals at each vertex, we know
step (3) and step (4) always terminate. For better visualization of this idea, see the next
section of pipe dreams.

Definition 5.4. If the process above traverses exactly 2k + 1 elements in T , and if in each
period, it uses step (4) exactly once, then we say the set of such 2k + 1 elements form a
k-star.

Using the polyomino model, we can visualize all the possible diagonals that cross a specific
one.

Definition 5.5. Let (u, v) ∈ P . We call

WL
(u,v) = {(a, b) ∈ T | a < u < b < v}

the left wing, and

WR
(u,v) = {(a, b) ∈ T | u < a < v < b}

the right wing.

By a careful drawing, one can see that the tips of the wings have the same shape, as
shown by the blue shaded regions in the figure below. In fact, these two tips are exactly the
translational copies of each other by kn. Formally, we can prove

Lemma 5.6. Let (i, j), (r, s) ∈ P be k-relevant or k-boundary diagonals. If (r, s) ∈ WL
(i,j)

with r + kn < j, then (r + kn, s+ kn) ∈ WR
(i,j).

Proof. We need to show that i < r + kn < j < s+ kn. Since the middle inequality is given
by the assumption, it suffices to show i− r < kn and j − s < kn. Since (i, j) and (r, s) are
k-relevant or k-boundary, we have j − i ≤ kn and s − r ≤ kn. Because (r, s) ∈ WL

(i,j), we
have i < s, which implies that

i− r < s− r ≤ kn,

and

j − s < j − i ≤ kn.

□

This is the visualization of Lemma 3.3.
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6. Cylindrical Pipe Dreams

6.1. Definitions and Fundamental Properties. In this section, we define the model
of cylindrical pipe dreams and utilize this model to prove the purity, flip property, and
connectedness of the flip graph. This model also enables us to complete the enumeration of
k-triangulations of Cn.
The RC-graphs, or (reduced) pipe dreams, are originally introduced by [FK96] and [BB93]

as a combinatorial description of Schubert polynomials. It is a tiling of 1/4 plane {(x, y) ∈
Z≥0 × Z≤0} by two kinds of pieces and (finitely many) such that no pair of pipes

crossing twice. For any pipe dream α, it determines a permutation w(α), say, w(i) = j if
the leftmost i-th pipe is connected to the upper j-th pipe. In [Stu11], Stump established
the connection between pipe dreams and multi-triangulations. We extend this work and
introduce the concept of cylindrical pipe dreams.

Definition 6.1. Given integers n and k, a cylindrical Young diagram Y of type (n, k) is an
infinite skew Young diagram (reflected along the y-axis) with a box centered at every
point in {(i, j) ∈ Z2 | k ≤ i < j ≤ kn} ⊆ Z2.

Definition 6.2. Given a cylindrical Young diagram Y of type (n, k), a cylindrical pipe dream
P of Y is a tiling of Y by four kinds of pieces , , , and such that

(i) The pipe dream is n-cylindrical, that is, all the piles at the position (i+ rn, j + rn)
for arbitrary r ∈ Z is the same as a pile at the position (i, j);

(ii) There is a tiled at the position (i, k − i) for all i ∈ Z;
(iii) For every pipe, the total number of , , it passes through is 2k+ 1 (equiva-

lently, the number of it passes through is k);
(iv) Each pipe connects (i, kn− i) and (i+kn,−i) for some i ∈ Z, or equivalently, if there

is a pipe passing through the pile at the position (i, kn − i), and it corresponds

to the part of the pile , then this pipe also passes through the pile at the

position (i+ kn,−i), which corresponds to the part of the pile . The position

of the pipe connecting (i, kn− i) and (i+ kn,−i) is defined to be i. Given two pipes
at the position i and j, the distance of these two pipes is defined to be |i− j|;
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(v) For every pair of pipes, they do not cross twice, that is, the number of piles both

pipes pass through is no more than 1.
(vi) There is exactly one in each successive n rows, tiled at the position (i, kn− i) for

some i ∈ Z.

Lemma 6.3. Given a cylindrical pipe dream of type (n, k), two pipes cross once if and only
if they have distance no more than kn.

Proof. Denote the two pipes are at the position i and j respectively, with i < j. By the
definition of cylindrical pipe dreams, the pipe at the position i connects

A := (i, kn− i)

and
B := (i+ kn,−i),

while the pipe at the position j connects

C := (j, kn− j)

and
D := (j + kn,−j).

Note that all four points lie on the line x+ y = kn. Suppose |i− j| > kn, then the relative
position of A,B,C,D is A,B,C,D, and hence the two pipes do not cross. Conversely,
suppose |i − j| ≤ kn, then the relative position of A,B,C,D is A,C,B,D, and hence the
two pipes must have an intersection. Moreover, by the definition of cylindrical pipe dreams,
these two pipes cannot cross more than once, so they cross exactly once. □

Lemma 6.4. For any sequence of n successive integers l, l+1, . . . , l+n−1, there are precisely
n− 1 pipes at these positions.

Proof. According to the definition of cylindrical pipe dreams, there is exactly one in these

n successive rows, positioned at (i, kn− i) for some i ∈ Z. Consequently, there is a pipe at
every position except for i. □

Lemma 6.5. Given a pipe, there are exactly 2k · (n− 1) pipes intersects with it.

Proof. Denote the position of this pipe by l. Then, by Lemma 6.3 and Lemma 6.4, there
are k · (n− 1) pipes intersecting with the pipe at position l whose positions are greater than
l, and another k · (n − 1) pipes intersecting with the pipe at position l whose positions are
smaller than l. □

Proposition 6.6. Let k = 2. Given a cylindrical Young diagram Y of type (n, k) and a
k-triangulation T of Cn, a cylindrical pipe dream P of Y can be obtained by tiling Y by the
following rule:

(i) a is tiled at (i, j) if there is a k-boundary edge in T connecting i and j;

(ii) a is tiled at (i, j) if there is a k-relevant edge of length kn in T connecting i and
j;

(iii) a is tiled at (i, j) if there is a k-relevant edge of length < kn in T connecting i

and j;
(iv) a is tiled in every other of Y.

Moreover, each pipe in P corresponds to a k-star on T .
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Sketch of Proof. The requirement (i) is satisfied because of the n-periodicity of k-triangulations
of T . Since k-boundary edges are exactly edges of length k, the requirement (ii) is satisfied.
Every angle made of edges of the same direction correspond to a “longest line segments” in
a pipe dream. By Theorem 3.9, every pipe then corresponds to a k-star on T , and hence the
requirement (iii) and (iv) are satisfied. Analogous to [PS08, Corollary 4.3], two k-stars on
T can have at most one common angle bisector, which corresponds to a intersected by

the two pipes. So the requirement (v) is satisfied. By Lemma 3.2, there is exactly one edge
of length kn in the k-triangulation of Cn, hence the requirement (vi) is satisfied.

Remark. Proposition 6.6 for arbitrary k remains to be a conjecture, and it can be proved
if we have proved Theorem 3.9 for arbitrary k.

□

Conjecture 6.7. Let k ∈ Z, then Proposition 6.6 gives a canonical bijection between k-
triangulations of Cn and cylindrical pipe dreams of (n, k).

Example 6.8. A cylindrical pipe dream P of type (3, 2), which corresponds to a 2-triangulation
of C3, is shown in the figure below.

Proposition 6.9. Given a cylindrical pipe dream of type (n, k), the number of and

in each successive n rows is k · (n− 1).

Proof. The number of in each successive n rows is n · (kn − k + 1). We compute the

number of and in each successive n rows. The number of in these n rows is n.

Then we compute the number of in n rows. We denote this number as S1. Furthermore,

given an arbitrary integer r ≥ 2k + 1, we denote the number of in these rn rows by Sr.

Since the pipe dream is n-cylindrical, S1 = Sr/r is a constant integer.
Without loss of generality, suppose the rn rows we take is from y = 0 to y = 1− rn.
By Lemma 6.4, there are (r−2k)(n−1) pipes in the positions between kn and (r−k)n−1.

And moreover, all they pass through lie in the rn rows we choose.

By Lemma 6.3, every pairs of pipes with distance no more than kn correspond to a .

We consider the number of pairs of pipes that use at least one of these (r− 2k)(n− 1) pipes.
By Lemma 6.5, this number is greater than or equal to

1

2
(r − 2k)(n− 1) · 2k · (n− 1) = (r − 2k) · k(n− 1)2.

Hence we have
(r − 2k) · k(n− 1)2 ≤ Sr.
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On the other hand, by Lemma 6.4, there are (r+2k)(n− 1) pipes in the position between
−kn and (r + k)n − 1. And moreover, every between y = 0 and y = 1 − rn are passed

by at least one of these pipes.
Again, by Lemma 6.3, every pairs of pipes with distance no more than kn correspond to a
. We consider the number of pairs of pipes that use both pipes among these (r+2k)(n−1)

pipes. By Lemma 6.5, this number is less than or equal to

1

2
(r + 2k)(n− 1) · 2k · (n− 1) = (r + 2k) · k(n− 1)2.

Hence we have
Sr ≤ (r + 2k) · k(n− 1)2.

Conclusively, we have

(r − 2k) · k(n− 1)2 ≤ Sr ≤ (r − 2k) · k(n− 1)2.

Now let r → ∞, then we have

S1 = lim
r→∞

Sr/r = k · (n− 1)2.

That is to say, the number of in each successive n rows is k · (n− 1)2. So the number of

and in each successive n rows is

n · (kn− k + 1)− n− k · (n− 1)2 = k · (n− 1),

as desired. □

Proposition 6.10. Let k = 2. Every k-triangulation of Cn has the rank k · (n− 1).

Proof. By Proposition 6.6 and Proposition 6.9. □

Remark. Again, Proposition 6.10 for arbitrary k remains to be a conjecture, and it can be
proved if we have proved Theorem 3.9 for arbitrary k.

Definition 6.11. An n-cylindrical mutation is a mutation of piles such that if the piles at
the position (i, j) and (t, l) are mutated, then the piles at the position (i + rn, j + rn) and
(t+ rn, l + rn) are mutated for every r ∈ Z.

Definition 6.12. Given a tile , the regular pipe flip of that is defined as follows:

select the two pipes passing through the tile , identify the intersection of these two

pipes, and apply an n-cylindrical mutation from the to the for every translation of

these two pipes.

Remark. Given a tile , by Lemma 6.3, the regular pipe flip of that is uniquely

determined.

Definition 6.13. Given a tile , the exceptional pipe flip of that is defined as follows:

select the pipe passing through the , choose a translation of this pipe with a distance

of kn, and apply an n-cylindrical mutation from the to the where these two pipes

intersect for every translation of these two pipes.

Remark. Given a tile , by Lemma 6.3, the exceptional pipe flip of that is also uniquely

determined.
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Definition 6.14. Both regular pipe flips and exceptional pipe flips are called pipe flips.

Example 6.15. Consider the cylindrical pipe dream P

in Example 6.8. A regular pipe flip applying to the second pile from the right in the penul-
timate row is given by the following procedure:

First, choose the two pipes passing through that :

Next, mutate this with the intersected by the two pipes:

.
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Finally, do the same thing for every translation of these two pipes to make it an n-
cylindrical mutation:

.

Example 6.16. Consider the cylindrical pipe dream P

in Example 6.8. A regular pipe flip applying to the first pile to the right of the fourth row
is given by the following procedure:

First, choose the pipe passing through that , and a translation of this pipe with a

distance of kn:
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Next, mutate this with the intersected by the two pipes:

Finally, do the same thing for every translation of these two pipes to make it an n-cylindrical
mutation:

Proposition 6.17. Cylindrical pipe dreams of type (n, k) are closed under pipe flips.

Proof. By checking the definition of both regular pipe flips and exceptional pipe flips. □

Definition 6.18. A regular cylindrical pipe dream is a cylindrical pipe dream P such that
for every , there exists a at the same row.

Proposition 6.19. Every cylindrical pipe dream can be flipped to a regular cylindrical pipe
dream with a sequence of regular pipe flips.

Proof. We choose n successive rows with the first row has a . Suppose the pipe dream is

not regular, we find the bottommost row that contains a , and apply a regular pipe flip

to the rightmost in that row. Then, this will mutate with another located in an

upper row. Repeat this process, this process ends in finitely many step, and then we get a
regular cylindrical pipe dream. □

Corollary 6.20. The pipe flip graph of cylindrical pipe dreams of type (n, k) is connected.

Proof. Given a regular cylindrical pipe dream P, the can be flipped to the previous row by

an exceptional pipe flip. After that, by Proposition 6.19, we can apply a sequence of regular
pipe flips to flip it to a regular cylindrical pipe dream P′. Now P′ is the regular cylindrical
pipe dream obtained by shifting all and in P upward by one row. Since n is finite, all

regular cylindrical pipe dreams can be connected by a sequence of pipe flips, and again by
Proposition 6.19, every pipe dream can be connected by a sequence of pipe flips. □

If Conjecture 6.7 can be proved, then we will get: the flip graph of k-triagulations of Cn
is connected.
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6.2. Enumeration of Cylindrical Pipe Dreams.

Definition 6.21. A nonnegative integer k-tuple is a sequence of k nonnegative integers,
where k ∈ Z≥0.

In this subsection, we use ei to denote the k-tuple such that there is a 1 at the i-th position,
and a 0 at the other positions. The main theorem of this subsection is the following bijection.

Theorem 6.22. There exists a canonical bijection between cylindrical pipe dreams of type
(n, k) and nonnegative integer k-tuples valuations v0, v1, . . . vn−1 on n vertices such that

n−1∑
i=0

vi = (n− 1, n− 1, . . . , n− 1).

Sketch of proof. For a given cylindrical pipe dream P of type (n, k), the nonnegative integer
k-tuple valuation ϕ(P) is defined as follows:
We first choose the n−1 pipes between positions 0 to n−1 (this can be done by Lemma 6.4).
For each pipe, by the definition of cylindrical pipe dreams, there are k and piles it

passes through in total. If the i-th “ ” on that pipe lies in the j-th column (where i ∈ [k],
and j is considered modulo n), then we add ei to the j-th vertex.
The valuations v0, v1, . . . , vn−1 are obtained by applying the procedure described above to

all n− 1 pipes we have chosen.
For a given cylindrical pipe dream of type (n, k), it can be verified that ϕ(P) is indeed a

nonnegative integer k-tuple valuation v0, v1, . . . vn−1 on n vertices such that

n−1∑
i=0

vi = (n− 1, n− 1, . . . , n− 1).

By definition of ϕ, each pipe can add an e1, e2, . . . , ek to some vertex. Therefore, each
pipe contributes a (1, 1, . . . , 1) in total. Since there are n− 1 pipes, we have

n−1∑
i=0

vi = (n− 1, n− 1, . . . , n− 1),

as desired.
To demonstrate that such a ϕ is indeed a bijection, we explicitly construct the inverse

mapping ϕ−1. The inverse mapping ϕ−1 can be constructed as follows: Given the sequence
v0, v1, · · · , vn−1, we inductively fill (or ) into the polyomino with respect to the i-th

coordinate of v0, v1, · · · , vn−1 to ensure that the i-th “ ” on each pipe lies in the desired
column. It can be shown that such a filling is uniquely determined. □

Using this bijection, we complete the enumeration of cylindrical pipe dreams of type (k, n).

Lemma 6.23. The number of nonnegative integer k-tuples valuations v0, v1, . . . vn−1 on n
vertices such that

n−1∑
i=0

vi = (n− 1, n− 1, . . . , n− 1)

is
(
2(n−1)
(n−1)

)k
.
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Proof. The number of nonnegative integer valuations on n vertices such that the sum is
n− 1 is given by

(
2(n−1)
(n−1)

)
. Since nonnegative integer k-tuples valuations can be regarded as

nonnegative integer valuations on n vertices componentwise, we obtain the desired result. □

Corollary 6.24. The number of cylindrical pipe dreams of type (n, k) is
(
2(n−1)
(n−1)

)k
.

Proof. By Lemma 6.23 and Theorem 6.22. □

Remark. If we can prove Conjecture 6.7, then this also gives us the enumeration of k-
triangulations of Cn.

7. The cyclic sieving phenomenon

Definition 7.1. Let M2nk,k denote the set of k-triangulations of the 2nk-gon.

Definition 7.2. Let Mn
2nk,k denote the set of n-periodic k-triangulations of the 2nk-gon.

Jonsson enumerated the k-triangulations of a 2nk-gon using a Catalan determinantal
formula that can be expressed more simply as the following:

M2nk,k(q) :=
∏

1≤a≤b≤2nk−2k−1

[a+ b+ 2k]q
[a+ b]q

where, for positive integer m, [m]q = 1 + q1 + · · ·+ qm−1.

Definition 7.3. Let C ≃ Z/(2kZ) be the group generated by the rotation c of the 2kn-gon
by 2π

2k
= π

k
radians.

Lemma 7.4. When k = 2, the triple (M2nk,k, C,M2nk,k(q)) is CSP.

Proof. We opt for a direct combinatorial proof, as opposed to one using the representation
theory paradigm/linear algebra model of [Reiner-Stanton-White]. In [CITE REFERENCE
IN THIS REPORT] we proved that the number of n-periodic (i.e., preserved under c) 2-

triangulations of 4n-gon equals
(
2(n−1)
n−1

)2
, and a formula in [CLS] implies that the number of

2-triangulations of 4n-gon preserved under a 180-degree rotation is (4n− 3)
(

(4n−4)!
(2n−1)!(2n−2)!

)2
.

So it suffices to show that

(a) M2nk,k(i) =
(
2(n−1)
n−1

)2
.

(b) M2nk,k(−1) = (4n− 3)
(

(4n−4)!
(2n−1)!(2n−2)!

)2
.

(c) M2nk,k(−i) =
(
2(n−1)
n−1

)2
Here are the proofs.

(a) We write

M2nk,k(q) =
∏

1≤a≤b≤2nk−2k−1

1− qa+b+2k

1− qa+b
(1)

=
∏

a+b+c=2nk−2k−2

1− q2a+b+2k+2

1− q2a+b+2
(2)

=
∏

a+c≤2nk−2k−2
a,c≥0

1− qa−c+2nk

1− qa−c+2nk−2k.
(3)
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We now determine the number of ways to write a given b ∈ Z as a− c with a+ c ≤
2nk−2k−2. Suppose b ≥ 0. If we know c, we have a = b+c, so b+2c ≤ 2nk−2k−2.
Thus, 0 ≤ c ≤ nk−k−1−b/2 are all the possibilities. The number of such possibilities
is ⌊nk − k − b/2⌋ for b ≤ 2nk − 2k, and 0 otherwise.
If b ∈ Z is arbitrary, we get ⌊nk−k−|b|/2⌋ for |b| ≤ 2nk−2k−2, and 0 otherwise.

So we may write

M2nk,k(q) =
∏

|b|≤2nk−2k−2

(
1− qb+2nk

1− qb+2nk−2k

)⌊nk−k−|b|/2⌋

.

Note

M2nk,k(q) =
∏

|b|≤2nk−2k−2

( [b+ 2nk]q

[b+ 2nk − 2k]q

)⌊nk−k−|b|/2⌋

=
( [2nk]q

[2nk − 2k]q

)nk−k
·
nk−k−1∏

b=1

( [2b− 1 + 2nk]q [2b+ 2nk]q [−2b+ 1 + 2nk]q [−2b+ 2nk]q

[2b− 1 + 2nk − 2k]q [2b+ 2nk − 2k]q [−2b+ 1 + 2nk − 2k]q [−2b+ 2nk − 2k]q

)nk−k−b
.

Now, suppose q = i and k is even. Then

[r]q
[r − 2k]q

=
1− qr

1− qr−2k
.

Evaluating at q = i, using L’Hospital’s rule if necessary, we get

[r]q
[r − 2k]q

=

{
r

r−2k
if r ≡ 0 (mod 4)

1 otherwise

So we get

M2nk,k(i) =
( 2nk

2nk − 2k

)nk−k

·
nk−k−1∏

b=1, b even

( 2b+ 2nk

2b+ 2nk − 2k
· −2b+ 2nk

−2b+ 2nk − 2k

)nk−k−b

(4)

=
( n

n− 1

)(n−1)k
(n−1)k/2∏

b=1

( 2b+ nk

2b+ (n− 1)k
· −2b+ nk

−2b+ (n− 1)k

)(n−1)k−2b

. (5)

If k = 2, this becomes

M4n,2(i) =
( n

n− 1

)2(n−1)
n−1∏
b=1

( n+ b

n+ b− 1
· n− b

n− b− 1

)2(n−b−1)

(6)

=
( n

n− 1

)2(n−1)
n−1∏
b=1

( 2n− b

2n− b− 1
· b

b− 1

)2(b−1)

(7)

=
(( n

n− 1

)n−1
n−1∏
b=1

( 2n− b

2n− b− 1
· b

b− 1

)b−1)2
(8)
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Now, observe that

( n

n− 1

)n−1
n−1∏
b=1

( 2n− b

2n− b− 1
· b

b− 1

)b−1

=
( n

n− 1

)n−1
∏n−1

b=1 b
b−1∏n−2

b=1 b
b

·
∏n−2

b=1 (2n− b− 1)b∏n−1
b=1 (2n− b− 1)b−1

(9)

=
( n

n− 1

)n−1

· (n− 1)n−2
( n−2∏

b=1

1

b

)
· 1

nn−2

( n−2∏
b=1

(2n− b− 1)
)

(10)

=
( n

n− 1

)n−1

· (n− 1)n−2 · 1

(n− 2)!
· 1

nn−2
· (2n− 2)!

n!
(11)

=
n

n− 1
· (2n− 2)!

(n− 2)!n!
(12)

=
(2n− 2)!

(n− 1)!2
(13)

=

(
2(n− 1)

n− 1

)
. (14)

We have thus shown that M4n,2(i) =
(
2(n−1)
n−1

)2
, as desired.

(b) Suppose q = −1. Then

[r]q
[r − 2k]q

=
1− qr

1− qr−2k
.

Evaluating at q = −1, using L’Hospital’s rule, we get

[r]q
[r − 2k]q

=

{
r

r−2k
if r ≡ 0 (mod 2)

1 otherwise
.
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So we obtain

M2nk,k(−1) =
( 2nk

2nk − 2k

)nk−k
nk−k−1∏

b=1

( (2b+ 2nk)(−2b+ 2nk)

(2b+ 2nk − 2k)(−2b+ 2nk − 2k)

)nk−k−b

(15)

=
( n

n− 1

)(n−1)k
(n−1)k∏
b=1

( (b+ nk)(−b+ nk)

(b+ (n− 1)k)(−b+ (n− 1)k)

)(n−1)k−b

(16)

=
( n

n− 1

)2(n−1)
2(n−1)∏
b=1

( (b+ 2n)(−b+ 2n)

(b+ 2(n− 1))(−b+ 2(n− 1))

)2(n−1)−b

set k = 2 (17)

=
( n

n− 1

)2(n−1)
∏2n

b=3(b− 2(n− 1))2n−b∏2(n−1)
b=1 (b+ 2(n− 1))2(n−1)−b

·
∏2(n−1)

b=1 (−b+ 2n)2(n−1)−b∏2n
b=3(−b+ 2n)2n−b

(18)

=
( n

n− 1

)2(n−1)

· 1 · (4n− 3)

(2n− 1)2n−3(2n)2n−4

( 2(n−1)∏
b=3

(b+ 2(n− 1)2
)

(19)

· (2n− 1)2n−3(2n− 2)2n−4

1 · 1

( 2(n−1)∏
b=3

(−b+ 2n)−2
)

(20)

= (4n− 3)
( n

n− 1

)2(n−1)

·
(n− 1

n

)2n−4( 2(n−1)∏
b=3

(2(n− 1) + b)
)2( 2(n−1)∏

b=3

(2n− b)
)−2

(21)

= (4n− 3)
( (4n− 4)!

(2n− 1)!(2n− 2)!

)2
. (22)

(c) The functionM2nk,k(q) has real coefficients, so its evaluation at −i is the complex con-
jugate of its evaluation at i. Since Mn

2nk,k(i) is real, we have M
n
2nk,k(i) = Mn

2nk,k(−i) =(
2(n−1)
n−1

)2
.

□

Conjecture 7.5. The number of k-triangulations of 2kn-gon invariant under rotation by
2π
2k

· j radians is

k∏
a=1

((2n− 1)d− ⌈2a
m
⌉)!

((n− 1)d+ ⌈ a
m
⌉ − 1)!

·
(⌈2a

m
⌉ − 1)!

(nd− ⌈ a
m
⌉)!

where d = gcd(2k, j) and m = 2k/d.

Let ζm = exp(2πi/m).

Lemma 7.6. M2nk,k(ζ
j
2k) =

∏k
a=1

((2n−1)d−⌈ 2a
m

⌉)!
((n−1)d+⌈ a

m
⌉−1)!

· (⌈ 2a
m

⌉−1)!

(nd−⌈ a
m
⌉)!

Proof. We seek to evaluate ∏
1≤a≤b≤2nk−2k−1

[a+ b+ 2k]q
[a+ b]q
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for q = ζj2k. Start by noting that

[a+ b+ 2k]q
[a+ b]q

= lim
z→q

1− za+b+2k

1− za+b
(23)

=

{
a+b+2k
a+b

if (a+ b)j ≡ 0 (mod 2k)

1 otherwise.
(24)

Equivalently, setting d := gcd(j, 2k) and m := 2k/d, we have

1− za+b+2k

1− za+b
=

{
a+b+2k
a+b

if (a+ b) ≡ 0 (mod m)

1 otherwise.

Thus, we may write

M2nk,k(ζ
j
2k) =

∏
1≤a≤b≤2(n−1)k−1
a+b≡0 (mod m)

a+ b+ 2k

a+ b
(25)

=
( ∏

k+1≤a≤b≤2nk−k−1
a+b≡0 (mod m)

(a+ b)
)( ∏

1≤a≤b≤2(n−1)k−1
a+b≡0 (mod m)

(a+ b)−1
)
. (26)

Note that for all integers a, b, we have (k + 1 ≤ a ≤ b ≤ 2nk − k − 1) ∧ ¬(1 ≤ a ≤ b ≤
2(n− 1)k − 1) iff (2(n− 1)k ≤ b ≤ 2nk − k − 1) ∧ (k + 1 ≤ a ≤ b).
Meanwhile, we have (1 ≤ a ≤ b ≤ 2(n − 1)k − 1) ∧ ¬(k + 1 ≤ a ≤ b ≤ 2nk − k − 1) iff

(1 ≤ a ≤ k) ∧ (a ≤ b ≤ 2(n− 1)k − 1).
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So we obtain

M2nk,k(ζ
j
2k) =

( 2nk−k−1∏
b=2(n−1)k

∏
k+1≤a≤b

a+b≡0 (mod m)

(a+ b)
)( k∏

a=1

∏
a≤b≤2(n−1)k−1
a+b≡0 (mod m)

(a+ b)−1
)

(27)

=
( k∏

b=1

∏
k+1≤a≤2nk−k−b
a≡b+k (mod m)

(a+ 2nk − k − b)
)( k∏

a=1

∏
a≤b≤2(n−1)k−1
a+b≡0 (mod m)

(a+ b)−1
)

(28)

=
( k∏

b=1

∏
1≤a≤2(n−1)k−b
a≡b (mod m)

(a+ 2nk − b)
)( k∏

a=1

∏
a≤b≤2(n−1)k−1
a+b≡0 (mod m)

(a+ b)−1
)

(29)

=
k∏

a=1

∏
a≤b≤2(n−1)k−1
a+b≡0 (mod m)

4nk − 2k − a− b

a+ b
(30)

=
k∏

a=1

∏
1≤b≤2(n−1)k−a
a≡b (mod m)

2nk + b− a

2(n− 1)k + a− b
(31)

=
k∏

a=1

∏
−a<b≤2(n−1)k−2a

m|b

2nk + b

2(n− 1)k − b
(32)

=
k∏

a=1

∏
−a/m<b≤(n−1)d−2a/m

nd+ b

(n− 1)d− b
(33)

=
k∏

a=1

((2n− 1)d− ⌈2a
m
⌉)!

((n− 1)d+ ⌈ a
m
⌉ − 1)!

·
(⌈2a

m
⌉ − 1)!

(nd− ⌈ a
m
⌉)!

(34)

□
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