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Abstract. Prior research has explored several closely related notions of the power of an
ideal, including the ordinary power, the symbolic power, and the Frobenius power. The
differential power encodes similar data but offers relative ease of computation, and, for
monomial ideals over affine semigroup rings, can be combinatorially interpreted using the
lattice of the semigroup. Using the language of standard pairs introduced in [STV95], we
prove a combinatorial formula for differential powers of radical ideals in polynomial rings. We
outline a similar characterization of differential powers in semigroup rings. Generalizing the
work of [Ken+21], we show that interior ideals’ differential powers are eventually principal in
polynomial rings. For semigroup rings corresponding to rational normal curves, we show that
the generators of differential powers of interior ideals eventually have periodic behaviour.
Finally, we provide Macaulay2 implementations of algorithms that allow for the conversion of
standard pairs to their ideal for the computation of differential powers of ideals in polynomial
rings.

1. Introduction

There are various notions of powers of an ideal I in a commutative ring R. For instance,
the N th ordinary power IN , which is the ideal generated by the products of n elements of
I, the Frobenius power, I [pe], which is the ideal generated by (pe)th powers of elements in I
[HH89], and the symbolic power, the intersection of powers of associated primes, are three
such notions.

The differential power, denoted I⟨N⟩ has not been as well studied, but has been the subject
of a resurgence of recent interest. They offer as well connections to symbolic powers: for
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prime ideals in polynomial rings with characteristic zero, the differential power equals the
symbolic power.

In this paper, we study the differential powers I⟨N⟩ of an ideal I from both asymptotic
and combinatorial directions.

Outline. In 2, we describe the prerequisite notions and motivating questions necessary for
our study of differential powers. In Section 3, we establisht the differential operators of
semigroup rings. Section 4 contains a reinterpretation of the theory of standard pairs as
used in [MY22] in terms of overlap classes. Section 5 gives a formula for the set of standard
pairs of differential powers of radical ideals in polynomial rings. In Section 6, we explore the
asymptotic behaviour of differential powers in polynomial rings, culminating in a proof of
eventual principality for some principal ideals. We explore asymptotic behaviour of rational
normal curves for semigroup rings corresponding to rational notmal curves in Section 7.
Finally, we conclude by providing Macaulay2 code for the computation of differential powers
in polynomial rings (Section 8) and for the computation of ideals given only their standard
pairs (Section 9).
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of Minnesota School of Mathematics Summer 2024 REU program. We would also like to
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2. Differential Operators and Differential Powers

For more information, see [Bjö81].
Let X be a C-algebra. Denote by EndC(X) the C-algebra of C-linear functions f : X → X.

For two functions f, g ∈ EndC(X), define [f, g] : X → X to be their commutator:

[f, g](x) := f(g(x))− g(f(x)).

We note that [f, g] ∈ EndC(X).
We define the algebra of differential operators of X inductively as follows. Let

D0(X) = {f ∈ EndC(X) | there exists r ∈ X such that f(x) = rx for all x ∈ X},

and for N ≥ 0, let

DN+1(X) = {δ ∈ EndC(X) | [δ, r] ∈ DN(X) for all r ∈ X},

where r ∈ X is identified with the linear function x 7→ rx. A quick inductive argument
verifies that DN(X) ⊆ DN+1(X) for all N ≥ 0. Then, let

Definition 2.1. The algebra of differential operators of X (over C)

D(X) =
⋃
N∈N

DN(X).

Proposition 2.2. For all δ ∈ DN(X) and µ ∈ DM(X) for N,M ∈ N, we have δµ ∈
DN+M(X).
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Proof. We prove this by induction on the lexicographic order on N×N, in which (a, b) < (c, d)
if either a < c, or a = c and b < d. First, if N = M = 0, then δ and µ are given by
multiplication by some constants r, s ∈ X, so [δ, µ] = [r, s] = rs− sr ∈ D0(X).

Now, suppose the statement is true for all (N ′,M ′) < (N,M). To show that δµ ∈
DN+M(X), we need to show that [δµ, r] ∈ DN+M−1(X) for all r ∈ X. We can rewrite [δµ, r]
in terms of [δ, r] and [µ, r]:

[δµ, r] = δµr − rδµ = δ(µr − rµ+ rµ)− rδµ

= δ([µ, r] + rµ)− rδµ = δ[µ, r] + δrµ− rδµ

= δ[µ, r] + (δr − rδ)µ

= δ[µ, r] + [δ, r]µ.

By the definition of DN−1(X), we have [δ, r] ∈ DN−1(X) and [µ, r] ∈ DM−1(X) for all
r ∈ X. As (N − 1,M) < (N,M − 1) < (N,M), our inductive hypothesis implies that
δ[µ, r], [δ, r]µ ∈ DN+M−1(X), which means [δµ, r] ∈ DN+M−1(X) for all r ∈ X. But this
means that δµ ∈ DN+M(X). □
Definition 2.3. The order of a differential operator δ ∈ D(X), written ordX(δ), is defined
to be the smallest N for which δ ∈ DN(X).

As L is the field of fractions of R, we can define differential operators on R in terms of
those on L. Let ∂

∂ti
= ∂i and θi = ti∂i. Let the hyperplanes hi = 0 for 1 ≤ i ≤ k be the

boundaries of NA such that hi(NA) ≥ 0. Denote the collection of these hyperplanes by H.
We assume without loss of generality that the equations hi have integer coefficients.

In [ST01], the authors give a full description of the differential operators on R:
Theorem 2.4 ([ST01, Theorem 3.2.2]). The ring of differential operators D(R) is a graded
object:

D(R) =
⊕
a∈ZA

D(R)a =
⊕
a∈ZA

DaC[θ1, . . . , θd],

where

Da = ta
k∏

i=1

−hi(a)∏
j=1

(hi(θ1, . . . , θd)− j + 1).

These operators are chosen so that an operator Da acts on a monomial in R geometrically
via translation of its degree vector by a in ZA. The operator annihilates a monomial if and
only if this translation lands outside of NA.

We have an important corollary to this theorem, which outlines how the operators Da

interact with each other.
Corollary 2.5 ([ST01], Corollary 3.2.4). For a,b ∈ ZA, the following are equivalent.

1. DaDb = DbDa,
2. DaDb = Da+b,
3. hi(a)hi(b) ≥ 0 for all i = 1, . . . , k; that is, a and b lie in the same chamber of the

hyperplane arrangement H.
In particular, if we take a1, . . . , aℓ ∈ Zd such that each hyperplane chamber is generated by
some of the ai, then D(R) is generated by Da1 , . . . ,Daℓ

.
For the forwards inclusion, take any f ∈ I⟨m⟩,
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Because hi are linear functions, the order of Da (as a differential of Laurent polynomials)
is exactly

∑k
i=1 max{−hi(a), 0}. For now, we write this as ordL(Da) =

∑k
i=1 max{−hi(a), 0}

In a special case, the differential operators of the polynomial ring C[x1, . . . , xd] are

〈xα∂β | α, β ∈ Nd〉.

Since all the rings we consider in this paper are Noetherian, we know their ideals are
finitely generated. Furthermore, we assume that every ideal is homogeneous, that is, it can
be generated by homogeneous elements. For an ideal I ⊆ R, we study a special type of its
power:

Definition 2.6. The N-th differential power I⟨N⟩ of ideal I ⊆ R is defined as

I⟨N⟩ = {f ∈ R : δ(f) ∈ I for all δ ∈ D(R) of order at most N − 1}.

Since the zero order differential operators are simply elements in R, we have I⟨1⟩ = I.

Definition 2.7. For a polynomial ring S = C[x1, x2, ..., xn], the ideal I is the set given by
I ⊆ S = {f1, f2, ..., fl} := {g1f1 + ... + gifi|gi ∈ S}. In this context, we will assume our fi
are homogenous and thus that our ideal is homogenous.

The ideal of a variety V , notated I(V ), is the set of polynomials in C[x1, ..., xn] in Pn−1

such that for every p ∈ I, f(p) = 0, notated V = V(I).

Definition 2.8. A subset V of Pn−1 over C is a variety if there exists some set of polynomials
S in C[x1, ..., xn] such that V = {x ∈ Cn | f(x)∀f ∈ S}.

The variety V of an ideal I is the set of points in Pn−1 such that for every f ∈ I, f(p) = 0,
notated V = V(I).

3. Order of Differential Operators over Semigroup Rings

Though we know that the algebra of differential operators of the semigroup ring R injects
nicely into that of the Laurent polynomial ring L, we do not necessarily know that the order
of a differential operator δ ∈ D(R) over R is the same as its order considered as a differential
operator over L. We prove that, in fact, for any two C-algebras whose differential operators
are related as those of R and L are, the two notions of order are equivalent.

Proposition 3.1. Suppose X is a C-algebra and Y ⊆ X is a C-subalgebra. Suppose further
that DN(Y ) ⊆ DN(X) for all N ≥ 0. Then for each N ≥ 0, D(Y ) ∩DN(X) = DN(Y ).

Proof. Clearly, DN(Y ) ⊆ D(Y ) ∩DN(X) for all N ≥ 0. We prove the reverse containment
by induction on N . Suppose δ ∈ D(Y ) ∩ D0(X), so that [δ, f ] = 0 for all f ∈ X. In
particular, [δ, r] = 0 for all r ∈ Y , which means that δ ∈ D0(Y ), so the base case is satisfied.
Now, suppose the result is true up to some N ≥ 0, and suppose δ ∈ D(Y ) ∩ DN+1(X).
Then [δ, f ] ∈ DN(X) for all f ∈ X; in particular, [δ, r] ∈ DN(X) for all r ∈ Y . As D(Y ) is
closed under taking brackets, we have [δ, r] ∈ D(Y ) as well, so by our inductive hypothesis,
[δ, r] ∈ D(Y ) ∩DN(X) = DN(Y ). But this means precisely that δ ∈ DN+1(Y ), and we are
done. □

Corollary 3.2. Under the hypotheses of the previous proposition, we have ordY (δ) =
ordX(δ) for all δ ∈ D(Y ). In particular, the result holds if Y is a normal semigroup al-
gebra and X is the ambient algebra of Laurent polynomials.
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Proof. Let ordY (δ) = N and ordX(δ) = M . The first equation implies that δ ∈ DN(Y ), and
as DN(Y ) ⊆ DN(X), we have M ≤ N . The second equation implies that δ ∈ DM(X). As
δ ∈ D(Y ), we have δ ∈ D(Y )∩DM(X) = DM(Y ) by the previous proposition, which implies
that N ≤ M . Thus N = M . □
Lemma 3.3. For a monomial ideal I ⊆ R, the N th differential power I⟨N⟩ is equal to the
set of elements f ∈ R such that Da(f) ∈ I for all a ∈ ZA for which Da is a Saito-Traves
operator of order less than N . In symbols,

I⟨N⟩ = {f ∈ R | c ∈ ZA, ord(Dc) < N =⇒ Dc(f) ∈ I}

Proof. Set
J = {f ∈ R

∣∣ a ∈ ZA, ord(Da) < N =⇒ Da(f) ∈ I}.
By definition,

I⟨N⟩ = {p ∈ R
∣∣δ ∈ D(R), ord(δ) < N =⇒ δ(p) ∈ I}.

To show J ⊆ I, suppose p ∈ J . It suffices for us to consider the case in which p is a
monomial. Let δ ∈ D(R) be an order < N differential operator. From Theorem 2.4, we have
a decomposition

δ =
∑
a∈V

Daqa,

where V ⊆ ZA is finite and qa ∈ C[θ1, . . . , θd]. As each operator Daqa is homogeneous of
degree a, there can be no cancellation of terms between these summands. By Corollary 3.2,
the order of δ as a differential operator on R is equal to that as a differential operator on L,
so

ord(δ) = max
a∈V

{ord(Daqa)} < N,

as the order of differential operators on L corresponds to the maximum number of partial
differentials appearing among its terms. This implies that ord(Daqa) < N , which further
implies that ord(Da) < N for all a ∈ V.

Recall that the operators qa either annihilate a monomial or preserve its degree, which
means that for all monomials m ∈ R, we have qa(m) = cm for some constant c ∈ C. As
differential operators are linear, we can write the following:

δ(p) =
∑
a∈V

Daqa(p) =
∑
a∈V

caDa(p).

Since p ∈ J we have Da(p) ∈ I for each a ∈ V, showing δ(p) ∈ I. Thus p ∈ I⟨n⟩, so J ⊆ I.
For the reverse inclusion, take any p ∈ I⟨n⟩. Then δ(p) ∈ I for all differential operators

and thus Saito-Traves operators of order less than N, showing p ∈ J. Thus we can conclude
that I⟨N⟩ = J. □

4. Standard Pairs and Differential Powers

In [MY22], the authors introduce the notion of a standard pair of a monomial ideal I ⊆
C[NA]. Standard pairs encode the algebraic data of I in combinatorial terms by describing
the set of monomials outside of I, known as the standard monomials of I. We recount the
basic facts of standard pairs as they appear in [MY22].

Definition 4.1 (Pairs of A). Let A ∈ Zd×n be a matrix whose columns generate a normal
strongly convex cone in Rd.

5
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• Let F ⊆ A be the set of generators of NA lying a face of the cone R≥0A, and let
a ∈ NA. The pair (a, F ) is called a pair of A.

• If (a, F ) and (b,G) are face pairs of A, then we say that (a, F ) is contained in (b,G),
writing (a, F ) ≺ (b,G), if a+ NF ⊆ b+ NG.

• Face pairs (a, F ) and (b, F ) are said to overlap if a− b ∈ ZF , or equivalently, if there
exists f ∈ NF for which a+f+NF ⊆ b+NF . Overlapping is an equivalence relation
among face pairs, and we write [a, F ] for the equivalence classes.

• We say a face pair (a, F ) divides (b,G) if there exists c ∈ NA for which a+ c+NF ⊆
b+ NG.

Definition 4.2. Let I ⊆ C[NA] = C[ta1 , . . . , tan ] be a monomial ideal. The pair (a, F ) is
called a proper pair of I if for all c ∈ a+NF , we have tc /∈ I. A standard pair of I is a proper
pair that is maximal with respect to containment among all proper pairs of I.

The set of standard pairs of a monomial ideal encodes information equivalent to its set of
standard monomials.

In [MY22], the authors show that every monomial ideal I ⊆ R has finitely many standard
pairs. We include their precises results for use later.
Theorem 4.3 ([MY22], Corollary 3.15 and Theorem 3.16). The number of overlap classes
of standard pairs of a monomial ideal I ⊆ R is finite. Moreover, there are finitely many
standard pairs of I belonging to each such overlap class.

We wish to apply the results of [ST01] to study differential powers on semigroup rings.
To do so, we analyze the behavior of standard pairs under differential powers.
Proposition 4.4. Let (a, F ) be a proper pair of a monomial ideal I ⊆ R, so that a+NF ⊆
stdMon(I). If (b, F ) is a face pair of I that overlaps (a, F ), then (b, F ) is also a proper pair
of I.
Proof. If (b, F ) overlaps (a, F ), then there exists c ∈ NF such that c+ b+ NF ⊆ a + NF .
In particular, we have c + b + NF ⊆ stdMon(I), which means that for all f ∈ b + NF , we
have

tc+f = tctf /∈ I.

But this means that tf /∈ I; otherwise, we would have tctf ∈ I, as I is an ideal. Thus
f ∈ stdMon(I) for all f ∈ b+ NF , so (b, F ) is a proper pair of I. □

Thus, it makes sense to talk about whether an overlap class [a, F ] is contained in stdMon(I).
In analogy with standard pairs, we define a standard overlap class of I to be an overlap class
of I that is maximal with respect to divisibility. Equivalently, standard overlap classes are
overlap classes of standard pairs. Section 4 guarantees that each monomial ideal has finitely
many standard overlap classes. We denote the set of standard overlap classes by Overlap(I).

We would like to describe how taking differential powers transforms the set of standard
overlap classes.

By Lemma 3.3, the monomial elements of I⟨N⟩ consist of those monomials in R that are
mapped into I by every Saito-Traves operator Da of order < N . Dually, this means that
the standard monomials of I⟨N⟩ are the monomials in R that are mapped out of I by any
Saito-Traves operator of order < N . Thus the standard monomials of I⟨N⟩ are precisely
the preimages of standard monomials of I by Saito-Traves operators of order < N . As
Saito-Traves operators act geometrically by translation, we have the following result:

6
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Lemma 4.5. For a monomial ideal I ⊆ R and a positive integer N ,
stdMon(I⟨N⟩) = {a− c | a ∈ stdMon(I), c ∈ Zd, ord(Dc) < N, and a− c ∈ NA}.

We’d like to understand the standard monomials of differential powers in terms of standard
pairs. At first, it would seem that we should be able to obtain the standard pairs of I⟨N⟩

simply by translating the standard pairs of I as in the lemma above. But as these translations
could cause standard pairs to land outside of NA, this does not work. Thus, we need to extend
our notion of pairs of A outside of NA.

For a face F of A and a point c ∈ Zd, we say that (c, F ) overlaps NA if (c+NF )∩NA 6= ∅.
Equivalently, this means that there exists some f ∈ NF for which f + c+ NF ⊆ NA.

We are ready to describe differential powers in terms of standard overlap classes.

Proposition 4.6. Let I be a monomial ideal in a normal affine semigroup ring C[NA], and
let Overlap(I) be the set of overlap classes of standard pairs of I. Then, for all N > 1,

Overlap(I⟨N⟩) = {[a− c, F ]A |[a, F ] ∈ Overlap(I), c ∈ Zd, ord(Dc) < N,

and (a− c+ NF ) ∩ NA 6= ∅}.

Proof. Forthcoming. □

Note that the polynomial ring S is the semigroup ring associated to the n × n identity
matrix In, which generates the cone defined by hyperplane equations

hi := xi = 0, 1 ≤ i ≤ n.

Given this understanding of S, we should expect that the Saito-Traves operators of S
relate nicely to its standard differential operators, which we verify in the next proposition.

Proposition 4.7. The Saito-Traves operators of the polynomial ring S have the following
form: for a ∈ Zd, we have Da = da,1 · · · da,n, where

da,i =

{
xai
i , ai ≥ 0;

∂−ai
i , ai < 0.

Proof. We build up the proof by cases.
Case 1. First, note that a = 0 is the unique point lying on every facet of the cone R≥0In,

so D0 = x0 = 1 = d0,1 · · · d0,n.
Case 2. Now suppose a = ±ei for some 1 ≤ i ≤ n, where ei is the ith standard basis

vector of Rn. Then hj(±ei) = 0 if j 6= i and hi(±ei) = ±1. Therefore, we have
Dei = xi and D−ei = x−1

i (xi∂i) = ∂i,

which we rewrite as D±ei = d±ei,i = d±ei,1 · · · d±ei,n.
Case 3. Now, consider a = aei for some a ∈ Z, a 6= 0 and 1 ≤ i ≤ n. If we let s = ±1 be

the sign of a, then
a = sei + · · ·+ sei︸ ︷︷ ︸

|a| times

,

which by case 2 and repeated application of Corollary 2.5 yields
Da = (Dsei)

|a| = (dsei,i)
|a| = d|a|sei,i = da,i = da,1 · · · da,n.

7
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Case 4. Now, let a ∈ Zn be arbitrary. Write a = a1e1+ · · ·+anen. Then the aiei all lie in
the same chamber of Rd with respect to the hyperplanes hj = xj = 0: for all 1 ≤ i, j, k ≤ n,
we have

hj(aiei)hj(akek) =

{
a2i , i = j = k;

0, otherwise.
≥ 0.

Appealing once again to Corollary 2.5 and applying case 3, we have
Da = Da1e1 · · · Danen = da1e1,1 · · · danen,n = da,1 · · · da,n.

□

5. Differential Powers of Radical Ideals in Polynomial Rings

For a polynomial ring S = k[x1, ..., xn], all prime monomial ideals are generated by subsets
of generators. Without loss of generality, we can assume an arbitrary prime ideal I is
generated by the first s generators for some s < n ∈ N.

Thus,
I = 〈x1, ..., xs〉.

Theorem 5.1. Given two ideals I and J , stdMonomials(I1 ∩ I2) = stdMonomials(I1) ∪
stdMonomials(I2).

Proof. By definition,

stdMon(
m⋂
i=1

〈Ai〉) = {b ∈ k[X] | b ∈ Ai ∀i}

=
m⋃
i=1

stdMon(Ai)

□

Lemma 5.2. For two ideals I and J , stdPairs(I) = stdPairs(J) if and only if I = J .

Lemma 5.3. For a radical monomial ideal I = 〈A1〉 ∩ · · · ∩ 〈Am〉 where each 〈Ai〉 is prime,
stdPairs(I) = {(1, {X \ A1}), (1, {X \ A2}), . . . , (1, {X \ Am})}.

Proof. For the forward inclusion, consider any standard pair (b, Z) of I. Since b /∈ I, we
have that b ∈ stdMonomial(I). Note, that for any z ∈ Z, we have that xz /∈ I, and therefore
xb+z ∈ stdMonomial(I). Thus (b, Z) describes a set of standard monomials of I.

By definition, every standard monomial of I is contained in a standard pair. Thus,
stdMonomial(I) = stdPairs(I).

We will show that stdMonomials(I) =
m⋃
i=1

{(1, {X \ Ai}).

Consider an arbitrary f in the set of standard monomials of I. Then f /∈ I, so f /∈ 〈Ai〉
for all Ai, which implies f ∈ 〈X \Ai〉 for some fixed i. Then f = xa1

1 ...xan
n , where ai = 0 for

xi ∈ Ai. This is the form required for f ∈ (1, X \ Ai). Thus f ∈
m⋃
i=1

{(1, {X \ Ai}).

8
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Take any f ∈
m⋃
i=1

{(1, {X \ Ai})}. Then f ∈ (1, {X \ Ai}) for some i. Thus we have

f = xa1
1 xa2

2 · · · xan
n where ai = 0 if xi ∈ Ai. Thus f ∈ k[X \ Ai], so f ∈ stdMonomials(〈Ai〉),

and thus f ∈
⋂m

i=1 stdMon(〈Ai〉) = stdMon I. □
Corollary 5.4. For radical I, if I = P1 ∩ P2 ∩ ... ∩ Pn for prime Pi,

I⟨ℓ⟩ = P
⟨ℓ⟩
1 ∩ ... ∩ P ⟨ℓ⟩

n .

Proof. The statement is true for symbolic powers, and differential and symbolic powers are
equal when I is radical. □
Lemma 5.5. Let PF be a prime monomial ideal corresponding to a face F given by some
subset of the columns {e1, ..., en} of In. Then Pf = 〈xi | xi /∈ F 〉, and

stdPairs(P
⟨ℓ⟩
F ) = {(a, F ) | |a| < ℓ, ai = 0 if ei ∈ F} .

.

Proof. For any PF , P ⟨ℓ⟩
F = P ℓ

F , since PF is a complete intersection ideal.
We will show that the set of standard pairs {(a, F ) | |a| < ℓ, ai = 0 if ei ∈ F} corresponds

to the ideal PF .
We know that this set of standard pairs describes the intersection given by⋂

(a,Z)

〈xai+1
i | ei /∈ F 〉.

Without loss of generality, assume P ℓ
F = 〈x1, ..., xd〉ℓ, where R = C[x1, . . . , xd, xd+1, . . . , xn].

Then F = {ed+1, . . . , en}. Note that P ℓ
F = 〈xa | a ∈ Nd, |a| = ℓ〉.

Then our intersection is given by⋂
(a∈N,F )

〈xai+1
i | 1 ≤ i ≤ d,where |a| < ℓ}.〉

Consider some xb in the set of generators in PF
ℓ. Then |b| < ℓ. Consider an arbitrary

standard pair (a, F ), such that |a| < ℓ. Then we want to show xb1
1 . . . xbd

d ∈ 〈xa1+1
1 〉 We claim

there exists an i such bi > ai - if for all bi ≤ ai, then |b| < |a|, but we need ℓ = |b| < |a| < ℓ.
So bi > ai, and thus bi ≥ ai + 1, so xai+1

i | xb.
We will prove that P ℓ

F ⊇
⋂

(a∈N,F )〈x
ai+1
i | 1 ≤ i ≤ d,where |a| < ℓ〉 using the contraposi-

tive: if x /∈ P ℓ
F , then x /∈

⋂
(a∈N,F )〈x

ai+1
i | 1 ≤ i ≤ d,where |a| < ℓ〉.

Well, if xa is not in PF
ℓ, we know xa is a standard monomial of PF

ℓ. The standard
monomials of P ℓ

F are given by {xa · xc | ∀ a ∈ Nd such that |a| < ℓ and ∀ c ∈ F}.
Because the set of standard pairs describes exactly the set {xa · xc | ∀ a ∈ Nd such

that |a| < ℓ and ∀ c ∈ F}, it suffices to show that if ∈ {xa · xc | ∀a ∈ Nd such that
|a| < ℓ and ∀c ∈ F}, then ∈ Pl

F and the converse: if ∈ PF
ℓ, then ∈ {xa · xc | ∀ a ∈ Nd such

that |a| < ℓ and ∀ c ∈ F}.
Let xaxc be in {xa · xc | ∀ a ∈ Nd such that |a| < ℓ and ∀ c ∈ F}. Assume towards a

contradiction that there exists a generator yb such that yb | xaxc. Since c ∈ Nn−(d+1) and
x is some product of {xd+1, ..., xn}, then yb | xc, a contradiction.

Now we show the reverse containment by contrapositive. Let yc /∈ {xa · xc | ∀ a ∈
Nd such that |a| < ℓ and ∀ c ∈ F}. This is true if and only if yc = xaxc, and |a| < ℓ. This

9
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is precisely the condition necessary for yb /∈ P l
F : xc can be chosen freely but |a| > ℓ for

a ∈ P ℓ
F . □

Theorem 5.6. Let I be a radical ideal. Then I is given by the intersection of prime ideals,
that is, I = PF1 ∩ PF2 ∩ · · · ∩ PFn . Then

stdPairs(I⟨ℓ⟩) =
n⋃

i=1

stdPairs(P
⟨ℓ⟩
F ).

Proof. First, note that the ideal I is a minimal intersection of primes.
in the intersection, that is, there are no primes PFi

, PFj
such that PFi

⊆ PFj
. Then the

complement of PFi
Fi cannot contain Fj nor can Fj contain Fi. Since the standard pairs of

these primes describe these faces, no standard pair of PFi
contains a standard pair of PFj

(and vice versa). Thus
stdPairs(PFm ∩ PFn) = stdPairs(PFm) ∪ stdPairs(PFn),

and this result can be extended to give
stdPairs(I) = stdPairs(PF1 ∩ ... ∩ stdPairs(PFn)).

From Lemma 5.5, P ⟨ℓ⟩
F = {xa | |a| < ℓ, ai = 0 if ei ∈ F}. Since I = PF1 ∩ PF2 ∩ · · · ∩ PFn ,

Corollary 5.4 implies that I⟨ℓ⟩ = P
⟨ℓ⟩
F1

∩ · · · ∩ P
⟨ℓ⟩
Fn

.
Then stdPairs(I) = stdPairs(P

⟨ℓ⟩
F1

) ∩ · · · ∩ stdPairs(P
⟨ℓ⟩
Fn

).
By Lemma 5.5, for each PFi

, stdPairs(P ⟨)⟩
Fi

= {(a, F ) | |a| < ℓ, ai = 0 if ei ∈ F}.

Then stdPairs(I⟨ℓ⟩) =
m⋃
i=1

{(a, {Fi}), |a| < ℓ, ai = 0 if ei ∈ F}.
□

6. Asymptotic Behavior of Differential Powers in Polynomial Rings

In this section, we always assume that I ⊆ S = C[t1, . . . , td] is a monomial ideal on m

generators, that is, I is of the form I = 〈tβj | 1 ≤ j ≤ m〉, where βj = (βj
1, . . . , β

j
d) ∈ Nd. By

abuse of notation, we sometimes drop j when there is no ambiguity in β. We also use the
notation a = (a1, . . . , ad) ∈ Nd and β +N = (β1 +N, . . . , βd +N) for N ∈ N repeatedly in
statements. At the end of the subsection, we will prove that if

√
I = 〈t1 · · · td〉, then there

exists N ∈ N such that I⟨n+1⟩ is principal for all n ≥ N .
Before proving this statement, we need some preliminary lemmas. Using the characteriza-

tion of the differential operators in the polynomial ring, one can show the following lemma,
which allows us to apply inductive arguments on I⟨n+1⟩ if we can compute I⟨2⟩ explicitly.
This lemma actually works for arbitrary ideal of S, not necessarily monomial.

Lemma 6.1. [Ken+21] (I⟨k+1⟩)⟨ℓ+1⟩ = I⟨k+ℓ+1⟩ for all k, ℓ ∈ N.

Lemma 6.2. If I = 〈tβ〉 with βi > 0 for all 1 ≤ i ≤ d, then I⟨2⟩ = 〈tβ+1〉.

Proof. (⇒) Since 1 is a zero order differential operator of S, I⟨2⟩ ⊆ I. We may thus assume
that every element of I⟨2⟩ is of the form tβf ∈ I⟨2⟩ for some f ∈ S. For the differential
operator ∂i ∈ D(S) of order 1, since βi > 0 for all 1 ≤ i ≤ d, we can compute

∂i(t
βf) = βit

β1

1 · · · tβi−1
i · · · tβd

d f + tβ∂i(f) ∈ I.

10
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Because tβ∂i(f) ∈ I, βit
β1

1 · · · tβi−1
i · · · tβd

d f ∈ I, which implies that ti divides f . Since this
argument holds for all 1 ≤ i ≤ d, we know t1 · · · td divides f and thus tβf ∈ 〈tβ+1〉.

(⇐) For the other containment, we need to show that δ(tβ+1) ∈ I for any δ ∈ D(S) of
order zero or one, which would imply tβ+1 ∈ I⟨2⟩. If δ has order zero, then δ ∈ S and
δtβ+1 = tβ(δt1 · · · td) ∈ I. If δ has order one, then it is a linear combination of ∂i and 1 with
coefficients from S. Because

∂i(t
β+1) = (βi + 1)tβ1+1

1 · · · tβi

i · · · tβd+1
d ∈ I,

for any δ ∈ D(S) of order one, δ(tβ+1) ∈ I. Therefore, tβ+1 ∈ I⟨2⟩ and 〈tβ+1〉 ⊆ I⟨2⟩. □

By Lemma 6.1 and Lemma 6.2, an inductive argument implies the next result. It further
implies that once some differential power of I is principal such that the generator has positive
exponent in every ti, the higher differential powers remain principal. To prove Theorem 6.7,
it suffices to find a particular N such that I⟨N⟩ is principal.

Lemma 6.3. If I = 〈tβ〉 with βi > 0 for all 1 ≤ i ≤ d, then I⟨N+1⟩ = 〈tβ+N〉 for all N ∈ N.

The following proposition holds in any semigroup ring R and thus holds for S.

Proposition 6.4. If J ⊆ K are ideals of R, then J ⟨N+1⟩ ⊆ K⟨N+1⟩ for all N ∈ N.

Proof. Let f ∈ J ⟨N+1⟩. By definition, for any differential operator δ ∈ D(R) of order at most
N , δ(f) ∈ J ⊆ K, which implies that f ∈ K⟨N+1⟩. □

This proposition gives the proof structure of Theorem 6.7. We will find ideals L ⊆ I ⊆ U
squeezing I such that the L⟨N+1⟩ and U ⟨N+1⟩ are the same principal ideal. Then Proposi-
tion 6.4 forces I⟨N+1⟩ to be a principal ideal. In the two dimensional case, I is generated
by monomials in a staircase shape as shown in the figure below. The upper bound U is a
principal ideal, whose generator is the intersection obtained by extending the infinite rays
bounding I. The lower bound L is described formally in the next lemma. Geometrically, it
is generated by elements lying on the same segment of t1+ t2 = constant. We further require
that the infinite rays bounding L, I, and U eventually overlap.

For higher dimensional cases, U is still a monomial ideal whose generator is the intersection
by extending the d− 1 dimensional boundaries of I, and L is generated by elements on the

11
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simplex t1 + · · · + td = constant. We still require that the d − 1 dimensional boundaries of
L, I, and U eventually overlap.

Lemma 6.5. Let N ∈ N. If tβ ∈ I⟨N+1⟩ with βi > N for all 1 ≤ i ≤ d, then tβ−N+a ∈ I for
all 0 ≤ ai ≤ N and

∑d
i=1 ai = (d− 1)N . Conversely, if

J = 〈tβ+a | 0 ≤ ai ≤ N and
d∑

i=1

ai = (d− 1)N〉

with βi > 0 for all 1 ≤ i ≤ d, then J ⟨N+1⟩ = 〈tβ+N〉.

Notice that N−a is a vector in Nd whose sum of entries is exactly N . The current notation
will make the proof of Theorem 6.7 easier to read.

Proof. Let a ∈ Nd such that 0 ≤ ai ≤ N and
∑d

i=1 ai = (d − 1)N . Let a′ = N − a. Notice
that a′ ∈ Nd, a′

i ≤ N , and
∑d

i=1 a
′
i = N . Then ∂a′

= ∂
a′
1

1 · · · ∂a′
d

d ∈ D(S) is a differential
operator of order N . Since tβ ∈ I⟨N+1⟩ and βi > N ≥ a′

i,

∂a′
(tβ) = ctβ−a′ ∈ I

for some non-zero constant c. Therefore, tβ−a′
= tβ−N+a ∈ I.

Now we prove the second half of this lemma: J ⟨N+1⟩ = 〈tβ+N〉. Notice that since tβ divides
every generator of J , tβ divides every element of J . We will use this fact repeatedly in this
proof.

(⇒) Let tγ ∈ J ⟨N+1⟩ be a monomial with γ ∈ Nd. Our goal is to show that γi ≥ βi + N
for all 1 ≤ i ≤ d, which would imply tγ ∈ 〈tβ+N〉. Because 1 is a zero order differential
operator of D(S), tγ ∈ J ⟨N+1⟩ ⊆ J . Because tβ divides every generator of J , tβ divides every
element of J including tγ, which implies that γi ≥ βi for all 1 ≤ i ≤ d. If γi < N , then
∂γi
i (tγ) ∈ J . Notice that the power of ti is zero in ∂γi

i (tγ) and ∂γi
i (tγ) itself is nonzero. This is

a contradiction as ∂γi
i (tγ) ∈ J implies that the power of ti is at least βi > 0. Hence, γi ≥ N .

Consider the differential operator ∂N
i ∈ D(S) of order N . Since tγ ∈ J ⟨N+1⟩,

∂N
i (tγ) = ctγ11 · · · tγi−N

i · · · tγdd ∈ J

for some nonzero constant c. Since tβ divides every element of J , γi − N ≥ βi and thus
tγ ∈ 〈tβ+N〉. For arbitrary f ∈ J ⟨N+1⟩, the argument in this paragraph works for each of its
monomial. Therefore, J ⟨N+1⟩ ⊆ 〈tβ+N〉.

(⇐) To show the other containment, we need to show that δ(tβ+N) ∈ J for every δ ∈ D(S)
of order at most N , which would imply tβ+N ∈ J ⟨N+1⟩. Recall that δ is a linear combination
of ∂a′

i , where a′ ∈ Nd and
∑d

i=1 a
′
i ≤ N . Let a = N − a′. Then 0 ≤ ai ≤ N and

∑d
i=1 ai ≥

(d−1)N . By direct computation, the power of ti in ∂a′
i (tβ+N) is at least βi+N−a′ = βi+a.

By the definition of J , ∂a′
i (tβ+N) ∈ J . Because this argument works for all ∂a′

i , tβ+N ∈ J ⟨N+1⟩

and thus 〈tβ+N〉 ⊆ J ⟨N+1⟩. □

Remark. The lemma above implies that J is the smallest ideal such that J ⟨N+1⟩ = 〈xβ+N〉.

We have obtained all the information we need for the upper bound and lower bound of I.
The last step before proving Theorem 6.7 is to understand

√
I = 〈t1 · · · td〉. The geometric

interpretation of this condition is that the monomials of I lie in the interior of the nonnegative
orthant.

12
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Lemma 6.6. Let I = 〈tβj | 1 ≤ j ≤ m〉 be a monomial ideal. Then
√
I = 〈t1 · · · td〉 if and

only if every βj
i > 0.

Proof. (⇒) Suppose
√
I = 〈t1 · · · td〉. For each 1 ≤ j ≤ m, since tβ

j ∈ I ⊆
√
I, there exists

some positive power k ∈ N such that tkβ
j ∈ 〈t1 · · · td〉. Then there exists f ∈ S such that

tkβ
j
= t1 · · · tdf . Since k is non-zero, and since the exponents of ti are all positive on the

right hand side, we must have βj
i > 0 for all 1 ≤ i ≤ d.

(⇐) Suppose βj
i > 0 for all 1 ≤ i ≤ d and 1 ≤ j ≤ m. Since t1 · · · td divides every

generator of I, I ⊆ 〈t1 · · · td〉. Because 〈t1 · · · td〉 is a prime ideal, it is the radical of itself.
Hence,

√
I ⊆ 〈t1 · · · td〉. For the other containment, choose n large enough so that n ≥ β1

i

for all 1 ≤ i ≤ d. Since tβ
1 divides (t1 · · · td)n, (t1 · · · td)n ∈ I. Hence, t1 · · · td ∈

√
I and thus

〈t1 · · · td〉 ⊆
√
I. □

This lemma allows us to apply Lemma 6.3 and Lemma 6.5 in the proof of Theorem 6.7.

Theorem 6.7. Let I = 〈tβj | 1 ≤ j ≤ m〉 be a monomial ideal. If
√
I = 〈t1 · · · td〉, then

there exists N ∈ N such that I⟨n+1⟩ is principal for all n ≥ N .

Proof. By Lemma 6.3, it suffices to find one N ∈ N such that I⟨N+1⟩ is principal. Motivating
by Proposition 6.4, we will find an “upper bound” U and “lower bound” L sequeezing I such
that their (N + 1)-th differential power is the same principal ideal.

Let βmin
i = minj{βj

i | 1 ≤ j ≤ m} and βmax
i = maxj{βj

i | 1 ≤ j ≤ m}. Choose
N = maxi ̸=j{βmax

i + βmax
j − βmin

i − βmin
j }. Let βmin = (βmin

1 , . . . , βmin
d ). By Lemma 6.6,

βmin
i > 0 for all 1 ≤ i ≤ d.
Define U = 〈tβmin〉 and

L = 〈tβmin+a | 0 ≤ ai ≤ N and
d∑

i=1

ai = (d− 1)N〉.

The geometric interpretation of I, U , and L is the the following. The ideal I is generated by
finitely many lattice points in the interior of the nonnegative orthant. It is the union of the
orthant-shaped cones placed on its generators. The upper bound U is the smallest orthant-
shaped cone containing I. The lower bound L is generated by lattice points on some simplex
contained by I. The algebraic formula for this simplex is t1 + · · ·+ td = (βmin + d− 1)N for
βmin ≤ ti ≤ βmin +N .

By Lemma 6.3 and Lemma 6.5, U ⟨N+1⟩ = L⟨N+1⟩ = 〈tβmin+N〉. By Proposition 6.4, it
suffices to show L ⊆ I ⊆ U . Because tβ

min divides every generator of I by construction,
every element of I can be generated by tβ

min . In other words, I ⊆ U .
Now we will prove L ⊆ I. For the sake of contradiction, suppose L 6⊆ I. Then there

is a particular a such that tβ
min+a 6∈ I with 0 ≤ ai ≤ N and

∑d
i=1 ai = (d − 1)N . Since

tβ
min+a cannot be divisible by any generator tβ

j of I, for each 1 ≤ j ≤ m, there exists some
1 ≤ ij ≤ d such that the power of tij in tβ

min+a is strictly less than its power in tβ
j . In other

words, βmin
ij

+ aij < βj
ij

. Because there are m generators in I, there are m such inequalities,
indexed by j. The index ij is any integer between 1 and d depending on j.

If all ij are the same, then βmin
ij

< βj
ij

for all j, which is a contradiction because at least
one of them achieves equality by the definition of βmin

ij
. Hence, there are at least two distinct

13
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ij, denoted by ij1 and ij2 . Summing their corresponding inequalities, we get

βmin
ij1

+ aij1
+ βmin

ij2
+ aij2

< βj1
ij1

+ βj2
ij2
,

aij1
+ aij2

< βj1
ij1

+ βj2
ij2

− βmin
ij1

− βmin
ij2

.

Recall that 0 ≤ ai ≤ N and
∑d

i=1 ai = (d−1)N . These two conditions imply aij1
+aij2

≥ N ,
which gives the contradiction by the definition of N .

□
Remark. By Lemma 6.3, we can additionally ask for the smallest N such that I⟨N+1⟩

is principal. The minimality of J in Lemma 6.5 implies that such N is the smallest one
guaranteeing L ⊆ I in the proof of Theorem 6.7. We can find a combinatorial formula for
the smallest N if S is two dimensional as in [Ken+21]. However, this is generally a hard
question in higher dimensions.

The condition
√
I = 〈t1 · · · td〉 in Theorem 6.7 is in fact very important, without which

the theorem fails immediately. For example, for S = C[x, y], the differential powers of 〈x, y〉
are exactly the ordinary powers, which are never principal. Furthermore, we may be able to
adopt a similar squeezing argument to show that for a monomial ideal I with

√
I 6= 〈t1 · · · td〉,

the differential powers of I are never principal unless I is principal. In the latter case, all
differential powers of I is principle.

Conjecture 6.8. Let I ⊆ S be a monomial ideal. Suppose I is not principal. Then I⟨N⟩ is
principal for some N if and only if

√
I = 〈t1 · · · td〉.

7. Asymptotic Behavior of Differential Powers for Rational Normal
Curves

For the next step, we will prove similar results in some semigroup rings with particu-
larly nice structure. Unfortunately, ideals are not eventually principal even in the following
simplest examples, but we can still prove some asymptotical behaviors of differential powers.

For simplicity, we first look at R = C[NA] when A =

[
1 1 · · · 1
0 1 · · · n

]
. We may assume

that n ≥ 2 because when n = 1, R is the 2-dimensional polynomial ring.
In Theorem 6.7, we assume that

√
I = 〈t1 · · · td〉, the geometric meaning of which is that

the monomials of I does not contain elements on the axes. Therefore, for the rest of this
section, we will assume that all the ideals are generated by monomials in the interior of
R≥0A.

To compute differential powers, we need to understand Saito-Traves differential operators.
Since we are studying two dimensional semigroup rings, they have very clear patterns.

(ZACH: consolidating everything. heavy construction zone for the next few lemmas/props)
Label the chambers of R2 determined by the hyperplanes h1 = nx − y and h2 = y with

Roman numerals I, II, III, and IV counter-clockwise as in the figure (forthcoming), so that
the cone R≥0A is chamber I. In terms of h1 and h2, chamber I consists of those points
satisfying h1 ≥ 0 and h2 ≥ 0; chamber II, h1 ≤ 0 and h2 ≥ 0; chamber III, h1 ≤ 0 and
h2 ≤ 0; and chamber IV, h1 ≥ 0 and h2 ≤ 0.

Lemma 7.1. The chambers of R2 are generated as cones by the following integer vectors:
• Chamber I by (1, 0), . . . , (1, n), the columns of A.

14
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Figure 1. The chambers of R2 corresponding to the semigroup generated by
A

• Chamber II by (1, n), (0, 1), and (−1, 0).
• Chamber III by (−1, 0), . . . , (−1,−n), the inverses of columns of A.
• Chamber IV by (−1,−n), (0,−1), and (1, 0).

Proof. That chambers I and III are generated by the specified vectors is immediate from the
fact that R≥0A is saturated.

To show that (1, n), (0, 1), and (−1, 0) generate chamber II, suppose a = (a1, a2) ∈ Z2

satisfies h1(a) ≤ 0 and h2(a) ≥ 0, i.e. na1 − a2 ≤ 0 and a2 ≥ 0. If a1 ≤ 0, then a =
−a1(−1, 0) + a2(0, 1). Otherwise, if a1 > 0, then a = a1(1, n) + (a2 − na1)(0, 1). Either way,
a is a nonnegative integer combination of (−1, 0), (0, 1), and (1, n), so these vectors generate
chamber II.

The argument for chamber IV is analogous to that for chamber II. □

Proposition 7.2. Let a = (a1, a2) ∈ Z2. The order of Da has the following characterization:
• ord(Da) = 0 if and only if a ∈ NA.
• ord(Da) = kn for some k > 0 if and only if one of the following holds:

1. a1 = −k and 0 ≥ a2 ≥ −nk; or
2. there exists ℓ > 0 for which a1 = ℓ− k and either a2 = ℓn or a2 = −kn.

• ord(Da) = kn + r for some k ≥ 0, 0 < r < n if and only if there exists ℓ ≥ 0 such
that a1 = ℓ− k and either a2 = ℓn+ r or a2 = −kn− r.

Diagrammatically, (figure X) shows the geometric arrangement of the (will write later.
too high)

Proof. We prove the statement by proving the following statements phrased in terms of the
chambers of R2:

1. If a lies in chamber I, then Da has order 0.
15
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2. If a lies in chamber II, then there exist unique integers k, r, ℓ ∈ N with 0 ≤ r < n for
which a = k(−1, 0)+r(0, 1)+ℓ(1, n) = (ℓ−k, ℓn+r). In this case, ord(Da) = kn+r.

3. If a lies in chamber III, then ord(Da) = −a1n.
4. If a lies in chamber IV, then there exist unique integers k, r, ℓ ∈ N with 0 ≤ r < n

for which a = k(−1,−n) + r(0,−1) + ℓ(1, 0) = (ℓ − k,−kn − r). In this case,
ord(Da) = kn+ r.

Note these statements agree when a lies on the boundary of two chambers. As each a must
lie in one of these chambers, this implies the statement of the proposition.

By Corollary 2.5, if a = (a1, a2) ∈ Z2 can be written as a = m1b1 + · · · + mkbk, where
mi ≥ 0 are integers and the bi generate the chamber containing a, then

Da = (Db1)
m1 · · · (Dbk

)mk .

We first argue in cases on the chamber containing a.
Case 1. If a lies in chamber I, then h1(a), h2(a) ≥ 0, which means Da = ta, which has

order 0.
Case 2. If a lies in chamber II, then a can be expressed as a = k(−1, 0) + r(0, 1) + ℓ(1, n)

for some k, r, ℓ ∈ N. Then,

ord(Da) = ord((D(−1,0))
k(D(0,1))

r(D(1,n))
ℓ) = kn+ r,

as ord(D(1,n)) = 0. We show that we can assume 0 ≤ r < n. Otherwise, applying the division
algorithm to r, there exist q > 0, 0 ≤ m < n such that r = qn+m. Then,

a = k(−1, 0) + r(0, 1) + ℓ(1, n) = (ℓ− k, ℓn+ r)

= (ℓ− k, n(ℓ+ q) +m) = ((ℓ+ q)− (k + q), n(ℓ+ q) +m)

= (k + q)(−1, 0) +m(0, 1) + (ℓ+ q)(1, n).

Replacing k with k + q, r with m, and ℓ with ℓ + q, we have the desired decomposition.
The uniqueness property of the division algorithm guarantees that r is unique, from which
it follows that k and ℓ must also be unique.

Case 3. If a lies in chamber III, then a = k0(−1, 0)+ · · ·+ kn(−1,−n) for some ki ∈ N by
Lemma 7.1, so a1 = −k0 − · · · − kn. Then ord(Da) = (k0 + · · ·+ kn)n = −a1n.

Case 4. If a lies in chamber IV, an argument analogous to that in case 2 shows that
Da = (D(−1,−n))

k(D(0,−1))
r(D(1,0))

ℓ for some k, ℓ ≥ 0 and 0 ≤ r < n. In this case, ord(Da) =
kn+ r. □

The figure below is an example of R when n = 3, on which we label each vector a by the
order of Da. This visualization helps us better understand the algebraic description from
Proposition 7.2: the order of a ∈ −R≥0A is the sum of vertical distances from a to h1 and
h2.

16
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By Proposition 7.2, for m = kn with k ∈ N, we know the m-th order Saito-Traves operators
are

{(−k, i) | −m ≤ i ≤ 0} ∪ {(−k + i, ni) | i ∈ N} ∪ {(−k + i,−m) | i ∈ N};
for m = kn+ r with 0 ≤ r < n, the m-th order Saito-Traves operators are

{(−k + i, ni+ r) | i ∈ N} ∪ {(−k + i,−m− r) | i ∈ N}.
By Lemma 3.3, when we compute differential powers in R, it suffices to consider Saito-Traves
operators corresponding to these vectors. Moreover, because (1, 0), (1, n) ∈ A, we know that
for any f ∈ I, if Da(f) ∈ I, then it’s necessarily true that Da+(1,0)(f),Da+(1,n)(f) ∈ I.
Therefore, we can further reduce the differential operators that we need to consider. To
compute m-th differential power of I, for m = kn, it suffices to consider differential operators
of the form

{(−k, i) | −m ≤ i ≤ 0};
and for m = kn+ r with 0 ≤ r < n, it suffices to consider differential operators of the form

{(−k, i) | −m ≤ i ≤ 0} ∪ {(−k, i), (−k,−m− i) | 0 ≤ i ≤ r}.
This information helps us to prove the following lemmas and corollaries:

Corollary 7.3. For m ≥ 2 with m 6≡ 0 mod n, I⟨m+1⟩ = (I⟨m⟩)⟨2⟩.

Proof. Set m = nk + r as in Proposition 7.2. Since D(−k,r−1) and D(0,1) belong to the same
chamber, we have

D(−k,r−1)D(0,1) = D(−k,r)

D(−k,−m+1)D(0,−1) = D(−k,−m)

. Take any f ∈ (I⟨m⟩)⟨2⟩. For any operators Da with ord(Da) < m, we have Da(f) ∈ I. By
Proposition 7.2 and Corollary 2.5, it suffices to show D(−k,r)(f),D(−k,−m)(f) ∈ I, which in
turn follows from the above equalities.

For the reverse inclusion, take any f ∈ I⟨m+1⟩, then D(−k,r)(f),D(−k,−m)(f) ∈ I. Similarly
D(0,1)(f),D(0,−1))(f) ∈ I⟨m⟩ and thus f ∈ (I⟨m⟩)⟨2⟩.

□
Corollary 7.4. For m ∈ N, (I⟨m+1⟩)⟨n+1⟩ = I⟨m+n+1⟩.

17
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These corollaries imply that if we want to compute the m-th differential power with m =
kn + r, we can first find the next (n + 1)-th power k times and the next second power r
times. In order to prove results about differential powers asymptotically, we first apply these
results to ideals of R generated by r consecutive monomials on the same line.

Definition 7.5. Let a = (a1, a2) ∈ NA, and suppose r ≥ 1 satisfies a + (0, r − 1) ∈ NA.
Define the vertical strip ideal Ia,r ⊆ R to be the following monomial ideal:

Ia,r = 〈sa1ta2 , sa1ta2+1, . . . , sa1ta2+r−1〉.

Geometrically, the vertical strip ideal Ia,r is generated by the lattice points that lie on the
vertical line segment connecting a to a+(0, r−1). These ideals provide a convenient language
for arguing on the asymptotic behavior of monomial ideals under differential powers.

Lemma 7.6. Suppose Ia,r is a vertical strip ideal lying in the interior of R, meaning that
(stn)k, sk /∈ Ia,r for all k ∈ N. Then,

(Ia,r)
⟨2⟩ = tIa,r ∩ t−1Ia,r, and (Ia,r)

⟨N+1⟩ = sIa,r ∩ stIa,r ∩ · · · ∩ stnIa,r,

where pI = {pα | α ∈ I}.

Proof. We prove only the first identity; the second is analogous, though more involved.
As Ia,r is in the interior of R, the sets tIa,r and t−1Ia,r are well-defined ideals of R. By

Lemma 3.3, f ∈ I
⟨2⟩
a,r if and only if Dbf ∈ Ia,r for all b ∈ Z2 satisfying ord(Db) < 2.

Proposition 7.2 allows us to determine exactly where the order 0 and 1 differential operators
are in Zd. The order 0 operators correspond to vectors b ∈ NA, so that Db = sb1tb2 . As Ia,r
is an ideal, Dbf = sb1tb2f ∈ Ia,r if and only if f ∈ Ia,r, so we need to check whether f ∈ Ia,r.

The order 1 operators correspond to the points (1, 0) + ℓ(1, n) and (0,−1) + ℓ(1, 0) for all
ℓ ∈ N. By Corollary 2.5 and Lemma 7.1, these points correspond to the differential operators

(D(1,n))
ℓD(0,1) = (stn)ℓD(0,1) and (D(1,0))

ℓD(0,−1) = sℓD(0,−1);

by an argument analogous to the order 0 case, it suffices to consider only D(0,1) and D(0,−1).
Using Theorem 2.4, we calculate:

D(0,1) = nst∂s − t2∂t, and D(0,−1) = ∂t.

Now, f = sa1ta2 ∈ (Ia,r)
⟨2⟩ if and only if f,D(0,1)f, and D(0,−1)f ∈ Ia,r, that is,

(nst∂s − t2∂t)s
a1ta2 = (na1 − a2)s

a1ta2+1 and ∂ts
a1ta2 = a2s

a1ta2−1

are in Ia,r. We can rewrite these expressions as D(0,1)f = ctf and D(0,−1)f = dt−1f , where
c, d ∈ C are constants. Note that D(0,1) and D(0,−1) only annihilate monomials of the form
(stn)k and sk, respectively. Since Ia,r is an interior ideal, no f ∈ Ia,r is annihilated by
these operators, so c, d 6= 0. Therefore, we have shown that f ∈ (Ia,r)

⟨2⟩ if and only if
f, tf, t−1f ∈ Ia,r, i.e. (Ia,r)

⟨2⟩ = tIa,r ∩ t−1Ia,r ∩ Ia,r.
It remains to show that tIa,r ∩ t−1Ia,r ⊆ Ia,r, which would imply the desired result. If

f ∈ tIa,r ∩ t−1Ia,r, then f = tα = t−1β for some α, β ∈ Ia,r. Then β = t2α is in Ia,r. If we
write α in terms of the generators of Ia,r as α = msa1ta2+k for some m ∈ R, 0 ≤ k ≤ r − 1,
then the fact that t2α = msa1ta2+k+2 ∈ Ia,r implies f = tα = msa1ta2+k+1 ∈ Ia,r. □

18
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Proposition 7.7. For an interior vertical strip ideal Ia,r ⊆ R, the following hold:

(Ia,r)
⟨2⟩ =


Ia+(1,1),n−1, if r = 1;

Ia+(1,1),n, if r = 2;

Ia+(0,1),r−2, if r ≥ 3.

, and (Ia,r)
⟨n+1⟩ =

{
Ia+(2,n),r, if 1 ≤ r ≤ n;

Ia+(1,n),r−n, if r > n.

Proof. Case 1. Suppose r = 1.
Case 2. Suppose r = 2.
Case 3. Suppose r ≥ 3. Label the generators of Ia,r as g1 = sa1ta2 , . . . , gr = sa1ta2+r−1.

Notice that for 2 ≤ i ≤ r − 1, gi ∈ (Ia,r)
⟨2⟩, for gi = tgi−1 = t−1gi+1. The generators

g2, . . . , gr−1 correspond to the lattice points along the line segment connecting a + (0, 1) to
a+(0, r− 2) = a+(0, 1)+ (r− 3), which means that g2, . . . , gr−1 generate Ia+(0,1),r−2. Thus,
we have shown Ia+(0,1),r−2 ⊆ (Ia,r)

⟨2⟩.
For the other inclusion, suppose f ∈ (Ia,r)

⟨2⟩ is a monomial. Then f = tα = t−1β for some
α, β ∈ Ia,r (ZACH: etc.) □

Theorem 7.8. Let I ⊆ R be an interior monomial ideal for A =

[
1 1 · · · 1
0 1 · · · n

]
. If n is

odd, then there exists an N ∈ N so that I⟨N+1⟩ is principal. If n is even, then there exists
an N ∈ N so that either I⟨N+1⟩ is principal or I⟨N+1⟩ is of the form Ia,2.
Proof. Similar to Theorem 6.7, we want to find two ideals squeezing I so that their differential
power are eventually the same. As shown in the Section 7, for an ideal (black), we find an
lower bound (red) and an upper bound (blue) of the form Ia,r. If we can show that their
number of generators are the same modulo n, then this theorem is implied by the previous
five lemmas.

Figure 2. Caption

Let I = 〈tβj | 1 ≤ j ≤ m〉, where βj = (βj
1, β

j
2) ∈ N2. Let nβk

1 − βk
2 = minj{nβj

1 − βj
2}

and βℓ
2 = minj{βj

2}. Pick 1 ≤ r ≤ n such that βℓ
2 − βk

2 + r − 1 ≡ 0 mod n. Let a =
(βk

1 + 1
n
(βℓ

2 − βk
2 + r − 1), βℓ

2). By the choice of r, we know a ∈ N2. We claim that I ⊆ Ia,r.
Geometrically, the two infinite boundaries of I are parametrized by t2 = nt1−(nβk

1 −βk
2 ) and
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t2 = βℓ
2, and they intersect at (βk

1 + 1
n
(βℓ

2 − βk
2 ), β

ℓ
2). However, they do not always intersect

at a lattice point. Thus, we choose the closest lattice point on the left of this intersection,
which is obtained by shifting r−1

n
. Because the slope of the first boundary is n, we know the

finite boundary of the upper bound ideal contains exactly r lattice points, that is, Ia,r.
Now we will find the lower bound (red) ideal. Choose βmax

1 = maxj{βj
1}. Let b = (βmax

1 , βℓ
2)

and s = n(βmax
1 −βk

1 )+βk
2 −βℓ

2+1. Geometrically, the finite boundary of Ib,s is the shortest
vertical segment contained in I, so it contains exactly s lattice points. Thus, Ib,s ⊆ I.

Choose N = n(βmax
1 − βk

1 ) + βk
2 − βℓ

2 + 1 − r, that is, n times the difference between the
first entry of a and b. By Proposition 7.2 and Proposition 7.7, we have

I⟨N+1⟩ = I⟨N+1⟩
a,r = I

⟨N+1⟩
b,s = Ia+(N

n
,N),r.

Now we can apply Proposition 7.7 to reduce r to either 1 or 2. If n is even, we are done;
if n is odd and r reduces to 2, we apply Proposition 7.7 repeatedly to obtain a principal
ideal. □
Conjecture 7.9. Let A ∈ Zd×n. Suppose NA is saturated and R≥0A is a strongly convex
cone. Let h1, . . . , hk be the hyperplane equations for the boundaries of R≥0A with hi(NA) >
0. Let

Dn = {Da | hi(a) < 0 for all 1 ≤ i ≤ k and
k∑

i=1

hi(a) = −n}.

Then there exists some N ∈ N such that
I⟨N⟩ = {f ∈ R | δ(f) ∈ I for all δ ∈ DN}.

This conjecture is enough to show the following claim.
Conjecture 7.10. If I ⊆ R is a monomial ideal such that the generators of I are in the
interior of R≥0A, then there exists n ∈ N such that I⟨n⟩ is generated by a set of elements
satisfying

∑
i hi = N for some N ∈ Z.

8. Code for Differential Powers in Polynomial Rings

The following Macaulay2 code computes differential powers of arbitrary ideals. In the case
where the ideal is radical, this corresponds with the ideal’s symbolic power. This code is
adapted from code provided in Appendix C of [Bah99].

nextDifferentialPower = method();
nextDifferentialPower (Ideal) := I -> (

numRingGens := numgens ring I;
numIGens := numgens I;
jacobMat := map(jacobian I, Degree => -1);
ident := id_((ring I)^numRingGens);
idealGens := gens I;
tenProd := ident ** idealGens;
syzMat := syz(jacobMat|tenProd);
subMat := submatrix(syzMat,{0..(numIGens-1)},);
ideal (mingens ideal (idealGens*subMat))

)
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differentialPower = method();
differentialPower (Ideal, ZZ) := (I,r)-> (

powerIdeal:=ideal();
if r==1 then (powerIdeal = I)

else (powerIdeal = nextDifferentialPower(differentialPower(I,r-1))
);
powerIdeal

)
First, we compute the number of generators of the ring and the number of generators of the
ideal. We calculate the jacobian matrix of the ideal.

numRingGens := numgens ring I;
numIGens := numgens I;
jacobMat := map(jacobian I, Degree => -1);

We take the tensor product of an identity matrix of appropriate dimension, and then calculate
the syzygy matrix of the Jacobian matrix concatenated with this tensor product.

ident := id_((ring I)^numRingGens);
idealGens := gens I;
tenProd := ident ** idealGens;
syzMat := syz(jacobMat|tenProd);

We take the submatrix consisting of columns of the syzygy matrix corrresponding to the
generators of the ideal. Then we generate the new ideal generated by the generators of the
ideal transformed by the submatrix. We return this new ideal.

subMat := submatrix(syzMat,{0..(numIGens-1)},);
ideal (mingens ideal (idealGens*subMat))

The function
differentialPower

iterates this function as many times as is needed to calculate the nth differential power.

9. Code for Standard Pairs

The following code uses Lemma 3.3 in [STV95], reproduced here as Lemma 9.1, to generate
an ideal from a liat of its standard pairs.

Lemma 9.1. For a monomial ideal I in a ring S generated by a set of variables X:

I =
⋂

(m,Z)∈stdPairs(I)

(
x

degxi (m)+1

i : xi ∈ X \ Z
)
.

stdPairsToIdeal := (standardPairsList, ambientRing) -> (
idealsToIntersect := {};
for i in (0..(#standardPairsList)-1) do(

newIdealGens:= {};
currentPair := standardPairsList_i;
point := currentPair_0;
pointVars := support point;
direction := currentPair_1;
varSpace := gens(ambientRing) - set direction;
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for j in (0..(#varSpace)-1) do(
currentDegree := degree(varSpace_j,point)+1;
newGen := varSpace_j^(currentDegree);
newIdealGens = append(newIdealGens,newGen);
);

newIdeal := ideal(newIdealGens);
newIdeal = promote(newIdeal,ambientRing);
idealsToIntersect = append(idealsToIntersect, newIdeal);
);

intersectionIdeal := intersect(idealsToIntersect);
intersectionIdeal

)
Here is an explanation of how the code translates this data.

stdPairsToIdeal := (standardPairsList, ambientRing) -> (
idealsToIntersect := {};

We begin by initiating an empty list of ideals to intersect.
We iterate through the list of standard pairs.

for i in (0..(#standardPairsList)-1) do(
Each standard pair will contribute a specific ideal to the list of ideals to intersect, so for

each pair we initiate an empty list of generators for its ideal.
newIdealGens:= {};

For each pair in the list, we calculate X \ Z.
currentPair := standardPairsList_i;
point := currentPair_0;
direction := currentPair_1;
varSpace := gens(ambientRing) - set direction;

For every variable xi in X \ Z, we calculate the new generator it contributes to the ideal
by x

degxi (m)+1

i and add it to our list of ideal generators.
for j in (0..(#varSpace)-1) do(

currentDegree := degree(varSpace_j,point)+1;
newGen := varSpace_j^(currentDegree);
newIdealGens = append(newIdealGens,newGen);
);

From the list of generators, we generate a new ideal. We must promote the new ideal to
the ring provided (Macaulay2 assumes an integer ring otherwise). We add this new ideal to
our list of ideals to intersect.

newIdeal := ideal(newIdealGens);
newIdeal = promote(newIdeal,ambientRing);
idealsToIntersect = append(idealsToIntersect, newIdeal);
);

We calculate the intersection of these ideals and return the result.
intersectionIdeal := intersect(idealsToIntersect);
intersectionIdeal
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