# Lattice Models for Quantum Superalgebras

Colors and Supercolors

Presenters: Joey (Yizhou) Chen, Kenny Deng, Sam Stagner, Phillip Yoon Collaborators: Hadi Abu-Alfa, Yuekun Feng, Daniel Kumm, Junseo Ko, Aaron Fidelis Lukman, Ioana Milea, Timothy Niels Ruslim, David Saing, Hanzhang Wang, Arisu

**Mentors**: Ben Brubaker, Judy Chiang, Karlee Westrem Polymath Jr 2025 Lattice Model and Representation Theory Group

September 11, 2025

### Overview

1. Introduction and Motivations

2. Strategy

3. Results and Conjecture

#### Lattice Model

#### Definition

A lattice model  $\mathcal{L}$  is an  $n \times m$  grid with its edges filled according to vertex table.

- We generally think of them as paths going from the top and exiting to the right
- They are indexed by external edges. Typically, we fix edge colorings at the top row with a partition  $\lambda = (\lambda_1, ..., \lambda_k)$ .
- The example below uses this vertex table:



**Example.** Take  $\lambda = (3)$ 



In this case:  $\mathcal{Z}(\mathcal{L}) = x_1^2 + x_1 x_2 + x_2^2$ 

### Definition (Partition Function)

Given a lattice model with fixed boundary conditions, the partition function  $\mathcal{Z}(\mathcal{L})$  of the lattice is the sum of all admissible states, which are paths with non-zero weight.

Note: Non-specified vertices have weight 0.



## **Boundary Conditions**

For models with multiple colors, we may also fix a permutation  $w \in S_m$  on the side to indicate the order of colors from top to bottom.

**Example.** Take  $\lambda = (3,2)$  and w = (12)



### Super-Lattice Model

#### **Definition**

A super-lattice model is a lattice model indexed by one partition  $\lambda$  and two permutations  $w, w' \in S_m$  such that it has both colored and dotted colored (supercolor) paths going in opposite directions.

**Example.** Below is an admissible state with  $\lambda = (5,3,1)$ , w = (312), and w' = (132)



We are working with these weights [2]:



### Research Questions

#### Motivating Questions

- What do the partition functions of these lattice  $\mathcal{L}_{\lambda,w,w'}$  models look like?
- What combinatorial objects represent them?

#### Past work:

• Previous Polymath projects have "solved" models with one partition  $\lambda$  and one permutation w. [2]

For experts: The weights of the given model were chosen based on quantum superalgebra modules.

- Further Question: How can changing the weights in accordance with these superalgebras affect the partition functions?
- Connected to the supersymmetries between bosons and fermions

### Research Strategy

- Goal. Compute the partition function of  $\mathcal{L}_{\lambda,w,w'}$  for all  $\lambda \vdash m$  and  $w,w' \in S_n$ .
- First steps.
  - 1. Identify w, w' with  $\mathcal{L}_{\lambda, w, w'} = 0$ .
  - 2. Identify w, w' such that  $\mathcal{L}_{\lambda, w, w'}$  has a unique admissible state.
  - 3. Compute remaining partition functions recursively by relating permutation index pairs (train argument).
- Dream. Understand the quantum group module for super-lattice models

#### Question (rephrased).

- What is the minimal set of states we need to compute to know all partition functions?
- And what do their partition functions look like?

# An Inadmissible (Vanishing) State



# Vanishing Conjecture

#### Vanishing Conjecture

For boundary conditions  $(w, w_0 u)$ , if u = w then there is only one state and if u < w then there are no states, where < indicates strong Bruhat order and  $w_0$  indicates the longest word.

### Strong (full) Bruhat order on $S_3$ [1]

For  $1 \le i < j \le 3$  let (ij) be the transposition exchanging i and j. Given  $u \in S_3$  we declare

$$u < (ij) u \iff \ell((ij)u) = \ell(u) + 1.$$
 (\*)

11 / 28

The strong Bruhat order is the reflexive—transitive closure of this relation (\*); i.e. for  $u, v \in S_3$ 

$$u \le v \iff$$
 there exists a chain  $u = w_0 < w_1 < \cdots < w_k = v$  each step satisfying (\*).

There are 3! = 6 elements, which we list by  $length \ \ell(w) = \#\{(i < j) \mid w(i) > w(j)\}$ 

# Length Comparison

| length | elements                                 |  |
|--------|------------------------------------------|--|
| 0      | e = 123                                  |  |
| 1      | $213 = s_1, \ \ 132 = s_2$               |  |
| 2      | $231 = s_1 s_2, \ \ 312 = s_2 s_1$       |  |
| 3      | $321 = s_1 s_2 s_1 = s_2 s_1 s_2 = w_0.$ |  |

$$e < s_1, \ s_2,$$

$$s_1 < s_1 s_2, \ s_2 s_1 < w_0,$$

with  $s_1$ ,  $s_2$  incomparable and likewise  $s_1s_2$ ,  $s_2s_1$ .

$$s_2 < s_1 s_2, \ s_2 s_1 < w_0.$$

# Vanishing / one-state table

- 1 exactly one state (u = w),
- 0 vanishes (u < w in strong Bruhat order),
- \* conjecture does not constrain this pair.

#### Observations

- 1. Anti-diagonal of ones.
- 2. Zeros lie strictly to the left of that anti-diagonal.
- 3. Row counts reflect the poset.
- 4. Almost-unitriangular shape.

# Train argument for single colored lattice model



### Train argument for color/scolor model

#### **Notation:**

- $w_i$  represents the **color** decorated at row i under permutation of w, and  $w'_i$  represents the **scolor** decorated at row i under permutation of w'.
- $z_i$  and  $z_i$  marks the row number before and after the run-through of R-vertex.



# Example of train argument on $3 \times 3$ Super-lattice model

For simplification, it seems like for a  $3 \times 3$  lattice model, but one can image the arbitrary rows above and below with arbitrary column in the middle. The lattice models would be, from left to right,  $\mathcal{L}_{\lambda,w_0,s_1}, \mathcal{L}_{\lambda,w_0,e}, \mathcal{L}_{\lambda,s_1s_2,e}, \mathcal{L}_{\lambda,w_0,e}$ .



### The relations from train argument on the super-lattice model

Case 
$$(w = w_0, w' = e)$$

$$egin{split} \mathsf{q}\left(\mathsf{z}_{1}^{3}-\mathsf{z}_{2}^{3}
ight) Z\left(\mathcal{L}_{\lambda,w_{0},s_{1}}
ight) + \left(1-q^{2}
ight) z_{2}^{2} \, z_{1} \, Z\left(\mathcal{L}_{\lambda,w_{0},e}
ight) \ &= \mathsf{s}_{1} \Big[ \left(z_{1}^{3}-z_{2}^{3}
ight) Z\left(\mathcal{L}_{\lambda,s_{1}s_{2},e}
ight) + \left(1-q^{2}
ight) z_{1}^{3} \, Z\left(\mathcal{L}_{\lambda,w_{0},e}
ight) \Big], \ &Z\left(\mathcal{L}_{\lambda,w_{0},s_{1}}
ight) = 0, \quad Z\left(\mathcal{L}_{\lambda,w_{0},e}
ight) = z_{1}^{\lambda_{1}-2} \, z_{2}^{\lambda_{2}-1} \, z_{3}^{\lambda_{3}}. \end{split}$$

#### Upshot

By applying the vanishing partition function value and the already known partition function formula, we are only left with  $Z(\mathcal{L}_{\lambda,s_1s_2,e})$  as a variable of the equation, which means then we can solve for  $Z(\mathcal{L}_{\lambda,s_1s_2,e})$ , one of the unknown partition functions according to the table.

Note:  $s_1$  simply means to flip  $z_1$  and  $z_2$  in the context of spectral parameters. For example, if  $f = z_1^2 + z_2$ , then  $s_1 f = z_2^2 + z_1$ .

#### In the context of the table

 $Z(\mathcal{L}_{\lambda,s_1s_2,e})$  corresponds to the circled entry, which is one of the partition functions that we do not know yet (we only know the partition functions corresponding with entries of either 0 or 1).

### Gelfand-Tsetlin Patterns

#### Definition.

A strict GT-pattern is a triangular arrangement of non-negative integers

$$X_{n,1}$$
  $X_{n,2}$   $\cdots$   $X_{n,r}$ 

$$\vdots$$

$$X_{2,1}$$
  $X_{2,2}$ 

$$\vdots$$

$$X_{1,1}$$

with the constraint that  $x_{i+1,j} \le x_{i,j} \le x_{i+1,j+1}$  and  $x_{i,j-1} < x_{i,j} < x_{i,j+1}$ 

Bijection. The numbers in each row record the columns with a color descending path

Example.



# Alternating Sign Matrices

#### Definition.

An alternate sign matrix is an  $n \times n$  matrix with entries of -1, 0, 1 such that each column and row sum to 1, with the non-zero alternating sign entries.

#### Bijection between super-lattice vertices and ASM entries:









# Simple Permutation Pairs

#### Proposition

For  $w \in S_n$ ,  $\mathcal{L}_{\lambda,w,w_0w}$  have a unique non-zero admissible state.

• These lattice models are in bijection with the permutation matrices.

#### Example.



$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

# $(n-1) \times n$ and $n \times n$ lattices

#### Idea.

The color/scolor exiting at the first row of a square lattice model need to be coming from the same column.

#### Proposition.

Given top boundary  $\lambda$ , the number of admissible states of  $n \times n$  lattice model  $\mathcal{S}_{\lambda}$  equals to the number of admissible states of  $(n-1) \times n$  lattice model  $\mathcal{L}_{\lambda'}$  such that  $\lambda'$  has one pair of color and scolor decoration less then  $\lambda$ .



#### Criteria of non-zero admissible states

We use the previous ideas to make a final conjecture:

```
\begin{cases} \text{Alternating sign matrix} \implies \text{Uniqueness representation of each path} \\ \text{Simple permutation pairs} \implies \text{Foundation for train argument} \\ (n-1) \times n \text{ and } n \times n \text{ lattice} \implies \text{Enabled analysis on reduced dimension} \end{cases}
```

Remark: More specifically, we can take the idea from reducing n rows to n-1, and applied it more drastically and inductively, from n rows to lattice i rows with i=n-1,...,2; as given a  $i\times n$  lattice model with an admissible states, we can always find a  $j\times n$  lattice model such that  $i\leq j$  which the states is contained by some admissible state of the bigger lattice model.

Thus with this in mind, we want to introduce our last result.

#### Criteria of non-zero admissible states

**Idea:** Given any lattice model with a fixed boundary condition  $(\lambda, w', w)$ , we want to instantly justify whether it will or will not have any non-zero admissible state.

Define  $s := \prod_{l=1}^{K} \sigma_l$  and  $S_l := \{x \in \mathbb{Z}_n : \sigma_l(x) \neq x\}$ , where  $\sigma_l$  are all disjoint permutations in  $S_n$ .

#### Conjecture

Given  $\mathcal{L}_{(\lambda,w,w_0w)}$  has a non-zero admissible state, then  $\mathcal{L}_{(\lambda,w,sw_0w)}$  has a non-zero admissible state if and only if

- (i)  $w_0w >_B sw_0w$  in strong Bruhat order; and
- (ii) for all I, there exists  $y \in S_I$ ,  $y \neq \max(S_I)$  such that  $y + 1 \notin S_I$  and y + 1 has exited.

# Demonstration of the conjecture

|        | Simple permutation pair                            | Extra transposition                                           |
|--------|----------------------------------------------------|---------------------------------------------------------------|
| λ      | (5,4,3,2,1)                                        | (5,4,3,2,1)                                                   |
| w'; sw | $(\bar{1}\bar{5}\bar{4})(\bar{2}\bar{3}), e(1432)$ | $(\bar{1}\bar{5}\bar{4})(\bar{2}\bar{3}),(13)(1432)=(12)(34)$ |



### Recap

#### Questions.

- What is the partition function of the super-lattice Model?
- Are there any known combinatorial objects in bijection to these lattice models?

#### Results.

- Special cases with monostate
  - Gelfand-Tsetlin patterns, Alternating Sign Matrices
- Conjecture for non-vanishing states

### Next Steps.

- Determine all boundary conditions with unique and multiple states in the square lattice model.
- Find the operator between two arbitrary partition functions for super-lattice models.

#### References

- [1] Anders Björner and Francesco Brenti. *Combinatorics of Coxeter Groups.* Vol. 231. Graduate Texts in Mathematics. Springer, 2005. DOI: 10.1007/3-540-27596-7.
- [2] Ben Brubaker et al. *Kirillov's conjecture on Hecke-Grothendieck polynomials*. 2024. arXiv: 2410.07960 [math.CO]. URL: https://arxiv.org/abs/2410.07960.

# Thank you!