
Chapter 1
Representations of Quivers

In this chapter, we introduce the concept of quiver representations and their
morphisms, discuss direct sums, kernels, and cokernels, and study short exact
sequences of quiver representations. We also introduce some basic notions of
category theory.

1.1 Definitions and Examples

A quiver representation is a finite collection of vector spaces and linear maps
between these vector spaces. One can visualize this concept using a diagram of
arrows, the quiver, where each arrow represents one of the linear maps.

1.1.1 Representations

In order to study quiver representations we need a formal definition of quivers first.

Definition 1.1. A quiver Q D .Q0;Q1; s; t/ consists of

Q0 a set of vertices,
Q1 a set of arrows,
sWQ1 ! Q0 a map from arrows to vertices, mapping an arrow to its starting
point,
t WQ1 ! Q0 a map from arrows to vertices, mapping an arrow to its terminal
point.

We will represent an element ˛ 2 Q1 by drawing an arrow from its starting point
s.˛/ to its endpoint t.˛/ as follows:

s(α) α t(α).
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4 1 Representations of Quivers

Example 1.1. The following quiver is given by Q0 D f1; 2; 3g, Q1 D
f˛; ˇ; �; �; �g, s.˛/ D 3; s.ˇ/ D 2; s.�/ D 3; s.�/ D 1; s.�/ D 1 and
t.˛/ D 2; t.ˇ/ D 1; t.�/ D 3; t.�/ D 3; t.�/ D 3.
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μ
3

α

γ

A quiver Q is called finite if Q0 and Q1 are finite sets. We will always suppose
our quivers to be finite.

For the definition of quiver representations, we need a field k. For simplicity, we
let k be an algebraically closed field.

Definition 1.2. A representation M D .Mi ; '˛/i2Q0;˛2Q1 of a quiver Q is a
collection of k-vector spaces

Mi

one for each vertex i 2 Q0, and a collection of k-linear maps

'˛WMs.˛/ !Mt.˛/

one for each arrow ˛ 2 Q1.
A representation M is called finite-dimensional if each vector space Mi is

finite-dimensional. In this case the dimension vector dimM of M is the vector
.dimMi/i2Q0 of the dimensions of the vector spaces. An element of a representation
M is a tuple .mi /i2Q0 with mi 2Mi .

Example 1.2. Let Q be the quiver 1! 2. Then

M k 1 k

M k 0 k

M k 0 0

M k2

⎡
⎢⎢⎣
1 0
1 0
0 0

⎤
⎥⎥⎦

k3
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are representations of Q. The dimension vectors are dimM D dimM 0 D .1; 1/,
dimM 00 D .1; 0/, and dimM 000 D .2; 3/:

The subject of this book is to study finite-dimensional quiver representations.

1.1.2 Morphisms

Definition 1.3. Let Q be a quiver and let M D .Mi ; '˛/, M 0 D .M 0i ; ' 0̨ / be two
representations ofQ. A morphism (or homomorphism) of representationsf WM !
M 0 is a collection .fi /i2Q0 of linear maps

fi:Mi Mi

such that for each arrow i
˛! j in Q1 the diagram

Mi
ϕα

fi

Mj

f j

Mi
ϕα Mj

commutes, that is,

fj ı '˛.m/ D ' 0̨ ı fi .m/ for all m 2Mi:

A morphism f D .fi /WM ! N is an isomorphism if each fi is bijective. The
class of all representations that are isomorphic to a given representationM is called
the isoclass of M .

Example 1.3. Let us consider the representations in Example 1.2 again. The map
f D .f1; f2/, where f1 is the multiplication by a 2 k and f2 is the zero map, is a
morphism fromM to M 00:

M

f

k 1

a

k

0

M k 0 0
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Now let us see if there are there any morphisms gWM 00 ! M . Suppose we have
a commutative diagram:

M

g

k 0

g1

0

g2=0

M k 1 k

Then g1 D 1 ı g1 must be equal to the zero map, and thus g1 D 0. We have shown
that the only morphism fromM 00 to M is the zero morphism g D .0; 0/.

Given a quiver Q, the finite-dimensional representations of Q together with the
morphisms of representations form a category which we denote by repQ.

Categories 1 We will work with categories throughout the book, and we will
develop the language of category theory along the way. For a formal definition see
Categories 2 at the end of Sect. 1.2. For now, it suffices to know that a category
consists of objects and morphisms.

We writeM 2 repQ ifM is an object in repQ, that is, ifM is a finite-dimensional
representations of the quiverQ.

Proposition 1.1. Let M;M 0 2 repQ. Then the set of all morphisms Hom.M;M 0/
is a k-vector space with respect to the addition and scaling of morphisms.

Proof. Exercise. ut
Example 1.4. With the notation of Example 1.3, we have

Hom.M;M 00/ Š f.a; 0/ j a 2 kg Š k;

where the last isomorphism holds because the vector space f.a; 0/ j a 2 kg is of
dimension one. On the other hand,

Hom.M 00;M / Š 0:

Example 1.5. Let Q be the quiver

1
α

3 4
γ

2
β
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and consider the following representations:

k 1
0

kM 2 k

1
1

k 0
1

0
0

M k 00

0
0

k
1

M k k1

k
1

Note that the images of the three maps inM are three different lines in k2. Then we
have

Hom.M;M 0/ D 0 Hom.M;M 00/ Š k2
Hom.M 0;M / Š k2 Hom.M 00;M / D 0:

Proof. We show that Hom.M;M 00/ Š k2 and leave the other identities as an
exercise. In this example, a morphism M ! M 00 is a choice of 5 scalars
a; b; c; d; e 2 k such that the following diagram commutes:
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k

[a]

1
0

M k2

c d

k

[e]

1
1

k

[b]

0
1

k
1

M k k1

k
1

The three commuting squares give the relations

a D c; b D d; c C d D e:

Thus a choice of a and b completely determines the morphism. On the other hand,
every choice of a and b yields a different morphism. Therefore Hom.M;M 00/ Š k2.

ut
Example 1.6. Let Q be the quiver

1 2
β

α
;

This quiver is known as the Kronecker quiver.1 Consider the following representa-
tions of Q:

1Leopold Kronecker (1823–1891) studied the problem of classifying pairs of matrices of the same
size up to simultaneous conjugation, which is equivalent to studying the representations of the
Kronecker quiver. The concept of quivers was introduced much later (1972) by Gabriel [33].
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M k2 k
0

1

1

0

M k2 k2

0 0

1 0

1 0

0 1

We want to compute Hom.M;M 0/: Therefore, suppose that f D .f1; f2/ is a
morphism fromM to M 0. Then f1 and f2 can be written in matrix form as

f1 D
�
a b

c d

�
f2 D

�
x

y

�

where a; b; c; d; x; y 2 k, and since f is a morphism of representations, we have
f1'˛ D ' 0̨ f2 and f1'ˇ D ' 0̌ f2; in other words

�
a b

c d

� �
1

0

�
D
�
1 0

0 1

� �
x

y

�
; and

�
a b

c d

� �
0

1

�
D

�
0 0

1 0

� �
x

y

�
;

which implies that
�
a

c

�
D
�
x

y

�
; and

�
b

d

�
D
�
0

x

�
:

Therefore f is of the form

f D
��
a 0

c a

�
;

�
a

c

��
;

and Hom.M;M 0/ Š k2 is a two-dimensional vector space with basis

���
1 0

0 1

�
;

�
1

0

��
;

��
0 0

1 0

�
;

�
0

1

���
:
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1.2 Direct Sums and Indecomposable Representations

The direct sum M ˚ N of two representations M and N can be though of as
considering both M and N at the same time. If we understand M and N , then
we understand their direct sum.

The concept of direct sum is more interesting when we go the other way, that
is, given a representation X , we can ask if it is possible to decompose X into a
direct sum X D M ˚ N , with M and N nonzero. If this is the case, then we
can try to decompose the direct summands M and N further and eventually get a
decompositionX DM1˚M2˚� � �˚Mt in which each of theMi is indecomposable.

Let Q be a quiver.

Definition 1.4. Let M D .Mi ; '˛/ and M 0 D .M 0i ; ' 0̨ / be representations of Q.
Then

M ˚M 0 D
�
Mi ˚M 0i ;

�
'˛ 0

0 ' 0̨
��

i2Q0;˛2Q1

is a representation of Q called the direct sum of M andM 0.
Recursively, we define the direct sum of any finite number of representations

M1;M2; : : : ;Mt 2 repQ by

M1 ˚M2 ˚ � � � ˚Mt D .M1 ˚ � � � ˚Mt�1/˚Mt:

Example 1.7. Let Q be the quiver

1 2 3 ,

and consider the representations

M k 1 k 0;0

M k2

1 1
0 1

k2 k .

1
1

Then the direct sum M ˚M 0 is the representation

k⊕ k2

⎡
⎢⎢⎣
1 0 0
0 1 1
0 0 1

⎤
⎥⎥⎦

k⊕ k2 0⊕ k ;

⎡
⎢⎢⎣
0 0
0 1
0 1

⎤
⎥⎥⎦
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which is isomorphic to

k3

⎡
⎢⎢⎣
1 0 0
0 1 1
0 0 1

⎤
⎥⎥⎦

k3 k .

⎡
⎢⎢⎣
0
1
1

⎤
⎥⎥⎦

Definition 1.5. A representation M 2 repQ is called indecomposable if M ¤ 0

and M cannot be written as a direct sum of two nonzero representations, that is,
wheneverM Š N ˚ L with N;L 2 repQ, then N D 0 or L D 0.

Example 1.8. The representations in Examples 1.5 and 1.6 are indecomposable.
The representation M in Example 1.7 is indecomposable, but M 0 is not. M 0 is
isomorphic (but not equal) to

(k 1 k k1 )⊕ (k 1 k 00 ).

In Example 1.2, the representations M and M 00 are indecomposable, and the
representationsM 0 andM 000 are not.

Goal of Representation Theory
Classify all representations of a given quiver Q and all morphisms between
them up to isomorphism.

The following theorem shows that in order to attain this goal, it is sufficient to
classify all indecomposable representations and morphisms between them.

Theorem 1.2 (Krull–Schmidt Theorem). Let Q be a quiver and let M 2 repQ.
Then

M Š M1 ˚M2 ˚ � � � ˚Mt

where the Mi 2 repQ are indecomposable and unique up to order.

Proof. If M is indecomposable, there is nothing to show. If M is not indecom-
posable, then M D M 0 ˚ M 00, where M 0 and M 00 are representations of strictly
smaller dimension. By induction, we have M 0 Š M 01 ˚ M 02 ˚ � � � ˚ M 0t 0 and
M 00 Š M 001 ˚M 002 ˚ � � � ˚M 00t 00 with all M 0i ;M 00i indecomposable. This shows the
existence of the decomposition. For the uniqueness see, for example, [8, I.4.10]. ut
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We close this section with the definition of a category.

Categories 2 A category C consists of objects, morphisms, and a binary
operation called the composition of morphisms.

More precisely, let C be a class of objects Ob.C / and a class of
morphisms HomC such that each morphism f 2 HomC has a unique
source X and a unique target Y in Ob.C /. We say that f is a morphism
from X to Y and write f W X ! Y . The class of all morphisms from X

to Y is denoted by HomC .X; Y /.

Then C is called a category if for every three objectsX; Y;Z in Ob.C /,
there is a binary operation

HomC .X; Y / � HomC .Y;Z/ �! HomC .X;Z/

. f ; g / 7�! g ı f

called the composition of morphisms that satisfies the following axioms:

1. (associativity) If f W W ! X; g W X ! Y and h W Y ! Z are
morphisms, then

h ı .g ı f / D .h ı g/ ı f:

2. (identity) For every object X there exists a morphism 1X 2
HomC .X;X/ called the identity morphism on X such that for every
f 2 HomC .X; Y / and every g 2 HomC .Z;X/ we have

f ı 1X D f and 1X ı g D g:

1.3 Kernels, Cokernels, and Exact Sequences

Recall from linear algebra that if f W V ! V 0 is a linear map, then its kernel
kerf D fv 2 V j f .v/ D 0g is a subspace of V , and its cokernel cokerf D
V 0=imf D fv0 C f .V / j v0 2 V 0g is a quotient space of V 0.

In this section, we will generalize these concepts to representations.
LetQ be a quiver, and letM D .Mi ; '˛/i2Q0;˛2Q1 andM 0 D .M 0i ; ' 0̨ /i2Q0;˛2Q1

be two representations of Q. Furthermore, let f D .fi /i2Q0 W M ! M 0 be a
morphism of representations. Recall that each fi is a linear map from the vector
space Mi to the vector space M 0i .

For each vertex i 2 Q0, let Li D kerfi , and for each arrow i
˛! j in Q1,

let  ˛ W Li ! Lj be the restriction of '˛ to Li , that is,  ˛.x/ D '˛.x/ for all
x 2 Li . Let us check that  ˛ is well defined. We must show that for all x 2 Li , we
have  ˛.x/ 2 Lj which means that '˛.x/ 2 kerfj . But since f is a morphism of
representations, we have fj'˛.x/ D ' 0̨ fi .x/, which is zero, since x 2 kerfi . This
shows that  ˛ is well defined.
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Definition 1.6. The representation kerf D .Li ;  ˛/i2Q0;˛2Q1 is called the kernel
of f .

Remark 1.3. The inclusions incli W kerfi ,! Mi induce an injective morphism of
representations2:

.incli /i2Q0 W kerf ,!M:

Next we define the cokernel of the morphism f . For each vertex i 2 Q0, let

Ni D cokerfi D M 0i =fi .Mi/, and for each arrow i
˛! j in Q1, define �˛ W Ni !

Nj by

�˛.m
0
i C fi .Mi// D ' 0̨ .m0i /C fj .Mj /;

for each m0i 2M 0i .
Let us check that �˛ is well defined. Suppose we have two elements m0i ; m00i 2

M 0i such that m0i C fi .Mi/ D m00i C fi .Mi/. Then m0i � m00i 2 f .Mi/ and thus
' 0̨ .m0i / � ' 0̨ .m00i / D ' 0̨ .m0i � m00i / lies in ' 0̨ fi .Mi/ D fj '˛.Mi/ � fj .Mj /.
It follows that �˛.m0i C fi .Mi// D �˛.m

00
i C fi .Mi//, and therefore �˛ is well

defined.

Definition 1.7. The representation cokerf D .Ni ; �˛/i2Q0;˛2Q1 is called the
cokernel of f .

Remark 1.4. The projections proji W M 0i � cokerfi induce a surjective morphism
of representations3:

.proji /i2Q0 WM 0 � cokerf:

In category theory, kernels and cokernels are defined using the following
universal properties:

Remark 1.5. Let M
g�! N be a morphism. Then a kernel of g is a morphism

L
f�!M such that gf D 0, and given any morphism X

v�! M such that gv D 0,

there is a unique morphism X
u�! L such that f u D v. We say that v factors

through f :

X

∃u v

L
f

M
g

N

2The arrow ,! indicates that the morphism is injective.
3The arrow � indicates that the morphism is surjective.
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Let us prove that our kernel from Definition 1.6 satisfies this universal property.
So suppose that g W M ! N is a morphism of representations of a quiver Q, let
L D kerg as in Definition 1.6 and let f be the inclusion map f W L ,! M . Then
for every vertex i 2 Q0 and every mi 2 Li , we have gifi .mi/ D gi .mi / D 0,
which shows that gf D 0.

Now suppose that v W X ! M is a morphism of representations such that gv D
0. Let us use the notation M D .Mi ; '˛/; L D .Li ;  ˛/, and X D .Xi ; �˛/ for
the three representations. Then for every i 2 Q0 and every xi 2 Xi , we have
v.xi / 2 kergi D Li , so we can define a map u W X ! L by ui .xi / D vi .xi /. It is
clear that f u D v so that the above diagram commutes, but we must check that u

is actually a morphism of representations. So let i
˛! j be an arrow in Q, and let

xi 2 Xi . Then, using the definitions of u and L and the fact that v is a morphism of
representations, we get

 ˛ui .xi / D '˛vi .xi / D vj �˛.xi / D uj �˛.xi /;

which shows that u is a morphism of representations. The fact that u is unique
follows directly from the fact that f is the inclusion morphism.

Remark 1.6. Let L
f�! M be a morphism. Then a cokernel of f is a morphism

M
g�! N such that gf D 0, and given any morphismM

v�! X such that vf D 0,

there is a unique morphism N
u�! X such that ug D v. We say that v factors

through g:

L
f

M

v

g
N

∃u

X

We leave it to the reader to prove that the two definitions of the cokernel agree.

Definition 1.8. A representationL is called a subrepresentation of a representation
M if there is an injective morphism i W L ,! M . In this situation, the quotient
representationM=L is defined to be the cokernel of i .

Theorem 1.7 (First Isomorphism Theorem). If f W M ! N is a morphism of
representations, then

imf Š M= kerf:

Proof. Let M D .Mi ; '˛/. Then im f is the representation imf D .f .Mi/;  ˛/

whose maps are defined by  ˛.fi .mi// D fj'˛.mi/ for every arrow i
˛! j in Q.
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On the other hand, M= kerf is the representation M= kerf D .Mi= kerfi ; �˛/
where �˛.mi C kerfi / D '˛.mi/C kerfj .

Since each fi is a linear map, it induces an isomorphism of vector spaces:

Nfi WMi= kerfi ! fi .Mi/; mi C kerfi 7! fi .mi/:

Moreover, for every arrow i
˛! j , we have  ˛ Nfi D Nfj '˛, which shows that Nf is a

morphism of representations. This completes the proof. ut
Categories 3 With the above definition of kernel and cokernel, we have
that repQ is an abelian k-category. This means that

1. repQ is a k-category, that is, Hom.M;N / is a k-vector space for all
M;N 2 repQ, and the composition of morphisms is bilinear,

2. repQ is additive, that is, repQ has direct sums, there is a zero object
0 2 repQ such that the identity morphism 10 2 Hom.0; 0/ is the zero
of the vector space Hom.0; 0/, and

3. each morphism f WM ! N in repQ has a kernel i W K !M and a
cokernel p W N ! C such that the cokernel of i is isomorphic to the
kernel of p.

Observe that the condition coker i Š kerp in 3 follows from the first
isomorphism theorem.

Next we introduce the notion of exact sequences which will be fundamental for
the rest of the book.

Definition 1.9. A sequence of morphisms L
f! M

g! N is called exact at M if
imf D kerg. A sequence of morphisms

· · · M1
f1 M2

f2 M3
f3 · · ·

is called exact if it is exact at everyMi .

Definition 1.10. A short exact sequence is an exact sequence of the form

0 L
f

M
g

N 0 .

Note that the sequence in Definition 1.10 is short exact if and only if f is injective,
imf D kerg, and g is surjective.

Example 1.9. Let f WM ! N be a morphism in repQ. Then the sequence

0 ker f u M
f

N
p

coker f 0 ,
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where u is the inclusion of Remark 1.3 and p, the projection of Remark 1.4, is exact;
and the sequence

0 ker f u M
q

M/ker f 0

is short exact.

Example 1.10. Let Q be the quiver 1 2 , and consider the three
representations:

S(2) (0 k),

M (k 1 k),

S(1) (k 0).

Then

0 S(2)
f

M
g

S(1) 0
0 S(2)

f
S(1)⊕S(2) g

S(1) 0,

where f D .f1; f2/ D .0; 1/; g D .g1; g2/ D .1; 0/, and f 0 D .f 01 ; f 02 / D
.0; 1/; g0 D .g01; g02/ D .1; 0/ are short exact sequences.

Definition 1.11. A morphism f W L ! M is a called a section if there exists a
morphism h WM ! L such that h ı f D 1L.

A morphism g W M ! N is a called a retraction if there exists a morphism
h W N !M such that g ı h D 1N .

Definition 1.12. We say that a short exact sequence

0 L
f

M
g

N 0

splits if f is a section.

Example 1.11. In Example 1.10, the second short exact sequence splits, because

the morphism h0 W S.1/ ˚ S.2/ .0;1/�! S.2/ verifies h0 ı f 0 D 1S.2/. On the other
hand, the first sequence does not split, since there is no nonzero morphism fromM

to S.2/; hence f cannot be a section.

Proposition 1.8. Let

0 L
f

M
g

N 0
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be a short exact sequence in repQ. Then

(a) f is a section if and only if g is a retraction.
(b) If f is a section, then im f .D kerg/ is a direct summand of M .

Proof. First we show (a).

.)/ Suppose that f is a section. Then there exists h 2 Hom.M;L/ such that
h ı f D 1L.

Define h0 W N ! M as follows: Let n 2 N . Since g is surjective, there exists
m 2 M such that g.m/ D n. Choose one suchm and define h0.n/ D m�f ıh.m/.

Since there may be differentm to choose from, we must show that the definition
of h0 does not depend on the choice of m. Suppose that m;m0 2 M are such that
g.m/ D g.m0/ D n. We must show that m � f ı h.m/ D m0 � f ı h.m0/. We
have g.m �m0/ D g.m/� g.m0/ D 0, which shows that m �m0 2 kerg, and thus
m � m0 2 imf . Therefore, there exists an ` 2 L such that f .`/ D m � m0, and
consequently,

m � f h.m/� .m0 � f h.m0// D m �m0 � f h.m �m0/
D m �m0 � f hf .`/
.�/D m �m0 � f .`/
D 0;

where the equation (�) holds, because hıf D 1L. This shows that h0 is well defined.
Next we show that h0 is a morphism. To do so, we need some notation. Let

L D .Li ; '˛/;M D .Mi ; '
0̨ /, and N D .Ni ; '

00̨/. Let i
˛�! j be an arrow in Q1.

Then we have the following diagram:

Li
ϕα

fi

L j

f j

Mi
ϕα

gi

hi

Mj

g j

h j

Ni
ϕα

hi

Nj

h j
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which is commutative with respect to the morphisms f; g and h, and we must show
its commutativity with respect to h0. Let ni 2 Ni , and let mi 2 Mi such that
gi .mi / D ni as in the definition of h0. Then

' 0̨ h0i .ni / D ' 0̨ .mi � fihi .mi// D ' 0̨ .mi/ � ' 0̨ fihi .mi/;

which is shown to be equal to ' 0̨ .mi/� fjhj ' 0̨ .mi/ by using the commutativity of
the diagram first for f and then for h.

On the other hand,

h0j ' 00̨.ni / D h0j ' 00̨gi .mi/ D h0j gj ' 0̨ .mi /

which is also equal to ' 0̨ .mi/ � fj hj ' 0̨ .mi/, by definition of h0. This shows that
' 0̨ h0i D h0j ' 00̨ and that h0 is a morphism in repQ.

Finally, we show that gh0 D 1N and, consequently, that g is a retraction. To do
so, let n 2 N and m 2M such that g.m/ D n. Then

gh0.n/ D g.m � f h.m// D g.m/ � gf .h.m// D g.m/;

where the last equation holds, since gf D 0, because the sequence in the
proposition is exact. But g.m/ D n, and thus gh0 D 1N .

.(/ Suppose that g is a retraction. Then there is h0 2 Hom.N;M/ such that
gıh0 D 1N . Define h WM ! L as follows. Letm 2M , and thenm�h0.g.m// 2
kerg D imf . Therefore there is ` 2 L such that f .`/ D m � h0g.m/, and this
` is unique, since f is injective. Define h.m/ D `.
Clearly, h ı f D 1L.
In order to finish the proof, let us check that h is a morphism in repQ. We will

use the same notation as in the first part of the proof. Let mi 2 Mi and let `i 2 Li
such that

fi .`i / D mi � h0i gi .mi / (1.1)

as in the definition of h. Then '˛hi .mi/ D '˛.`i /: On the other hand, by definition
of h, we have hj ' 0̨ .mi / D `j for a unique `j 2 Lj with the property that

fj .`j / D ' 0̨ .mi/� h0j gj ' 0̨ .mi/: (1.2)

We must show that '˛hi D hj ' 0̨ , so it suffices to show that '˛.`i / D `j . Now

' 0̨ .mi / D ' 0̨ fi .`i /C ' 0̨ h0i gi .mi / D fj '˛.`i /C h0j gj ' 0̨ .mi/;
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where the first identity holds because of (1.1) and the last identity holds because f; h
and g are morphisms. Using this last identity to replace the first term on the right
hand side of (1.2), we get

fj .`j / D fj '˛.`i /;

and since fj is injective, this implies that '˛.`i / D ' 0̨ .mi/. This proves (a).
In order to prove (b), let h0 2 Hom.N;M/ be such that gh0 D 1N and let m D

.mi/i2Q0 2 M . Then mi D h0i gi .mi / C .mi � h0i gi .mi// with h0i gi .mi/ 2 im h0i
and .mi � h0i gi .mi// 2 kergi . Moreover, imh0i \ ker gi D f0g, since g ı h0 D 1N .
Thus for each of the vector spaces Mi , we have a direct sum decomposition Mi D
imh0i ˚ kergi .

We still have to check that the maps of the representationM are the maps of the

direct sum imh0˚ kerg, that is, we must show that for each arrow i
˛! j inQ1 we

have

' 0̨ D
"
' 0̨ jim h0

i
0

0 ' 0̨ jkergi

#
: (1.3)

If mi 2 kergi , then 0 D ' 00̨gi .mi/ D gj '
0̨ .mi/, because g is a morphism.

Therefore ' 0̨ .mi/ 2 kergj and thus the upper right block of the matrix in (1.3) is
zero. If mi 2 imh0i , then there exists ni 2 Ni such that h0i .ni / D mi , and therefore
' 0̨ .mi/ D ' 0̨ h0i .ni / D h0j ' 00̨.ni / is an element of im .h0j /. This shows that the lower
left block of the matrix in (1.3) is zero, and therefore ' 0̨ is of the form (1.3), and we
are done. ut
Corollary 1.9. If the sequence

0 L
f

M
g

N 0

is split exact, then

M Š L˚N:

Proof. Since f is injective, we have L Š f .L/ Š kerg, and, since g is surjective,
the first isomorphism theorem implies N Š M= kerg. Now the result follows from
Proposition 1.8. ut

1.4 Hom Functors

We now want to introduce the Hom functors and study their effect on short exact
sequences. First, let us recall the definition of functors.
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Categories 4 Let C ;C 0 be two k-categories. A covariant functor F W
C ! C 0 is a mapping that associates

• to each object X 2 C an object F.X/ 2 C 0 and
• to each morphism f W X ! Y in C a morphism F.f /WF.X/ !
F.Y / in C 0,

such that F.1X/ D 1F.X/ and F.g ı f / D F.g/ ı F.f /, for all objects
X and all morphisms f and g in C .
A contravariant functor F W C ! C 0 is a mapping that associates:

• to each object X 2 C an object F.X/ 2 C 0 and
• to each morphism f WX ! Y in C a morphism F.f /WF.Y / !
F.X/ in C 0,

such that F.1X/ D 1F.X/ and F.g ı f / D F.f / ı F.g/, for all objects
X and all morphisms f and g in C .

Two very important functors are the Hom functors Hom.X;�/ and
Hom.�; X/, whereX is an arbitrary fixed object in the category C . They
are defined as follows:
Hom.X;�/ is the covariant functor from the category C to the cate-
gory of k-vector spaces, which sends an object Y in C to the vector
space Hom.X; Y / of all morphisms from X to Y and which sends
a morphism .f WY ! Z/ in C to the map f�WHom.X; Y / �!
Hom.X;Z/; f�.g/ D f ı g:

X

g
f◦g

Y
f

Z

The map f� is called the push forward of f .
Hom.�; X/ is the contravariant functor from the category C to the
category of k-vector spaces, which sends an object Y in C to the vector
space Hom.Y;X/ of all morphisms from Y to X and which sends
a morphism .f W Y ! Z/ in C to the map f�WHom.Z;X/ �!
Hom.Y;X/; f �.g/ D g ı f :

Y

g◦ f

f
Z

g

X

The map f � is called the pull back of f .
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Let us go back to our category repQ of representations of the quiver Q. It turns
out that applying the Hom functors to short exact sequences of representations yields
new exact sequences of vector spaces.

Theorem 1.10. LetQ be a quiver and 0 L
f

M
g

N a sequence in
repQ. Then this sequence is exact if and only if for every representationX 2 repQ,
the sequence

0 Hom(X ,L)
f∗ Hom(X ,M)

g∗ Hom(X ,N)

is exact.

Proof.

.)/ First, we show that f� is injective. Suppose that there is u 2 Hom.X;L/
such that 0 D f�.u/ D f ı u. Since f is injective, we can conclude that u D 0,
and thus f� is injective.

Next, we show that im f� D kerg�. Let u 2 Hom.X;L/. Then g�f�.u/ D g ı
f ı u, which is zero because g ıf D 0. Hence g�f� D 0, and thus im f� � kerg�.

On the other hand, let v 2 Hom.X;M/ such that v 2 kerg�. Then 0 D g�.v/ D
g ıv. Using the universal property of the kernel of g (Remark 1.5) and the exactness

of the sequence 0 �! L
f�! M

g�! N , this implies that v factors through f ;
thus there exists u 2 Hom.X;L/ such that v D f ı u D f�.u/. Thus v 2 im f�,
and we have kerg� � im f�. Together with the other inclusion above, this implies
kerg� D im f�.

.(/ First, we show that f is injective. Take X D kerf , and let i W X ,! L be
the inclusion morphism. Then 0 D f ı i D f�.i/, and, since f� is injective, this
implies that i D 0. But since i is injective, it follows that X D 0, and thus f is
injective.

Next, we show that im f D kerg. Take X D L. Then 0 D g�f�.1L/ D g ı f ı
1L D g ı f , and thus im f � kerg.

On the other hand, take X D kerg and i W X ,! M the inclusion morphism.
Then 0 D g ı i D g�.i/ implies that i 2 kerg� D im f�, and therefore there exists
u 2 Hom.X;L/ such that i D f�.u/ D f ı u. Consequently kerg D i.X/ � im f .
Together with the other inclusion above, this implies kerg D imf , and we are
done. ut
Corollary 1.11. A sequence

0 L
f

M
g

N 0 (1.4)



22 1 Representations of Quivers

in repQ is split exact if and only if for every X 2 repQ, the sequence

0 Hom(X ,L)
f∗ Hom(X ,M)

g∗ Hom(X ,N) 0 (1.5)

is exact.

Proof.

.)/ By Theorem 1.10, it suffices to show that g� is surjective. Suppose that
the sequence (1.4) is split exact. Then g is a retraction; hence there is h 2
Hom.N;M/ such that gh D 1N .

Now for any u 2 Hom.X;N /, we have hu 2 Hom.X;M/ and g�.hu/ D
ghu D 1N u D u, which shows that g� is surjective.

.(/ Suppose that for every X 2 repQ, the sequence (1.5) is exact. Then it
follows from Theorem 1.10 that the sequence

0−→ L f−→M g−→ N,

is exact. Taking X D N and using the surjectivity of g�, we see that there exists
h 2 Hom.N;M/ such that

1N D g�.h/ D gh;

which proves two facts:

1. g is surjective, which shows that the sequence (1.4) is exact, and
2. g is a retraction, which shows that the sequence (1.4) splits.

ut
Remark 1.12. If

0 L
f

M
g

N 0

splits, then

0 Hom(X ,L)
f∗ Hom(X ,M)

g∗ Hom(X ,N) 0

splits too. Indeed, gh D 1N ) g�h� D 1Hom.X;N /.

There are dual versions of Theorem 1.10 and Corollary 1.11 involving the functor
Hom.�; X/. We state these results below, but leave the proofs as an exercise. Note
that the order of the representationsL;M;N is reversed in the Hom sequence, since
Hom.�; X/ is contravariant.
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Theorem 1.13. LetQ be a quiver and L
f

M
g

N 0 a sequence in
repQ. Then this sequence is exact if and only if for every representationX 2 repQ,
the sequence

0 Hom(N,X)
g∗

Hom(M,X)
f ∗

Hom(L,X)

is exact.

Corollary 1.14. A sequence

0 L
f

M
g

N 0

in repQ is split exact if and only if for every X 2 repQ, the sequence

0 Hom(N,X)
g∗

Hom(M,X)
f ∗

Hom(L,X) 0

is exact.

Remark 1.15. If 0 L
f

M
g

N 0 does not split, then f � and
g� are not always surjective; see the example below. Nevertheless, one can extend
the exact sequences of Theorems 1.10 and 1.13 to the right by introducing the
extension functors Exti .X;�/ and Exti .�; X/; see Sect. 2.4.

Example 1.12. In Example 1.10 the short exact sequence

0 S(2)
f

M
g
S(1) 0

is non-split. Taking X D S.1/, and applying Hom.S.1/;�/, we get a mor-
phism g�WHom.S.1/;M/ ! Hom.S.1/; S.1// which is not surjective since
Hom.S.1/;M/ D 0 and Hom.S.1/; S.1// Š k.

1.5 First Examples of Auslander–Reiten Quivers

We have already mentioned that the goal of representation theory of quivers is to
study representations and morphisms in repQ for a given quiver Q. To be even
more ambitious, we may add the study of exact sequences in repQ. In general,
the so-called Auslander–Reiten quiver is a good first approximation of repQ.
In the case where the number of isoclasses of indecomposable representations
is finite, the Auslander–Reiten quiver even provides complete information about
repQ.
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• • •

• • • • • • •

• •

Fig. 1.1 Three different types of meshes

In this section, we give a sneak preview of Auslander–Reiten quivers. More
examples will follow in Chap. 3, and for a more rigorous treatment see Chap. 7.

Let Q be a quiver. The Auslander–Reiten quiver ofQ is a new quiver �Q whose
vertices are the isoclasses of indecomposable representations and whose arrows are
given the by so-called irreducible morphisms. Roughly speaking, an irreducible
morphism between two indecomposable representations is a morphism that does
not factor nontrivially through another representation.

Recall that we can build any representation out of indecomposable ones; thus
the vertices of the Auslander–Reiten quiver represent the building blocks for the
representations.

The arrows of the Auslander–Reiten quiver, the irreducible morphisms, can be
thought of the building blocks for morphisms in the sense that many (but in general
not all!) morphisms are compositions of irreducible morphisms.

We also want to study short exact sequences of representations. As with
morphisms, many of them (but in general not all!) are obtained by gluing together
the so-called almost split sequences4. These almost split sequences are represented
in the Auslander–Reiten quiver as meshes; see Fig. 1.1.

Example 1.13. LetQ be the quiver 1 2 : It follows from Exercise 1.4
that there are precisely three indecomposable representations (up to isomorphism),
namely

S(2) M S(1)

0 k k 1 k k 0.

We have seen in Example 1.3 that

Hom.S.1/;M/ D 0; Hom.M; S.2// D 0; Hom.S.2/;M/ Š k
Hom.S.1/; S.2// D 0; Hom.M; S.1// Š k; Hom.S.2/; S.1// D 0;

and we conclude that there is only one non-split short exact sequence with
indecomposable representations at the endpoints:

4Maurice Auslander and Idun Reiten introduced the concept of almost split sequences in [10].



1.5 First Examples of Auslander–Reiten Quivers 25

0 �! S.2/ �!M �! S.1/ �! 0:

This sequence is actually an almost split sequence. Thus the Auslander–Reiten
quiver consists of three vertices, two arrows, and one mesh and is of the form

M

S(2) S(1).

Remark 1.1. It is often convenient to have a shorthand notation for the represen-
tations, encoding the dimension vector and the maps. We will use the following
notation throughout the whole book.

Let Q0 D f1; 2; : : : ; ng be the set of vertices of the quiver, let M D .Mi ; '˛/

be an indecomposable representation of Q, and let dimM D .d1; d2; : : : ; dn/ be
its dimension vector. We describe the representation M as a configuration of digits
using 1; 2; : : : ; n in such a way that the digit i appears exactly di times. Moreover,
we arrange the digits in such a way that if there is an arrow ˛ W i!j such that
the corresponding map '˛ W Mi ! Mj is nonzero, then the digit i is placed
above the digit j . This notation has its limitations, but it is particularly useful if the
isomorphism class of the representation M is determined by its dimension vector.

In the example above, we can picture the representation M by 2
1

, meaning that
M1 D k and M2 D k and the arrow is going downward from 1 to 2 and carries the
identity map. In this notation, the whole Auslander–Reiten quiver would be

1
2

2 1

Example 1.14. LetQ be the quiver 1! 2 3. In this case, there are precisely six
isoclasses of indecomposable representations, namely

S(2) P(1) P(3)

0 k 0 k 1 k 0 0 k k1

I(2) S(1) S(3)

k 1 k k1 k 0 0 0 0 k

or, using our symbolic notation,
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S.2/ D 2; P.1/ D 1

2
; P.3/ D 3

2
; I.2/ D 1 3

2
; S.1/ D 1; S.3/ D 3:

In this example, there are three almost split sequences:

0 2 1
2 ⊕ 3

2
1 3
2 0

0 1
2

1 3
2 3 0

0 3
2

1 3
2 1 0

and the Auslander–Reiten quiver is of the form

3
2 1

2 1 3
2

1
2 3

Let us point out that there are two further non-split short exact sequences with
indecomposable end terms:

0 2 3
2 3 0

0 2 1
2 1 0

each of which can be obtained by “gluing the meshes” of two almost split sequences
in the Auslander–Reiten quiver.

Problems

Exercises for Chap. 1

1.1. LetM;M 0 2 repQ. Show that the set of morphism Hom.M;M 0/ is a k-vector
space.
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1.2. Let Q be the quiver 1 2 3; and consider the
representations

M k

1
0

k2 k

0
1

M k

1
0

k2 k

1
0

1. Show that M and M 0 are not indecomposable.
2. Show that M and M 0 are not isomorphic.

1.3. Let Q be the quiver 1 2 3; and let M be the
representation

k2

⎡
⎣ 1 00 1
0 0

⎤
⎦

k3 k

⎡
⎢⎣
1
0
0

⎤
⎥⎦

.

1. Write M as a direct sum of the indecomposable representations listed in
Example 1.14.

2. Show that there is a non-split short exact sequence

0 X Y Z 0

such that X ˚Z DM .

1.4. Find all indecomposable representations up to isomorphism of the quiver
1 �! 2. [Hint: Use the following theorem from Linear Algebra: ]

Theorem 1.16. Let 	 W V1 ! V2 be a linear map between finite-dimensional vector
spaces and fix some bases for V1 and V2. Let r be the rank of 	. Then there exist
isomorphisms of vector spaces fi W Vi ! Vi such that the matrix of f2 ı 	 ı f �11

with respect to the fixed bases is a diagonal matrix whose upper left r � r block is
the identity matrix and all other entries are zero.
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1.5. Let Q be the quiver

1
α

3 4
γ

2
β

and consider the following representations:

k 1
0

kM 2 k

1
1

k 0
1

0
0

M k 00

0
0

k
1

M k k1

k
1

1. Show that

Hom.M;M 0/ D 0 Hom.M 0;M / Š k2
Hom.M;M 00/ Š k2 Hom.M 00;M / D 0:
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2. Show that M is not isomorphic to M 0 ˚M 00.
3. Show that there is a short exact sequence:

0 M M M 0.

1.6. Let Q be the quiver

1 2
β

α
.

For any � 2 k [ f1g, define M� to be the representation:

k k
λ

1
; if λ ∈ k;

k k
1

0
; if λ = ∞.

1. Show that eachM� is indecomposable.
2. Show that M� Š M� if and only if � D �. In particular, the number of

indecomposable representations depends on the choice of the field k.
3. Show that Hom.M�;M�/ D 0 if � ¤ �.
4. Show that for each � there is a short exact sequence

0 1 Mλ 2 0,

where 1 and 2 are the representations

1 : k 0
0

0
, 2 : 0 k

0

0
.

1.7. Let f W L!M be a morphism of representations.

1. Show that the cokernel of f together with the projection 
 W M ! cokerf
satisfies the universal property of Remark 1.6.

2. Show that if g W M ! N is a morphism satisfying the universal property of
Remark 1.6, then N Š cokerf .

1.8. Let M;M 0; N be representations of Q and let f W M ! N; g W M 0 ! N be
morphisms. Define the fiber product (or pull back) of f and g as

X D f.a; b/ j a 2M;b 2M 0; such that f .a/ D g.b/g;

and define the projections 
1.a; b/ D a and 
2.a; b/ D b.
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1. Show that X is a subrepresentation of M ˚M 0 and that there is a commutative
diagram:

X
π2

π1

M

g

M
f

N

2. Show that if f is injective then 
2 is injective.
3. Show that if f is surjective then 
2 is surjective.

4. Now suppose 0 L h M
f

N 0 is a short exact sequence and
define h0 W L ! X by h0.n/ D .h.n/; 0/. Show that the following diagram is
commutative with exact rows:

0 L h

1L

X
π2

π1

M

g

0

0 L h M
f

N 0

1.9. Let L;M;M 0 be representations of Q and let f W L ! M;g W L ! M 0 be
morphisms. Define the amalgamated sum (or push out) of f and g as

X D .M ˚M 0/=f.f .`/;�g.`// j ` 2 Lg;

and define the morphisms u1WM ! X and u2WM 0 ! X by u1.m/ D .m; 0/ and
u2.m0/ D .0;m0/, where .a; a0/ denotes the class of .a; a0/ 2 M ˚M 0 in X .

1. Show that there is a commutative diagram:

L
f

g

M

u1

M
u1 X

2. Now suppose 0 L
f
M h N 0 is a short exact sequence

and define h0 W X ! N by h0.m;m0/ D h.m/. Show that the following diagram
is commutative with exact rows:
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0 L
f

g

M h

u1

N

1N

0

0 M
u2 X h N 0

1.10. Write out the morphisms of the 5 short exact sequences in Example 1.14.
Show that the almost split sequence

0 2 h 1
2 ⊕ 3

2
π2 1 3

2 0

is obtained from the short exact sequence

0 2 h 1
2

f
1 0

as in Exercise 1.8 via the fiber product of f and the irreducible morphism

g W 1 3
2
! 1.



Chapter 3
Examples of Auslander–Reiten Quivers

We have already pointed out in Sect. 1.5 that Auslander–Reiten quivers provide
a threefold information about the representation theory of the quiver, namely the
indecomposable representations, the irreducible morphisms, and the almost split
sequences—these in turn should be thought of the building blocks of arbitrary
representations, morphisms, and short exact sequences, respectively.

We have developed enough of the theory by now to be able to compute and
appreciate Auslander–Reiten quivers. We present here several different methods
of computation, although we are not able yet to prove that these methods actually
produce the desired result; this justification is postponed to Chap. 7.

This chapter is subdivided into several sections. In the first section, we compute
Auslander–Reiten quivers of type An, the second section is a digression on finite
representation type, and the third section treats the Auslander–Reiten quivers of type
Dn. In both the first and the third section, we present several methods to compute
the Auslander–Reiten quiver.

The first method, the knitting algorithm, is a recursive procedure which owes
its name to the fact that it produces one mesh after the other. The second method
is to compute the orbits under the Auslander–Reiten translation � . While the
knitting algorithm produces the Auslander–Reiten quiver by computing the next
vertical cross section and gradually progressing from left to right, the �-orbit
procedure computes horizontal cross sections of the Auslander–Reiten quiver.
The third method is a geometric construction of the Auslander–Reiten quiver in
terms of diagonals in a polygon in type An and in terms of arcs in a punctured
polygon in type Dn. We then show how to use the Auslander–Reiten quiver to
compute the dimensions of Hom and Ext spaces between modules. In the fourth
section, we introduce bound quivers and their representations in order to show
how the geometric constructions for type An and Dn naturally generalize to the
so-called cluster-tilted bound quivers. The reader who is not enthusiastic about the
geometric realizations may very well skip the subsection on the punctured polygon
(Sect. 3.3.3).

© Springer International Publishing Switzerland 2014
R. Schiffler, Quiver Representations, CMS Books in Mathematics,
DOI 10.1007/978-3-319-09204-1__3

69
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3.1 Auslander–Reiten Quivers of Type An

In this section, letQ be a quiver of type An, that is, the underlying unoriented graph
of Q is the Dynkin diagram of type An:

1 2 3 . . . (n−1) n.

We will see several ways to construct the Auslander–Reiten quiver of Q.

3.1.1 The Knitting Algorithm

The knitting algorithm owes its name to the fact that it recursively constructs one
mesh after the other, from left to right. In order to get started one has to compute the
indecomposable projective representations which are the leftmost indecomposable
representations in the Auslander–Reiten quiver.

1. Compute the indecomposable projective representations

P.1/; P.2/; : : : ; P.n/:

2. Draw an arrow P.i/ ! P.j / whenever there exists an arrow j ! i in Q1, in
such a way that each P.i/ sits at a different level.

3. (Knitting) There are three types of meshes. Complete each mesh as shown in
Fig. 3.1 in such a way that

dimLC dim ��1L D
2X
iD1

dimMi:

4. Repeat step 3 until you get negative integers in the dimension vector.

Observe that, every time we perform the third step, the representations L and Mi

have been computed earlier and only ��1L is unknown.
The isoclasses of indecomposable representations of quivers of type An are

determined by their dimension vectors as follows. The dimension vector is always
of the form .0; : : : ; 0; 1; : : : ; 1; 0; : : : ; 0/, and the corresponding representation is
M D .Mi ; '˛/ with Mi D k if the dimension at i is one, and Mi D 0 otherwise;
and '˛ D 1 if the dimension at s.˛/ and at t.˛/ is one, and '˛ D 0 otherwise.
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M1 M1

L L τ−1L

M2 M2

M1 M1

L L τ−1L

L L τ−1L

M2 M2

Fig. 3.1 Three types of meshes in the Auslander–Reiten quiver of type An

Example 3.1. Let Q be the quiver

1 2 3 4 5 .

Then

P.1/ D 1 P.2/ D 2
1
P.3/ D 3

2 4
1

P.4/ D 4 P.5/ D 5
4
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and the Auslander–Reiten quiver is

5
4

3
2
1

4
3 5
2 4
1

3
2

3
2 4
1

3 5
2 4 3

2
1

3
2 4

3 5
4

1 2 3
4 5

3.1.2 �-Orbits

The map � is the Auslander–Reiten translation. In the Auslander–Reiten quiver,
it is the translation that sends the rightmost point of a mesh to the leftmost point
of the same mesh. The �-orbit of an indecomposable representation is the set of
all representations that can be obtained by applying � or ��1 repeatedly to the
representation. Thus the �-orbits in the Auslander–Reiten quivers of type An consist
of the representations that sit on the same level in the quiver.

Each �-orbit in the Auslander–Reiten quiver of type An contains exactly one
projective representation, so starting from the projectives, we can compute the whole
quiver by computing the �-orbits.

There are several methods to compute �-orbits.

3.1.2.1 First Method: Auslander–Reiten Translation

Let M be an indecomposable representation that is not injective. We want to
compute the translation to the right ��1M of M . Start with an injective resolution

0 M I0
g

I1 0,

and apply the inverse Nakayama functor ��1. This functor maps the indecomposable
injective representation I.j / to the corresponding indecomposable projective
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representation P.j /; see Proposition 2.29 of Chap. 2. Then ��1M is given by the
projective resolution:

0 ν−1I0
ν−1(g)

ν−1I1 τ−1M 0.

Let us compute ��1M for the moduleM D 4 in Example 3.1. The upper line in
the following diagram shows an injective resolution ofM , and the lower line shows
the corresponding projective resolution of ��1M obtained by applying ��1:

0 4 3 5
4

ν−1

3 ⊕ 5

ν−1

0

0 4
3
2 4
1

⊕ 5
4

3 5
2 4
1

0

Thus ��1M D
3 5
2 4
1

which verifies the result of Example 3.1.

3.1.2.2 Second Method: Coxeter Functor

Choose a sequence of vertices .i1; i2; : : : ; in/, with ij ¤ i` if i ¤ `, as follows:

i1 is a sink of Q;
i2 is a sink of the quiver si1Q obtained fromQ by reversing all

arrows that are incident to the vertex i1;
it is a sink of sit�1 : : : si2si1Q, for t D 2; 3; : : : ; n.

Thus in Example 3.1 such a sequence would be .1; 4; 2; 3; 5/.
Next, we need the notion of reflections si W Rn ! R

n defined by si .x/ D x �
2B.x; ei /ei , where fe1; : : : ; eng is a basis of Rn and B is a symmetric bilinear form
defined by

B.ei ; ej / D
8<
:

1 if i D j
�1=2 if i is adjacent to j in Q
0 otherwise.

In other words, si .
P

j aj ej / D
P

j a
0
j ej , where a0j D aj if j ¤ i and a0i D

�ai CPi j aj , where the sum is over all vertices j that are adjacent to i in Q.
Finally, we define a so-called Coxeter element c D si1 si2 � � � sin as a product of

reflections using the sequence of vertices defined above. Thus in Example 3.1 such
a Coxeter element would be c D s1s4s2s3s5.
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One can use this Coxeter element to compute the dimension vector of the
representation ��1M from the dimension vector ofM . If dimM D .d1; d2; : : : ; dn/,
then c.

P
i diei / D

P
i d
0
i ei and dim.��1M/ D .d 01; d 02; : : : ; d 0n/.

Let us use this method to compute the dimension vector of ��14 in Example 3.1.
We have dimM D .0; 0; 0; 1; 0/. Thus dim ��1M is equal to

s1s4s2s3s5.e4/ D s1s4s2s3.e4 C e5/
D s1s4s2.e3 C e4 C e5/
D s1s4.e2 C e3 C e4 C e5/
D s1.e2 C e3 C e4 C e5/
D e1 C e2 C e3 C e4 C e5;

which again confirms the result obtained in Example 3.1.
Another way of defining the action of the Coxeter element is to use the Cartan

matrix C of the quiver Q. This matrix is defined as C D .cij /1�i;j�n, where cij
is the number of paths from j to i and n is the number of vertices in Q. It follows
directly from the definition that, for every vertex i , the i th column of C is exactly
the dimension vector of the indecomposable projective representation P.i/ and
the i th row of C is exactly the dimension vector of the indecomposable injective
representation I.i/.

Since Q has no oriented cycles, we can always renumber the vertices of Q in
such a way that, if there is a path from j to i , then i 	 j ; in other words, there is
a renumbering of the vertices such that the matrix C is upper triangular. Also note
that the diagonal entries of C are all equal to 1, since there is exactly one path, the
constant path, from each vertex to itself. This shows that C is invertible.

Its inverse C�1 is the matrix .bij /1�i;j�n where bii D 1, and if i ¤ j , then �bij
is the number of arrows from j to i in Q. To show that this is indeed the inverse of
C , we multiply the two matrices:

.cij /i;j .bj`/j;` D
0
@X

j

cij bj`

1
A
i;`

:

Note first that the diagonal entries
P

j cij bj i D ci i bi i D 1, since both matrices are
upper triangular (up to some renumbering of the vertices). Next, if i ¤ `, then each
path from ` to i must start with some arrow from ` to some vertex j . Therefore, the
number ci` of paths from ` to i can be computed as

ci` D
X

j2Q0nf`g
cij .�bj`/:

Now using b`` D 1, we have
P

j cij bj` D ci` CPj¤` cij bj` D 0 if i ¤ `. Thus
C�1 D .bij /1�i;j�n.
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Now we define yet another matrix, the Coxeter matrix ˚ , as ˚ D �C>.C�1/,
and its inverse is ˚�1 D �C.C�1/>, the superscript > here denotes the transpose
of a matrix. Then

˚ dimM D dim �M; if M is not projective and ˚ dimP.j / D �dim I.j /;

whereas

˚�1dimM D dim ��1M; if M is not injective and ˚�1dim I.j / D �dimP.j /:

In our Example 3.1, we have

C D

2
666664

1 1 1 0 0

0 1 1 0 0

0 0 1 0 0

0 0 1 1 1

0 0 0 0 1

3
777775

.C�1/ D

2
666664

1 �1 0 0 0

0 1 �1 0 0

0 0 1 0 0

0 0 �1 1 �1
0 0 0 0 1

3
777775

˚ D

2
666664

�1 1 0 0 0

�1 0 1 0 0

�1 0 1 �1 1
0 0 1 �1 1
0 0 1 �1 0

3
777775

˚�1 D

2
666664

0 0 �1 1 0

1 0 �1 1 0

0 1 �1 1 0

0 1 �1 1 �1
0 0 0 1 �1

3
777775

so that the dimension of ��14 can be computed by ˚�1 .0; 0; 0; 1; 0/> which is
equal to .1; 1; 1; 1; 1/>. On the other hand, ˚ dimP.4/ D ˚ .0; 0; 0; 1; 0/> D
.0; 0;�1;�1;�1/> D �dim I.4/.

3.1.3 Diagonals of a Polygon with n C 3 Vertices

In this section, we give a geometric way to construct the Auslander–Reiten quiver
of a quiverQ of type An from a triangulation of a polygon. This method works only
for quivers of type An.

Start with a regular polygon with n C 3 vertices. A diagonal in the polygon is
a straight line segment that joins two of the vertices and goes through the interior
of the polygon, and a triangulation of the polygon is a maximal set of non-crossing
diagonals. Such a triangulation cuts the polygon into triangles, hence the name.
Given a triangle with sides a; b; c, we say that the side a is clockwise of the side b
if going along the boundary of the triangle in the clockwise direction corresponds
to the sequence a; b; c; a; b; c; a : : :.
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a b

a←− b

Fig. 3.2 b is clockwise from a corresponding to an arrow from b to a

We will associate a triangulation TQ to our type An quiver Q as follows: Let 1
be a vertex in the quiver that has only one neighbor. Draw a diagonal that cuts off
a triangle �0 and label that diagonal 1. If 1  2 is an arrow in Q, then draw the
unique diagonal 2 such that 1, 2 and one boundary segment of the polygon form a
triangle �1 in such a way that diagonal 2 is clockwise of diagonal 1 in the triangle
�1. If, on the other hand, 1! 2 is an arrow in Q, draw the unique diagonal 2 such
that diagonal 2 is counterclockwise of diagonal 1 in the triangle �1; see Fig. 3.2.
Continue this procedure up to diagonal n.

In this way the quiver

1 2 3 4 5

of Example 3.1 gives rise to the triangulation

1

2

3

4

5

γ

Since TQ is a triangulation of the polygon, any other diagonal � which is not
already in TQ will cut through a certain number of diagonals in TQ; in fact, any
such diagonal � is uniquely determined by the set of diagonals in TQ that � crosses.
To such a diagonal � , we associate a representationM� D .Mi ; '˛/ ofQ by letting

Mi D
�

k if the diagonal � crosses the diagonal i ;
0 otherwise;
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and setting '˛ D 1 whenever Ms.˛/ D Mt.˛/ D k, and '˛ D 0 otherwise. In the

example, the diagonal
γ

crosses the diagonals 1; 2; and 3, and the corresponding
representation is

k k1 k1 0 0 00
.

The map � 7!M� is a bijection from the set of diagonals that are not in TQ and the
set of isoclasses of indecomposable representations ofQ.

The Auslander–Reiten translation � is given by an elementary clockwise rotation

of the polygon, so in our example � of
γ

is the diagonal that cuts through
the diagonals 4 and 5.

The projective representation P.i/ is given by ��1 of the diagonal i , and the
injective representation I.i/ is given by � of the diagonal i . In our example P.1/ is
the diagonal that cuts through the diagonal 1 only and I.1/ is the diagonal � .

The complete Auslander–Reiten quiver can be easily constructed now starting
with the projectives and applying the elementary rotation to compute the �-orbits
until we reach the injective in each �-orbit, and the Auslander–Reiten quiver is

Note that any arrow in the Auslander–Reiten quiver acts on the diagonal by
pivoting one of the endpoints of the diagonal to its counterclockwise neighbor.
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3.1.4 Computing Hom Dimensions, Ext Dimensions,
and Short Exact Sequences

Given two indecomposable representationsM and N , we want to have information
about the space of morphisms Hom.M;N /. The Auslander–Reiten quiver allows us
to compute the dimension of this space easily, at least if M and N lie in the same
connected component.

3.1.4.1 Dimension of Hom.M; N /

LetQ be a typeA quiver and letM;N be two indecomposable representations ofQ.
We can compute the dimension of the vector space Hom.M;N / using the relative
position ofM and N in the Auslander–Reiten quiver. For this we need to introduce
some terminology:

A path M0 ! M1 ! � � � ! Ms in the Auslander–Reiten quiver is called a
sectional path if �MiC1 ¤ Mi�1 for all i D 1; : : : ; s� 1. Let˙!.M/ be the set of
all indecomposable representations that can be reached fromM by a sectional path,
and let ˙ .M/ be the set of all indecomposable representations from which one
can reachM by a sectional path.

Now let R!.M/ be the set of all indecomposable representations whose position
in the Auslander–Reiten quiver is in the slanted rectangular region whose left
boundary is ˙!.M/. We call R!.M/ the maximal slanted rectangle in the
Auslander–Reiten quiver whose leftmost point is M . Then dim Hom.M;N / is
either 1 or 0, and it is 1 if and only if N lies in R!.M/:
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1 0

1 1 0

1 1 0

0 1 1

0 0 1 0

0 0

0 0 1

0 1 0

0 1 0

0 1 0 0

Fig. 3.3 Dimension of Hom.M;�/ for M D P.4/ on the left and M D S.2/ on the right. The
position of the representation M is at the leftmost 1 in each case; the numbers 0; 1 indicate the
dimension of Hom.M;N / for each indecomposable representation N

We illustrate this concept in Fig. 3.3 for the Auslander–Reiten quiver of Exam-
ple 3.1. On the left side of Fig. 3.3, the moduleM is the indecomposable projective
P.4/. Its position in the Auslander–Reiten quiver is the leftmost 1 in the figure,
so this 1 indicates that dim Hom.M;M/ D 1. A basis for this vector space is
the identity morphism 1M . Each indecomposable representation N is located at
a specific point in the Auslander–Reiten quiver; the number 0 or 1 at that point
indicates the dimension of Hom.M;N / for each N .

In the Auslander–Reiten quiver on the right-hand side of Fig. 3.3, the moduleM
is the simple module S.2/. Again its position is the leftmost 1 in that figure. The
rectangle on which Hom.M;�/ is nonzero reduces in this case to a single line.

Symmetrically, we denote by R .N / the maximal slanted rectangle in the
Auslander–Reiten quiver whose rightmost point is N . We can compute the dimen-
sion of Hom.�; N / using R .N /. Thus the data in the left picture in Fig. 3.3 also
computes the dim Hom.�; N / for N D I.4/.

Note that if M D P.i/ is an indecomposable projective, then it follows from
Theorem 2.11 that the representations in R!.P.i// are precisely the indecom-
posable representations N such that Ni ¤ 0. It then follows from Exercise 2.7
of Chap. 2 that there is a unique rightmost point in R!.P.i// which must be
the position of the indecomposable injective representation I.i/. In particular,
R!.P.i// D R .I.i//.

Figure 3.4 shows an example where the right end of the R!.M/ does not really
have the shape of a rectangle, because the Auslander–Reiten quiver ends before the
rectangle is completed. This happens exactly whenM is not projective.

3.1.4.2 Dimension of Ext1.M; N /

Next we compute the dimensions of the vector spaces Ext1.M;N / for indecompos-
able representationsM;N of type A. If M is projective, then this space is zero, by
Exercise 2.11 of Chap. 2, so let us assume that M is not projective. Thus �M is a
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0 0

0 0 1

0 1 1

0 0 1

0 0 0 1

Fig. 3.4 Dimension of Hom.M;�/ where M is the representation whose dimension vector is
.0; 1; 1; 1; 1/

1 0

1 1 0

1 1 M

1 1 0

0 1 0 0

Fig. 3.5 Dimension of Ext1.M;�/ for M D I.3/

point in the Auslander–Reiten quiver. We will see in Theorem 7.18 that there is an
isomorphism

Ext1.M;N / Š DHom.N; �M/;

whereD is the duality and � is the Auslander–Reiten translation. This isomorphism
implies that dim Ext1.M;N / D dim Hom.N; �M/ and therefore we can compute
the dimension of Ext1.M;�/ using the maximal slanted rectangle R .�M/.

Figure 3.5 shows the dimension of Ext1.M;�/ for the representationM D I.3/
in our running example.

3.1.4.3 Short Exact Sequences

We have seen in Sect. 2.4 of Chap. 2 that the elements of Ext1.M;N / can be
represented by short exact sequences of the form 0 ! N ! E ! M ! 0,
where E is some representation of Q. We are interested here in the case where M
and N are indecomposable—this does not imply that E is indecomposable.

We now want to compute the possible representations E for these short exact
sequences. If the dimension of Ext1.M;N / is 0, then the only possibility is E Š
M ˚ N . If on the other hand, the dimension of Ext1.M;N / is 1, then, up to
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+

− +

− ⊕

±

+ −

±

+

− ⊕

±

+ −

Fig. 3.6 Computing short exact sequences

isomorphism, there is exactly one other possibility for E . For representations of
type A, we can compute E simply from the relative positions of M and N in the
Auslander–Reiten quiver:

N•

•M
Σ→(N)andΣ←(M)

Let M;N be indecomposable representations of a quiver of type A such that
Ext1.M;N / ¤ 0. Then N must lie in R .�M/ and this implies that ˙!.N / and
˙ .M/ have either 1 or 2 points in common, and these points correspond to the
indecomposable summands of E .

We illustrate this situation in Fig. 3.6; the representation N is marked by 
 and
the representation M by ˚. The representations in ˙!.N / are marked by � or 

(for N ) and those in ˙ .M/ by C or ˚ (for M ). The points of intersection are
marked ˙. The example of the left-hand side of Fig. 3.6 corresponds to the short
exact sequence:

0 5
4

3 5
4 3 0

and the example on the right-hand side corresponds to the short exact sequence:

0
3 5
2 4
1

3 5
4 ⊕

3
2
1

3 0 .
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3.2 Representation Type

3.2.1 Gabriel’s Theorem: Finite Representation Type

A quiver Q is said to be of finite representation type if the number of isoclasses
of indecomposable representations of Q is finite. In this section, we list the quivers
of finite representation type. It turns out that this classification depends only on the
shape of the quiver and not on the particular orientation of the arrows. We therefore
define the underlying graph of the quiver Q to be the graph obtained from Q

by forgetting the direction of the arrows; thus the underlying graph has the same
vertices asQ and for each arrow i ! j inQ there is an edge i j in the underlying
graph.

The graphs in Fig. 3.7 are called Dynkin diagrams. These graphs play an
important role in mathematics when it comes to classifications. There are four
infinite series, types A;B;C and D, and five exceptional diagrams, types E;F and
G. The types A;D;E are the only ones that have no parallel edges; these types are
called simply laced Dynkin diagrams and will be of particular interest to us. The
classification result is as follows:

Theorem 3.1 (Gabriel’s Theorem, Part I). A connected quiver is of finite
representation type if and only if its underlying graph is one of the Dynkin diagrams
of type A;D or E.

This is a very surprising result, one might of course ask now what is so special about
the Dynkin diagrams, or why are there only three diagrams of type E? Note that
we cannot come up with a diagram of E type with five or less vertices, because it
would be a diagram of type D or A. But what about E type diagrams with 9; 10,
or more vertices? Well, the simple answer is that you then get infinitely many
indecomposable representations, but this answer does not really settle the question:
why?

One thing we can say is that we are not the only ones who are puzzled about this
fact, because the Dynkin diagrams show up in finite type classifications of objects
in several different fields of mathematics, for example, in the classifications of Lie
algebras, root systems, Coxeter groups, and cluster algebras. These diagrams just
happen to be very fundamental objects that reflect finite type structures that arise in
nature.

We postpone the proof of Gabriel’s theorem to Chap. 8. For now we just want
to use it to move beyond type A in our section on examples of Auslander–Reiten
quivers. From Gabriel’s theorem we see that we should compute the D-type next.
This is done in the following section.
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An 1 2 3 · · · n−1 n

Bn 1 2 3 · · · n−1 n

Cn 1 2 3 · · · n−1 n

n−1

Dn 1 2 3 · · · n−2

n

E6 1 2 3 4 5

6

E7 1 2 3 4 5 6

7

E8 1 2 3 4 5 6 7

8

F4 1 2 3 4

G2 1 2

Fig. 3.7 Dynkin diagrams
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3.3 Auslander–Reiten Quivers of Type Dn

In this section, letQ be a quiver of type Dn, that is, the underlying unoriented graph
of Q is the Dynkin diagram of type Dn.

We will use the different techniques from Sect. 3.1 to construct the Auslander–
Reiten quiver of Q.

3.3.1 The Knitting Algorithm

We can use this algorithm in almost the same way as for type An, with the difference
that now, there is a fourth type of mesh:

M1 M1

L M2 L M2 τ−1L

M3 M3

The isoclasses of indecomposable representations of quivers of type Dn are
determined by their dimension vectors d D .d1; : : : ; dn/ as follows. The entries
di of the dimension vector are either 0; 1 or 2, and if we have di D 2, then

1. i is one of the vertices 2; 3; : : : ; n � 2,
2. for all vertices j with i 	 j 	 n � 2 we have dj D 2,
3. di�1 � 1 and dn�1 D dn D 1.

Thus the vertices i with di D 2 form a subgraph of type A that contains the vertex
n � 2.

The vertices i ¤ n � 1; n with di D 1 also form a subgraph of type A, and if
dj ¤ 2 for all j , then all the vertices i with di D 1 form a subgraph of type A or a
subgraph of type D.

Graphically, we can represent some of these configurations as follows:

1

0 · · · 0 1 · · · 1 2 · · · 2

1

1

0 · · · 0 1 · · · 1 1 · · · 1

1
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The corresponding representation is M D .Mi ; '˛/ with Mi D kdi ; and '˛ D 1
if ds.˛/ D dt.˛/, '˛ D 0 if one of ds.˛/; dt.˛/ is zero. If one of the di is 2, then there
are exactly three arrows that connect a vertex with dimension 1 to a vertex with
dimension 2: two of these arrows, let us call them ˇ1; ˇ2, connect the vertex n � 2
with the vertices n�1 and n, the vector space of dimension two being at n�2, while
the third arrow ˛i connects two vertices i and i C 1, the vector space of dimension
two being at vertex iC1. Consider the one-dimensional subspace ofMiC1 given by

�
im'˛i if ˛i points to i C 1,
ker'˛i otherwise.

Under the composition of the identity maps '˛n�3 � � �'˛iC1
this one-dimensional

subspace is sent to a one-dimensional subspace `1 of Mn�2. Consider also the
following two one-dimensional subspaces `2 and `3 of Mn�2:

`2 D
�

im'ˇ1 if ˇ1 points to n � 2,
ker'ˇ1 otherwiseI

and

`3 D
�

im 'ˇ2 if ˇ2 points to n � 2,
ker'ˇ2 otherwise.

Then the condition on the three maps '˛i ; 'ˇ1 and 'ˇ2 is that the three one-
dimensional subspaces are pairwise distinct. This corresponds to the “generic”
situation as opposed to the special case where two (or more) of these subspaces
are equal.

Example 3.2. Let Q be the quiver

4

1 2 3

5

.

Then

P.1/ D 1
2

P.2/ D 2 P.3/ D 3
2 5

P.4/ D 4
3
2 5

P.5/ D 5
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and, using the knitting algorithm, the Auslander–Reiten quiver is

5 3
2

4
1 3
2 5

3 4

3
2 5

4
3
2 5

4
1 33
22 5

1 3
2

4
1 33
2 5

4
3
5

4
3

2 1 3
2 5

4
33
2 5

4
1 3
2

1
2

3
5

4
3
2

1

3.3.2 �-Orbits

As in type A, there are several ways to compute the �-orbits.

3.3.2.1 First Method: Auslander–Reiten Translation

Let us compute ��1M for the moduleM D 1 3
2 5

in Example 3.2. The upper line in

the following diagram shows an injective resolution ofM , and the lower line shows
the projective resolution of ��1M obtained by applying ��1.

0 1 3
2 5

4
1 3
2

⊕
4
3
5

ν−1

4
3 ⊕ 4

ν−1

2 ⊕ 5 3
2 5 ⊕

4
3
2 5

4
33
2 5

0

Thus ��1M D
4
33
2 5

which verifies the result of Example 3.2.
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3.3.2.2 Second Method: Coxeter Functor

As in Sect. 3.1.2.2, we define a sequence of vertices .i1; i2; : : : ; in/, with ij ¤ i`, if
j ¤ `, as follows.

i1 is a sink of Q.
i2 is a sink of the quiver si1Q obtained from Q by reversing all arrows that are
incident to the vertex i .
ik is a sink of sik�1

: : : si2si1Q, for k D 2; 3; : : : ; n.

Then we define the Coxeter element c D si1si2 � � � sin as a product of reflections
using this sequence of vertices.

Thus in Example 3.2, we can take the sequence .2; 5; 1; 3; 4/, and its Coxeter
element is c D s2s5s1s3s4.

Let us use this Coxeter element to compute the dimension vector of ��1 1 3
2 5

in

Example 3.2. We have dimM D .1; 1; 1; 0; 1/. Thus dim ��1M is equal to

s2s5s1s3s4.e1 C e2 C e3 C e5/ D s2s5s1s3.e1 C e2 C e3 C e4 C e5/
D s2s5s1.e1 C e2 C 2e3 C e4 C e5/
D s2s5.e2 C 2e3 C e4 C e5/
D s2.e2 C 2e3 C e4 C e5/
D e2 C 2e3 C e4 C e5

which again confirms the result obtained in Example 3.2.
As in type A, we can also use the Cartan matrix C and the Coxeter matrix ˚ D

�C tC�1 in order to compute the action of the Coxeter element. In our example, we
have

C D

2
666664

1 0 0 0 0

1 1 1 1 0

0 0 1 1 0

0 0 0 1 0

0 0 1 1 1

3
777775

.C�1/ D

2
666664

1 0 0 0 0

�1 1 �1 0 0

0 0 1 �1 0
0 0 0 1 0

0 0 �1 0 1

3
777775

˚ D

2
666664

0 �1 1 0 0

1 �1 1 0 0

1 �1 1 1 �1
1 �1 1 0 �1
0 0 1 0 �1

3
777775

˚�1 D

2
666664

�1 1 0 0 0

�1 1 0 �1 1
0 1 0 �1 1
0 0 1 �1 0
0 1 0 �1 0

3
777775
:

Thus for the representation M above, we can compute the dimension vector of
��1M as ˚�1dimM D ˚�1.1; 1; 1; 0; 1/t D .0; 1; 2; 1; 1/t .

On the other hand, �M has dimension vector ˚.1; 1; 1; 0; 1/t D .0; 1; 0; 0; 0/t .
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3.3.3 Arcs of a Punctured Polygon with n Vertices

In this section, we give a geometric construction of the Auslander–Reiten quiver
of a quiver Q of type Dn similar to the construction in Sect. 3.1.3. Instead of
a triangulated polygon, we work with a triangulated punctured polygon. Thee
diagonals in the polygon must be replaced by certain curves that are called arcs
in the puncture polygon. If the boundary of the polygon has n vertices, then we
have exactly n2 arcs given as follows:

For every vertex a on the boundary of the polygon, we have the n�2 arcs shown
in the left picture of Fig. 3.8, and for the puncture, we have the n arcs shown in
the middle and the n arcs shown in the right picture of Fig. 3.8. Note that for each
boundary vertex a, there are two arcs from a to the puncture, and we use a little tag
on the arc to distinguish them. The arcs at the puncture that have a tag are called
notched and the ones without a tag are called plain.

Also note that, given two boundary vertices a ¤ b, there is exactly one arc
connecting a and b if a and b are neighbors on the boundary and exactly two arcs if
a and b are not neighbors, see Fig. 3.9.

Contrary to the case of the diagonals in the polygon, it is not so straightforward
to say when two arcs � and � 0 in the punctured polygon cross.

We denote the number of crossings by e.�; � 0/. If one of the two arcs has
both endpoints on the boundary of the polygon, the number of crossing should be

•

••

•

•

• •

•

•

a •

••

•

•

• •

•

•

•

••

•

•

• •

•

•

Fig. 3.8 Arcs in a punctured polygon with eight boundary vertices

•

••

•

•

• •

•

•

a

b

•

••

•

•

• •

•

•

ab

Fig. 3.9 Arcs with specified endpoints
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γ
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γ
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e(γ,γ ) = 1 e(γ,γ ) = 0 e(γ,γ ) = 0

Fig. 3.10 Crossing numbers

intuitively clear, and we show several examples in Fig. 3.10. Note that in this case
e.�; � 0/ can be 0, 1, or 2. For a rigorous definition of crossing numbers we would
need the notion of homotopy, which would take us too far away from the subject of
this book.

If both arcs � and � 0 are incident to the puncture and a and a0 denote their
respective endpoints on the boundary, we define

e.�; � 0/ D

8̂
<̂
ˆ̂:

0 if � and � 0 are both plain;
0 if � and � 0 are both notched;
0 if a D a0;
1 if �; � 0 have opposite tagging and a ¤ a0.

We say that two arcs cross if their crossing number is at least 1, and a
triangulation is a maximal set of non-crossing diagonals. A triangulation does not
necessarily cut the polygon into triangles, even if one allows triangles to have curved
edges. Some triangulations are shown in Fig. 3.11.

Now let Q be a quiver of Dynkin type Dn. We associate a triangulation TQ to Q
as follows: Start with an arc �1 that cuts off a triangle �0. If 1  2 is in Q, then
let �2 be the unique arc that forms a triangle �1 together with �1 and a boundary
segment in such a way that �1 is counterclockwise from �2 in �1. If on the other
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Fig. 3.11 Examples of triangulations
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•
n−2 •

••
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•
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•

••

•
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• •

•

•
n−2

n

•

••
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•

• •

•

•
n−2

Fig. 3.12 Construction of the triangulation from the quiver

hand, 1! 2 is in Q, then let �2 be the unique arc that forms a triangle �1 together
with �1 and a boundary segment in such a way that �1 is clockwise from �2 in �1.
Continue in this way until n�2 arcs are determined. For the arcs �n�1 and �n which
are corresponding to the vertices n�1 and n, respectively, there are four possibilities
depending on the orientations of the arrows in the quiver; these four possibilities are
displayed in Fig. 3.12.

In this way, the quiver

4

1 2 3

5
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of Example 3.2 gives rise to the triangulation

•

•

•

• •

•

1

2
3

5 4

Since TQ is a triangulation of the punctured polygon, any arc � which is not
already in TQ will cut through a certain number of diagonals in TQ; in fact, any such
arc � is uniquely determined by the set of diagonals in TQ that � crosses. To such a
diagonal � , we associate the indecomposable representation M� D .Mi ; '˛/ of Q
whose dimension at vertex i is given by the number of crossings e.�; �i / between
the arc � and the arc �i of the triangulation that corresponds to the vertex i of the

quiver. In the example, the arc
•

•
•
• •

•
crosses the arcs 1; 4; 5 once and 2; 3 twice,

and the corresponding representation is isomorphic to

k1

0

k

1

1
k2 k2

1 0

0 1

0 1 k

.

The map � 7! M� is a bijection from the set of arcs that are not in TQ and the
set of isoclasses of indecomposable representations ofQ.

The Auslander–Reiten translation � is given by an elementary clockwise rotation
of the punctured polygon with simultaneous change of the tags at the puncture. So
in our example
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• •
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•
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•

• •

•
τγ

•

•

•

• •

•

ρ
•

•

•

• •

•
τρ

The projective representationP.i/ is given by ��1 of the arc �i , and the injective
representation I.i/ is given by � of the arc �i . The complete Auslander–Reiten
quiver can be easily constructed now, starting with the projectives and applying
the elementary rotation to compute the �-orbits until we reach the injective in each
�-orbit. The Auslander–Reiten quiver of Example 3.2 is shown in Fig. 3.13.

3.3.4 Computing Hom Dimensions, Ext Dimensions,
and Short Exact Sequences

As in type A, we can compute the dimensions of the Hom and Ext spaces easily
from the Auslander–Reiten quiver in type D.

3.3.4.1 Dimension of Hom.M; N /

Let Q be a type D quiver and let M;N be two indecomposable representations
of Q. We can compute the dimension of the vector space Hom.M;N / using the
relative position of M and N in the Auslander–Reiten quiver. The maximal slanted
rectangles of type A have to be replaced by maximal hammocks. It is a little harder
to describe these hammocks than the rectangles. Several examples are illustrated in
Fig. 3.14.

Recall that a path M0 ! M1 ! � � � ! Ms in the Auslander–Reiten quiver is
called a sectional path if �MiC1 ¤ Mi�1 for all i D 1; : : : ; s � 1. As in type A,
we define ˙!.M/ to be the set of all indecomposable representations that can be
reached fromM by a sectional path and˙ .M/ to be the set of all indecomposable
representations from which one can reachM by a sectional path.

We can now construct the hammock by the following algorithm, refer to
Fig. 3.14. Start by labeling each vertex in˙!.M/with the number 1. Then consider
the almost split sequence 0!M ! E ! ��1M ! 0. Note that each summand of
E lies in ˙!.M/ and that ��1M does not. Label the vertex ��1M by the number
of indecomposable summands of E minus the label of M . Thus the label at ��1M
is either 0; 1 or 2 depending on whether the mesh in the Auslander–Reiten quiver
betweenM and ��1M has 1; 2 or 3 middle vertices, respectively.
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Fig. 3.13 Auslander–Reiten quiver of type D5 in terms of arcs in a punctured polygon
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1 0 1 0 0

1 1 1 0 1 1 0

0 1 1 0

0 1 0 0
0 1 1 1 0

1 1 2 1 2 1 1

0 1 2 1

0 1 1 0
0 1 1 0 0

1 1 2 1 1 0 0

1 1 1 1

1 0 1 0
0 0 1 0 0

0 0 1 1 1 0 0

0 1 0 1

1 0 0 1

Fig. 3.14 Dimension of Hom.M;�/ for M D P.5/ on the top left, M D P.3/ on the top
right, M D P.2/ on the bottom left, and M D P.1/ on the bottom right. The position of the
representation M is at the leftmost 1 in each case; the numbers 0; 1; 2 indicate the dimension of
Hom.M;N / for each indecomposable representation N

Recursively, for every almost split sequence 0 ! M 0 ! E 0 ! ��1N 0 ! 0

such that the vertices corresponding to M 0 and to each summand of E 0 are already
labeled, define the label of the vertex corresponding to ��1M 0 to be the sum of the
labels of the indecomposable summands ofE 0 minus the label ofM 0. If this number
is negative, then use the label 0 instead.

This labeling is called the hammock starting at M . If N is any indecomposable
representation, then the label at the vertex corresponding to N is the dimension of
Hom.M;N /. Thus these dimensions can be 0; 1 or 2.

Note that the same algorithm applied to an Auslander–Reiten quiver of type A

will produce the maximal slanted rectangle R!.M/. Note also that, as in type A,
the left boundary of the area with nonzero labels is˙!.M/, and ifM D P.i/ is an
indecomposable projective, then the right boundary of the area with nonzero labels
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is ˙ .I.i//, and thus the hammock consists of all modules that are nonzero at the
vertex i .

3.3.4.2 Ext1 and Short Exact Sequences

We can compute Ext1 as in type A thanks to the formula

dim Ext1.M;N / D dim Hom.N; �M/:

Thus the dimension of Ext1.M;�/ is determined by the maximal hammock ending
at �M .

Since the dimension of Ext1.M;N / can be as large as 2, it is not so easy to
find the short exact sequences that represent the elements of Ext1.M;N /. We know
that each element can be represented by short exact sequences of the form 0 !
N ! E ! M ! 0, where E is some representation of Q, but there might be
several choices for E . In the example in Fig. 3.15, there are four non-split short
exact sequences starting at N and ending at M , namely

0! N ! E1 ˚ E2 ˚H2 ! M ! 0

0! N ! F1 ˚ F2 ˚H2 ! M ! 0

0! N ! G1 ˚G2 ! M ! 0

0! N ! H1 ˚H2 ! M ! 0:

It is important to note that while there are four non-split short exact sequences, the
dimension of Ext1.M;N / is only two. Thus any two of the above sequences span
the vector space Ext1.M;N /.

E1 E2

N F1 H1 F2 M

G1 G2

H2

Fig. 3.15 Computing short exact sequences in type D
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3.4 Representations of Bound Quivers: Quivers
with Relations

In this section, we want to study representations of quivers which, in contrast to
earlier sections, are allowed to have oriented cycles or even loops. We had to exclude
quivers with oriented cycles in Sects. 2.1–3.3 in order to be able to describe the
indecomposable projective representation P.i/ at vertex i in terms of the paths that
start at i . If the quiver has an oriented cycle that contains the vertex i , then there
exist infinitely many paths that start at i , simply because we can run through the
oriented cycle over and over again.

For this reason, we will only consider representations that satisfy certain relations
given in terms of paths in the quiver. As an example, consider the quiver

2
β

1 γ 3

α

There are infinitely many paths in Q, for example, those starting at vertex 3

include e3; ˛; ˛ˇ; ˛ˇ�; ˛ˇ�˛; ˛ˇ�˛ˇ; : : :. We will allow only finitely many paths,
by imposing certain relations, for example,

˛ˇ D 0; ˇ� D 0 and �˛ D 0:

Then there are only six nonzero paths, namely e1; e2; e3; ˛; ˇ and � . Among the
representations M D .Mi ; '˛/ of Q we will then consider only those that satisfy
the relations imposed on the quiver, which, in our example, means that '˛ ı '� D
0; 'ˇ ı '˛ D 0, and '� ı 'ˇ D 0. For instance, the representation

k2

⎡
⎢⎢⎣
1 0

0 0

0 0

⎤
⎥⎥⎦

k3
0 1 0

0 0 0

k2

0 0

0 1

satisfies these relations.
We will now formalize these ideas.

Definition 3.1. Let Q be a quiver.

1. Two paths c; c0 in Q are called parallel if s.c/ D s.c0/ and t.c/ D t.c0/:
2. A relation � is a linear combination � DPc �cc of parallel paths each of which

has length at least two.
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3. A bound quiver .Q;R/ is a quiverQ together with a set of relations R.

Definition 3.2. Let .Q;R/ be a bound quiver. A representation of .Q;R/ is a
representation M D .Mi ; '˛/ of Q such that '� D 0, for each relation � 2 R,
where '� DPc �c'c if � DPc �cc.

Define rep .Q;R/ to be the category of representations of .Q;R/. We can define
morphisms, direct sums, kernels, and cokernels in the same way as in repQ. The
simple representations S.i/ are defined in the same way as in repQ.

To define the indecomposable projective and the indecomposable injective
representations, we need the notion of path algebra which we will define in Chap. 4.
For now, let us content ourselves with some examples.

Let Q be the quiver

2
β

1 γ 3

α

4δ

and let R D f˛ˇ; ˇ�; �˛g. Then the paths in the bound quiver .Q;R/ are e1, � , e2,
ˇ, e3, ˛, e4, ı, ı˛, and the indecomposable projective representations are

P.1/ D 1
3

P.2/ D 2
1

P.3/ D 3
2

P.4/ D 4
3
2
:

Note that the category rep .Q;R/ is not hereditary. Indeed, the simple representation
S.3/ D 3 has the following minimal projective resolution

� � � �! 3
2
�! 1

3
�! 2

1
�! 3

2
�! 3 �! 0

which does not stop after two steps.

3.4.1 Cluster-Tilted Bound Quivers of Type An

In Sect. 3.1.3, we have used triangulations of a polygon with n C 3 vertices to
construct the Auslander–Reiten quiver of the type A quivers. Note however that the
triangulations we used then had the property that each triangle has at least one side
on the boundary of the polygon. The cluster-tilted quivers of type An are precisely
those that are associated to an arbitrary triangulation of the .nC 3/-gon.
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Let T D f1; 2; : : : ; ng be a triangulation of a polygon with nC3 vertices. Define
a quiverQ D .Q0;Q1/ byQ0 D T , and there is an arrow i ! j in Q1 precisely if
the diagonals i and j bound a triangle in which j lies counterclockwise of i :

i

j

k
i j k

Define the set of relations R to be the set of all paths i ! j ! k such that there
exists an arrow k ! i . The Auslander–Reiten quiver of .Q; I / can be constructed
using diagonals in a polygon with .n C 3/ vertices in exactly the same way as for
the path algebras of type An.

We illustrate this method in an example. Let Q be the quiver

1 2 3

4

associated to the triangulation

1

2

3

4
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Then the Auslander–Reiten quiver is

which translates into

3
4

���
��

��
��

4
2

1
2

���
��

��
��

4

���������
3

���
��

��
��

2

���������

���
��

��
��

1 4
2

���
��

��
��

�

���������
2
3

���
��

��
��

�

���������
1
2

4
2

����������
1

1
2
3

��								

where one has to identify the two representations labeled 1
2

and the two represen-

tations labeled 4
2

, so that the Auslander–Reiten quiver has the shape of a Moebius

strip.
Note that the number of indecomposable representations of Q is equal to the

number of all diagonals in an .n C 3/-gon minus the n diagonals in the given
triangulation.

Let us compute the number of diagonals. For every vertex a of the polygon, the
diagonals starting at a may end at any vertex of the polygon except at a and at its
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two neighbors. So there are n diagonals starting at each vertex a. There are nC 3
possibilities for the vertex a, but when we consider them all, we count each diagonal
exactly twice. Therefore the number of diagonals is n.nC 3/=2.

Now the number of indecomposable representations ofQ is equal to n.nC3/=2�
n which is equal to n.nC 1/=2.

In particular the cluster-tilted quivers of type An and the quivers of type An have
the same number of indecomposable representations.

3.4.2 Cluster-Tilted Bound Quivers of Type Dn

In Sect. 3.3.3, we have used triangulations of a punctured polygon to compute the
Auslander–Reiten quiver of type Dn quivers. The triangulations we considered then
all had the property that there were always exactly two arcs incident to the puncture
and that every triangle in the triangulation had at least one edge on the boundary.
The cluster-tilted quivers of type Dn are precisely those that are associated to an
arbitrary triangulation of the punctured n-gon. The quiver is determined from the
triangulation just as in Sect. 3.3.3.

For example, the triangulation

•

•

•

• •

•
1

5

4

3 2

gives rise to the quiver

1 α 2
β

3 γ 4
δ

5

ε

bound by the relations ˛ˇ�ı D ˇ�ı� D �ı�˛ D ı�˛ˇ D �˛ˇ� D 0; and
its Auslander–Reiten quiver is given in terms of arcs in Fig. 3.16 and in terms of
representations in Fig. 3.17.
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Fig. 3.16 Auslander–Reiten quiver of cluster-tilted type D5 in terms of arcs. The two vertices on
the far left are to be identified with the two vertices on the far right
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3.5 Notes

Further information on the construction of Auslander–Reiten quivers can be found
in [8, 35]; more on representation type and Gabriel’s Theorem in [18, 30, 33]. The
construction of Auslander–Reiten quivers from triangulations was introduced in
[28, 54].

Problems

Exercises for Chap. 3

3.1. Compute the Auslander–Reiten quivers of the following quivers:

1. 1 2 3 4 5 6

2. 1 2 3 4 5 6

3.

4

1 2 3

5

4.

4

1 2 3

5
5. 1 2 3 4 5

6

3.2. Let Q be the quiver

1 2 3 4 5 6
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and consider the indecomposable representations L and N given by the dimension
vectors

dimL D .0; 1; 1; 1; 0; 0/ and dimN D .0; 0; 1; 1; 1; 1/:

Prove that dim Ext1.N;L/ D 1 and find the middle term of a non-split short exact
sequence of the form

0 L M N 0.

3.3. Let Q be the quiver

4

1 2 3

5

and consider the indecomposable representations L and N given by the dimension
vectors dimL D .0; 1; 1; 1; 1/ and dimN D .1; 1; 1; 0; 0/.
1. Prove that dim Ext1.N;L/ D 2 and find 4 non-equivalent non-split short exact

sequences of the form

0 L M N 0.

2. Show that L is projective and that N is injective.
3. Show that �3N is a summand of the radical of L.

3.4. Let Q be the quiver

4

1 2 3

5

and consider the indecomposable representationsL D 3
2 4

and N D 1 33
2 4 5

.

1. Prove that there is a unique representation M for which there exists a non-split
short exact sequence

0 L M
f

N 0 .
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2. Let M 0 D 1 3
2 5

and g W M 0 ! N be the inclusion morphism. Then the fiber

product X of f and g, defined in Exercise 1.8 of Chap. 1, gives a short exact
sequence

0 L X M 0 .

Prove that L D �M 0.
3.5. Let Q be the quiver

1 α

δ

2
β

3
γ

4

and let M be the indecomposable representation

0 0

0

k 1 k 0 0

Compute L1 D �M;L2 D �2M and L3 D �3M using the Nakayama functor. Find
three representationsN1;N2 andN3, by explicitly writing out the matrices, such that
dimNi D .1; 1; 1; 1/ and Li is a subrepresentation of Ni , for i D 1; 2; 3.

3.6. Compute the Auslander–Reiten quiver of .Q; I /, whereQ is the quiver

1

α

4

ε3

δγ

2 β 5
σ

and I D f˛ˇ; ˇ�; �˛; ı�; ��; �ıg. [Hint: Use a triangulated polygon.]

3.7. Compute the Auslander–Reiten quiver of .Q; I /, whereQ is the quiver

2β

1 ε 4
γ

α

3δ

and I D f˛ˇ � �ı; �˛; ��; ˇ�; ı�g. [Hint: Use a triangulated punctured polygon.]
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