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Abstract. Given a graph covering, there is an induced surjection of critical groups. We will try to determine
the structure of the kernel and give results at different levels of generality. A main tool will be dualizing the
short exact sequence and working instead with the cokernel.

In the case of signed graphs and two-sheeted coverings, we will show that the kernel of the induced
surjection can be described using the critical group of another signed graph. This, in particular, gives an
interpretation of H. Bai’s computation of the p-group component of the critical group of the n-cube, for p

odd.
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1. Introduction

Given a directed graph G = (V,E), recall its directed incidence matrix ∂ ∈ ZV ×E is indexed by the rows
and columns such that the column corresponding to edge e has a 1 in the entry corresponding to vertex u
and a -1 in the entry corresponding to vertex v, if e is directed from v to u. Self-loops are allowed (and
contribute a column of 0’s) and so are multiple edges.

Recall that the critical group K(G) of the graph G is defined to be ZE/(im(∂) ⊕ ker(∂)) or equivalently
im(∂)/im(∂∂t). As a starting point, Treumann [8] showed that if there is a “topological surjection” p from
a graph G′ = (V ′, E′) to a graph G = (V,E), where he called p a Berman bundle, then there is an induced
surjection of critical groups K(G′) → K(G). A special case of these topological surjections are covering
spaces.

Given the induced surjection K(G′)→ K(G), it is natural to ask what the kernel of the map is, so that
we might determine more about the structure of the larger, more complicated graph G′ in terms of K(G)
and the kernel.

In Section 2, we introduce the tool of Pontryagin duality, which we will use to dualize the surjection
K(G′)→ K(G) to obtain an injection K(G)→ K(G′). As special cases, we will prove a natural isomorphism
ofK(G) = im(∂)/im(∂∂t) with its dual and an alternative presentation of the critical group of a signed graph,
which will be defined later.

Then, we will use Pontryagin duality to turn our problem into finding the cokernel of the injection
K(G) → K(G′). Corollary 4.2 will tell us that the sequence 0 → K(G) → K(G′) → coker → 0 is in fact
split exact at all primes that do not divide n, where in the special case of G′ being a cover of G, n is the
number of sheets in the cover.

Proposition 5.1 gives a presentation for the cokernel of the injection K(G)→ K(G′) in general. In a more
specific case (that still contains covers a special case), Proposition 5.2 gives only a slightly simpler presentation
and Proposition 5.3 reduces it to finding the cokernel of a matrix. Even though these propositions are a
little cumbersome, a corollary is Proposition 5.4, which gives the cokernel exactly in a special case. Given
any connected graph G and its critical group, this special case helps determine the structure of the critical
group of the graph obtained by replicating each vertex of G n times and forming a complete bipartite graph
between two sets of n vertices for each edge in G. An example of an application of Proposition 5.4 is in
Proposition 8.8 in Section 8.5.

Then, using the group algebra over the integers, Section 6 gives a description of the critical group K(G′)
and the cokernel of the injection of K(G) into K(G′) in the special case where G′ is a regular cover of G. As
an example, the results will apply to describing the critical groups of signed graphs without half self loops
as cokernels of injections K(G) into K(G′).

Finally, Section 7 covers critical groups of signed graphs. In particular, given an induced surjection
K(G′) → K(G) of signed graphs where G′ is a 2-sheeted cover of G, the kernel can be described in terms
of another signed graph. As an application, we provide an interpretation of Bai’s proof [2] of the Sylow
p−group of the critical group of n-cube for all odd primes p.

2. Pontryagin Duality

Let Λ1 be a rational lattice in Rn1 and Λ2 be a rational lattice in Rn2 . Let ΛR

1 and ΛR

2 be the real vector
spaces generated by Λ1 and Λ2 over R. Suppose Λ1 and Λ2 have the same rank (dim(ΛR

1 ) = dim(ΛR

2 )).
Let M be a linear map from ΛR

1 to ΛR

2 such that MΛ2 ⊂ Λ1 and MΛ2 is of full rank in Λ1. In particular,
M is an invertible map from ΛR

2 to ΛR

1 . We have the following picture.

ΛR

2 ΛR

1

Λ2 Λ1

∼
M

Taking duals, we claim we have the following diagram:
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(ΛR

2 )
∗ (ΛR

1 )
∗

Λ#
2 Λ#

1

∼
M t

We also have to verify that M tΛ#
1 ⊂ Λ#

2 . To do this, recall that M t will take an element v∗1 ∈ (ΛR

1 )
∗ and

map it to v∗1 ◦M . Suppose v∗1 ∈ Λ#
1 . Then, given any v2 ∈ Λ2, we see that (v∗1 ◦M)(v2) ∈ Z as Mv2 ∈ Λ1.

Therefore, M tΛ#
1 is contained in Λ#

2

The group Λ1/MΛ2 is finite since M is invertible. Let ̂Λ1/MΛ2 denote the Pontryagin Dual of Λ1/MΛ2.

We also note that Λ#
2 /M

tΛ#
1 is finite as M t is an invertible map from (ΛR

1 )
∗ to (ΛR

2 )
∗.

Lemma 2.1. There is a natural isomorphism between Λ#
2 /M

tΛ#
1 and ̂Λ1/MΛ2.

Proof. Let κ be the quotient map from R to R/Z. Consider the map from Λ#
2 to Hom(Λ1,R/Z) (so the

Pontryagin dual of Λ1 with the discrete topology) that sends v∗2 to κ ◦ v∗2 ◦M
−1. Note that v∗2 ◦M

−1 is

(ΛR

1 )
∗ but not necessarily in Λ#

1 . First, we find the kernel.
Suppose that for all v1 ∈ Λ1, (κ ◦ v

∗
2 ◦M

−1)(v1) = 0 ⇔ (v∗2 ◦M
−1)(v1) ∈ Z. This is true if and only if

v∗2 ◦M
−1 = (M t)−1v∗2 ∈ Λ#

1 by the definition of the dual lattice. Therefore, the kernel isM tΛ#
1 . This means

we have an inclusion of Λ#
2 /M

tΛ#
1 into Hom(Λ1,R/Z).

Also, given v∗2 ∈ Λ#
2 , we can also see the kernel of κ ◦ v∗2 ◦M

−1 contains MΛ2. To see this, suppose
v1 ∈MΛ2. Then, there exist v2 ∈ Λ2 such that v1 =Mv2. Then, (κ◦v

∗
2 ◦M

−1)◦v1 = (κ◦v∗2 ◦M
−1)◦Mv2 =

κ(v∗2(v2)), which is 0 since v∗2 ∈ Λ#
2 and v2 ∈ Λ2.

Therefore, we have an inclusion of Λ#
2 /M

tΛ#
1 into ̂Λ1/MΛ2. We need to show that this is surjective. To

see this, we will use a cardinality argument.

Since a finite abelian group is always isomorphic to its Pontryagin dual, we have |Λ#
2 /M

tΛ#
1 | ≤ |

̂Λ1/MΛ2| =
|Λ1/MΛ2|.

However, we can repeat the exact same argument we used above, but instead replace Λ1 with Λ#
2 and Λ2

with Λ#
1 . This would yield an injection from (Λ#

1 )
#/(M t)t(Λ#

1 )
# = Λ1/MΛ2 to

̂
Λ#
2 /M

tΛ#
1 . This means

|Λ1/MΛ2| ≤ |Λ
#
2 /M

tΛ#
1 |.

Combining this with the inequalities above, we get |Λ#
2 /M

tΛ#
1 | = |

̂Λ1/MΛ2|. This means our injection

must also be a surjection and we have an isomorphism from Λ#
2 /M

tΛ#
1 to ̂Λ1/MΛ2, as desired. �

There are a couple of examples that will be important to us.

Example 1. Let G = (V,E) be an undirected graph (possibly with multiple edges). Let ∂∂t be its Laplacian.
We define the critical group K(G) to be im(∂)/im(∂∂t).

It can be shown that is S is a subset of V containing one vertex in each connected component of G, L(G)0 is
∂∂t with the columns and rows indexed by S deleted, then im(∂)/im(∂∂t) is isomorphic to ZV \S/im(L(G)0)
by projecting away the coordinates corresponding to S. (It should not surprise the reader that we have
to make this arbitrary choice of S, as the Pontryagin duality in the presentation of the critical group as
ZE/(im(∂) ⊕ ker(∂)) comes from projecting onto the bond space and taking the inner product. Choosing
a basis for the bond space in terms of fundamental bonds involves choosing one fundamental bond in each
connected component to omit.)

Then, if we let Λ1 = Λ2 = ZV \S , then Proposition 2.1 gives us ̂ZV \S/im(L(G)0) is isomorphic to
(ZV \S)#/L(G)0(Z

V \S)#. If we identify ZV \S with (ZV \S)∗ with the standard inner product, then

(ZV \S)#/L(G)0(Z
V \S)# = Z

V \S/im(L(G)0).

However, we would like to eliminate the need to select the subset S, which we can do.

Proposition 2.2. There is a isomorphism between im(∂)/im(∂∂t) to ̂im(∂)/im(∂∂t that sends a coset repre-
sentative w ∈ im(∂) of an element of im(∂)/im(∂∂t) to the character 〈u·〉 (mod 1), where u is any preimage
of w under the map ∂∂t : ZV → im(∂).
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Proof. We note that the map from ZV \S/im(L(G)0) to ̂ZV \S/im(L(G)0) maps a coset representative v ∈
ZV \S to 〈v, L(G)−1

0 ·〉 (mod 1) = 〈L(G)−1
0 v, ·〉 (mod 1). If we pad L(G)−1

0 v with 0’s in the coordinates corre-

sponding elements of S, then we get a character on im(∂)/im(∂∂t). Morever, this map from ̂ZV \S/im(L(G)0)

to ̂im(∂)/im(∂∂t) is injective (hence an isomorphism).
Furthermore, after padding L(G)−1

0 v with zeros corresponding to elements of S, we can add any element
of ker(∂t)(= ker(∂∂t), since ker(∂t) ⊥ im(∂). Equivalently, if we take the matrix after deleting only the
rows corresponding to S of ∂∂t, then we can take any preimage u of v under this matrix instead of choosing
L(G)−1

0 v (padded with 0’s). Finally, this is equivalent to taking the unique vector w ∈ im(∂) whose coor-
dinates corresponding to vertices in V \S agree with v and letting u be any preimage of w under the map
∂∂t : ZV → im(∂). �

Example 2. Let G = (V,E) be a connected, signed graph and ∂∂T be its Laplacian, where we assume ∂ has
full rank. We will define what exactly ∂ and ∂T are in Section 7, but it suffices to know that, if ZV

0 (mod 2)

is defined as the sublattice of ZV , where all the entries add up to an even number, then im(∂) = Z0 (mod 2)

and ∂∂T is symmetric. We will define the critical group of the signed graph G to be im(∂)/im(∂∂T ).
Let Λ1 = ZV

0 (mod 2) and Λ2 = ZV in Lemma 2.1. Then, Lemma 2.1 gives us a natural isomorphism between

̂ZV
0 (mod 2)/∂∂

TZV and Λ#
2 /(∂∂

T )tΛ#
1 = ZV /∂∂T (ZV

0 (mod 2))
#. Here, it can be shown that (ZV

0 (mod 2))
# =

ZV + Z(12 , . . . ,
1
2 ).

3. Covering spaces and Berman bundles

3.1. Covering spaces. In [4], the authors defined a graph map from a graph G′ to a graph G to be a
continuous function that maps the interior of each edge of G′ homeomorphically to the interior of an edge
of G. The authors also characterized when G′ is actually a covering space of G.

In order to present their characterization here, we will reproduce their notion of a permutation voltage
graph and a derived graph here, where the derived graph is the actual covering space and the permutation
voltage graph is a recipe for how to build the derived graph. The notation is copied almost word for word,
but there is a small issue. Gross and Tucker defined the graph coverings for directed graphs, and, since we
are interested in the undirected case, we need to

(1) arbitrarily orient the edges of G,
(2) assign permutations to each edge of G with a function s,
(3) construct the derived graph Gs from the permutations,
(4) forget about the orientation on Gs

to construct a covering of an undirected graph.

Definition 1. Let Sn denote the symmetric group on {1, . . . , n}. A permutation voltage assignment in Sn

for a directed graph G = (V,E) is a function s that assigns to each edge of G a permutation in Sn. The pair
(G, s) is called a permutation voltage graph.

Definition 2. Given a permutation voltage graph (G, s), a derived graph Gs is constructed as follows:

(1) The vertex set is the cartesian product V ×{1, . . . , n}. For convenience, the vertices will be denoted
as vi instead of (v, i).

(2) The edge set is the the cartesian product E × {1, . . . , n}. For convenience, the edges will be written
as ei instead of ei.

(3) If edge e runs from u to v in G, then ei runs from ui to vπ(i), where π is the permutation s(e)
associated to e by s.

An example of a covering space derived is in Figure 1.

Remark 1. To see why this is a characterization of the graph coverings, suppose we are given a graph G
and a covering Gs that is an n−sheeted cover.

Since Gs is an n−sheeted cover, the fibre of each vertex v is of order n, and we can label these vertices as
v1, . . . , vn. It remains to understand the edges in Gs. Suppose there is an edge e between v and u and the
vertices in the fibres of v and u are v1, . . . , vn and u1, . . . , un.
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a1

a2
b1

b2

c1

c2

a

b

c

Figure 1. Vertices {a1, a2} project to a, {b1, b2} project to b, and {c1, c2} project to c

From the lifting property of covering spaces, if we are given a vertex vi in the fibre of v, the path from v
to u along the edge e lifts to a path from vi to a vertex in the fibre of u (say uj). We can repeat this process
for each vertex vi in the fibre of v. This results in a map π from {1, . . . , n} to {1, . . . , n} where the numbers
correspond to indices of the vertices in the fibres of v and u.

This map also must be an surjection. To see this, given a vertex ui in the fibre of u, we can lift a path
from u to v by going along e in the opposite direction to a path from ui to a vertex in the fibre of v. This
means i is in the image of π. Since π is surjective, π is in fact a permutation. Therefore, we can encode
any covering graph of a graph G by assigning permutations to the edges (and the orientation of the edges
correspond to whether we are lifting a path from v to u or a path from u to v above).

3.2. Berman Bundles. Treumann introduced the notion of a “Berman Bundle” in [8]. We will use a
slightly different definition that is equivalent.

Let G′ and G be graphs, and G′ be a covering space of G. Then, if G = (V,E) with V = {v1, v2, . . . , vn}
and G′ = (V ′, E′), the vertices of V ′ can be partitioned into the fibres U1, . . . , Un such that Ui maps to vi
for each 1 ≤ i ≤ n.

Now, take G′ and

(1) add new vertices to the fibres
(2) and then add edges within the fibres.

If the graph G′ can be obtained in this way (by modifying a cover of G as above), then we call the graph
G′ divisible by G.

If G′ is divisible by G, then there is a projection map from G′ to G that sends all the vertices in Ui to vi
for each 1 ≤ i ≤ n.

Definition 3. If G′ is divisible by G and p : G′ → G is the associated projection map, then we call p a
Berman bundle.

Definition 4. If p : G′ → G is a Berman bundle, let G′
p be the original covering space of G we used to

construct G′.

An example of a Berman bundle is in Figure 2. The original covering space of the Berman bundle in
Figure 2 is the covering space in Figure 1.

The reason for the interest in Berman Bundles is Proposition 19 in [8] which says that if p : G′ → G is a
Berman Bundle, then there is an induced surjection of critical groups from K(G′) to K(G).

Since we will be working with the critical group in terms of the graph Laplacian instead of cycle and
bond spaces as in [8], we will need to describe the surjection in our case. We first prove the surjection
independently of Treumann. Then, in Proposition 3.3, we will show that Proposition 3.1 is equivalent to the
one given by Treumann.
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a3

a4

a1

a2
b1

b2

b3

c1

c2

a

b

c

Figure 2. Vertices {a1, a2, a3, a4} project to a, {b1, b2, b3} project to b, and {c1, c2} project
to c

Definition 5. Given a Berman bundle p : G′ = (V ′, E′)→ G = (V,E), consider the map φ of lattices from

ZV ′

to ZV that sends a standard basis element ev′ ∈ ZV ′

to ep(v) in ZV . We call φ the induced surjection of
lattices.

We will show in the proof of Proposition 3.1 that φ is indeed surjective and φ restricts to a surjection
from im(∂′) to im(∂), where ∂ and ∂′ are the directed incidence matrices of G and G′.

Proposition 3.1. Suppose G = (V,E), G′ = (V ′, E′) and p : G′ → G is a Berman Bundle. Then, there is
an induced surjection from K(G′) to K(G).

Proof. Let φ be the induced surjection of lattices as in Definition 5 from ZV ′

to ZV that sends a standard
basis element ev′ ∈ ZV ′

to ep(v) in ZV . Let im(∂′) be the sublattice of ZV ′

consisting of elements in ZV ′

orthogonal to the characteristic vector of each connected component of G′ (e.g. sum of the coordinates
corresponding to each connected component is zero). Let im(∂) ⊂ ZV be defined similarly.

We want to show that our map φ of lattices of ZV ′

to ZV restricts to a map from im(∂′) that maps
surjectively into im(∂).

To show this, it suffices to show that the following diagram commutes:

ZE′

ZE

im(∂′) im(∂)

∂′

φ

ψ

∂

where ψ maps ek′ for k′ ∈ E′ to ep(k′) if k′ was from the original covering space G′
p and maps ek′ to 0 if

k′ was not an edge from the original covering space. This is well-defined since there is a natural n to 1
identification of the edges of G′

p with the edges of G under p, if G′
p is an n−sheeted covering of G.

To verify this, it suffices to chase ek′ for k′ ∈ E′ clockwise and counterclockwise in the picture from ZE′

to im(∂). If k′ was not in the original covering space, then going clockwise would result in zero since ψ(ek′ )
is already zero. Going counterclockwise would also result in zero, since both edges of k′ would be in the
same fibre. Then, φ(∂′ek′) would be zero.

If k′ is in the original covering, then going clockwise would result in ∂ep(k′). Now, we go counterclockwise.

Suppose k′ runs from v′ to u′ in G′. Then, ∂′ek′ is the vector eu′ − ev′ ∈ im(∂′) ⊂ ZV ′

. Then, φ(eu′ − ev′) =
ep(u′) − ep(v′) ∈ im(∂). This is exactly ∂ep(k′) as desired.

Therefore, we have the following picture:
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ZV ′

ZV

im(∂′) im(∂)

K(G′) := im(∂′)/im(∂′∂′t) K(G) := im(∂)/im(∂∂t)

φ

φ

κ2κ1

To finish, we need to show that κ2 ◦φ factors through the quotient map κ1. It suffices to show that every
column of ∂′∂′t is sent to zero by κ2 ◦ φ. Recall that for v′ ∈ V ′, the column x of ∂′∂′t corresponding to v′

has the property that

(1) −xv′′ is the number of edges between v′ and v′′ if v′ 6= v′′

(2) xv′ is the degree of v′.

First, we note that the component of φ(x) corresponding to a vertex v is φ(x)v =
∑

v′′∈p−1(v) xv′′ by the

definition of φ.
There are two cases to consider.

(1) If v′ is not in the original covering space G′
p, then the image of the column x is identically zero. To

see this, if v ∈ V and v 6= p(v′), then φ(x)v =
∑

v′′∈p−1(v) xv′′ =
∑

v′′∈p−1(v) 0 = 0.

If v ∈ V and v = p(v′), then φ(x)v =
∑

v′′∈p−1(v) xv′′ , but since the components of x corresponding

to vertices in p−1(v) are the only nonzero entries of the vector x, this is zero since x ∈ im(∂′).
(2) Suppose that v′ is in the original covering space G′

p. For convenience, we can assume that G has no
self-loops. To see this, if G′ is divisible by G, then G′ is still divisible by G after we remove the self
loops (which does not affect the critical group of G). In addition, none of the maps in this proof are
affected by the self-loops.

Then, by definition of φ, if v 6= p(v′), then −φ(x)v = −
∑

v′′∈p−1(v) xv′′ is the number of edges

between v′ and any vertex in the fibre p−1(v). By the definition of a Berman Bundle, this must be
the number of edges between p(v′) and v.

If v = p(v′), then φ(x)v =
∑

v′′∈p−1(v) xv′′ is the degree of v′ minus the number of vertices in

p−1(p(v′)) adjacent to v′. Equivalently, this is the the number of edges between v′ and all other
vertices in a different fibre (G′\p−1(p(v′))). This is exactly the degree of p(v′) = v by the definition
of a Berman Bundle.

Therefore, this means φ(x) is exactly the column of the Laplacian ∂∂t corresponding to p(v′).

Since φ(im(∂′∂′t)) ⊂ im(∂∂t), the map κ ◦ φ factors through K(G′) := im(∂′)/im(∂′∂′t), as desired. Since
κ ◦ φ is surjectve, the map from K(G′) to K(G) is surjective. �

Example 3. To illustrate how φ(im(∂′∂′t) ⊂ im(∂∂t), consider the Berman Bundle in Figure 2. The
Laplacian of the larger graph G′ is




a1 a2 a3 a4 b1 b2 b3 c1 c2

a1 3 −1 0 −1 −1 0 0 0 0

a2 −1 3 −1 0 0 −1 0 0 0

a3 0 −1 2 −1 0 0 0 0 0

a4 −1 0 −1 2 0 0 0 0 0

b1 −1 0 0 0 4 −1 −1 −1 0

b2 0 −1 0 0 −1 4 −1 0 −1

b3 0 0 0 0 −1 −1 2 0 0

c1 0 0 0 0 −1 0 0 3 −2

c2 0 0 0 0 0 −1 0 −2 3
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which after applying φ is




a1 a2 a3 a4 b1 b2 b3 c1 c2

a 1 1 0 0 −1 −1 0 0 0

b −1 −1 0 0 2 2 0 −1 −1

c 0 0 0 0 −1 −1 0 1 1


.

The Laplacian of G is




a b c

a 1 −1 0

b −1 2 −1

c 0 −1 1


,

so the image of each column of ∂′∂′t is either 0 or a column of ∂∂t

Remark 2. Not only is φ(im(∂′∂′t)) ⊂ im(∂∂t), but φ(im(∂′∂′t)) = im(∂∂t). To see this, consider any
vertex v ∈ G. If v is not connected to any edges, then the column associated with v in ∂∂t is zero.

Otherwise, v is connected to some other vertex u. By the extra condition we imposed on Berman bundles,
there exists a vertex v′ ∈ p−1(v) such that v′ is adjacent to a vertex in p−1(u). Then, v′ must fall under the
second case in the proof of Proposition 3.1 above. This means the column of ∂′∂′t associated with v′ must
map to the column of ∂∂t associated with v. Since we can do this for any vertex v that is not isolated, the
image of im(∂′∂′t) under φ is in fact all of im(∂∂t).

Proposition 3.2. Given a Berman bundle p : G′ → G, let κ : im(∂′)/im(∂′∂′t) → im(∂)/im(∂∂t) be the
induced surjection of critical groups from Proposition 3.1 above.

Let ΛV ′

be the sublattice of im(∂′) where, for each vertex v of G, the sum of the coordinates corresponding to

vertices in the fibre p−1(v) is zero. The kernel of κ as a subgroup of im(∂′)/im(∂′∂′t) is ΛV ′

/ΛV ′

∩im(∂′∂′t) ∼=
ΛV ′

+ im(∂′∂′t)/im(∂′∂′t).

Proof. Reproducing the diagram in Proposition 3.1, we have the following picture

ΛV ′

im(∂′) im(∂)

K(G′) := im(∂′)/im(∂′∂′t) K(G) := im(∂)/im(∂∂t)

ι φ

κ2κ1

κ

To determine the kernel of κ, we first note that the kernel of κ2 is by definition im(∂∂t). Also, φ−1(im(∂∂t)) =

ker(φ) + im(∂′∂′t) = ΛV ′

+ im(∂′∂′t) since φ(im(∂′∂′t)) = im(∂∂t).

Finally, the image of ΛV ′

+ im(∂′∂′t) under κ is (ΛV ′

+ im(∂′∂′t))/im(∂′∂′t) ∼= ΛV ′

/ΛV ′

∩ im(∂′∂′t), as
desired. �

To show that the surjection in Proposition 3.1 is equivalent to the one from in Treumann [8], given graph
G′ = (V ′, E′), G = (V,E), and a Berman bundle p : G′ → G′, there is a subgraph G′

p = (V ′
p , E

′
p) of G

′ where
p restricted to G′ is a covering space. In particular, this means p : E′

p → E is an n to 1 map, if G′
p is an

n−sheeted covering of G.
Now, that we have identified the covering space G′

p inside of G′, we can define the induced surjection of

critical groups K(G′)→ K(G) introduced by Treumann. Consider the map φ : ZE′

→ ZE , where if a ∈ E′,

then ea ∈ ZE′

(the standard basis element associated with a) is mapped by φ to zero if a /∈ E′
p and mapped

to eφ(a) ∈ ZE otherwise.
Then, as asserted by [8], if B′ and Z ′ are the bond and cycle lattices of G′ and B and Z are the bond

and cycle lattices of G, then φ(B′ ⊕ Z ′) ⊂ B ⊕ Z. Note that defining the cycle and bond spaces require us
to arbitrarily orient the edges of G′ and G, so we need to require that p preserves orientation of the edges
(if p does not preserve the orientation of an edge a ∈ E′, we can just reverse the orientation). This means
we have the following picture
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ZE′

ZE

im(∂′)/∂′∂′t ZE′

/(B′ ⊕ Z ′) ZE/(B ⊕ Z) im(∂)/∂∂t

κ1 κ2

φ

∼ ∼

where the surjection from ZE′

/(B′ ⊕ Z ′) to ZE/(B ⊕ Z) is induced.

Recall that ZE′

/(B′ ⊕ Z ′) is isomorphic to ZV ′

/∂′∂′t as they are both presentation of the critical group

K(G′). Therefore, we need to chase the arrows from ZV ′

/∂′∂′t to ZV /∂∂t in the diagram. We first note
that is suffices to perform the diagram chase for the case where G′ and G are both connected. If G′ is
not connected, then we could restrict ourselves to each connected component S′ of G′. Here, the image
of S′ under p must be a connected component of G. If we can understand the surjection from K(S′) to
K(p(S′)) for each connected component S′ of G′, then that determines the map from K(G′) to K(G) since
K(G′) = ⊕k

iK(S′
i), where S

′
i are the connected components of G′.

Therefore, we assume that G′ and G are connected. First, we recall the isomorphism between ZV /∂∂t

and ZE/(B′ ⊕ Z).
Recall that if ∂ is a directed incidence matrix of G, then, if we delete the column corresponding to some

vertex v0 ∈ G to obtain ∂, ∂
t
is a basis for the bond lattice B of G. Recall also that the projection ∂

t
(∂∂

t
)−1∂

from RE to the bond space (R-linear span of the bond lattice) maps ZE/(B⊕Z) isomorphically unto B#/B,
where B# is identified as a sublattice of the bond space through the standard inner product.

Then, since ∂
t
(∂∂

t
)−1 is a basis for B# after making this identification of B# inside of the bond space, we

see that B#/B = ∂
t
(∂∂

t
)−1ZV \{v0}/∂

t
ZV \{v0}. This is isomorphic to ZV \{v0}/∂∂

t
ZV \{v0} ∼= im(∂)/im(∂∂t)

by sending the coset representative ev ∈ ZV \{v0} to ∂
t
(∂∂

t
)−1ev.

Therefore, if y ∈ ZV \{v0} is a coset representative of a coset in ZV \{v0}/∂∂
t
ZV \{v0} and x is a preimage

of y under the map ∂ : ZE → ZV \{v0}, then the coset of x in ZE/(B ⊕ Z) maps to the coset of y in

ZV \{v0}/∂∂
t
ZV \{v0} since the image of x under the projection onto the Bond space is ∂

t
(∂∂

t
)−1∂x =

∂
t
(∂∂

t
)−1y. The coset corresponding to ∂

t
(∂∂

t
)−1y in B#/B = ∂

t
(∂∂

t
)−1ZV \{v0}/∂

t
ZV \{v0} maps exactly

to the coset represented by y in ZV \{v0}/∂∂
t
ZV \{v0}.

Finally, suppose y′ is the element in im(∂) obtained by filling in the last coordinate of y so that the
coordinates of y′ sum to zero. Then, since every element in the image of ∂ is in im(∂), x is mapped by ∂ to
y′. To summarize, in order to map an element of im(∂)/im(∂∂t) to ZE/(B ⊕ Z), it suffices to

(1) take a coset representative y′ of the element
(2) find a preimage x ∈ ZE of y′ under the map ∂
(3) take the coset of the preimage x

Proposition 3.3. The surjection given in Proposition 3.1 is equivalent to the surjection given in [8].

Proof. We will chase the arrows from im(∂′)/∂′∂′t to im(∂)/∂∂t. We will work with the coset representatives,
and everything will be well-defined since all the arrows are isomorphisms.

We first go from im(∂′)/∂′∂′t to ZE′

/(B′ ⊕ Z ′). First, fix an element x ∈ im(∂′) that we will view as a

coset representative in im(∂′)/∂′∂′t. Then, if y ∈ ZE′

is a preimage of x under the map ∂′ : ZE′

→ im(∂′),

then the coset represented by y in ZE′

/(B′ ⊕ Z ′) maps to the coset represented by x in im(∂′)/∂′∂′t.

The map φ above from ZE′

to ZE maps y to φ(y) ∈ ZE . Then, we apply ∂ to φ(y) to get a representative
of a coset in im(∂)/∂∂t. Consider a vertex v ∈ V . Let in+(v) denote the edges directed into v and in−(v)
denote the edges directed out of v. Then, the component of ∂φ(y) corresponding to v is

∑

e∈in+(v)

φ(y)e −
∑

e∈in−(v)

φ(y)e.

Let in+(p−1(v)) denote the edges of G′ directed into the fibre of v and in−(p−1(v)) be defined similarly.
Then, by how φ maps the edges,

∑

e∈in+(v)

φ(y)e −
∑

e∈in−(v)

φ(y)e =
∑

e∈in+(p−1(v))

ye −
∑

e∈in−(p−1(v))

ye.
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Since the edges within the fibre p−1(v), this is equal to
∑

v′∈p−1(v)

(∂y)v′ =
∑

v′∈p−1(v)

xv′ .

Therefore, in order to get the component corresponding to v in the image of x in im(∂)/∂∂t, we sum all the
components corresponding to vertices in p−1(v), which is exactly the same as Proposition 3.1 above. �

Because φ(im(∂′∂′t)) = ∂∂t, we can also determine the kernel of the induced surjection κ : ZV ′

/im(∂′∂′t)→

ZV /im(∂∂t) as a subgroup of mbZV ′

/im(∂′∂′t).

4. Exact Sequences from Induced Surjections

From Proposition 3.1 we know that if p : G′ → G is a Berman bundle, then there is an induced surjection
κ : K(G′) → K(G) of critical groups. We would like to understand the critical group K(G′) of the larger
graph through knowledge of the kernel of κ and the group K(G). We determined a presentation of ker(κ)
in Proposition 3.2. This gives us the short exact sequence

0← K(G)
κ
←− K(G′)← ker(κ)← 0

However, in order to understand ker(κ) better, it will often be useful to consider the cokernel to the short
exact sequence we get after applying Pontryagin duals.

0→ K̂(G)
κ̂
−→ K̂(G′)→ coker(κ̂)→ 0

4.1. The dual map κ̂. We want to understand the map κ̂ more concretely using Lemma 2.1. We will find
an injection from K(G) to K(G′) by the sequence of maps

K(G)
∼
−→ K̂(G)

κ̂
−→ K̂(G′)

∼
−→ K(G′),

where the isomorphisms are from Pontryagin duality. By an abuse of notation, we will refer to the injection
from K(G) to K(G′) also as κ̂.

Recall that from Example 1, that there is an isomorphism from K(G) := im(∂)/im(∂∂t) to K̂(G) that
sends an element of im(∂)/im(∂∂t) with coset representative v ∈ im(∂) to the character 〈u, ·〉 (mod 1) ∈

K̂(G), where u is any preimage of v under the map ∂∂t : ZV → im(∂). From proof of Lemma 2.1 and
Proposition 2.2, this character is independent of the coset representative v chosen, independent of the
preimage u, and independent of the coset representative at which to evaluate the function.

By definition, the map κ̂ : K̂(G)→ K̂(G′) takes 〈u, ·〉 (mod 1) and maps it to 〈u, κ·〉 (mod 1). We need
to find a representative v′ in K(G′) := im(∂′)/im(∂′∂′t) such that 〈u, κ·〉 (mod 1) = 〈u′, ·〉 (mod 1), where

u′ is a preimage of v′ under the map ∂′∂′t : ZV ′

→ im(∂′)
The coset represented by v′ will be the image of the coset represented by v.
To do so, we note that, given y ∈ im(∂′), 〈u, κy〉 is equal to (where V ′ is the vertex set of G′)

∑

w∈V ′

up(w)yw.

Let x be the vector in RV ′

such that for all w ∈ V ′, xw = up(w), so that 〈u, κ·〉 (mod 1) = 〈x, ·〉. This means
L(G′)x is the vector v′ for which we are looking.

It only remains to compute v′ = ∂′∂′tx. We determine the component of v′ corresponding to w for
each w ∈ V ′. Let in(w) denote the vertices that are adjacent to w. Directly from the definition of matrix
multiplication, we see that the component of v′ corresponding to w is

deg(w)xw −
∑

w′∈in(w)

xw′ =

deg(w)up(w) −
∑

w′∈in(w)

up(w′) =

deg(w)up(w) −
∑

w′∈in(w)∩p−1(p(w))

up(w) −
∑

w′∈in(w)\p−1(p(w))

up(w′).
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Figure 3. Coset representative of an element of critical group of the graph on top maps to
coset representive in critical group of Berman bundle

There are two cases. If w is not in the original cover G′
p, then the sum becomes

deg(w)up(w) −
∑

w′∈in(w)∩p−1(p(w))

up(w) =

deg(w)up(w) − deg(w)up(w) = 0.

If w is in the original cover G′
p, then the sum becomes


deg(w)up(w) −

∑

w′∈in(w)∩p−1(p(w))

up(w)


−

∑

w′∈in(w)\p−1(p(w))

up(w′) =

|in(v′)\p−1(p(v′))|up(w) −
∑

w′∈in(w)\p−1(p(w))

up(w′) =

|in(p(w))|up(w) −
∑

w′∈in(p(w))

uw′ =

(∂∂tu)p(w) = vp(w).

Example 4. An example of this injection is shown in Figure 3.

4.2. The cokernel of κ̂. As before, let p : G′ → G be a Berman bundle and κ be the induced surjection
κ : K(G′)→ K(G) of critical groups. Let G′ = (V ′, E′) and G = (V,E).

Let φ̂ be the injection from ZV into ZV ′

, where, if ev is the basis vector of ZV corresponding to a vertex

v ∈ V , then φ̂(ev) =
∑

v′∈p−1(v)∩G′

p
ev′ . Informally, we “replicate” ev for each vertex v′ in the fibre p−1(v)

of v that was also in the original cover G′
p. Then, if we restrict φ̂ to im(∂), we have the following picture

0 im(∂) im(∂′)

0 K(G) := im(∂)/im(∂∂t) K(G′) := im(∂′)/im(∂′∂′t)

φ̂

κ̂

κ1 κ2

The commutative of the diagram is directly from the description of κ̂ in the previous section. In injectivity

of κ̂ is from the surjectivity of κ. The image of κ̂ in im(∂′)/im(∂′∂′t) is the same as the image of κ2 ◦ φ̂. This

is φ̂(im(∂))/φ̂(im(∂)) ∩ im(∂′∂′t)) = (φ̂(im(∂)) + im(∂′∂′t))/im(∂′∂′t).

Therefore, the cokernel of κ̂ is im(∂′)/(im(∂′∂′t) + φ̂(im(∂))).
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Since we will need the maps κ̂ and φ̂ for future reference, we will give them a name.

Definition 6. Given a Berman bundle p : G′ → G where G′ = (V ′, E′) and G = (V,E), let the map φ̂ that

sends ev ∈ ZV corresponding to a vertex v ∈ V to φ̂(ev) =
∑

v′∈p−1(v)∩G′

p
ev′ ∈ ZV ′

be called the induced

injection of lattices. This injection will also restrict to an injection from im(∂) into im(∂′).
Let the map κ̂ from K(G) to K(G′) induced by κ1 and κ2 above be called the induced injection of critical

groups. Since κ̂ comes from dualizing the surjection from K(G′) to K(G) in Proposition 3.1, κ̂ is injective.

Remark 3. (added while writing the regular cover section) It will be useful to also understand the induced
injection κ̂ from K(G) to K(G′) with the presentation of the critical group in terms of the edges.

To do so, we first recall that if p : G′ → G is Berman bundle, then there is a graph G′
p ⊂ G′ such that p

restricted to G′
p is a covering. Given an edge k of G, define p−1(k) to be all the edges in G′

p that map to k
under the covering map from G′

p to G. Also, while we supressed this fact earlier, recall that to construct the
covering graph G′

p, we oriented the edges of G and constructed the covering space G′
p so that the covering

map also preserves direction of edges. This is possible due to the work of Gross and Tucker [4].

Define the map ψ̂ from ZE to ZE′

that sends ek for k an edge of G to
∑

k′∈p−1(k) ek. Then, we claim that

the following diagram commutes:

ZE ZE′

ZV ZV ′

∂ ∂′

ψ̂

φ̂

It suffices to show that the image of ek ∈ ZE , the standard basis element corresponding to the edge k ∈ E,
maps to the same thing going clockwise and counterclockwise.

First, if we go counterclockwise, then if k is directed from v to u, then ek maps to eu − ev. Then, the

image under φ̂ is
∑

u′∈p−1(u)∩G′

p
eu′ −

∑
v′∈p−1(v)∩G′

p
ev′ .

Now, if we go clockwise, then k maps to
∑

k′∈p−1(k) ek′ . This maps precisely to
∑

u′∈p−1(u)∩G′

p
eu′ −∑

v′∈p−1(v)∩G′

p
ev′ as long as our cover G′

p is also direction preserving (and it is).

Therefore, we have the following diagram

ZE ZE′

im(∂) im(∂′)

ZE/(im(∂)⊕ ker(∂)) ZE′

/(im(∂′)⊕ ker(∂′))

im(∂)/im(∂∂t) im(∂′)/im(∂′∂′t)

∂

κ3

∂′

∼
∂

∼
∂′

κ3 κ4

κ1 κ2

ψ̂

φ̂

κ̂

and the injection from ZE/(im(∂)⊕ker(∂)) to ZE′

/(im(∂′)⊕ker(∂′)) is induced by ψ̂. To see this, if we want

to go from ZE/(im(∂)⊕ker(∂)) to ZE′

/(im(∂′)⊕ker(∂′)), we following the arrows from ZE/(im(∂)⊕ker(∂))

to im(∂)/im(∂∂t) to im(∂′)/im(∂′∂′t) to ZE′

/(im(∂′)⊕ ker(∂′)).
If we work instead with coset representatives, this is the same as going from ZE to im(∂) to im(∂′) and

then taking a preimage under ∂′ to get to ZE′

. Since the top face of the cube commutes, this is the same as

going from ZE to ZE′

through φ̂. (end of remark)

There is a slightly different form of the cokernel that will be useful for us.
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Proposition 4.1. Suppose p : G′ → G is a Berman bundle, G = (V,E), G′ = (V ′, E′), G′ is connected (so
G is connected), and G′

p is an n−sheeted cover of G.

Let ZV
0 (mod n) be the sublattice of Z

V where all the coordinates add up to a multiple of n. Define ZV ′

0 (mod n)

similarly.

The cokernel of κ̂ = im(∂′)/(im(∂′∂′t) + φ̂(im(∂))) can be expressed as ZV ′

0 (mod n)/(im(∂′∂′t) + φ̂(ZV )).

Remark 4. Maybe the notation should be changed, but right now I’m using

(1) im(∂) is the sublattice of ZV where the coordinates add to zero for each connected component of G.
Equivalently, this is ∂ZE .

(2) ZV
0 (mod n) is the sublattice of Z

V where the coordinates (all of them) add up to a multiple of n. The

definition is the same regardless of the connected components.

Proof. Given the inclusion ι of im(∂′) into ZV ′

0 (mod n), we have the following diagram

im(∂′) ZV ′

0 (mod n)

im(∂′)/(im(∂′∂′t) + φ̂(im(∂))) ZV ′

0 (mod n)/(im(∂′∂′t) + φ̂(ZV ))

ι

ι

κ1 κ2

The map ι is induced as im(∂′∂′t) + φ̂(im(∂)) ⊂ im(∂′∂′t) + φ̂(ZV ). We want to show that ι is actually an
isomorphism.

To show that ι is an injection, we need to show that im(∂′) ∩ (im(∂′∂′t) + φ̂(ZV )) ⊂ im(∂′∂′t) + φ̂(im(∂))

(which means we have equality since im(∂′)∩ (im(∂′∂′t) + φ̂(ZV ) ⊃ im(∂′∂′t) + φ̂(im(∂)) was necessary for ι

to factor through im(∂′)/(im(∂′∂′t) + φ̂(im(∂))) as ι).

Since im(∂′∂′t) ⊂ im(∂′), im(∂′) ∩ (im(∂′∂′t) + φ̂(ZV )) = im(∂′∂′t) + im(∂′) ∩ φ̂(ZV ). This follows from
a general fact of abelian groups. If A1, A2 and A3 are abelian groups with A1 ⊂ A3, then if a1 ∈ A1 and
a2 ∈ A2 with a1 + a2 ∈ A3, then a2 must be in A3 since a1 ∈ A3.

To finish the proof that ι is an injection, we need to show that im(∂′) ∩ φ̂(ZV ) ⊂ φ̂(im(∂)).

If G and G′ are connected and G′
p is an n−sheeted covering of G, then the sum of the coordinates of φ̂(x),

where x ∈ ZV is n times the sum of the coordinates of x. Therefore, the only way for φ̂(x) to be in im(∂′)

is if x ∈ im(∂). Therefore, im(∂′) ∩ φ̂(ZV ) ⊂ φ̂(im(∂)) and ι is injective, as desired.

Now we show that ι is surjective. The image of ι is im(∂′)/(im(∂′∂′t) + φ̂(ZV )) ∩ im(∂′) = (im(∂′) +

im(∂′∂′t)+ φ̂(ZV ))/(im(∂′∂′t)+ φ̂(ZV )). To show that this is all of ZV ′

0 (mod n)/(im(∂′∂′t)+ φ̂(ZV )), it suffices

to show that (im(∂′) + im(∂′∂′t) + φ̂(ZV )) ⊃ ZV ′

0 (mod n).

We show that (im(∂′) + φ̂(ZV )) ⊃ ZV ′

0 (mod n). Fix an element x ∈ ZV ′

0 (mod n). Let c be the sum of the

coordinates of x. Let y be any element φ̂(ZV ) where the sum of the coordinates is c
n
. Then, x−φ̂(y) ∈ im(∂′),

so x ∈ im(∂′) + φ̂(ZV ), as desired.

Therefore, ι is both injective and surjective, so κ̂ = im(∂′)/(im(∂′∂′t)+φ̂(im(∂))) = ZV ′

0 (mod n)/(im(∂′∂′t)+

φ̂(ZV )). �

4.3. Splitting backmaps of κ̂. Returning to the motivation of determine the critical group of the cover in
terms of the kernel and cokernel in the exact sequence

0→ K(G)
κ̂
−→ K(G′)→ coker(κ̂)→ 0

it is desirable to know if the sequence is split exact, where κ̂ is the induced injection of critical groups.
We will show that the sequence is split exact at all the Sylow p−groups where p does not divide n.
Consider the following diagram
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0 K(G) := im(∂)/im(∂∂t) K(G′) := im(∂′)/im(∂′∂′t) coker(κ̂) 0

0 K(G) := im(∂)/im(∂∂t) K(G′) := im(∂′)/im(∂′∂′t) ker(κ) 0

κ̂

κ

∼

where the isomorphism in the middle is the identity map. We want to consider the image of K(G) under
the composition κ ◦ κ̂. If G′

p is an n-sheeted cover of G, then by the definition of the maps κ and κ̂ this
composition will take an element of K(G) with coset representative x and map it to the element of K(G)
with coset representative nx.

Therefore, the image of κ ◦ κ̂ is n(im(∂))/(im(∂∂t) ∩ n(im(∂))) = (n(im(∂)) + im(∂∂t))/im(∂∂t). Then,
the index [K(G) : κ ◦ κ̂(K(G))] = [im(∂) : n(im(∂)) + im(∂∂t].

Since n(im(∂)) ⊂ n(im(∂))+im(∂∂t, im(∂) we can quotient out to find the index is also [im(∂)/(n(im(∂))) :
im(∂∂t)/(n(im(∂)))]. Let S be a subset of V containing one vertex in each connected component of
G. Using the isomorphism π from im(∂) to ZV \S that deletes the coordinates corresponding to ver-
tices in S, we deduce that the index is [π(im(∂))/π(n(im(∂))) : π(im(∂∂t))/π(n(im(∂)))] = [(Z/nZ)V \S :
π(im(∂∂t))/π(n(im(∂)))]. This means the index [K(G) : κ ◦ κ̂(K(G))] divides n|V \S|.

Equivalently, the kernel of κ ◦ κ̂ is a subgroup H of K(G) whose order divides n|V \S|. This means we can
quotient out by H to obtain

0 K(G)/H K(G′)/κ̂(H)

0 K(G) K(G′)/κ̂(H)

κ̂

κ

∼

Then, we can restrict κ to κ−1(im(κ ◦ κ̂)) to get

0 K(G)/H κ−1(im(κ ◦ κ̂))/κ̂(H)

0 im(κ ◦ κ̂) κ−1(im(κ ◦ κ̂))/κ̂(H)

κ̂

κ

∼

Since H is by definition the kernel of κ ◦ κ̂, K(G)/H is isomorphic to im(κ ◦ κ̂) under the map ψ = κ ◦ κ̂.
Then, κ̂ is an injection of K(G)/H into κ−1(im(κ ◦ κ̂))/κ̂(H) and ψ−1 ◦ κ is a splitting backmap, which
means the exact sequence

0→ K(G)/H
κ̂
−→ κ−1(im(κ ◦ κ̂))/κ̂(H)→ coker(κ̂)→ 0

splits. In particular, this shows the original exact sequence splits at all primes p that do not divide n.

Corollary 4.2. At each prime p not dividing n, Sylp(G
′) = Sylp(G)⊕ Sylp(coker(κ̂)).

Proof. In going from

0→ K(G)
κ̂
−→ K(G′)→ coker(κ̂)→ 0

to the split exact sequence

0→ K(G)/H
κ̂
−→ κ−1(im(κ ◦ κ̂))/κ̂(H)→ coker(κ̂)→ 0,

we replaced K(G) with the quotient group K(G)/H . Since p does not divide the order of H , Sylp(K(G)) =

Sylp(K(G)/H). Similarly, we first replaced K(G′) with the quotient K(G′)/ ˆκ(H), which does not affect the

Sylow p subgroup Sylp(K(G′)). Then, we replaced K(G′)/ ˆκ(H) with κ−1(im(κ◦ κ̂))/κ̂(H) which again does
not affect the Sylow p-group since we are taking a subgroup of index |H |.
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Figure 4. Berman Bundle of K5

Finally, we replaced coker(κ̂) with the image when we restrict to κ−1(im(κ ◦ κ̂)), which is a subgroup of
index |H |. Therefore, we have not altered the Sylow p− groups in the exact sequence and find our split
exact sequence implies

0→ Sylp(K(G))
κ̂
−→ Sylp(K(G′))→ Sylp(coker(κ̂))→ 0

splits, as desired. �

Remark 5. If H is trivial above, then the sequence

0→ K(G)
κ̂
−→ K(G′)→ coker(κ̂)→ 0

is already split exact. From the computations above, this is equivalent to nK(G) to be all of K(G) or, if
we reduce the laplacian ∂∂t (mod n) that the image is all of im(∂)/(n(im(∂))). If this is true, then the
image of ∂∂t, when the entries are reduced (mod p) for any p dividing n, is all the vectors in FV

p that are
orthogonal to the characteristic vectors of the connected components of G.

This is equivalent to the Laplacian ∂∂t not decreasing in rank when the entries interpreted as elements in
Fp, which is equivalent to having no elements on the diagonal of the Smith Normal Form that are divisible
by p. This means we need K(G) to have no p-group component, where p does not divide n.

In this case, Corollary 4.2 already shows us the sequence is split exact.

Example 5. Consider the bipartite covering of the complete graph K5. We can add vertices and edges so
that it is no longer a covering, but it is still a Berman Bundle to get Figure 4. Since the critical group of
K5 is (Z/5Z)3 and 5 does not divide 2, we would expect the sequence

0→ K(G)
κ̂
−→ K(G′)→ coker(κ̂)→ 0

to be split exact. In particular, if we write the critical group of the graph shown in Figure 4 as a direct
product of p−groups, we would expect to see three copies of Z/5Z in the 5-group component. Indeed, SAGE
tells us the critical group is Z/5Z⊕ Z/15Z⊕ Z/11220Z = Z/4Z⊕ Z/3Z⊕ (Z/5Z)3 ⊕ Z/11Z⊕ Z/17Z.
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5. Reformulation of Cokernel of κ̂ for Berman Bundles

Given a Berman bundle p : G′ → G and the induced injection κ̂ : K(G)→ K(G′), we want to determine
information on the critical group K(G′) based on K(G) and coker(κ̂). However, in order to do so, we need
to be able to find the cokernel. We will focus on the case where G′ is connected (so G is connected).

Consider the fibres of the covering space G′
p ⊂ G′ when p is restricted to G′

p. Since p restricted to G′
p is

a covering space and G is connected, p must be an n-sheeted cover for some integer n. Let S ⊂ V ′ be of set
of |V | vertices where one vertex is selected from each fibre of G′

p.

Consider the injection ι of Z
V ′\S
0 (mod n) into Z0 (mod n) that “fills in the missing coordinates with zeros”.

More precisely, let ev′ ∈ Z
V ′\S
0 (mod n) where v

′ ∈ V ′\S be sent to ev′ ∈ ZV ′

0 (mod n).

From Proposition 4.1, if κ̂ is the induced injection of critical groups and φ̂ is the induced injection of

lattices, then the cokernel of κ̂ is ZV ′

0 (mod n)/(im(∂′∂′t) + φ̂(ZV )).

From the injection ι : Z
V ′\S
0 (mod n) → Z0 (mod n), we have the subgroup ι(Z

V ′\S
0 (mod n))/(im(∂′∂′t) + φ̂(ZV )) ∩

ι(Z
V ′\S
0 (mod n)) = (ι(Z

V ′\S
0 (mod n))+im(∂′∂′t)+φ̂(ZV ))/(im(∂′∂′t)+φ̂(ZV )) inside coker(κ̂) = ZV ′

0 (mod n)/(im(∂′∂′t)+

φ̂(ZV )).
We will show that this subgroup is actually the entire group, giving another presentation of coker(κ̂). To

do so, it suffices to show that ι(Z
V ′\S
0 (mod n)) + im(∂′∂′t) + φ̂(ZV ) ⊃ ZV ′

0 (mod n).

We will show that ι(Z
V ′\S
0 (mod n)) + φ̂(ZV ) ⊃ ZV ′

0 (mod n). To do so, consider an element x ∈ ZV ′

0 (mod n).

Suppose V = {v1, . . . , vk}, S = {v′1, . . . , v
′
k}, p(v

′
i) = vi for each 1 ≤ i ≤ k, and the coordinates of x that

correspond to v′1, . . . , v
′
k are c1, . . . , ck respectively. Then, consider the element y ∈ ZV where the coordinate

corresponding to vi is ci.

If we subtract x− φ̂(y), we see that result is an element of ι(Z
V ′\S
0 (mod n)) since the components of x− φ̂(y)

corresponding to v′i for any 1 ≤ i ≤ k is zero. Also, the coordinates of x− φ̂(y) sum to a multiple of n since

the coordinates of both x and φ̂(y) sum to a multiple of n. This means ι(Z
V ′\S
0 (mod n)) + φ̂(ZV ) ⊃ ZV ′

0 (mod n),

as desired. Furthermore, this element y is the unique element in ZV such that x− φ̂(y) ∈ ι(Z
V ′\S
0 (mod n)).

Finally, since ι(Z
V ′\S
0 (mod n))/(im(∂′∂′t)+φ̂(ZV ))∩ι(Z

V ′\S
0 (mod n)) = (ι(Z

V ′\S
0 (mod n))+im(∂′∂′t)+φ̂(ZV ))/(im(∂′∂′t)+

φ̂(ZV )) = coker(κ̂) = ZV ′

0 (mod n)/(im(∂′∂′t)+φ̂(ZV )), we only need to understand the intersection (im(∂′∂′t)+

φ̂(ZV )) ∩ ι(Z
V ′\S
0 (mod n)).

Given a column x of ∂′∂′t (or any element of ι(ZV ′

0 (mod n))), there exists a unique element y ∈ ZV ′

0 (mod n)

such that x− ˆφ(y) ∈ ι(Z
V ′\S
0 (mod n)) from the argument above. We can do this for each column of the matrix

∂′∂′t to find a new matrix R whose vectors span the lattice (im(∂′∂′t) + φ̂(ZV )) ∩ ι(Z
V ′\S
0 (mod n)).

Then, if π : ZV ′

→ ZV ′\S projects away the coordinates corresponding to S, we can apply π to coker(κ̂) =

ι(ZV ′

0 (mod n))/im(R) to find the cokernel is ZV ′

0 (mod n)/(im(π(R))).

In summary, our reformulation of the cokernel is in the following Proposition. An example of this is in
Example 6

Proposition 5.1. If p : G′ → G is a Berman bundle, G′ = (V ′, E′) is connected, G = (V,E) and S ⊂ V ′

contains one element in fibre of G′
p (so |S| = |V |), φ̂ is the induced injection of lattices, then we can construct

the matrix R(G′)S ∈ ZV ′\S×V ′

by

(1) Add elements of φ̂(ZV ) to each column of ∂′∂′t such that the coordinates corresponding to any vertex

in S is zero. For each column, there is an unique element of φ̂(ZV ) that will do this.
(2) Delete the rows of the resulting matrix corresponding to vertices in S. Each of these rows should be

zero.

The cokernel κ̂ is Z
V ′\S
0 (mod n)/im(R(G′)S).

Definition 7. For convenience, we give call the matrix R(G′)S the S−row reduced Laplacian.
If G is just a vertex, then S = {s} is just one vertex. Then, the S−row reduced Laplacian R(G′)S is the

Laplacian ∂′∂′t after we delete the row corresponding to s. Then, since the columns still add to the zero
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column, we can delete the column s to get the usual reduced Laplacian when we regard s as the sink to find
the S-row reduced Laplacian in this case has the same image as the usual reduced Laplacian.

Example 6. For example, in the Berman bundle in Figure 2, let S = {a1, b1, c1}. Given the Laplacian




a1 a2 a3 a4 b1 b2 b3 c1 c2

a1 3 −1 0 −1 −1 0 0 0 0

a2 −1 3 −1 0 0 −1 0 0 0

a3 0 −1 2 −1 0 0 0 0 0

a4 −1 0 −1 2 0 0 0 0 0

b1 −1 0 0 0 4 −1 −1 −1 0

b2 0 −1 0 0 −1 4 −1 0 −1

b3 0 0 0 0 −1 −1 2 0 0

c1 0 0 0 0 −1 0 0 3 −2

c2 0 0 0 0 0 −1 0 −2 3




,

the critical group is Z/249Z. Since the critical group of the graph G is a line graph, we would expect the

cokernel κ̂ to be Z/249Z. The cokernel is Z
{a2,a3,a4,b2,b3,c2}
0 (mod 2) quotiented out by the image of R. To get R, we

take the laplacian ∂′∂′t and add elements of φ̂(ZV ) so that the columns are in Z
{a2,a3,a4,b2,b3,c2}
0 (mod 2) . This yields,




a1 a2 a3 a4 b1 b2 b3 c1 c2

a1 0 0 0 0 0 0 0 0 0

a2 −4 4 −1 1 1 −1 0 0 0

a3 0 −1 2 −1 0 0 0 0 0

a4 −1 0 −1 2 0 0 0 0 0

b1 0 0 0 0 0 0 0 0 0

b2 1 −1 0 0 −5 5 0 1 −1

b3 0 0 0 0 −1 −1 2 0 0

c1 0 0 0 0 0 0 0 0 0

c2 0 0 0 0 1 −1 0 −5 5




.

Now, we delete the rows corresponding to a1, b2, or c1 to get




a1 a2 a3 a4 b1 b2 b3 c1 c2

a2 −4 4 −1 1 1 −1 0 0 0

a3 0 −1 2 −1 0 0 0 0 0

a4 −1 0 −1 2 0 0 0 0 0

b2 1 −1 0 0 −5 5 0 1 −1

b3 0 0 0 0 −1 −1 2 0 0

c2 0 0 0 0 1 −1 0 −5 5




.

The cokernel of this matrix when regarded as map into ZV ′\S is Z/498Z. Since the image of the matrix is

contained in Z
V ′\S
0 (mod 2) and Z

V ′\S
0 (mod 2) is a sublattice of index 2 of ZV ′\S , the cokernel of κ̂ must be an index

2 subgroup of Z/498Z. The only possibility for this is Z/249Z, which is what we expected.

5.1. Reformulation in a special case. For this entire section, we preserve the assumptions of Proposition
5.1. So p : G′ → G is a Berman bundle, G′ = (V ′, E′) is connected, G = (V,E) and S ⊂ V ′ contains one

element in fibre of G′
p (so |S| = |V |), φ̂ is the induced injection of lattices.

Proposition 5.1 gives us the cokernel of the induced injection κ̂ : K(G)→ K(G′) in the form Z
V ′\S
0 (mod n)/im(R(G′)S).

However, the condition that the lattice being quotiented is Z
V ′\S
0 (mod n) instead of ZV ′\S makes computing the

cokernel harder.
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Recall that in constructing the Berman bundle p : G′ → G, we constructed G′ by taking an n−sheeted
covering of G and

(1) added new vertices to the fibres of the coverings
(2) added new edges within the fibres.

Suppose we did not add any vertices (skipped step 1). Then, the fibre of each vertex in G would would still
contain n vertices, but there might be more connections within the fibres.

Definition 8. Define the Berman bundles p : G′ → G, where, in the process of constructing G′, step 1
above is skipped augmented covering spaces.

In particular, a covering space is an augmented covering space.

Definition 9. Given the S-row reduced Laplacian R(G′)S of G′, call the S-reduced Laplacian L(G′)S the
result when the columns of R(G′)S corresponding to S are also deleted.

In particular, combined with the remark given in Definition 7, the definition of a S-reduced Laplacian
coincides with the usual definition of a reduced Laplacian.

Proposition 5.2. Preserving the assumptions of Proposition 5.1, if R(G′)S is the S−row reduced Laplacian,
then the characteristic vector of the fibre of any vertex in G is in the kernel of R(G′)S .

In particular, this means the image of R(G′)S is the same as the image of L(G′)S and the cokernel of the

induced injection κ̂ is Z
V ′\S
0 (mod n)/im(L(G′)S).

Proof. Let χp−1(v) be the characteristic vector of a fibre of a vertex v of G. It suffices to show that ∂′∂′tχp−1(v)

is an element of φ̂(ZV ). To show this, we will show that (∂′∂′tχp−1(v))v′ (the component corresponding to

v′) is (∂∂tev)p(v′).

To see this, we compute (∂′∂′tχp−1(v))v′ for each vertex v′ ∈ V ′. There are two cases:

(1) If v′ ∈ p−1(v), then by the definition of matrix multiplication (∂′∂′tχp−1(v))v′ is

deg(v′)− |in(v′)|,

where in(v′) is vertices adjacent to v′ (not including v′ if there is a self loop). Therefore, the number
above is exactly |in(v′)\p−1(v)|. Since p : G′ → G is an augmented covering space (covering space
except for additional edges within the fibres), |in(v′)\p−1(v)| is exactly |in(p(v′))| (the number of
vertices other than p(v′) in G adjacent to p(v′)). Therefore, the component of ∂′∂′tχp−1(v) cor-

responding to v′ is exactly deg(p(v′)) which is the component of ∂∂tev corresponding to p(v′), as
desired.

(2) If v′ /∈ p−1(v), then by the definition of matrix multiplication, the component of ∂′∂′tχp−1(v) corre-
sponding to v′ is

|im(v′) ∩ p−1(v)|.

Since G′ is an augmented covering space, the number of edges from p(v′) to v is exactly the number of
edges from any vertex in p−1(v) to v′. Therefore, the component corresponding to v′ of ∂′∂′tχp−1(v)

is precisely the component corresponding to p(v′) of ∂∂tev.

Therefore, we have shown that (∂′∂′tχp−1(v))v′ (the component corresponding to v′) is (∂∂tev)p(v′) for each

v′ ∈ V ′. This means in particular that components of ∂′∂′tχp−1(v) corresponding to vertices of the same

fibre have the same value. This is precisely what is needed for ∂′∂′tχp−1(v) to be in φ̂(ZV ). Therefore, the
characteristic vector of the fibre of v is in the kernel of R(G′)S .

Therefore, we can delete the columns of R(G′)S without changing the image, so we can replace R(G′)S
by L(G′)S in the presentation of coker(κ̂), as desired. �

Remark 6. (For Reiner) In the case of a double cover, Proposition 5.2 is precisely the presentation of the
signed graph. The example after the propositions won’t be exactly a double cover (the number of edges
going between vertices of the same fibre is not necessarily even), but it will try to get the point across.

Finally, we can rewrite coker(κ̂) as the cokernel of a map into ZV ′\S instead of Z
V ′\S
0 (mod n) using Lemma

2.1.
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Figure 5. Vertices {a1, a2, a3, a4} project to a, {b1, b2, b3} project to b, and {c1, c2} project
to c

Proposition 5.3. Preserving the assumptions of Proposition 5.2 (that p : G′ → G is an augmented covering,

G′ = (V ′, E′) is connected, and φ̂ is the induced injection of lattices), the cokernel of the induced injection κ̂
of critical groups is

Z
V ′\S/L(G′)tS(Z

V ′\S
0 (mod n))

# = Z
V ′\S/L(G′)tS(Z

V ′\S + (
1

n
,
1

n
, . . . ,

1

n
)t).

Proof. From Proposition 5.2,

coker(κ̂) = Z
V ′\S
0 (mod n)/im(L(G′)S) = Z

V ′\S
0 (mod n)/L(G

′)SZ
V ′\S .

Directly from Lemma 2.1, there is an isomorphism

̂
Z
V ′\S
0 (mod n)/L(G

′)SZV ′\S ∼= (ZV ′\S)#/L(G′)tS(Z
V ′\S
0 (mod n))

# ∼= Z
V ′\S/L(G′)tS(Z

V ′\S + (
1

n
,
1

n
, . . . ,

1

n
)t),

as desired. �

Example 7. Consider the augmented covering space shown in Figure 5. The Laplacian is




a1 a2 b1 b2 c1 c2

a1 2 −1 −1 0 0 0

a2 −1 2 0 −1 0 0

b1 −1 0 3 −1 −1 0

b2 0 −1 −1 3 0 −1

c1 0 0 −1 0 3 −2

c2 0 0 0 −1 −2 3




,

From this, we can compute the critical group of the augmented cover G′ is Z/26Z. Since the critical group
of G is trivial, we would expect the cokernel to have critical group Z/26Z. To compute the cokernel using
Proposition 5.3, we first compute the S-reduced Laplacian, where S = {a1, b1, c1}. This yields R(G

′)S is




a1 a2 b1 b2 c1 c2

a2 −3 3 1 −1 0 0

b2 1 −1 −4 4 1 −1

c2 0 0 1 −1 −5 5


,
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a1 b1 c1

a2 b2 c2

a3 b3 c3

a b c

Figure 6. Construction of covering space
.

Note that the columns corresponding to each fibre of a vertex in G do sum to zero as asserted by Proposition
5.2. Then, the S-reduced Laplacian L(G′)S is




a2 b2 c2

a2 3 −1 0

b2 −1 4 −1

c2 0 −1 5


.

It is true that when n = 2, L(G′)S is symmetric (I should be writing other stuff up though). This is not true

for larger n, so taking the transpose does make a difference. The image L(G′)tS(Z
V ′\S + ( 1

n
, 1
n
, . . . , 1

n
)t) is

generated by the columns of L(G′)tS and the column L(G′)tS(
1
n
, 1
n
, . . . , 1

n
)t. This yields the matrix




a2 b2 c2

a2 3 −1 0 1

b2 −1 4 −1 2

c2 0 −1 5 2


.

The cokernel of this matrix is indeed Z/26Z.

5.2. An exact formula for coker(κ̂) for a specific case. Let G = (V,E) be a connected graph where self
loops are allowed. We will construct a specific covering space where we can determine coker(κ̂) exactly.

The steps are as follows:

(1) Multiply each edge in G by n to get the graph nG. For example, if G is a path with 3 vertices with
self loops at each vertex and n = 3, then we would get the bottom graph in Figure 6.

(2) Take an n−covering of the graph nG, where if v, u ∈ V are vertices of G and {u1, . . . , un} and
{v1, . . . , vn} are the fibres of u and v, there is an edge between v and u in G, then there is an edge
between vi and uj for all 1 ≤ i ≤ n.

Continuing our example, our cover G′ for the case where n = 3 and G is the path with 3 vertices
is the top graph in Figure 6.

The cokernel of the injection from nG to the graph G′ construct in this manner is as follows.

Proposition 5.4. Given a vertex v ∈ V , let dv be the outdegree of v. (So normal edges and self loops both
count as 1 towards the count.)
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Consider the abelian group
⊕

v∈V (Z/dvZ)
n−1. Write the group in terms of the invariant factors so that⊕

v∈V (Z/dvZ)
n−1 =

⊕(n−1)|V |
i=1 Z/aiZ, where ai|ai+1 for each 1 ≤ i < n (many of the a′is might be 1).

Then, the cokernel of the induced injection κ̂ from nG to the cover G′ is Z/a1Z⊕
⊕(n−1)|V |

i=2 Z/naiZ.

Proof. The reason this proposition is true is the presentation of coker(κ̂) from Proposition 5.3 is particularly
simple. Let the vertices of G be V = {v1, . . . , vk} and the fibre over a vertex vi ∈ V be {vi1, . . . , vin}. Let
S = {v1n, . . . , vkn}.

Then, we claim the matrix LS(G
′) is diagonal. To see this, consider a column of LS(G

′) corresponding
to a vertex vqr ∈ V

′\S, where 1 ≤ q ≤ k and 1 ≤ r ≤ n− 1.
For each 1 ≤ i, j,≤ k, let ℓij be the number of edges between vi and vj in G. If i = j, then ℓij is the

number of self loops at i = j. We claim that, if we take the column xvpq ∈ im(∂′) corresponding to vqr of

∂′∂′t, where ∂′ is the directed incidence matrix of G′, then xvpq + φ̂(
∑k

i=1 ℓpievi) has the property that the

coordinate of vin for any 1 ≤ i ≤ n corresponding to xvpq + φ̂(
∑k

i=1 ℓpievi) is zero.
In fact more is true. From how we constructed G′, the coordinate of xvpq corresponding to vij is

(xvpq )vij =

{
−ℓij if (i, j) 6= (p, q)

ndv − ℓp,p if (i, j) = (p, q).

Note that the term −ℓp,p is there if (i, j) = (p, q) because self loops don’t count towards the element on the
diagonal. Therefore,

xvpq + φ̂(

k∑

i=1

ℓpievi) =

{
0 if (i, j) 6= (p, q)

ndv if (i, j) = (p, q).

Therefore LS(G
′) is an (n− 1)k by (n− 1)k matrix with n− 1 copies of ndv on the diagonal for each v ∈ V .

However, we are not quite done since we want to quotient out by L(G′)tS(Z
V ′\S + ( 1

n
, 1
n
, . . . , 1

n
)t) not

just L(G′)tSZ
V ′\S . To do so, we first note that L(G′)tS(Z

V ′\S + ( 1
n
, 1
n
, . . . , 1

n
)t) is generated by the (n− 1)k

columns of LS(G) and the column x = L(G′)tS(
1
n
, 1
n
, . . . , 1

n
)t where xvij = dvi for each i.

Therefore, we want to find the invariant factors b1, . . . , b(n−1)k of [LS(G
′)|x]. To do so, we will use the fact

that b1b2 · · · bi is the greatest common denominator of the determinants of all i by i minors of [LS(G
′)|x].

We claim that the greatest common denominator of the determinants of all i by i minors of [LS(G
′)|x] is

ni−1a1 · · · ai.
First, the greatest common denominator is at most nia1 · · · ai by considering the i by i minors of LS(G

′).
Now, suppose we have a minor A that contains the rows and columns indexed by p1 < p2 < · · · < pi and
q1 < · · · < qi respectively. If qi 6= (n− 1)k+ 1, then A is a minor of LS(G

′), so we only need to consider the
case where qi = (n− 1)k + 1.

For any 1 ≤ j < i, in order for the column indexed by qj to be nonzero, we must have a row index pj′ = qj .
Therefore, all but one row index, say pj0 is matched to the column indices. Then, for each 1 ≤ j < i, the
column of A indexed by qj has a unique nonzero element LS(G

′)qj ,qj .
Then, in the permutation expansion of the determinant of A, there is only one nonzero term. This term

will select the unique nonzero element of the column indexed by qj for each 1 ≤ j < i and the element of
the column indexed by qi that is in row pj0 . The determinant corresponds exactly to picking i elements on
the diagonal of LS(G

′), taking their product, and multiplying the product by ni−1. The exponent of n is
i − 1 instead of i because the elements in the last column of A are the elements on the diagonal of LS(G

′)
divided by n.

Therefore, the greatest common denominator of all the determinants is precisely the greatest denominator
of all the determinants of the i by i minors of the matrix LS(G

′) divided by n. This means the greatest
common denominator is ni−1a1 · · ·ai, which implies that b1 = a1 and bj = maj for each 2 ≤ j ≤ (n − 1)k,
as desired. �

In summary, given a connected graph G = (V,E) with critical group
⊕|V |

i=1 Z/ciZ and the invariant factors
a1, . . . , a(n−1)k of

⊕
v∈V (Z/dvZ)

n−1, where dv is the outdegree of v for each vertex v ∈ V , the exact sequence

0→ K(nG)
κ̂
−→ K(G′)→ coker(κ̂)→ 0,
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where nG is the graph G with each edge multiplied n times and G′ is the cover of nG defined in this section,
is

0→

|V |⊕

i=1

Z/nciZ
κ̂
−→ K(G′)→ Z/a1Z⊕

(n−1)|V |⊕

i=2

Z/naiZ→ 0.

Example 8. In the example in Figure 6, the critical group of nG is (Z/3Z)2. The outdegrees are 2, 3, and
2. Writing (Z/2Z)4 ⊕ (Z/3Z)2 in terms of the invariant factors yields (Z/2Z)2 ⊕ (Z/6Z)2. This means the
cokernel is Z/3Z⊕ (Z/6Z)2 ⊕ (Z/18Z)2. Therefore, the exact sequence for our specific graph G is

0→ (Z/3Z)2 → K(G′)→ Z/3Z⊕ (Z/6Z)2 ⊕ (Z/18Z)2 → 0

or
0→ (Z/3Z)2 → K(G′)→ (Z/2Z)4 ⊕ (Z/3Z)3 ⊕ (Z/9Z)2 → 0.

Since we have a specific case, we can compute K(G′) directly, which yields K(G′) = Z/3Z ⊕ Z/6Z ⊕
(Z/18Z)2⊕Z/54Z = (Z/2Z)4⊕(Z/3Z)2⊕(Z/9Z)2⊕Z/27Z. It can be checked using Littlewoord Richardson
coefficients that the decomposition of K(G′) does not contradict our exact sequence.

6. Regular Covers

6.1. Definitions. Gross and Tucker [4] introdcued the notion of a regular covering, which, informally, is
a covering G′ of a graph G with a group H that acts freely on the graph G′. We will reproduce their
characterization of regular covers here.

Let G = (V,E) be a directed graph and H be a group. (We are working with undirected graphs, but we
can arbitrary assign orientations to the edges.)

Definition 10. A voltage assignment in H is a function s that assigns to each edge e of G a group element
s(e) ∈ H called the voltage on e. The pair (G, s) is called an ordinary voltage graph.

To an ordinary voltage graph (G, s), we can defined a derived graph Gs as follows:

(1) Its vertex set is V × H . It will be convenient to refer to the vertex (v, h) for v ∈ V, h ∈ H as vh
instead.

(2) Its edge set is E × H . It will be convenient to refer to the edge (e, h) for e ∈ E and h ∈ H as eh
instead. If edge e of G runs from vertex u to vertex v, then the edge eh runs from vertex vh to us(e)h.

Remark 7. Gross and Tucker [4] defined the edge eh to run from vertex vh to uhs(e) instead of us(e)h. This

is seen to be equivalent to our definition by replacing H with H−1. We changed the definition slightly so
that the “Laplacian” will act on column vectors instead of row vectors.

Definition 11. Let Z[H ] be the group algebra of H over Z and {eh : h ∈ H} be the basis elements.
Define the derived directed incidence matrix ∂s ∈ Z[H ]V ×E of an ordinary voltage graph (G, s) to be such

that

∂sv,k =





1(= e1) if k is not a loop and is directed away from v

−es(k) if k is not a loop and is directed into v

1− es(k) if k is a loop at v

0 else.

Definition 12. Given a derived directed indicidence matrix ∂s ∈ Z[H ]V ×E , let ∂s∗ ∈ Z[H ]E×V be defined
by first taking the transpose of ∂s and then applying the map that sends eh to eh−1 to each element of ∂s.

Definition 13. Define the derived Laplacian L(G, s) of an ordinary voltage graph (G, s) to be ∂s∂s∗.

Remark 8. Given a vertex v ∈ V , let Deg+(v) denote the edges going out of v and Deg−(v) denote the
edges going into v. Let Deg(v) be the union Deg+(v) ∪Deg−(v).

Self loops at v count as 2 towards deg(v) and 1 towards both deg+(v) and deg−(v).
It can be verified directly by matrix multiplication that

L(G, s)v,u =

{
−
∑

k∈Deg+(v)∩Deg−(u) es(k) −
∑

k∈Deg−(v)∩Deg+(u) es(k)−1 v 6= u

|Deg(v)| −
∑

k∈Deg+(v)∩Deg−(v) es(k) + es(k)−1 v = u.
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Figure 7. Ordinary voltage graph

Note that
∑

k∈Deg+(v)∩Deg−(v) es(k) + es(k)−1 is just a sum over self-loops.

Note that in the case that H is trivial, −
∑

k∈Deg+(v)∩Deg−(u) es(k)−
∑

k∈Deg−(v)∩Deg+(u) es(k)−1 is negative

the number of edges going between v and u and |Deg(v)|−
∑

k∈Deg+(v)∩Deg−(v) es(k) + es(k)−1 is the degree of v

neglecting self-loops (as self loops contribute 2 to |Deg(v)| and -2 to the sum
∑

k∈Deg+(v)∩Deg−(v) es(k) + es(k)−1 .

Also, while L(G, s) is not symmetric, it is invariant under the operation ∗ we defined on ∂s.

Example 9. For example, consider the graph G and ordinary voltage assignments in Figure 7, where
H = Z/3Z = 〈ω〉. Then,

∂s =




1 2 3 4 5

a1 1− eω 1 1 1 0

a2 0 −1 0 0 1

a3 0 0 −eω2 −1 −eω


, ∂s∗ =




1− eω2 0 0
1 −1 0
1 0 −eω
1 0 −1
0 1 −eω2




and

L(G, s) = ∂s∂s∗ =



5− eω − eω2 −1 −1− eω

−1 2 −eω2

−1− eω2 −eω 3.




Proposition 6.1. If (G, s) is an ordinary voltage graph and Gs is the derived graph, then the critical group
of Gs is equal to

Z[H ]E/(im(∂s∗) + ker(∂s)) = im(∂s)/im(∂s∂s∗).

Proof. Given Z[H ]V and v ∈ V , let ιv : Z[H ]→ Z[H ]V be the injection that takes an element x ∈ Z[H ] and
sends it to the element in Z[H ]V with x in the component corresonding to v and 0’s everywhere else. In
particular, this yields and isomorphism ψ from Z[H ]V with ZH×V that sends ιv(eh) to ev,h. (Here, eh is a
basis element of the group algebra while ev,h is standard basis element of ZH×V ).

Similarly, there is an isomorphism between Z[H ]V and ZH×V . Let Gs be the derived graph of the ordinary
voltage graph (G, s) and ∂′ be the directed incidence matrix of Gs (we would like to use ∂s, but that is
already taken). We will show that ∂s and ∂′ are really the same thing.

More precisely, the following diagram commutes:

Z[H ]E ZE×H

Z[H ]V ZV ×H

∂s ∂′

∼

∼
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It suffices to show that ιk(eh), where k ∈ E and h ∈ H , maps to the same element in ZV ×H in both ways. If
we go clockwise first, we see that ιk(eh) maps to ek,h. This maps to the column of ∂′ corresponding to the
edge kh in Gs.

Suppose k runs from v to u in G. Then, kh runs from vh to us(k)h. Therefore, the image of ιk(eh)

is the column vector in ZV×H with a 1 in the component corresponding to (v, h), a -1 in the component
corresponding to (u, s(k)h), and 0’s everywhere else.

Now, we chase the diagram counterclockwise. Applying ∂s to ιk(eh) yields the column vector ιv(eh) −
ιu(es(k)h) in Z[H ]V . This maps to ev,h − eu,s(k)h ∈ ZV ×H , which is the same as the column vector in ZV ×H

with a 1 in the component corresponding to (v, h), a -1 in the component corresponding to (u, s(k)h), and
0’s everywhere else, as desired.

In addition, we claim that im(∂s∗) and ker(∂s) inside of Z[H ]E map to im(∂′) and ker(∂′) inside of ZE×H .
The fact that ker(∂s) maps isomorphically to ker(∂′) should be clear from the commutativity of the

diagram above. The fact that im(∂s∗) maps to im(∂′) is a little less clear.
It suffices to show that the following diagram commutes:

Z[H ]E ZE×H

Z[H ]V ZV×H

∂s∗ ∂′t

∼

∼

Again, we chase the diagram clockwise and counterclockwise starting at Z[H ]V . It suffices to show that
ιv(eh) is mapped to the same element in both ways. We first chase the diagram in the counterclockwise
direction.

First, ιv(eh) maps to ev,h ∈ ZV×H under the isomorphism. To find the image under ∂′, we need to the
edges kh that are directed into and out of vh. By definition of a derived graph, the edges that are directed
out of vh are the edges kh for all edges k directed out of v in G. Let the indices corresponding to these
vectors be S1. The edges that are directed into vh are the edges ks(k)−1h where for all edges k directed into

v. Let the indices corresponding to these vectors be S1. The image of ev,h in ZV ×E is the sum of the basis
elements corresponding to these edges,

∑
(k,h)∈S1

ek,h −
∑

(k,h′)∈S2
ek,h′ .

Now, we chase the diagram clockwise. By the definition of ∂s∗, ∂s∗ιv(eh) maps to
∑

(k,h)∈S1
ιk(eh) −∑

(k,h′)∈S2
ιk(eh′), where S1 and S2 are the same as above. This maps to precisely

∑
(k,h)∈S1

ek,h −∑
(k,h′)∈S2

ek,h′ in ZE×H , so the diagram commutes.

Finally, for the diagram chasing, we have the following induced isomorphisms

Z[H ]E/(im(∂s∗) + ker(∂s)) ZE×H(im(∂′) + ker(∂′))

im(∂s)/im(∂s∂s∗) im(∂′)/im(∂′∂′t)

∂s ∂′

∼

∼

where all the arrows are isomorphisms. �

Now, we want to find the cokernel of the induced injection of critical groups κ̂ : K(G)→ K(Gs).

Definition 14. Let I be the two-sided ideal Z
∑

h∈H eh of the group algebra Z[H ]. Define the reduced
directed incidence matrix of ∂s to be the result after applying the projection map from Z[H ] → Z[H ]/I to
each entry. We will denote this as ∂s. We define the operator ∗ on the reduced directed incidence matrix to
take ∂s to ∂s∗, the result after applying the projection Z[H ]→ Z[H ]/I to each entry of ∂s∗.

Proposition 6.2. Let I be the two-sided ideal Z
∑

h∈H eh of the group algebra Z[H ].
Then, the cokernel of the induced injection κ̂ from K(G) to K(Gs) is of the form

(Z[H ]/I)E/(im(∂s∗) + ker(∂s)) = im(∂s)/im(∂s∂s∗).

Proof. Recall from Remark 3, the induced injection in terms of the edge presentation is the map induced by

ψ̂ in the following diagram
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ZE ZE×H

ZE/(im(∂t)⊕ ker(∂)) ZE×H/(im(∂′t)⊕ ker(∂′))

κ1 κ2

ψ̂

φ̂

where we define the map ψ̂ from ZE to ZE′

that sends ek for k an edge of G to
∑

k′∈p−1(k) ek, where we

defined p−1(k) to be all the edges in G′
p that map to k under the covering map from Gs to G. From the

isomorphism between ZE×H with Z[H ]E and the discussion above, this yields

ZE Z[H ]E

ZE/(im(∂t)⊕ ker(∂)) Z[H ]E/(im(∂s∗) + ker(∂s))

κ1 κ2

ψ̂

κ̂

Since the image of ψ̂ is precisely, (Z
∑

h∈H eh)
E , if we let I be the two-sided ideal Z

∑
h∈H eh of the group

algebra Z[H ], the cokernel of ψ̂ is precisely (Z[H ]/I)E . This yields the following diagram

0 ZE Z[H ]E (Z[H ]/I)E 0

0 ZE/(im(∂t)⊕ ker(∂)) Z[H ]E/(im(∂s∗) + ker(∂s)) coker(κ̂) 0

κ1 κ2 κ3

ψ̂

κ̂

where the map κ3 is induced as the image of ψ̂ goes to zero when we go from Z[H ]E to Z[H ]E/(im(∂s∗) +
ker(∂s)) and then to coker(κ̂) (this is because the image of ZE is zero when we go from ZE to ZE/(im(∂t)⊕

ker(∂)) to Z[H ]E/(im(∂s∗)+ker(∂s)) to coker(κ̂) and that the diagram is commutative). Therefore, if im(∂s∗)

and ker(∂s) are the images of im(∂s∗), ker(∂s) ⊂ Z[H ]E in (Z[H ]/I)E , then coker(κ̂) = (Z[H ]/I)E/(im(∂s∗)+

ker(∂s)).

We claim that im(∂s∗) and ker(∂s) are equal to im(∂s∗) and ker(∂s). We claim that both of these
facts come from the commutativity of the following diagram (the diagram commutes because the projection
Z[H ]→ Z[H ]/I is a homomorphism):

Z[H ]E Z[H ]V

(Z[H ]/I)E (Z[H ]/I)E

κ1 κ2

∂s

∂
s

The fact that im(∂s∗) = im(∂s∗) is a result of following the image of Z[H ]E both clockwise and counter-

clockwise, respectively. The fact that ker(∂s) = ker(∂s) follows the fact that κ1((∂
s)−1(0)) = (∂s)−1(κ2(0)).

Therefore, we have shown the cokernel is

(Z[H ]/I)E/(im(∂s∗) + ker(∂s)).

The isomorphism from (Z[H ]/I)E/(im(∂s∗) + ker(∂s)) to im(∂s)/im(∂s∂s∗) can be seen by considering the

composite of the map ∂s : (Z[H ]/I)E → im(∂s) and the projection map from im(∂s) to im(∂s)/im(∂s∂s∗)
and noting that the kernel is exactly im(∂s∗) + ker(∂s). �

Example 10. Suppose G = (V,E) is a graph and Gs is derived from the assignment of the trivial element
of a group H to each edge. Then, Gs is |H | disjoint copoies of G, so we would expect coker(κ̂), the cokernel
of the induced injection of critical groups, to be K(G)|H|−1.
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To show this is indeed true, fix h0 ∈ H and consider the isomorphism of Z-modules that sends an element
x of ZE×(H\h0) to the element y ∈ (Z[H ]/I)E , where the component of y corresponding to an edge k of
E is the equivalence class of

∑
h∈H\h0

xk,heh in Z[H ]/I. This map is in fact bijective, as there is a unique

element in each equivalence class of Z[H ]/I with the coefficient in front of eh0
zero.

We also claim that im(∂t)H\h0 and ker(∂)H\h0 map isomorphically unto im(∂s∗) and ker(∂s) under this
map. We claim that this follows from the fact that in our special case, im(∂′t) = im(∂t)H , ker(∂′) = ker(∂)H

and that the following diagram commutes:

ZE×H Z[H ]E

ZE×(H\h0) (Z[H ]/I)E

κ1 κ2

∼

∼

We have shown above that im(∂s∗) and ker(∂s) are the images of im(∂s∗) and ker(∂s) under κ2. The
commutativity of the diagram shows that this is exactly the image of im(∂′t) = im(∂t)H , ker(∂′) = ker(∂)H

in (Z[H ]/I)E when we follow the maps counterclockwise. Therefore, we have an induced isomorphism

between (ZE/(im(∂t) + ker(∂)))H\{h0} and (Z[H ]/I)E/(im(∂s∗) + ker(∂s)), as desired.

6.2. Special case when H = Z/pZ for p a prime. If H is the cyclic group H = Z/pZ, and I is the
two-sided ideal

∑
h∈H eh of Z[H ], then the quotient Z[Z/pZ]/I is isomorphic to Z[ωp] where ωp is a primitive

pth root of unity. This is because the cyclotomic polynomial of ωp is 1 + x+ · · ·+ xp−1, so the kernel of the
map α from Z[Z/pZ] to Z[ωp] that sends eak to ωk

p , where a is a generator of H = Z/pZ, is precisely I.
Therefore, we can interpret Proposition 6.2 in the special case in terms of Z[ωp]

Proposition 6.3. If H = Z/pZ, the cokernel of the induced injection κ̂ from K(G) to K(Gs) is of the form

Z[ωp]
E/(im(∂s∗) + ker(∂s)) = im(∂s)/im(∂s∂s∗),

where ∂s∗ and ∂s are understood to be the result after applying the map α from Z[Z/pZ] to Z[ωp] that sends
eak to ωk

p for each entry of the matrices.

6.3. Special case when H = Z/2Z. When p = 2 in the preceeding subsection, then ωp = −1 and Z[ωp] is

just Z. We would like to understand what ∂s∗ and ∂s are in Proposition 6.3 in this case.
Recall that

∂sv,k =





1(= e1) if k is not a loop and is directed away from v

−es(k) if k is not a loop and is directed into v

1− es(k) if k is a loop at v

0 else.

If we let the s(e) being the identity denote a positive edge and s(e) being the nontrivial group element denote
a negative edge, then the image of this matrix after we apply the map Z[Z/2Z]→ Z to each entry is

∂sv,k





1 if k is not a loop and is directed away from v

−1 if k is not a loop and is directed into v and k has positive sign

1 if k is not a loop and is directed into v and k has negative sign

0 if k is a loop at v and k has positive sign

2 if k is a loop at v and k has negative sign

0 else.

This is exactly the directed incidence matrix of a signed graph where we assign the edge a positive sign if
s(e) is trivial and assign the edge a negative sign otherwise. Therefore, Proposition 6.3 specializes to the
following.

Proposition 6.4. Then, the cokernel of the induced injection κ̂ from K(G) to K(Gs) is of the form

Z
E/(im(∂s∗) + ker(∂s)) = im(∂s)/im(∂s∂s∗),
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where ∂s and ∂s are the directed incidence matrices of the signed graph obtained from G from the map
s : E → Z/2Z.

7. 2-coverings of signed graphs and the closure property

We discuss induced injection and surjections of signed graphs. The arguments given at the beginning
generalize easily to this case. The main reason for consider coverings of signed graphs is that the cokernel
of an induced injection for the case of 2-covers is the critical group of another signed graph.

For this reason, we will restrict ourselves to 2-coverings, though there is no reason the results that are not
related to the closure property would not generalize.

7.1. Covering spaces of signed graphs. Everything in Section 3.1 generalizes naturally to signed graphs.
We will reproduce the section below with a few small changes.

Definition 15. Define a signed graph G to have four types of edges:

(1) positive edges (possibly loops)
(2) negative edges (possibly loops)
(3) negative half-loops (these will be denoted in diagrams a directed loops labeled with negative sign).
(4) positive half-loops (these will be denoted in diagrams a directed loops labeled with positive sign).

Remark 9. For our purposes, one (positive) negative loop and two (positive) negative half-loops will be
indistinguishable in terms of the critical groups of both the original graph and the derived graph.

Definition 16. Let S2 denote the symmetric group on {1, 2}. A permutation voltage assignment in S2 for
a directed, signed graph G = (V,E) is a function s that assigns to each edge of G a permutation in S2. The
pair (G, s) is called a 2-permutation voltage graph.

Definition 17. Given a 2-permutation voltage graph (G, s), a derived graph Gs is constructed as follows:

(1) The vertex set is the cartesian product V × {1, 2}. For convenience, the vertices will be denoted as
vi instead of (v, i).

(2) For each edge e:
(a) If edge e is not a half loop assigned the nontrivial permutation, then, suppose e runs from u to

v in G. Then, we make two copies of e in Gs. These will be denoted as e1 and e2. For i = 1
and i = 2, ei runs from ui and vπ(i), where π is the permutation s(e) associated to e by s.

(b) If e is a half loop at v assigned the nontrivial permutation, then there is an edge e′ directed
from v1 to v2.

Remark 10. Here, one edge is viewed to cover a half loop twice.
Also, note that our choice to direct an edge that covers a half loop from v1 to v2 is arbitrary.

An example of a derived covering space is in Figure 8.

Definition 18. Define the directed incidence matrix ∂ ∈ ZV×E of a signed graph to be such that

∂v,k =





1(= e1) if k is not a loop and is directed away from v

−1 if k has positive sign, is not a loop and is directed into v

1 if k has negative sign, is not a loop and is directed into v

2 if k is a negative (half) loop at v

0 else (in particular k is a positive (half) loop at v).

Definition 19. Define the transpose directed incidence matrix ∂T ∈ ZE×V of a signed graph to be such
that

∂Tk,v =





1(= e1) if k is not a loop and is directed away from v

−1 if k has positive sign, is not a loop and is directed into v

1 if k has negative sign, is not a loop and is directed into v

2 if k is a negative loop at v

1 if k is a negative half loop at v

0 else (in particular k is a positive (half) loop at v).
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Figure 8. Ordinary Voltage graph and derived covering. Note that if we changed all the
half loops to positive half loops in the ordinary voltage graph, we would have gotten the
cube as the cover.

In particular, ∂T is the transpose of ∂ except for the columns of ∂ that correspond to negative half loops.

It can be verified by direct matrix multiplication that

∂∂Tv,u =





|Number of negative edges between v and u|−

|Number of positive edges between v and u| if v 6= u

|Number of non-loops adjacent to v|+

4|Number of negative loops at v|+

2|Number of half loops at v| if v = u.

In particular, ∂∂T is symmetric.
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Definition 20. Given a signed graph G, we define the critical group K(G) to be

ZE

im(∂T ) + ker(∂)
= im(∂)/im(∂∂T ).

Example 11. Consider signed graph in Figure 8 with vertices a, b, c, d. Then,

∂ =




1 2 3 4 5 6 7 8

a 1 0 0 −1 2 0 0 0

b −1 1 0 0 0 2 0 0

c 0 −1 1 0 0 0 2 0

d 0 0 −1 1 0 0 0 2



, ∂T =




1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




and

∂∂T =




4 −1 0 −1
−1 4 −1 0
0 −1 4 −1
−1 0 −1 4


 .

7.2. Induced Surjections. Let G1 = (V1, E1) be a signed graph. Assign a permutation to each edge of G1

and construct the derived graph G′ = (V ′, E′) (a 2-covering of G1). Define G2 = (V2, E2) to be the signed
graph obtained by reversing the sign of all the edges of G1 assigned a nontrivial permutation.

We will index V1 with {1, . . . ,m}. Since G2 is the same graph as G1 if we forget about sign, there will be
no harm in indexing V2 also as {1, . . . ,m} (the same vertex set). Since there are two vertices of G′ for each
vertex of G1, we can index G′ with {±1, . . . ,±m} such that vertices ±k of G′ map to vertex k of G1 under
the covering map.

Let ∂1, ∂2, and ∂
′ be the directed incidence matrices of G1, G2, and G

′ respectively. We claim there are
induced surjection of the critical group of G′ unto G1 and G2 as follows:

Proposition 7.1. Consider the surjection φ : ZV ′

→ ZV1 of lattices that sends e±i to ei. Then,

(1) φ restricts to a surjection from im(∂′) to im(∂1).
(2) The surjection induces a surjection from K(G′) to K(G1) as in the following commutative diagram:

im(∂′) im(∂1)

K(G′) := im(∂′)/im(∂′∂′T ) im(∂1)/im(∂1∂
T
1 )

κ′

κ

φ

κ1

.

Proof. To see that φ restricts to a surjection from im(∂′) to im(∂1), we first define a map ψ : ZE′

→ ZE that
sends each edge k′ of E′ to the edge that it covers under the covering map p : G′ → G1. (In particular, if
the edge that k′ covers happens to be a half loop, we still only send it to ep(k′), not 2ep(k′). This is because
the directed incidence matrix ∂1 makes no distinction between half loops and loops.

If e ∈ E is not a half loop, then e will be hit by two edges under the covering map p. If e ∈ E is a half
loop, then e will be hit by one edge under the covering map p. Showing φ is surjective reduces to verifying
the following diagram commutes:

ZE′

ZE

im(∂′) im(∂1)

∂′

φ

ψ

∂1
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To verify this, it suffices to show that ek′ maps to the same element both clockwise and counterclockwise,
where k′ is an edge in E′. Suppose k′ is directed from v′ to u′ (where v′ and u′ might be the same). Then, if
we go clockwise, p(k′) is an edge directed from p(v′) to p(u′). This maps to a ep(u′) ± ep(v′), where the sign
depends on the sign of k′.

If we go counterclockwise, k′ maps to eu′ ± ev′ , where the sign depends on the sign of k′. Then, eu′ ± ev′

maps to ep(u′) ± ep(v′), as desired.
Finally, showing that the surjection φ : im(∂′) → im(∂1) induces a surjection reduces to showing that

im(∂′∂′T ) goes to zero under κ1 ◦ φ. To show this, I claim that it can be checked that the column of ∂′∂′T

corresponding to the vertex indexed by ±i maps to the column of ∂1∂
T
1 corresponding to the vertex indexed

by i. �

7.3. Sign flips and voltage flips. Preserving the same setup as the previous subsection, we describe two
operations on G1.

Definition 21. Define a sign flip at a vertex v of G1 (or G′ or G2) to reverse all the signs of all the edges
incident to v.

A self loop is understood to not be affected. We can interpret this has being flipped twice.

Remark 11. It can be checked that a sign flip of the vertex of G1 indexed by i corresponds to sign flips at
the vertices indexed by +i and −i of G′ and a sign flip at the vertex indexed by i of G2.

Remark 12. In the presentation of the group G1 (or G′ or G2) as im(∂1)/im(∂1∂
T
1 ), we can interpret a

sign flip at the vertex indexed by i as replacing the standard basis vector ei in ZV1 with −ei. If we reexpress
∂∂T after replacing ei with −ei, this corresponds to flipping the sign of the column of ∂∂T corresponding
to i and then doing the same to the row corresponding to i. In particular, performing a sign flip does not
change the critical group.

However, if we blindly reexpress ∂ (or ∂T ) by just replacing ei with −ei, we might get a column with two
-1’s (flipping the head of a positively signed edge) or “change the direction” of a negative edge (flipping the
head of a negatively signed edge). To avoid this, to compute ∂, we flip vertex i of G1 (preserving directions)
and then read off ∂ as usual.

Definition 22. Define a voltage flip at a vertex v of G1 to reverse all the permutation assignments of all
the edges incident to v.

A self loop is understood to not be affected. We can interpret this has being flipped twice.

Remark 13. It can be checked that a voltage flip at the vertex of G1 indexed by i corresponds to having
the vertices of G′ indexed by +i and −i switch places (so in particular does not alter G′) and a sign flip of
G2 at the vertex i.

In particular, this gives a surjection from K(G′) to K(G2).

Proposition 7.2. Consider the surjection φ : ZV ′

→ ZV2 of lattices that sends e+i to ei amd e−i to −ei.
Then,

(1) φ restricts to a surjection from im(∂′) to im(∂2).
(2) The surjection induces a surjection from K(G′) to K(G2) as in the following commutative diagram:

im(∂′) im(∂2)

K(G′) := im(∂′)/im(∂′∂′T ) im(∂2)/im(∂2∂
T
2 )

κ′

κ

φ

κ2

.

Proof. Consider the result after we perform a sign flip at each vertex in {−1,−2, . . . ,−m} of G′. If we
consider the cut of the vertices of G′ into {+1,+2, . . . ,+m} and {−1,−2, . . . ,−m}, then an edge changes
sign if and only if it crosses the cut.

This is precisely what it means for the lift of any edge k in G1 to change sign if and only if k is assigned
the nontrivial permutation. Therefore, after performing the flips, we find that the new graph G′′ = (V ′, E′)
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is now a cover of G2 and we can apply Proposition 7.1 to find an induced surjection of K(G′′) to K(G2) that

is induced by the surjection of lattices φ′ that sends e+i to ei and −e−i (of the original basis of ZV ′

) to ei.
If we interpret what this means in terms of the original graph G′, this is the same as an induced surjection

from K(G′) to K(G2) that sends e+i to ei and e−i to −ei, which is what Proposition 7.2 claims. �

7.4. Closure Property. Preserving the setup in Subsection 7.2, we recall that Propositions 7.1 and 7.2
give us induced surjections from K(G′) to K(G1) and K(G2).

We claim that the kernel of the induced surjection from K(G′) into K(G1) can be described in terms of
K(G2) and vice versa. First, we can assume that G is connected as the general case can be described in
terms of each connected component.

Now, we will split our work into three cases:

(1) G does not have a cycle such that the number of edges assigned transpositions in the cycle is odd.
(2) G does have a cycle such that the number of edges assigned tranpositions in the cycle is odd and

either ∂1 has full rank or ∂2 has full rank.
(3) G does have a cycle such that the number of edges assigned tranpositions in the cycle is odd and ∂1

and ∂2 have full rank.

It can be shown that it is impossible to not be in Case 1 and yet have both ∂1 and ∂2 not of full rank. To
see this, we can apply sign flips to G1 so that G1 has all positive signs. Then, G2 has a cycle with an odd
number of negative edges, so that ∂2 is full rank. Therefore, our three cases does contain all the possibilities.

Also, note that in Cases 2 and 3, G′ is a connected graph.

7.5. Case 1. For case 1, it can be shown that a sequence of voltage flips can be applied so that all the
permutations assigned to G1 are the trivial permutations so that G1 = G2 and G′ is two disjoint copies of
G1. Intuitively, this can be seen as “untwisting” G′ into two separate pieces. Then, we see that K(G′) =
K(G1)⊕K(G2).

Remark 14. If we actually want to recover the injection of K(G2) as the kernel, we would first consider
the case where all the permutations assigned to G1 are trivial and consider the injection of K(G2) to K(G′)

induced by the lattice map φ̂ : ZV2 → ZV ′

that sends ei to ei − e−i.
Then, in general, we would have to keep track of the voltage flips we performed and track how to recover

the original injection of K(G2) into K(G′). If ∂2 has full rank, we don’t have to perform this exercise, but
if ∂2 does not have full rank, there could be issues about mapping into im(∂′) or hitting the entire kernel if

we just blindly use the map φ̂ : ZV2 → ZV ′

that sends ei to ei − e−i.

7.6. Case 2. Without loss of generalize, we can assume that ∂1 is not of full rank and ∂2 is of full rank,
since, as noted in the proof of Proposition 7.2, flipping signs at {−1, . . . ,−m} of G′ reverses the roles of G1

and G2.
Since ∂1 is not of full rank, we can perform sign flips at the vertices of G1 so that all of the edges of G1

become positively signed. In particular, this means G′ also has all positive edges. What happens in this case
can be described in Proposition 7.3

Definition 23. Define the sign preserving involution ι on ZV ′

be the endomorphism that sends e+i to e−i

and e−i to e+i.

Remark 15. It can be shown that ∂∂T ι(x) = ι(∂∂Tx). This will be the main application of the sign
preserving involution.

Proposition 7.3. If G1 is connected and has all positive edges (so G′ has all positive edges), then we have
the following two exact sequences:

0← K(G1)← K(G′)← K(G2)← 0

0→ K(G1)→ K(G′)→ K(G2)→ 0,

where the surjections are the surjections from Propositions 7.1 and 7.2.

Proof. For the first exact sequence, we first note that if φ is the map of lattices from ZV ′

to ZV1 that sends
e±i to ei, then φ(im(∂′∂′T )) is exactly im(∂1∂

T
1 ). To see this, it suffices to recall that the column of ∂′∂′T

corresponding to vertex +i or −i maps to the column of ∂1∂
T
1 corresponding to vertex i.
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This means in particular that if the image of a vector x ∈ ZV ′

is equivalent to 0 after quotienting out by
im(∂1∂

T
1 ), then there is a vector x′ ∈ ZV ′

equivalent to x under im(∂′∂′T ) that maps exactly to zero under
φ.

Therefore, the kernel of the map K(G′)→ K(G1) is the subgroup ZV ′

skew/Z
V ′

skew ∩ im(∂′∂′T ), where ZV ′

skew

is sublattice of ZV ′

containing all vectors x such that x+ ι(x) = 0, where ι is the sign preserving involution

on ZV ′

. Note that since G′ is a connected unsigned graph ZV ′

skew ⊂ im(∂′)

It suffices to find ZV ′

skew ∩ im(∂′∂′T ). To do so, suppose x ∈ ZV ′

such that ∂′∂′Tx ∈ ZV ′

skew. Then, we know
that ∂′∂′Tx+ ι(∂′∂′Tx) = 0, or x+ ι(x) ∈ ker(∂′T ). Since ker(∂′T ) is generated by the all 1’s vector (recall
that G′ is unsigned), we can add c

2 times the all 1’s vector to x so that x = ι(x), where c is an integer.

Equivalently, x now lies in the lattice ZV ′

skew + (12 , . . . ,
1
2 ,−

1
2 , . . . ,−

1
2 )

t, where the additional vector has a 1
2

corresponding to each vertex in {+1, . . . ,+m} and a − 1
2 corresponding to each vertex in {−1, . . . ,−m}.

Conversely, it can be shown that for any vector x ∈ ZV ′

skew + (12 , . . . ,
1
2 ,−

1
2 , . . . ,−

1
2 ), ∂

′∂′Tx is in ZV ′

skew.

Consider the injection φ̂ : RV2 → RV ′

of lattices that sends ei to ei − e−i. It can be checked that

φ̂(∂2∂
T
2 x) = ∂′∂′T (φ̂(x)).

Using the fact that φ̂ : ZV2 → ZV ′

skew is an isomorphism, it can be shown that

Z
V ′

skew/Z
V ′

skew ∩ im(∂′∂′T ) = Z
V2/∂2∂

T
2 (Z

V2 + (
1

2
, . . . ,

1

2
)t)

From Example 2, we know that there is an isomorphism between ZV2/∂2∂
T
2 (Z

V2+(12 , . . . ,
1
2 )

t) and ̂im(∂2)/im(∂2∂T2 ),
which means the kernel of the surjection from K(G′) to K(G1) is isomorphic to K(G2) as desired.

The proof of the other exact sequence is similar. Let φ be the map of lattices from ZV ′

to ZV2 that sends
e+i to ei and e−i to −ei, then φ(im(∂′∂′T )) is exactly im(∂2∂

T
2 ). To see this, it suffices to recall that the

column of ∂′∂′T corresponding to vertex +i to the column of ∂2∂
T
2 corresponding to vertex i and the column

of ∂′∂′T corresponding to −i maps to the negative of the column of ∂2∂
T
2 corresponding to vertex i.

This means in particular that if the image of a vector x ∈ ZV ′

is equivalent to 0 after quotienting out by
im(∂2∂

T
2 ), then there is a vector x′ ∈ ZV ′

equivalent to x under im(∂′∂′T ) that maps exactly to zero under
φ.

Therefore, the kernel of the map K(G′)→ K(G2) is the subgroup im(∂′)∩ZV ′

sym/im(∂′)∩ZV ′

sym∩im(∂′∂′T ),

where ZV ′

sym is sublattice of ZV ′

containing all vectors x such that x = ι(x), where ι is the sign preserving

involution on ZV ′

.
It suffices to find im(∂′)∩ZV ′

sym ∩ im(∂′∂′T ). To do so, suppose x ∈ ZV ′

such that ∂′∂′Tx ∈ im(∂′)∩ZV ′

sym.

Then, we know that ∂′∂′Tx − ι(∂′∂′Tx) = 0, or x − ι(x) ∈ ker(∂′T ). Since ker(∂′T ) is generated by the all
1’s vector (recall that G′ is unsigned), x − ι(x) must be a multiple of the all 1’s vector. However, the dot
product of x − ι(x) with the all 1’s must be zero since the sum of its components is zero, so x − ι(x) must
in fact equal 0.

Conversely, it can be shown that for any vector x ∈ ZV ′

sym, ∂
′∂′Tx ∈ im(∂′) ∩ ZV ′

sym.

Consider the injection φ̂ : ZV1 → ZV ′

of lattices that sends ei to ei + e−i. It can be checked that

φ̂(∂1∂
T
1 x) = ∂′∂′T (φ̂(x)).

Using the fact that φ̂ : im(∂1)→ im(∂′) ∩ ZV ′

sym is an isomorphism, it can be shown that

im(∂′) ∩ Z
V ′

sym/im(∂′) ∩ Z
V ′

sym ∩ im(∂′∂′T ) = im(∂1)/im(∂1∂
T
1 ),

which is exactly K(G1), as desired. �

Corollary 7.4. The exact sequence

0← K(G1)← K(G′)← K(G2)← 0

from Proposition 7.3 splits at all odd primes.

Proof. This can be proved using exactly the same as the argument used in Section 4.3. Recall that the main
fact used is that in the following commutative diagram (where the middle vertical map is the identity)
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0 K(G1) K(G′) K(G2) 0

0 K(G1) K(G′) K(G2) 0

∼

following the arrows from K(G1) to K(G′) and then back to K(G1) results in 2K(G1), which has an index
in K(G1) that is a power of 2. �

7.7. Case 3. Finally, we have to deal with the case where ∂1 and ∂2 are full rank and there is a cycle in G1

with an odd number of edges assigned the transposition. We first isolate the fundamental difference of this
case from Case 2.

Proposition 7.5. Suppose G1 is connected, ∂1 and ∂2 have full rank, and G1 contains a cycle with an odd
number of edges assigned the tranposition. Then, ∂′ has full rank.

Proof. First note that G1 containing a cycle with an odd number of edges assigned the tranposition implies
that G′ is connected. Also, recall that ∂′ having full rank is equivlant to there existing a cycle with an odd
number of negative edges.

This is equivalent to finding a cycle in G1 with an odd number of negative edges and an even number of
transpositions. We claim that given our conditions this is always possible. We show this by contradiction.
Suppose there is no cycle in G1 with an odd number of negative edges and an even number of transpositions.

Then, every cycle in G1 with an odd number of negative edges must necessarily have an odd number of
edges assigned the transposition. We will show that in addition, every cycle in G1 with an even number of
negative edges must have an even number of edges assigned the transposition.

To see this, suppose not. Since ∂1 has full rank, there exists a cycle C1 such that C1 has an odd number of
negative edges. By our assumption, C1 has an odd number of edges assigned the transposition. Suppose there
is a cycle C2 with an even number of negative edges with an odd number of edges assigned the transposition.

Then, we can create a larger cycle C3 from C1 and C2 by taking any path joining a vertex in C1 and C2

(such a path must exist since G1 is connected). Suppose this path joins v1 and v2. Then, our cycle C3 will
start at v1, cycle back to v1 through C1, go to v2 in C2 through the path, cycle back to v2 through C2 and
then go back to V1 through the path. Then, our cycle C3 has a odd number of negative edges and an even
number of edges assigned the transposition, which is not allowed.

Finally, we see that this is a contradiction, as, if every cycle in G1 with an odd number of negative edges
has an odd number of edges assigned a transposition and every cycle with an even number of negative edges
has an even number of edges assigned the transposition, then every cycle in G2 has an even number of
negative edges. But we assumed that ∂2 is also full rank, therefore we have a contradiction and ∂′ must have
full rank. �

What happens in this case is summarized in the following proposition

Proposition 7.6. Suppose G1 is connected, ∂1 and ∂2 have full rank, and G1 contains a cycle with an odd
number of edges assigned the tranposition.

Then, we have the following sequences of maps

0← K(G1)← K(G′)← K(G2)← 0

0→ K(G1)→ K(G′)→ K(G2)→ 0,

where the surjections are the surjections from Propositions 7.1 and 7.2. The sequences are exact except
K(G2) hits a subgroup of index 2 in the kernel of the surjection K(G′)→ K(G1) and similarly, K(G1) hits
a subgroup of index 2 in the kernel of the surjection K(G′) rightarrow K(G2).

Proof. The proof of this will be extremely similar to the proof of Proposition 7.3. The fundamental difference
is that the kernel of ∂′ is empty.

For the first exact sequence, we first note that if φ is the map of lattices from ZV ′

to ZV1 that sends
e±i to ei, then φ(im(∂′∂′T )) is exactly im(∂1∂

T
1 ). To see this, it suffices to recall that the column of ∂′∂′T

corresponding to vertex +i or −i maps to the column of ∂1∂
T
1 corresponding to vertex i.
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This means in particular that if the image of a vector x ∈ ZV ′

is equivalent to 0 after quotienting out by
im(∂1∂

T
1 ), then there is a vector x′ ∈ ZV ′

equivalent to x under im(∂′∂′T ) that maps exactly to zero under
φ.

Therefore, the kernel of the map K(G′)→ K(G1) is the subgroup ZV ′

skew/Z
V ′

skew ∩ im(∂′∂′T ), where ZV ′

skew

is sublattice of ZV ′

containing all vectors x such that x+ ι(x) = 0, where ι is the sign preserving involution

on ZV ′

. Note that since ∂′ has full rank, im(∂′) ∩ ZV ′

skew is all of ZV ′

skew

It suffices to find ZV ′

skew ∩ im(∂′∂′T ). To do so, suppose x ∈ ZV ′

such that ∂′∂′Tx ∈ ZV ′

skew. Then, we know

that ∂′∂′Tx+ ι(∂′∂′Tx) = 0, or x+ ι(x) ∈ ker(∂′T ). Since ker(∂′T ) is trivial, x = −ι(x) and x ∈ ZV ′

skew.

Conversely, it can be shown that for any vector x ∈ ZV ′

skew, ∂
′∂′Tx is in ZV ′

skew.

Consider the injection φ̂ : RV2 → RV ′

of lattices that sends ei to ei − e−i. It can be checked that

φ̂(∂2∂
T
2 x) = ∂′∂′T (φ̂(x)).

Using the fact that φ̂ : ZV2 → ZV ′

skew is an isomorphism, it can be shown that

Z
V ′

skew/Z
V ′

skew ∩ im(∂′∂′T ) = Z
V2/im(∂2∂

T
2 )

Since im(∂2) is a sublattice of ZV2 of index 2 and im(∂2∂
T
2 ) ⊂ im(∂2), K(G2) is of index 2 in ZV ′

skew/Z
V ′

skew ∩
im(∂′∂′T ) = ZV2/im(∂2∂

T
2 ), as desired.

The proof of the other exact sequence is similar. Let φ be the map of lattices from ZV ′

to ZV2 that sends
e+i to ei and e−i to −ei, then φ(im(∂′∂′T )) is exactly im(∂2∂

T
2 ). To see this, it suffices to recall that the

column of ∂′∂′T corresponding to vertex +i to the column of ∂2∂
T
2 corresponding to vertex i and the column

of ∂′∂′T corresponding to −i maps to the negative of the column of ∂2∂
T
2 corresponding to vertex i.

This means in particular that if the image of a vector x ∈ ZV ′

is equivalent to 0 after quotienting out by
im(∂2∂

T
2 ), then there is a vector x′ ∈ ZV ′

equivalent to x under im(∂′∂′T ) that maps exactly to zero under
φ.

Therefore, the kernel of the map K(G′) → K(G2) is the subgroup ZV ′

sym/Z
V ′

sym ∩ im(∂′∂′T ), where ZV ′

sym

is sublattice of ZV ′

containing all vectors x such that x = ι(x), where ι is the sign preserving involution on

ZV ′

. Note that since ∂′ has full rank, im(∂′) ∩ ZV ′

sym is all of ZV ′

sym

It suffices to find ZV ′

sym ∩ im(∂′∂′T ). To do so, suppose x ∈ ZV ′

such that ∂′∂′Tx ∈ ZV ′

sym. Then, we know

that ∂′∂′Tx− ι(∂′∂′Tx) = 0, or x− ι(x) ∈ ker(∂′T ). Since ker(∂′T ) is trivial, x = ι(x).

Conversely, it can be shown that for any vector x ∈ ZV ′

sym, ∂
′∂′Tx ∈ ZV ′

sym.

Consider the injection φ̂ : ZV1 → ZV ′

of lattices that sends ei to ei + e−i. It can be checked that

φ̂(∂1∂
T
1 x) = ∂′∂′T (φ̂(x)).

Using the fact that φ̂ : ZV1 → ZV ′

sym is an isomorphism, it can be shown that

Z
V ′

sym/Z
V ′

sym ∩ im(∂′∂′T ) = Z
V1/im(∂1∂

T
1 ).

Since im(∂1) is a sublattice of ZV1 of index 2 and im(∂1∂
T
1 ) ⊂ im(∂2), K(G1) is of index 2 in ZV ′

sym/Z
V ′

sym ∩

im(∂′∂′T ) = ZV1/im(∂1∂
T
1 ), as desired. �

Corollary 7.7. The sequence

0← K(G1)← K(G′)← K(G2)← 0

from Proposition 7.6 splits at all odd primes.

Proof. This can be proved using exactly the same as the argument used in Section 4.3. Recall that the main
fact used is that in the following commutative diagram (where the middle vertical map is the identity)

0 K(G1) K(G′) K(G2) 0

0 K(G1) K(G′) K(G2) 0

∼

following the arrows from K(G1) to K(G′) and then back to K(G1) results in 2K(G1), which has an index
in K(G1) that is a power of 2. It is true that K(G2) only hits a subgroup of index 2 of the kernel of the
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surjection of K(G′) onto K(G1), but replacing K(G2) with the kernel will not change the Sylow p−group
of K(G2) for p odd. �

7.8. Critical Group of n-cube. Using the results in this section, we will develop an alternative interpre-
tation for Bai’s proof of the Sylow p− component of the critical group of the n-cube for p odd [2].

Following the notation of Bai [2], let Ln,k be the result after taking the n−cube and adding k negative
half loops at each vertex. Consider the permutation voltage assignment on Ln,k+1, where we have all the
edges assigned the identity permutation except for exactly one of the half loops at each vertex.

Then, the covering derived from this assignment of permutations is Ln+1,k. From Corollary 7.7, we know
that the sequence

0← K(Ln,k)← K(Ln+1,k)← K(Ln,k+1)← 0

splits at all odd primes by letting G1 = Ln,k, G
′ = Ln+1,k and G2 = Ln,k+1. To see this, we can take

Ln,k, add a positive half loop at each vertex, and then assign the trivial permutation to each edge of Ln,k,
except for the positive half loops which are assigned the nontrivial permutation. Then, the derived covering
is Ln+1,k and G2 is Ln,k+1. Thus, following the argument used in Theorem 1.2 of [2], the Sylow p-group of
p odd of Qn = Ln,0 is

Sylp(K(Ln,0)) = Sylp(K(Ln−1,0))⊕ Sylp(K(Ln−1,1))

= Sylp(K(Ln−2,0))⊕ Sylp(K(Ln−2,1))
2 ⊕ Sylp(K(Ln−2,2))

=
...

=

n∏

k=0

(Sylp(K(L0,k))
(nk).

Finally, L0,k is just the graph with one vertex and k negative half loops. The critical group is 2Z/2kZ = Z/kZ.
Therefore, we recover Bai’s result:

n∏

k=0

(Sylp(Z/kZ))
(nk)

is the Sylow p−group of K(Qn) for p odd.

8. Examples

Here we will have specific examples of critical groups that can be computed using what we have developed.

8.1. Complete Bipartite Graph Kn,n plus a number of perfect matchings. Let G1 be the complete
graph on n vertices with k positive half loops at each vertex (so G1 is a signed graph). Assign every edge
of G1 the nontrivial permutation. Then, the derived graph covering G′ is a complete bipartite graph Kn,n

plus k− 1 times the perfect matching where +1 is matched to −1, +2 is matched to −2, and so on. If k = 0,
then G′ is the complete bipartite graph without a perfect matching. This is also known as the crown graph.

Let G2 be the signed graph obtained by reversing the signs of all the edges of G1. Then, from Proposition
7.3, we know that there is an exact sequence 0 → K(G1) → K(G′) → K(G2) → 0. It is well-known that
K(G1) = (Z/nZ)n−2.

We can also compute K(G2) directly.

Proposition 8.1. The critical group of the signed graph G2 obtained by taking a complete graph on n
vertices, adding k half loops to each vertex, and assign negative signs to each edge (including the loops) is
(Z/(n− 2 + 2k)Z)n−2 ⊕ Z/(n− 1 + k)(n+ 2k − 2)Z.

Proof. First, we note that if ∂2 is the directed incidence matrix of G2, then ∂2∂
T
2 is equal to




n− 1 + 2k 1 1 · · · 1
1 n− 1 + 2k 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · n− 1 + 2k


 .
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In order to compute the critical group, we will use the presentation of K(G2) given in Example 2 as
ZV /∂∂T (ZV + (12 , . . . ,

1
2 )

t). This is equivalent to computing the Smith Normal form of



n− 1 + 2k 1 1 · · · 1 n− 1 + k
1 n− 1 + 2k 1 · · · 1 n− 1 + k
...

...
...

. . .
...

...
1 1 1 · · · n− 1 + 2k n− 1 + k


 .

We proceed by somewhat unmotivated row and column operations. First, we can add all the rows to the
first row to get




2(n− 1 + 2k) 2(n− 1 + 2k) 2(n− 1 + 2k) · · · 2(n− 1 + 2k) (n− 1 + k)n
1 n− 1 + 2k 1 · · · 1 n− 1 + k
...

...
...

. . .
...

...
1 1 1 · · · n− 1 + 2k n− 1 + k


 .

Then, we subtract the first column from the next n− 1 columns and subtract n+ k − 2 times the first row
from the last column



2(n− 1 + 2k) 0 0 · · · 0 −(n− 1 + k)(n+ 2k − 4)
1 n− 2 + 2k 0 · · · 0 1
...

...
...

. . .
...

...
1 0 0 · · · n− 2 + 2k 1


 .

Then, we eliminate up the first column to get



0 0 0 · · · 0 −(n− 2 + 2k)(2n− 2 + 2k) −(n− 1 + k)(n+ 2k − 2)
0 n− 2 + 2k 0 · · · 0 −(n− 2 + 2k) 0
...

...
...

. . .
...

...
...

0 0 0 0 n− 2 + 2k −(n− 2 + 2k) 0
1 0 0 0 · · · n− 2 + 2k 1



.

Cleaning up a little yields



0 0 0 · · · 0 0 −(n− 1 + k)(n+ 2k − 2)
0 n− 2 + 2k 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 0 n− 2 + 2k 0 0
1 0 0 0 · · · 0 0



.

This means K(G2) is (Z/(n− 2 + 2k)Z)n−2 ⊕ Z/(n− 1 + k)(n+ 2k − 2)Z, as desired. �

Corollary 8.2. If G(n, k) is the complete bipartite graph with k − 1 times a perfect matching added, then
K(G(n, k)) satisfies the following exact sequence:

0→ (Z/nZ)n−2 → K(G(n, k))→ (Z/(n− 2 + 2k)Z)n−2 ⊕ Z/(n− 1 + k)(n+ 2k − 2)Z

In many cases, we can determine K(G(n, k)) exactly. I admit I haven’t tried very hard to deal with the
other cases. First, the answer is simple if n is odd

Proposition 8.3. Suppose n is odd. The critical group G(n, k) is (Z/nZ)n−2 ⊕ (Z/(n − 2 + 2k)Z)n−2 ⊕
Z/(n− 1 + k)(n+ 2k − 2)Z.

Proof. We know that the exact sequence from Corollary 8.2 splits at all odd primes. Since n is odd, this
means the sequence splits at all primes. �

If n is even, we can get a partial answer. In particular, we have a complete answer when k = 0 or k = 2.
The case where k = 0 rederives the result in [7] that computes the critical group of a complete bipartite
graph Kn,n minus a perfect matching.

Proposition 8.4. Suppose n is even and n and k− 1 are relatively prime (so in particular k is even). The
critical group of G(n, k) is Z/(n− 2 + 2k)Z⊕ (Z/n(n− 2 + 2k)Z)n−3 ⊕ Z/n(n− 1 + k)(n− 2 + 2k)Z.
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Proof. We first show that the number of generators is at most n− 1. To do so, we note that the Laplacian
of G(n, k) is




n+ k − 1 0 · · · 0 −k −1 · · · −1
0 n+ k − 1 · · · 0 −1 −k · · · −1
...

...
. . .

...
...

...
. . .

...
0 0 · · · n+ k − 1 −1 −1 · · · −k
−k −1 · · · −1 n+ k − 1 0 · · · 0
−1 −k · · · −1 0 n+ k − 1 · · · 0
...

...
. . .

...
...

...
. . .

...
−1 −1 · · · −k 0 0 · · · n+ k − 1




.

The upper left n by n matrix has determinant (n+ k − 1)n. Now, consider the minor formed by taking the
row indices in {2, n+ 1, . . . , 2n} and column indices in {2, 3, . . . , n+ 1}. Then, we get the n by n minor




0 n+ k − 1 0 · · · 0 −1
−k −1 −1 · · · −1 0
−1 −k −1 · · · −1 0
...

...
...

. . .
...

...
−1 −1 −1 · · · −k 0



.

If we expand by minors across the first row, we see that the determinant of taken (mod n− 1) is ±1 times
the determinant of




−k −1 −1 · · · −1
−1 −k −1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · −k


 .

Since the eigenvalues of the all 1’s matrix is 0, 0, . . . , 0, n − 1, the eigenvalues of this matrix is −(k −
1),−(k− 1), . . . ,−(k− 1),−(n+ k− 2), which means the determinant of n by n minor above is ±(n+ k− 2)
(mod n+k−1). Therefore, if p is a prime that divides the n by n minor with determinant (n+k−1)n above,
then it won’t divide the second n by n minor we found with determinant ±(n+ k − 2) (mod n+ k − 1).

This means in the Smith Normal form of the Laplacian of G(n, k), there must be n 1’s on the diagonal.
Since the sequence

0→ (Z/nZ)n−2 → K(G(n, k))→ (Z/(n− 2 + 2k)Z)n−2 ⊕ Z/(n− 1 + k)(n+ 2k − 2)Z

splits at all odd primes, we only need to consider the induced exact sequence of 2-groups. This is 0 →
(Z/2e1Z)n−2 → Syl2(K(G(n, k))) → (Z/2e2Z)n−1 of 2-groups, where e1 is the largest power such that 2e1

divides n and similarly for e2 and n+2k− 2. Since there are at most n− 1 generators of Syl2(K(G(n, k))) =
(Z/2e1+e2Z)n−2 ⊕ Z/2e2Z by applying Littlewood Richardson coefficients.

Since the greatest common divisor of n and n− 2k + 2 is at most 2, the 2-groups combining shows that
K(G(n, 0)) can only be (Z/n(n − 2 + 2k)Z)n−2 ⊕ Z/(n− 2 + 2k)Z ⊕ Z/(n− 1 + k)Z = Z/(n − 2 + 2k)Z⊕
(Z/n(n− 2 + 2k)Z)n−3 ⊕ Z/n(n− 1 + k)(n− 2 + 2k)Z. �

Finally, we can recover the critical group of the complete bipartite graph Kn,n. This is a special case of
Lorenzini’s computation that the critical group of Kn1,n2

is (Z/n1Z)
n2−2 ⊕ (Z/n2Z)

n1−2 ⊕ Z/n1n2Z [6].

Proposition 8.5. The critical group of G(n, 1) is (Z/nZ)2n−4 ⊕ Z/n2Z.

Proof. From Corollary 8.2, we have the exact sequence

(1) 0→ (Z/nZ)n−2 → K(G(n, 1))→ (Z/nZ)n−2 ⊕ Z/n2
Z

To get more information, we also apply Proposition 5.4 to a graph with 2 vertices and one edge between
them to find that K(G(n, 1)) also satisfies the exact sequence

(2) 0→ Z/nZ→ K(G(n, 1))→ (Z/nZ)2n−3 → 0.
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a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a b c d

Figure 9. G is the path with 4 vertices, n = 3, nG is the graph on the bottom, and a
covering is the graph on top

.

While (1) splits at all odd primes, we have no information on (2) since we only know that it splits at all
primes that do not divide n, which is not very useful. However, if p is a prime and e is the largest power
such that pe divides n, then we know that the induced exact sequence of p−groups from (2) is

0→ Z/peZ→ Sylp(K(G(n, 1)))→ (Z/peZ)2n−3.

In addition, we know from (1), that Sylp(K(G(n, 1)) has Z/p2eZ as part of its decomposition. From applying

Littlewood Richardson, we know the only possibility for Sylp(K(G(n, 1)) that has Z/p2eZ as part of its

decomposition is (Z/peZ)2n−4 ⊕ Z/p2eZ.
Performing this at all primes p yields the critical group of G(n, 1) is (Z/nZ)2n−4⊕Z/n2Z, as desired. �

8.2. Complete Split Graphs. In [3], it is known that the critical group of the complete split graph, where
the the clique has size n1 and the coclique has size n2, is (Z/(n1+n2)Z)

n1−2⊕(Z/n1Z)
n2−2⊕Z/n1(n1+n2)Z.

If we start with a graph on two vertices v1 and v2 such that there is an edge between v1 and v2 and a self
loop at v1, we can apply Proposition 5.4 to the case where n1 = n2 = n. Then, we get the following exact
sequence

0→ Z/nZ→ K(G)→ (Z/2n)n−1 ⊕ (Z/nZ)n−2,

where G is the complete split graph with clique and coclique size n. It can be shown the number of generators
is at most 2n− 3 (by just finding a 2 by 2 matrix in L(G) with determinant ±1). If n is odd, then applying
Littlewood Richardson coefficients yields (Z/nZ)n−2 ⊕ (Z/2nZ)n−2 ⊕ Z/2n2Z. If n is even, then applying
Littlewood Richardson coefficients yields only two possibilities: (Z/nZ)n−2 ⊕ (Z/2nZ)n−2 ⊕ Z/2n2Z and
(Z/nZ)n−3 ⊕ (Z/2nZ)n−1 ⊕ Z/n2Z, and the first one agrees with the correct answer.

8.3. Stacked Complete Bipartite Graphs.

Proposition 8.6. Let G′ be a graph with kn vertices with n > 1. Let the vertex set be {vij : 1 ≤ i ≤ n, 1 ≤
j ≤ k}. Let there be an edge between vij and vi′,j+1 for all 1 ≤ j < k and 1 ≤ i, i′ ≤ n. See the top graph of
Figure 9 for the case where n = 3 and k = 4.

Suppose k is even.

(1) If n is odd, then the critical group of G′ is (Z/2Z)(k−2)(n−1) ⊕ (Z/nZ)(n−2)k ⊕ (Z/n2Z)k−1.
(2) If n = 2, then the critical group of G′ is (Z/4Z)⊕ (Z/8Z)k−2.

Proof. Let G be the graph that is a path with k vertices. Then, if G′ is k − 1 complete bipartite graphs,
each with each bipartition of size n stacked on top of each other (see the top graph in Figure 9). Then,
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Proposition 5.4 yields the exact sequence

0→ (Z/nZ)k−1 → K(G′)→ (Z/nZ)2n−3 ⊕ (Z/2nZ)(k−2)(n−1) → 0.

As a submatrix of the Laplacian of G′ it is possible to find an k by k minor that is all 0’s except on the all
-1’s on the superdiagonal and subdiagonal (equivalently, this is the adjacency matrix of the k-path). It is
not hard to show that, since k is even, the determinant of this minor is ±1. This means, there must be at
most (kn− 1)− k = (n− 1)k − 1 generators of K(G).

If n is odd, the cokernel of the exact sequence above can be rewritten as (Z/2Z)(k−2)(n−1)⊕(Z/nZ)(n−1)k−1.
Applying Littlewood-Richardson coefficients shows thatK(G′) = (Z/2Z)(k−2)(n−1)⊕(Z/nZ)(n−2)k⊕(Z/n2Z)k−1.

If n is 2, applying Littlewood-Richardson coefficients to

0→ (Z/2Z)k−1 → K(G′)→ (Z/2Z)⊕ (Z/4Z)k−2 → 0(3)

with the knowledge that there are at most k − 1 generators yields K(G′) = (Z/4Z)⊕ (Z/8Z)k−2. �

Conjecture 1. Preserving the setup in 8.6, if n = 2 and k is odd, then K(G′) = (Z/2Z)2 ⊕ (Z/8Z)k−2.

Remark 16. To prove Conjecture 1, it suffices to show that there is Z/2Z⊕Z/2Z in the 2-group component
of K(G′), as the exact sequence (3) and Littlewood-Richardson coefficients show that K(G′) is (Z/2Z)2 ⊕
(Z/8Z)k−2, (Z/2Z)⊕ (Z/4Z)2 ⊕ (Z/8Z)k−3, or (Z/4Z)⊕ (Z/8Z)k−2. Computer evidence suggests that it is
the first one. (I spent about a day trying to prove this to give an impression of how hard I tried)

8.4. A “Circle” of Complete Bipartite Graphs.

Proposition 8.7. Let G′ be a graph with kn vertices where n > 1. Let the vertex set be {vij : 1 ≤ i ≤ n, 1 ≤
j ≤ k}. Let there be an edge between vij and vi′,j+1 for all 1 ≤ j < k and between vi,k and vi′,1, where i and
i′ range over all integers between 1 and n inclusive.

Suppose k is odd.

(1) If n is odd, then the critical group of G′ is (Z/2Z)(n−1)k ⊕ (Z/nZ)(n−2)k ⊕ (Z/n2Z)k−2 ⊕ Z/n2kZ.
(2) If n = 2, then the critical group of G′ is Z/2Z⊕ (Z/8Z)k−1 ⊕ Z/kZ.

Remark 17. If we take the top graph of Figure 9 and glue together verticees a1 and d1, a2 and d2 and a3
and d3, we get the case where n = k = 3.

Proof. Let G be the graph that is a cycle with k vertices. Then, since K(G) = Z/kZ, Proposition 5.4 yields
the following exact sequence

0→ Z/nkZ⊕ (Z/nZ)k−2 → K(G′)→ (Z/2nZ)(n−1)k−1 ⊕ Z/2Z→ 0.

Now, similarly to the proof of Proposition 8.6, it is possible to find a k by k minor that is the adjacency
matrix of the k-cycle. It is known that, since k is odd, the determinant of this adjacency matrix is 2 (see
[1] Proposition 2.1 for example). This means the number of generators of the 2-group of K(G′) is at most
(nk − 1)− (k − 1) = (n− 1)k and the number of generators of the p-group of K(G′) for any odd prime p is
at most (nk − 1)− k = (n− 1)k − 1.

If n is odd, the exact sequence can be rewritten as

0→ Z/nkZ⊕ (Z/nZ)k−2 → K(G′)→ (Z/nZ)(n−1)k−1 ⊕ (Z/2Z)(n−1)k → 0.

Since 2 does not divide n, the sequence splits at the 2-groups. For the rest, applying Littlewood-Richardson
Coefficients shows K(G′) = (Z/2Z)(n−1)k ⊕ (Z/nZ)(n−2)k ⊕ (Z/n2Z)k−2 ⊕ Z/n2kZ.

If n = 2, then we have the sequence

0→ Z/2kZ⊕ (Z/2Z)k−2 → K(G′)→ (Z/4Z)k−1 ⊕ Z/2Z→ 0.

Since k is odd, the kernel can be rewritten as Z/kZ⊕(Z/2Z)k−1. Applying Littlewood-Richardson Coefficients
shows K(G′) = Z/kZ⊕ Z/2Z⊕ (Z/8Z)k−1 or Z/kZ⊕ (Z/4Z)2 ⊕ (Z/8Z)k−2.

To finish, we will rule out the possibility of K(G′) = Z/kZ ⊕ (Z/4Z)2 ⊕ (Z/8Z)k−2. To do so, we will
show that Z/2Z must be its primary decomposition. We note that G′ is an k-sheeted covering of the graph
H with two vertices v and u, two edges between v and u, and two self loops at v and at u. This can be seen
by mapping v11, v12, . . . , v1k to v and v21, v22, . . . , v2k to u. Since k is odd, Corollary 4.2 shows that there is
a splitting backmap from K(H) = Z/2Z to K(G′). This means Z/2Z must be in the primary decomposition
of K(G′), so K(G′) = Z/kZ⊕ Z/2Z⊕ (Z/8Z)k−1

�
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8.5. A Generalization of Sections 8.3 and 8.4. For what it is worth, it is possible to abstract the
conditions used in the case where n is odd in Propositions 8.6 and 8.7 in Proposition 8.8 below.

Proposition 8.8. Let G = (V,E) be a connected graph. Let G′ be the graph created by

(1) For each vertex v ∈ G, create n copies v1, . . . , vn of G.
(2) For each edge between v and u in G (possible v = u), let there be edges between vi and uj for all

1 ≤ i, j ≤ n.

Let |V | = k and the outegrees of the vertices of G be d1, d2, . . . , dk (where self-loops count as 1). Suppose

(1) n > 1 and n is relatively prime with d1, . . . , dk
(2) n is relatively prime with the determinant of the adjacency matrix of G.

Then, if K(G′) =
⊕k−1

i=1 Z/ciZ (where many of the ci might be 1), then

K(G′) = (Z/nZ)(k−2)n ⊕

(
k−1⊕

i=1

Z/n2ciZ

)
⊕

(
k⊕

i=1

(Z/diZ)
n−1

)
.

Proof. Applying Proposition 5.4 to G yields the following exact sequence:

0→ K(nG) =
k−1⊕

i=1

Z/nciZ→ K(G′)→ Z/a1Z⊕




k(n−1)⊕

i=2

Z/naiZ


→ 0,

where a1, . . . , ak(n−1) is defined to be the invariant factors of
⊕k

i=1 (Z/diZ)
n−1 such that ai divides ai+1 for

all 1 ≤< k(n − 1). Since we assumed that n is relatively prime with d1, . . . , dk, n is relatively prime with
a1, . . . , ak(n−1) and we can rewrite the exact sequence above as

0→

k−1⊕

i=1

Z/nciZ→ K(G′)→ (Z/nZ)k(n−1)−1 ⊕




k(n−1)⊕

i=1

Z/aiZ


→ 0.

By definition of a1, . . . , ak(n−1), we can rewrite the cokernel as

0→

k−1⊕

i=1

Z/nciZ→ K(G′)→ (Z/nZ)k(n−1)−1 ⊕

(
k⊕

i=1

(Z/diZ)
n−1

)
→ 0.

Since we can find the adjacency matrix as an k by k minor of the Laplacian of G′, the number of generators
of the p-group component of K(G′), for any p that divides n, must have at most (kn− 1)− k = k(n− 1)− 1
generators by the assumption we made about the adjacency matrix of G having determinant relatively prime
to n.

Applying Littlewood-Richardson coefficients to the exact sequence shows thatK(G′) can only be (Z/nZ)(k−2)n⊕(⊕k−1
i=1 Z/n2ciZ

)
⊕
(⊕k

i=1 (Z/diZ)
n−1
)
. �

Example 12. If we let G be the complete graph with k vertices, then if n is relatively prime with k−1, then
we find the critical group of the complete multipartite graph with k blocks of equal size m, from Proposition
8.8, is (Z/nZ)(k−2)n ⊕ Z/n2Z⊕ (Z/n2kZ)k−2 ⊕ (Z/(k − 1)Z)(n−1)k.

Since n is relatively prime with k−1, we can combine appropiate generators to yield (Z/(k−1)nZ)(k−2)n⊕
Z/(k − 1)n2Z⊕ (Z/(k − 1)kn2Z)k−2 ⊕ Z/(k − 1)Z.

This is the same answer found in Corollary 5 of [5] (though they did not need to make the assumption
that n is relatively prime with k − 1).
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