In particular, K is annihilated, and hence preserved, by every one of the self-adjoint

forded by U is the same as that afforded by the non-zero eigenspaces of a certain BHR operator b_J . Meanwhile, Example IV.6.3 shows that this \mathfrak{S}_n -representation is the sum of $\bigoplus_{n=0}^{m=0} WH_{\mathcal{O}_{(2n,1n-2n)}}$. Note that this sum is isomorphic to the multiplicity-free Gelfand model described in Proposition V.1.1. space of \mathbb{RS}_n . Note that Corollary IV.2.2 implies that the \mathfrak{S}_n -representation af-Hence they also preserve the perpendicular space $U:=K^{\perp}$, a Q-rational sub-

This multiplicity-freeness has two consequences. First, it shows that by combining the \mathfrak{S}_{π} -isotypic decomposition $U=\bigoplus_{\lambda}U^{\lambda}$ together with the complementary space K, one obtains a direct sum decomposition as in (20) that simultaneously

diagonalizes all of the operators $\{\nu_{(2^k,1^{n-2k})}\}_{k=0,1,2,\dots,k_{\max}}$ diagonalizes all of the operators $\{\nu_{(2^k,1^{n-2k})}$ acts on U with integer eigenvalues. Since $\nu_{(2^k,1^{n-2k})}$ also each operator $\nu_{(2^k,1^{n-2k})}$ acts on U with integer eigenvalues. Since $\nu_{(2^k,1^{n-2k})}$ also annihilates the subspace $K=U^{\perp}$ complementary to U, it has only integer eigen-

 $\gamma_{(2^k,1^{n-2k}),\lambda}$ as its only potential non-zero eigenvalue, and hence acts on U^{λ} . Picking any realization $\mathfrak{S}_n \stackrel{\rho_1}{\hookrightarrow} GL_{\mathbb{C}}(V)$ of the irreducible \mathfrak{S}_n -representation with character χ^{λ} . Proposition II.7.1 tells us that $\rho_{\lambda}(\nu_{(2^k,1^{n-2s})})$ has However, we know more about the eigenvalue 1 $\gamma_{(2^{k},1^{n}-2^{k}),\lambda}$ with which $\nu_{(2^{k},1^{n}-2^{k})}$

$$\begin{aligned} \gamma_{(2^k,1^{n-2k}),\lambda} &= \operatorname{Trace} \left(\sum_{w \in \mathfrak{S}_n} \operatorname{noninv}_{(2^k,1^{n-2k})}(w) \cdot \rho_{\lambda}(w) \right) \\ &= \operatorname{Trace} \left(\sum_{w \in \mathfrak{S}_n} \operatorname{noninv}_{(2^k,1^{n-2k})}(w) \cdot \operatorname{Trace} \rho_{\lambda}(w) \right) \\ &= \sum_{w \in \mathfrak{S}_n} \operatorname{noninv}_{(2^k,1^{n-2k})}(w) \cdot \operatorname{Trace} \rho_{\lambda}(w) \\ &= \sum_{w \in \mathfrak{S}_n} \operatorname{noninv}_{(2^k,1^{n-2k})}(w) \cdot \chi^{\lambda}(w). \end{aligned}$$

Lastly, to see how \mathbb{Z}_2 acts on U^{λ} , note that Proposition V.1.1 implies that U^{λ}

$$\operatorname{im}(
u_{(2^{a},1^{n-2a})}) \cap \operatorname{im}(
u_{(2^{a-1},1^{n-2a+2})})^{\perp}$$

where $a:=\frac{n-\operatorname{odd}\operatorname{cols}(\lambda)}{2}$. Since $\nu_{(2^n,1^n-2^n)},\pi_{(2^n,1^n-2^n)}$ share the same kernels, one has an isomorphism of $\mathbb{R}[\mathfrak{S}_n\times\mathbb{Z}_2]$ -modules

$$\operatorname{im}(\nu_{(2^a,1^{n-2a})}) \cong \operatorname{im}(\pi_{(2^a,1^{n-2a})}).$$

Consequently the space (23) carries $\mathbb{R}[G_\pi \times \mathbb{Z}_2]\text{-module}$ structure isomorphic to that of

$$\operatorname{im}(\pi_{(2^a,1^{n-2a})})/\operatorname{im}(\pi_{(2^{a-1},1^{n-2a+2})})$$

which is $\mathrm{WH}_{\mathcal{O}_{(2^a,1^a-2a)}}\otimes (\chi^-)^{\otimes a}$ by Example IV.6.3. Thus, \mathbb{Z}_2 acts by $(\chi^-)^{\otimes a}$ on

commute, in contrast with the situation for the original family $\{\nu_{(k,1^{n-k})}\}_{k=1,2,..,n}$. REMARK 2.2. One does not have that the associated BHR-operators b_J pairwise

¹The first author thanks C.E. Csar for discussions leading to this expression for $\gamma_{(2^k,1^n-2^k),\lambda'}$

なるな R.-Saliola-Welker "Spectra of symmetrized shuffling operators"

Newers of ANS # 1072,

Newers of ANS # 1072,

Remark 2.3. The formula for the eigenvalue $\gamma_{(2^k,1^{n-2k}),\lambda}$ given in (21) is somewhat explicit, but still leaves something to be desired. For example, the character values $\chi^{\lambda}(w)$ for w in \mathbb{G}_n are integers, but they can be negative. Thus (21) does not manifestly show the fact that $\gamma_{(2^k,1^{n-2k}),\lambda}$ is non-negative, nor does it show the fact that $\gamma_{(2^k,1^{n-2k}),\lambda}$ vanishes unless oddcols(λ) $\geq n-2k$. This suggests the following

Problem 2.4. For each partition λ of n, and each k with oddcols(λ) $\geq n-2k$, find a more explicit formula for the non-zero eigenvalue $\gamma_{(2^k,1^{n-2k}),\lambda}$ of $\nu_{(2^k,1^{n-2k})}$ acting on its (non-kernel) eigenspace U^{λ} affording χ^{λ} .

We have computed some of these eigenvalues using Sage [68], and we present this data for $3 \le n \le 6$ in the tables below. The data is presented as follows:

• each row of the table corresponds to the subspace U^{λ} affording χ^{λ} ;

the entry in the column indexed by w<sub>(2^k,1ⁿ-2^k) is the eigenvalue γ<sub>(2^k,1ⁿ-2^k), λ;
 the entry in the column indexed by w₀ is the eigenvalue for the Z₂-action
</sub></sub>

To enhance the presentation of the data, every zero eigenvalue has been replaced

moninv_(a,n-2k)(ω) = #{ tental netchings of $\{i_n,j_n\},\{i_n,j_n\},\dots,\{i_k,j_k\}\}$ Fu=(wn,--,wn) = En, then with 1, < 1, , 12 (12, ..., 1/2)/e Wi- < Wi- , wiz < Wiz , --, Wie < Wie }