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It has recently become clear that a whole range of problems of linear
algebra can be formulated in a uniform way, and in this common formu-
lation there arise general effective methods of investigating such problems.
It is interesting that these methods turn out to be connected with such
ideas as the Coxeter—Weyl group and the Dynkin diagrams.

We explain these connections by means of a very simple problem. We
assume no preliminary knowledge. We do not touch on the connections
between these questions and the theory of group representations or the
theory of infinite—dimensional Lie algebras. For this see [3]—[5].

Let Γ be a finite connected graph; we denote the set of its vertices by
Γο and the set of its edges by ΓΊ (we do not exclude the cases where two
vertices are joined by several edges or there are loops joining a vertex to
itself). We fix a certain orientation Λ of the graph Γ; this means that for
each edge / e Γι we distinguish a starting-point a(/) e Γο and an end-point

With each vertex a G Γο we associate a finite-dimensional linear space
Va over a fixed field K. Furthermore, with each edge / € Γι we associate
a linear mapping / ; : Va(l) -> νβ0) (α(/) and β(1) are the starting-point and
end-point of the edge /). We impose no relations on the linear mappings
/,. We denote the collection of spaces Va and mappings ft by (V, f).

DEFINITION 1. Let (Γ, Λ) be an oriented graph. We define a category
Χ (Γ, Λ) in the following way. An object of ^ ( Γ , Λ) is any collection
{V, f) of spaces Va (a e Γ ο ) and mappings /, (7 e Γ ^ . A morphism φ:
(V, f) -* (W, g) is a collection of linear mappings φα: Va -* Wa (a e Γ ο )
such that for any edge / e Γ] the following diagram

fi
fid)

is commutative, that is, ψβ(ΐ)ίι -
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Many problems of linear algebra can be formulated in these terms. For
example, the question of the canonical form of a linear transformation
/: V -*• V is connected with the diagram

The classification of a pair of linear mappings fx: F, -> F 2 and
f2: Vi -* V2 leads to the graph

«1 «CZ Z>° «9.
h

A very interesting problem is that of the classification of quadruples of
subspaces in a linear space, which corresponds to the graph

This last problem contains several problems of linear algebra.1

Let (Γ, Λ) be an oriented graph. The direct sum of the objects (F, f)
and (U, g) in X{Y, Λ) is the object (W, h), where Wa = Va ® Ua,
ht = /i © f t (a e r 0 , / e Γ,).

We call a non-zero object (F, /) e Χ (Γ, Λ) indecomposable if it cannot
be represented as the direct sum of two non-zero objects. The simplest
indecomposable objects are the irreducible objects La (a e Γ ο ), whose
structure is as follows: (La)y = 0 for γ Φ a, {La)a = K,ft = 0 for all / € Γι.

It is clear that each object (F, f) of Χ (Γ, Λ) isisomorphic to the direct
sum of finitely many indecomposable objects.2

In many cases indecomposable objects can be classified.3

In his article [1] Gabriel raised and solved the following problem: to
find all graphs (Γ, Λ) for which there exist only finitely many non-isomor-
phic indecomposable objects (F, f) e Χ (Γ, Λ). He made the following

Let us explain how the problem of the canonical form of a linear operator f:V-*V reduces to that of
a quadruple of subspaces. Consider the space W= V ®V and in it the graph of/, that is, the subspace
Et of pairs (£,/£), where f e V. The mapping/is described by a quadruple of subspaces in W, namely
£·, = V @ 0, Et = 0 φ V, E3 = {(f, t) | 4 e V}(E3 is the diagonal) and E, = {(£,/?) I £ e V}- the
graph of/. Two mappings/and/' are equivalent if and only if the quadruples corresponding to them
are isomorphic. In fact, E, and E, define "coordinate planes" in W, E, establishes an identification
between them, and then Et gives the mapping.
It can be shown that such a decomposition is unique to within isomorphism (see [6], Chap. II, 14,
the Krull-Schmidt theorem).
We believe that a study of cases in which an explicit classification is impossible is by no means without
interest. However, we should find it difficult to formulate precisely what is meant in this case by a
"study" of objects to within isomorphism. Suggestions that are natural at first sight (to consider the
subdivision of the space of objects into trajectories, to investigate versal families, to distinguish "stable"
objects, and so on) are not, in our view, at all definitive.
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surprising observation. For the existence of finitely many indecomposable
objects in Χ (Γ, Λ) it is necessary and sufficient that Γ should be one of
the following graphs:

fln ο — ο — ο . . . ο—ο—ο (η vertices,
η>\)

(η vertices,
η> 4)

(this fact does not depend on the orientation A).The surprising fact here
is that these graphs coincide exactly with the Dynkin diagrams for the
simple Lie groups.1

However, this is not all. As Gabriel established, the indecomposable
objects of Χ (Γ, Λ) correspond naturally to the positive roots, constructed
according to the Dynkin diagram of Γ.

In this paper we try to remove to some extent the "mystique" of this
correspondence. Whereas in Gabriel's article the connection with the Dynkin
diagrams and the roots is established a posteriori, we give a proof of
Gabriel's theorem based on exploiting the technique of roots and the Weyl
group. We do not assume the reader to be familiar with these ideas, and we
give a complete account of the necessary facts.

An essential role is played in our proof by the functors defined below,
which we call Coxeter functors (the name arises from the connection of
these functors with the Coxeter transformations in the Weyl group). For
the particular case of a quadruple of subspaces these functors were intro-
duced in [2] (where they were denoted by Φ+ and Φ")· Essentially, our
paper is a synthesis of Gabriel's idea on the connection between the cate-
gories of diagrams Χ (Γ, Λ) with the Dynkin diagrams and the ideas of the
first part of [2], where with the help of the functors Φ+ and Φ" the
"simple" indecomposable objects are separated from the more "complicated"
ones.

1 More precisely, Dynkin diagrams with single arrows.
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We hope that this technique is useful not only for the solution of
Gabriel's problem and the classification of quadruples of subspaces, but
also for the solution of many other problems (possibly, not only problems
of linear algebra).

Some arguments on Gabriel's problem, similar to those used in this
article, have recently been expressed by Roiter. We should also like to
draw the reader's attention to the articles of Roiter, Nazarova, Kleiner,
Drozd and others (see [3] and the literature cited there), in which very
effective algorithms are developed for the solution of problems in linear
algebra. In [3], Roiter and Nazarova consider the problem of classifying
representations of ordered sets; their results are similar to those of Gabriel
on the representations of graphs.

§ 1. Image functors and Coxeter functors

To study indecomposable objects in the category Χ (Γ, Λ) we consider
"image functors", which construct for each object V e Χ (Γ, Λ) some
new object (in another category); here an indecomposable object goes
either into an indecomposable object or into the zero object. We construct
such a functor for each vertex a. at which all the edges have the same
direction (that is, they all go in or all go out). Furthermore, we construct
the "Coxeter functors" Φ+ and Φ", which take the category Χ (Γ, Λ)
into itself.

For each vertex a e Γο we denote by Γ"* the set of edges containing a.
If Λ is some orientation of the graph Γ, we denote by σαΛ the orientation
obtained from Λ by changing the directions of all edges / e Γ α .

We say that a vertex a is (—)-accessible (with respect to the orientation
Λ) if β(1) Φ a for all / e Γι (this means that all the edges containing α
start there and that there are no loops in Γ with vertex at a). Similarly we
say that the vertex β is (+)-accessible if α(/) Φ β, for all / e ΓΊ .

DEFINITION 1.1 1 ) Suppose that the vertex β of the graph Γ is
(+)-accessible with respect to the orientation Λ. From an object {V, f) in
Χ(Γ, Λ) we construct a new object (W, g) in Χ (Γ,σβΛ).

Namely, we put Wy = Vy for γ Φ β.
Next we consider all the edges 11, l2, • • •, Ik that end at β (that is, all

k

edges of Γ*3). We denote by We the subspace in the direct sum © VaO.)

consisting of the vectors υ = (vt, . . ., ufe) (here u,· e F a ( ! . ) ) for which

/i.0>i) + · · • + fiu (vk) = 0- I n other words, if we denote by h the
k

mapping h: ® ^Wp -*• ̂ β defined by the formula
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h(vu v2, . . ., vk) = /;, (yt) + . . . + fik(vh), then W& = Ker h.

We now define the mappings gv For ί φ Γβ we put gt = ft. If

/ = lj e Γβ, then g, is defined as the composition of the natural

embedding of We in © ^M;,·) and the projection of this sum onto the

term VaOj) - Wailj). We note that on all edges / e Γβ the orientation has

been changed, that is, the resulting object (W, g) belongs to Χ (Γ, σ^Λ).

We denote the object (W, g) so constructed by Fji(V, f).

2) Suppose that the vertex a G Γο is (—)-accessible with respect to the
orientation Λ. From the object (V, f) e Χ (Γ, Λ) we construct a new
object F-(V, f) = (W, g) e Χ (Γ, σαΛ). Namely, we put

Wy = F 7 for γ =?t α

g l = /, for I $ Γ«

Wa - Θ Vp(l.)/lm h, where {lu . . . , lh) = Γα, and the mapping

~ ^ ^̂
FP(z.) is defined by the formula h (υ) = (/^ (u), • • •, fik {υ)).

If / e Γ α , then the mapping g;: ^ ( I ) ->• ̂ a is defined as the composition
ft

of the natural embedding of Μβυ)= V0O) in φ ^β(ί4) and the projection
i l

of this direct sum onto Wa.

It is easy to verify that F^ (and similarly F~) is a functor from

Χ (Γ, Λ) into Χ(Γ, agA)(or ^ ( Γ , σαΛ), respectively). The following

property of these functors is basic for us.
THEOREM 1.1 1) Let (Γ, Λ) be an oriented graph and let β e Γο be

a vertex that is {+)-accessible with respect ιο Λ. Let V e Χ (Γ, Λ) be an
indecomposable object. Then two cases are possible:

a) V ~ L0 and F^V = 0 (we recall that L$ is an irreducible object,

defined by the condition {Lp)y - 0 for y Φ β, (Le)p - Κ, /, = 0 for all

b) F*(V) is an indecomposable object, F^Ft(V) = V, and the dimensions

of the spaces F*(V)y can be calculated by the formula

(1.1.1) dim F$(V)y = dim Vv for y Φ β,

dim Ft (V)e= - d i m F p + 2 d i m F a ( 0 .

2) // the vertex a is (-)-accessible with respect to A and if
V e Χ (Γ, Λ) is an indecomposable object, then two cases are possible:

a) V * La, F~a{V) = 0.



22 /. Ν. Bernstein, I. M. Gel'fand, and V. A. Ponomarev

b) I\(V) is an indecomposable object, F*aF~^(V) = V,

(1.1.2) dim i"«(F)v = dim F 7 for y φ a,

dimF~(V)a=-dim.Va+ 2

PROOF. If the vertex β is (+)-accessible with respect to Λ, then it is
(-)-accessible with respect to σ^Λ, and so the functor F^F^:
Χ(Γ, Λ ) - > # ( Γ , Λ) is defined. For each object V &%(Y, Λ) we construct
a morphism fty: F^F^(V) -»• V in the following way.

If γ Φ β, then F^F+(V)y = Vy, and we put (fv\ = Id, the identity

mapping.

For the -definition of (ϊβ

ν)β we note that in the sequence of mappings

Ft(V)& —* © va(i)—>Vfi (see definition 1.1) Ker h = Im h ; we take for

(ίβ

ν)β the natural mapping

It is easy to verify that fy is a morphism. Similarly, for each (—)-accessible

vertex α we construct a morphism p°^\ V -*• F^F^(V). Now we state the

basic properties of the functors F~, F^ and the morphisms p°^, fv.

LEMMA 1.1. 1) F i (Fj φ F2) = F * (F^ φ Ft (V2). 2) p% is an epimorphism

and i$ is a monomorphism. 3) // i% is an isomorphism, then the dimensions

of the spaces F£(V)y can be calculated from (1.1.1). If p\ is an isomor-

phism, then the dimensions of the spaces Fa(V)ycan be calculated from

(1.1.2). 4) The object Ker pa

v is concentrated at a (that is, (Ker p% ) y = 0

for y Φ a). The object F/Im fv is concentrated at β. 5) // the object V

has the form F*W (FJW, respectively), then Py {fv) is an isomorphism.

6) The object V is isomorphic to the direct sum of the objects F^~F^(y)

and F/Im i% {similarly, V « F « F ^ ( F ) e k e r p%).

PROOF. 1), 2), 3), 4) and 5) can be verified immediately. Let us prove

6).

We have to show that F » F£F$(V) Θ V, where V = F/Im i%. The

natural projection ψ fa: νβ -»· νβ has a section ψβ: ¥β -+ Υβ (ψβ.φβ = Id).

If we put φΊ = 0 for γ Φ β, we obtain a morphism φ: V -> V. It is clear

that the morphisms φ: V -» V and i%: FJF%(V) -> V give a decomposition

of F into a direct sum. We can prove similarly that V « F%Fa (V) Θ Ker p " .

We now prove Theorem 1.1. Let V be an indecomposable object of the

category.£ (Γ, A),and β a (+)-accessible vertex with respect to Λ. Since
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V» FpFfi (V) φ V/lm ίβ

ν and F is indecomposable, F coincides with one

of the terms.

CASE I). V = V/lm i%. Then Vy = 0 for y Φ β and, because V is

indecomposable, V ^ L&.

CASE II). F = FJFp(V), that is, £ is an isomorphism. Then (1.1.1) is

satisfied by Lemma 1.1. We show that the object W = F^{V) is indecom-

posable. For suppose that W = Wx © FF2.Then V = F$ (Wi) φ F$ (Wz)

and so one of the terms (for example, F^{W2)) is 0. By 5) of Lemma 1.1,

the morphism p^v: W -+ F^F^(W) is an isomorphism, but

Pv{W2) C F;F;(W2) = 0, that is, W2 = 0.

So we have shown that the object F^(F) is indecomposable. We can

similarly prove 2) of Theorem 1.1.

We say that a sequence of vertices at, a2, ..., ak is (+)-accessible with

respect to Λ if c^ is (+)-accessible with respect to Λ, α2 is (+)-accessible

with respect to σα [Λ, α3 is (+)-accessible with respect to σα σαιΛ, and so

on. We define a (—)-accessible sequence similarly.

COROLLARY 1.1. Let (Γ, Λ) be an oriented graph and c^ , a2 , . . ., ak

a {^-accessible sequence.

1) For any i (1 < / < k), F~ · . . . 'FZi_1 (Lai) is either 0 or an

indecomposable object in X(V, A) {here La. e Χ (Γ, σα._ι o a i i . . . σ^

2) Let V ε Χ (Γ, Λ) be an indecomposable object, and

F+ F+ · ' F+ (V) = 0

/or

We illustrate the application of the functors Fp and / ^ by the following
theorem.

THEOREM 1.2. Zei Γ i e a grap/z without cycles {in particular, without
loops), and Λ, Λ' two orientations of it.

1) There exists a sequence of vertices au . . ., ak, {+)-accessible with
respect to A, such that orafta0 · . . . ·σαιΛ = Λ'.

2) Let BM, QM' be the sets of classes {to within isomorphism) of
indecomposable objects in Χ (Γ, Λ) and Χ (Γ, Λ'), cM a <M — the set of
classes of objects ^ a / 5 2 · · · · -F^ t (Lai) ( l < i < i ) , andA' a JC'the set of
classes of objects F+.... -F+. (La.) (1 < i < k). Then the functor

1 + 1 t ^^

F^ · . . . · F* sets up a one-to-one correspondence between e£\aS and

1 Where it cannot lead to misunderstanding, we denote by the same symbol La irreducible objects in
all categories J f(r , Λ), omitting the indication of the orientation Λ.
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This theorem shows that, knowing the classification of indecomposable
objects for Λ, we can easily carry it over to Λ'; in other words, problems
that can be obtained from one another by reversing some of the arrows
are equivalent in a certain sense.

Examples show that the same is true for graphs with cycles, but we are
unable to prove it.

PROOF OF THEOREM 1.2. It is clear that 2) follows at once from 1)
and Corollary 1.1. Let us prove 1).

It is sufficient to consider the case when the orientations Λ and Λ'
differ in only one edge /. The graph Γ \ / splits into two connected
components. Let Γ' be the one that contains the vertex 0(7) (0(7) is taken
with the orientation of Λ). Let ax, . . ., ak be a numbering of the vertices
of Γ' such that for any edge /' e r \ the index of the vertex a(/') is
greater than that of β{Γ). (Such a numbering exists because Γ' is a graph
without cycles.) It is easy to see that the sequence of vertices at, . . ., ak

is the one required (that is, it is (+)-accessible and aak · . . . · σαιΛ = Λ').
This proves Theorem 1.2.

It is often convenient to use a certain combination of functors F* that
takes the category Χ (Γ, Λ) into itself.

DEFINITION 1.2. Let (Γ, Λ) be an oriented graph without oriented
cycles. We choose a numbering ax, . . ., an of the vertices of Γ such that
for any edge / 6 Γι the index of the vertex a(/) is greater than that of
β(1). We put Φ+ = Kn ' • • • · < < , < * > " = F ~ · F~, · . . . · F~n. We call Φ+

and Φ Coxeter functors.
LEMMA 1.2. 1) The sequence a,, . . ., an is (+)-accessible and

a n , . . ., ai is (~)-accessible.2) The functors Φ+ and Φ~ take the category
Χ (Γ, Λ) into itself. 3) Φ+ and Φ~ do not depend on the freedom of
choice in numbering the vertices.

The proof of 1) and 2) is obvious. We prove 3) for Φ+. We note firstly
that if two different vertices γ ι , γ 2

 e Γο are not joined by an edge and
are (H-)-accessible with respect to some orientation, then the functors Fy
and Fy2 commute (that is, F ^ F ^ = F*/^).

Let ax, . . ., an and a'h . . . a'n be two suitable numberings and let
a{ = a'm . Then the vertices <x[, o^, . . ., α'ηΛ are not joined to αλ by an
edge (if c^ and a[ (i < m) are joined by an edge /, then a(/) = a'm = ax

by virtue of the choice of the numbering of αΊ, . . . , a'n, but this contradicts
the choice of the numbering of <*ι, . . . , αη). Therefore
Fam • • • · · F ^ = F* } n _ i · . . . · F^F^ •. Carrying out a similar argu-
ment with a2, then with a3, and so on, we prove that F^ · . . . · F£

r a n · · · I a, l an • • • J a , •

The proof is similar for the functor Φ".
Following [2] we can introduce the following definition.
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DEFINITION 1.3. Let (Γ, Λ) be an oriented graph without oriented
cycles. We say that an object V e Χ (Γ, Λ) is (H-)-(respectively, (-)-)
irregular if {<&)kV = 0 ((Φ'Ϋν = 0) for some k. We say that an object V is
regular if V * (Φ")*(Φ+)*Κ « (Φ*)*(Φ")*Κ for all fr.

NOTE 1. Using the morphisms p\ and / v introduced in the proof of

Theorem 1.1, we can construct a canonical epimorphism pv: V -> (Φ+)*(Φ~)*Κ

and monomorphism iv: (Φ~)*(Φ+)*Κ -+ V. The object V is regular if and

only if for all k these morphisms are isomorphisms.
NOTE 2. If an object V is annihilated by the functor F*s · . . . · F*t

(αϊ, . . ., a s is some (H-)-accessible sequence), then this object is (+)-irregular.
Moreover, the sequence alt . . ., a, can be extended to a,, . . ., as,
as+l, ...,am so that /%, · . . . · F^+i ·/£, · . . . · F*x = (Φ+Υ.

THEOREM 1.3. Let (Γ, Λ) be an oriented graph without oriented cycles.
1) Each indecomposable object V e Χ (Γ, Λ) is either regular or irregular.
2) Let at, . . ., an be a numbering of the vertices of Γ such that for any
I e Tj the index of a(l) is greater than that of β(1). Put

V, = FZ^Z, • · . . 'FZh (Lai)^X (Γ, Λ), h=F*n' . · · 'F+

a.+i(La.)tX(r,\)

(here ] < / < «). Γ/ζ̂ « Φ+(Κ,-) = 0 a/jrf a« j indecomposable object
V e ^ (Γ, Λ) /or which Φ+(Κ) = 0 « isomorphic to one of the objects Vx.
Similarly, Φ~(κ)) = 0, a«c? //" V is indecomposable and Φ~(Κ) = 0, f/ze«
F « vx for some i. 3) Each (^-(respectively•, (-)-) irregular indecomposable
object V has the form (Φ~)Λ^· (respectively, (Φ+ΫΫι) for some i, k.

Theorem 1.3 follows immediately from Corollary 1.1.
With the help of this theorem it is possible, as was done in [2] for the

classification of quadruples of subspaces, to distinguish "simple" (irregular)
objects from more "complicated" (regular) objects; other methods are
necessary for the investigation of regular objects.

§ 2. Graphs, Weyl groups and Coxeter transformations

In this section we define Weyl groups, roots, and Coxeter transformations,
and we prove results that are needed subsequently. We mention two differ-
ences between our account and the conventional one.

a) We have only Dynkin diagrams with single arrows.
b) In the case of graphs with multiple edges we obtain a wider class of

groups than, for example, in [7].
DEFINITION 2.1. Let Γ be a graph without loops.
1) We denote by %v the linear space over Q consisting of sets χ - (xa)

of rational numbers xa (a e Γο).
For each β e Γο we denote by 0 the vector in g r such that (β)α = 0

for α Φ β and (β^ = \.

We call a vector χ = (xa) integral if xa G Ζ for all a G Γο.

We call a vector χ = (xa) positive (written χ > 0) if χ Φ 0 and
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xa > 0 for all a G Γο.
2) We denote by Β the quadratic form on the space %v defined by the

formula Β (χ) = 2 χα— 2 xvAivxv*i)' where χ = (xa), and γι (/) and γ2 (/)

are the ends of the edge /. We denote by (, > the corresponding symmetric
bilinear form.

3) For each β € Γο we denote by σ β the linear transformation in %•?

defined by the formula (οβχ\ = xy for γ Φ β, (σβχ)β = - χβ + JL. *VU»

where y(l) is the end-point of the edge / other than β.
We denote by W the semigroup of transformations of %τ generated by the

ο β (β e Γο).
LEMMA 2.1. 1) If α, β e Γο, α Φ β, then (a a) = I and 2 (α β ) is

the negative of the number of edges joining a and β. 2) Let β e Γο. Then
θβ(χ) = χ - 2 < β, χ>.-β, o\ = \. In particular, W is a group. 3) The group W
preserves the integral lattice in %v and preserves the quadratic form B. 4) //
the form Β is positive definite (that is, B(x) > 0 for χ Φ 0), then the
group W is finite.

PROOF. 1), 2) and 3) are verified immediately; 4) follows from 3).
For the proof of Gabriel's theorem the case where Β is positive definite

is interesting.
PROPOSITION 2.1. The form Β is positive definite for the graphs An,

Dn, E6, En, Es and only for them (see [7], Chap. VI).
We give an outline of the proof of this proposition.
1. If Γ contains a subgraph of the form

*) / <^T5

2 2 2 2 Ζ /
then the form Β is not positive definite, because when we complete the
numbers at the vertices in Fig. (*) by zeros, we obtain a vector χ e Sr
for which B(x) < 0. Hence, if Β is positive definite, then Γ has the form

(**)

y 3 & </,

where p, q, r are non-negative integers.
2 For each non-negative integer ρ we consider the quadratic form in

(p + 1) variables Χι, . . ., χρ+ϊ

r /„ _ \
'-'P V·4!' · · · ι •''P+l/ — "
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This form is non-negative definite, and the dimension of its null space is 1.
Moreover, any vector χ Φ 0 for which Cp(x) = 0 has all its coordinates
non-zero.

To prove these facts it is sufficient to rewrite Cp(x) in the form

3. We place the numbers xl} . . ., xp, yu . . ., yq, z,, . . ., zr a at the
vertices of Γ in accordance with Fig. (**). Then

Β (χι, y u zt, a) = Cp ( x u . . . , x p , a) + Cq ( y u . . . , y q , a)

+ CT(Zi, ...,ZT,
 a )

Hence it is clear that Β is positive definite if and only if

+ + < i ^ ^ + +
4. We may suppose that ρ < q < r. We examine possible cases.

a) ρ = 0, q and r arbitrary. A= * - ) — τ ^ - + T\x >1» t n a t i s ' 5 i s

positive definite (series An).
b) ρ = \, q = \, r arbitrary. A > 1 (series Dn),
c)p=l,q = 2,r = 2,3,4. A > 1 (Et, En, Et),
d) ρ = \, q = 2, r > 5. A < 1,

ρ = 1, q = 3, r > 3. A < Γ,
ρ > 2,<? > 2 , r > 2. ^ < 1.

Thus 5 is positive definite for the graphs An, Dn, E6, Εη, Es and only
for them.

DEFINITION 2.2 A vector χ G I r is called a ZOO? if for some β € Γο,
w e W we have χ = ννβ. The vectors β 03 e Γ ο ) are called simple roots. A
root χ is called positive if χ > 0 ( see Definition 2.1).

LEMMA 2.2 1) If χ is a root, then χ is an integral vector and B(x) = 1.
2) If χ is a root, then (-x) is a root. 3) If χ is a root, then either χ > 0 or

(-x) > 0.
PROOF. 1) follows from Lemma 2.1; 2) follows from the fact that

σα(α) = -a for all a e Γο.
3) is needed only when Β is positive definite and we prove it only in

this case.
We can write the root χ in the form σαι a a j · . . . · attfej3, where

αϊ, . . ., <xk, β € Γο. It is therefore sufficient to show that if y > 0 and
a G Γο, then either a^ > 0 or y -_ a (and -oay = + a > 0).

Since \\_y\\ = \\a\\ = 1, we have |<a, y)\ < 1. Moreover, 2<a, y) e Z.
Hence 2_<a, y) takes one of the five values 2, l,_0, - 1 , -2.

a) 2<a, y> = 2. Then <a, y> = 1, that is, y = a.
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b) 2<a, y) < 0. Then aa(y) = y - 2<a, y) a > 0.
c) 2<a, y> = 1. Since 2<a, >>> = 2ya - 2 J/v<i> (?(0 i s t n e other end-point

, e r a

of the edge /), we have ya > 0, that is, ya > 1. Hence aay = y - a > 0.
This proves Lemma 2.2.
DEFINITION 2.3. Let Γ be a graph without loops, and let a 1 ; . . ., an

be a numbering of its vertices. An element c = aan · . . . · σαι (c depends on
the choice of numbering) of the group W is called a Coxeter transformation.

LEMMA 2.3. Suppose that the form Β for the graph Γ is positive definite:
1) the transformation c in %τ has non non-zero invariant vectors;
2) if χ ζ %τ, x Φ 0, then for some i the vector c'x is not positive.
PROOF. 1) Suppose that i/6ir, y¥=0 and cy = y. Since the trans-

formations aan, ooin_i, . . ., aat do not change the coordinate corresponding
to a! (that is, for any z £ l r (σα;ζ)αι = ζαι for ίφΐ), we have

(o0liy)ai = (cy)ai = yai. Hence aaiy = y Similarly we can prove that

oUiy = y, then aa3y = y, and so on.

For all a e Γο, a^y = y - 2<a, y)a - y, that is <a, y) = 0. Since the vectors
a(a e Γο) form a basis of Sr and Β is non-degenerate, >> = 0.

2) Since W is a finite group, for some h we have ch = 1. If all the
vectors x, ex, . . ., c^ 'x are positive, then y = χ + ex + . . . + ch~lx is
non-zero. Hence cy = y, which contradicts 1).

§3. Gabriel's theorem

Let (Γ, Λ) be an oriented graph. For each object F e ί ( Γ , Λ) we
regard the set of dimensions dim Va as a vector in %τ and denote it by
dim V.

THEOREM 3.1 (Gabriel [1]). I) If in £(Γ, Λ) there are only finitely
many non-isomorphic indecomposable objects, then Γ coincides with one
of the graphs An, Dn, E6, E7, E8.

2) Let Γ be a graph of one of the types An, Dn, E6, E7, Es, and Λ
some orientation of it. Then in X(T, Λ) there are only finitely many non-
isomprphic indecomposable objects. In addition, the mapping V h- dim V
sets up a one-to-one correspondence between classes of isomorphic inde-
composable objects and positive roots in %τ·

We start with a proof due to Tits of the first part of the theorem.
TITS'S PROOF. Consider the objects (V, f) e X(T, A) with a fixed

dimension dim V = m = (ma).
If we fix a basis in each of the spaces Va, then the object (V, f) is

completely defined by the set of matrices At (/ e Γ,), where At is the
matrix of the mapping ft: Va(l) -> νβ<ι). In each space Va we change the
basis by means of a non-singular (ma X ma) matrix ga. Then the matrices
Α ι are replaced by the matrices
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Let A be the manifold of all sets of matrices Ax (/ e r t ) and G the
group of all sets of non-singular matrices ga (a e Γο). Then G acts on A
according to (*); clearly, two objects of X{T, Λ) with given dimension m
are isomorphic if and only if the sets of matrices {^} corresponding to
them lie in one orbit of G.

If in X(Y, A) there are only finitely many indecomposable objects, then
there are only finitely many non-isomorphic objects of dimension m.
Therefore the manifold A splits into a finite number of orbits of G. It
follows1 that dim A < dim G - 1 (the -1 is explained by the fact that G
has a 1-dimensional subgroup Go = {#(λ)|λ £K*}, #(λ)α = X-lyaTwhich

acts on A identically). Clearly, dim G = 2 mL· dim 4 = 2
ξΓ 1£Τ

Therefore the condition dim A < dim G - 1 can be rewritten in the
form2 B(jn) > 0 (if m Φ 0). In addition, it is easy to verify that
B«xa)) > B(([xa\)) for all χ = (xa) e %v

So we have shown that if in X(T, Λ) there are finitely many indecomposable
objects, then the form Β in %τ is positive definite.

As we have shown in Proposition 2.1, this holds only for the graphs An,
Α ι , E6, Εη, Eg.

We now prove the second part of Gabriel's theorem.
LEMMA 3.1. Suppose that (Γ, Λ) is an oriented graph, β e Γο a (+)-

accessible vertex with respect to Λ, and V e <5?(Γ, Λ) an indecomposable
object. Then either FQ(V) is an indecomposable object and dim
F;(V) = ^(dim V), or V = L0, F # K ) = 0, dim FP

+(K) Φ σ,(dim V) < 0.
A similar statement holds for a (-)-accessible vertex a and the functor Fa-

This lemma is a reformulation of Theorem 1.1.
COROLLARY 3.1. Suppose that the sequence of vertices a1} . . ., ak is

(+)-accessible with respect to Λ and that V € Χ (Γ, Λ) is an indecomposable
object. Put Vj = FajK^' • • · -ny, mj = σα.αα.^ ... -a^dim V)
(0 < / < k). Let i be the last index such that nij > 0 for j < /. Then the
Vj are indecomposable objects for j < i, and V = F^i · . . . · F^.Vj. If i < k,
then Vi+1 - Vi+2 = . . . = Vk = 0,V» = Axi+1. V = Fa1- ·'· · -F^ (La.J. Similar
statements are true when (+) is replaced by (-).

We now show that in the case of a graph Γ of type An, £)Π ; β6, E7 or
E8 (that is, Β is positive definite), indecomposable objects correspond to
positive roots.

a) Let V e X(T, A) .be an indecomposable object.

This argument is suitable only for an infinite field K. If Κ = F g is a finite field, we must use the fact that
the number of non-isomorphic objects of dimension m increases no faster than a polynomial in m, and
the number of orbits of G on the manifold A is not less than C-q&m A~<dim G~1 >.
We can clearly restrict ourselves to graphs without loops.
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We choose a numbering c^, a2, . . . , an of the vertices of Γ such that
for any edge ! e Γι the vertex <*(/) has an index greater than that of 0(7).
Let c = aa · . . . ' oa be the corresponding Coxeter transformation.

By Lemma 2.3, for some k the vector cfc(dim V) e $r is not positive.
If we consider the (+)-accessible sequence ft, 0 2 , . . . , j3nfe = (a l s . . ., an,

a i , . . . , an, . . ., an, . . ., an)(k times),then we have σβη1ί' . . . · σβι (dim V)
= (^(dim V) > 0. From Corollary 3.1 it follows that there is an
index i < kn (depending only on dim V) such that

V = FJi-F;i- . . . · FftLp^), d i m V = σβ>> . . . · σββί+ι). I t fo l lows t h a t

dim V is a positive root and V is determined by the vector dim V.
b) Let x be a positive root.
By Lemma 2.3, ckx > 0 for some k. Consider the (+)-accessible sequence

0i, &, · · •, 0n* = ("i, · . · , «„, . . . , « ! , . . . , an) (/: times). Then
αβηΗ' . . . · σβι(χ) = ck(x) > 0. Let i be the last index for which

opfVi-i' · · · ' σβΜ) > 0· ^ ^s obvious from the proof of 3) in Lemma 2.2

that σβ.· . . . · σβι(χ) = βι+ϊ.

It follows that Corollary 3.1 that V = F^F^· ...-F^ (L3j+1) 6 Χ (Γ, Λ) is an

an indecomposable object and dim V - αβι · . . . · σβ.(βί+1) = χ.

This concludes the proof of Gabriel's theorem.
NOTE 1. When Β is positive definite, the set of roots coincides with the

set of integral vectors χ e I r for which B(x) = 1 (this is easy to see from
Lemma 2.3 and the proof of Lemma 2.2).

NOTE 2. It is interesting to consider categories X(T, Λ), for which the
canonical form of an object of dimension m depends on fewer than C'\m\2

parameters (here \m\ = Σ \ma\, a 6 Γο). From the proof it is obvious that
for this it is necessary that Β should be non-negative definite.

As in Proposition 2.1 we can show that Β is non-negative definite for the
graphs An, Dn, E6, En, Es and Ao, An, Dn, E6, ΕΊ, Es, where

Λ

(η + 1 vertices, η > 1)

-4 <r^°—°—°' ' ' °—°—°<^~° ( n + ! vertices, η > 4)

-A

£. ο o-
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Α Α Λ Λ Λ

(the graphs ^4n, /?„, E6, E7, E8 are extensions of the Dynkin diagrams
(see [7])).

In a recent article Nazarova has given a classification of indecomposable
objects for these graphs. In addition, she has shown there that such a
classification for the remaining graphs would contain a classification of pairs
of non-commuting operators (that is, in a certain sense it is impossible to
give such a classification).

§ 4. Some open questions

Let Γ be a finite connected graph without loops and Λ an orientation of it.
CONJECTURES. 1) Suppose that χ Ε %r is an integral vector, χ > 0,

B(x) > 0 and χ is not a root. Then any object V ε X{Y, Λ) for which
dim V = χ is decomposable.

2) If * is a positive root, then there is exactly one (to within isomorphism)
indecomposable object V e X(T, A), for which dim V = x.

3) If V is an indecomposable object in X{Y, Λ) and 5(dim V) < 0, then
there are infinitely many non-isomorphic indecomposable objects
V € X(Y, Λ) with dim V = dim V (we suppose that Κ is an infinite field).

4) If Λ and Λ' are two orientations of Γ and V e #(Γ, A ' ) j s a n
indecomposable object, then there is an indecomposable object
V e Χ(Υ, Λ') such that dim V = dim V.

We illustrate this conjecture by the example of the graph (Γ, Λ)

(quadruple of subspaces).

For each χ e %r we put p(x) = -2<a0, x) (if x = (x0, * ι , χι, Χι, ^4),
then p(x) - xt + x2 + X3 + x$ - 2x0).

In [2] all the indecomposable objects in the category X{Y, Λ) are
described. They are of the following types.

1. Irregular indecomposable objects (see the end of § 1). Such objects
are in one-to-one correspondence with positive roots χ for which p(x) Φ 0.

2. Regular indecomposable objects V for which 5(dim V) Φ 0. These
objects are in one-to-one correspondence with positive roots χ for which
p(x) = 0.

3) Regular objects V for which B(dim V) = 0. In this case dim V has
the form dim V - (2n, η, η, η, η), ρ (dim V) - 0. Indecomposable objects
with fixed dimension m = (2n, n, n, n, n) depend on one parameter. If
m e % ρ is an integral vector such that m > 0 and B(m) = 0, then it has
the form m = (2«, n, n, n, n) (n > 0) and there are indecomposable
objects V for which dim V = m.

If / is a linear transformation in η-dimensional space consisting ο f one
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Jordan block then the quadruple of subspaces corresponding to it (see the
Introduction) is a quadruple of the third type.
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