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Lecture 1

Kleinian surface
singularities

1.1 Finite subgroups of SL(2, C)

Let G be a finite subgroup of the group GL(2,C) of invertible 2×2-matrices. It
acts naturally on the projective one-dimensional space P1(C) of lines in C2. We
use the projective coordinates (t0 : t1) dual to the standard basis (e1, e2) of C2.
The point (0 : 1) is denoted by ∞ so we can identify P1(C) with C∪{∞}, where
the affine coordinate on C is z = t1/t0. A matrix g =

(
a b
c d

)
acts on P1(C) by

sending a point x = (α : β) to g · x = (aα+ bβ : cα+ dβ). In affine coordinates
this action is the Möbius (or fractional-linear) transformation z 7→ dz+c

bz+a . Note
that the matrices

(
a b
c d

)
and

(
d c
b a

)
are conjugate by the matrix ( 0 1

1 0 ). It is clear
that under this action ∞ is mapped to d/b (= ∞ if b = 0) and the point −a/b
is mapped to ∞.

Let Z(G) be the center of G consisting of scalar matrices, Ḡ = G/Z(G). The
subgroup Z(G) is the kernel of the action of G on P1(C), so Ḡ acts naturally
and faithfully on P1(C).

Although it is not hard to classify all finite subgroups of GL(2,C) we will
restrict ourselves to finite subgroups G of the group SL(2,C) which consists of
invertible matrices with determinant 1. By taking the standard hermitian inner
product on C2 defined by 〈z,w〉 = z · w̄ and averaging it by the group G, we
arrive at a hermitian inner product on C2 which is invariant with respect to G.
This shows that G is conjugate to a finite subgroup of the special unitary group
SU(2). Recall that SU(N) denotes the subgroup of SL(N,C) that consists of
matrices A satisfying tĀ = A−1. The averaging argument shows the classifi-
cation of finite subgroups of SL(2,N) is equivalent to the classification of finite
subgroups of SU(N).

There is a natural surjective homomorphism from SU(2) to the group SO(3)
of orthogonal 3×3-matrices with determinant 1. This group is isomorphic to the
group of rotations of the three-dimensional euclidean space R3. The simplest
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2 LECTURE 1. KLEINIAN SURFACE SINGULARITIES

(and the most beautiful) way to define the homomorphism SU(2) → SO(3) is
by using the algebra of quaternions H.

We will write a quaternion q = a+ bi+ cj+dk ∈ H in the form q = z1 + z2j,
where z1 = a+ bi, z2 = c+ di are complex numbers. We have

|q|2 : = a2 + b2 + c2 + d2 = |z1|2 + |z2|2, (1.1)
q̄ : = a− bi− cj − dk = z̄1 − z2j.

A quaternion q is invertible if and only if |q| 6= 0. In this case q−1 = 1
|q| q̄.

Let H1 be the group of quaternions of norm 1. There is a natural isomor-
phism of groups

H1 → SU(2), z1 + z2j 7→
(
z1 z2
−z̄2 z̄1

)
.

Let us identify R3 with the space of “pure quaternions”, i.e. quaternions of the
form q = bi+cj+dk. The euclidean inner product coincides with the quaternion
norm. Define the action of H1

∼= SU(2) on R3 by

q · q0 = q · q0 · q−1, q ∈ H1, q0 ∈ R3.

It is immediate that this defines a homomorphism p : H1 → O(3).
Write q ∈ H1 in the form q = cosφ+sinφq1, where q1 is a pure quaternion of

norm 1, considered as a vector in R3 of norm 1. Then one directly checks that
the action of q in R3 is a rotation about the angle φ with axis defined by q1.
Since the group SO(3) consists of such rotations, we see that the homomorphism
p defines a surjective homomorphism H1 → SO(3). Its kernel consists of unit
quaternions contained in the center of H∗. There are only two of them: ±1.
This defines a short sequence of groups

1 → {±1} → SU(2) → SO(3) → 1 (1.2)

Thus any finite subgroup G of SU(2) defines a finite subgroup Ḡ of rotations of
R3. Conversely, every Ḡ ⊂ SO(3) can be lifted to a finite subgroup G of SU(2)
such that the kernel of G → Ḡ is of order ≤ 2. We will see that it is always of
order 2 except the case when Ḡ is a cyclic group of odd order.

The classification of finite subgroups of SO(3) goes back to the ancient time.
As is well-known each such group can be realized as the group of rotation sym-
metries of one of a regular polyhedron, or of a dihedral (a prism based on a
regular polygon), or as a cyclic group of rotations around the same axis.

We will classify finite subgroups of SL(2,C) by first classifying finite sub-
groups of Aut(P1(C)) ∼= PGL(2,C) by using the exact sequence analogous to
(1.2)

1 → {±1} → SL(2,C) → Aut(P1(C)) → 1 (1.3)

Its advantage is that we can do it purely algebraically. In fact, the same argu-
ment gives the classification of finite subgroups G of SL(2, F ), where F is an
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algebraically closed field of arbitrary characteristic p provided that the order of
G is coprime to p.

Let us first classify all possible finite subgroups Ḡ of Aut(P1(C)).
An eigensubspace of any matrix g from GL(2,C) of finite order is either 2-

dimensional, in which case g is a scalar diagonal matrix, or one-dimensional. In
the first case g acts identically on P1(C), in the second case g has 2 fixed points
in P1(C) corresponding to two distinct eigensubspaces of g. Set

Z = {(x, g) ∈ P1(C)× Ḡ \ {1} : g(x) = x}.

Let P be the projection of this set to the first factor. Its elements are fixed
points of some non-trivial element of g. Let P = O1 ∪ . . . ∪ Ok be the orbit
decomposition of P. For each x ∈ Oi let ei be the order of the stabilizer subgroup
Ḡx. Since all stabilizer subgroups of points in the same orbit are conjugate, this
number is independent of a choice of x in Oi. We have |Oi| = N/ei, where
N = |Ḡ|. Let us count the cardinality |Z| in two ways by considering the two
projections. We have

|Z| = 2(N − 1) =
∑
x∈P

(|Ḡx| − 1) =
k∑

i=1

∑
x∈Oi

(|Ḡx| − 1)

=
k∑

i=1

N

ei
(ei − 1) = N

k∑
i=1

(1− 1
ei

).

This gives
k∑

i=0

1
ei

= k − 2 +
2
N
.

Since ei ≥ 2, the left-hand size is less or equal than k/2. This immediately gives
k = 2 or 3.

Assume k = 2. We get e1 = e2 = N . Thus Ḡ fixes 2 points z1, z2 in P1(C).
Let g ∈ Aut(P1(C)) be a transformation which sends z1 to 0 and z2 to ∞. Then
the conjugate group gḠg−1 fixes 0 and ∞. It is generated by the transformation

g1 : z 7→ εnz,

where εn is a primitive nth root of unity.
Assume k = 3. The equation

1
e1

+
1
e2

+
1
e3

= 1 +
2
N

has the following solutions (e1, e2, e3;N)

• (2, 2, n; 2n),

• (2, 3, 3; 12),
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• (2, 3, 4; 24),

• (2, 3, 5; 60).

Case (2, 2, n; 2n).
Replacing G by a conjugate group we may assume that the orbit O3 with

stabilizer subgroup H of order n consists of points 0 and ∞. It is easy to see
that the stabilizer subgroup of any point in P1(C) is a cyclic group. Since the
index of H in Ḡ is equal to 2, it is a normal subgroup. Thus H fixes both 0 and
∞. A fractional-linear transformation of order n which fixes these points is of
the form z 7→ az, where an = 1. Thus we may assume that H is generated by
a transformation

g1 : z 7→ εnz.

Choose g2 ∈ Ḡ which transforms 0 to ∞. Since {0,∞} is an orbit, g(∞) = 0.
It is easy to see that this implies that

g2 : z 7→ a

z
, a 6= 0.

After conjugation of Ḡ by a transformation z 7→
√
az, we may assume that

a = 1. Obvioulsy, g2 is of order 2. Since g2 6∈ H, the group Ḡ is generated by
g1, g2. It is immediately checked that

g2g1g
−1
2 = g−1

1 .

So, Ḡ is isomorphic to the dihedral group D2n of order 2n.

Case (2, 3, 3; 12).
Let g1 generate a stabilizer subgroup of order 2 of the orbit O1 of cardinality

6. As above, replacing G by a conjugate subgroup, we may assume that g1 fixes
0 and ∞ and hence is represented by the transformation

g1 : z 7→ −z.

Since there is only one orbit with stabilizers of order 2, the points 0,∞ belong
to O1. Let g2 be an element from Ḡ such that g2(0) = ∞. Then g2g1g

−1
2 fixes

∞ and hence coincides with g1. This implies that g2(∞) = 0 and hence, as in
the previous case, we may assume that

g2 : z 7→ 1
z
. (1.4)

The elements g1, g2 generate a subgroup 〈g1, g2〉 of Ḡ isomorphic to the direct
sum of two cyclic groups of order 2. The fixed points of g2 are {1,−1} and
the fixed points of g1g2 are i,−i. Thus O1 = {0,∞, 1,−1, i,−i}. Let g3 be
an element of order 3 from Ḡ stabilizing a point from the orbit O2. It cannot
commute with any element from 〈g1, g2〉 since otherwise we obtain an element
of order 6 in Ḡ which fixes 2 points with stabilizer of order 6. Without loss of
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generality we may assume that g3g1g−1
3 = g2. Thus g3(0) = 1, g3(∞) = −1.

This implies that

g3 : z 7→ λz + 1
−λz + 1

, λ 6= 0.

Since g3 is of order 3, this gives λ = ±i. Again, conjugating by the transforma-
tion z 7→ −z, we may assume that

g3 : z 7→ iz + 1
−iz + 1

. (1.5)

Now it is easy to check that Ḡ is isomorphic to the tetrahedral group T ∼= A4

of rotation symmetries of a regular tetrahedron.

Case (2, 3, 4; 24).
Let g1 be an element of order 4 which we may assume fixes the points 0,∞.

Then
g1 : z 7→ iz.

Arguing as in the previous case, we see that an element from Ḡ which sends
0 to ∞ must be of the form (1.4). The subgroup 〈g1, g2〉 is isomorphic to
the dihedral group D8 of order 8. Also, as in the previous case, we find that
Ḡ contains an element of order 3 of the form (1.5). It is easy to check that
Ḡ = 〈g1, g2, g3〉 is isomorphic to the octahedral group of rotation symmetries of
a regular octahedron (or a cube). It is also isomorphic to the symmetric group
S4.

Case (2, 3, 5; 60).
As above, we find that Ḡ contains an element g1 of order 5 represented by

g1 : z 7→ ε5z,

and element of order 2 represented by (1.4). To agree with classical books, we
change it to

g2 : z 7→ −1/z.

By Sylow’s Theorem, a group of order 60 contains a subgroup of order 4. In our
case, it cannot be cyclic since no stabilizer subgroup is of order 4. So, it is the
direct sum of cyclic groups of order 2. Let

g3 : z 7→ az + b

cz + d
(1.6)

be an element of order 2 which commutes with g2. Direct computation shows
that a = −d, b = c. Note that the icosahedron group is isomorphic to the
alternating group A5. It contains a subgroup of order 10 generated by a cyclic
permutation of order 5 and a permutation of order 2 equal to the product of
two transpositions. This is our subgroup 〈g1, g2〉. Also it is easy to see that the
product g1g3g1 must be of order 3. This gives the additional condition on (a, b).
Direct computation shows that

b/a = ε+ ε4 =
ε2 − ε3

ε− ε4
.
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Thus we may take

g3 : z 7→ (ε− ε4)z + (ε2 − ε3)
(ε2 − ε3)z − (ε− ε4)

.

Let O3 be the orbit of cardinality 12. It contains 0,∞. Let f(z) = z10 + . . . = 0
be the equation with roots equal to the remaining points in the orbit. Since g1
acts on this set, the equation can be written in the form φ(z5), where φ(t) =
t2 +mt+ n. Since g2 acts on the roots too, we see that n = −1. Since g3 leaves
invariant the set of zeroes of f(z), the direct computations give m = 11.

One finds the 10 roots of f(z) which together with 0,∞ are the vertices of
a regular icosahedron inscribed in the sphere identified with P1(C) by using the
stereographic projection. The group Ḡ is the icosahedron group isomorphic to
A5.

Now, after we have found the structure of Ḡ, it is easy to determine the
structure of any G ⊂ SL(2,C). We know that Ker(G → Ḡ) is trivial or equal
to {±I2}. If Ḡ contains a non-central element of order 2 (this occurs always
if Ḡ is not a cyclic group of odd order), then the kernel is not trivial because
the only element of order 2 in SL(2,C) is the matrix −I2 which belongs to the
center of the group. The group G is called a binary polyhedral group. If Ḡ is
not a cyclic group of odd order, then |G| = 2|Ḡ|, so G is either cyclic group, or
binary dihedral group of order 4n, binary tetrahedral group of order 24, binary
octahedron group of order 48, or binary icosahedron group of order 120.

If G is a cyclic group Cn of odd order n , then it can be lifted to an isomorphic
group in SL(2,C) or to the direct product C2 × Cn.

1.2 Grundformen

Let F (t0, t1) be a homogeneous polynomial of degree d. Its set of zeroes in C2

is the union of lines taken with multiplicities. Its set of zeros in P1(C) can be
identified with an effective divisor of degree d. We denote it by V (F ). In a more
sophisticated way, we identify F with a section of the invertible sheaf OP1(d) and
its set of zeroes with a closed subscheme V (F ) of P1 such that h0(OV (F )) = d.

Let
Vd = C[t0, t1]d ∼= H0(P1,OP1(d))

be the space of homogeneous polynomials of degree d in variables t0, t1. We iden-
tify V1 with the dual space of C2. Thus Vd is isomorphic to the dth symmetric
power Sd(V1). The group SL(2,C) acts on Vd by g : F 7→ g∗(F ) := f ◦ g−1, or
more explicitly, (

a b
c d

)
: F (t0, t1) 7→ F (dt0 − bt1,−ct0 + at1).

Here we switched to g−1 to define the linear action of the group G on the vector
space Vd.

Since

g∗(F )(x) = 0 ⇔ F (g−1(x)) = 0 ⇔ g−1(x) ∈ V (F ) ⇔ x ∈ g(V (F )),
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we have
V (g∗(F )) = g(V (F )). (1.7)

It is immediately checked that it also takes into account the multiplicities.

Definition 1.2.1. A homogeneous polynomial F is a relative invariant of G if

g(V (F )) = V (F ).

It follows from (1.7) that F is a relative invariant if and only if for any g ∈ G,

g∗(F ) = agF

for some nonzero ag ∈ C. It is immediately checked that g 7→ ag defines a
homomorphism of groups χ : G→ C∗. We call it the character of F .

Let O be an orbit of G in P1(C) considered as a divisor
∑

x∈O x. For any
relative invariant F of G its divisor of zeroes V (F ) is the sum of orbits. Thus F
is the product of relative invariants with sets of zeroes equal to an orbit of G.

Definition 1.2.2. A Grundform is a relative invariant F with divisor of zeroes
equal to an exceptional orbit (i.e. an orbit with a non-trivial stabilizer).

Let F be a relative invariant with set of zeroes V (F ) equal to a non-
exceptional orbit O. Suppose F1 and F2 are Grundformen (we use the German
plural) corresponding to exceptional orbits with cardinalities |Ḡ|/e1 and |Ḡ|/e2
and the characters χ1, χ2 satisfying

χe2
1 = χe1

2 . (1.8)

Choose a, b such that Φ = aF e1
1 + bF e2

2 has a zero in O. Then the whole O will
be the set of zeroes of Φ. Thus F is equal to Φ up to a multiplicative factor.
We will use this argument to show that any relative invariant is a polynomial
in Grundformen. We consider the case when G is a binary polyhedral group.

We choose a representative of a generator of Ḡ as a matrix with determinant
1. This give us generators of G.

From now on
εn = e2πi/n.

Case 1: G is a cyclic group of order n.
A generator is given by the matrix

g =
(
εn 0
0 ε−1

n

)
.

The corresponding Moebius transformation is ḡ : z 7→ ε−2
n z. So, if n is odd,

then ḡ is of order n. If n is even, then ḡ is of order n/2.
The exceptional orbits are {0} and {∞}. The Grundformen are

Φ1 = t0, Φ2 = t1
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with characters determined by

χ1(g) = εn, χ2(g) = ε−1
n .

Thus χn
1 = χn

2 if n is odd, and χ
n/2
1 = χ

n/2
2 if n is even. This shows that any

relative invariant F with |V (F )| = n if n is odd (resp. |V (F )| = n/2 if n is
even) is equal to λtn0 +µtn1 (resp. λtn/2

0 +µt
n/2
1 ) for some λ, µ. This shows that

any relative invariant is a polynomial in t0, t1.

Case 2: G is a binary dihedral group of order 4n.
Its generators are given by the matrices

g1 =
(
ε2n 0
0 ε−1

2n

)
, g2 =

(
0 i
i 0

)
.

Any exceptional orbit is the orbit of a fixed point of some element g ∈ G different
from ±I2. The fixed points of g1 are 0,∞. Applying g2, we see that they form
one orbit of cardinality 2. The fixed points of g2 are ±1. Applying powers of g1
we get two exceptional orbits. One is formed by nth roots of 1, the other one is
formed by nth roots of −1. The Grundformen are

Φ1 = tn0 + tn1 , Φ2 = tn0 − tn1 , Φ3 = t0t1. (1.9)

The generators g1 and g2 act on the Grunforms with characters

χ1(g1) = −1, χ1(g2) = in, χ2(g1) = −1, χ2(g2) = −in,

χ3(g1) = 1, χ3(g2) = −1.

Since Φ1,Φ2 correspond to exceptional orbits with e1 = e2 = 2 and χ2
1 = χ2,

the condition (3.12) is satisfied. Thus any relative invariant is a polynomial in
the Grundformen.

Case 2: G is a binary tetrahedral group of order 24.
Its generators are given by the matrices

g1 =
(
ε4 0
0 ε−1

4

)
, g2 =

(
0 i
i 0

)
, g3 =

1
1− i

(
1 i
1 −i

)
The fixed points of g1 are 0,∞ permuted under g2. Their stabilizer is of order
2. Thus orbit O1 with e1 = 2 consists of 6 points. Applying powers of g3 to 0
and 1 we see that O1 consists of the points 0,∞, 1,−1, i,−i. The fixed points
of g3 are 1−i

2 (1±
√

3). Applying g1 and g2 to these points, we obtain two orbits
of cardinality 4

O2 = {±1− i

2
(1+

√
3),±1 + i

2
(1−

√
3)}, O3 = {±1− i

2
(1−

√
3),±1 + i

2
(1+

√
3)}.

The Grundformen are

Φ1 = t0t1(t40 − t41),Φ2,Φ3 = t40 ± 2
√
−3t20t

2
1 + t41.
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Their characters are

χ1(g1) = χ1(g2) = χ1(g3) = 1,

χ2(g1) = χ2(g2) = χ2(g3) = ε3,

χ3(g1) = χ3(g2) = 1, χ3(g3) = ε23.

We see that χ3
2 = χ3

3 so (3.12) is satisfied.

Case 3: G is a binary octahedral group of order 48.
Its generators are

g1 =
(
ε8 0
0 ε−1

8

)
, g2 =

(
0 i
i 0

)
, g3 =

1
1− i

(
1 i
1 −i

)
.

The fixed points with stabilizers of order 4 are 0,∞, 1,−1, i,−i. They form the
first orbit O1. The fixed points with stabilizers of order 3 form the second orbit
of order 8. It consists of the union of the orbits O2 and O3 from the previous
case.

The group Ḡ isomorphic to the permutation group S4. It has 2 conjugacy
classes of elements of order 2. One of them belongs to the conjugacy class of an
element of order 4, say of g1. Another one is a stabilizer of an exceptional orbit
O3 of cardinality 12. It corresponds to a transposition in S4. It can be realized
by the product g1g2 : z 7→ i/z. Its fixed points are ±ε8. The corresponding
orbit O3 consists of

εk8 ,
iεk8 + i

εk8 − 1
,
iεk8 − 1
iεk8 + 1

, k = 1, 3, 5, 7.

Now it is easy to list the Grundformen. They are

Φ1 = t0t1(t40−t41), Φ2 = t80+14t40t
4
1+t

8
1 = (t40+2

√
−3t20t

2
1+t

4
1)(t

4
0−2

√
−3t20t

2
1+t

4
1),

Φ3 = (t40 + t41)((t
4
0 + t41)

2 − 36t40t
4
1).

The characters are

χ1(g1) = −1, χ1(g2) = χ1(g3) = 1,

χ2(g1) = χ2(g2) = χ2(g3) = 1,

χ3(g1) = −1, χ3(g2) = χ(g3) = 1.

We have χ4
1 = χ2

3, so (3.12) is again satisfied.

Case 4: G is a binary icosahedra group of order 120.
Its generators are

g1 =
(
ε10 0
0 ε−1

10

)
, g2 =

(
0 i
i 0

)
, g3 =

1√
5

(
ε5 − ε45 ε25 − ε35
ε25 − ε35 −ε5 + ε45

)
.
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Note that we can replace g3 with a generator of order 3 equal to g1g3g1. We
already used that the orbit O3 with stabilizer subgroups of Ḡ of order 5 are
roots of the Grundform

Φ3 = t0t1(t100 + 11t50t
5
1 − t101 ).

Other Grundformen must be of degree 30 and 20. Recall that the hessian
of a function in two variables is the determinant of the matrix of its partial
derivatives of second order. The hessian of Φ3 must be of degree 20. It is easy
to see, using the chain rule, that the hessian of a relative invariant is a relative
invariant. Thus the hessian of Φ3 is a Grundform corresponding to the orbit O2

with stabilizers of order 3. The direct computation gives

Φ2 = −(t200 + t201 ) + 228(t150 t
5
1 − t50t

15
1 )− 494t100 t

10
1 .

Next we need a Grundform of degree 30. Recall that the jacobian of functions
f, g in two variables is the determinant of the matrix whose first row are partial
derivatives of the first order of f and the second row is the same for g. The
jacobian of Φ2,Φ3 must be of degree 30, and it is easy to see that it is a relative
invariant. This gives us a Grundform of degree 30

Φ1 = t300 + t301 + 522(t250 t
5
1 − t50t

25
1 )− 10005(t200 t

10
1 + t100 t

20
1 ).

Since Ḡ ∼= A5 is a simple group and all Grundformen are of even degree, we see
that the characters are trivial.

1.3 Algebras of invariants

Now we are ready to compute the algebras of invariants for binary polyhedral
groups. It follows from the discussion given in section 1 and the computation
of characters of Grundformen that any relative invariant is a polynomial in
Grundformen. In particular, an invariant can be written as a polynomial in
Grundformen.

First we make a general remark. For any homomorphism χ : G → C∗
the relative invariants of degree d with character χ form a linear subspace Wχ

of Vd. Let Φi, i = 1, . . . , k, be nonzero elements from Vχi
, where all χi’s are

distinct characters. Then Φ1, . . . ,Φk are linearly independent. The proof is
standard. Assume that A = c1Φ1+. . .+ckΦk = 0 with some nonzero coefficients.
Without loss of generality we may assume that no subset of Φ1, . . . ,Φk is linearly
dependent, in particular, all ci’s are nonzero. Let g ∈ G such that χ1(g) 6= χ2(g).
We have

0 = g(A)− χ1(g)A = c2(χ2(g)− χ1(g))Φ2 + . . .+ ck(χk(g)− χ1(g))Φk = 0.

Since c2(χ2(g) − χ1(g)) 6= 0, this contradicts the assumption that Φ2, . . . ,Φk

are linearly independent.
This remark proves the following.
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Lemma 1.3.1. Suppose an invariant polynomial F is written as a linear com-
bination

∑
ciΦi, where each ci 6= 0 and Φi are relative invariants corresponding

to different characters. Then each Φi is invariant.

Our second general remark is the following. The ring of invariants A =
C[t0, t1]G of a finite group is a finitely generated normal graded integral domain
of dimension 2. This is a well-known fact which can be found, for example, in
Chapter V of Bourbaki’s“Commutative Algebra” or in my book “Lectures on
invariant theory”. Suppose we prove that A is generated by 3 homogeneous
polynomials. Then the ideal of relations between the generators is a principal
homogeneous ideal. This follows immediately from Krull’s Hauptsatz Theorem.
We will prove that this is the case for all finite subgroups G of SL(2,C) and
hence

C[t0, t1]G ∼= C[x, y, z]/(R(x, y, z))

for some irreducible weighted homogeneous polynomial R(x, y, z) . Recall that
this means that there is the following identity of polynomials in x, y, z, t

R(tax, tby, tcz) = tdR(x, y, z),

where (a, b, c; d) are positive integers. The first three a, b, c are called the weights
weights and the last one d is called the degree. Of course, in our case the weights
must be the degrees of the homogeneous generators of the algebra of invariants.
Our goal in this section is to prove this and find R(x, y, z) explicitly.

Case 1: G ∼= Cn is a cyclic group of order n.
It is clear that each monomial is a relative invariant. Writing an invariant

polynomial F as a sum of monomials and applying Lemma 1.3.1 we obtain that
F is the sum of invariant monomials. A monomial ta0t

b
1 is invariant if and only if

εa−b
n = 1. Since ta0t

b
1 = (t0t1)atb−a

1 , where we assume without loss of generality
that a ≤ b, we see that n must divide b − a. Hence ta0t

b
1 is the product of a

power of t0t1 and tn1 . This proves that the invariants

F1 = tn0 , F2 = tn1 , F3 = t0t1

generate the algebra of invariants. They satisfy the obvious relation

Fn
3 = F2F3.

Therefore we obtain

C[t0, t1]G ∼= C[x, y, z]/(xy + zn). (1.10)

Case 2: G ∼= D̄2n is a binary dihedral group of order 4n.
Assume n is odd. It follows from the computation of the characters of the

Grundformen that

F1 = Φ2
3, F2 = Φ1Φ2, F3 = Φ3Φ2

2
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are invariants. We will use that

Φ3Φ2
1 = t0t1(tn0 − tn1 )2 = t0t1[(tn0 + tn1 )2 − 4(t0t1)n] = F3 − 4F

n+1
2

1 .

Φ4
2 = (tn0 − tn1 )4 = t4n

0 + t4n
1 − 4tn0 t

n
1 (t2n

0 + t2n
1 ) + 6t2n

0 t2n
1

= (t2n
0 − t2n

1 )2 − 4tn0 t
n
1 (tn0 − tn1 )2 = F 2

2 − 4F3F
n−1

2
1 .

Similarily,
Φ4

1 = (tn0 + tn1 )4 = [(tn0 − tn1 )2 + 4tn0 t
n
1 ]2

= (Φ2
2 + 4Φn

3 )2 = Φ4
2 + 8Φ2

2Φ
n
3 + 16Φ2n

3 = F 2
2 + 4F3F

n−1
2

1 + 16Fn
1 .

Let us show that any invariant F is a polynomial of Fi’s. Write F as a sum
of monomials Φa

1Φb
2Φ

c
3 in Grundformen. By Lemma 1.3.1, each monomial is an

invariant.
If c ≥ 2 we can factor a power of the invariant F3 to assume that c ≤ 1.

Factoring out a power of F2 we may assume that a or b is zero. This leaves
us with monomials of type Φa

1 ,Φ
a
2 ,Φ

a
1Φ3,Φa

2Φ3,Φ3, where a 6= 0. Factoring out
some powers of F3, Φ3Φ2

1, Φ4
1 and Φ4

2, leaves us with monomials

Φa
1 ,Φ

a
2 ,Φ1Φ3,Φ2Φ3,Φ3,

where a ≤ 3. It follows from the description of the characters of the Grundfor-
men that none of these relative invariants is an invariant.

So, we have checked that any invariant can be written as a polynomial in
F1, F2, F3. Observe the relation

F 2
3 − F1F

2
2 + 4F3F

n+1
2

1 = (F3 + 2F
n+1

2
1 )2 − 4Fn+1

2 − F1F
2
2 = 0.

Replacing F3 with F3 + 2F
n+1

2
1 , and scaling the generators, we get

C[t0, t1]G ∼= C[x, y, z]/(z2 + x(y2 + xn)). (1.11)

Note that the ring is graded by the condition

deg x = 4, deg y = 2n, deg z = 2 + 2n.

We leave to the reader to check that in the case when n is even any invariant
is a polynomial in

F1 = Φ2
3, F2 = Φ2

2, F3 = Φ1Φ2Φ3

and the algebra of invariants is isomorphic to the same ring as in the case of
odd n.

Case 3: G is a binary tetrahedral group of order 24.
We check from the characters of Grundformen that

F1 = Φ1, F2 = Φ2Φ3, F3 = Φ3
2 + Φ3

3



1.3. ALGEBRAS OF INVARIANTS 13

are invariants. Let Φa
1Φb

2Φ
c
3 be a monomial entering in an invariant F . Then

we can factor Φa
1 to assume that a = 0. We factor a power of Φ2Φ3 to assume

that bc = 0. We have

F 2
1 = t20t

2
1(t

4
0 + t41)

2 − 4t60t
6
1 = (12

√
−3)−1(Φ3

2 − Φ3
3). (1.12)

This shows that Φ3
2 and Φ3

3 can be expressed in terms of F1, F2, F3. Since Φb
2 or

Φc
3 is invariant only if b or c is divisible by 3, we see that any F is a polynomial

in Fi’s.
We use (1.12) to get the relation between the basic invariants

F 2
3 = F 4

1 + 4F 3
2 .

This shows that

C[t0, t1]G ∼= C[x, y, z]/(z2 + x4 + y3), (1.13)

where we have scaled the basic invariants. Note that the ring is graded by the
condition

deg x = 6, deg y = 8, deg z = 12.

Case 4: G is a binary octahedral group of order 48.
We check from the characters of Grundformen that

F1 = Φ2
1, F2 = Φ2, F3 = Φ3Φ1

are invariants. Notice that

Φ3
2 − Φ2

3 = 108Φ4
1.

This allows to express the invariant Φ2
3 in terms F1, F2, F3. Arguing as in the

previous case by considering invariant monomials in Φ1,Φ2,Φ3 we check that
any invariant is a polynomial in F1, F2, F3. Notice the relation

F 2
3 = Φ2

1Φ
2
3 = F1(F 3

2 − 108F 2
1 ).

This shows that

C[t0, t1]G ∼= C[x, y, z]/(z2 + x(y3 + x2)), (1.14)

where we have scaled the basic invariants. Note that the ring is graded by the
condition

deg x = 12, deg y = 8, deg z = 18.

Case 5: G is a binary icosahedral group of order 120.
In this case the Grundformen are invariants. Thus any invariant is a poly-

nomial in Grundformen Φ1,Φ2,Φ3. We find the relation

Φ2
1 + Φ3

2 = 1728Φ5
3.

This shows that

C[t0, t1]G ∼= C[x, y, z]/(x2 + y3 + z5), (1.15)

where we have scaled the basic invariants. Note that the ring is graded by the
condition

deg x = 30, deg y = 20, deg z = 6.
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1.4 Exercises

1.1 Classify finite subgroups of GL(2,C) by using a surjective homomorphism
C∗ × SL(2,C) → GL(2,C), (c, A) 7→ cA.
1.2 Let G = 〈g〉 be a cyclic subgroup of GL(2,C).

(i) Show that the ring of invariants C[x, y]G is generated by two elements if
and only if one of the eigenvalues of g is equal to 1.

(ii) Suppose G does not contain non-trivial elements with eigenvalue equal to
1. Show that C[x, y]G is generated by three elements if and only if G is a
subgroup of SL(2,C).

1.3 Let D2n be the dihedral group realized as a subgroup of GL(2,C) gener-
ated by matrices

(
εn 0

0 ε−1
n

)
and ( 0 1

1 0 ). Show that its ring of invariants is freely
generated by two polynomials.
1.4 Let G be a finite group of automorphisms of a noetherian ring A. Fix a
homomorphism χ : G → C∗ and consider the set AG

χ of elements a ∈ A such
that g(a) = χ(g)a.

(i) Show that AG
χ is a finitely generated module over the subring of invariants

AG, considered as a submodule of A over its subring AG.

(ii) Let [G,G] be the commutator subgroup of G. Show that A[G,G] is a
subalgebra of the AG-algebra A and, considered as a module over AG, it
is isomorphic to the direct sum of the modules AG

χ .

(iii) For each finite subgroup G of SL(2,C) and each possible χ : G → C∗
describe explicitly the module C[x, y]Gχ (in terms of generators and rela-
tions).

(iv) For each finite subgroup G of SL(2,C) find its commutator [G,G] and the
corresponding ring of invariants. Use (iii) to check (ii).

1.5 Let F be an algebraically closed field of characteristic p 6= 2.

(i) Show that SL(2, F ) contains non-abelian subgroups of order 2pn(p2n − 1)
for any n > 0.

(ii) Let g ∈ SL(2, F ) be the matrix ( 1 1
0 1 ). Find the ring of invariants F [x, y]〈g〉.



Lecture 2

Intersection theory on
surfaces

2.1 Intersection pairing

Let S be a regular irreducible scheme of dimension 2 and Z be an effective
reduced Cartier divisor on S with support proper over a field k. the following
will be our most important examples.

(A) S is a smooth projective surface over a field k and Z is any effective divisor
on S.

(B) S is a regular scheme of dimension 2 and Z is a reduced fibre of a proper
morphism f : S → T , where T is a regular one-dimensional scheme.

(C) Z is a reduced exceptional fibre of a resolution of singularities f : S → T
of a normal two-dimensional scheme T .

Note that we do not exclude the case when Z is the zero divisor. In this
case S must be proper over k and Z = S.

Let Div(S) be the group of Cartier divisors on S. By definition of a regu-
lar scheme, all local rings OS,s of S are regular local rings (i.e. their maximal
ideals are generated by a system of local parameters). A regular ring is a facto-
rial integral domain ([Zariski-Samuel] or [Matsumura], Commutative Algebra),
and hence the group of Cartier divisors coincides with the group of Weil di-
visors, the free abelian group generated by irreducible closed subschemes of S
of codimension 1. Let DivZ(S) be the subgroup of Div(S) which consists of
divisors on S whose support is contained in the support of Z. We denote by
Div(S)+ the submonoid of Div(S) which consists of effective divisors and let
DivZ(S)+ = Div(S)+ ∩DivZ(S). We identify effective divisors on S with closed
(not necessary reduced) subschemes of S defined by the ideal sheaf OS(−D).

15
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Let E ∈ DivZ(S)+. For any invertible sheaf L on E we set

degL = χ(L)− χ(OE), (2.1)

where, for any coherent sheaf F on a proper scheme Z over a field k

χ(F) =
∑

(−1)i dimk H
i(Z,F)

denotes the Euler characteristic of Z with coefficient in F .
If L ⊂ OE is the ideal sheaf of a Cartier divisor on E, then the exact sequence

0 → L → OE → OE/L → 0

gives
degL = −χ(OE/L). (2.2)

If E is irreducible and nonsingular, then we see that degL = 0 if L = OE and

degL = degD = −
∑
x∈E

mx deg(x),

where D = −
∑
mxx is the Weil divisor on E corresponding to the invertible

sheaf L ∼= OE(−D), and deg(x) = [κ(x) : k].
The equality (2.1) is called the Riemann-Roch Theorem on E. In Mumford’s

approach (see [Mumford], Lectures on curves on algebraic surface) which we
follow, it is the definition of the degree of an invertible sheaf. The non-trivial
facts are the following properties of the degree

deg(L ⊗ L′) = degL+ degL, (2.3)
degL−1 = −degL.

For any divisor D on S and any E ∈ Div+
Z (S), we set

E ·D = degOE(D), (2.4)

where
OE(D) = OS(D)⊗OS

OE .

Recall that two Cartier divisors D,D′ are linear equivalent if D − D′ is a
principal divisor, i.e. the divisior div(Φ) of a rational function Φ on S (an
element of the residue field κ(η) of the generic point η of S). We write D ∼ D′

if this happens. We have D ∼ D′ if and only if there is an isomorphism of
invertible sheaves OS(D) ∼= OS(D′) ([Hartshorne], Chapter III, Prop;. 6.13).

Proposition 2.1.1. The pairing

DivZ(S)+ ×Div(S), (E,D) 7→ E ·D

satisfies the following properties
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(i) D 7→ (E,D) is a homomorphism of abelian groups.

(ii) E ·D = E ·D′, if D ∼ D′.

(iii) If E,D ∈ DivZ(S)+, then

E ·D = χ(OD ⊗OS
OE)− χ(T orOS

1 (OD,OE)), (2.5)

where we view the sheaves as coherent sheaves on D or E.

(iv) If E and D are effective divisors without common irreducible components,
and E ∈ DivZ(S)+, then

E ·D = χ(OE ⊗OS
OD) =

∑
x∈E∩D

dimκ(x)OS,x/(ax, bx) deg(x),

where ax = 0, bx = 0 are local equations of E,D at x.

(v) E 7→ E ·D is a homomorphism of semi-groups DivZ(S)+ → Z+.

(vi) Let φ : S′ → S be a proper surjective morphism of regular surfaces. Let
Z ′ = φ−1(Z)red be the reduced pre-image of Z. For any E ∈ DivZ(S) and
D ∈ Div(S), we have

φ∗(E) · φ∗(D) = deg(φ)E ·D,

where deg(φ) is the degree of f , i.e. the rank of the sheaf φ∗(OS′) at the
general point of S.

Proof. Property (i) follows from the definition of E ·D and (2.3).
(ii) Applying (i), it is enough to show that E · D = 0 if D = div(Φ) is a

principal divisor. But OS(div(Φ)) ∼= OS and hence OE(D) ∼= OE . Now the
equality E ·D = 0 follows from the definition.

(iii) Tensoring the exact sequence

0 → OS(−D) → OS → OD → 0 (2.6)

with OE we obtain an exact sequence

0 → T orOS
1 (OD,OE) → OE(−D) → OE → OD ⊗OE → 0. (2.7)

By property (i), −E ·D = E · (−D). Passing to cohomology we obtain

−E ·D = χ(OE(−D))− χ(OE) = −χ(OD ⊗OE) + χ(T orOS
1 (OD,OE)). (2.8)

It remains to apply property (iii).
(iv) Since dimD ∩ E = 0, for any x ∈ E ∩D, the pair (ax, bx) is a regular

sequence in the local ring OS,x. Thus

T orOS
1 (OD,OE)x = Tor

OS,x

1 (OS,x/(ax),OS,x/(bx)) = 0.
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From (iii), we get

E ·D = χ(OD ⊗OS
OE) = dimk H

0(OD ⊗OS
OE)

=
∑

x∈E∩D

dimk OS,x/(ax, bx) =
∑

x∈E∩D

dimk OS,x/(ax, bx) deg(x).

(v) Suppose D and E have a common irreducible component E1. In some
open affine set U the component E1 is given by a local equation Φ = 0. We can
choose U and Φ such that div(Φ) does not contain any other component of E.
Replacing D with D − div(Φ), and using property (ii), we may assume that D
and E have no common irreducible components. Using the additivity of E ·D
in D, we may assume that D is effective with no common components with E.
Now we can apply property (iv).

Let E =
∑r

i=1 niEi, where Ei are irreducible components of E. Let ai = 0
be a local equation of Ei at a point x and bx be a local equation of D at x.
Then ax = an1

1 · · · anr
r = 0 is a local equation of E at x. It is easy to check that

dimk OS,x/(ax, bx) =
r∑

i=1

dimk OS,x/(ani
i , bx) =

r∑
i=1

ni dimk OS,x/(ai, bx)

(see [Eisenbud], Commutative Algebra, p. 260). Applying property (iv), we
obtain E ·D =

∑
niEi ·D. This proves (v).

(vi) Since f : S′ → S is a proper morhisms, the map f∗(Z) = S′ ×S Z → Z
is proper. Thus f : Z ′ → Z is proper and hence Z ′ is proper over k. This
implies that the sheaf φ∗(OS′) is a coherent sheaf ofOS-algebras. The morphism
φ factors into the composition φ′ ◦ g, where g : S′ → S̄′ is of degree 1 and
g∗(OS′) = OS̄′ and φ′ : S̄′ → S is a finite morphism of degree equal to deg(φ)
(the Stein factorization, see [Hartshorne], Chap. III, Corollary 11.5). Therefore
it is enough to check the assertion in two cases: (a) φ is a finite morphism and
(b) φ∗(OS′) = OS .

In case (a) φ∗(OS′) is a locally free sheaf on S of some rank m (locally it
corresponds to a finite module of depth 2 over a regular ring of dimension 2,
hence a free module). We may assume, as before, that E and D are effective
divisors without common irreducible components. It follows from property (iv)
that

φ∗(E) · φ∗(D) = χ(Oφ∗(E) ⊗Oφ∗(D)) = χ(φ∗(OE)⊗ φ∗(OD)).

By the projection formula and vanishing of Riφ∗(F), i > 0, for any coherent
sheaf F and a finite morphism f ([Hartshorne], Chap. 3, Corollary 11.2), we
have

χ(φ∗(OE ⊗OD)) = χ(OE ⊗OD ⊗ φ∗OS′).

Since OE ⊗ OD is a sky-scrapper sheaf, the restriction of φ∗OS′ to E ∩D is a
free sheaf of rank m. The additivity of the Euler characteristic gives

φ∗(E) · φ∗(D) = mχ(OE ⊗OD) = mE ·D.
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In case (b), the fibres of φ are connected and, since S and S′ are regular
schemes of the same dimension, the morphism φ is an isomorphism over an
open Zariski subset U of S. To see this choose U to be an open subset such that
V = φ−1(U) → U is a homeomorphism. Since φ is proper and has finite fibres,
it is a finite morphism ([Hartshorne], Chap. III, Exercise 11.2). Thus OS′(V )
is a finite algebra over OS(U) of rank 1. Since U is regular, it is normal. This
implies that V → U is an isomorphism.

Now replace D with linear equivalent divisor which does not contain the
finite set of points in S such that the map φ−1 is not defined. Then we can
repeat the arguments from the previous case to obtain

φ∗(E) · φ∗(D) = E ·D.

Extending (E,D) 7→ E · D by linearity to not necessary effective divisiors
E, we obtain a bilinear form

DivZ(S)×Div(S) → Z. (2.9)

It follows immediately from property (iii) that its restriction to DivZ(S) ×
DivZ(S) is a symmetric bilinear form. We call the bilinear form (2.9) the inter-
section form on S (relative to f : S → T ).

Example 2.1.2. Let X be a nonsingular projective curve over a field k and
L be an invertible sheaf on X. Recall that the line bundle associated to L is
the scheme V(L) = Spec S•(L) over X, where S•(L) is the symmetric algebra
of L. The pre-image of an open affine subset U of X such that L|U ∼= OU is
isomorphic to Spec O(U)[x] ∼= A1

U . Thus S is a smooth surface over k but not
a projective surface.

A section of the natural projection π : V(L) → X is defined by a homo-
morphism of sheaves of OX -modules L → OX , or equivalently, by sections of
the dual sheaf L−1. The section s0 corresponding to the zero homomorphism
is called the zero section. Locally, in the notation from above, it corresponds
to the homomorphism O(U)[t] → O(U) which sends x to 0. This implies that
π∗(L) locally isomorphic to the ideal (t) ⊂ O(U)[x]. The image E = s0(X) is
locally given by this ideal. Globally, E is given by the ideal sheaf π∗(L). Since
π ◦ s0 = idX , we obtain

OE(−E) ∼= s∗0(OS(−E)) ∼= s∗(π∗(L)) ∼= L.

Thus
E · E = −degL (2.10)

For example, take L = Ω1
X , the sheaf of regular differential 1-forms on X.

Its sheaf of sections is ΘX = (Ω1
X)∗, the tangent sheaf of X. We know that

deg(Ω1
X) = 2g − 2, where g is the genus of X. Thus the zero section of the line

bundle V(Ω1
X) (the tangent bundle of X) has self-intersection equal to 2− 2g.
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Remark 2.1.3. Assume S is of finite type over a field k and let E be a smooth
projective curve on S. Then we have the exact sequence

0 → IE/I2
E → Ω1

S/k ⊗OE → Ω1
E/k → 0

([Hartshorne], p.178). We have

IE/I2
E
∼= OS(−E)/OS(−2E) ∼= OE(−E).

Passing to the dual sheaves we can interpret the sheaf OE(E) as the sheaf of
sections of the normal line bundle of E in S. In particular, we see that the
degree of the normal bundle of the zero section of the tangent bundle is equal to
2−2g. This corresponds to a well-known fact: the number of zeroes of a nonzero
holomorphic vector field on a Riemann surface is equal to the Euler-Poincaré
characteristic of the surface (see [Griffiths-Harris]).

2.2 Cartan matrices

Let E1, . . . , Es be irreducible components of a divisor D ∈ DivZ(S). The sym-
metric matrix

A = (aij)1≤i,j≤n, aij = Ei · Ej (2.11)

is called the intersection matrix of the divisor D. Let ZIr(D) be the free abelian
group generated by the set Ir(D) of irreducible components of D. The in-
tersection matrix defines a symmetric bilinear form on ZIr(D). We call it the
intersection form of D. It is equal to the restriction of DivZ(S)×DivZ(S) → Z
to the subgroup ZIr(D) of DivZ(S).

We use the notation (t+, t−, t0) for the Sylvester signature of a real quadratic
form (we drop t0 if it is zero). A symmetric integer matrix A of size r defines
a symmetric bilinear form on a free abelian group M ∼= Zs of rank r. We use
the same matrix to extend the form to the linear space MQ = M ⊗Q ∼= Qs or
MR = M ⊗R ∼= Rs. By definition, the signature of the form on M or on MQ is
the signature of the corresponding real bilinear form.

Recall that the signature can be computed by using the Jacobi Theorem.
The number t0 is equal to the dimension of the nullspace of A. It defines the
radical of the quadratic form, the subspace of vectors v such that (v, w) = 0,
for all w. Writing A as the block matrix of the zero matrix and a nonsingular
symmetric matrix we may assume that detA 6= 0. It is always possible to
choose a basis in the vector space such to assume that all corner matrices As =
(aij)1≤i,j≤k have nonzero determinants ∆i. Then the Jacobi Theorem says that
there exists a basis such that the bilinear form is given by the diagonal matrix
with bii = ∆i−1/∆i, where δ0 = 1. This implies that t− is equal to the number
of the sign changes in the sequence of numbers 1,∆1, . . . ,∆r. For all this see
any good text-book in linear algebra (if it does not have this theorem, then, by
definition, it is not good). Examples of good text-books are [Gelfand], Lectures
on Linear Algebra or [Bourbaki], Algebra.
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Assume that S is a projective smooth surface over a field k. Let Div0(S)
be the subgroup of Div(S) that consists of divisors D such that D ·D′ = 0 for
all divisors D′ on S (the radical of the intersection form on S). Divisors from
Div0(S) are called numerically trivial . If D − D′ ∈ Div0(S) we write D ≡ D′

and say that D is numerically equivalent to D′. The quotient group

Num(S) = Div(S)/Div0(S)

is known to be a free abelian group of some finite rank ρ, called the Picard
number of S.

The intersection form on S induces the intersection form on Num(S) ∼= Zρ.
Recall the following theorem (see [Hartshorne], Chapter V, Theorem 1.9),

known as the Hodge Index theorem.

Theorem 2.2.1. The signature of the intersection form on Num(S) is equal to
(1, ρ− 1).

This theorem implies that for any divisor D on S its intersection form sig-
natures equal to (1, t+, t0) or (0, t+, t0). Also, the number t0 ≤ t+ 1, where t is
the rank of the kernel of the projection of ZIr(D) to Num(S).

We are able to say more the cases (B) and (C) from the beginning of the
chapter. The following key lemma is due to D. Mumford.

Lemma 2.2.2. Let E1, . . . , Es be irreducible components of a divisior D ∈
DivZ(S)+. Let Φ be a rational function on S such that

div(Φ) =
∑

i

niEi + Z,

where Z and D have no common irreducible components. For any a1, . . . , as ∈
Q,

(
∑

ainiEi)2 = −
∑
i<j

(ai − aj)2ninj(Ei · Ej)−
∑

a2
iniEi · Z.

Proof. Put Di = niEi to simplify the computations. Using the properties of
the intersection form on S, we get

(
∑

i

aiDi)2 =
∑

i

ai(Di ·
∑

j

ajDj) =
∑

i

aiDi · (−aidiv(Φ) +
∑

j

ajDj)

=
∑

i

aiDi · (−ai(Z +
∑

j

Dj) +
∑

j

ajDj) =
∑

i

aiDi ·
∑

j

((aj − ai)Dj − aiZ)

=
∑
i,j

ai(aj − ai)Di ·Dj −
∑

i

a2
iDi · Z = −

∑
i<j

(ai − aj)2Di ·Dj −
∑

i

a2
iDi · Z.
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Recall that the scheme theoretical fibre St of f : S → T over a closed point
t ∈ T is the closed subscheme of S defined as the base change S×T Spec κ(t) →
Spec κ(t). It follows from the definition that for any point x ∈ f−1(t)

OSt,x
∼= OS,x/f

∗
x(mT,t),

where f∗x : OT,t → OS,x is the homomorphism of local rings defined by the
morphism f . Since f is surjective, f∗x is injective and the image of mT,t generates
an ideal f∗x(mT,t) contained in mS,x. If the radical of f∗x(mT,t) is equal to mS,x,
then we can find a regular sequence of 2 elements in OS,x contained in f∗x(mT,t).
This shows that dimOSt,x = 0 and dimx St = 0. Otherwise, any associated
prime ideal of f∗x(mT,t) is of codimension 1 (Krull’s Haupsatz Theorem) and
dimOSt,x = 1. Also in a regular ring A an ideal I of codimension 1 is principal.
Thus the fibre St is given by a local equation φ = 0 in an affine neighborhood
U of x, and hence it is an effective Cartier divisor in U . By using the Stein
factorization, it is easy to see that all connected components of the fibre are of
the same dimension.

Corollary 2.2.3. (K. Kodaira) Let f : S → T be a proper surjective morphism
of S to a regular scheme of dimension 1. Let t be a closed point of T and

St =
s∑

i=1

miEi

be the scheme-theoretical fibre over a closed point considered as an effective
divisor from DivZ(S). Assume that St is connected. Then the signature of the
intersection form of St is (0, s − 1, 1). The radical of the intersection form is
generated by the vector f = 1d(m1, . . . ,ms), where d = g.c.d.(m1, . . . ,ms).

Proof. In the previous lemma take Φ = f∗(u), where u is a local parameter at
t. Then div(Φ) = f−1(t) + Z, where Z is disjoint from f−1(t). So it follows
from property (ii) of the intersection pairing that (m1, . . . ,ms) is in the radical
of the intersection form of St. Any rational combination of the divisors Ei can
be wriitten in the form

∑
i aimiEi. Hence

(
∑

aimiEi)2 = −
∑
i<j

(ai − aj)2mimj(Ei, Ej).

This proves that t+ = 0. Assume the equality holds. Since f−1(t) is connected,
we may assume that E1 · E2 6= 0. Then a1 = a2. If s = 2, we are none. If
s > 2, we may assume that E3 intersects either E1 or E2. This implies that
a1 = a2 = a3. Continuing in this way, we prove that all ai’ are equal to some
number a. Thus the radical is one-dimension and generated (over Q) by f

Corollary 2.2.4. (D. Mumford) Let f : S → T be a birational surjective mor-
phism, where dimT = 2. Assume that the fibre St over a closed point t is of
dimension 1. Then the intersection form of the divisor St is negative definite.
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Proof. Since S is normal, the morphism factors into S → T ′ → T , where π :
T ′ → T is the normalization morphism. Then the f−1(t) is the union of fibres
over points in the finite set π−1(t). The intersection matrix of St is the direct
sum of the intersection matrices of these fibres. Thus we may assume that
T is normal. Hence the fibre is connected and as we explained above, f is
an isomorphism over an open Zariski subset of T . Replacing T by an affine
neighborhood of t we may assume that f is an isomorphism over T \ {t}. Take
Φ = f∗(u), where u ∈ O(T ) which vanishes at t. By Krull’s Hauptsatz Theorem,
each associated prime ideal of (u) is of codimension1. This shows that div(Φ) =∑
niEi + Z, where Z is the proper inverse transform of some one-dimensional

subscheme in T passing through t. Obviously, Z intersects some component Ei

and hence Lemma (2.2.2) gives (
∑

i ainiEi)2 < 0 for any rational ai.

We will see that for any finite subgroup G of SL(2,C) the surface T =
C2/G admits a resolution of singularities f : S → T such that all irreducible
components Ri of the exceptional fibre satisfy R2

i = −2. Thus the intersection
matrix of the exceptional fibre is negative definite and satisfies

aii = −2, aij = aji ≥ 0, i 6= j.

All such matrices can be described explicitly.

Lemma 2.2.5. (E. Cartan) Let A = (aij) be a symmetric integer n×n matrix
with aii = −2 and aij ≥ 0 for i 6= j. Suppose the quadratic form defined by
A is negative definite, or negative semi-definite with one-dimensional radical.
Also assume that A is not a block-matrix of submatrices satisfying the same
properties as A. Then, either n = 2 and a12 = 2 (we say that A is of type Ã1),
or aij ≤ 1 for i 6= j and the matrix A+2In is the incidence matrix of one of the
following graphs Γ, having n vertices for A negative definite and n+ 1 vertices
for A semi-definite.

Proof. Let M be the incidence matrix of a graph from the list and A = M −2Ir
be the corresponding symmetric matrix with −2 at the diagonal. Here r is the
number of vertices in the graph. Applying the Jacobi Theorem we get that the
quadratic form defined by the matrix A is negative definite (resp. semi-definite)
if and only if ∆k = (−1)k det((aij)1≤i,j≤k > 0 (resp. ≥ 0) for k = 1, . . . n. It
is directly checked that the matrices corresponding to the graphs in the first
column are negative definite, and the matrices corresponding to the graphs
in the second column are negative semi-definite with radicals spanned by the
following vectors f

Ãn f = e1 + . . .+ en;

D̃n f = e1+e2+en−1+en+2
∑

i 6=1,2,n−1,n ei, where e1, e2, en−1, en correspond
to the vertices joined to the vertices of valency 3 from the left and from
the right;

Ẽ6 f = e1 + 2e2 + e3 + 2e4 + 3e5 + 2e6 + e7, where e1, e2 correspond to the
lower vertices, and the rest are numbered from the left to the right.
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. . .An, n ≥ 1

. . .Dn, n ≥ 4

E6

E7

E8

Negative definite

. . .Ãn, n ≥ 1

. . .D̃n, n ≥ 4

Ẽ6

Ẽ7

Ẽ8

Semi-definite

Table 2.1: Dynkin diagrams

Ẽ7 f = 2e1 + e2 + 2e3 + 3e4 + 4e5 + 3e6 + 2e7 + e8, where e1 corresponds to
the lower vertex, and the rest are numbered from the left to the right.

Ẽ8 f = 3e1 + 2e2 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + 2e8 + e9, where e1

corresponds to the lower vertex, and the rest are numbered from the left to the
right.

Note if we find that our matrix defines the graph Γ which contains a subgraph
Γ′ equal to one from the right column list, then Γ = Γ′. This immeduately
follows from the assumption that Γ is connected and the radical of the quadratic
form is of dimension one, hence coincides with the radical of the quadratic form
defined by Γ′.

If r = 1, we get the graph A1. Assume r ≥ 2. Let aij 6= 0. After permuting
the columns and the rows simultaneously (this corresponds to reordering the
vertices) we may assume that i = 1, j = 2. Thus ∆2 = a11a22−a2

12 = 4−a2
12 > 0

(resp. ≥ 0). Since aij is a non-negative integer, we obtain a12 ≤ 1 (resp. ≤ 2).
If the equality takes place, the subgraph formed by the vertices v1, v2 is of type
Ã. By the above remark Γ is of type Ã1.

From now on we assume that aij ≤ 1, i 6= j, and r ≥ 2. Thus M = A+ 2In
is the incidence matrix of a connected graph Γ.

Assume that A is negative definite. We claim that Γ is a tree unless Γ is of
type Ãn. In fact, if Γ is not a tree, we can find a sequence i1 < . . . < ik such
that ai1i2 = . . . = aiki1 = 1. Then the vertices vi1 , . . . , vik

form a subgraph of
type Ãk−1. Thus Γ is of type Ãk−1.

From now we assume that Γ is a tree. Next we claim that any vertex vi of
Γ is incident to at most 3 vertices unless the graph Γ is of type D̃4. In fact,
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suppose we find the indices i, j1, j2, j3, j4 such that aijs = 1, s = 1, 2, 3, 4. The
the subgraph with these vertices is of type D̃4 and we conclude as above.

Suppose we have two vertices vi and vi′ incident to three edges each. We
leave to the reader to find a subgraph of Γ of type D̃k with k ≥ 5.

If Γ does not have vertices incident to 3 edges, then we get the graph of
Tpqr-shape We assume that p ≤ q ≤ r. It is easy to check that the solutions

• • • • • • •

•

•

•

. . .. . .

...

︷ ︸︸ ︷q ︷ ︸︸ ︷r
p

Figure 2.1:

(1, q, r), (2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5) of

1
p

+
1
q

+
1
r
> 1, (2.12)

correspond to our graphs in the left column. The solutions (3, 3, 3), (2, 4, 6), (2, 3, 6)
of

1
p

+
1
q

+
1
r

= 1, (2.13)

correspond to the graphs in the right column. All other triples (p, q, r) satisfy
either p = 2, q = 3, r ≥ 6 or p = 3, q = 4, r ≥ 4. They all contain a subgraph of
type Tp′q′r′ , where (p′, q′, r′) satisfy (2.13).

In fact, by straightforward computation one checks that the graphs Tpqr with
p, q, r not satisfying (2.12) or (2.13) define nondegenerate symmetric bilinear
forms of signature (1, p+ q + r − 3).

Definition 2.2.1. A symmetric matrix is called a Cartan matrix if it satisfies
the assumptions of Lemma 2.2.5.

2.3 Canonical class

Define the canonical class kS/T as a function on DivZ(S)+

kS/T : DivZ(S)+ → Z, E 7→ −E · E − 2χ(OE). (2.14)

Lemma 2.3.1.
kS/T : DivZ(S)+ → Z

is a homomorphism of semigroups.
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Proof. Write E = E′+R, where R is an irreducible component of E. Tensoring
the exact sequence

0 → OS(−R) → OS → OR → 0

by OS(−E′), we obtain

OS(−E′)/OS(−E) ∼= OR(−E′).

Together with the exact sequence

0 → OS(−E′)/OS(−E) → OE → OE′ → 0.

this gives us
χ(OE)− χ(OE′) = χ(OS(−E′)/OS(−E))

= χ(OR(−E′)) = −R · (E −R) + χ(OR).

Hence

kS/T (E)− kS/T (E −R) = E2 − (E −R)2 − 2χ(OE) + 2χ(OE′)

= 2E ·R−R2 − 2R · (E −R)− 2χ(OR) = −R2 − 2χ(OR) = kS/T (R).

Corollary 2.3.2. For any E1, E2 ∈ DivZ(S)+,

E1 · E2 = χ(OE1) + χ(OE2)− χ(OE1+E2). (2.15)

Proof.

kS/T (E1+E2) = −(E1+E2)2−2χ(OE1+E2) = −E2
1−E2

2−2E1 ·E2−2χ(OE1+E2)

= kS/T (E1) + kS/T (E2) = −E2
1 − E2

2 − 2χ(OE1)− 2χ(OE2).

This proves the assertion.

Theorem 2.3.3. Let dimT > 0 and D be a divisor with support in connected
fibre f−1(t), where κ(t) is algebraically closed. Assume that D is reducible if
dimT = 1. Suppose that kS/T (E) = 0 for each irreducible component of D.
Then the intersection matrix of D is a Cartan matrix.

Proof. Let Ei be an irreducible component of D. Since κ(t) is algebraically
closed and Ei is a projective connected reduced scheme, we have H0(Ei,OEi

) ∼=
k. Thus

kS/T (Ei) = −E2
i − 2(1− h1(OEi

)) = 0.

If E2
i = 0, then, by Corollary 2.2.3, D consists of one component. This case

has been excluded. Thus E2
i ≤ −1 and 2(1 − h1(OEi) ≤ 2. This implies that

E2
i = −2 and h1(OEi) = 0. Since Ei ·Ej ≥ 0 for i 6= j, and the fibre is connected

the intersection matrix satisfies the assumptions of Lemma 2.2.5. It remains to
apply Corollaries 2.2.3 and 2.2.4.
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Remark 2.3.4. Note that the converse is not true. In Example 2.6 take C to be
a curve of genus g > 0 and L be a line bundle of degree 2. Then kS/T = 2g 6= 0
although the intersection matrix is a Cartan matrix of type A1.

An example of f : S → T with one-dimensional T and kS/T = 0 is given by
an elliptic surface. We assume that T is an algebraic curve over an algebraically
closed field k, all fibres are connected and the general fibre Sη of f : S → T is
an irreducible curve of arithmetic genus 1. Let F = St be a fibre over a closed
point t. We assume that it does not contain a smooth rational curve R with
R2 = −1 (an exceptional curve of the first kind or a (−1)-curve). Since the Euler
characteristic χ(F,OFt

) of a fibre Ft does not depend on t ([Hartshorne], Chap.
3, Corollary 9.10), we have kS/T (Ft) = −F 2

t − 2χ(OFt) = 0. Let F =
∑
niEi

be a reducible fibre. Then, for any proper closed subscheme F ′ of F we have
the surjection of sheaves OF → OF ′ which gives h1(OF ′) ≤ h1(OF ) = 1. Thus
χ(OF ′) ≥ 0. Assume F contains an irreducible component R of arithmetic
genus h1(OR) = 1. Let R′ be another component intersecting R. Then 0 ≥
(R+R′)2 = R2 +R′2 +2R ·R′ and R2 < 0, R′2 < 0 imply that R ·R′ > 1 unless
R2 = R′2 = −1 and F = a(R+R′). The equality from Corollary 2.15

χ(OR) + χ(OR′)− χ(OR+R′) = R ·R′ > 0

implies that h1(R′) = 0 contradicting the assumption that F does not contain
(−1)-curves. Thus all irreducible components R of F satisfy h1(OR) = 0, hence
isomorphic to P1. Since kS/T (R) = −R2 − 2χ(OR) = −R2 − 2 ≥ 0, using the
additivity of the canonical class and the equality kS/T (F ) = 0, we obtain that
kS/T (R) = 0 for all components. Hence kS/T = 0. Theorem 2.3.3 gives the
classification of reducible singular fibres of elliptic surfaces, originally due to
K. Kodaira. The following is the dictionary between Kodaira’s notations for
types of reducible fibres and the notations of types of the corresponding Cartan
matrices:

Kodaira In+1 II III I∗n+4 II* III* IV*

Cartan Ãn Ã1 Ã2 D̃n Ẽ8 Ẽ7 Ẽ6

Table 2.2: Kodaira’s fibres

Here the fibre of type II (resp. III) represent two curves tangent at one point
(resp. three curves intersecting at one common point).

2.4 Exercises

2.1 Let S be a smooth projective surface S over a field k. Show that there exists
a divisor K on S such that K · E = kS(E) for any smooth projective curve on
S.
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2.2 Let S ⊂ PN
k be a smooth projective surface and H be its hyperplane section.

Show that the intersection form on ZIr(H) has signature (1, t−, t0). Give an
example of a pair (S,H) with t0 > 0.
2.3 Let C be a nonsingular projective curve over a field k and E be the diagonal
of the product C × C. Prove that E · E = 2χ(OC).
2.4 Let f : S → T be a projective surjective morphism of a projective smooth
surface S onto a nonsingular curve T . Assume that the fibres of S are connected
and the ground field is algebraically closed. For any closed point t ∈ T let mt

denote the number of irreducible 1-dimensional components of the fibre f−1(t).
Show that ρ ≥ 2 +

∑
t∈T (mt − 1), where ρ is the Picard number of S.

2.5 Let λF (x, y, z) + µG(x, y, z) = 0 be a pencil of plane curves of degree
3. Suppose one of the members, say F (x, y, z) = 0, is a nonsingular curve.
Show that there exists a resolution of indeterminacy points of the rational map
P2− → P1, (x, y, z) 7→ (F (x, y, z), G(x, y, z)) is an elliptic surface. Show, by an
example, that each Kodaira’s type is realized unless it is of type In with n ≥ 9,
or In∗ with n > 4.
2.6 Do exercises 1.1-1.12 in Chapter V of [Hartshorne].



Lecture 3

Geometry of graded
algebras

3.1 Graded algebras

The rings of invariants of linear groups acting on the ring of polynomials preserve
the natural grading on the latter, so they are examples of graded rings. In this
lecture we will study the geometry of affine and projective spectra of graded
rings. We will follow [Demazure]

We will consider Z-graded Noetherian commutative associative rings

A =
⊕
n∈Z

An. (3.1)

Recall that the direct sum here is the direct sum of abelian groups and satisfies

An ·Am ⊂ An+m.

Nonzero elements in An are called homogeneous elements of degree i. We write
deg a = n if a ∈ An \ {0}.

The subset A0 is a subring of A. Each Ai acquires a natural structure of
A0-module so that A becomes a graded algebra over A0.

Geometrically, a grading on a ring A is equivalent to a non-trivial action of
the group scheme Gm = Spec Z[T, T−1] on C = Spec A. For any commutative
ring R, the action of Gm(R) = R∗ on C(R) = Hom(A,R) is defined by

(r · φ)(a) =
∑
n∈Z

rnφ(an),

where a =
∑

n∈Z, an ∈ An. The group Gm(R) also acts on the ring A by

r · a =
∑
n∈Z

rnan.

29



30 LECTURE 3. GEOMETRY OF GRADED ALGEBRAS

In particular, one can view each An as the eigen-submodule of A with respect
to the character of Gm (i.e. a homomorphism of group schemes χ : Gm → Gm)
defined by r 7→ rn. From this point of view the subalgebra A0 should be viewed
as the subring of invariants AGm .

Definition 3.1.1. The saturation index of A is the greatest common divisor of
the set of integers i such that Ai 6= {0}.

One can interpret the saturaton index as the order of the largest finite sub-
group µe of Gm that acts identically on A.

An ideal I in a graded ring is called homogeneous if it can be generated by
homogenous elements of A. Equivalently, I is homogeneous if I = ⊕i∈Z(I ∩Ai).
A homomorphism of graded rings A→ B is a homomorphism of rings that sends
each Ai to Bi. The kernel of a homomorphism of graded rings is a homogeneous
ideal, and the quotient of a graded ring by a homogeneous ideal inherits a
grading, the quotient grading making the factor map a homomorphism of graded
rings.

Example 3.1.1. Let A = R[T1, . . . , Tn] be the polynomials algebra over a
commutative ring R and (w1, . . . , wn) ∈ Zn \ {0}. We define a grading on A by
setting, for any d ∈ Z,

Ad = {P (T1, . . . , Tn) : P (tw1T1, . . . , t
wnTn) = tdP (T1, . . . , Tn)}, (3.2)

where the equality is understood as the identity in the polynomial algebra
R[T1, . . . , Tn, t]. Clearly, each unknown Ti has degree wi.

A polynomial P ∈ Ad is called weighted homogeneous with weights w =
(w1, . . . , wn) and degree d. Writing P as a sum of monomials xi with coefficients
ai, the definition is equivalent to the property that the dot-product i ·w = d for
all i such that ai 6= 0. The saturation index of A is equal to g.c.d.(w1, . . . , wn).
We have already encountered weighted homogeneous polynomials in Chapter 1.

Each Ai is either zero or a free A0-module of rank 1 with a basis given by
any monomial T i := T i1

1 · · ·T in
n ∈ Ad.

Let A be any graded ring and a1, . . . , an be generators of A as a A0-algebra.
We can always choose homogeneous generators. Let w1, . . . , wn be its degrees.
Then the homomorphism Ti 7→ ai defines a surjective homomorphism of graded
algebras A0[T1, . . . , Tn] → A, where deg Ti = wi. Thus any graded ring is a
quotient of an algebra of weighted homogeneous polynomials by a homogeneous
ideal.

As usually in the theory of schemes one globilizes the notion of a graded ring
by introducing the notion of a quasicoherent sheaf of graded OS-algebras

A =
⊕
i∈Z

Ai

on any scheme S. Here each Ai is a quasicoherent sheaf of modules over the
sheaf of OS-algebras A0. For any open subset U of S, the algebra A(U) has a
grading with A(U)i = Ai(U).
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Next we recall the notion of a projective spectrum Proj A of a graded ring
A. We assume that the grading is nonnegative, i.e. satisfies

Ai = 0, i < 0, (3.3)

(or, by regrading, Ai = 0 for i > 0). In this case

A>0 =
⊕
i>0

Ai

is a homogeneous ideal in A with quotient ring isomorphic to A0. We denote it
by m0 and call it the vertex ideal of A (or the irrelevant ideal).

Definition 3.1.2. An affine quasicone is an affine scheme C together with
a nonnegative grading of its coordinate ring O(C). The closed subscheme
V (m0) ∼= Spec O(C)0 of C is called the vertex of C. The open subset

C∗ = C \ V (m0)

is called the punctured affine quasicone.

Note that C is an affine scheme over Spec A0 and the surjection A → A0

defines the closed embedding Spec A0 ↪→ C with the image equal to the vertex
of C.

In the global situation, we consider a sheaf of graded OS-algebras A satis-
fying Ai = 0, i < 0. The scheme C = Spec A is an affine scheme over S. The
surjection A → A0 defines a closed embedding i : Y → C, where Y = Spec A0

is an affine scheme over S. Its image is called the vertex subscheme of C. The
canonical structure of a S-scheme on Spec A is viewed as a family of affine qua-
sicones parametrized by S, the vertices of these affine quasicones are the fibres
of Y → S.

Example 3.1.2. Let X be a closed subscheme of a projective space Pn
R over

a ring R. It is given by a system of homogeneous algebraic equations with
coefficients in R. These equations define a closed subvariety C of the affine space
An+1

R = Spec R[T0, . . . , Tn]. This affine scheme is called the affine cone over X.
Its vertex is given by the “origin” in An+1

R defined by the ideal (T0, . . . , Tn). It
is isomorphic to the affine scheme Spec R. The coordinate ring of C is the R-
algebra Spec R[T0, . . . , Tn]/I, where I is the ideal generated by the polynomials
defining X. It inherits the natural grading of R[T0, . . . , Tn] with all weights
equal to 1.

The group scheme Gm acts on C = Spec A leaving C∗ invariant. The “orbit
space” C∗/Gm is the projective spectrum X = Proj A of A. As a set it consists
of homogeneous prime ideals in A which do not contain m0. Its topology is
defined by choosing a base of open subsets which consists of sets

D+(f) = {p ∈ Proj A : f 6∈ p},
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where f is a homogeneous element in m0. The structure sheaf OX is defined by
setting OX(D+(f)) = A(f) := (Af )0, where we grade the localization ring Af

by
(Af )i = { a

fd
: a ∈ Ai+d deg f}.

Note that C = Spec A is covered by open sets D(a) = {p ∈ Spec A : a 6∈ p}, a ∈
A. If we restrict ourselves to open subsets D(f), where f is a homogeneous
element of m0, we get an open covering of C∗.

The inclusion A(f) ⊂ Af defines a morphism D(f) → D+(f). These mor-
phisms can be glued together to define a morphism of schemes

π : C∗ → X

The corresponding map of sets is p 7→
∑

i≥0 p ∩ Ai. Since the inclusion of the
localizations A(f) ⊂ Af are homomorphisms of A0-algebras, the morphism π is
a morphism of A0-schemes.

We have
π∗(OC∗) =

⊕
i∈Z

OX(i), (3.4)

where the sheaves OX(i) are defined on subsets D+(f) by

OX(i)(D+(f)) = (Af )i.

Using the definition of the spectrum of a graded sheaf of OX -algebras we get

C∗ = Spec π∗(OC∗). (3.5)

Since the rings D+(f) are the rings of invariants of Gm acting on D(f), we can
can interpret the sheaf OX as the subsheaf (π∗OC∗)Gm ⊂ π∗OC∗ of invariant
elements and the map π as the quotient map C∗ → C∗/Gm in the category of
ringed spaces.

Obviously, OX(i) = 0 if i is i not divisible by the saturation index e of
A. Assume i = se and let f be a nonzero element of Ae. Then any fraction
ade+i/f

d ∈ (Af )i can be written in the form fs ade+i

fd+s , where ade+i

fd+e ∈ A(f). This
shows that the restriction of OX(i) to D+(f) is an invertible sheaf. Moreover,
the canonical multiplication maps

OX(se)⊗OX(je) → OX((s+ j)e) (3.6)

are isomorphisms over D+(f). In particular, this implies that Af
∼= A(f)[t] and

hence over U = D+(f) the punctured cone C∗ is isomorphic to the affine line
A1

U over U . Therefore, if . A is a domain (hence X is irreducible)

dimC = dimX + 1. (3.7)

In general, even if the saturation index e is equal to 1, the sheaves OX(i)
are not invertible over the whole X nor the multiplication maps

OX(i)⊗OX(j) → OX(i+ j)



3.1. GRADED ALGEBRAS 33

are isomorphisms. However, both properties hold if the following condition is
satisfied

(∗) A = A0[A1],

i.e. A is generated as a A0-algebra by the set A1. This condition is assumed in
almost all statements in [Hartshorne] concerning the projective schemes.

For any graded ring A and a positive integer e one defines the e-twist of A
by

A(e) =
⊕
n∈Z

A(e)
n ,

where A(e)
n := Aen.

Geometrically, A(e) is equal to the algebra of invariants of the subgroup µe.
Note that, if e > 1 is the saturation index of A then A 6= A(e) as graded rings.

We will often use the following well-known fact (see [Bourbaki], Commutative
Algebra, Chapter 3).

Lemma 3.1.3. Let A be a non-negatively graded algebra. Assume that A is
finitely generated over A0. There exists e ≥ 1 such that A(me) = A0[A

(me)
1 ] for

any m ≥ 1. The algebra A is finitely generated as a A(e)-module.

Proof. Let x1, . . . , xr be a system of homogeneous generators of the A0-algebra
A of positive degrees d1, . . . , dr. Let d = l.c.m.(d1, . . . , dr) be the least common
multiple and hi = d/di. Let B be the graded subalgebra of A generated by
xhi

i , i = 1, . . . , r, all of the same degree d. It is clear that B ⊂ A(d). I claim that
the corresponding B-module A(d) is generated by the monomials

xi1
1 · · ·xir

r , ij < dj , j = 1, . . . , r, d1i1 + . . .+ drir ≡ 0 mod d.

It suffices to show that any monomial xn1
1 · · ·xnr

r ∈ A(d) can be written as a
linear combination of the monomials from above with coefficients in A0. We
write ni = diqi +mi, where 0 ≤ mi < di, to obtain

xn1
1 · · ·xnr

r = (xd1
1 )q1 · · · (xdr

r )qrxm1
1 · · ·xmr

r .

Since xn1
1 · · ·xnr

r ∈ A(d), we have
∑
nidi ≡ 0 mod d. This implies that

∑
midi ≡

0 mod d. This proves the claim. So A(d) is a finite algebra over B which is
finitely generated over A0, hence it is finitely generated over A0. Similar argu-
ment (without using the congruences modulo d) shows that A is a finite algebra
over A(d).

Let y1, . . . , ys be a system of monomials in x1, . . . , xr which generates A(d)

as a B-module. Let n0d be the largest of the degrees of yj . For any x ∈ Ad(n+1),
where n ≥ n0, write x =

∑
ajyj , where aj ∈ B. We may assume that each aj is

homogeneous of degree d(n+ 1)− deg yj . Since B is generated by Bd, each aj

can be written as a product aj = bja
′
j , where bj ∈ Bd, a

′
j ∈ B(n−deg yj)d. This

implies that x ∈ BdAnd. By induction on n we get A(n+k)d = BkdAnd ⊂ AkdAnd

for n ≥ n0, k ≥ 1. In particularly, Amnd = Am
dn for n ≥ n0. It remains to set

e = dn0, to obtain Ame = Am
e for all m ≥ 1. This shows that A(e)

m = (A(e)
e )m

and hence A(e) is generated by Ae.
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It is easy to see that D+(f) = D+(fe) and A(f) = A(fe). This can be used
to show that the morphism C = Spec A → C(e) = Spec A(e) corresponding to
the inclusion of rings defines an isomorphism of the projective spectra

ιe : Proj A→ Proj A(e). (3.8)

Note that
OProj A(e)(n) ∼= OProj A(ne).

From now on we shall assume that A is finitely generated over A0. Since
all our rings are Noetherian, this implies that each homogeneous part Ai is a
finitely generated A0-module. This also implies that each localization Af is a
finitely generated algebra over A0, hence each homogeneous localization A(f) is
a finitely generated algebra over A0. Thus X = Proj A is of finite type over
Spec A0.

Let
M =

⊕
iinZ

Mi, AiMj ⊂Mi+j

be a graded A-module. Here each Mi is a A0-submodule of the A0-module M .
It defines a quasicoherent sheaf F = M∼ on X. Its group of sections over D+(f)
is the homogeneous localization M(f) = A(f) ⊗A M .

For example,
OX(n) = A[n]∼,

where the A-module A[n] is the ring A with grading shifted by n, i.e. A[n]i =
An+i.

For any coherent sheaf F on X we set

F(i) = F ⊗OX
OX(i).

Let
Γ∗(F) =

⊕
i∈Z

Γ(X,F(i)). (3.9)

There is a canonical homomorphism of sheaves

Γ∗(F)∼ → F . (3.10)

It is an isomorphism if condition (∗) is satisfied. So, in general F may not be
isomorphic to M∼. However, we may always identify F with the sheaf F ′ on
Proj A(e) such that F = ι∗e(F ′), then F = M∼, where M = Γ∗(F ′) if e is large
enough.

In the case when F = M∼, we have a canonical homomorphism of graded
A-modules

ρM : M → Γ∗(M∼), mi 7→ mi/1, mi ∈Mi,

which induces an isomorphism of sheaves M∼ → Γ∗(M∼)∼. It inverts the
homomorphism of sheaves (3.10). Thus two modules M and Γ∗(M∼) define
isomorphic sheaves of OX -modules. The following lemma implies that the two
modules differ only in finitely many homogeneous parts.
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Lemma 3.1.4. Let M be a finitely generated graded A-module. Then M∼ = 0
if and only if M is a finite A-module. In particular, Proj A = ∅ if and only if
A is a finite algebra over A0.

Proof. If A is generated by elements of degree 1, this is well-known and can be
found in [Hartshorne], Chapter II, Exercise 5.8. Since A is a finite A(e)-module,
M is a finite as a A(d) module if and only if it is a finite as a A-module.

In particular, taking M = A, we obtain a homomorphism of graded rings

ρA : A→ Γ∗(OX) (3.11)

that defines the homomorphisms

Ai → Γ(X,OX(i)), i ∈ Z. (3.12)

Although these homomorphisms are bijective for i large enough, they may not
be isomorphisms for all i even if condition (∗) is satisfied.

Recall that an integral domain is called normal if it is integrally closed in
its field of fractions.

Proposition 3.1.5. Assume A0 is a field and A is a normal integral domain
of dimension ≥ 2. Then the homomorphism ρA is an isomorphism of graded
algebras. In particular, the homomorphisms (3.12) are bijective for all i ∈ Z.

Proof. Let j : C∗ ↪→ C = Spec A be the open embedding with complement
equal to the vertex of C. Then the natural homomorphism OC → j∗j

∗OC =
j∗OC∗ induces a homomorphism

A = Γ(C,OC) → Γ(C, j∗OC∗) = Γ(OC∗)

= Γ(X,π∗OC∗) =
⊕
i∈Z

Γ(X,OX(i)).

One can see that the composition of all these identification maps is the map
ρA. On the other hand, the standard properties of local cohomology show that
the kernel (resp. the cokernel) of the restriction map Γ(C,OC) → Γ(C∗,OC∗)
is isomorphic to the local cohomology H0

m0
(A) (resp. H1

m0
(A)) (see [Eisen-

bud], Theorem A4.1). It follows from the definition of local cohomology that
H0

m0
(A) = 0 for any integral domain A. Also it is known that H1

m0
(A) = 0 if

and only if depthAm0 ≥ 2. It remains to use that the localization of a normal
domain at prime ideals of height ≥ 2 are of depthAm0 ≥ 2 (see [Eisenbud], p.
458).

A closed subscheme Y of Proj A is defined by a coherent sheaf of ideals IY .
Let I ⊂ A be a homogeneous ideal and B = A/I. The corresponding closed
embedding of affine schemes Spec B ↪→ Spec A induces a closed embedding

i : Proj B ↪→ Proj A.
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Its image is isomorphic to the closed subscheme Y of X defined by the sheaf
of ideals IY = I∼. The sheaves B[n]∼ = OProj B(n) may not coincide with the
sheaves i∗(OX(n)) = OY ⊗OX

OX(n) = OY (n). The reason is that the canonical
homomorphism A → B, a 7→ ā induces a homomorphism (Af )n → (Bf̄ )n with
kernel (If )n which may not coincide with I(f)(Af )n if f is of degree 6= 1.

Conversely, a closed subscheme Y of X = Proj A defines the A-module
Γ∗(IY ). Tensoring the inclusions IY ↪→ OX by OX(n) we get a homomorphism
Γ∗(IY ) → Γ∗(OX) whose image is an ideal in Γ∗(OX). The pre-image of this
ideal under ρA is an ideal I in A. However, the canonical homomorphism I∼ →
IY may not be an isomorphism. So the corresponding morphism Y → Proj A/I
may not be an isomorphism.

Example 3.1.6. Let R be any commutative ring (as always assumed to be
Noetherian). The projective spectrum of the polynomial algebra RT0, . . . , Tn]
graded by deg Ti = qi > 0 is denoted by PR(q0, . . . , qn) or PR(q), where q =
(q0, . . . , qn). It is called the weighted projective space with weights q. The
positivity condition on the weights implies that the vertex ideal m0 is equal to
(T0, . . . , Tn) and the vertex is isomorphic to Spec K.

If A is generated over R by homogeneous elements f0, . . . , fn of positive
degrees q0, . . . , qn, then the surjection R[T0, . . . , Tn] → A of graded R-algebras
defines a closed embedding

Proj A ↪→ PR(q).

Taking q = (1, . . . , 1) and R = k is a field we get the usual notion of a
projective space Pn

k .

Let φ : A → B be a homomorphism of graded algebras. It defines a mor-
phism of affine quasicones φ# : C ′ = Spec B → C = Spec A. Contrary to the
case of affine spectra, it does not define a morphism Proj B → Proj A. The
reason is that a prime homogeneous ideal q ∈ Proj B could be mapped under
the morphism φ# to a prime homogeneous ideal containing the irrelevant ideal
of A. Let G(φ) be the open subset of Spec B whose complement is the closed
subset corresponding to the ideal φ(A+)B. The restriction of φ# to G(φ) defines
a Gm-equivariant morphism G(φ) → C∗ that induced a morphism

φ̃# : G(φ)+ → X = Proj A,

where G(φ)+ is the image of G(φ) in Proj B. Note that G(φ) = Proj B if φ is
surjective. In this case the morphism φ̃# is a closed embedding.

All of what we discussed in above can be extended to the relative case of
non-negatively graded OS-algebras A. We define Proj A by gluing together the
schemes Proj A(U) to obtain a scheme over S. Let q : X → S be a scheme over
S and B a non-negatively graded OX -algebra with B0 = OX . Suppose we have
a surjective homomorphism of graded OX -algebras φ : q∗A → B. Passing to
the projective spectra we get a morphism Proj B → Proj q∗A ∼= Proj A×S X.
Composing it with the projection Proj A ×S X → Proj A we get a morphism
of S-schemes

fφ : Proj B → Proj A. (3.13)
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In particular, suppose Proj B ∼= X, for example, when B = S•L, where L is an
invertible sheaf on X. Then we obtain a morphism X → Proj A. For example,
suppose A = S•E for some locally free sheaf E , a surjective homomorphism
q∗A → S•L is defined by a surjective homomorphism of OX -modules q∗E → L.
In this case we obtain that a morphism X → P(E) (see Proposition 7.12 from
Chapter II of [Hartshorne]). Here, for any locally free sheaf E on S we set

P(E) = Proj S•E .

It is called the projective bundle associated to E . Taking S = Spec k, we see that
P(E) ∼= Pr

k, where r+ 1 = rankE and maps of k-schemes X → Pr
k are defined by

a choice of a surjection Or+1
X → L, i.e. by a collection of r+ 1 sections of L not

vanishing simultaneously at any point of X.

3.2 Ample invertible sheaves

Let X be a proper scheme over a noetherian ring R and L be an invertible sheaf
on X.

Proposition 3.2.1. The following properties are equivalent

(i) for any coherent sheaf F on X there exists n0 > 0 such that F ⊗ Ln is
generated by its global sections for any n ≥ n0;

(ii) for any coherent sheaf F on X there exists n0 > 0 such that Hi(X,F ⊗
Ln) = 0 for all n ≥ n0 and all i > 0;

(iii) there exist n > 0 and global sections s0, . . . , sn of Ln such that the open
sets Xsi = {x ∈ X : si(x) 6= 0} are affine and form an open covering of
X;

(iv) there exists n > 0 and a closed embedding i : X ↪→ P = Pr
R for some r > 0

such that i∗(OP(1)) ∼= Ln;

(v) the graded algebra

A(X,L) =
∞⊕

i=0

Γ(X,Li)

is finitely generated and there exists an isomorphism φ : X → Y =
Proj A(X,L) such that φ∗(OY (i)) ∼= Li for all i ≥ 0.

Proof. (i) ⇔ (ii) This is Chapter III, Proposition 5.3 from [Hartshorne].
(i) ⇒ (iii) ⇒ (iv) ⇒ (i) This is proved in the proof of Theorem 7.6 in Chapter

II of [Hartshorne].
(iv) ⇒ (v) Let Y = i(X) and J be the ideal sheaf of Y . We have the

standard exacts sequence

0 → J (n) → OP(1) → i∗Ln → 0. (3.14)
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Replacing n by its positive multiple, we still have (iv) (use the Veronese em-
bedding). Since (iv) implies (ii), we may assume that H1(P,J (kn)) = 0 for all
k ≥ 1. This implies that Γ(P,OP(k) → Γ(X,Lkn) is surjective for all k ≥ 1.
Thus the graded algebra A(X,Ln) = A(X,L)(n) is isomorphic to the quotient of
the graded R-algebra Γ∗(OP(1)) ∼= R[T0, . . . , Tr], and hence finitely generated.
It follows from the proof of Lemma 3.1.3 that A(X,L) is finitely generated as
well.

Since (iv) implies (i), we can follow the proof of (i) ⇒ (iii) to show that
the open sets Xs, s ∈ A(X,L)>0 form a basis of topology of X and those of
them which are affine form an open covering of X. Let (sα) be a family of
sections forming an open affine covering. We may assume that sα ∈ Γ(X,Lnα)
and the set of indices is finite. For each α define a morphism of affine schemes
Xsα

→ D+(sα) ⊂ S = Proj A(X,L) by using the restriction homomorphism

OS(D+(sα)) → OX(Xα), a/sd
α 7→ (a|Xsα

)(sd
α|U)−1.

Using Lemma 5.14 from Chapter II of [Hartshorne], one shows that this defines
an isomorphism φα = Xsα

→ D+(sα) and it is not difficult to see that the
isomorphisms fα can be glued together to define a global isomorphism φ : X →
S. It follows from the definition of OS(n) that φ∗(OS(n)) ∼= Ln.

(v) ⇒ (iv) Since A(X,L) is finite generated over R, we can arrange a sur-
jection of graded R-algebras φ : R[T0, . . . , Tr] → A(X,L). As we noticed be-
fore, we can pass to projective spectra to define a closed embedding i : S =
Proj A(X,L) → Pr

R.

For any noetherian scheme X (not necessarily proper over a ring), an in-
vertible sheaf L on X is called ample if property (i) in Proposition 3.2.1 is
satisfied (see [Hartshorne], p. 153). An invertible sheaf on a scheme X over a
ring R is called very ample if there exists an embedding i : X ↪→ P = PN

R with
i∗(OP(1) ∼= L (see [Hartshorne], p. 120). So our Proposition implies that, under
its assumption, an invertible sheaf L is ample if and only Ln is very ample for
some n > 0.

We will need one more property of an ample invertible sheaf.

Corollary 3.2.2. Let L be an ample invertible sheaf on an integral scheme X
proper over a field k. Then the graded k-algebra A(X,L) is a normal finitely
generated algebra over k.

Proof. Let A = A(X,L) and X = Proj A. It follows from Proposition 3.2.1
(v) that the canonical homomorphism ρA : A → Γ∗(OX(1)) defined in (3.11)
is an isomorphism. If dimA ≥ 2, the proposition follows from Proposition . If
dim = 1, by (7.6), we have dimX = 0. In this case X ∼= Spec K for some finite
extension of fields K/k and the assertion is obvious. We get A = S•(K) ∼=
K[t].



3.3. Q-DIVISORS 39

Remark 3.2.3. A closed integral subscheme X of P = Pn
k is called projectively

normal if the restriction homomorphism

Γ∗(OP(1)) ∼= k[T0, . . . , Tn] → Γ∗(OX(1))

is surjective. Let IX be the sheaf of ideals defining X. The ideal IX = Γ∗(IX)
in k[T0, . . . , Tn] is called the homogeneous ideal of X and the quotient ideal
k[X] = k[T0, . . . , Tn]/IX is called the homogeneous coordinate algebra of X.
The Corollary implies that X is projectively normal if and only if k[X] is nor-
mal. One checks that the fields of fractions of k[X] and Γ∗(OX(1)) are both
isomorphic to k(X)(t), where k(X) is the field of rational functions on X. Us-
ing exact sequence (8.3.2) and property (iii) of ample sheaves from Proposition
3.2.1, we see that there exists a positive number d such that the twisted sub-
algebras k[X](d) and Γ∗(OX(1))(d) are isomorphic. Since k[X] ⊂ Γ∗(OX(1))
and Γ∗(OX(1)) is integral over Γ∗(OX(1))(d) = k[X](d), we have the equality
k[X] = Γ∗(OX(1)).

3.3 Q-divisors

Let X be a noetherian integral scheme of dimension ≥ 1 and X(1) be its set of
points of codimension 1 (i.e. points x ∈ X with dimOX,x = 1). We assume that
X is regular in codimension 1, i.e. all local rings of points from X(1) are regular.
In this case we can define Weil divisors on X as elements of the free abelian
group WDiv(X) = ZX(1)

and also define linear equivalence of Weil divisors and
the group Cl(X) of linear equivalence classes of Weil divisors (see [Hartshorne],
Chap. 2, §6).

We identify a point x ∈ X(1) with its closure E inX. We call it an irreducible
divisor. Any irreducible reduced closed subscheme E of codimension 1 is an
irreducible divisor, the closure of its generic point.

For any Weil divisor D let OX(D) be the sheaf whose section on an open
affine subset U consists of functions from the quotient field Q(O(U)) such that
div(Φ) +D ≥ 0.

It follows from the definition that OX(D) is torsion free and, for any open
subset j : U ↪→ X which contains all points of codimension 1, we have

j∗j
∗OX(D) = OX(D). (3.15)

These two conditions characterize reflexive sheaves on any normal integral scheme
X. For readers familiar with the theory of local cohomology, it is clear that the
latter condition is equivalent to the condition that for any point x ∈ X with
dimOX,x ≥ 2 the depth of the OX,x-module Fx is greater or equal than 2.
By equivalent definition, a reflexive sheaf F is a coherent sheaf such that the
canonical homomorphism F → F∗∗ is an isomorphism. Our sheaves OX(D) are
reflexive sheaves of rank 1(the rank of a coherent sheaf on an integral scheme
is the dimension of the stalk at the generic point over its residue field). Con-
versely, a reflexive sheaf F of rank 1 on a normal integral scheme is isomorphic
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to OX(D) for some Weil divisor D. In fact, we restrict F to some open subset
j : U ↪→ X with complement of codimension ≥ 2 such that j∗F is locally free
of rank 1. Thus it corresponds to a Cartier divisor on U . Taking the closure
of the corresponding Weil divisor in X, we get a Weil divisor D on X and it is
clear that F = j∗j

∗F ∼= OX(D). In particular, we see that any reflexive sheaf
of rank 1 on a regular scheme is invertible. It is not true for reflexive sheaves of
rank > 1. They are locally free outside of a closed subset of codimension ≥ 3.

Reflexive sheaves of rank 1 form a group with respect to the operation

L · G = (L ⊗ G)∗∗, L−1 = L∗.

For any reflective sheaf L and an integer n we set

L[n] = (L⊗n)∗∗.

One checks that
OX(D +D′) = OX(D) · OX(D′)

and the map D 7→ OX(D) defines an isomorphism from the group Cl(X) to the
group of isomorphism classes of reflexive sheaves of rank 1.

Let
WDiv(X,Q) = WDiv(X)⊗Q = QX(1)

.

Its elements are called Weil Q-divisors. Any such a divisor can be uniquely
written in the form D =

∑
aiEi, where Ei are irreducible divisors and ai are

rational numbers. For any Weil Q-divisor D =
∑
aiEi, we set

bDc =
∑

baicEi, dDe =
∑

daieEi,

OX(D) = OX(bDc).

where bαc (resp. dαe) denotes the largest integer less or equal than α (resp. the
smallest integer greater or equal than α).

Obvioulsy any Weil Q-divisor can be written uniquely in the form

D = bDc+
∑

aiEi, D ∈ WDiv(X), 0 ≤ ai < 1.

We extend the notion of linear equivalence to Weil Q-divisors by defining
D ∼ D′ if the difference is the divisor div(Φ) of some rational function on X.
Let Cl(X,Q) be the group of linear equivalence classes of Weil Q-divisors. It is
easy to see that we have an exacts sequence

0 → Cl(X) → Cl(X,Q) → Div(X)⊗Q/Z → 0.

For any Weil Q-divisor D we set

L(D) := H0(X,OX(bDc).
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The multiplication maps OX(D)⊗OX(D′) → OX(D+D′) define a graded sheaf
of OX -algebras

A(X,D) =
⊕
i∈Z

OX(iD). (3.16)

Passing to global sections we can define the graded algebra

A(X,D) =
∞⊕

i=0

L(iD). (3.17)

It is important to understand that this is a direct sum, although all the graded
parts are subspaces in the field of rational functions K on X. One may view
A(X,D) as a subalgebra of the field K(T ) by considering an isomorphic graded
subalgebra of K(T )

A(X,D)′ =
∞⊕

i=0

L(iD)T i.

Recall that a Weil divisorD is called a Cartier divisor if it is locally principal,
i.e. there exists an open cover (Ui)i∈I of X such that the image of D under
the restriction map ZX(1) → ZU

(1)
i , i ∈ I, is linearly equivalent to zero. For any

Cartier divisor D, the sheaf OX(D) is invertible and any invertible sheaf L is
isomorphic to a sheaf OX(D) for a Cartier divisor D, defined uniquely up to a
linear equivalence. In particular, there is an isomorphism of groups

A(X,D) ∼= A(X,OX(D)).

The subgroup of Cl(X) of the linear equivalence classes of Cartier divisors is
denoted by Pic(X). It is called the Picard group of X. It is also can be defined
as the group of isomorphism classes of invertible sheaves on X. All of this can
be found in [Hartshorne], Chapter II, §6.

Definition 3.3.1. A Weil Q-divisor D is called Q-Cartier if rD is a Cartier
divisor for some integer r. A Cartier Q-divisor is called ample if there exists
r > 0 such that the sheaf OX(rd) is an ample invertible sheaf.

Proposition 3.3.1. Let D be an ample Q-Cartier divisor on an integral scheme
X proper over a field k. Then the graded algebra A(X,D) is a finitely generated
graded normal k-algebra.

Proof. Applying Lemma 3.1.3, we may replace D with rD to assume that D is
an ample Cartier divisor. Then the assertion follows from Corollary 3.2.2.

Example 3.3.2. Let G ⊂ PGL(2,C) be a polyhedral group with exceptional
orbits over the points p1, . . . , pr and e1, . . . , er be the orders of the corresponding
stabilizer subgroups. Consider the rational divisor

D = −KP1 −
r∑

i=1

ei − 1
ei

pi.
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I claim that, if G is not cyclic of odd order, then

A(X,D) ∼= C[x, y]Ḡ,

where Ḡ ⊂ SL(2,C) is the corresponding binary polyhedral group. I will check
this only in two cases: G is cyclic of even order n and G = T is the tetrahedral
group. Other cases are left as exercises (or see [Séminaire sur les singularités
des surfaces]).

Assume G is cyclic of even order 2e. In this case r = 2, e1 = e2 = e. We
may take X = P1, p1 = 0, p2 = ∞ and

D = 2∞− e− 1
e

0− e− 1
e

∞ = −e− 1
e

0 +
e+ 1
e

∞.

We find that

bDc = ∞− 0, A(X,D)1 is spanned by u = t,

biDc = i∞− i0, i < e, A(X,D)i is spanned by ui = ti,

beDc = (e+1)∞−(e−1)0, A(X,D)e is spanned by ue = te, v = te+1, w = te−1.

Note that bmDc = mD if e|m. This implies that bkDc = edD + brDc if
k = ed + r, 0 ≤ r < e. Let A = A1 + A2 be an effective Weil divisor on P1

K

written as a sum of two effective Weil divisors. Any function from the space
L(A) can be written as the product of a function from L(A1) and a function
from L(A2) (this is of course true only when the curve is of genus 0). This shows
that A(X,D) is generated by u, v, w. It is immediate to check that

vw = u2e.

Thus A(X,D) is isomorphic to the ring of invariants of a cyclic subgroup of
order 2e in SL(2,C).

Let us take now p1, p2 as above and p3 = 1 = (1, 1). Consider the divisor

D = 2p3 −
1
2
p1 −

2
3
p2 −

2
3
p3.

We have

A(X,D)n = L(nD) = L(2np3 + b−n
2
cp1 + b−2n

3
cp2 + b−2n

3
cp3).

We find that bnDc = 0 for n = 1, 2, 5, and

b3Dc = 4p2 − 2p1 − 2p3, A(X,D)3 is spanned by u = t2(t− 1)2,

b4Dc = 5p2 − 2p1 − 3p3, A(X,D)4 is spanned by v = t2(t− 1)3,

b6Dc = 8p2 − 3p1 − 4p3, A(X,D)6 is spanned by w = t3(t− 1)4(
t

2
− 1), u2.
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As above we show that A(X,D) is generated by u, v, w. We check directly that

u4

4
− v3 = w2.

After scaling we get that
A(X,D) ∼= C[x, y]T̄ ,

the algebra of invariants of the binary tetrahedral group.

Remark 3.3.3. The group G acts on P1 with the quotient P1/G ∼= P1. Recall
that a quotient of a projective variety X by a finite group is defined by cover-
ing X by invariant open affine subsets Ui and gluing the spectra of the ring of
invariants OX(Ui)G. In particular, the quotient of an normal variety is normal,
and hence the quotient of a nonsingular curve is a nonsingular curve. Obvi-
ously, the quotient of P1 is a rational curve, hence is isomorphic to P1. The
projection π : P1 → P1/G is a finite map ramified at the exceptional orbits with
ramification indices equal to the orders of the corresponding stabilizer groups.
Applying the Hurwitz formula (see [Hartshorne], p. 301) we find that

π∗(−KP1 −
r∑

i=1

ei − 1
ei

pi) = −KP1 .

Similarily, let C be a nonsingular projective curve of genus g > 1 over an
algebraically closed field k and G be a finite group of automorphisms of C
of order coprime to the characteristic of k. Assume that C/G ∼= P1 and let
π : C → P1 be the projection map. Let p1, . . . , pr be the branch points of the
finite map π and ei be the ramification indices of points in π−1(pi). Then the
Hurwitz formula gives

KC = π∗(D),

where

D = KP1
k

+
r∑

i=1

ei − 1
ei

pi

is a rational ample divisor on P1. One may ask when A(X,D) is isomorphic
to a graded algebra of the form k[x, y, z]/(f(x, y, z)). The answer is known. It
happens if and only if (e1, . . . , er) is one of the following

r = 3 : (2, 3, 9), (2, 4, 7), (3, 3, 6), (2, 3, 8), (2, 4, 6), (3, 3, 5), (2, 5, 6),
(3, 4, 5), (2, 5, 5), (3, 4, 4), (2, 3, 7), (2, 4, 5), (3, 3, 4), (4, 4, 4);

r = 4 : (2, 2, 2, 3), (2, 2, 3, 3), (2, 2, 2, 4), (2, 2, 3, 4);
r = 5 : (2, 2, 2, 2, 2), (2, 2, 2, 2, 3).

For example, in the case (2, 3, 7) we can take f(x, y, z) = x2 + y3 + z7.
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Theorem 3.3.4. Let C = Spec A be a normal affine quasicone of dimension
≥ 2. There exists an ample Cartier Q-divisor D on X = Proj A such that there
is an isomorphism of graded algebras

A ∼= A(X,D).

The divisor D is defined uniquely up to linear equivalence.

Proof. We follow the proof from [Kollar]. Note that X is a normal projective
scheme over the ring K = A0. To see why it is normal, we replace A with A(e)

for some e > 0 to assume that A = A0[A1]. Then the localization rings Af are
isomorphic to A(f)[T, T−1] are normal. This implies that A(f) are normal rings.

Applying Proposition 3.2, it is enough to construct a Weil Q-divisor D such
that for any n there exists an isomorphism

A(X,D)n = L(nD)) → H0(X,OX(n))

compatible with multiplication maps.
We already noted that a coherent sheaf F on a normal scheme X is reflexive

if and only if F is torsion-free and for any open inclusion j : U ↪→ X with
complement of codimension ≥ 2 the canonical homomorphism F → j∗j

∗F is
bijective. Our sheaves OX(n) are obviously torsion-free because A(f) ⊂ Af .
They also satisfy the second condition. In fact, let i : V = π−1(U) ↪→ C∗, where
j : U ↪→ X as above. Since C∗ is normal, by Serre’s criterion, i∗OV = OC∗ .
Let π′ = π|V . Now

j∗(π′∗OV ) = π∗(i∗OV ) = π∗OC∗ .

It remains to recall that

π∗OC∗ =
⊕
n∈Z

OX(n), π′∗OV =
⊕
n∈Z

j∗OX(n).

Since OX(n) is obviously of rank 1, it is isomorphic to OX(Dn) for some
Weil divisor Dn. Choose e such that A(e) = A0[Ae]. Then OX(en) are invertible
sheaves for all n and the multiplication mapsOX(en)⊗OX(em) → OX((n+m)e)
are isomorphisms.

Let OX(1)⊗e → OX(e) be the multiplication map. Passing to the double
duals we get a map OX(1)[e] → OX(e). A nonzero map OX(D) → OX(D′)
exists if and only if D′ −D is effective. Thus

De − eD1 =
∑

dsEs

for some positive integers ds. Similarily, considering the maps OX(1)⊗i →
OX(i) for all i > 0 and passing to the double duals, we obtain

Di − iD1 ≥ 0.

The maps OX(i)⊗e → OX(ie) = OX(iDe) show that

Die − eDi ≥ 0.
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Thus we get
0 ≤ Die − eDi = i(De − eD1)− e(Di − iD1),

hence e(Di − iD1) ≤ i(De − eD1) and

Di ≤ iD1 +
∑

b i
e
cEi.

This implies that

L(Di) = H0(X,OX(i)) ⊂ L(iD1 +
∑

bids/ecEs), i ≥ 0.

Let
D = D1 +

∑ ds

e
Es. (3.18)

We have
iD1 +

∑
b i
e
cEi = biDc,

and hence an inclusion of graded algebras

A =
∞⊕

i=0

H0(X,OX(i)) ⊂ A(X,D).

Since eD = eD1 +
∑
dsEs = De, the subalgebras A(e) and A(X,D)(e) coincide.

Thus A(X,D) is integral over A, and the algebras of invariants under the action
of µe map coincide. This implies that the fields of fractions of A and A(X,D)
are isomorphic, hence the map Spec A(X,D) → C is the normalization map.
Since C is normal, it is an isomorphism.

It remains to show the uniqueness of D. Since the affine X-scheme π : C∗ →
X does not depend on D we have an isomorphism of OX -algebras⊕

ı∈Z
OX(iD) ∼=

⊕
ı∈Z

OX(iD).

Thus the sheaf OX(D) is determined uniquely by A, up to isomorphism. This
shows that the divisor eD is defined uniquely up to a linear equivalence. Hence
D is defined uniquely up to linear equivalence.

Definition 3.3.2. The Weil Q-divisor

D − bDc =
∑ ks

es
Es, 0 ≤ ks < es, (ks, es) = 1 if ks > 0,

is called the Seifert divisor of the quasicone C = Spec A.

For example, the Seifert divisor of a Kleinian surface C[x, y]Ḡ, where Ḡ is not
cyclic , is equal to 1

e1
p1 + 1

e2
p2 + 1

e3
p3, where p1, p2, p3 correspond to exceptional

orbits. If G is a cyclic group, the Seifert divisor depends on the grading. For
example, if uv − w2e is graded with deg u = deg v = n,degw = 1, it is equal to
1
e (p1 + p2).
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A similar proof shows an inclusion of sheaves for all i ∈ Z

OX(i) = OX(Di) ⊂ OX(iD1 +
∑

b ias

e
cEs).

We use the isomorphisms

OX(i) ∼= OX(i+ e)⊗OX(−e)

for i < 0. Using the normality of the rings O(f), we conclude as above that
there exists an isomorphism of the graded OX -Algebras⊕

i∈Z
OX(i) ∼=

⊕
i∈Z

OX(biDc) = A(X,D). (3.19)

We know that for any ample Cartier divisor D on a proper integral scheme
proper over k the algebra A(X,D) is a finitely generated normal algebra over
k. This can be extended to any ample Cartier Q-divisor D.

Proposition 3.3.5. Let D be an ample Cartier Q-divisor D on an integral
scheme proper over a field k. Then the graded algebra A(X,D) is a normal
finitely generated algebra over k.

Proof. Assume eD is a Cartier divisor. Then it is ample and hence the subalge-
bra A(X,D)(r) is finitely generated over k. As we remarked several times this
implies thatA(X,D) is finitely generated. Since Proj A(X,D) ∼= Proj A(X,D)(r),
we have X = Proj A(X,D). As always we have a canonical homomorphsm
(3.11) ρ : A(X,D) → Γ∗(OX). By Proposition 3.2, it is enough to show that
ρ is bijective. Since A(X,D)(e) = Γ∗(OX)(e), the homomorphism ρ is injec-
tive. We have also a sheaf version of ρ, an injective homomorphism of graded
OX -algebra

ρ̃ : A(X,D) →
⊕
i∈Z

OX(i).

Let OX(i) ∼= OX(Di) for some Weil divisor Di. The injective homomorphisms
ρ̃i : OX(iD) → OX(i) imply that biDc ≤ Di. Following the proof of Theorem
3.3.4, we find a Q-divisor D′ such that Di ≤ iD′ and Dke = keD′. Thus
we obtain D ≤ D′ and eD = De = eD′. This gives D = D′, and hence
A(X,D) = A(X,D′).

Example 3.3.6. Let R be a discrete valuation ring (i.e. a regular local ring
of dimension 1). Let mR = (t) be its maximal ideal and k = R/mR be its
residue field which we assume to be algebraically closed. Let 0 < q < e be
a pair of coprime integers and D = q

ep be a Weil Q-divisor on X = Spec R,
where p = V (m). We assume that the characteristic of k does not divide q
and e. Consider the R-module corresponding to the sheaf OX(D) and the
corresponding graded algebra A(X,D). We would like to describe it explicitly.

LetK = Q(R) be the fraction field of R and L = K(t1/e) be a cyclic Kummer
extension of K. The integral closure of R in L is a discrete valuation ring with
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maximal ideal mR′ = (u), where t = ue. By the Kummer theory, the Galois
group of L/K is a cyclic group µe(k) of order e generated by an element g which
acts by sending u to εu, where ε is a primitive eth root of unity. It leaves R′

invariant and the invariant ring R′µe(k) coincides with R.
Consider the action of µe(k) on R′[Z] by extending the action on R′ to

polynomials by requiring that Z is sent to ε−qZ. Let us compute the invariant
ring A. Since R′ = R′[Z]0 and R′µe(k) = R, we can consider A as a graded
R-algebra

A = R′[Z]µe(k) =
∞⊕

i=0

Ai,

via the standard grading on the polynomial ring. We check immediately that

A0 = R, A1 = uqZ, Ae = A0Z
e.

Thus, the image of the multiplication map A⊗e
1 → Ae is equal to (tq)Ze. This

shows that the corresponding Q-divisor is q
eP .

Let X be any normal irreducible scheme and D be a Weil Q-divisor D with
the Seifert divisor D−bDc =

∑ qi

ei
Ei. The computations from above show that

the sheaf of graded algebras ⊕∞i=0OX(iD), at a geometric generic point η̄i of Ei

looks like the OX,η̄i(U,Z]µe , where the action is given as above by the numbers
qi, ei.

3.4 Cylinder constructions

Let L be an invertible sheaf on X. Consider the projective vector bundle P(L⊕
OX).

It is convenient to identify S•(L⊕OX) with the graded algebra S•L[t] locally
isomorphic to the graded polynomial algebra O(U)[tU , t]. We have tU = gUV tV ,
where gUV are the transition functions for L but t can be chosen the same for all
U . There are two natural open subsets in P(L⊕OX). One is defined by tU 6= 0
and another by t 6= 0. The first set is locally isomorphic to Spec O(U)[t/tU ] and
globally isomorphic to V(L−1) = Spec S•L−1. The second one is locally iso-
morphic to Spec O(U)[tU/t] and globally isomorphic to V(L) = Spec S•L. The
complement of the open subset V(L) is the section at infinity , i.e. the closed
subscheme S∞ isomorphic to X that is locally defined by t = 0. The comple-
ment of the open subset V(L−1) is the zero section, i.e. the closed subscheme
isomorphic to X that is locally defined by tU = 0. The intersection of the
two open subsets is locally isomorphic to Spec O(U)[tU , t](tU t)

∼= O(U)[z, z−1],
where z = tU/t.

We can combine the two OX -algebras S•L and S•L−1 together to define a
Z-graded OX -algebra

A =
⊕
i∈Z

Li.

Then
A+ :=

⊕
i≥0

Li ∼= S•L, A− :=
⊕
i≤0

Li ∼= S•L−1.
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Thus the projective bundle P(L⊕OX) becomes isomorphic to the gluing together
the open subsets Spec A± along their common open subset Spec A.

Assume now that L is an ample invertible sheaf on a complete scheme X
over a field k. Then the ring A = A(X,L) = Γ(A+) is a finitely generated
k-algebra with Proj A ∼= X. We have a canonical morphism

p : Spec A+
∼= V(L) → C = Spec A

corresponding to the restriction maps A→ A≥0(U). Since

C∗ ∼= Spec ⊕i∈Z OX(i) ∼= Spec A

both schemes contain isomorphic open subsets, and it is easy to see that the
isomorphism is equal to the restriction of p. Also it is easy to see that p(S0)
is equal to the vertex of C. Thus we can say that the morphism p blows down
the zero section S0. If X is a smooth scheme over k, then Spec A+ is locally
isomorphic to the affine line over X, hence is smooth too. Thus p is a resolution
of the vertex of the affine quasicone C.

For example, let X be a closed subvariety of a projective space Pn
k over a

field k and let IX = Γ∗(IX) be its homogeneous ideal in k[T0, . . . , Tn]. Consider
the affine cone over X defined in Example 3.1.2. Let L = OX(1). It is an ample
(in fact, very ample) invertible sheaf on X. In the case when X is projectively
normal (see Remark 3.2.2), the ring A = A(X,L) is isomorphic to the homo-
geneous coordinate ring k[X] = k[T ]/IX of X and the affine cone CX coincides
with the affine quasicone Spec A. In general, Spec A is the normalization of
CX . Thus the composition p : V(L) → Spec A → CX is a partial resolution of
the vertex of CX (a resolution if X is smooth).

Consider IX as a homogeneous ideal in k[T0, . . . , Tn+1]. The corresponding
closed subvariety C̄X of Pn+1

k is the projective cone over X. If we identify
An+1

k with an open subset Tn+1 6= 0 of to the projective space Pn+1
k , then the

projective cone is the closure of the affine cone in Pn+1
k . The hyperplane Tn+1

intersects C̄X at a closed subvariety of C̄X isomorphic to X, its complement is
the affine cone CX .

The homomorphism of graded rings

S•(L ⊕OX) ∼= S•L[t] → k[C̄X ] = k[T0, . . . , Tn][Tn+1]

defines a morphism p̄ : P(L⊕OX) → C̄X . Its restriction over CX coincides with
the composition V(L) → Spec A → CX . It is a partial resolution of the vertex
of C̄X .

We will show in the next Lecture that the partial resolution morphisms are
the blowing-up morphisms with center at the vertex.

Next let X be a normal integral scheme over a field X and D be an ample
Cartier Q-divisor on X. Consider the Z-graded OX -algebras

AX(D) =
⊕
i∈Z

OX(iD),
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AX(D)+ =
⊕
i≥0

OX(iD), AX(D)− =
⊕
i≤0

OX(iD),

Let

π± : C(X,D)± := Spec AX(D)± → X, π : C(X,D)∗ := Spec AX(D) → X

be the corresponding affine schemes over X.
By definition,

A(X,D) ∼= Γ(AX(D)+) =
⊕
i≥0

Γ(X,OX(iD)).

Let
CX(D) = Spec A(X,D).

By Proposition 3.3.5, CX(D) is an affine quasicone over k, X ∼= Proj A(X,D)
and OX(iD) ∼= OX(i). Thus C(X,D)∗ is isomorphic to the punctured affine
quasicone CX(D)∗ and the projection π coincides with the canonical map π :
CX(D)∗ → X.

Following M. Demazure, we call C(X,D)+ the affine cylinder associated to
the pair (X,D) or (X,OX(D)). In the case when D is an ample Cartier divisor,
the affine cylinder of the pair (X,D) is the line bundle V(OX(D)).

If rD is a Cartier divisor, then AX(rD) = AX(D)(r) coincides with the OX -
algebra A from above, where L = OX(rD). We can extend the definition of the
projective bundle P(L⊕OX) to define the projective cylinder associated to the
pair (X,D):

Ĉ(X,D) = Proj AX(D)+[t].

Let
C(X,D)± := Spec AX(D)±.

The inclusion of graded OX -algebras AX(rD) = AX(D)(r) ⊂ AX(D) defines
finite morphisms

q±r : C(X,D)± → C(X, rD)±.

They are glued together to define a finite morphism

qr : Ĉ(X,D) → Ĉ(X, rD) ∼= P(L ⊕OX). (3.20)

In particular, Ĉ(X,D) ∼= P(OX(D)⊕OX) if D is a Cartier divisor.
Consider a surjective homomorphism of OX -algebras φ : AX(D)+[t] →

S•OX
∼= OX [t] that corresponds to the surjection AX(D)+ → A0 = OX . It

defines a morphism of schemes

s+ : X ∼= Proj OX [t] → Proj AX(D)+[t] = Ĉ(X,D)

(see (3.13)).
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Also we can consider a surjective homomorphism ofOX -algebras φ : A+[t] →
AX(D)+ with kernel (t). Passing to the projective spectra we get a morphism
of OX -schemes

s− : X ∼= Proj AX(D)+ → Proj A+[t] = Ĉ(X,D).

We call the morphism s+ (resp. s−) the zero section (resp. section at infinity).
We will often identify them with there images S+ = s+(X) and S− = s−(X).

Proposition 3.4.1.
C(X,D) \ S± ∼= C(X,D)∓.

Proof. Suppose that D is Cartier and let L = OX(D). Then s+ corresponds to
the surjection S•(L ⊕OX) → S•OX defined by the projection L ⊕OX → OX .
The section s− corresponds to the surjection S•(L ⊕ OX) → S•L defined by
the projection L⊕OX → L. We have already explained in the beginning of the
section that P(L ⊕OX) \ s±(X) = V(L∓1).

Consider the morphism qr : Ĉ(X,D) → Ĉ(X, rD) from (3.20), where rD is
Cartier. It follows from the definition of the sections s± that the composition
of X

s±→ Ĉ(X,D)
qr→ Ĉ(X, rD) is the zero section (resp. the section at infinity)

of Ĉ(X, rD). The assertion follows from this.

Over an open affine set U ⊂ X this morphism is obtained from the homo-
morphism of the graded OX(U)-algebras

AX(rD)+(U)[t] ∼= OX(U)[tU , t] → AX(D)+(U)[t](r), tiU t
j 7→ tiU t

rj ,

where tiU ∈ AX(rD)i = AX(D)ri. The pre-image of the closed subscheme S+

(resp. S−) of Ĉ(X, rD) defined locally by tU = 0 (resp. t = 0) is a closed
subscheme of Ĉ(X,D) whose reduced subscheme S(X,D)+ (resp. S(X,D)−)
is isomorphic to X. The subschemes S(X,D)± are the images of the sections
s± : X → Ĉ(X,D) of the canonical projection Ĉ(X,D) → X. It follows from
Proposition 3.3.5 that the algebra A(X,D) = Γ(AX(D)+) is a normal finite gen-
erated algebra. Let CX(D) = Spec A(X,D) be the affine quasicone correspond-
ing to the algebra A(X,D). Then C(X,D)∗ = ⊕i∈ZOX(i) ∼= Spec AX(D). The
restriction map A(X,D) = Γ(AX(D)+) → AX(D))+(U) define a morphism
over X

p : C(X,D)+ → CX(D).

Its restriction to Spec A(X,D) is an isomorphism onto CX(D)∗. Again we see
that p can be viewed as the blow-down of the section S(X,D)+ to the vertex
of the affine quasicone CX(D). However, even when X is smooth, the scheme
CX(D)+ is not necessarily smooth.

To summarize we have

Ĉ(X,D) = S(X,D)+
⊔
S(X,D)−

⊔
CX(D)∗

= C(X,D)+
⊔
S(X,D)− = C(X,D)−

⊔
S(X,D)+.
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Proposition 3.4.2. Ĉ(X,D) is a projective normal variety over k.

Proof. We know that Ĉ(X,D) is a finite over Ĉ(X, rD), where rD is a Cartier
divisor. Since Ĉ(X, rD) is a projective bundle over X, Ĉ(X,D) is projective
over X. Since Ĉ(X,D) is covered by the open subsets C(X,D)+ and C(X,D)−,
it suffices to prove the normality of these subsets. Let U = Spec A be an affine
open subset of X and C(U,D)+ = π−1

+ (U). If we take U small enough such the
divisor D|U is Cartier, then C(U,D)+ ∼= A1

U . So we can identify the coordinate
ring of C(U,D)+ with the subring of the field K = Q(A)(t) that consists of
rational functions of the form

∑
n≥0 φnt

n, where div(φn) + nD|U ≥ 0. Let
D =

∑
x∈X(1) mxEx, where Ex is the closure of x in X. Let νx be the valuation

of Q(A) defined by x and ν′x be the valuation of K defined by ν′x(
∑
φnt

n) =
inf{νx(φn)+nmx}. Then C(U,D)+ is the intersection of the discrete valuation
rings ν−1

x (Z≥0) for all x ∈ U (1), and hence is normal. Similarily we prove that
C(X,D)− is normal.

Remark 3.4.3. We know that the open subset C(X,D)+ of Ĉ(X,D) admits a
morphism p : C(X,D)+ → CX(D) and it is an isomorphism over CX(D)∗. One
can extend the morphism p to the whole Ĉ(X,D) by introducing the projective
quasicone C̄X that contains C(X,D)− as its open subset whose complement is
equal to the vertex. It is defined by

C̄X := Proj A(X,D)[t],

where the grading in A(X,D)[t] is defined by A(X,D)[t]n =
∑

i+j=nA(X,D)it
j .

The graded ideal (t) defines a closed embedding τ : X ↪→ C̄X . Its complement
is the affine set D+(t) = Spec A(X,D)[t](t) ∼= Spec A(X,D) = CX(D).

The inclusion of the vertex x0 = V (m0) of CX(D) in CX(D) ⊂ C̄X corre-
sponds to passing to the projective spectra under the canonical homomorphism
A(X,D)[t] → A(X,D)/m0

∼= k[t]. The natural inclusion A(X,D) ⊂ A(X,D)[t]
defines, after passing to the projective spectra, a morphism f : C̄X(D)∗ := C̄X \
{x0} → X. Over an open subset D+(f) of X the morphism corresponds to the
inclusion A(X,D)(f) ⊂ A(X,D)[t](f). However, A(X,D)[t](f)

∼= (A(X,D)f )−
and we get an isomorphism ofX-schemes C̄X(D)∗ ∼= Spec AX(D)− = C(X,D)−.

If X = Pn
k = Proj k[T0, . . . , Tn] and OX(D) ∼= OX(1), then A(X,D) =

k[T0, . . . , Tn] and A(X,D)[t] ∼= k[T0, . . . , Tn, Tn+1]. Thus C̄X(D)] ∼= Pn+1
k . More

generally if X is a closed subvariety on Pn
k given by a homogeneous ideal I ⊂

k[T0, . . . , Tn], and OX(D) ∼= O)X(1), then C̄X(D) is the closed subvariety of
Pn+1

k given by the ideal I.

Let us study the morphism π̄ : Ĉ(X,D) → X in more details.

Lemma 3.4.4. Let A = ⊕i∈ZAi be a finitely generated graded algebra overR =
A0. Suppose that the multiplication map µn : An⊗An → A0 is an isomorphism.
Then An = anA0 for some invertible element an ∈ An and A−n = a−1

n A0.
Moreover, the multiplication map

Ai ⊗An → An+i (3.21)
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is an isomorphism for all i ∈ Z.

Proof. The multiplication map µ : An ⊗ An → R defines a natural homomor-
phism A−n → A∗n := HomR(An, A0). The map µ is the composition of the
map A−n ⊗ An → A∗n ⊗ An and the natural evaluation map φ : A∗n ⊗ An → R.
Since µn is an isomorphism, the map φ is an isomorphism and hence An is an
invertible A0-module (see Theorem 11.6 from [Eisenbud]). The second assertion
is obvious.

Definition 3.4.1. The Cartier index of a Q-Cartier divisor D at a point x ∈ X
is the smallest positive integer e(x) such that e(x)D is a Cartier divisor at the
point x.

It is clear that e(x) = 1 if and only if D is a Cartier divisor at x. The set
of points x ∈ X such that e(x) > 1 is a closed subset nc(D) of X called the
non-Cartier locus of DIt contains the support of the Seifert divisor D− bDc of
D. Since X is normal, its complement in nc(D) is of codimension ≥ 2.

Proposition 3.4.5. Let x ∈ X, the reduced fibre π̄−1(x) of the morphism
π̄ : Ĉ(X,D) → X is isomorphic to the projective line P1

κ(x) over the residue
field of x. The fibre is reduced if and only if the divisor D is a Cartier divisor
at x. The reduced fibre of the morphism π± : C(X,D)± → X is isomorphic to
A1

κ(x) and the reduced fibre of the morphism π : C(X,D)∗ → X is isomorphic
to Gm,κ(x).

Proof. Let OX,x be the local ring of X at x and πx : Y (x) → Spec X(x) = OX,x

be the morphism obtained from π by the base change Spec OX,x → X. The
fibre of π over x is isomorphic to the fibre of πx over the unique closed point of
X(x). Since C(X,D) = Spec ⊕i∈Z OX(i), we have Y (x) = Spec ⊕i∈Z OX(i)x.
Let e be the Seifert multiplicity of D at x. Suppose a ∈ OX(j)x is a non-
zero element, where 0 < j < e. We have aej = rf j

e ∈ OX(je)x, where fe is
an invertible generator of OX(e)x and r ∈ OXx

. If r is invertible in the local
ring OXx

, then aej is invertible and hence aj is invertible. This contradicts the
definition of e. Reducing modulo the maximal ideal mX,x of OXx we obtain that

OX(j)(x) := OX(j)x ⊗ κ(x) = OX(j)x/mX,xOX,x

consists of nilpotent elements. Thus N = ⊕0<j<eOX(j)(x) generate the nilpo-
tent ideal of the algebra ⊕i∈ZOX(i)(x) with the quotient isomorphic to
⊕i∈eZOX(i)(x) ∼= κ(x)[t, t−1], where t corresponds to an invertible generator
of OX(e)x. Since Y (x) ∼= Spec ⊕i∈Z OX(i) we obtain that the reduced fibre
π−1(x)red is isomorphic to Gm,κ(x) = Spec κ(x)[t, t−1]. Similarily we see that
the reduced fibre of π± : C(X,D)± → X over x are isomorphic to Spec κ(x)[t±]
and the reduced fibre of π̄ over x is isomorphic to P1

κ(x).

Let A be a normal finitely generated graded algebra over a field k. By
Theorem 3.3.4, A ∼= A(X,D) for some ample Q-Cartier divisor on X = Proj A
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defined uniquely up to linear equivalence. Thus the constructions of the schemes
C(X,D)±, Ĉ(X,D) apply to A and define the schemes

CA = CX(D), X = Proj A, ĈA = Ĉ(X,D), C±A = C(X,D)±, C∗A = C(X,D),

and the corresponding morphisms

p : C+
A → CA, π : C∗A → X, π± : C±A → X, π̄ : ĈA → X

We also have the sections

s+(X) = S0, s−(X) = S∞

of π̄.

3.5 Exercises

3.1 Give a geometric interpretation (in terms of the Gm-action) of the condition
that an ideal in a graded ring is homogeneous.
3.2 Let A = C[x, y] be the polynomial algebra graded by deg x = a,deg y = b,
where 1 ≤ a < b are coprime integers. Find a rational divisor D on X =
Proj k[x, y] ∼= P1 such that A = A(X,D).
3.3 Finish computations from Example 3.3.2 for the remaining binary polyhe-
dral groups (except the case of odd cyclic groups).
3.4 Let A = C[u, v, w]/(uv − we), where e > 1 is odd. grade A by deg u =
i,deg v = e − i,degw = 1. Find the corresponding rational divisor D (it will
depend on i). .
3.5 Let X = P1, D = −2P + 1

2P1 + 2
3P1 + 6

7P3, where P1, P2, P3 are distinct
points. Show that graded algebra A(X,D) is isomorphic to C[u, v, w]/(u2+v3+
w7) with grading defined by deg u = 21,deg v = 14,degw = 6.
3.6 Let E = V (F (x, y, z)) ⊂ P2 be a plane cubic curve. Show that the graded
algebra k[x, y, z, w]/(F (x, y, z)+w2) graded with weights 2, 2, 2, 3) is isomorphic
to the graded algebra A(X,D), where D = −H + 1

2E and H is a line in the
plane.
3.7 Compute the index of the polynomial algebra K[T1, . . . , Tn] graded with
deg Ti = qi > 0.
3.8 Show that a one-dimensional normal graded finitely generated algebra A =
⊕∞n=0 over a field k = A0 is isomorphic to the polynomial algebra k[x].
3.9 Let C = Spec A be an affine quasicone and C(e) = Spec A(e). Make sense
of the isomorphism C(e) ∼= C/µe and use this isomorphism to give a geometric
proof of the existence of an isomorphism Proj A ∼= Proj A(e).
3.10 For any graded algebra A = ⊕i≥0Ai and any n ≥ 0, set

A[n] =
∞⊕

i=n

Ai ⊂ A
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(i) Show that A[n] is a homogeneous ideal in A and

A] :=
∞⊕

n=0

A[n]

is a graded A0-algebra.

(iii) Let C+
A = Proj A]. Let A = A[0] ↪→ A] be inclusion map. Show that it

defines a morphism p : C+
A → CA = Spec A;

(iv) Let A→ A] be a homomorphism of graded rings defined by sending a ho-
mogeneous element f ∈ An to the corresponding element f ] ∈ An ⊂ A[n].
Show that this homomorphism defines a morphism π : C+

A → Proj A.

(v) Let A be a normal finitely generated algebra over a field k and X = Proj A
and C = Spec A be the affine quasicone. Show that the morphisms q :
C+

A → CA and π : C+
A → X coincide with the morphisms p : C+

A → CA, π :
C+

A → X defined at the end of the section.

(vi) Assume that A is as above and is generated by A1. Show that C+
A is

isomorphic to the blow-up of the irrelevant ideal m0 of A.



Lecture 4

Resolution of singularities

4.1 The blow-up schemes

We assume that all schemes we will be considering satisfy one of the following
types.

(i) a reduced scheme of finite type over a field k (an algebraic variety);

(ii) the spectrum of a local ring A isomorphic to a localization of a finitely
generated algebra over a field;

(iii) the spectrum of the formal completion of a Noetherian local ring from (ii);

(iv) a scheme of finite type over a local ring from (ii) or (iii).

In particular all our schemes are Noetherian.
Let Y reg be the set of points y ∈ Y such that the local ring OY,y is regular.

Under the above assumptions this set is an open dense subset of Y . Its com-
plement is denoted by Y sing and is called the singular locus of Y . Its points are
called singular points of A.

Recall that a morphism f : X → Y of schemes is called a resolution of
singularities if

• X is regular;

• f is proper;

• f is an isomorphism over Y reg .

The set-theoretical pre-image of Y sing is called the exceptional locus of the res-
olution.

A resolution is called minimal if it does not factor (non-trivially) into another
resolution of X.

55
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Let S be a Noetherian scheme and Z be its closed subscheme defined by a
coherent sheaf of ideals IZ on S. Recall that the blow-up of S with center Z is
the S-scheme

BZ(S) =
∞⊕

n=0

In
Z ,

where the multiplication In
Z⊗Im

Z → In+m
Z is defined by the multiplication inOS .

It comes with the canonical projection π : BZ(S) → S. The scheme-theoretical
pre-image π−1(Z) is equal to

EZ =
∞⊕

n=0

In
Z/In+1

Z .

It is a closed subscheme of BY (X) defined by the sheaf of ideals π−1(IZ) (the
image of π∗(IZ) = OBZ(X) ⊗OX

IZ in OBZ(S) under the multiplication map).
Locally, over an affine open set U = Spec A, we have π−1(U) = Proj ⊕n≥0

In, where I is the ideal in A definingU∩Z. Taking some generators f0, . . . , fN of
I, we obtain a surjection of graded rings A[T0, . . . , TN ] → ⊕n≥0I

n that defines
a closed embedding BZ(S)∩U ↪→ PN

A . Thus the projection π : BZ(S) → S is a
projective morphism.

It follows from the definition that OBZ(S)(−1) corresponds to the ideal IZ ⊕
I2⊕. . . in OS⊕IZ⊕. . .. Since the algebra

⊕∞
n=0 In

Z is generated by the degree 1
part IZ , we see that OBZ(S)(−1) is an invertible sheaf on BZ(S). It is the ideal
sheaf defining EZ . The reduced Cartier divisor (EZ)red is called the exceptional
divisor of BZ(S).

The following proposition shows that the property that π−1(Z) is a Cartier
divisor characterizes BZ(S).

Proposition 4.1.1. Let π : BY (X) → X be the blow-up of a closed subscheme
Y . Suppose f : X ′ → X is a morphism such that f−1(Y ) is a Cartier divisor
D′ on X ′. Then there exists a unique morphism of X-schemes g : X ′ → BY (X)
such that g∗(D) = D′.

Another important property of the blow-up schemes is the following.

Proposition 4.1.2. Let f : S′ → S be a morphism and Z ′ = f−1(Z) be
the scheme-theoretical pre-image of a closed subscheme Z in S′. Then there
is a unique canonical map of f̃ : BZ′(S′) → BZ(S) compatible with the blow-
up projections. If f is a closed (open) embedding than f̃ is a closed (open)
embedding.

It follows immediately from Propositions 4.1.1 and 4.1.2 that π : BZ(S) → S
is an isomorphism over the open subset U of S such that IZ |U is an invertible
sheaf (i.e. Z ∩ U is an effective Cartier divisor). In particular, the blow-up
morphism is a projective birational morphism. Conversely, every projective
birational morphism f : S′ → S is isomorphic to the blow-up morphism of some
closed subscheme on S (see [Hartshorne], Chapter II, Theorem 7.17).
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In the case when f is a closed embedding, Bf−1(Z)(S′) is equal to the proper
inverse transform of S′ in BZ(S). One takes the pre-image of f(S′) \ f(S′)∩Z
in BZ(S) and takes its schematical closure in BZ(S).

We will use the following fundamental result.

Theorem 4.1.3. Let S be a 2-dimensional scheme. Then there exists a res-
olution of singularities π : S̃ → S. It can be obtained as a composition of
normalizations and blow-ups of ideals of closed points. A resolution is minimal
if and only if its exceptional locus does not contain a smooth rational curve with
self-intersection −1. A minimal resolution is unique up to isomorphism.

In the case of algebraic surfaces this result goes back to Italian algebraic
geometry. The general case is proved by J. Lipman (Publ. lIHES, vol. 36).

A singularity is a pair (S, s) where S is a scheme as above and s is its point.
We say that two singularities (S, s), (S′, s′) are formally isomorphic if there
exists an isomorphism of the formal completions of the local rings ÔS,s

∼= ÔS′,s′ .
Let Ŝ(s) = Spec ÔS,s. It admits a natural morphism îs : Ŝ(s) → S such that
the image of the closed point is equal to s. Let π : S̃ → S be a resolution of
singularities and

π̂s : S̃ ×S Ŝ(s) → Ŝ(s)

be the base change. One can show that the morphism π̂s is a resolution of sin-
gularities. If two surface singularities (S, x) are formally isomorphic, then the
local schemes Ŝ(s) and Ŝ′(s′) are isomorphic, and hence their minimal resolu-
tions are isomorphic. This implies that the exceptional curves of the minimal
resolutions of formally isomorphic singularities (S, s) are isomorphic curves and
their intersection matrices coincide (after fixing a bijection between the sets of
irreducible components).

Example 4.1.4. LetA = k[x1, . . . , xn] and I = (x1, . . . , xr). Let S = Spec A,Z =
Spec A/I. We have a surjective homomorphism of A-algebras

k[x1, . . . , xn][t0, . . . , tr−1] → BZ(S), yi 7→ xi.

Its kernel is generated by elements xitj −xjti, |i− j| 6= 1. This follows from the
exactness of a Koszul resolution for the ideal (x1, . . . , xr) ([Hartshorne], p.245).
Thus BZ(S) is isomorphic to a closed subvariety of Pr−1

k × An
k given by the

equations expessing the condition

rank
(
x1 . . . xr

t0 . . . tr−1

)
= 1 (4.1)

In the affine open set t0 6= 0 isomorphic to An+r−1
k with affine coordinates

x1, . . . , xn, u1, . . . , ur−1, where ui = yi/y0, i = 1, . . . , r − 1, it is given by the
equations

xi+1 = uix1, i = 2, . . . , r.

Similar formulas can be given in affine open subsets ti 6= 0, i 6= 0.
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One can interpret (4.1) as follows. Consider a rational map

T : An
k− → Pn−1

k , (t1, . . . , tn) 7→ (t1 : . . . : tn).

This map is undefined at the point 0 = (0, . . . , 0). Let ΓT be the graph of T ,
i.e. the closure of the graph of T |An

k \ {0} → Pn−1
k in An

k × Pn−1
k . Then the

graph ΓT is isomorphic to BZ(S).

Example 4.1.5. Assume that X is a regular scheme and Y is a locally complete
intersection in X. This means that the sheaf IY /I2

Y (called the conormal sheaf
of Y ) is a locally free sheaf of OY -modules of rank equal to the codimension of
Y in X and the sheaf of algebras

grIY
(OX) =

∞⊕
n=0

In
Y /In+1

Y

is isomorphic to the symmetric algebra S•(IY /I2
Y ). In this case, BY (X) is a

regular scheme and the exceptional divisor E is isomorphic to the projective
bundle P(IY /I2

Y ) It is called the normal bundle of Y in X. Let E be the
exceptional divisor. The invertible sheaf OE(−E) on E coincides with the sheaf
OE(1) of the projective bundle. All of this can be found in [Hartshorne], Chapter
2, Theorem 8.24.

Example 4.1.6. Let C = Spec A be a normal affine quasicone, V (m0) be
its vertex, X = Proj A, and p+ : C+ → C be the partial resolution of C
defined by the affine cylinder of (X,OX(1)). The blow-up of the ideal m0 is
the projective spectrum of the graded A-algebra Bm0(A) = ⊕n≥0m

n
0 . Let A] be

the graded A-algebra defined in Exercise 3.10. We have the inclusion of graded
algebras Bm0(A) ⊂ A]. This defines a birational map over C, in general, with
indeterminacy points

f : C+− → Proj Bm0(A)

If f A is generated by degree 1 elements, then the two algebras coincide and f
is an isomorphism.

Example 4.1.7. Let us show how to resolve singularities of affine normal sur-
faces S given by equation z2 + f(x, y) = 0. We consider it as a surface over
A2 by using the projection to the x, y coordinates. We assume that (0, 0, 0) is
the only singular point of the surface. In particular, (0, 0) is the only singular
point of the plane curve f(x, y) = 0. The idea (based on a more general idea
due to H. Jung) is to define a sequence of the blow-ups π : V → A2 with centers
at points until the full transform of f(x, y) = 0 becomes a divisor locally given
by equation uavb = 0. Then the base change S ×A2 V → V has local equation
z2 + uavb = 0. After normalization the equation becomes z2 + uαvβ = 0, where
α, β ≤ 1. If αβ = 0, the surface is nonsingular. Otherwise we blow-up the
singular point again, take the base change and normalize. After this the branch
locus becomes nonsingular and the double cover is a nonsingular surface.
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To describe the exceptional divisor of the total resolution f : S′ → S we
use that the blow-up of a nonsingular point in A2 has the exceptional divisor
E isomorphic to P1 and its self-intersection is equal to −1 (a (-1)-curve, or the
exceptional curve of the first kind). The latter follows from the observation that
in the local chart given by the equation x2 = ux1 the divisor of the function
x2 is equal to the union of the curve F : u = 0 and E : x1 = 0 which intersect
transversally at one point. Thus (E+F,E) = E2 +E ·F = 0 implies E2 = −1.
The same argument shows that the self-intersection of the strict transform of a
complete curve R on a nonsingular surface under the blow-up of a point on it
decreases by m2, where m is the multiplicity of the curve at the point.

We will also use that the pre-image of a complete curve R under the double
cover of nonsingular surfaces is equal to 2Ē if E is contained in the branch locus
or Ē otherwise, and Ē2 = R2/2 in the first case and Ē2 = 2R2 in the second
case.

Let us show how it works in the case f(x, y) = x3 + y3. This is the affine
quasicone corresponding to the Klein surface of type D4. Let π1 : V1 → A2 be
the blow-up of the origin. We make the coordinate change x = yu to get the
local equation y3(u3 + 1) = 0 of the pre-image of the curve in the first chart of
the blow-up. Similarily, in the second chart, the coordinate change is y = xv
and the equation is x3(1+v3) = 0. After the base change and the normalization
the equation of the strict transform of the surface is z2 + y(u3 + 1) = 0 (resp.
z2 +x(1+v3) = 0.) The branch locus consists of the exceptional curve E0 of the
first blow-up and the three non-complete curves with local equation u+ α = 0,
where α3 + 1 = 0. They intersect the curve E0 transversally. We blow-up the
intersection points. The strict transform of E0 has the self-intersection equal
to −4. The exceptional curves of the three blow-ups are curves R1, R2, R3 with
self-intersection −1. Now the branch locus is nonsingular. The double cover
becomes a nonsingular surface which resolves the singularity. The exceptional
divisor is the union of 4 curves R̄i, i = 0, . . . , 3 with R̄2

i = −2 and the intersection
matrix is described by the Dynkin diagram of type D4.

4.2 Cyclic quotient surface singularities

Let us show how to resolve cyclic quotient surface singularities. Let k be a field
such that µn(k) is a group of order n and ε be its generator (the group of roots
of unity in a field is always cyclic). Let

Cn,q = Spec k[z1, z2]µe , z1 7→ εz1, z2 7→ εqz2.

We assume that (n, q) = 1. Otherwise, let d = (n, q), n = du, q = dv. Then
εqu = 1, hence k[z1, z2]ε

u

= k[zd
1 , z2] ∼= k[t1, t2] and Cn,q

∼= Spec k[t1, t2]µu ∼=
Cu,q mod u.

An invariant polynomial is a sum of invariant monomials. A monomial za
1z

b
2

is invariant if and only if

a+ bq ≡ 0 mod n. (4.2)
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The set of (a, b) ∈ Z2
≥0 satisfying this congruence is a submonoid M of the

monoid Z2
≥0 with respect to vector addition. The monoid algebra k[M ] is iso-

morphic to the polynomial algebra k[T1, T2]. The monoid algebra of M is its
finitely generated subalgebra. It is easy to see that the monoid M is isomorphic
to the monoid

M ′ = {m = (m1,m2) ∈ Z2
≥0 : −qm1 + nm2 ≥ 0} (4.3)

(map a solution (a, b) of (4.3) to (m1,m2) = (b, a+bq
n )).

Consider the cone σ in R2 spanned by the vectors

v = (−q, n), w = (1, 0).

Let σ̌ be the dual cone of vectors x ∈ R2 such that x · y ≥ 0 for all y ∈ σ. It is
spanned by vectors (0, 1) and (n, q). We have

M ′ = σ̌ ∩ Z2.

It is easy to see that, if v1, v2 are linearly independent, then Xσ is nonsingular
if and only if v, w is a basis in Z2. In this case Xσ

∼= Spec k[Z2
≥0] ∼=∼= A2.

One can resolve Xσ by choosing primitive integer vectors v1, v2, . . . , vs inside
of σ such that the cones σi = 〈vi, vi+1〉 generated by vi, vi+1, i = 0, . . . , s form
a basis of Z2 (here v0 = v, vs+1 = w). Since σ̌ ⊂ σ̌i defines the inclusion of
the monoid algebras, each Xσi is mapped to Xσ. The collection Σ of cones
σi satisfy the property that two cones intersect along a common face (such a
collection is called a fan). The affine Xσ-schemes Xσi

can be glued together to
a toric variety XΣ which defines a toric resolution π : XΣ → Xσ. The field of
rational functions on each Xσi

can be identified with the fraction field of the
group algebra k[Z2] ∼= k[t±1

1 , t±1
2 ]. For each monomial tm = tm1

1 tm2
2 , we have

div(tm) =
∑

(m · vi)Di, (4.4)

where Di is the closure in X of the curve equal to the image of Spec k[Z2 ∩
(Zvi)⊥] under the morphism corresponding to the inclusion of the monoids σ̌i ⊂
(Zvi)⊥. The curves Di are isomorphic to P1 for any i 6= 1, s. The curves D0

and Ds+1 are isomorphic to affine lines. Two curves Di and Dj intersect if
and only if the corresponding vectors vi and vj span one of the subcones σi.
All of this follows from the rudiments of toric geometry. For any fan Σ formed
by rational convex cones σi ⊂ Rn, i ∈ I, one establishes a natural bijection
between i-dimensional orbits of Gn

m in XΣ and n− i-dimensional faces of one of
the σi’s. An orbit corresponding to a face F is contained in the closure of the
orbit corresponding to a face F ′ if and only if F ′ is a face of F .

To subdivide our σ we proceed as follows. First we see that σ contains the
subcone generated by the basis e1, e2. So we take our first vector v1 equal to e2.
We have det[e2, w] = −q. So, if k = 1 we have achieved our goal. Assume q > 1.
Then we have to take v2 of the form (−1, a1) in order det[v1, v2] = ±1. We also
must have (−1, a1) = xv1 + yw = (0, x) + y(−q, n) for some positive rational
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numbers x, y. This gives y = 1/q and a1 = n/q + x. We take a1 = dn/qe the
smallest positive integer larger or equal than n/q. Now consider a new basis of
Z2 formed by e′1 = v1, e

′
2 = v2. Then (−q, n) = (n − qa1)e′1 + qe′2. Then we

repeat the algorithm in new coordinates, v3 = −v1 + a2v2, where a2 = d q
qa1−ne.

If we write n/q = a1 − 1
α , then a2 = dαe, i.e.

n/q = a1 −
1

a2 − 1
β

.

This gives v3 = (0,−1) + a2(−1, a1) = (−a2, a1a2 − 1) = v1 − a2v2. To check
that we are on the right track, we have

det[v2, v3] = det
(
−1 −a2

a1 a1a2 − 1

)
= 1.

Continuing in this way we find the recurrence

v0 = v, v1 = (0, 1), . . . , vq+1 = vq−1 − akvq, q = 1, . . . , s, vs+1 = w, (4.5)

where
n/q = a1 −

1
a2 − 1

a3− 1
...− 1

as

:= [a1, . . . , as]. (4.6)

We check det[vq, vq+1] = det[vq, vq−1− aqvq] = det[vq, vq−1], so by induction all
the cones are generated by a basis of Z2.

Take any monomial tm and let cq = m · vq. The recurrence (4.5) gives
cq+1 = aqcq − cq−1. We have

div(tm) =
s+1∑
i=0

ciEi,

where Ei are the curves corresponding to the vectors vi. Intersecting both sides
with Ei, i = 1, . . . , s, we get

ciE
2
i + ci+1(Ei · Ei+1) + ci(Ei−1 · Ei) = 0.

The recurrence for the c′i gives

E2
i = −ai. (4.7)

In particular, when µn acts as a subgroup of SL(2, k), we must have q = n− 1,
and hence

n

n− 1
= [2, . . . , 2],

with s = n−1. The intersection matrix of the curves E1, . . . , En−1 is the Dynkin
diagram of type An−1.

Our resolution of singularities π : XΣ → Xσ is a toric morphism. This
means that the morphism commutes with the torus action. In general, a toric
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morphism between toric varieties X ′
Σ → XΣ is defined by a morphism of the

fans α : Σ′ → Σ. An orbit defined by a face F is mapped to the orbit defined
by the face α(F ). In our case, the fan Σ is mapped to the fan {σ} under the
identity map of R2. All the 1-dimensional faces Rvi, i 6= 0, s + 1, are mapped
to the 2-dimensional face (the interior of σ). So, the corresponding curves Ei

are blown down to the unique 0-dimensional orbit corresponding to the singular
point of Xσ. The affine curves E0, Es+1 are isomorphic to the closures of the on-
dimensional orbits corresponding the rays Rv and Rw. Recall that the invariant
monomial zn

1 corresponds to the solution (a, b) = (n, 0) of the congruence (4.3)
and hence to the vector e2 = (0, 1) to in σ̌. Since e2 · v = 0, e2 · w = n, we see
that the divisor of the function te2 = t2 in Xσ is equal to O(w), where O(w)
is the one-dimensional orbit corresponding to w. Its strict transform in XΣ is
equal to the curve E0. Similarily, the monomial zn

2 corresponds to the solution
(a, b) = (0, 1) and hence to the vector (n, k) ∈ σ̌. Since (n, k) · w = 0, we find,
as above, that the strict transform of the divisor of the function tn1 t

k
2 in XΣ is

equal to the curve E0. Note that under the projection map A2 → A2/µn = Xσ

the image of the coordinate axis z1 = 0 is the divisor of the function zn
1 and the

image of the coordinate axis z2 = 0 is the divisor of the function tn1 t
k
2 .

Definition 4.2.1. Let 1 ≤ k < n with (k, n) = 1 and (a1, . . . , as) be a sequence
of positive integers defined by (4.6). A curve C on a regular 2-dimensional
scheme is called an (k, n)-curve if C = E1 + . . . + Ek, where E2

i = −ai and
Ei · Ej = 1 if |i − j| = 1, zero otherwise. We call E1 the first component of C
and the curve Es the last component.

Thus a quotient singularity Cn,k admits a minimal resolution with excep-
tional curve isomorphic to a (k, n)-curve.

Let A = A(X,D) for some Q-divisor D on X = Proj A. Let D − bDc =∑r
i=1

ki

ei
xi be its Seifert divisor.

Let s0, s∞ : X → Ĉ(X,D) be the canonical sections and x(0)
i = s0(xi), x

(∞)
i =

s0(xi). It follows from Example (4.5.8) that the singularity (ĈX , x
(0)
i ) (resp.

(Ĉ(X,D), x(∞)
i ) is formally isomorphic to the quotient singularity Cei,ei−ki

(resp. Cei,ki). Let

π : C̃(X,D) → Ĉ(X,D)

be a minimal resolution of singularities of Ĉ(X,D). Its exceptional locus consists
of the disjoint curves E(0)

i , E(∞)
i , i = 1, . . . , r. A curve E(0)

i is a (ei−ki, ei)-curve,
and the curve E(∞)

i is a (ki, ei)-curve.
The restriction of π : C̃(X,D) → Ĉ(X,D) to C(X,D)+ composed with the

projection q : C(X,D)+ → CX(D) defines a resolution of the affine quasicone
CX(D). Its exceptional curve is equal to the union of curves E(0)

1 , . . . , E(0)
r and

the curve E(0)
0 , the strict transform of the section s0(X) of q. It intersects each

curve E(0)
i transversally at a point belonging to the last component. Indeed,

locally at x(0)
i , the section corresponds to the axis z1 = 0 in the notation from
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the previous section, and the fibre π−1
+ (xi) of the projection π+ : C(X,D)+ → X

corresponds to the axis z2 = 0.
The set-theoretical pre-image of the section s∞(X) under π : C̃(X,D) →

Ĉ(X,D) is equal to the union of the curves E(∞)
1 , . . . , E(∞)

r and the curve E(∞)
0 ,

the strict transform of the section s∞(X). It intersects each curve E(∞)
i transver-

sally at a point belonging to the component with self-intersection equal to
−dei/kie.

It remains to compute the self-intersections of the “central curves” E(0)
0 and

E
(∞)
0 . This we will do in the next section.

4.3 The degree of an affine quasicone

Let A be a non-negatively finitely generated graded algebra over a field k =
A0. Let dimA = r + 1. For any finitely generated graded A-module M , one
introduces the Poincaré series of M by setting

PM (t) =
∞∑

i=0

ait
i, ai = dimk Mi.

In particular, taking M = A we have the Poincaré function of A.
We will use the following well-known result which can be found in [Atiya-

Macdonald], Chapter 11).

Theorem 4.3.1. (Hilbert-Serre) PM (t) is a rational function of the form

PM (t) =
f(t)∏s

i=1(1− tqi)
,

where f(t) ∈ Z[t] and q1, . . . , qs are the degrees of homogeneous generators of
A.

It implies the following.

Corollary 4.3.2. Suppose A is generated by elements of degree 1. Then there
exists a polynomial HM (t) ∈ Q[t] such that

HA(n) = dimk Mn, n > 0.

The degree of the polynomial HM (t) is equal to the order of the pole of PM (t)
at t = 1 minus 1. If M = A, then the degree is equal to dimA− 1.

The polynomial HM (t) is called the Hilbert polynomial of M . If F = M∼ is
the associated coherent sheaf on X = Spec A, then

HM (n) = χ(F(n)) =
r∑

i=0

(−1)i dimk H
i(X,F(n)), n ≥ 0.
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Then the Asymptotic Riemann-Roch Theorem (see [Lazarsfeld], vol. I, p. 21)
gives that this function is a polynomial in n. The Serre Vanishing Theorem
additionally implies that

χ(F(n)) = dimkH
0(X,F(n)) = dimk Mn, n >> 0.

If OX(1) = OX(D) for some Cartier divisor D on X, then the Asymptotic
Riemann-Roch Theorem additionally gives that

HM (n) = rank(M)
Dr

r!
nr + lower degree terms,

where Dr is the self-intersection of the Carter divisor class of D (defined on
any irreducible projective variety) and rankM is the rank of M equal to the
dimension of the vector space M ⊗ Q(A), where Q(A) is the field of fractions
of A. The number Dr coincides with the degree of the projective variety X
embedded in a projective space by the linear system |D|.

In the case when dimX = 1, the degree of D =
∑

x∈X(1) dxx is just the
usual degree of the Weil divisor degD =

∑
dx deg(x).

Example 4.3.3. Let S = k[x1, . . . , xn], where deg xi = qi > 0. Then it is
immediate that

PS(t) =
n∏

i=1

(1− tqi)−1.

Now if A = S/(f), where f ∈ Ad, the exact sequence

0 → Sf → S → S/(f) → 0

gives

PS/(f)(t) =
1− td∏n

i=1(1− tqi)
.

More generally, if (f1, . . . , fs) is a regular sequence of homogeneous elements on
S, then

PS/(f1,...,fs)(t) =
∏s

i=1(1− tdi)∏n
j=1(1− tqi)

. (4.8)

Lemma 4.3.4. Suppose A is generated by degree 1 elements and the leading
term of the Hilbert polynomial HM (t) is equal to d

r! t
r. Then the coefficient at

(1− t)−r−1 in the Laurent expansion of PM (t) at t = 1 is equal to d.

Proof. Let R(t) = PM (t). We know that the coefficients ai of the series R(t) are
polynomials of i for i large enough. For any polynomial h(t) define, inductively,

∆h(t) = h(t+ 1)− h(t), ∆sh(t) = ∆(∆s−1h(t)), s ≥ 2.

It is easy to see that ∆dh(t) = dr! if the leading term of h(t) is equal to dtr and
∆ih(t) = 0, i > r. On the other hand,

(1− t)R(t) = R(t)− tR(t) =
∞∑

i=r

(ai − ai−1)ti, a−1 = 0,
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hence the coefficients are equal to ∆h(i) for i large enough. Continuing in this
way we find that (1−t)iR(t) has only finitely many nonzero coefficients for i > r
and hence (1 − t)iR(t) is a polynomial. This shows that the order of the pole
of R(t) is less or equal than r + 1. Also the coefficients of (1 − t)rR(t) at tn

are equal to dr! for n large enough. This shows that (1− t)rR(t)− dr! ts

(1−t) is a
polynomial in t for some s large enough. Multiplying by (1−t) and taking t = 1,
we see that r+1 is the order of the pole of R(t) at t = 1, and (1−t)r+1R(t)−dr!
is a rational function with no pole at 1.

Let A(e) be the Veronese subalgebra generated by elements of degree e. For
any 0 ≤ k < e, consider

A(e,k) =
⊕
i≥0

Aei+k

as a module over A(e). Clearly A = ⊕e−1
k=0A

(e,k). We will always assume that
A 6= A(k) for any k > 1. This can be always achieved by regrading the ring.

Lemma 4.3.5. Let M ⊂ Z≥0 be a submonoid. Suppose M is not contained in
kZ for any k > 1. Then there exists a number n0 such that each n ≥ n0 belongs
to M .

Proof. The ammumption onM impliem that there eximt two elementmm1,m2 ∈
M much that (m1,m2) = 1. Let N ≥ 0. Mince (m1,m2) = 1 we can write
N = am1+bm2 for mome integerm a, b. If a, b ≥ 0, thenN ∈M . Without lomm
of generality we may ammume that a < 0, b > 0. Write −a = km2+r, where 0 ≤
r < m2. Then N = am1 + bm2 = (−km2− r)m1 + bm2 = −rm1 +(b−km1)m2.
Mince N ≥ 0, b′ = b−km1 ≥ 0. Thim givem N+m1m2 = (−r+m2)m1+b′m2 ∈
M . Thim mhowm that any number ≥ m1m2 belongm to M .

Lemma 4.3.6. All polynomials HA(e,k)(t) have the same leading term α
r! t

r,
where r = dimA− 1 = dimProj A.

Proof. Since A is a domain, the set M = {i ∈ Z≥0 : Ai 6= 0} is a submonoid of
Z≥0. By assumption on A, the monoid M is not contained in any cZ for c > 1.
Applying the previous lemma, we obtain that each A(e,k) is not zero.

Let f ∈ Aem+k, f 6= 0. Recall that A is a domain, hence the multiplication by
f defines an injective homomorphism Aei in Ae(i+m)+k for all i ≥ 0. This shows
that HA(e)(t) ≤ HA(e,k)(t) for t >> 0. This could happen only if the leading
coefficient of the first polynomial is less or equal than the leading coefficient of
the second polynomial. Now we do the same by taking fe−1 to see that Aei+k

injects in Ae(k+i+(e−1)m). This shows the opposite inequality.

Corollary 4.3.7. The coefficient at (1 − t)−r−1 of the Laurent expansion of
PA(t) is equal to αe−r.

Proof. We have

PA(t) =
e−1∑
k=0

tkPA(e,k)(te).
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Applying Lemma 4.3.4, we get

PA(e,k)(te) =
α

(1− te)r+1
+ . . . =

αe−r−1

(1− t)r+1
+ . . .

We use that the coefficient at (1− t)−r−1 of the Laurent expansion of a function
f(t) with pole of order r + 1 at 1 is equal limt→1(1 − t)r+1f(t). After adding
up, we get

PA(t) = (
e−1∑
k=0

tk)
αe−r−1

(1− t)r+1
+ . . . =

αe−r

(1− t)r+1
+ . . . .

Definition 4.3.1. Suppose A is a normal finitely generated graded domain of
dimension n+1 over a field k = A0. The coefficient at (1− t)n+1 in the Laurent
expansion of PA(t) at t = 1 is denoted by degC and is called the degree of the
affine quasicone C = Spec A.

If C(e) is the Veronese affine quasicone corresponding to the subalgebra A(e)

generated by elements of degree 1, then Corollary 4.3.7 gives

degC = degC(e)/er, (4.9)

where r + 1 = dimA.
Recall that A ∼= A(X,D) for some ample Q-Cartier divisor D. The Veronese

subalgebra A(e) is isomorphic to A(X, eD). One extends the intersection theory
of Cartier divisors on an irreducible projective variety to Q-Cartier divisor by lin-
earity. In particular, one can define Dr for any Q-Cartier divisor as (mD)r/mr,
where mD is Cartier. It is a rational number. It follows from (4.9) that

degC = Dr. (4.10)

Example 4.3.8. Let A = k[x1, . . . , xn]/(f1, . . . , fs) be as in Example 4.3.3. It
follows from Example 4.3.3 that the Laurent expansion of PA(t) has the form

PA(t) =
d

(1− t)n−s
+ . . . ,

where
d =

d1 · · · ds

q1 · · · qn
.

Thus the degree of the quasicone Spec A is equal to d.

Example 4.3.9. It follows from Example 3.3.2 that the degree of the quasicone
of the Kleinian affine quasicone is equal to

d =
r∑

i=1

1
ei

+ 2− r =



2/e if G is cyclic of even ordere,
1/n if G = D2n,

1/6 if G = T,

1/12 if G = O,

1/30 if G = I.



4.3. THE DEGREE OF AN AFFINE QUASICONE 67

In the proof of the next proposition we use the intersection theory of Cartier
divisors on any normal projective variety over a field k (see [Hartshorne], Ap-
pendix A). We extend to Q-Cartier divisors by Q-linearity.

Proposition 4.3.10. Let Ĉ be the projective cylinder of a normal affine qua-
sicone C = Spec A. Let S0, S∞ be the sections of Ĉ → X, and d be the degree
of the affine quasicone C. Then the divisors S0 and S∞ are Q-Cartier divisors
and

Sr+1
0 = −d, Sr+1

∞ = d.

Proof. We prove only the first equality and leave the proof of the second one to
the reader. Assume first that the graded algebra A is generated by elements of
degree 1. In this case Ĉ ∼= P(L⊕OX) is the projective bundle over X = Proj A
corresponding to the invertible sheaf L = OX(D). We know that the section
S0 = s0(X) is defined by the projection

A = S•(L ⊕OX) = S•L[t] → S•OX = OX [t].

The ideal sheaf I defining S0 is equal to (S•L)+[t]. It is generated by L. Let
j : S0 → Ĉ be the closed embedding. Then j∗(L) = I/I2 ∼= Lt ∼= L. In the case
when dimX = 1, we have already seen in Example 2.1.2 that this implies that
S2

0 = −degL = −degD. In the general case, it follows from the intersection
theory of Cartier divisors on any normal complete variety that this implies that
Sr+1

0 = −degL.
Now let D be any Cartier Q-divisor. Assume eD is a Cartier divisor and

let qe : Ĉ(X,D)+ → Ĉ(X, eD) be the finite morphism considered in (3.20).
Let U be an open subset of X where D is Cartier. Over U , the morphism
Qr corresponds to the natural map of projective line bundles P(L ⊕ OX) →
P(Le ⊕OX). Its restriction on V(L) is the morphism V(L) → V(L) associated
to the homomorphism of algebras S•L(U)e ∼= O(U)[ze] ↪→ S•L(U)O(U)[z]. If
tU = 0 is the local equation of the zero section S0 of Ĉ(X,D), then teU = 0 is
the local equation of the pre-image of the zero section S′0 of Ĉ(X, eD). This
shows that the morphism qe is a finite morphism of degree e ramified over S′0
with index ramification equal to e. This implies that q∗e(S′0) = eS0 and hence,
by the standard properties of the intersection theory of Q-Cartier divisors and
applying (4.9), we get

(eS0)r+1 = er+1Sr+1
0 = eS′0

r+1 = er+1d.

This implies the assertion.

The next theorem gives our final result about the resolution C̃(X,D) which
computes the self-intersections of the central curves.

Theorem 4.3.11. Let D = bDc+
∑r

i=1
ki

ei
pi be a Q-Cartier divisor on a non-

singular projective curve X and C = Spec A(X,D). Then the self-intersections
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of the central curves in the resolution C̃(X,D) → Ĉ(X,D) are given by

E2
0 = −degbDc − r = −degdDe, (4.11)

E2
∞ = degbDc = degD −

r∑
i=1

ki

ei
. (4.12)

Proof. We have Let π : C̃(X,D) → ĈX be the resolution of cyclic quotient
singularities. Our central curves E0 and E∞ are equal to the strict transforms
of S0 and S∞. Let π∗(S0) be the full transform. Then there is the equality of
Q-divisors on C̃(X,D)

π∗(S0) = E0 +
r∑

j=1

sj∑
i=1

cijE
(0)
ij , (4.13)

where Ej =
∑sj

i=1E
(0)
ij , j = 1, . . . , r is a (ki, ei)-curve. Since S0 is linearly

equivalent to a divisor which does not pass through any of the singular points
of ĈX we have π∗(S0) ·E(0)

i for all i ≥ 0. We also noted that E0 intersects only
the last component of each Ej . Using this information, we get

−d = S2
0 = π∗(S0)2 = (E0 +

r∑
j=1

sj∑
i=1

cijE
(0)
ij )2 = E2

0 +
∑

csjj .

Thus it remains to find out the coefficients csjj .
Intersecting both sides of (4.13) with E

(0)
i , i = 1, . . . , s, we get a system of

linear equation for each vector (c1j , . . . , csjj), j = 1, . . . , r.
E1j · E1j . . . Esjj · E1j

E1j · E2j . . . Esjj · E2j

...
...

...
E1j · Esj−1j . . . Esjj · Esj−1j

E1j · Esjj . . . Esjj · Esjj

 ·


c1j

c2j

...
csj−1j

csjj

 =


0
0
...
0
−1

 .

Solving this system by the Cramer Rule, we find

csjj = −
∆sj−1

∆sj

,

where ∆k denotes the minor of the matrix of the coefficients formed by the first
k rows and the first k columns. Now

E1j · E1j . . . Esjj · E1j

E1j · E2j . . . Esjj · E2j

...
...

...
E1j · Esj−1j . . . Esjj · Esj−1j

E1j · Esjj . . . Esjj · Esjj

 =


−a1j 1 0 . . . 0

1 −a2j 1 . . . 0
...

...
...

...
0 . . . 1 −asj−1j 1
0 . . . 0 1 −asjj

 ,
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where (a1, . . . , asj ,j) is determined by the decomposition of ej−kj

ej
into contin-

uous fraction as in (4.6). An easy computation, using induction on sj shows
that

ei − ki

ei
= −

∆sj−1

∆sj

.

This shows that csjj = ki/ei and

E2
0 = −d−

r∑
j=1

csjj = −d−
r∑

j=1

ej − kj

ej
= −d+

r∑
j=1

kj

ej
− r = −bDc − r.

We leave the similar computation for E2
∞ to reveal that

E2
∞ = d−

r∑
j=1

kj

ej
= degbDc.

To summarize, the following pictures represent the curves E(0) and E(∞).
The dots correspond to irreducible components, the labels correspond to the
intersection indices, the edges correspond to the intersection points.

• • • • •· · ·

• • • •· · ·���������

• • • •· · ·//
//

//
//

//
//

/

...
...

...
...

...
...

...
...

a0

−a(2)
1 −a(2)

2 −a(2)
j2−1−a

(2)
j2

−a(1)
1 −a(1)

2 −a(1)
j1−1−a

(1)
j1

−a(r)
1 −a(r)

2 −a(r)
jr−1−a

(r)
jr

• • • • •· · ·

• • • •· · ·

??
??

??
??

?

• • • •· · ·

�������������

...
...

...
...

...
...

...
...

b0
−b(2)i2 −b(2)2 −b(2)1

−b(1)i1 −b(1)2 −b(1)1

−b(r)ir
−b(r)2 −b(r)1

E0 E∞

Figure 4.1:

Here

D = bDc+
r∑

s=1

ks

es
Es,

a0 = −degdDe, b0 = degbDc,
es

es − ks
= [a(s)

1 , . . . , a
(s)
is

], s = 1, . . . , r,

es

ks
= [b(s)1 , . . . , b

(s)
is

], s = 1, . . . , r.

Example 4.3.12. Let A = k[T0, T1], where deg T0 = q,deg T1 = q′ > 1 with
(q, q′) = 1. We have A = A(X,D), where X = P1

k and the support of the
Seifert divisor consists of the points V (T0) = p1 and V (T1) = p2. Let the
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Seifert divisor be a
q p1 + a′

q′ p2 and s = degbDc. We have degC(X,D) = 1/qq′.

degD = s+ a
q + a′

q′ = 1
qq′ , hence 1 = qq′s+aq′+a′q. Write 1 in a unique way as

1 = uq+vq′, where 0 < u < q′,−q < v < 0. Then we get a′ = u and v = sq+a.
Since 0 < a < q, we must have s = −1 and a = q + v.

Let C̃(X,D) → Ĉ(X,D) be the resolution. By Theorem 4.3.11, the central
curve has self-intersection equal to −1. Since C(X,D) = Spec k[T0, T1] is non-
singular, the resolution is not minimal. Let us confirm it in a special case, say
q = 2, q′ = 3. The general case involves too much of dealing with the continuous
fractions of q

q−a and q′

q′−a′ . In our special case we find that a = 1, a′ = 2, so
q

q−a = [2] and q′

q′−a′ = [3]. Thus the resolution looks as

• • •
−2 −1 −3

Figure 4.2:

It is clear that the exceptional curve can be blow down to a nonsingular
point: start from blowing down the central component, then the image of the
component on the left, and finally the image of the component on the right.

Example 4.3.13. Let C = A2/G be a Klein quasicone. We assume that
G is not a cyclic group of odd order. We know that its degree is equal to
d = 2− r +

∑r
i=1

1
ei

, where r = 3, or r = 2 if G is cyclic. This gives

S2
0 = −(2− r)− r = −2, S2

∞ = 2− r.

In particular, we see that exceptional curve of the resolution of C consists of
(−2)-curves and the intersection graph is described by a Dynkin diagram with
r arms of length ei− 1 (not counting the central vertex). If r = 2 and |G| = 2n,
we have two arms of length n−1 plus the central vertex. This gives the Dynkin
diagram of type A2n−1. If r = 3, we get the Dynkin diagram of type

Dn+2, if (e1, e2, e3) = (2, 2, n), i.e. G = D̄2n

E6 if (e1, e2, e3) = (2, 3, 3), i.e. G = T̄ ,

E7 if (e1, e2, e3) = (2, 3, 4), i.e. G = Ō,

E8 if (e1, e2, e3) = (2, 3, 5), i.e. G = Ī .

At infinity (i.e. at s∞(X)) of the resolution surface C̃(X,D) we have the divisor
which consists of the central curve E∞ with self-intersection 2−r and the curves
E∞i , i = 1, . . . , r with self-intersection −ei.

Example 4.3.14. Let X = P1 and D = −2+
∑3

i=1
ei−1

ei
Pi, where 1

e1
+ 1

e2
+ 1

e3
<

1. Then the resolution C̃(X,D) has the exceptional locus over the vertex of the
cone equal to the union of 4 curves E0 +E1 +E2 +E3 with E2

0 = −1, E2
i = −ei

forming a graph of type T2,2,2. The infinity is the curve with intersection graph
of type Te1,e2,e3 and all irreducible components are (−2)-curves.
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Remark 4.3.15. Recall that the surface ĈX was defined as Proj (AX)≥0[z] and
hence admits a canonical projection to X. Since the general fibre of this pro-
jection is isomorphic to P1

K , it is birationally isomorphic to a ruled surface with
base X. It is known that such a surface admits a birational morphism to a
minimal ruled surface isomorphic to the projective bundle P(E), where E is a
rank 2 locally free sheaf on X. A birational morphism of nonsingular projective
surfaces is a composition of blowing-downs of (−1)-curves contained in fibres
(the inverses of blow-ups at a singular point) (see [Hartshorne]). Since none of
the non-central components of the curves E0 and E∞ is a (−1)-curve, we see that
each (−1)-curve contained in a fibre must be the unique component of the fibres
over one of the points x1, . . . , xr which is not contained in the divisor E0 + E∞.

In the next section we explain how to compute the genus g of the curve X
if the affine quasicone is a complete intersection.

4.4 Canonical sheaf

Recall that any normal scheme X of finite type over a field K carries a distin-
guished class of Weil divisors. It is the canonical class KX . It is defined by
choosing an open smooth subscheme j : U ↪→ X with complement of codimen-
sion ≥ 2 and defining

OX(KX) ∼= j∗ωU/K ,

where ωU/K = Ωdim U
U/K .

When X is a Cohen-Macaulay scheme, i.e. all its local rings are Cohen-
Macaulay ring (i.e. the depth is equal to the dimension), the sheaf OX(KX)
coincides with dualizing sheaf ωX . A Cohen-Macaulay scheme is called a Goren-
stein scheme at a point x ∈ X if (ωX)x

∼= OX,x.
A graded normal algebra A over a field K = A0 is called Gorenstein if C is

Gorenstein at the vertex. Let ωA be the A-module corresponding to the sheaf
ωC . The group Gm acting on A acts on ωC via the grading on ωA. Thus ωA is a
graded A-module. One can show that A is Gorenstein if and only if ωA

∼= A[δ]
as graded A-modules. The number δ is called the index of A.

Proposition 4.4.1. Let A be a graded normal algebra. Then A is Gorenstein
if and only if ωX

∼= OX(δ) for some integer δ. The number δ is the index of A.

Proof. We use that
ωX = ω∼A (4.14)

This immediately follow from Proposition 4.4.4 if A is generated by degree 1
elements. In fact, it says that Γ∗(ωX) ∼= ωA, and hence the associated sheaves
are isomorphic. In the general case, we consider a Veronese subalgebra A(e)

generated by elements of degree e. Then the module ωA(e) is equal to ω(e)
A =∑

n∈Z(ωA)ne. Its associated sheaf is ωX . On the other hand, for any graded
A-module the sheaves (M (e))∼ and M∼ are isomorphic. It follows from (4.14)
that ωX = OX(δ) if A is Gorenstein of index δ. Conversely, if (4.14) holds for
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some δ, then the modules ωA and A[δ] define the same sheaves on C∗. Since
the corresponding sheaves on C are determined by restriction to an open subset
with complement of codimension ≥ 2, they isomorphic sheaves on C.

Remark 4.4.2. Suppose X is a projective normal subvariety of PN . Then the
previous proposition implies that the projective coordinate ring of X is Goren-
stein if and only if the canonical class KX is an integer multiple of the class of
a hyperplane section of X. For example, this happens if KX = 0 (a Calabi-Yau
variety). More generally, suppose that KX = δH, where H is an ample divisor
class (if δ < 0, then X is called a Fano variety). Then the ring A(X, dH) is
Gorenstein for any positive divisor d of δ.

Theorem 4.4.3. Let G be a finite subgroup of SL(n, k). Assume that the order
of G is coprime to the characteristic of K. Then the graded algebra of invariants
A = k[z1, . . . , zn]G is a Gorenstein ring.

Proof. We skip the proof that A is Cohen-Macaulay. This is true for any finite
linear group (see, for example, [Sturmfelds], Algorithms in Invariant theory). It
is easy to see that we will not lose generality if we assume that k is algebraically
closed. Let g 6= 1 be an element of G. After diagonalizing g we may assume
that g acts on An

k as a diagonal matrix with roots of unity at the diagonal.
Since det g = 1, its set of fixed points cannot be a hyperplane. This shows that
the group G acts freely on an open invariant subset U ⊂ An

k with complement
of codimension ≥ 2. Let V = U/G be the corresponding open subset of C =
Spec A. The projection morphism p : U → V is étale. This implies that
p∗(Ω1

V ) ∼= Ω1
U , and hence p∗(Ωn

V ) ∼= Ωn
U . Since Ωn

An
k

∼= OAn
k

and the complement
of U is of codimension ≥ 2, we obtain that Ωn

U
∼= OU and hence p∗(Ωn

V ) ∼= OU .
The image of the canonical map Ωn

V → p∗p
∗(Ωn

V ) = p∗(OU ) is contained in the
subsheaf of G-invariant sections. By definition of U/G it coincides with OV . If
the inclusion is strict, then quotient sheaf is a torsion sheaf T . Since U is flat over
V , the functor p∗ is exact, hence and p∗T = p∗(OV )/p∗(Ωn

V ) = OU/OU = {0}.
However, under a flat map, the pre-image of a non-zero sheaf is non-zero.

So, we have shown that Ωn
V
∼= On

V . Since the complement of V in C is of
codimension ≥ 2, by definition of KC we have OC(KC) ∼= OC .

Recall that we have an isomorphism of graded algebras

A→
∞⊕

i=0

H0(X,OX(i)),

for any normal graded algebra over K = A0, where X = Proj A. As we ex-
plained in the previous lecture, this follows from the fact that depthm0

A ≥ 2.
Furthermore, the theory of local cohomology gives an isomorphism

Hj
m0

(A) ∼= Hj−1(C∗,OC∗) =
⊕
i∈Z

Hj−1(X,OX(i)), j > 1.
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Also we have depthm0
(A) ≤ k if and only if Hj

m0(A) = 0, j < k. A normal ring
A is called Cohen-Macaulay if depthm0

(A) = n = dimA. Thus, A is Cohen-
Macaulay if and only if

Hj(X,OX(i)) = 0, 1 ≤ j < dimA, i ∈ Z.

The graded A-module

ωA = Hn
m0

(A)∗ ∼=
⊕
i∈Z

Hn−1(X,OX(−i))∗

is called the dualizing module. The corresponding sheaf ω∼A on C is isomorphic
to OC(KC).

Proposition 4.4.4. Let A = A(X,D) for some D ∈ WDiv(X). Let D−bDc =∑
s

ks

es
Es be its Seifert divisor. There is an isomorphism of graded A-modules

ωA
∼=

⊕
i∈Z

L(KX + iD +D′),

where D′ =
∑ ei−1

ei
Ei.

Proof. If C is Cohen-Macaulay, then X is Cohen-Macaulay. This follows from
the fact that X is covered by spectra of rings of invariants of coordinate rings of
C∗ with respect to the action of Gm. They are Cohen-Macaulay if C is Cohen-
Macaulay. Thus OX(KX) = ωX is the dualizing sheaf and we have the duality
isomorphism for any Weil divisor E on X

Hn−1(X,OX(E))∗ ∼= Ext0(X,OX(KX − E))

∼= H0(X,HomOX
(OX(E),OX(KX)) ∼= L(KX − E)).

This gives an isomorphism of graded modules

ωA
∼=

⊕
i∈Z

L(KX −D−i),

where OX(i) ∼= OX(Di) for some Weil divisor Di. Let A = A(X,D) for some
Weil Q-divisor D. Then Di = biDc, and we obtain an isomorphism of graded
A modules

ωA
∼=

⊕
i∈Z

L(KX − b−iDc).

It remains to use that −b−nqs

es
c = bnqs+es−1

es
c.

Lemma 4.4.5. Let A be a normal graded complete intersection algebra isomor-
phic to Spec k[z1, . . . , zn+r]/(f1, . . . , fn), where qi = deg zi, di = deg fi. Let d =
(d1, . . . , dr),q = (q1, . . . , qn+r). Then A is Gorenstein and ωA

∼= A[|d| − |q|],
where

|d| =
n∑

i=1

di, |q| =
n+r∑
j=1

qj .
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Proof. It is known that a complete intersection is Cohen-Macaulay. Let S =
Spec k[z1, . . . , zn+r]. The standard exact sequence

0 → I/I2 → Ω1
S/k ⊗S A→ Ω1

A/k → 0.

We have an isomorphism of S-modules

I/I2 ∼=
n⊕

i=1

S[−di].

Passing to exterior powers, we get

Ωr
A/k(−|d|) ∼= Λn+rΩ1

S/K ⊗B A ∼= A[−|q|].

Here we use that

Ω1
S =

n+r⊕
i=1

Sdzi
∼=

n+r⊕
i=1

S[−qi].

This gives Ωr
A/k

∼= A[|d|−|q|]. Since the associated sheaf coincides with OC(KC)
on an open subset of regular points of C, whose complement is of codimension
≥ 2, we obtain that ωA

∼= A[|d| − |q|].

Corollary 4.4.6. Suppose A is a Gorenstein complete intersection algebra and
ωA

∼= A[δ] as graded A-modules. Then

ωX
∼= OX(|d| − |q|).

In particular,
pg(X) := dimL(KX) = dimA|d|−|q|.

Remark 4.4.7. One can prove that, under the assumption that A is Gorenstein

ωX
∼= OX(αD −D′) ∼= OX(bδD −D′c), (4.15)

where ωA = A[δ] (see [Watanabe, Nagoya Math. J., 1981). By Proposition
4.4.1,

ωX
∼= ω∼A

∼= OX(δ) ∼= OX(bδDc), (4.16)

where A = A(X,D). Comparing the two formulas, we see that bδD − D′c =
bαDc. This happens if and only if

δki ≡ −1 mod ei, i = 1, . . . , r, ωX
∼= OX(αD−D′) ∼= OX(bδD−D′c), (4.17)

where D − bDc =
∑ ki

ei
Ei is the Seifert divisor of A.

Conversely, if the congruences (4.17) are satisfied for some δ, and ωX
∼=

OX(δD), then we have (4.15) and Proposition 4.4.4 gives that ωA
∼= A[δ].

Definition 4.4.1. A normal affine quasicone C = Spec A(X,D) is called a
canonical (resp. anticanonical) if ωX

∼= OX(D) (resp. ωX
∼= OX(−D)) and

D − bDc =
∑ ei−1

ei
Ei (resp. D − bDc =

∑
1
ei
Ei.)
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It follows from Proposition 4.4.1 that canonical and anticanonical quasicones
are Gorenstein.

Example 4.4.8. The Klein quasicones are anticanonical. The quasicones cor-
responding to the Seifert divisor KP1 +

∑r
i=1

ei−1
ei

Pi with

r∑
i=1

1
ei
< r − 2

are canonical.
A complete intersectionK[z1, . . . , zn+r+1]/(f1, . . . , fn) of degrees d = (d1, . . . , dn)

and weights q = (q1, . . . , qn+r+1) is canonical (resp. anti-canonical) if and only
if |d| − |q| = 1 (resp. = −1).

Now we can finish by describing explicitly a resolution of the projective qua-
sicone Ĉ in the case C is a 2-dimensional complex hypersurface f(z0, z1, z2) = 0
of degree d and weights q1, q2, q3. We assume that (q1, q2, q3) = 1.

First we find the degree of the affine quasicone

degC = d/q1q2q3.

Second, we find the Seifert divisor
∑ ki

ei
Pi. The points P1, . . . , Pr correspond

to the points P = (z0, z1, z2) ∈ C3 such that f(z0, z1, z2) = 0 and C∗ acts with
non-trivial stabilizer. The curve X = V (f) is covered by 3 affine pieces zi 6= 0.
Assume z0 = 1. The reduced fibre of C∗ → X over a point z = (z0 : z1 : z2)
contains a point z∗ = (1, x, y). If Gm acts on this fibre with non-trivial kernel
H, then (tq1 , tq2x, tq3y) = (1, x, y) for all t ∈ H. This implies tq1 = 1. If x, y 6= 0,
then it also implies that tq2 = tq3 = 1. Since d = (q1, q2, q3) = 1, we get t = 1.
So, assume that y = 0. We have #H = (q1, q2) = e3 if x 6= 0 and #H = q1
otherwise. Similarily, we have to find other points with one of the coordinates
equal to zero which enter in the Seifert divisor.

It remains to determine the numbers k1, k2, k3. We know that KX ∼ δD,
where δ = d − q1 − q2 − q3. It follows from Proposition 4.4.1 that δki ≡ −1
mod ei. This determines ki.

To summarize, we have found the Seifert divisor

D − bDc =
k1

e1

r1∑
i=1

Pi +
k2

e2

r2∑
i=1

Qi +
k3

e3

r3∑
i=1

Ri,

where ri is the number of points on X with zi = 0.
The Seifert divisor determines the cyclic singularities of the partial resolu-

tion of ĈX . The genus of the central components is given by formula (4.4.6).
By Theorem 4.3.11, their self-intersections is determined by the degree of the
quasicone which we know.

Example 4.4.9. Let f(z0, z1, z2) = z12
0 + z8

1 − z1z
5
2 . We have d = 120, q =

(10, 15, 21). Points with coordinates (0, y, z) satisfy y7 = z5. We may assume
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that z = 1, then all points (0, y, 1) with y7 = 1 are equivalent under our C∗-
action (take t a 7th root of unity). Thus r1 = 1. There is only one point with
z1 = 0, the point (0, 0, 1). Thus r2 = 1. There are 4 points with coordinates
(x, y, 0). They are (a, 1, 0), where a12 = 1. The points (a, 1, 0) and the points
(ηa, 1, 0), where η3 = 1 represent the same points in X. We have

e1 = (q2, q3) = 3, e2 = q3 = 21, e3 = . . . = e7 = (q1, q2) = 5.

Since δ = d − |q| = 120 − 46 = 74, and 74ki ≡ −1 mod ei, we determine the
Seifert divisor

D − bDc =
1
3
p1 +

19
21
p2 +

1
5
(p3 + p4 + p5 + p6).

Since degD = 120/10 · 15 · 21 = 4
105 , we get

degbDc =
4

105
− 1

3
− 19

21
− 4

5
= 2.

Now everything is ready. The central componet S0 has self-intersection degbDc−
6 = −4. The central component S∞ has self-intersection 2. Both curves has the
genus equal to the number of positive integer solutions of 10a+ 15b+ 21c = 74.
It is easy to see that this number is zero. The exceptional curve over the vertex
looks as follows.

• • • • • • •

• • • •���������

• • • •??
??

??
??

?

• • • •�������������
−4−11−2 −2 −2 −2 −2

−2 −2 −2 −2

−2 −2 −2 −2

−2 −2 −2 −2

Figure 4.3:

We leave to the reader to determine the curve E∞.
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4.5 Finite group quotients

Let A = ⊕i∈ZAi be a graded algebra finitely generated over a Noetherian ring
R and G be its finite group of automorphisms (preserving the grading). Then
the ring of invariants AG is a graded finitely generated R-algebra. Suppose
A = A(X,D), where X is a normal integral projective algebraic variety over a
field k and D is a Q-Cartier divisor on X. The group G acts naturally on the
affine quasicone C = Spec A. Since we view elements of A as regular functions
on C, we shall denote the image of a ∈ A under an automorphism σ ∈ G by
σ∗(a). We have σ∗(a) = a(g−1(c)), for any closed point c ∈ C.

For any open affine subset D(f) of Spec A, an element σ ∈ G transforms
D(f) into D(σ(f)) and the ring Af = OC(D(f)) to the ring Aσ(f). Obviously
the homomorphism σ : Af → Aσ(f) preserves the grading, hence maps each
(Af )i to Aσ(f))i. Since σ transforms homogeneous ideals to homogeneous ideals
and leaves the irrelevant ideal m0 invariant, this implies that G acts on X =
Proj A and, for each i ∈ Z defines an isomorphism

σ∗ : g∗(OX(i)) → OX(i).

Since G acts on X, it acts naturally on X(1) by

σ :
∑

nxx 7→ σ∗(
∑

nxx) :=
∑

nxg
−1(x) : .

By Q-linearity the action extends on the group of Weil Q- divisors. Also it is
clear that it leaves the subgroup of Cartier Q-divisors invariant. We denote
this action by D 7→ g∗(D). The action of G on A extends to the action of its
fraction ring and its subfield K = k(X) of homogeneous fractions. It is easy to
check that it leaves invariant the group of principal divisors. Thus G acts on
the group Pic(X)⊗Q.

Since OX(i) ∼= OX(biDc), and σ∗(OX(bDc) ∼= OX(σ∗(ibDc)), we see that
σ∗(D) is linearly equivalent to D.

Lemma 4.5.1. One can replace D with a linearly equivalent divisor D′ such
that σ∗(D′) = D′ for any σ ∈ G. Two such divisors differ by the divisor of a
G-rational function on X.

Proof. Replacing D by rD for some integer r we may assume that D is a Weil
divisor. For any Weil divisor D, we consider the sheaf OX(D) as a subsheaf
of the constant sheaf k(X). An isomorphism OX(σ∗(D)) → OX(D) is defined
by the multiplication by a unique rational function Φσ such that σ∗(D)−D =
div(Φσ). We have

(τσ)∗(D)−D = σ∗(τ∗(D)−D) + σ∗(D)−D = div(σ∗(Φτ )Φσ).

This shows that the map G → k(X)∗, σ 7→ Φσ is a 1-cocycle of G with values
in k(X)∗. We view G as the Galois group of the finite extension k(X)/k(X)G.
Applying Hilbert’s Theorem 90 (see Lang]), we obtain that the cocycle is trivial,
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i.e. can be written in the form Φσ = σ∗(Ψ)Ψ−1 for some rational function Ψ.
Replacing D with D′ = D − div(Ψ), we obtain

σ∗(D′)−D′ = σ∗(D)−D − div(g∗(Ψ)/Ψ) = div(Φσ)− div(g∗(Ψ)Ψ−1) = 0.

The last assertion is clear.

Let G act on a normal quasi-projective algebraic variety X. Then the quo-
tient pG : X → X/G exists in the category of algebraic varieties. It is a
normal variety (projective, if X is projective). It is constructed by choosing
a G-invariant open affine cover (Ui) of X and defining X/G as the gluing to-
gether the quotients Ui/G := Spec O(U)G (see the details in [Serre, Groupes
algebriques et corps de classes]).

Let D be a G-invariant Q-Cartier divisor on X. We would like to “descent”
it to a Q-Cartier divisor D/G on X/G. The divisor D/G must satisfy the
following properties: For any open subspace V ⊂ X/G, the inclusion of fields
k(X)G defines the inclusion AX/G(D/G)(V ) with AX(D)(p−1

G (V ))G. In other
words, if Φ is an invariant rational function satisfying

div(Φ) + iD ≥ 0 on U = p−1
G (V ) ⇔ div(φ) +D/G ≥ 0 on V. (4.18)

LetD =
∑

x∈X(1) mxx. SinceD isG-invariant, we can writeD =
∑t

s=1mi(Gxi),
where x1, . . . , xt are representatives of the G-orbits of G in X(1) and mi = mxi .
Since pG : X → X/G is a finite morphism, the image of any point of codimen-
sion 1 is a point in X/G of codimension 1. Let y1, . . . , yt be the images of the
points x1, . . . , xt in (X/G)(1). For each point xi let rami denote the ramifica-
tion index of pG. Recal that this means that the image of the maximal ideal of
mX/G,yi

in OX,xi
is equal to the mrami

X,xi
. We set

D/G =
t∑

i=1

(mi/rami)yi. (4.19)

It is clear that D/G satisfies property (4.18). Also we have p∗G(D/G) = D,
where we extend the natural homomorphism p∗G : WDiv(X/G) → WDiv(X) to
Q-divisors.

Proposition 4.5.2. Let A = A(X,D) and D′ be a G-invariant Q-Cartier di-
visor linearly equivalent to D. Let D′/G denotes its image in X/G. Then

C(X,D)/G = Spec A(X,D)G ∼= A(X/G,D′/G).

Proof. Let f1, . . . , fN be generators of the algebra of invariants A(X,D)G. The
open subsets D(fα) (resp. D+(fα)) form an open G-invariant cover of C(X,D)
(resp. X). The quotientD(fα) → D(fα)/G corresponds to the inclusion of rings
(Afα)G ⊂ Afα (resp, AG

(fα) ⊂ A(fα)). Consider the sheaves AX(D′))i
∼= OX(i).

Over D+(fα), its sections are rational functions Φ on X such that div(Φ) +
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bD′c ≥ 0 on D+(fα). It is immediate to see that AX(D′)G
i = AX/G(D′/G)i.

This implies that AX(D′)G ∼= AX/G(D′/G). But

A(X,D)G =
(⊕

i≥0

Γ(X,AX(D′))i

)G ∼=
⊕
i≥0

Γ(X,AX(D′))G
i

∼=
⊕
i≥0

Γ(X,AX/G(D′/G))i
∼=

(⊕
i≥0

Γ(X,AX/G(D′/G))i

)G ∼= A(X/G,D′/G).

Next we consider the problem when an action of G on X = Proj A lifts
to an action of G on A. As we saw in above, the necessary condition is that
σ∗(OX(i)) ∼= OX(i) for any i ∈ Z. However, it is not sufficient. For example,
consider the case X = P1 and G ⊂ PGL(2, k), then we know that G may not
lift to an action on A2

k = C(X,OP1
k
(1)). However, we know that in this case

some central extension of G lifts. Let us see that the similar thing happens in
the general case.

Let F be any quasi-coherent sheaf on X. Suppose that, for any σ ∈ G, there
is an isomorphism φσ : σ∗(F) → F . Consider the set Ḡ of all possible pairs
Define the group by

(σ, φσ) ◦ (τ, ψτ ) = (σ ◦ τ, φσ ◦ σ∗(ψτ )),

where σ∗(ψτ ) is an isomorphism φ∗σ(ψ∗τ (F)) → φ∗σ(F)). The projection (σ, φσ) 7→
σ defines an extension of groups

1 → Aut(F) → G̃→ G→ 1. (4.20)

Let U be a G-invariant open subset of X. For any section s ∈ F(U) and
any σ ∈ G we have the section σ∗(s) of g∗(F) on g−1(U) = U . An isomorphism
φσ : σ∗(F) → F defines a homomorphism φσ : F(U) → F(U) sending s to
φσ(σ∗(s)). We define the action of G̃ on F(U) by

(σ, φσ)(s) = φσ(g∗(s)).

Since
(τ, ψτ )((σ, φσ)(s)) = ψτ (τ∗(φσ(g∗(s)))

= ψτ (τ∗(φσ)(τ∗(g∗(s))) = (τσ, ψτ ◦ τ∗(φσ))(s),

we obtain that G̃ acts on F(U).
Note that the subgroup Aut(F) of elements (idX , φidX

) acts by automor-
phisms of F . Assume that F = OX(D) for some Weil divisor D. We consider it
as a subsheaf of the constant sheaf k(X). Then automorphism of OX(D) is ob-
tained by the multiplication by a rational function Φ such that D+div(Φ) = D.
This implies that Φ ∈ k∗ and Aut(OX(D)) ∼= k∗. Thus (4.20) becomes a central
extension

1 → k∗ → G̃→ G→ 1. (4.21)
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As such, it is defined by the cohomology class α(D) ∈ H2(G, k∗). The second
cohomology group H2(G, k∗) is called the Schur multiplier of G. It is a finite
commutative group killed by the order N of H2(G, k∗). Assume [N ] : x 7→ xN is
surjective map k∗ → k∗. The exacts sequence 1 → µN → k∗ → k∗ → 1 defines

an exact sequence of group cohomology H2(G,µN ) → H2(G, k∗)
[N ]→ H2(G, k∗).

It shows that the homomorphism H2(G,µN ) → H2(G, k∗) is surjective. In
terms of group extensions, this can be interpreted as follows. For each extension
(4.21) there exists an extension

1 → µN → G′ → G→ 1. (4.22)

such that extension (4.21) is obtained from (4.22) by replacing G′ with G̃ =
G′ ×µN

k∗ and taking the composition of the projections G′ ×µN
k∗ → G̃′ → G

as the projection G̃ → G. Its kernel is isomorphic to k∗. The image of G′ in
G̃ is a finite group of pairs (σ, φσ) such the φσ ∈ µN ⊂ Aut(OX(D)). We have
proved the following.

Proposition 4.5.3. For any Weil divisor D such that σ∗(OX(D)) ∼= OX(D)
for all g ∈ G there exists a finite central extension G′ of the form (4.22) such
that the action of G on X lifts to an action of G′ on Γ(U,OX(D)), where U is
any G-invariant open subset of X. One may take G′ = G if and only if D is
linearly equivalent to a G-invariant divisor D′

Note that G′ acts on X through G so its subgroup µN acts trivially on X.

Corollary 4.5.4. Let G acts on X and leaves invariant divisor class of an
ample Cartier Q-divisor D on X. Then there exists a finite extension (4.22)
such that the action of G on X = Proj A(X,D) lifts to an action of G′ on
Spec A(X,D).

Let us consider the two-dimensional case, i.e. dimA = A(X,D) is of di-
mension2. In this case dimX = 1, and since X is normal, it is a nonsingular
projective curve over k of some genus g. Let D−bDc =

∑r
i=1

qi

ei
pi. If D 6= bDc,

we know that Ĉ(X,D) is a P1-bundle over X isomorphic to P(OX(D) ⊕ OX).
Suppose D 6= bDc.

We will use the following well-known fact from the theory of Riemann sur-
faces.

Lemma 4.5.5. Let X be a compact Riemann surface of genus g and p1, . . . , pr

be points on X, and let e1, . . . , er be some positive numbers. Assume that g >
0, or g = 0 and either r ≥ 3, or r = 2 and e1 = e2. Then there exists
a finite Galois cover Y → X ramified exactly over the points p1, . . . , pr with
ramifications indices equal to e1, . . . , er.

As we will see below the proof follows from the following fact from the
combinatorail group theory, known as the Fenchel Conjecture:
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(*) Let Π be a group with generators, ai, bi, i = 1, . . . , g and c1, . . . , cr and
defining relations

[a1, b1] · · · [ag, bg]c1 · · · cr = 1, ce1
1 = . . . = cer

r = 1.

Then Π contains a normal torsion-free subgroup of finite index.

We refer to the proof of this statement to [Mennicke, Inv. Math. vol. 2]. To
give an idea of the proof let us consider the special case g > 0, where one can
give a completely elementary short proof due to S. Bundgaard and J. Nielsen
[Matematiske Tidskrift. vol. 50]. The case g = 0 was considered by R. Fox
[Matematiske Tidskrift. vol. 50]. This statement follows from a much more
general result of C. Siegel about finitely generated discrete subgroups of linear
algebraic groups [Siegel].

Let π1(X \{p, . . . , pr, x0}) be the fundamental group of U = X \{p1, . . . , pr}.
It is known that it is generated by π1(X,x0) and the homotopu classes of some
loops γ1, . . . , γr that originate at x0 and go around th points xi. The defining
relation is [a1, b1] · · · [ag, bg]γ1 · · · γr = 1, where ai, bi are the standard generators
of π1(X,x0). Let Π be the quotient of π1(U, x0) obtained by adding additional
relations γei

i = 1, i = 1, . . . , r. Suppose we find a normal subgroup of finite
index Π′ of Π such that it does not contain the cosets γ̄s

i of the γs
i ’s in Π′

if s is not divisible by ei. Or, equivalently, the image of each γi under the
composition f : π1(U, x0) → Π → Π/Π′ = G is of order ei. It can be shown
that any element of finite order in Π′ is conjugate to a power of some γ̄i. This
shows that the previous condition on Π′ is equivalent to that Π′ is torsion-free.
Now, we use that the Uniformization Theorem. According to this theorem the
universal cover Ũ of U has a structure of a simply connected one-dimensional
complex manifold, and as such must be isomorphic to either P1(C), or C, or
D = {z ∈ C : |z| < 1}. The surjection π1(U, x0) → G will define a finite a
topological G-covering of 2-manifolds p′ : U ′ → U . It can be also considered
as an unramified Galois G-cover of the corresponding complex manifolds, or,
even better, affine complex algebraic curves. The covering p′ can be extended
to a ramified G-cover of compact Riemann surfaces p̄′ : Y → X. As a cover of
2-manifolds this cover is obtained by the so-called Fox construction ([Fox], A
Symposium in honor of Lefschetz]. In algebraic geometry this construction is
nothing more than the normalization of X in the field of rational functions on
U ′. Let z be a local parameter at the point pi and u be a local parameter at a
point qi ∈ Y lying over pi. Fix a point y0 ∈ U ′ over x0 and consider elements of
the fundamental group π1(U ′, y0) as the homotopy classes of loops originating
at y0. Consider the homotopy class [γ′i] of a loop γ′i starting at y0, moving to the
point q′i on the circle |u − u(qi)| = ε, turning around this point in counterwise
way, and returning back. Its image in U is equal to eith power of the homotopy
class of the loop γi. We can choose the local parameters such that z = ue, where
e is the ramification index of the cover Y → X at qi. The image of γ′ is loop
going e times around the circle |z − z(pi)| = ε1/e. However, we know that the
image of [γ′i] in π1(U, x0) is equal to the [γi]ei . This shows that e = ei. Thus
the cover Y → X is exactly what we needed to construct.
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Let us prove the Fenchel conjecture in the case g > 0. Let us first construct
a normal subgroup of finite index Π′

i of Π such that the image of ci in Π/Π′
i is

of order ei. After that we take for the intersection of the subgroups Π′ = Π′
1.

It is easy to see that it is a normal subgroup of finite index and the image
of each ci in the quotient group is of order ei. It is enough to construct Π′

1.
Let e1 = e and D4e be the dihedral group of order 4e generated by u, v with
defining relations uvu−1 = v−1, v2e = u2 = 1. Take a new set of generators
in Π by replacing c1 with c′1 = [a1, b1]c1, so that c1 = [a1, b1]−1c′1. Let F
be the free group with generators ai, bi, i = 1, . . . , g, c1, . . . , cr. Consider the
homomorphism φ : F → D2e that sends a1 to u and b1 to v, and all other
generators to 1. We have

φ(ce1) = φ([a1, b1]−1c′1)
e = φ([a1, b1])−e = (uvu−1v−1)−e = v−2e = 1,

φ(ci) = 1, φ([ai, bi]) = 1, i 6= 1, and

φ([a1, b1] · · · [ag, bg]c1 · · · cr) = φ([a1b1]c1) = φ(c′1) = 1

we see that φ defines a homomorphism φ̄ : Π → D2e. By the above, φ̄(cn1 ) =
v−2n = 1 if and only if n is divisible by 2e. Therefore, the kernel of φ̄ is our
group Π′

1.
Remark 4.5.6. The group Π from (*) is a finite group if and only if g = 0 and

r∑
i=1

e−1
i > r − 2.

It is a cyclic group of order e1 if r = 1 and of order (e1, e2) if r = 2. In
the remaining cases it is isomorphic to one of the polyhedral group of types
Dn, T,O, I. The curve Y is isomorphic to P1.

If
r∑

i=1

e−1
i = r − 2,

the group Π is isomorphic to one of the groups Z2 o Z/nZ, where n = 2, 3, 4, 6
correspond to the cases (r; e1, . . . , er) = (4; 2, 2, 2, 2), (3, 3, 3, 3), (3; 2, 4, 4), and
(3; 2, 4, 6). The homomorphism Z/nZ → Aut(Z2) defining the semi-direct prod-
uct is given by sending a generator of Z/nZ to the automorphism a+ beπi/ni 7→
e2πi/n(a + beπi/n, where we identify Z2 with the ring Z + eπi/nZ, n = 2, 3, 4, 6
integers. The curve Y in this case is an elliptic curve isomorphic to the complex
torus C/Z + τZ, where τ is any complex number with positive imaginary part,
or τ = eπi/n with n = 3, 4, 6.

In the remaining cases
r∑

i=1

e−1
i < 2g − 2 + r.

The group Π is isomorphic to a Fuchsian group of signature (g; e1, . . . , er). This
a discrete group Γ of holomorphic automorphisms of D with the quotient D/Γ
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isomorphic to a compact Riemann surface X of genus g. The cover map D → X
is ramified over a set of points p1, . . . , pr with ramification indices e1, . . . , er.

Theorem 4.5.7. Let D − bDc =
∑r

i=1
ki

ei
pi. Assume that k = C and g > 0,

or g = 0 and either r ≥ 3, or r = 2, e1 = e2. There exists a 2-dimensional
ring B = A(Y,D′) with D′ = bD′c and a finite group G of automorphisms of
Y such that BG ∼= A. Moreover G acts freely on the punctured affine quasicone
C(Y,D′)∗.

Proof. Let f : Y → X be a finite G-cover constructed in Lemma 4.5.5. We have
D′ = f∗(D) = f∗(bDc) +

∑r
i=1 ki(f−1(pi))red. This is a G-invariant Cartier

divisor on Y . The action of the group G on Y extends to an action on A(Y,D′).
By Proposition 4.5.2, C(X,D) ∼= C(Y,D′)/G.

It remains to check the last assertion. For any point p ∈ X, the set-
theoretical fibre f−1(p) is a G-orbit. Thus the image of a point x in C(Y,D′)∗

with non-trivail stabilizer subgroup under the map π : C(Y,D′) is equal to a
point yi lying in a fibres f−1(pi) for some pi. The stabilizer subgroup Gx is a
subgroup of Gyi

. The order of Gyi
is equal to the ramification index ei. Let zi

be a local parameter at xi. Since Gyi
is a finite group we can find a Gyi

-invariant
affine open neighborhood Ui of yi, such that OY (Ui)-module OY (D′)(Ui), con-
sidered as a subscheaf of C(Y ), is generated by z−ki

i . Let σ be a generator of
Gyi . It acts on the local ring OY,yi by sending zi to ziζ, where ζ = e2πi/ei . We
have

π−1(Ui) ∼= Spec ⊕i 6=0 OY (iD′)(Ui) ∼= OY (Ui)[T, T−1],

where the variable T corresponds to the generator z−ki
i . The group Gyi

acts on
the fibre π−1(yi) by sending T to ζ−kiT . Since we assume in the definition of
the Seifert divisor that (ki, ei) = 1, the action has no fixed points.

Remark 4.5.8. The proof also shows how Gyi
acts on C(Y,D′)±. We have

π−1
± (Ui) ∼= Spec OY (Ui)[T±1]. Let y± = s±(yi) be the intersection point

of the section s±(Y ) with π−1
± (Ui). Let us identify the formal completion

of the local ring OC(Y,D′)+,y+ with C[[t, u]]. Then Gyi acts on this ring by
(t, u) 7→ (ζt, ζ∓kiu). Thus the image x+ of y+ (resp. the image of x− of y−) in
C(X,D)+ (resp. C(X,D)−) is the point at the section s+(X) (resp. s−(X))
formally isomorphic to the cyclic quotient singularity Cei,ei−ki

(resp. Cei,ki
).

This confirms what we learnt in Example .

Example 4.5.9. Let f : Y → X as in Theorem 4.5.7. By Hurwitz fomula

KY = f∗(KX +
r∑

i=1

(1− e−1
i )pi) = f∗(KX) +

r∑
i=1

(ei − 1)(f−1(pi))red.

Thus KY is a G-invariant Cartier divisor. Assume KX is of positive degree, and
hence ample. This occurs if and only if

degKX +
r∑

i=1

(1− e−1
i ) = 2g + r − 2−

r∑
i=1

e−1
i > 0.
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The curve Y is of genus g′ > 1 such that 2g′ − 2 = |G|(2g + r − 2−
∑r

i=1 e
−1
i ).

Its fundamental group is a torsion-free subgroup of finite index of a Fuchsian
group of signature (g; e1, . . . , er) with the quotient group isomorphic to G. Let

D = KX +
r∑

i=1

(1− e−1
i )pi.

We obtain that
C(X,D) = C(Y,KY )/G.

By definition from section 4.4, C(X,D) is a canonical affine quasicone. The
previous isomorphism gives one more motivation for this definition. The surface
Ĉ(X,D) admits a resolution C̃(X,D) → Ĉ(X,D) with the intersection graph

• •

•���������

•/
//

//
//

//
//

//

...

...

−2g + 2− r −e2

−e1

−er

• • • • •· · ·

• • • •· · ·

??
??

??
??

?

• • • •· · ·

�������������

...
...

...
...

...
...

...
...

2g − 2
−2 −2 −2

−2 −2 −2

−2 −2 −2

E0 E∞

Figure 4.4:

The central curves here are of genus g and the number of (−2)-vertices in
each ith arm (starting from the top one) of the diagram of E∞ is equal to ei.

Next we assume that −KY is ample. This of course implies that Y ∼= X ∼=
P1. We have

−KY = f∗(−KX +
r∑

i=1

(−1 + e−1
i )pi) = f∗(−KX) +

r∑
i=1

(1− ei)(f−1(pi))red.

Thus −KY is a G-invariant Cartier divisor. This occurs if and only if

degKX +
r∑

i=1

(e−1
i − 1) = 2− r +

r∑
i=1

e−1
i > 0.

The group G is finite and isomorphic to a polyhedral group. By definition,
C(X,D) is an anticanonical affine quasicone. It is isomorphic to one of the
Klein surfaces. Let

D = −KX +
r∑

i=1

(e−1
i − 1)pi.

We obtain that
C(X,D) = C(Y,−KY )/G.
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Figure 4.5:

The surface Ĉ(X,D) admits a resolution C̃(X,D) → Ĉ(X,D) with the inter-
section graph E∞ equal to

The graph of E0 is the Dynkin diagram of type Ae1+e2−1 if r = 2 and of
type Dn if (e1, e2, e3) = (2, 2, n − 2), n ≥ 4), E6 if (e1, e2, e3) = (2, 3, 3), E7 if
(e1, e2, e3) = (2, 3, 4), E8 if (e1, e2, e3) = (2, 3, 5).

Note that we cannot apply the construction of Theorem 4.5.8 to the case
r = 2 unless e1 = e2. Nevertheless, the corresponding graded ring A(P1, D)
is isomorphic to k[T1, T2, T3]/(T2T3 − T e1+e2

1 ), where deg T1 = 1,deg T2 =
e1, deg T3 = e2. If e1 + e2 = 2n is even, we can regrade it by setting deg T1 =
1,deg T2 = deg T3 = n. Then C(P1, D) ∼= C(P1, 1

np1 + 1
np2) and we can ap-

ply the theorem. Of course, in this case the affine surface is a Klein surface
of type A2n−1. If e1 + e2 = 2n + 1 is odd, we can regrade the ring by setting
deg T1 = 2,deg T2 = deg T3 = n+1. This gives C(P1, D) ∼= C(P1, 1

n+1p1 + 1
n+1 )

and we can apply the theorem. In this case the affine surface is a Klein surface
of type A2n.

Remark 4.5.10. The pair (Y,G) constructed in Theorem 4.5.7 is far from being
unique. We assume that Y is of genus g(Y ) > 1. Let u : D → Y be the universal
cover, and L be the holomorphic line bundle on D equal to the inverse image
of the line bundle V(OY (D′)) under the holomorphic map u. Let Π′ be the
fundamental group of Y and Y be group extension

1 → Π′ → Π → G→ 1

obtained from lifting automorphisms of Y to the universal cover. The group Π
is a Fuchsian group of signature (g; e1, . . . , er) and Π′ is its torsion free subgroup
of finite index. The group Π acts on holomorphic sections of tensor powers Ln

of L. Since D is holomorphically, the line bundle is isomorphic to the trivial
bundle D×C with the action of Π on Ln given by (z, t) 7→ (g ·z, ag(z)nt), where
g 7→ ag(z) is map a : G→ Ohol(D)∗ satisfying the cocycle condition

ag′g(z) = ag′(g(z))ag(z).

A different choice of the trivialization of L changes a to a cohomologous cocycle
ag(z)ψ(g · z)ψ(z)−1, where ψ(z) ∈ Ohol(D)∗. Let a denotes the cohomology
class of a in H1(G,Ohol(D)∗). A holomorphic section of Ln is a holomorphic
map z 7→ (z, φ(z) and can can be identified with a holomorphic function φ(z)
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on D. An element of Γ(D, Ln)Π is a holomorphic function φ(z) satisfying

φ(z) = φ(g · z)ag(z)n, ∀g ∈ Π.

A function of this sort is called an automorphic form of weight n with automor-
phy factor (ag(z)). We graded algebra of automorphic form with the class of
automorphy factor a is

A(Π, a) =
⊕
n≥0

Γ(D, L)n

One can show that there is an isomorphism of graded algebras

A(π, a) ∼= C(X,D).

The conjugacy class of Π, considered as a subgroup of holomorphic automor-
phisms of D , and the class of a of automorpy factors are defined uniquely from
(X,D).

For example, the canonical affine quasicone C(X,D) is defined by the canon-
ical automorphy factor

ag(z) =
dg

dz
,

where g is considered as a holomorphic function D → D. Replacing D with
isomorphic manifold equal to the upper half-plane H = {z = a+bi ∈ C : b > 0},
we obtain a familiar definition of an automorphic form of weight n with a respect
to a discrete subgroup Γ of PSL(2,R): a holomorphic function φ(z) : H → C
such that

f(
αz + β

γz + δ
) = (γz + δ)2nφ(z),

for all Moebius transformations g : z 7→ αz+β
γz+δ from Γ.

4.6 Exercises

4.1 Resolve the singularar points of all Kleinian surfaces by Jung’s method.
4.2 Let C̃(P1, D) be a minimal resolution of a Klein affine quasicone correspond-
ing to the divisor D = −p + 1

e1
p1 + frac1e2p2 + frac1e3p3. Show that there

is a birational morphism such that the image of the curve E0 is a line, and the
image of the curve E∞ is a point.
4.3 Let C̃(P1, D) be a minimal resolution of an affine quasicone corresponding to
the divisor D = −2p+

∑r
i=1

ei−1
ei

pi . Show that there is a birational morphism
C̃(P1, D) → P2 such that the image of the curve E0 is a point, and the image of
the curve E∞ is a line.
4.4 Let A be a complete intersection K[z1, . . . , zn+r+1]/(f1, . . . , fn) of multi-
degree d = (d1, . . . , dn) and weights q = (q1, . . . , qn+r+1). Show that the coeffi-
cient at (1− t)r in the Laurent expansion of PA(t) is equal to (|d| − |q|)/2.
4.5 Find a minimal resolution of the surface x9 + y3 + z2 + x3y3 = 0.
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4.6 Find the Poincaré series of the invariant ring C[x, y]µn corresponding to the
cyclic quotient singularity Cn,k

4.7 Show that the weighted projective surface P(1, 1, n) is isomorphic to the
projective quasicone associated to the ring A(X,D) = k[T0, T1] with deg T0 =
1,deg T1 = n. Using this show that C̃(P1, D) ∼= P(OP1(n)⊕OP1).
4.8 Let A be a normal graded algebra over K = A0. Use the Noether Normal-
ization Theorem to show that A is isomorphic to a finitely generated module
over a graded polynomial algebra S = k[x1, . . . , xn] with deg xi = ai > 0. Show
that A is Cohen-Macaulay if and only if generators can be chosen in such a way
that A is a free graded S-module. Show that in this case

n∏
i=1

(1− tai)PA(t) =
∑

tdi ,

where di are the degrees of homogeneous free generators of A.
4.9 Let A = k[T0, T1, T2](T 2

0 + T 3
1 + T 6

2 ) Find a group G, a nonsingular curve
Y , an ample Cartier divisor D on Y such G acts freely on C(Y,D)∗ and
C(Y,D)/G ∼= Spec A.
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Lecture 5

McKay graphs

5.1 Linear representations of finite groups

Let G be a finite group. Recall that a linear representation of G in a vector
space V over a field F is a homomorphism of groups

ρ : G→ GL(V ), ρ(g)(v) := g · v.

Equivalently, it is a structure on V of a left module over the group algebra F [G].
Recall that F [G] is the linear space FG of functions on G with values in F with
the multiplication law defined by the convolution of functions

(φ ∗ ψ)(x) =
∑

gg′=x

φ(g)ψ(g′).

The standard basis in F [G] is formed by characteristic functions eg of the single-
tons {g} ⊂ G. The multiplication law is determined by the rules eg ∗ eg′ = egg′ .
A structure of a F [G]-module on V is defined by

(
∑

ageg) · v =
∑

agρ(g)(v), ∀v ∈ V.

All terminology of modules over rings is translated into the language of
representations. We can speak about direct sum or tensor product of linear
representations, an irreducible linear representation (= simple module), subrep-
resentation, homomorphism and so on. When we use the notation V for a linear
representation we assume that V is a vector spaces endowed with a structure of
a F [G]-module. Otherwise we use the notation ρ for a homomorphism of groups
G→ GL(V ). For example, we may write ρ⊕ ρ′ or V ⊕ V ′ to denote the direct
sum of representations.

The dimension of a representation is dimV . We will be interested only in
finite-dimensional representations. The first non-trivial result is the following.

Theorem 5.1.1. (F. Maschke) Assume that |G| is coprime to the characteristic
of F . Every linear representation is isomorphic to a direct sum of irreducible
subrepresentations.

89
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Proof. The space of linear maps L(V,W ) has a natural structure of a F [G]-
module via

(g · f)(x) = g · f(g−1 · x).
We have

L(V,W )G = HomF [G](V,W ).

Let W be a F [G]-submodule of V and p : V →W be a projection operator. Let

p̃ =
1
|G|

∑
g∈G

g · p.

This is the standard “averaging operation”. It gives g · p̃ = p̃. Also, for any
w ∈W ,

p̃(w) =
1
|G|

∑
g∈G

g · p(g−1 · w) =
1
|G|

∑
g∈G

g · (g−1 · w) =
1
|G|

|G|w = w.

Thus the kernel K of p̃ is a F [G]-submodule and V = W ⊕K as F [G]-modules.
Starting from an irreducible submodule, we find the complementary submodule,
and proceed by induction on the dimension of V .

Let Ir(G) denotes the set of isomorphism classes of irreducible representa-
tions of G. We will show that it is a finite set of cardinality equal to the car-
dinality of the set of conjugacy classes of G. First we see that non-isomorphic
irreducible representations “do not talk to each other”.

Lemma 5.1.2. (I. Schur). Assume F is algebraically closed. Let f : V →
W be a nonzero homomorphism of irreducible representations. Then f is the
composition of an isomorphism φ : V →W and a scalar endomorphism c idV .

Proof. The image f(V ) is a submodule ofW , and the kernel Ker(f) is a submod-
ule of V . Since V and W are irreducible, none of them is a proper submodule.
Since f is nonzero, Ker(f) = {0} and f(V ) = W . Thus f is an isomorphism.
Obviously we may assume that V = W . Let c be an eigenvalue of f (here we
use that F is algebraically closed). The map f − c idV ∈ HomF [G](V, V ) and
has non-trivial kernel. Since V is irreducible, the kernel is equal to V . Thus
f − c idV is the zero map.

We will need the following corollary, which sometimes also is referred to as
the Schur Lemma.

Corollary 5.1.3. Let ρ : G → GL(V ) be a linear irreducible representation.
Then the image of the center of G is contained in the center of GL(V ).

Proof. Let z be an element of the center of G. For any g ∈ G we have

ρ(z) = ρ(g · z · g−1) = ρ(g) ◦ ρ(z) ◦ ρ(g)−1.

Thus ρ(z) : V → V is an automorphism of the representation ρ. By Schur’s
Lemma, it must be a scalar automorphism, i.e. an element of the center of
GL(V ).



5.1. LINEAR REPRESENTATIONS OF FINITE GROUPS 91

Let ρ : G→ GL(V ) be a linear representation of G. For any g ∈ G let

χρ(g) = Tr(ρ(g)), the trace of the linear operator ρ(g).

The function χρ : G→ F is called the character of the linear representation ρ.
It is a central function on G, i.e. constant on conjugacy classes of G. We will
identify a central function on G with a function on the set C(G) of conjugacy
classes of G. Thus a character is a special function in the linear space FC(G)

of central functions. A character of an irreducible representation is called an
irreducible character . We denote the set of irreducible characters of G by G].

Let R(G) be the Grothendieck ring of F [G]-modules. Its additive group is a
free abelian group generated by isomorphism classes [V ] of linear representations
V of G modulo the subgroup of elements of the form [V ⊕W ]− [V ]− [W ]. The
product [V ] · [W ] is defined to be [V ⊗F [G] W ].

It is easy to check that a character defines a homomorphism of rings

χ : R(G) → FC(G), [V ] 7→ χρV
.

From now on we assume that F = C. Define a hermitian inner product on
the space of central functions CC(G) by

〈φ, ψ〉 =
1
|G|

∑
g∈G

φ(g)ψ(g), (5.1)

where the overline denotes the complex conjugate. Obviously,

〈φ, φ〉 =
1
|G|

∑
g∈G

|φ(g)|2 > 0.

Thus the inner product is a unitary product on the space of central functions
CC(G).

The next theorem is one of the main results of the theory.

Theorem 5.1.4. The irreducible characters form an orthonormal basis in the
space of central functions.

Proof. The proof consists of two parts. In the first part we prove that irreducible
characters form an orthonormal set. In the second part we prove that the
orthogonal complement of the span of irreducible characters is the zero subspace.

Let f : V →W be a nonzero linear map between linear representations of G
(not necessary a homomorphism of representations). Define a new linear map
by

f0 =
1
|G|

∑
g∈G

ρV (g)−1 ◦ f ◦ ρW (g). (5.2)

It is immediately checked that f0 is a linear map of C[G]-modules. Assume that
V 6∼= W . By Schur’s Lemma, f0 = 0 for all f .
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Fix a basis in V and a basis in W and let [T ]ab denote the ab-entry of the
matrix of a linear operator T . We have

0 = [f0]ab =
1
|G|

∑
g∈G,c,d

[ρV (g)−1]ac ◦ [f ]cd[ρW (g)]db.

Take f such that [f ]ab = 1 and all other entries are equal to zero. Then we get,
for all a, b,

0 =
1
|G|

∑
g∈G

[ρV (g)−1]aa[ρW (g)]bb,

hence

0 =
1
|G|

∑
g∈G

(
∑

a

[ρV (g)−1]aa)(
∑

b

[ρW (g)]bb) = 〈χρV
, χρW

〉.

Here we use that the trace of an operator T is equal to the sum of eigenvalues,
and hence the trace of T and T−1 are complex conjugates if the order of T is
finite. Thus ρV and ρW are orthogonal.

Now assume that V ∼= W . Without loss of generality we may assume V = W .
Taking the traces of both sides in (5.2), we get Tr(f0) = Tr(f). By Schur’s
Lemma f0 is a scalar operator, hence

f0 =
Tr(f)
dimV

idV ,

and the same argument as above gives

[f0]ab =
δab

dimV
=

1
|G|

∑
g∈G

[ρV (g)−1]aa[ρV (g)]bb

and

〈χρV
, χρW

〉 =
1
|G|

∑
g∈G

(
∑

a

[ρV (g)−1]aa)(
∑

b

[ρW (g)]bb) =
dimV

dimV
= 1.

Now let us prove the second half. Let ρ : G→ GL(V ) be a linear represen-
tation. Set

ρf =
∑
g∈G

f(g)ρ(g).

For any s ∈ G, we have

ρ(s)ρfρ(s)−1 =
∑
g∈G

f(g)ρ(s)ρ(g)ρ(s)−1 =
∑
g∈G

f(g)ρ(sgs−1)

=
∑
g∈G

f(sgs−1)ρ(sgs−1) = ρf .
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Thus the map ρf : V → V is an automorphism of the C[G]-module V . By
Schur’s Lemma, it must be equal to c(ρ)idV for some constant c(ρ). Computing
the trace of ρf we find

c(ρ) dimV = Tr(ρf ) =
∑
g∈G

f(g)χρ(g) = |G|〈f, χρ〉.

If 〈f, χρ〉 = 0 for all irreducible representations ρ we get that c(ρ) = 0 for all
irreducible representations, and hence for any representation ρ we get ρf = 0.
Now take ρ to be equal to ρreg : G → GL(V ), where V = C[G] considered as a
module over itself (it is called the regular representation of G). By definition,

ρreg(g)(
∑

ases) =
∑

asegs.

Taking the value of ρf at e1 ∈ C[G], we get

0 = ρf (e1) =
∑
g∈G

f(g)ρ(g)(e1) =
∑
g∈G

f(g)eg.

Since the elements eg ∈ G in the group algebra C[G] form a basis, we obtain
that f ≡ 0.

Corollary 5.1.5. The number of non-isomorphic irreducible representations is
equal to the number of conjugacy classes of G.

Let Ir(G) = {ρ1, . . . , ρc} and G] = {χ1, . . . , χc} be the set of the correspond-
ing irreducible characters.

Let ρ be a linear representation. We know that

ρ ∼=
c⊕

i=1

ρ⊕mi
i ,

where mi are non-negative integers. The corresponding element [ρ] ∈ R(G) can
be written in the form

[ρ] =
c∑

i=1

mi[ρi].

The number mi is called the multiplicity of ρi in ρ and is denoted by multρi
ρ.

It is clear that

dim ρ =
c∑

i=1

multρi
ρdim ρi. (5.3)

Taking the characters, we get

χρ =
c∑

i=1

miχi.

Since (χi)i=1,...,c is an orthonormal basis, we obtain

mi = 〈χρ, χi〉. (5.4)
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Note that this implies that a central function φ is the character of an irreducible
representation if and only if |φ| = 〈φ, φ〉 = 1.

Corollary 5.1.6. Let n1, . . . , nc be the dimensions of irreducible representations
of G. Then

|G| = n2
1 + . . .+ n2

c .

Proof. Consider the regular representation ρreg of G. Since ρ(g)(ex) = egx 6= ex

for any g 6= 1, the character of χreg = ρreg is equal to the characteristic function
of the subset {1} of G multiplied by |G| = dim C[G]. Applying (5.4), we get

multρi
ρreg = 〈χreg, χi〉 =

1
|G|

χ(1)χi(1) =
1
|G|

|G|dim ρi = dim ρi.

It remains to apply (7.6).

One more useful information is contained in the following.

Proposition 5.1.7. Let d be the degree of an irreducible linear representation
V of G. Then d divides the order of G.

Proof. Let χ be an irreducible character. Its value on g ∈ G is equal to the
sum of eigenvalues, each of them is a root of unity. This implies that χ(g) is an
algebraic integer. The orthogonality relation gives

|G|/d =
∑
g∈G

χ(g−1)χ(g)/d =
∑

C∈C(G)

χ(g−1)(
∑
g∈C

χ(g)/d), (5.5)

where C(G) is the set of conjugacy classes in G. Consider eC =
∑

g∈C g as an
element of C[G]. Since s−1eCs = eC , each eC belongs to the center of C[G].
Consider V as a module over C[G]. Then the multiplication by eC defines
an endomorphism of V as a C[G]-module. By Schur’s Lemma, it is equal to
λidV . Multiplication by eC in Z[G] is an endomorphism of Z|G| and hence all
eigenvalues of eC are algebraic integers hence λ is an algebraic integer. Since
the trace of eC on V is equal to dλ, and also equal to

∑
g∈C χ(g), we obtain that

the bracket in (5.5) is an algebraic integer. Thus the rational number |G|/d is
an algebraic integer, hence is an integer.

We have noticed in the proof of the proposition that the elements eC belong
to the center of C[G].

Proposition 5.1.8. The center Z(C[G]) of C[G] is a vector space over C with
basis formed by eC , C ∈ (G). Let C1, . . . , Cc be the set of conjugacy classes.
Then

eCi
eCj

=
c∑

k=1

ak
ijCk, (5.6)

where

ak
ij =

|Ci||Cj |
|G|

∑
χ∈G#

χ(Ci)χ(Cj)χ̄(Ck)
χ(1)

.
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Proof. Let e =
∑

g∈G agg ∈ Z(C[G]). For any s ∈ G we have

ses−1 =
∑
g∈G

agsgs
−1 =

∑
g∈G

agg.

This shows that the coefficients at elements in the same conjugacy class are
equal, hence e can be written as a linear combination of elements eC , C ∈ C(G).
The elements eC are also linearly independent since

∑
c∈C(G) aCeC = 0 means

that
∑

g∈G bgg = 0, where bg = aC if g ∈ C. This implies that each bg = 0 and
hence each aC = 0.

It remains to find the structure constants ak
ij . As we noticed in the proof

of the previous proposition, the multiplication by e ∈ C(C[G]) on a submodule
of C[G] defining an irreducible representation V with character χ is a scalar
multiplication λidV . This allows us to consider each χ ∈ G# as a complex
valued function wχ on C(C[G]). Its value on e is equal to λ. In particular,
wχ(eC) = χ(1)|C|χ(C). The function wχ is a homomorphism of C-algebras
Z(C[G]) → C. Now we use the following identity (called the second orthogonality
relation in [Isaaks]):

∑
χ∈G#

χ(g)χ(h) =

{
0 if g and h are not conjugate
|G|/|C(g) otherwise

(5.7)

where C(g) is the conjugacy class of g. To prove it we view the (first) orthogo-
nality relation

|G|δij =
∑
g∈G

χi(g)χj(g) =
c∑

k=1

|Ck|χi(Ck)χj(Ck)

as the matrix equation XDX̄T = |G|Ic, where X = (χi(Cj)) and D is the
diagonal matrix with the diagonal entries |Ck|. It shows that 1

|G|XD is the
inverse of X̄T , hence X̄TXD = |G|Ic. Writing this up in terms of matrix
entries we get the relation (5.7). It follows from this relation that, for any
gi ∈ Ci, gj ∈ Cj , gk ∈ Ck, ∑

χ∈G#

χ(gigj)χ(gk) = 0

if gigj 6∈ Ck and equal to |G|/|Ck| otherwise. In the sum eCi
eCj

there are exactly
ak

ij products gigj belonging to Ck. This gives∑
χ∈G#

wχ(eCi
eCj

)χ(Ck) = ak
ij

|G|
χ(1)

=
∑

χ∈G#

wχ(eCi
)wχ(eCj

)χ(Ck) = |Ci||Cj |/χ(1)2.

This gives the equality.



96 LECTURE 5. MCKAY GRAPHS

Let H be a subgroup of G and ρ : H → GL(V ) be a linear representation.
Consider V as a k[H]-module and letW = k[G]⊗k[H]V , where k[G] is considered
as a k[H] defined by the restriction of the regular representation to H. The
representation W of ρ is called the induced representation of ρ to G and is
denoted by IndG

H(ρ). Let χ be the character of ρ. It is easy to compute the
character indG

H(χ) of W , the induced character . We have

indG
H(ρ)(g) =

1
|H|

∑
s∈G,s−1gs∈H

χ(s−1gs).

For example, let ρreg be the regular representation of H. Then

IndG
H(ρreg) = k[G]⊗k[H] k[H] ∼= k[G].

Thus, the induced representation of a regular representation of a subgroup is
the regular representation of the group.

We have the following Frobenius Reciprocity Theorem (see [Serre]).

Theorem 5.1.9. Let χ be a character of H and χ′ be a character of G. Then

〈χ, res(χ′)〉 = 〈indG
H(χ), χ′〉,

where res(χ′) is the restriction of χ′ to H.

5.2 McKay graphs

Let G be a finite group and ρ0 be its linear representation. Define the McKay
graph of the pair (G, ρ0) as follows. Its vertices correspond to irreducible rep-
resentations ρi of G. We put a label over the vertex to indicate the dimension
of the representation. A vertex ρi is connected to the vertex ρj by an edge
pointing to ρj if ρj is a direct summand of ρ ⊗ ρi. We put the label mij over
this edge if

〈χρχρi
, χρj

〉 = mij .

We erase the arrow ends if they go in both directions and erase the label if it is
equal to 1.

Theorem 5.2.1. (J. McKay) Let G be a finite subgroup of SU(2) and ρ0 be its
natural 2-dimensional representation defined by the inclusion G ⊂ SU(2). Then
the McKay graph of (G, ρ0) is the following.

• G is cyclic of order n:

1 1 1 1 1 1

1
• •• • • •. . .

•VVVVVVVVVVVVVVV

•

•hhhhhhhhhhhhhh
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Here the bottom vertex corresponds to the trivial representation. We have
n vertices.

• G is binary dihedral of order 2n, n ≥ 4:
1

1 1

12 2 2 2
• •• • • •. . .•

•

•

•
Here the right bottom vertex corresponds to the trivial representation and
the vertex above it to the representation ρ. We have n+ 1 vertices.

• G is binary tetrahedral group of order 24:
1 1

1

2 2

2

3
• ••

•

•

• • •

Here the bottom vertex corresponds to the trivial representation and the
vertex above it to the representation ρ.

• G is binary octahedral group of order 48:
1 12 2

2

3 344
• ••

•

•• • • •

Here the upper left vertex corresponds to the trivial representation and the
vertex on the right of it corresponds to the representation ρ.

• G is binary icosahedral group of order 120:
12 2

3

344 56
• ••

•

•• • • • •

Here the upper right vertex corresponds to the trivial representation and
the vertex on the left of it corresponds to the representation ρ.

As one sees the diagrams are the affine Dynkin diagrams of type An, Dn,
E6, E7, E8. One can prove that if Γ(G, ρ0) has unlabelled unpointed edges then
G is isomorphic to a finite subgroup of SU(2) and ρ0 is its natural 2-dimensional
representation.

Example 5.2.2. Let G = Cn = 〈g0〉 be a cyclic group of order n. Every
linear representation ρ : Cn → GL(V ) decomposes into the direct sum of one-
dimensional representations

V =
n−1∑
i=0

Vk,
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where
Vk = {v ∈ V : ρ(g0)(v) = e2πik/nv}.

So, G has n irreducible representations of dimension 1 identified with homomor-
phisms G → C∗. Let ρk be defined by sending g0 to e2πik/n, k ∈ Z/nZ. Take
ρ0 = ρ1. Obviously ρ1 ⊗ ρk = ρk+1, Thus the McKay graph Γ(Cn, ρ1) is equal
to the graph Ãn−1 with additional orientation by giving arrows all pointing in
one direction.

On the other hand, if we consider the representation ρ0 : Cn → SL(2,C)
given by the matrix (

εn 0
0 ε−1

n

)
,

we find that ρ0 = ρ1 + ρ−1 in the above notation. Thus

ρ0 ⊗ ρk = ρk−1 + ρk+1.

This gives us the Dynkin diagram of type Ãn−1.

Example 5.2.3. Let us check the case of the binary tetrahedral group. Recall
that G contains a central subgroup of order 2 generated by the matrix −I2 and
the quotient group Ḡ is isomorphic to the tetrahedral group T ⊂ SO(3). We
know that T ∼= A4. The group A4 is isomorphic to the semi-direct product
22 : 3 of the group 22 = (Z/2Z)2 and the cyclic group 3 = Z/3Z (we use the
notation of the ATLAS of finite groups). Let ρi : G → C∗, i = 1, 2, 3 be one-
dimensional representations of G obtained as the compositions G→ A4 → 3 →
C∗. The first one is the trivial representation. Let ρ4 be the 3-dimensional
representation obtained as the composition G→ A4 → SO(3), where the latter
homomorphism is the natural representation of A4 as the group of rotation
symmetries of a regular tetrahedron. It is easy to see that this representation
is irreducible. Let ρ0 = ρ5 be the natural representation of G in SU(2) and
ρ6 = ρ0 ⊗ ρi, i = 2, 3. These are 2-dimensional representations. Since ρ0 is
irreducible, it is easy to see that these representations are also irreducible. Now
|G| = 24 = 1 + 1 + 1 + 22 + 22 + 22 + 39, so all irreducible representations
are accounted for. This agrees with the number of conjugacy classes of G. The
group A4 has one conjugacy class of the identity, one class of elements of order 2
(the products of two disjoint transpositions), and two classes of elements of order
3 (g and g2 are not conjugate in A4 but conjugate in S4). The class equation of
A4 is therefore 1 + 3 + 4 + 4. The class equation of G is 1 + 1 + 6 + 4 + 4 + 4 + 4
since 1 is lifted to 1 and −1. Elements of order 2 are lifted to 6 elements of order
4 forming one conjugacy class. Each conjugacy class of elements of order 2 is
lifted to two conjugacy classes of elements of order 3 and 6. Thus |C(G)| = 7.

We already know that ρ0 ⊗ ρi = ρ4+i, i = 1, 2, 3. This gives

m15 = m26 = m37 = 1.

Let us write a character function as a vector (a1, . . . , a7), where ai is the value at
the conjugacy class C1, . . . , C7 of elements of orders 1, 2, 4, 3, 3, 6, 6, respectively.



5.2. MCKAY GRAPHS 99

Comparing with computations in Lecture 1, we find that the conjugacy classes
can be represented by the elements 1,−1, g1, g3, g2

3 ,−g3,−g2
3 , respectively. This

gives the character table of Ā4:

C(G) 1 -1 g1 g3 g2
3 g3 −g2

3

order 1 2 4 3 3 6 6
χ1 1 1 1 1 1 1 1
χ2 1 1 1 ε3 ε23 ε3 ε23
χ3 1 1 1 ε23 ε3 ε23 ε3
χ4 3 3 −1 0 0 0 0
χ5 2 −2 0 −1 −1 1 1
χ6 2 −2 0 −ε3 −ε23 ε3 ε23
χ7 2 −2 0 −ε23 −ε3 ε23 ε3

Table 5.1: Character table of Ā4

We have
χ5χ4 = (6,−6, 0, 0, 0, 0, 0) = χ5 + χ6 + χ7. (5.8)

This gives
m45 = m46 = m47 = 1.

We have

χ5χ5 = (4, 4, 0, 1, 1, 1, 1) = χ4 + χ1, (5.9)
χ5χ6 = (4, 4, 0, ε3, ε23, ε3, ε

2
3) = χ4 + χ2,

χ5χ7 = (4, 4, 0, ε23, ε3,−ε3,−ε23) = χ4 + χ3.

This gives
m54 = m51 = m62 = m64 = m73 = m74 = 1.

Getting all edges together we get the McKay graph for (G, ρ5) shown in the
statement of the theorem.

Example 5.2.4. Let G = Ā5 be the binary icosahedron group. In this case
finding all irreducible representation is harder than in the previous case. Any
irreducible representation of A5 gives an irreducible representation of G by com-
posing with the projection G→ A5. These are irreducible representations with
kernel equal to {±1} (nothing else because A5 is a simple group unless the
representation is trivial).

The class equation of A5 is 1+15+20+12+12 (see [Artin, Algebra]). Here
we have 15 elements of order 2, 20 elements of order 3, and 2 classes of elements
of order 5. The class equation of G is 1 + 1 + 30 + 20 + 20 + 12 + 12 + 12 + 12.
We have 1 element of order 2, 30 of order 4, 20 of order 3, 20 of order 6, 24 of
order 5, and 24 of order 10. Thus we have to find 9 irreducible representations
of G.

We start with the natural 2-dimensional representation ρ0 of G. Consulting
Lecture 1, we find the class equation corresponds to the conjugacy classes of
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the following elements 1,−1, g2, g1g2g3,−g1g2g3, g2
1 , g

4
1 , g

3
1 , g1. Let us denote the

corresponding classes by Ci, i = 1, . . . , 9. The character of ρ0 is easy to compute.
Each element of order k is conjugate to a diagonal matrix of determinant 1 with
kth roots of 1 at the diagonal. We find

χρ0 = (2,−2, 0,−1, 1, 2 cos 2π/5, 2 cos 4π/5, 2 cos 3π/5, 2 cosπ/5).

If we square χρ0 and subtract the character of the identity element, we get the
vector

χρ0 = (3, 3,−1, 0, 0, 1 + 2 cos 4π/5, 1 + 2 cos 8π/5, 1 + 2 cos 6π/5, 1 + 2 cos 2π/5).

By taking its norm with respect to the unitary product on CC(G) we find that
the norm is equal to 1. Hence this is the character of an irreducible repre-
sentation. It is easy to see that it factors through the natural 3-dimensional
representation of A5 → SO(3) (see [Artin, Algebra], p. 323-325). We refer to
Artin for description of other irreducible representations of A5. We denote their
characters by χ1, . . . , χ5. To complete the character table of A5 to the character
table of G, we start tensoring ρ0 = ρ9 with irreducible representations ρi, i ≤ 5
and decomposing them into irreducible representations we find the remaining
irreducible representations ρ6, ρ7, ρ8. Here is the character table .

C(G) C1 C2 C3 C4 C5 C6 C7 C8 C9

order 1 2 4 3 6 5 5 10 10
χ1 1 1 1 1 1 1 1 1 1
χ2 3 3 -1 0 0 α α β β
χ3 3 3 -1 0 0 β β α α
χ4 4 4 0 1 1 −1 −1 −1 −1
χ5 5 5 1 −1 −1 0 0 0 0
χ6 4 −4 0 1 −1 −1 −1 −1 −1
χ7 6 −6 0 0 0 1 1 −1 −1
χ8 2 −2 0 −1 1 −α −β α β
χ9 2 −2 0 −1 1 −β −α β α

Table 5.2: Character table of Ā5

Here α = 1
2 (−1 +

√
5), β = 1

2 (−1−
√

5). We leave to the reader to compute
the McKay graph Γ(G, ρ9). Note that we get the same graph if we replace ρ9

by ρ8 which differ by an exterior automorphism of G (so the images of G in
SL(2,C) are the same.

One can check the McKay theorem, case by case. However, we prefer to give
a uniform proof due to T. Springer.

We start with the following well-known fact.

Lemma 5.2.5. Let G be a finite abelian group of order > 1. For any non-trivial
homomorphism f : G→ C∗ ∑

g∈G

f(g) = 0.
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Proof. Let H = Ker(f) and g1, . . . , gk be representatives of cosets of G modulo
H. Since

∑
g∈G f(g) = |H|

∑k
i=1 f(Hgi), we may assume that f is injective.

By decomposing G into the direct sum of finite cyclic groups, we may assume
that G = (h) is a cyclic group of order n. Let f(h) = εn, then

∑
g∈G

f(g) =
n−1∑
i=0

f(hi) =
n−1∑
i=0

εin = 0.

Definition 5.2.1. A linear representation of a finite groupG is called admissible
if it is faithful, its character is real-valued and its restriction to the center of the
group has no trivial summands.

Theorem 5.2.6. (T. Springer) Let ρ0 be an admissible representation of G of
dimension n with character α. Define a function Fα : CG ×CG → C by setting

Fα(φ, ψ) = 〈αφ, ψ〉.

It satisfies the following properties.

(i) Fα is a hermitian form on CG.

(ii) For any two irreducible representations ρ, ρ′ of G with characters χ, χ′,

Fα(χρ, χρ′) = multρ′ρ0 ⊗ ρ ≥ 0.

(iii) For any irreducible character χ ∈ G],

Fα(χ, χ) = 0.

(iv) For any φ ∈ CG,
Fα(φ, φ) ≤ n〈φ, φ〉.

The equality takes place if and only if φ(g) = 0, g 6= 1, i.e. φ = χreg is the
character of the regular representation.

(v) Assume |G| > 2. If χ, χ′ ∈ G] are distinct, then

0 ≤ Fα(χ, χ′) < n.

Proof. (i) By definition

Fα(φ, ψ) =
1
|G|

∑
g∈G

α(g)φ(g)ψ(g).

This expression is obviously linear in φ and 1/2-linear in ψ. Since α(g) ∈ R for
all g, we also have Fα(ψ, φ) = Fα(φ, ψ).

(ii) This follows from (5.4).
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(iii) By definition of an admissible representation, the center Z(G) of G is
not trivial. By Corollary 5.1.3, the image of the center Z(G) of a group G under
any irreducible linear representation ρ : G → GL(V ) is contained in the center
of the linear group. This implies that χ(gz) = cχ(g) for any χ ∈ G], where
ρ(z) = cidV . Using this we get

Fα(χ, χ) =
1
|G|

∑
g∈G

α(g)χ(g)χ(g) = |G|−1
∑
g∈G

α(g)|χ(g)|2

=
1

|G||Z(G)|
∑

g∈G,z∈Z(G)

α(gz)|χ(g)|2|c|2

=
1

|G||Z(G)|
∑
g∈G

|χ(g)|2(
∑

z∈Z(G)

α(gz)).

(5.10)

Here we use that |c| = 1 since c is of finite order. Write α =
∑

imiαi as a
linear combination of the characters of irreducible representations ρi. For any
z ∈ Z(G), let ρi(z) be defined by the scalar matrix ci(z)Idim ρi . We have

α(gz) =
∑

i

miαi(gz) =
∑

i

ci(z)miαi(g).

Applying Lemma 5.2.5 to each non-trivial homomorphism Z(G) → C∗, z 7→
ci(z), we get ∑

z∈Z(G)

α(gz) =
∑

i

(
∑

z∈Z(G)

ci(z))miαi(g) = 0.

Therefore the sum (5.10) is equal to zero.
(iv) We have α(g) = |α(g)| ≤ n since α(g) is the sum of n roots of unity. It

is equal to n if and only if all these roots of unity are equal to 1, i.e. ρ(g) = idV ,
where α is the character of ρ. Since ρ is faithful this happens only if g = 1.
Thus φ = χreg is the character of the regular representation.

(v) By (iv), the hermitian form n〈φ, ψ〉 − Fα(φ, ψ) is semi-positive definite.
By Schwarz’s inequality

|n〈φ, ψ〉 − Fα(φ, ψ)|2 ≤ (n〈φ, φ〉 − Fα(φ, φ))(n〈ψ,ψ〉 − Fα(ψ,ψ)).

The equality takes place only if there is a linear combination of φ and ψ which
vanishes at all g 6= 1. In other words, if φ, ψ, χreg are linearly dependent. Since
|G| > 2, this is impossible. Taking φ, ψ ∈ G], forming an orthonormal set, and
using (iv), we get |Fα(φ, ψ)| < n.

Definition 5.2.2. Let G be a finite group of order > 2 and ρ0 be its linear
representation with admissible character α. Let G] = (χ1, . . . , χc) be an ordered
set of irreducible characters of G. The McKay-Springer matrix of (G, ρ0) is the
matrix

A = (aij), aij = Fα(χi, χj)− nδij .
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Corollary 5.2.7. Let ρ0 be an admissible n-dimensional linear representation
of G. The McKay-Springer matrix A of (G, ρ0) satisfies the following properties.

(i) A is a symmetric integral matrix.

(ii) The diagonal elements of A are equal to −n, the off-diagonal elements
satisfy 0 ≤ aij < n.

(iii) The quadratic form defined by A is semi-definite negative with one-dimensional
radical spanned by the vector (dimχ1, . . . ,dimχc).

Proof. (i) Follows from properties (i) and (ii) of the previous theorem.
(ii) Follows from properties (iii) and (v).
(iii) Follows from property (iv).

Example 5.2.8. Let G be a non-cyclic subgroup of SL(2,C) and ρ0 be the
natural 2-dimensional representation of G. Obviously, ρ0 is faithful, irreducible
and its character is real valued (since α(g) is equal to the twice real part of an
eigenvalue of g). Thus the McKay-Springer matrix is defined. Its properties tell
us that it is a Cartan matrix of size c = |C(G)| and the corresponding Dynkin
diagram is the McKay graph of (G, ρ0). It is easy to match the groups with
the types of the corresponding Dynkin diagrams. Since we know the integral
vectors spanning the radical of the corresponding quadratic form, it suffices to
recognize among their coordinates the dimensions of irreducible representations
of G. Also, taking into account also Example 5.2.2, we get the following table.

Group Cn D̄2n T̄ Ō Ī

McKay graph Ãn D̃n+2 Ẽ6 Ẽ7 Ẽ8

Table 5.3: McKay graphs of binary polyhedral groups

Example 5.2.9. Let G = SL(2,F7). Its order is 336 and its center is of order
2. The quotient group G/Z(G) is isomorphic to the simple group PSL(2,F7) of
order 168. Its presentation by generators and relations is

{g1, g2, g3, c : g2
1 = g3

2 = g7
3 = g1g2g3 = c, c2 = 1}.

Here

c =
(
−1 0
0 −1

)
, g1 =

(
0 −1
1 0

)
, g2 =

(
5 0
0 3

)
, g3 =

(
−1 1
0 −1

)
.

We also have an element of order 8

g4 =
(

5 −1
−3 5

)
= (g2g4

7)2g2.



104 LECTURE 5. MCKAY GRAPHS

C(g) 1 c g1 cg2 g2 g4 cg4 cg3 cg−1
3 g3 g−1

3

|C(g)| 1 1 21 56 56 42 42 24 24 24 24
order 1 2 4 3 6 8 8 7 7 14 14
χ1 1 1 1 1 1 1 1 1 1 1 1
χ2 3 3 -1 0 0 1 1 α β α β
χ3 3 3 -1 0 0 1 1 β α β α
χ4 6 6 2 0 0 0 0 -1 -1 -1 -1
χ5 7 7 -1 1 1 -1 -1 0 0 0 0
χ6 8 8 0 -1 -1 0 0 1 1 1 1
χ7 4 -4 0 -1 1 0 0 −α −β α β
χ8 4 -4 0 -1 1 0 0 −β −α β α

χ9 6 -6 0 0 0
√

2 −
√

2 -1 -1 1 1
χ10 6 -6 0 0 0 −

√
2

√
2 -1 -1 1 1

χ11 8 -8 0 1 -1 0 0 1 1 -1 -1

Table 5.4: The charcater table of SL(2,F7)

The character table of G is the following.

Here α = 1
2 (−1+

√
−7), β = 1

2 (−1−
√
−7). We take α = χ11 and check that

it is an admissible representation of dimension 11. We compute

αχ1 = α (5.11)
αχ2 = χ11 + χ10 + χ9 + χ8

αχ3 = χ11 + +χ10 + χ9 + χ7

αχ4 = 2χ11 + 2χ10 + 2χ9 + χ7 + χ8

αχ5 = 3χ11 + 2χ10 + 2χ9 + χ7 + χ8

αχ6 = 3χ11 + 2χ10 + 2χ9 + 2χ7 + χ8

αχ7 = 2χ6 + χ4 + χ2 + χ5

αχ8 = 2χ6 + χ4 + χ3 + χ5

αχ9 = 2χ6 + 2χ5 + 2χ4 + χ3 + χ2

αχ10 = 2χ6 + 2χ5 + 2χ4 + χ3 + χ2

αχ11 = 3χ6 + 3χ5 + 2χ4 + χ3 + χ2 + χ1
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This gives the McKay-Springer matrix of SL(2,F7):

A =



−8 0 0 0 0 0 0 0 0 0 1
0 −8 0 0 0 0 1 0 1 1 1
0 0 −8 0 0 0 0 1 1 1 1
0 0 0 −8 0 0 1 1 2 2 2
0 0 0 0 −8 0 1 1 2 2 3
0 0 0 0 0 −8 2 1 2 2 3
0 1 0 1 1 2 −8 0 0 0 0
0 0 1 1 1 1 0 −8 0 0 0
0 1 1 2 2 2 0 0 −8 0 0
0 1 1 2 2 2 0 0 0 −8 0
1 1 1 2 3 3 0 0 0 0 −8


We check that the vector n = (1, 3, 3, 6, 7, 8, 4, 4, 6, 6, 8) is a solution of the
equation Ax = 0.

Remark 5.2.10. The properties of an admissible character are very restrictive.
For example, they imply that the center Z(G) of G must be a non-trivial group
with no elements of order > 2. Otherwise the value of α on a central element
of order > 2 is never real. If α is moreover irreducible, Z(G) must be a cyclic
group of order 2. Examples of such groups are the groups SL(2,Fq), where Fq

is the finite field of q ≥ 5 elements. Consulting [Fulton-Harris], we find that all
of them admit such character α of dimension q + 1 or q − 1.

5.3 Exercises

5.1 Compute the McKay graph of the dihedral group Dn with respect to its

natural 2-dimensional representation (generated by rotations and reflections).
5.2 Check McKay’s Theorem directly in the remaining cases (i.e. Dn, Ō, Ī).

5.3 Comute the McKay graph of the polyhedral groups with respect to the

natural 3-dimensional reprresentation.
5.3 Compute the McKay graphs of the dihedral group Dn with respect its

natural 2-dimensional representations (generated by rotations and reflections).
5.4 Show that Γ(G, ρ) has edges with arrows in both direction if the character

of ρ is real-valued.
5.5 Prove the converse of the McKay theorem: if Γ(G, ρ) is an affine Dynkin

diagram, then ρ : G→ SL(2,C) is a faithful representation.
5.6 Compute the McKay-Springer matrix for the pair (G,α), where G is as in

Example 5.2.9 and ρ = χ9.
5.7 Suppose that the matrix A from Example 5.2.9 is the intersection matrix

of the irreducible components of a fibre of a map from a nonsingular surface
to a curve. Assume that all components are isomorphic to P1. What is the
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arithmetic genus of the curve, and hence the genus of a general fibre of the
fibration. Does it exist?
5.8 Do Exercises from [Artin, Algebra], Chapter 9.



Lecture 6

Punctual Hilbert schemes

6.1 Hilbert schemes and symmetric products

We will be interested only in Hilbert schemes of 0-dimensional subschemes
(punctual Hilbert schemes).

For any quasi-projective algebraic variety X over a field k we can define a
functor HX,n on category of k-schemes

HX,n(S) =

{
closed subschemes of ZS ⊂ X ×K S

flat and finite of degree n over S.

Note that flat and finite of degree n means that the sheaf (pS)∗(OZS
) on S is a

locally free sheaf of rank n.
For any morphism f : S′ → S, the map HX,n(f) : HX,n(S) → HX,n(S′) is

defined by the pre-image (1× f)∗(Z). We leave to the reader to check that the
map is well-defined.

Theorem 6.1.1. (A. Grothendieck) The functor HX,n is represented by a
scheme of finite type over k. It is denoted by X [n] and is called the punctual
Hilbert scheme of X of n points on X.

Recall that this means that the functor HX,n is equivalent to the functor of
S-points of X [n], i.e., for any k-scheme S there is a bijection

ηS : Mor(S,X [n]) → HX,n(S)

such that, for any morphism f : S′ → S of k-schemes, the diagram

Mor(S,X [n])
ηS //

◦f
��

HX,n(S)

HX,n(f)

��
Mor(S′, X [n])

ηS′ // HX,n(S′)

107
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is commutative.
In particular, we have a “natural” (in the sense of commutativity of the

above diagrams) bijection

X [n](k) → HX,n(Spec k) = {closed subscheme of X of dimension 0 and length n}.
(6.1)

Here the length of a closed susbscheme Z of dimension 0 is equal to dimk H
0(Z,OZ).

Any representable functor comes with a universal object, it is the value of the
functor on the scheme it represents which corresponds to the identity morphism.
In our situation, it is an element ZX[n] of HX,n(X [n]), i.e. a relative 0-cycle in
X ×X [n]. There are two natural projections

ZX[n]
p //

q

��

X [n]

X

Both projections are projective morphisms. By definition of the universal object,
for any k-scheme S and ZS ∈ HX,n(S) there exists a unique morphism f : S →
X [n] such that ZS = Z [n]

X ×X[n] S. The map q restricted to the fibre of p
over a point z ∈ X [n](k) is an isomorphism onto the scheme Z corresponding
to the points z under the bijection (6.1). The fibre of q over a point x ∈
X(k) is mapped to the closed subvariety of X [n] whose k-points are in bijective
correspondence with the set of 0-dimensional subschemes of X of length n whose
support contains the point x.

The notion of the punctional Hilbert scheme X [n] is closely related to the
notion of the symmetric product X(n) of X. It is the quotient of Xn by the
symmetric group Sn. Since Xn is a quasiprojective over k, the quotient exists
as a quasiprojective variety. One can define X(n) as representing the functor
X (n) such that X (n)(S) is equal to the set of coherent sheaves F on X×S whose
support is finite over S and the direct image of F on S is a locally free sheaf of
rank n. If S = Spec k, then the support Supp(F) of F is a set of closed points
X. At each point x ∈ Supp(F) the stalk Fx is a vector space of dimension d(x)
over the residue field κ(x) of x. The correspondence F 7→

∑
x∈Supp(F) d(x)x is

a bijection

X (n)(k) → {
∑
x∈X

mxx ∈ ZX
≥0 :

∑
mx deg(x) = n}.

For example, in the case when dimX = 1, the symmetric product X(n) is just
the set of effective Weil divisors of degree n.

Note that, by definition, Xn represents the functor hXn : S 7→ Mor(S,X)n.
There a morphism of functors hXn → X (n) that assigns to a (f1, . . . , fn) ∈
Mor(S,X)n the sheaf on X × S equal to ⊕iOΓfi

, where Γfi
is the graph of fi.

For S = k this defines a bijection Xn(k) → X(n) but it is not a bijection for a
general S.
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There is a canonical morphism, called the cycle map

cyc : X [n] → X(n) (6.2)

defined by the morphism of functors HX,n → X (n) that assigns to each Z ∈
HX,n(S) the sheaf OZ .

Proposition 6.1.2. The cycle map is a projective morphism. Its restriction
over X(n)

(1n) is an isomorphism.

Proof. IfX is projective over k, then both schemesX [n] andX(n) are projective,
and hence the morphism is projective. Otherwise we consider X as an open
subset in a projective scheme Y . It follows from the definition that the cycle
map cyc : X [n] → X(n) is equal to the restriction of the cycle map Y [n] → Y (n)

over X. Thus it is a projective morphism. The second assertion is obvious since
both X [n]

(1n) and X(n)
(1n) represent the same subfunctor that assigns to S the subset

of reduced subschemes Z (resp. sheaves with reduced support).

From now on, or simplicity sake, we assume that k is algebraically closed,
we write x ∈ X if x ∈ X(k).

Recall that a partition is a sequence (ν1, . . . , νm) of integers 1 ≤ ν1 ≤ . . . ≤
νm. The number |ν| = ν1 + . . . + νm is called the weight of ν. A partition of
weight n is called a partition of n. The number m is called the length of the
partition and is denoted by l(ν). We denote a partition of n of length n by (1n).

Let ν be a partition of n. For any k distinct points x1, . . . , xk ∈ X we
consider

∑
νixi as a point on X(n). All such points form a closed subvariety of

X(n) of dimension l(ν) dimX. We denote it by X
(n)
ν and also denote by X

[n]
ν

its pre-image in X [n] under the cycle map. It is clear that the cycle map defines
an isomorphism of open Zariski subsets

X
[n]
(1n)

∼= X
(n)
(1n)

parametrizing reduced subschemes of X of length n.

Example 6.1.3. Let X be a nonsingular curve of genus g. Then X [n] = X(n)

is a nonsingular variety of dimension n. Its K-points are effective divisors of
degree n on X. For example, (P1)[n] ∼= Pn = |OP1(n)|.

When n > 2g − 2, the map X(n) → Picn(X) which assigns to a divisor D
its divisor class (or the isomorphism class of the sheaf OX(D)) is a projective
bundle whose fibre over a point [D| is equal to the linear system |D| of dimension
n+1−g. The variety Picn(X) is isomorphic to the Jacobian variety Jac(X) and
is an abelian variety of dimension g, a complex torus if K = C. For n < 2g− 2,
the geometry of X [n] is more involved and its geometry is very much related to
the geometry of the curve X.

Example 6.1.4. Let X = P2. We view points in X as lines on the dual
projective plane P̌2. Then X(2) becomes isomorphic to the locus of reducible
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conics in P̌2. In is given by the discriminant polynomial in the coefficients of
conics. Thus X(2) is isomorphic to a cubic hypersurface D3 in P5. It is singular
along the strata X

(2)
(2) representing the locus of double lines. It is isomorphic

to the Veronese quartic in P5, the set of double lines. Any point Z ∈ X [2]
(2) has

support at a unique point x ∈ X. Let u, v be local parameters of X at this
point. The subscheme Z is defined by an ideal I in OX,x which is primary
to the maximal ideal m = (u, v) and dimk OX,x/I = 2. It is easy to see that
I = (au+ bv+m2), where (a, b) ∈ P1. This shows that the fibres of X [2] → X(2)

over X(2)
(2) are isomorphic to P1. Globally, the pre-image E of X(2)

(2) is isomorphic
to the blow-up of the diagonal ∆ ⊂ X×X. The conormal bundle of the diagonal
I∆/I2

∆ is isomorphic to Ω1
X , where we identify X and ∆ (see [Hartshorne],

p.175). This shows that E is isomorphic to P(Ω1
X), the projectivization of the

tangent bundle of X. In our case X [2] is isomorphic to the proper transform of
the cubic hypersurface D3 under the blow-up of P5 along the Veronese surface.

Example 6.1.5. Let X = P1×P1 considered as a nonsingular quadric in P3. A
point in X [2] defines either a pair of distinct points on X or a point together with
a line in the tangent plane. In any case we can assign to it a line intersecting
X at two points or tangent to X at one point. This defines a regular map from
X [2] to the Grassmann variety G(2, 4) of lines in P3 isomorphic to a nonsingular
quadric. Recall that X contains two rulings of lines. A pair of points on a line `
of a fixed ruling, or a point on ` with the tangent direction equal to ` is mapped
to ` considered as a point in G(2, 4). This shows that the subvariety `(2) of X [2]

isomorphic to P2 is blown down to a point under the map X [2] → G(2, 4). The
image of the set of lines from the same ruling is a conic in G(2, 4). This shows
that X [2] is isomorphic to the blow-up of two disjoint conics C1, C2 in G(2, 4).

The cycle map cyc : X([2] → X(2) is a resolution of singularities. Its excep-
tional divisor E is equal to the strata X(2)

(2) . It is isomorphic to the projectiviza-
tion of the tangent bundle of X. Its image Y in G(2, 4) is equal to the union
of lines joining a point on C1 with a point on C2. To find the degree of Y we
take a general point p ∈ P3 and a pencil of lines through p contained in a plane
Π. This is a line in G(2, 4) not contained in Y . It intersects Y at two points,
the tangent lines of the conic X ∩ Π passing through p. This shows that Y is
hypersurface in G(2, 4) of degree 2. It must be a hyperplane section of G(2, 4)
(a linear complex of lines) and hence isomorphic to a quadric in P4. The hy-
perplane cutting out Y is the unique hyperplane containing the conics C1, C2.
The exceptional divisor E contains two disjoint copies S1, S2 of X embedded
as sections of the projectivized tangent bundle (assign to a point on X the two
lines on X through this point, this gives a non-ramified double cover of X which
splits because X is simply-connected). The map E → Y blows down S1, S2 to
the conics C1, C2. Under appropriate indexing, the map Si → Ci is one of the
projections X = P1×P1 → P1. So we see that the projectivized tangent bundle
of a 2-dimensional quadric is isomorphic to the blow-up of two disjoint conics
on a 3-dimensional quadric. The exceptional divisor of the blow-up is the union
of two sections of the projective bundle. A very pretty piciture!
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We will be mostly concerned with the case when X is a smooth surface (not
necessarily projective).

Theorem 6.1.6. (J. Fogarty) Assume X is a quasiprojective smooth surface.
Then X [n] is a smooth connected variety of dimension 2n. The morphism cyc :
X [n] → X(n) is a resolution of singularities.

Proof. First let us show that X [n] is connected. Since X(n) is connected, it
suffices to show that the fibres of the cycle map are connected. The fibre over a
point Z ∈ X(n)

ν is isomorphic to the product of the Hilbert schemes X [n]
(1νi ). So

it is enough to consider the fibre over a point nx ∈ X
(n)
(1n). It is isomorphic to

the variety of ideals of codimension n in OX,x. The set of all linear subspaces of
codimension n is the Grassmannian of codimension n in the infinite-dimensional
vector space OX,x over k. A subspace is an ideal if it is a fixed point of the
(infinite-dimensional) linear group U = 1+mX,x (with respect to multiplication
in OX,x). The group U admits a filtration {1} ⊂ U1 ⊂ U2 ⊂ . . ., where Us =
1 + ms

X,x is a finite-dimensional unipotent group. A point is fixed under U if
and only it is fixed under each Us. Now we use the following fact:

• If a connected unipotent algebraic group U acts linearly on a projective
connected algebraic variety V ⊂ Pm, then its set of fixed points is con-
nected.

Let us prove this assertion. Since U contains a composition series with
factors isomorphic to Ga, the additive group of k. Thus it suffices to assume
that U = Ga. Suppose the fixed locus is not connected. Take two points z, z′,
each from one of two connected components. Consider the set S of connected
one-dimensional linear sections of V containing the points z, z′. A hyperplane
section H of X containing z, z′ is birationally isomorphic to a hyperplane section
of the projection of V to Pm−2 from the line 〈z, z′〉. By Bertini’s Theorem on a
hyperplane section, a general section of an irreducible variety is an irreducible
variety (see [Joanolou] or [Lazarsfeld,I], Thm. 3.3.3 in the complex case). This
shows that one can choose H to be irreducible. Replacing X with H and using
induction on dimension we find an irreducible one-dimensional linear section of
X containing z, z′. Thus S is not empty. It is a quasi-projective G-invariant
subvariety of the Grassmannian of (N − dimV − 1)-dimensional subspaces of
Pm. Take a one-dimensional subgroup of G isomorphic to Ga. Its orbits on
any variety are either points or rational curves which are complemented to a
projective curve by adding one unibranched point. Since a connected set cannot
degenerate into disconnected set, taking the closure of an orbit of Ga on S and a
fixed point on it (any point on the orbit or the unique point in its closure) we see
that there exists a connected curve C ∈ S fixed under the action of Ga. Since
Ga is connected it acts trivially on the set of irreducible components of C. Let
C0 be an irreducible component of C which contains z. If C0 contains the second
fixed point z′, then Ga acts trivially on C0. If z′ 6∈ C0, then C0 contains a finite
invariant set of points of intersection of C0 with other irreducible components



112 LECTURE 6. PUNCTUAL HILBERT SCHEMES

of C. Again Gm fixes all these points and hence acts trivially on C0. Let
z′′ ∈ C0 \ {z}. It lies in another component C1 of C. Replacing C0 with C1

and repeating the argument we find that Gm acts trivially on C2. Proceeding
in this way we find a connected curve in the fixed locus of Gm that connects
z, z′. This proves the assertion.

Now let us prove the smoothness of the Hilbert scheme. It is a standard
fact that the Zariski tangent space of a scheme S at a point s ∈ S(k) is an
element of S(k[ε]) which is mapped to s with respect to the canonical map
S[k[ε]) → S(k) corresponding to the homomorphism k[ε] → k, c + c′ε 7→ c.
Here k[ε] = k[t]/(t2), ε = t mod t2, is the algebra of dual numbers.

Applying this to our case, when S = X [n], we identify X [n](k[ε])) with
HX,n(k[ε]), i.e. the set of 0-dimensional schemes Z ′ on X × Spec k[ε] which are
flat over I and of relative degree n. Since X is quasi-projective, we may assume
that Z is a closed subscheme of an affine open subset of X. So, we may assume
that X is affine. Then Z corresponds to an ideal I in A = O(X). The scheme
Z ′ is defined by an ideal J in B = A[ε] such that B/J is flat over k[ε] and
J⊗BA = J/εJ = I. By assumption, the image of the canonical homomorphism
J ⊗B A → A = B ⊗B A coincides with I. Thus J consists of elements a + bε
with a ∈ I. Since ε(a + bε) = ea ∈ J , we see that εI ⊂ J . The B-module
B/J is flat over k[ε], hence is isomorphic to k[ε]n as a k[ε]-module. This shows
that the kernel of the canonical homomorphism J → I, a + bε 7→ a is equal to
εI. Take a + bε ∈ J , the exact sequence shows that a + bε, a + b′ε ∈ J implies
b− b′ ∈ I. This allows us to define a homomorphism of A-modules I → A/I by
sending a ∈ I to the coefficient at ε in a + bε ∈ J . Conversely, we can build J
from such a homomorphism φ by considering the ideal Jφ = {a + bε : a ∈ I, b
mod I = φ(a)}. Thus we obtain that the Zariski tangent space of X [n] at Z is
isomorphic to the k-vector space HomA(I,A/I) = HomA(I/I2, A/I).

Decomposing I into primary ideals it is enough to assume that I is a primary
ideal in a local ring A. We have to show that dim Homk(I/I2, A/I) ≤ 2n, where
n = dimk A/I. Since I is a torsion-free module over a 2-dimensional regular local
ring, its homological dimension is equal to 1 (since it is not principal, it is not
free). So we have a free resolution

0 → As → As+1 → I → 0.

It gives the exact sequence

0 → HomA(I, A/I) → (A/I)s+1 → (A/I)s → Ext1A(I, A/I) → 0. (6.3)

So, it suffices to show that dimK Ext1A(I,A/I) ≤ n. The exact sequence

0 → I → A→ A/I → 0

gives an isomorphism Ext1A(I,A/I) ∼= Ext2A(A/I,A/I) and a surjection from
Ext2A(A/I,A) to Ext2A(A/I,A/I). Since A is regular of dimension 2, the theory
of local duality shows that Ext2A(k,A) ∼= k and the functor M → Ext2A(k,M) is
exact on the category of A-modules of finite length. Thus dimk Ext2A(k,A) ≤ n,
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by taking a composition series of A/I of length n, and dimk Ext2A(A/I,A/I) ≤
n.

Since we have proved that X [n] is nonsingular, the last assertion follows from
Proposition 6.1.2 and the definition of a resolution of singularities.

Example 6.1.7. Let X = A2
k be the affine plane. Then X [n] classifies ideals in

k[T1, T2] of codimension n. Let us view the unknowns T1, T2 as linear operators
in A = k[T1, T2] via the multiplication operation. Obviously any ideal I ∈ X [n]

is invariant under these operators and hence defines a linear representation of Z2

in the vector k-space V = A/I. The space comes equipped with a special vector
v0 equal to the coset of 1, called the vacuum vector . Obviously V is generated as
a Z2-module by v0. Two pairs (V, v0) and V ′, v′0) are called isomorphic if there
exists an isomorphism of representations which send v0 to v′0. Conversely a pair
(V, v0), where V is a k-vector space of dimension n equipped with a structure
of a k[T1, T2]-module generated by a nonzero vector v0 ∈ V defines a surjective
homomorphism k[T1, T2] → V, F (T1, T2) 7→ F (T1, T2) · v0 with kernel equal to
an ideal I of codimension 2. Isomorphic pairs define the same ideal. In this way
we obtain a natural bijection

X [n](k) =

{
isomorphism classes of pairs (V, v0), where V is an
n-dimensional linear representation of Z2 generated by v0.

For example, take (V, v0) = (k, 1). A linear representation of Z2 is defined by
a pair of scalar operators in k, i.e. a pair (λ, µ) ∈ K2. A polynomial F (T1, T2)
defines the scalar operator F (λ, µ). Thus the ideal I is the maximal ideal defined
by the point (λ, µ) ∈ A2(k).

Now take n = 2 and k = C. Let V be a C[T1, T2]-module and A1, A2 be
the linear operators corresponding to the unknowns. Suppose that A1 has two
linearly independent eigenvectors v1 and v2 with eigenvalues λ1, λ2. Since A2

commutes with A1, the vectors v1, v2 are eigenvectors of A2 with eigenvalues
(µ1, µ2). Take any vector v0 = av1 + bv2 with a, b 6= 0. Then

F (T1, T2) · v0 = aF (λ1, µ1)v1 + bF (λ2, µ2)v2.

Clearly, (λ1, µ1) 6= (λ2, µ2). This shows that v0 = av1 + bv2 generates the
C[T1, T2]-module V if and only a, b 6= 0. It is easy to see that the isomorphism
class of (V, v0) is determined if we fix a basis (v1, v2) and take v0 = v1 +v2. The
pair of points (λi, µi), i = 1, 2, determines (V, v0) uniquely up to isomorphism.
The corresponding ideal consists of polynomials F (x, y) such that F (λi, µi) =
0, i = 1, 2.

Now assume that A1 or A2 is not diagonalizable. Let λ be its eigenvalue.
Then there exists a basis (v1, v2) such that A1, A2 are represented by matrices(

λ α
0 λ

)
,

(
µ β
0 µ

)
.

Write the Taylor expansion of F (T1, T2) at the point (λ, µ)

F (T1, T2) = F (λ, µ) +∇F (λ, µ) · (T1 − λ, T2 − µ) + . . . .
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Then

F (A1, A2) = F (λ, µ)I2 +
∂F

∂T1
(λ, µ)(A1 − λI2) +

∂F

∂T2
(λ, µ)(A2 − µI2),

where I2 denotes the identity matrix of order 2. Let v0 = av1 + bv2, then

F (A1, A2)(v0) = [aF (λ, µ) + (α, β) · ∇F (λ, µ)]v1 + bF (λ, µ)v2.

We see that the vacuum vector exists only if (α, β 6= 0) 6= 0 and it must be
a vector av1 + bv2 with a, b 6= 0. In this case the kernel of the representation
consists of polynomials F (T1, T2) such that F (λ, µ) = 0 and (α, β) · ∇F (λ, µ) =
0. This is the ideal

I = (−β(T1 − λ) + α(T2 − µ) + (T1 − λ, T2 − µ)2).

of length 2. This computation confirms what we had learnt in Example 6.1.4,
i.e. shows that the projection X [2] → X(2) over the point (z, z) in the diagonal
has the fibre isomorphic to the projectivization of the Zariski tangent space at
z.

Remark 6.1.8. The closed subscheme (C2)[n]
0 of (C2)[n] of cycles with support

at the origin was extensively studied by Briancon and Iarrobino [Briancon],
[Iarrobino]. They proved that it is an irreducible projective variety of dimension
n−1. It contains an open dense subset of complete intersection ideals I = (f, g).
One defines the Hilbert-Samuel function of Z ∈ (C2)[n]

0 given by an Ideal I as
follows

hI(s) = dimC
C[z1, z2]
I + ms

.

It is easy to see that

hI(s)− hI(s− 1) = dimC
ms

ms+1
− dimC

I ∩ms + ms+1

ms+1
.

The largest s such that I ⊂ ms is called the order of I. Let St be the set of
ideals of order t. For example, the set of ideals S1 of order 1 is isomorphic to a
fibration over P1 with fibre Cn−2. It is defined by two charts:

V1 = {I = (z1 + a1z2 + . . .+ an−1z
n−1
2 , zn

2 )},

V2 = {I = (z2 + b1z1 + . . .+ bn−1z
n−1
1 , zn

1 )},

with transition function (a1; a2, . . . , an) 7→ (b1; b2, . . . , bn−1) defined by plugging
in z2 = −(b1z1 + . . .+ bn−1z

n−1
1 ) in z1 + a1z2 + . . .+ an−1z

n−1
2 and finding the

conditions that the obtained expression belongs to (zn
1 ). One finds

b1 =
1
a1
, b2 =

a2

a3
1

, b3 =
2a2

2

a5
1

− a3

a4
1

, . . . .
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For n = 2 these are just transition functions on P1. For n = 3 they are transition
functions for the total space of the line bundle V(OP1(−3)). For n > 3, S1 is
not a line bundle.

Thus
(C2)[2]0

∼= P1.

One can show that
(C2)[3]0 = S1 ∪ {m2}.

The point m2 is the singular point of (C2)[3]0 . So (C2)[3]0 is isomorphic to the
cone over the Veronese curve of degree 3. The set S1 is the set of nonsingular
points of (C2)[4]0 . The set S2 is smooth of dimension 2, and the subvariety of
non-complete intersection ideals is isomorphic to P1. In particular, (C2)[4]0 is a
non-normal variety.

Any ideal in (C2)[5]0 is isomorphic (after passing to the formal completion)
to one of the following ideals

(i) (z1, z5
2);

(ii) (z2
1 + z3

2 , z1z2);

(iii) (z2
1 , z1z2, z

4
2);

(iv) (z2
1 + z2

2 , z
2
1z2, z

3
1);

(v) (z2
1 , z1z

2
2 , z

3
2).

Any ideal in (C2)[6]0 is isomorphic to one of the following ideals

(i) (z1, z6
2);

(ii) (z2
1 + z4

2 , z1z2);

(iii) (z2
1 , z1z2, z

5
2);

(iv) ((z1 + z2)2, z2
1z2);

(v) (z2
1 + z2

2 , z
2
1z2) :

(vi) (z2
1 + z1z2, z

2
1z2, z

4
2) :

(vii) (z2
1 , z1z

2
2 , z

4
2);

(viii) (z2
1 + z3

1 , z1z
2
2 , z

4
2);

(ix) m3;
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6.2 G-Hilbert scheme

Suppose G is a finite group of order n acting faithfully on a quasiprojective
irreducible algebraic variety X. For any g ∈ G let Xg denote the set of fixed
points of g. It is a closed subvariety of X. Let Xreg = X \ ∪g∈G,g 6=1X

g be the
largest open subset of X on which G acts freely. Each orbit G ·x is the image of
G under the action map µx : G→ X. The map is proper, its image is a closed
subscheme Z of X with H0(OZ) ∼= k[G]. The orbits are reduced subschemes
of length n and hence can be identified with points in the strata X

[n]
(1n). We

can identify the G-orbits of points from Xreg with the points of the quotient
Xreg/G.

Definition 6.2.1. The G-Hilbert scheme of X is the irreducible component
G-Hilb(X) of X [n] that contains an orbit of some point x ∈ Xreg.

The action of G on X extends to an algebraic action of G in X [n]. For any
ZS ∈ HX,n(S) an element g ∈ G sends ZS to (g × idS)∗(ZS).

Proposition 6.2.1. The group G acts identically on G-Hilb(X) and hence acts
linearly on the vector space VZ = H0(OZ) for any Z ∈ G-Hilb(X). This linear
representation is isomorphic to the regular representation of G.

Proof. Recall that an algebraic action of an algebraic group G on an algebraic
variety S is defined by a morphism µ : G× S → S. Let Φ = µ× idS : G× S →
S × S. On points it sends (g, x) to (gx, x). It is easy to see that the projection
to S of the pre-image Φ−1(∆S) of the diagonal is equal to the subscheme SG

of fixed points. If the action is proper (always in the case of a finite group),
the subscheme SG is closed in S. Now suppose S′ ⊂ S is an open G-invariant
subset of S. Then the standard properties of the closure imply that the closure
of Φ−1(∆S′) ⊂ G× S′ in G× S is equal to Φ−1(∆S). Taking the closure of the
projection, we see that the closure of S′G in S is equal to SG.

Applying this to our situation, we see that G-Hilb(X) is an irreducible com-
ponent of (X [n])G. The group G acts on the universal scheme π : ZX[n] → X [n].
Over G-Hilb(X) it acts on fibres and identically on the base. Thus it acts on the
tautological sheaf F whose fibre over Z is the algebra VZ . If Z ∈ G-Hilb(Xreg) =
(Xreg)[n] ∩ G-Hilb(X), then VZ

∼= ⊕z∈ZH
0(Oz) and we consider a basis ez of

VZ corresponding to a choice of the coset of 1 in each factor. It is clear that G
acts on the basis in the same way as it acts on the canonical basis of the group
algebra k[G].

Now suppose Z belongs to the boundary G-Hilb(X) \G-Hilb(Xreg). Let R
be an irreducible representation of G. Consider the sheaf FR = OZ

X[n] ⊗ R∗

restricted to G-Hilb(X) (here R is considered as the pull-back of the constant
sheaf on Spec K). Let (p∗F)G be the subscheaf of p∗(F) of G-invariant sections.
Its fibre over a point [Z] is isomorphic to the space HomG(R, VZ). Its dimension
nR is equal to the multiplicity of the representation R in VZ . By semi-continuity
of dimension of fibres of a coherent sheaf of modules, the dimension nR is greater
or equal than the multiplicity of R in the regular representation. Since n =
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dimVZ is equal to the sum of squares of the dimensions of non-isomorphic
irreducible representations of G, we obtain that VZ is isomorphic to the regular
representation.

The theorem allows to redefine the G-Hilbert scheme as an irreducible com-
ponent of the fixed locus of G in X [n] that contains an orbit of a point with
trivial stabilizer subgroup.

Another possible definition could be used if the following conjecture turns
out to be true.

Conjecture 6.2.2. (I. Nakamura) G-Hilb(X) coincides with the set of points
Z ∈ (X [n])G such that VZ is a regular representation of G.

So far, it is known only in some special cases, for example X = Cn, G ⊂
SL(n,C), n ≤ 3.

The following fact is well-known but for the lack of a reference, we include
its proof.

Lemma 6.2.3. Let G be a finite group acting on a smooth algebraic variety X
over a field k of characteristic prime to the order of G. Then the subscheme
XG of fixed points is smooth.

Proof. Let k̄ be the algebraic closure of X. We will prove more, X is geometri-
cally smooth, i.e. X⊗k k̄ is regular. Thus we may assume that k is algebraically
closed. Since closed points are dense in X and the localization of a regular local
ring is regular, it is enough to show that each closed point of XG is nonsingu-
lar. Without loss of generality we may assume that G acts faithfully and X is
irreducible. Let x ∈ XG. Let A = OX,x and m = mX,x. The group G acts on
the local ring A and on the associated graded ring grA = ⊕∞n=0m

n/mn+1. Since
A is a regular local ring, grA ∼= S•(m/m2) ∼= k[t1, . . . , tn], where n = dimA. I
claim that the action of G on the Zariski cotangent space m/m2 of X at x, and
hence on grA is faithful. Suppose g ∈ G acts identically on m/m2. By Maschke’s
Theorem, the action of 〈g〉 on A/m2 decomposes into the direct sum of m/m2

and k = A/m. Thus G acts trivially on A/m2. Continuing in this way, we find
that G acts trivially on each quotient A/mn, hence acts trivially on the formal
completion Â of A. Since A embeds into its formal completion, we see that g
acts trivially on A. This implies that g acts trivially on an open subset contain-
ing x. Since the fixed locus of g is a closed subset and X is irreducible, we obtain
that g acts trivially on X contradicting the assumption. Let B be the local ring
of XG at x and n be its maximal ideal. We have a G-equivariant surjection
m/m2 → n/n2. Again, by Maschke’s Theorem, the representation of G on m/m2

decomposes into the direct sum m/m2 = n/n2 ⊕ V . The group G acts trivially
on n/n2. Let f1, . . . , fd be local parameters in A whose residues modulo m2

form a basis of the subspace (m/m2)G extending a basis of n/n2. They define,
locally, a nonsingular subvariety Y of X of codimension d that contains XG.
By the previous argument G acts trivially on Y , hence Y must be contained in
XG. This implies that XG coincides with Y in an open neighborhood of x, and
hence XG is nonsingular.
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Theorem 6.2.4. Assume that k is of characteristic 0. There is projective
morphism

c : G-Hilb(X) → X/G

extending an isomorphism G-Hilb(Xreg) ∼= Xreg/G. If X is a nonsingular sur-
face, then c is a resolution of singularities.

Proof. Let µ : G×X → X ×X be the map defined by (g, x) 7→ (x, g · x). Since
G is a finite group, the map is proper and the image is a closed subset Z of
X ×X. It is equal to the union of the graphs of g ∈ G. Let OZ be its structure
sheaf. Its direct image under the first projection is a locally free sheaf of rank
n. Thus Z defines an X-points of X(n), i.e. a morphism α : X → X(n). On
k-points this is the map that sends a point x to the orbit G ·x :=

∑
g∈G g ·x. Let

X(n) → X(n) be the universal family. It is a closed subscheme of X ×X(n) and
its projection to X(n) is proper. The intersection of X(n) with the graph of α is
a closed subset of X ×X(n). Its image under the projection to X(n) is a closed
subset of X(n). Thus the map α : X → X(n) has closed image in X(n). Since it
is obviously G-invariant it factors through a map α′ : X/G→ X(n) with closed
irreducible image X/G. The variety X/G is, by definition the Chow quotient of
X//G. If k is of characteristic zero, there is the inverse map X//G→ X/G (see
[Kapranov, Chow quotients, 0.4.6]. Thus the map G-Hilb(X) → X/G defines a
morphism G-Hilb(X) → X/G.

It remains to prove the second assertion. By Theorem 6.1.6, X [n] is smooth.
Since X [n] is an irreducible component of Hilb(X)G, Lemma 6.2.3 implies that
Hilb(X) is smooth. Since the map c : G-Hilb(X) → X/G is birational and
projective, it is a resolution of singularities.

6.3 Symplectic structure

Let X be a smooth algebraic variety over a field k and Ω1
X/k be its sheaf of

differential 1-forms on X. A symplectic structure on X is a section ω of Ω2
X/k =

Λ2Ω1
X/k such that the corresponding map Ω1

X/k → (Ω1
X/k)∗ is bijective. Passing

to the fibres, we see that ω defines a non-degenerate 2-form ωx ∈ Ω2
X/k(x) =

Λ2(mX,x/m
2
X,x). This implies that dimX = 2d is even. Also the map Λd(ω) :

Ωd
X/k → (Ωd

X/k)∗ is given by a nowhere vanishing section of Ω2d
X/k. In particular,

KX = 0. If dimX = 2, a symplectic structure is just a nowhere vanishing section
of the canonical bundle of X.

A symplectic structure on an algebraic variety is an algebraic version of a
holomorphic symplectic structure on a complex manifold. The definition of the
latter is the same only the sheaf of regular differential 2-forms is replaced by the
sheaf of holomorphic 2-forms. In its turn, a holomorphic symplectic structure
is a complex analog of a symplectic structure on a smooth differential manifold.
This time the sheaf is the sheaf of smooth 2-forms.

Example 6.3.1. Let X = A2d
k = Spec k[T1, . . . , T2d] be the affine space of

dimension 2d over a field k. We have Ω1
X/k corresponds to a free module over
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k[T1, . . . , T2d] with a basis dT1, . . . , dT2d. The 2-form

ω =
f∑

i=1

dTi ∧ dTi+d.

defines a symplectic structure on X. We have

Λd(ω) = dT1 ∧ dTd+1 ∧ · · · ∧ dTd ∧ dT2d.

Its holomorphic (differential) analog is the following. Let V be a linear space
over C (or over R) and V ∗ be its dual space. Define a 2-form ω on Λ2(V ⊕ V ∗)
by

ω((v, φ), (w,ψ)) = ψ(v)− φ(w).

If (e1, . . . , ed) is a basis in V and e∗1, . . . , e
∗
d) be its dual basis in V ∗, then the

matrix of ω with respect to the basis ((e1, 0), . . . , (ed, 0), (0, e∗1), . . . , (0, e
∗
d)) is

equal to (
0d Id
−Id 0

)
.

This shows that ω is a symplectic form on V ⊕ V ∗. It is easy to see that
ω =

∑d
i=1 e

∗
i ∧ e∗i+d.

Now we can use this form to construct a holomorphic symplectic structure
on the cotangent vector bundle T∗X of X. Recall that T∗X = Spec S•((Ω1

X/k)∗) =
V((Ω1

X/k)∗). Its sheaf of sections is isomorphic to Ω1
X/k. For any locally free

sheaf E on X we have

Ω1
V(E)/k

∼= p∗(Ω1
X/k)⊕ p∗(E),

where p : V(E) → X is the canonical projection. In our case we get

Ω1
T∗X/k

∼= p∗(Ω1
X/k)⊕ (Ω1

X/k)∗)).

Using the above constriction of a symplectic form on V ⊕V ∗, this allows one to
define a natural symplectic structure on T∗X

Let (X,ω) be a symplectic algebraic variety of dimension n = 2d. A closed
nonsingular subvariety Y of X is called isotropic if under the canonical map
of sheaves Ω2

X/k → Ω2
Y/k the image of ω ∈ Γ(X,Ω2

X/k) in Γ(Ω2
Y/k) is equal to

zero. It follows from the definition, that for any point y ∈ Y , the image of the
Zariski tangent space Ty(Y ) in Tx(X) is an isotropic subspace (i.e. a subspace
contained in its orthogonal complement with respect to the symplecti form ωx).

An isotropic subvariety is called a Lagrangian subvariety if its dimension
is equal to n. Recall that n is the largest possible dimension of an isotropic
subspace of a non-degenerate symplectic 2-form). It follows from the definition
that any nonsingular curve on a symplectic surface is Lagrangian. Another
example is the zero section of the cotangent bundle T∗X .
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Theorem 6.3.2. (Fujiki, Beauville) Suppose a nonsingular surface X has a
holomorphic symplectic structure. Then X [n] has a holomorphic symplectic
structure.

Proof. Let ν = (1n−2, 2) = (1 ≤ . . . ≤ 1 ≤ 2) be the “subtrivial” partition of n .
Let X [n]

∗ be the union of the strata X [n]
ν and the open strata X [n]

1n . We employ
similar notation for the symmetric product. Each of them is an open subvariety
with complement of codimension 2.

Let p : Xn → X(n) be the canonical projection and Xn
∗ = p−1(X(n)

∗ ). The
restriction of p to Xn

∗ is the double cover ramified along X
(n)
ν . We have the

following commutative diagram,

X̃
[n]
∗

π

��

φ // Xn
∗

p

��
X

[n]
∗

cyc // X(n)
∗

,

where φ is the projection of the blow-up map of Xn along the “big diagonal”
∆ = p−1(X(n)

ν ) (see Example 6.1.7) and π is the double cover ramified over
X

[n]
ν . Let ω be a holomorphic 2-form on X defining the holomorphic symplectic

structure on X. The form ω̃ =
∑
p∗i (ω) on Xn defines a holomorphic symplectic

structure on Xn which is invariant with respect to the action of the symmetric
group Sn. We restrict it to Xn

∗ and obtain that it is equal to π∗(η) for a
holomorphic 2-form on X [n]

∗ . We have

div(φ∗(ω̃∧n)) = φ∗(div(ω̃∧n)) + E = E

div(π∗(η∧n)) = π∗(div(η∧n)) + E,

where E is the ramification divisor of π equal to the exceptional divisor of
the blow-up of φ. Since div(φ∗(ω̃∧n)) = div(π∗(η∧n)), we get π∗(div(η∧n)) =
0. This shows that η has no zeroes on X

[n]
∗ and hence defines a holomorphic

symplectic structure on X(n)
∗ . Since the codimension of the complement of X(n)

∗
is equal to 2, the form can be extended to a holomorphic symplectic 2-form on
the whole Hilbert scheme (because η∧n does not vanish anywhere on X [n]).

Remark 6.3.3. Let MX(r; c1, c2) be the moduli space of stable rank r torsion-
free coherent sheaves on X with fixed Chern classes c1 and c2. Assume that
X is a K3-surface or an abelian surface with holomorphic symplectic structure
defined by a nonzero section of OX(KX) ∼= OX . Then Mukai proves that
MX(r; c1, c2) carries a holomorphic symplectic structure. The tangent space of
MX(r; c1, c2) at a point [E ] can be identified with Ext1(E , E) and the symplectic
form corresponds to the natural pairing

Ext1(E , E)× Ext1(E , E) → Ext2(E , E) ∼= C.



6.3. SYMPLECTIC STRUCTURE 121

If we take r = 1, c1 = 0, c2 = n, then double dual of E is isomorphic to OX and
the quotient is the structure sheaf of some Z ∈ X [n]. In this way we obtain an
isomorphism

MX(1; 0, n) ∼= X [n]

which is compatible with the holomorphic symplectic structures.

Let (X,ω) be a symplectic algebraic variety. We say that a group G acts
symplectically on X if g∗(ω) = ω for all g ∈ G. For example, a finite subgroup
G of the symplectic group Sp(2n, k) acts symplectically on the affine space A2n

k

equipped with the standard symplectic manifold from Example 6.3.1. If n = 1,
we have Sp(2n, k) = SL(2, k) and the classification of such groups was given in
Lecture 1.

Lemma 6.3.4. Let G be a finite group acting symplectically on (X,ω). Assume
that the order of G is coprime to the characteristic of the ground field. Then
the fixed locus XG of G is a symplectic subvariety.

Proof. By Lemma 6.2.3, XG is a smooth subvariety. By definition, a point is
a symplectic variety. So we may assume that each connected component of
the fixed locus F = XG is of positive dimension. Let x ∈ XG, by Maschke’s
Theorem, the linear representation of G on the tangent space TxX decomposes
into the direct sum TxF ⊕ N of representations. It follows from the proof of
Lemma 6.2.3 that TxF = (TxX)G. The bilinear form ω defines a map φ :
TxF → (TxX)∗ → N∗. Since G preserves ω, ωx is an isomorphism of linear
representations. Since N , and hence N∗ does not contain trivial irreducible
summands, by Schur’s Lemma, the map φ is trivial. Hence ωx induces a bijective
map (TxF ) → T ∗xF . This shows that ω defines a symplectic form on F .

Corollary 6.3.5. Suppose X is a nonsingular surface admiting a holomor-
phic symplectic structure preserved under an action of a finite group G. Then
G-Hilb(X) admits a holomorphic symplectic structure and the morphism c :
G-Hilb(X) → X/G is a minimal resolution of singularities.

Proof. The minimality of the resolution follows from the existence of a holomor-
phic symplectic structure on X [n]. Since G-Hilb(X) is an irreducible component
of the fixed locus of G on X [n], by Lemma 6.3.4 it has a holomorphic symplectic
structure defined by a holomorphic 2-form ω. Since G-Hilb(X) is a surface, ω
defines a nowhere vanishing section of the sheaf of holomorphic 2-forms. Taking
some nonsingular compactification of G-Hilb(X), we find a divisor in the canon-
ical class whose restriction to G-Hilb(X) is equal to zero. Thus, by adjunction,
any irreducible component R of the resolution satisfies R2 = 2 − 2g, where g
is the genus of R. Since R2 < 0, we see that g = 0 and R2 = −2. Thus the
resolution is minimal and the intersection matrix of each connected component
of the exceptional divisor is a negative definite Cartan matrix. Since locally
the singular points correspond to singularities C2/H, where H is the stabilizer
subgroup of an orbit, we see that H acts as a subgroup of SL(2,C) and the
singularities are analytically isomorphic to ADE-singularities.
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Recall that an isotropic submanifold L of a symplectic manifold M is a
submanifold such that each tangent subspace TLx is an isotropic subspace of
TMx.

Conjecture 6.3.6. Let X be a nonsingular surface which admits a holomorphic
symplectic structure equipping X [n] with holomorphic symplectic structure. Then
the fibres of the cycle map X [n] → X(n) are Lagrangian submanifolds.

This is true in the case X = C2 and G ⊂ SL(2,C) (see [Nakajima, Lectures]).

Theorem 6.3.7. Conjecture 6.3.6 implies Nakamura’s conjecture.

Proof. Let N = |G|. A connected component H of positive dimension of
(X [N ])G is a symplectic subvariety ofX [N ]. Suppose it is different from G-Hilb(X)
and contains a cycle Z with VZ = H0(OZ) equal to the regular representation.
It follows from the proof of Proposition 6.2.1 that VZ is regular for all Z’s from
H. Let Xreg ⊂ X be the open subset of X where G acts freely. Since any g ∈ G
preserves the symplectic structure, the set Xg of its fixed points is a symplectic
subvariety, hence is 0-dimensional if g 6= 1. Thus X \ Xreg is a finite set of
points x1, . . . , xs.

Let q : ZX[n] → X, p : ZX[n] → X [N ] be the projections of the universal
family over X [N ]. Let Hi = p(q−1(xi)), i = 1, . . . , s. It consists of Z ∈ H such
that xi ∈ Supp(Z). Each Hi is a closed subvariety of H and H = H1 ∪ · · · ∪Hs

since H does not contain reduced cycles. Since H is smooth and connected, it
is irreducible. Hence H = Hi for some i. Without loss of generality we may
assume that H = H1 = · · · = Ht for some t ≤ s. Since VZ is regular, it is
easy to see that cyc(H) = N

t (
∑t

i=1 xi). In any case, since H is connected, it is
contained in one fibre of the cycle map. It follows from Conjecture 6.3.6 that H
is an isotropic subvariety. Hence it is also a symplectic subvariety this implies
that H must be a point.

Now, to show that H does not exist, it remains to prove that dimH > 0.
Let Z ∈ H with SuppZ = {x1, . . . , xt}. Let U = Spec A be an open affine set
containing x1, . . . , xt and I be the ideal in A defining Z. We know from the
proof of Fogarty’s Theorem that the tangent space of X [N ] at Z is isomorphic
to HomA(I,A/I). The exact sequence

0 → I2 → I → I/I2 → 0

gives an exact sequence

0 → HomA(I/I2, A/I) → HomA(I,A/I) → HomA(I2, A/I) = 0.

The standard exact sequence of the modules of differentials [Hartshorne, Chap-
ter 2, Proposition 8.3A] gives an exact sequence

I/I2 d→ Ω1
A/k ⊗A A/I → Ω1

(A/I)/k → 0.

Replacing U by a smaller subset, we may always assume that Ω1
A/k

∼= A2 (recall
that X is smooth so Ω1

X/k is locally free of rank 2). Thus the middle term is
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isomorphic to (A/I)2. Let T be the image of the homomorphism d : I/I2 →
(A/I)2 and N be the kernel. Passing to the duals of A/I-modules, we have an
exact sequence

0 → Der(A/I)/k → HomA/I(A/I)2, A/I) → T ∗ → 0, (6.4)

where T ∗ ⊂ Hom(I/I2, A/I).
Let W = (A/I)2 be the middle term considered as a G-module. It is iso-

morphic to the tensor product of the G-module Homk(Ω1
A/k, k) and the regular

representation on A/I. Let x = x1 and Gx be the stabilizer subgroup of x.
The regular representation is induced from the representation of Gx on (A/I)x

and the representation of G on Homk(Ω1
A/k, k) is induced from the linear repre-

sentation of Gx on Homk(Ω1
Ax/k, k) ∼= TxX (the isotropy representation). Here

Ax, (A/I)x is the localization of A,A/I at x. We have

(T ∗)G ⊂ HomA(I/I2, A/I)G = HomA(I,A/I)G.

Passing to the invariants in (6.4), we get an exact sequence

0 → DerG
(A/I)/k →WG → (T ∗)G → 0. (6.5)

Let χx,reg be the character of the regular representation of Gx and χx be the
character of its isotropy representation. It follows from the Frobenius Reci-
procity Theorem 5.1.9 that

dimk W
G = 〈χreg,xχx, 1Gx

〉 =
1

|Gx|
∑

g∈Gx

χreg,x(g)χx(g)

=
1

|Gx|
χreg,x(1)χx(1) = dimTxX = 2.

Let us see that DerG
(A/I)/k = 0. The group G acts on derivations ∂ : A/I → A/I

by g∂(a) = g∂(g−1a). A G-invariant derivation satisfies ∂(ga) = g∂(a), hence
it is a homomorphism of k[G]-modules A/I → A/I. Since A/I is a regular
representation, A/I ∼= k[G] and, under this homomorphism, A/I is generated by
the field of constants k, considered as a submodule of A/I. Since any derivation
is equal to zero on the field of constants we get DerG

(A/I)/k = 0. Now (6.5)
implies that dimk(T ∗)G = 2, hence

dimk HomA(I,A/I)G = dimxH ≥ 2.

Example 6.3.8. Let n = 2. Suppose Z = {x, y} ∈ (X [2])G is reduced. Then
either 2 points make an orbit, and hence Z ∈ G-Hilb(X), or Z consists of two
fixed points. But then G acts identically on H0(OZ) and hence Z 6∈ X [2]

G .
Let x be a fixed point. We know that there exists a non-reduced Z ∈

G-Hilb(X) supported at x. The action is linearized at x so that there exist
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local parameters u, v at x such that G acts on the tangent space by (u, v) 7→
(αu, βv, where (α, β) = (1,−1) or (−1,−1). In the first case x belongs to a one-
dimensional component ofXG. In the second case, X is an isolated fixed point x.
Let A = OX,x,m = mX,x. We know from Example 6.1.4 that I = (au+ bv,m2).
Clearly IZ is invariant and VZ is a regular representation of G. The set of Z’s is
parametrizied by P1. Thus we see that there exists a natural map X [2]

G → X/G.
Its fibre over the orbit of an isolated fixed point is the whole projective line. Its
fibre over non-isolated fixed point is a one-point set.

Example 6.3.9. Let G = S3 which acts on X = C2 as follows. Consider X
as a hyperplane z1 + z2 + z3 = 0 in C3 with coordinates z1, z2, z3 and let G act
by permuting the coordinates. This is called the standard representation of S3.
It is obviously irreducible. By projecting we take the first two coordinates as
coordinates in C2. Let IZ = (z2

1 +z1z2 +z2
2 , z1z2(z1 +z2) be the ideal cut out in

C2 by the elementary symmetric functions in C3. We have VZ = C[z1, z2]/IZ has
a basis consisting of cosets of 1, z1, z2, z2

1 , z
2
2 , z

2
1z2. The group G is generated by a

transposition σ12 : (z1, z2) 7→ (z2, z1) and a cyclic permutation σ123 : (z1, z2) 7→
(z2,−z1− z2). Obviously, 1 spans the trivial representation, and z1, z2 span the
standard 2-dimensional linear representation. The representation spanned by
the remaining basis elements is given by 2 matrices

σ12 =

0 1 0
1 0 0
0 0 −1

 , σ123 =

0 −1 0
1 −1 0
0 0 1

 .

Computing the character χ we find that it is equal to

(χ(1), χ(σ12), χ(σ123)) = (3,−1, 0) = (2, 0,−1) + (1,−1, 1).

The first vector is the character of the standard representation, the second one is
the character of the sign representation. Thus VZ = 1+Vst +Vst +Vsign

∼= Vreg.
On the hand, consider the ideal (z1, z2)3 ∈ (X [6])G. We have VZ is spanned

by the cosets of 1, z1, z2, z2
1 , z

2
2 , z1z2. The first three basis elements span 1+Vst.

The remaining basis vectors span S2(Vst). It contains the trivial representation
spanned by the coset of z2

1 + z2
2 + z1z2, with complement isomorphic to the

standard representation. Thus VZ 6∼= Vreg.

6.4 Exercises

6.1 Let X = P2 consider the rational map X(3)− → G(3, 6) which assigns to a
set of 3 points the linear system of conics through these points.

(i) Show that the composition of this map with the cycle map X [3] → X(3)

extends to a regular map f : X [3] → G(3, 6).

(ii) Show that the image of the strata X
[3]
(3) is equal to the tangent scroll of

the Veronese surface ν2(P2) of double lines (the union of tangent planes
to the surface).
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(iii) Show that the complement to the open strata X [3]
13 contains two copies of

X [2] intersecting at a surface isomorphic to X and contained in the strata
X

[3]
(3).

(iv) Let X̌ be the dual plane of lines. Consider a birational map X [3]− →
X̌ [3] which assigns to a general set of three points the three sides of the
corresponding triangle. What is the largest open subset to which the map
extends as a regular map?

6.2 Show that the assignment X → X [n] is not a functor. For example, consider
the double cover f : P1 × P1 → P2 ramified along a conic C. Show that it
defines only a rational map of degree 2 (P1 × P1)[2]− → (P2)[2]. Describe its
indeterminacy points.
6.3 The 0-dimensional subscheme of X defined by the ideal mn

x is called a fat
point. Consider it as a point in X [N ], where N =

(
dim X+n−1

2

)
. Suppose G is

a finite group of order N acting on X which has x as a fixed point. Find all
possible n and G such that mn

x belongs to G-Hilb(X).
6.4 Let X be a general quartic surface in P3. Show that X [2] admits an au-
tomorphism τ of order 2 with quotient X [2]/(τ) isomorphic to the Grassmann
variety G(2, 4).
6.5 Describe (C2

0)
[3] and (C2

0)
[3] using the matrix interpretation from Example

6.1.7. Show that (C2
0)

[3] is a singular variety.
6.6 Let k be of characteristic 6= 2. Show that (A2

k)(2) is isomorphic to A2
k × C,

where C = Spec k[x, y/(xy + z2).
6.7 Find all possible G-invariant cycles in C2

0)
[n] for n ≤ 6 with respect to a

cyclic subgroup SL(2,C) of order n.
6.8 (N. Hitchin) Study irreducible components of (X [n])G, where X is a sur-
face with holomorphic symplectic structure and G a finite group acting on X
preserving the structure.
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Lecture 7

Quiver varieties

7.1 Quivers and their representations

A quiver is an oriented finite graph Q = (Q0, Q1) with an ordered set of vertices
Q0 and a set of arrows Q1. Let C be a category. A representation of a quiver Γ
in C is a map which assigns to each vertex v ∈ Q0 and object Cv of the category
C and to each arrow a ∈ Q1 with tail t(a) = v and head h(a) = v′ a morphism
φ(a) : Cv → Cv′ .

We will be interested only in linear representations , in which C is the cate-
gory Vectk of finite-dimensional vector spaces over an algebraically closed field
k. We can view a representation ρ = (ρ0, ρ1) as an ordered collection of vector
spaces Ev = ρ(v), v ∈ Q0, and linear maps ρ(a) : ρ(t(a)) → ρ(h(a)), a ∈ Q1. The
dimension representation of Q is the vector d = (dv)v∈Q0 , where dv = dimEv.

A morphism of representations ρ → ρ′ is a set of linear maps φv : ρ(v) →
ρ′(v) = E′v, v ∈ Q0, such that, for any a ∈ Q1 the diagram

Et(a)

φt(a) //

ρ(a)

��

E′t(a)

ρ′(a)

��
Eh(a)

φh(a) // E′h(a)

is commutative.
We leave to the reader to define the notions of subrepresentation, direct sum

of representations, irreducible representation of a quiver. In fact, they all corre-
spond to the usual notions in the theory of modules if we view a representation
of a quiver as a module over its path algebra.

The path algebra KQ of a quiver Q is defined as follows. Let P be the set
of paths in Q, i.e. sequences a1, . . . , am ∈ Q1 such that h(ai) = t(ai+1). Eaach
v ∈ Q0 will be considered as a path ev. Consider the vector space kP of functions
on the set of paths. It has a natural basis formed by the delta-functions which

127
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we identify with elements of P. Define the multiplication by setting

p · q =

{
pq if h(q) = t(p)
0 otherwise.

,

where pq means the usual composition of paths. In particular, we require that
the paths v corresponding to the vertices are idempotents, i.e. e2i = ei and
ei ·q = q if h(q) = i and p ·ei = p if t(p) = i. We also require that eiej = 0, i 6= j.
In particular, we get

1 = e1 + . . .+ em (7.1)

since it follows from above that (e1 + . . .+ em)x = x for any x ∈ KQ.
Suppose we have a representation ρ of Q. Let V = ⊕v∈Q0ρ(v). To every path

ev we assign the operator in V which is the projector operator πv : V → Ev.
To every arrow-path a we assign the operator Ta which acts trivially on the
summand Ev if v 6= t(a) and acts as ρ(a) : Et(a) → Eh(a) otherwise. Since the
arrows and ev, v ∈ Q0, generate KQ as an algebra, this defines a structure of a
KQ-module on V .

Conversely, suppose V is a KQ-module. For any path p we denote by p̃
the corresponding linear operator in V . We define ρ(i), i ∈ Q0, as the subspace
Vi = ẽi(V ). It follows from (7.1) that V is the direct sum of the subspaces
Vi, i ∈ Q0. Since ẽh(a) ◦ ã = ã and ã ◦ ẽt(a) = ã, the operator ã maps the
subspace Qt(a) to the subspace Qh(a). We take this linear map as ρ(a).

From now on we will identify Q0 with the set of positive integers {1, . . . ,m}.
Fix d = (d1, . . . , dm) ∈ Nm. Consider the set of representations ρ of Q with

dimension vector d. By choosing a basis in each vector space Ei we can replace
ρ with isomorphic representation where each Ei = kdi and each ρ(a) is a matrix
Ma of size dh(a) × dt(a). So, we may identify a representation with a collection
of matrices Ma for each arrow in Q1.

Let

GL(d) =
m∏

i=1

GL(di, k), Rep(Q,d) =
∏

a∈Q1

Matdh(a),dt(a) .

The group GL(d) acts on the set of representations Rep(Q,d) by simultaneous
conjugation

(g1, . . . , gm) : (Ma)a∈Q1 7→ (gh(a) ·Ma · g−1
t(a)). (7.2)

Thus isomorphism classes of representations of quivers of dimension d are in bi-
jective correspondence between the orbits ofG(d) on the vector space Rep(Q,d).

Remark 7.1.1. One can give another expression for the action of GL(d) on
Rep(Q,d) as follows. For every arrow a consider the variables tapq, where
1 ≤ p ≤ dh(a), 1 ≤ q ≤ dt(a), correspond to the entries of a general matrix of
size dh(a),×dt(a). Let k[tapq] be the polynomial algebra with variables tapq. It
can be interpreted as the coordinate algebra of Rep(Q,d). A representation is
just a homomorphism of this algebra to k.
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Let d = |d| = d1 + . . .+ dm. Consider the ring of matrices Matd(k[tapq]) of
size d× d. We view each such matrix as a block-matrix with sizes of the blocks
equal to dh(a),×dt(a). Now we have a natural homomorphism

KQ→ Matd(k[tapq]) (7.3)

which assigns to a generator ea, a ∈ Q1, the matrix whose entries are tapq and
zero otherwise. We also assign to each ei, i ∈ Q0, the identity matrix in the
block di × di and all other blocks equal to zero. Now (g1, . . . , gm) ∈ GL(d)
acts on Matd(k[tapq]) by conjugation by a matrix g which consists of diagonal
blocks of size di × di equal to gi. Thus a representation ρ ∈ Rep(Q,d) can
be considered as a matrix of size d × d with coefficients in k and the action of
GL(d) on Rep(Q,d) corresponds to the conjugation action.

Example 7.1.2. Consider the quiver

1 // 2

Its representation of dimension (d1, d2) is defined by a matrix of size d2 × d1.
The group GL(d1, k) × GL(d2, k) acts by conjugation A 7→ g2Ag

−1
1 . There are

min(d1, d2) isomorphism classes determined by the rank of A.
The quiver Q with Q0 = {1} and Q1 = {a} such that t(a) = h(a) = 1 is

defined by a square matrix A of size d1 and the isomorphism classes are the
conjugacy classes of A. Their number is the number of partitions of d1.

Example 7.1.3. Consider the quiver

1

2

77oooooooooooooo 3

>>~~~~~~~~
. . . m− 1

ccGGGGGGGGG
m

iiSSSSSSSSSSSSSSSSSS

Its representation of dimension (n+ 1, 1, . . . , 1) is defined by a choice of a vec-
tor vi in the space E1, the image of 1 ∈ Ei. Thus all representations are
parametrized by (kn+1)m. Consider the subset of representations such that
all vectors vi are nonzero. Then isomorphism classes of such representations
are parametrized by the orbits set (Pn)m−1/GL(n + 1), where the group acts
diagonally.

Example 7.1.4. Let Q be the quiver

1 // 2 // . . . // m

A path is the product aii+1 · · · aj−1j , where akk+1 is the arrow between k and
k+1. Assign to this path a unit matrix Eji of size m. Each vertex i is assigned
to the matrix Eii. We know that EijEkm = δikEim. One easily checks that the
algebra KQ is isomorphic to the algebra of low-triangular matrices (aij), aij = 0
for i < j. We have ei = Eii and

eiKQ = kEi1 + . . .+ kEii, i = 1, . . . ,m. (7.4)
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This shows that KQ, considered as a left module over itself, defines the repre-
sentation of the quiver Q with the dimension vector d = (m,m− 1, . . . , 1).

The following is one of the fundamental results in the theory of representa-
tions of quivers.

A quiver is called to be finite type it has only finitely many indecomposable
representations.

The following is a fundamental result of the theory.

Theorem 7.1.5. (A. Gabriel) A quiver is of finite typer if and only if, consid-
ered as an non-oriented graph, it is equal to a Dynkin diagram of types A,D,E.

7.2 Varieties of quiver representations

We would like to construct an algebraic variety parametrizing the isomorphism
clases of representations of quivers with fixed dimension vector. It is well-known
that the set of orbits is usually can not be parametrized by an algebrac variety
because some orbits are not closed. The best what we can is to parametrize
some orbits which are semi-stable in certain sense. This is the subject of the
Geometric Invariant Theory. For simplicity we will assume that K = C.

Suppose G is a reductive algebraic group acting on an affine algebraic variety
X = Spec A (our groups GL(d) are reductive). A naive approach to construct-
ing the quotient is to take the spectrum of algebra of invariants of A. However,
it is often consists of only constants. For example, as we will see in Proposition
7.2.1 below this happens if Q does not have oriented cycles.

So we have to modify the construction. Choose a one-dimensional represen-
tation χ : G → K∗ and consider the graded algebra of semi-invariants of G
with respect to χ

AG(χ) =
∞⊕

n=0

AG(χ)n,

where
AG(χ)n = {φ ∈ A : g∗(φ) = χ(g)nφ}.

A theorem of Hilbert asserts that this ring is a finitely generated algebra over
C. By definition

X//χG = Proj AG(χ).

If AG consists only of constants, this is a projective algebraic variety.
In our situation a homomorphism χ : GL(d) → K∗ is equal to the product

of determinants

χ(g) =
m∏

i=1

det(gi)θi , g = (g1, . . . , gm).

Thus χ is determined by a vector θ = (θ1, . . . ,θm) ∈ Zm. We consider
Rep(Q,d) as an affine algebraic variety (isomorphic to affine space). Set

Rθ(Q,d) := Rep(Q,d)//θGL(d). (7.5)
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Assume that Q does not contain oriented cycles, in particular, all arrows
between two vertices go in the same direction. In this case one can number the
vertices in such a way that t(a) < h(a) for all arrows (order the partial ordered
set Q0). Define the Cartan matrix of Q as the matrix C = (aij), where aii = 2
and −aij = −aji is equal to the number of arrows between i and j. It is easy
to see that

dim Rep(Q,d)− dim GL(d) =
∑
i≤j

didjaij −
∑

i

d2
i = −1

2
d · C · d.

Note that the center of the group GL(d) acts identically. It consists of elements
g = (c, . . . , c), where c is a scalar matrix. Thus we expect that

dimRθ(Q,d) = 1− 1
2
d · C · d. (7.6)

The value of the character θ on this subgroup is equal to c 7→ cd·θ. We assume
that the character θ satisfies

d · θ = 0.

If this condition is not satisfied then Rθ(Q,d) = ∅ (because the center of the
group acts identically but the value of the character χθ on the center is not
trivial).

Proposition 7.2.1. Assume that Q has no oriented cycles. Then the variety
Rθ(Q,d) is a projective variety.

Proof. It suffices to show that O(Rep(Q,d))GL(d) consists of only constants.
We may assume that t(a) < h(a) for all arrows. Take g ∈ GL(d) to be
equal (c, c2, . . . , cm), where ci are scalar matrices of dimension di. It sends
(M1, . . . ,Mm) ∈ Rep(Q,d) to (cM1, . . . , cMm). Considering the entries of Mi

as unknowns, we see that each unknown is multiplied by c. Obviously, only
constants are invariant.

A representation ρ ∈ Rep(Q,d) is said to be θ-semistable (resp. θ-stable) if
the closure of its orbit does not contain the zero vector or, equivalently, if there
exists a non-constant homogeneous semiinvariant f(ρ) 6= 0 (resp. additionally,
its orbit is closed in the set of semi-stable points and its stabilizer is a finite
group).

Theorem 7.2.2. (A. King) A representation ρ ∈ Rep(Q,d) is θ-semistable
if and only if any subrepresentation ρ′ of ρ with dimension vector d satisfies
d′ · θ ≤ 0. It is stable if and only if the equality is strict for any proper
subrepresentation. There is a morphism from an open subset Rep(Q,d)s of
θ-stable points in Rep(Q,d) to the variety Rθ(Q,d) whose fibres are GL(d)-
orbits. There is a natural bijection between the complement of the image of
Repθ(Q;d)s and the set of orbits of representation equal to the direct sum of
stable subrepresentations with dimension vector orthogonal to θ. If the set of θ-
stable representations is not empty and Q has no oriented cycles, then formula
(7.6) holds.
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The question when the set of θ-stable representations is not empty is difficult
one. Under certain assumption on the path algebra KQ this question was solved
by Schofield (Proc. L.M.S., 1992).

Example 7.2.3. Consider the quiver from Example 7.1.3. The group GL(d) =
GL(n+1, k)×GL(1, k)m. The space Rep(Q,d) is equal to the space (Mat1,n+1)m

which we can identify with the space of matrices Matn+1,m. The group GL(d)
acts by left multiplications by matrices from GL(n + 1,C) and by scaling the
columns. Let θ = (s,−s1, . . . ,−sm) be a multiplicative character of GL(d) such
that θ · d = 0, i.e. s(n+ 1) = s1 + . . .+ sm. A semi-invariant f with character
χt

θ satisfies
f(gAh) = (|g|−scs1

1 . . . csm
m )tf(A),

where g ∈ GL(n+1, k) and h is the diagonal matrix diag[c1, . . . , cm]. Note that
all such polynomials are invariant with respect to the subgroup SL(n+1, k). The
First Fundamental Theorem of Invariant theory tells that each SL(n + 1,K)-
invariant polynomial of the entries of the matrices is equal to a polynomial in
its maximal minors MI , I ⊂ {1, . . . ,m}. The homogeneous elements of degree s
in our ring Rep(Q,d)θ are linear combinations of monomials MI1 · · ·MIw

such
that

(g, c1, . . . , cm)MI1 · · ·MIw
= |g|wcd1

1 · · · cdm
m MI1 · · ·MIw

= (|g|sck1
1 · · · ckm

m )sMI1 · · ·MIw
,

where each j ∈ {1, . . . ,m} appears dj times in the sets I1, . . . , Iw. This gives
w = st, di = sit. Since (n+ 1)s =

∑
si, we obtain that s, si ≥ 0 and

(n+ 1)w =
m∑

i=1

di. (7.7)

Thus the invariant monomial MI1 · · ·MIw
is described by tableux of multidegree

(d1, . . . , dm) i11 . . . i1n+1

...
...

...
iw1 . . . iwn+1

 .

Its entries are elements from the set {1, . . . ,m}. Each element j of this set ap-
pears exactly dj and (7.7) is satisfied. We also have w = ts, di = tsi. Comparing
this to the known description of the GIT-quotients of (Pn)m//LSL(n + 1) (see
[Dolgachev, Lectures on Invariant Theory]), we find that the variety Rθ(Q,d)
coincides with such GIT-quotient, where the linearization L is given by the sheaf

Ls = OPn(s1) × · · · × OPn(sm)

on (Pn)m. We leave to the reader to check that the stable representations cor-
respond to stable point configurations as described in [Dolgachev].
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7.3 McKay quivers

Let Γ(G, ρ) be the McKay graph of a finite group with respect to a represen-
tation ρ0. Order the set Ir(G) and consider Γ(G, ρ) as a quiver. This is the
McKay quiver of (G, ρ). Let R be the regular representation of G over k = C.
Let R1, . . . , Rc be representatives of isomorphism classes of irreducible repre-
sentations of G and d = (dimR1, . . . ,dimRc). Let N be the representation ρ,
considered as a k[G]-module. We have

(End(R)⊗N)G = (R∗ ⊗R⊗N)G = HomC[G](R,R⊗N)

= HomC[G](
c⊕

i=1

Ri ⊗ Cdi ,
c⊕

j=1

Rj ⊗ Cdj ⊗N)

=
c⊕

i,j=1

HomC(Ri, Rj ⊗N)⊗Hom(Cdi ,Cdj ) = Rep(Q,d),

where Q is the quiver corresponding to the McKay graph of (G, ρ0). Its vertices
are 1, . . . , c and the number of arrows from i to j is equal to dim HomC(Ri, Rj⊗
N). If ρ is an admissible representation in the sense of Lecture 5, then the graph
Γ(G, ρ) has arrows going in both directions.

Consider the quiver Q′ equal to Q as a non-oriented graph and fix a orien-
tation on each edge such that the graph has no oriented cycles. The Cartan
matrix C of the quiver Q′ is equal to M−(dim ρ0−2)Ic, where M is the McKay-
Springer matrix we considered in Lecture 5. It follows from the properties of
this matrix that M · d = 0, thus formula (7.6) gives

dimRθ(Q′,d) = 1 +
1
2
(dim ρ0 − 2)

c∑
i=1

d2
i = 1 +

1
2
(dim ρ0 − 2)|G|

provided that θ · d = 0 and there exists a θ-stable representation of Q. Note
that, it follows from the definition of an admissible character that |G| is an even
number.

Let us consider a special case when G ⊂ SU(2) is a cyclic group of order
n+1 and Q is the McKay graph equal to the affine Dynkin diagram of type Ãn.
Let Q0 = {0, . . . , n} and Q1 = {a0, . . . , an} with t(ai) = i, h(ai) = i + 1, i 6= n
and t(an) = n, h(an) = 0

1
a1 // 2

a2 // . . . · · ·n− 1
an−1 // n

an

uujjjjjjjjjjjjjjjjjjjj

0

a0

ggOOOOOOOOOOOOOO

.

We have d = (1, . . . , 1) ∈ Zn+1 and

Rep(Q′,d) = Cn+1, GL(d) = (C∗)n+1.
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The group GL(d) acts by

(λ0, . . . , λn) : (z0, . . . , zn) 7→ (λ1λ
−1
0 z0, . . . , λ0λ

−1
n zn).

The kernel of the action is equal to the diagonal subgroup isomorphic to C∗.
Choose θ = (θ0, . . . ,θn) ∈ Zn+1 with θ0 + . . .+ θn = 0. We have

Vd = (O(Rep(Q′,d))GL(d)
θ )d = {P (z) ∈ C[z0, . . . , zn] : P (λ · z) = λdθP (z)}.

It is clear that each polynomial in this space is a sum of monomials tm1
0 · · · tmn

n

such that

(−m0 +mn,m0 −m1, . . . ,−mn +mn−1) = d(θ0, . . . ,θn).

We can express m0, . . . ,mn−1 in terms of mn to get

(m0, . . . ,mn) = (mn+d(θ1+. . .+θn),mn+d(θ2+. . .+θn), . . . ,mn+dθn,mn),

where mn + d(θi + . . . + θn) ≥ 0 for all i = 1, . . . , n. Let N be the smallest of
the sums θi + . . .+ θn, i = 1, . . . , n. We put N = 0 if all the sums are positive.
Let M be the semigroup of numbers (a, b) ∈ Z2

≥0 such that a + bN ≥ 0. We
obtain

O(Rep(Q′,d))GL(d)
θ

∼= C[M ].

The semigroup algebra C[M ] is graded by the function M → Z≥0, (a, b) 7→ a.
Since s1 = (0, 1) and s2 = (1,−N) form an integral basis and belong to C[M ] ∼=
C[u, v], where u = δs1 , v = δs2 . The subalgebra generated by u is the algebra of
invariants. It is generated by the monomial t0 · · · tn. The projective spectrum
is isomorphic to Spec C[u] = A1.

Now let us change the orientation in Q′ assuming that there are no oriented
cycles in Q′. Let us assume that t(an) = 0, h(an) = n and leaving all other
arrows unchanged.

1
a1 // 2

a2 // . . . . . .
an−1 // n

0

a0

ggOOOOOOOOOOOOOO

an

66nnnnnnnnnnnnnnnn

.

The action changes to

(λ0, . . . , λn) : (z0, . . . , zn) 7→ (λ1λ
−1
0 z0, . . . , λ

−1
0 λnzn).

The new equalities are

(−m0 −mn,m0 −m1, . . . ,mn−2 −mn−1,mn−1 +mn) = d(θ0, . . . ,θn).

We can express all mi’s in terms of mn to get

m0 = −mn−dθ0,m1 = −mn−d(θ0+θ1), . . . ,mn−1 = −mn−d(θ0+. . .+θn−1).
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Notice the immediate difference from the previous case. If d = 0, the only
solution is (0, . . . , 0). This confirms what we already know, the moduli space is
a projective variety. If one of the numbers Ni = θ0 + . . .+ θi, i = 0, . . . , n− 1,
is nonnegative, there are no nonzero solutions in nonnegative m0, . . . ,mn. We
assume that all Ni are negative. Let N be the smallest of the numbers −Ni.
We have the semigroup M of numbers (d, s) such that s+ dN ≤ 0, s ≥ 0. The
generators of C[M ] are

δ(1,s) = Us = ts−N−N1
0 · · · ts−K−Kn

n−1 tsn, s = 0, . . . ,−N

and relations are UiUj − UkUl, i+ j = k + l. We recognize the Veronese ring

C[M ] ∼= C[vN
1 , v

N−1
1 v1, . . . , v

N
2 ] ⊂ C[v1, v2].

So we get
Rθ(Q′,d) ∼= P1.

Let I = {i : Ni = N} ⊂ [0, n− 1]. All points (z0, . . . , zn) with zi 6= 0, i 6∈ I, are
semi-stable. All points with nonzero coordinates zi, i 6∈ I are semi-stable. Let
us apply King’s criterion to decide which representations are θ-stable. Suppose
ρ has a subrepresentation ρ′ with dimension vector d′ such that dj = 1, j ∈
J, dj = 0, j 6∈ J for some subset J of [1, n + 1]. If ρ has coordinate zi 6= 0
corresponding the arrow ai with t(ai) = k < i, h(ai) = i, then d′i 6= 0 implies
d′k 6= 0. Thus we see that all ρ with all coordinate zi 6= 0 do not have proper
subrepresentations and hence stable. On the other hand, suppose some zi = 0
with i ∈ I. Let us assume that i is the minimal with this property. Then ρ
contains a subrepresentation ρ′ with d′1 = . . . = d′i = 1, dj = 0, j > i. We have
d′ · θ = −Ni < 0. So the representation is semi-stable but not stable.

7.4 Preprojective algebras

Let Q = (Q0, Q1) be a quiver. Its double is the quiver Q̃ obtained by doubling
the number of arrows. For every arrow a of Q we define another arrow a∗

with t(a∗) = h(a), h(a∗) = t(a). For any λ ∈ KQ0 we define the deformed
preprojective algebra of weight λ

Π(Q)λ = kQ̃/
(∑
a∈Q

[ea, ea∗ ]−
∑
i∈Q0

λiei

)
.

The preprojective algebra Π(Q) corresponds to λ = 0.
A finite-dimensional vector space over k equipped with a structure of a left

module over an associative k-algebra R will be called a (linear) representation
of R and the set of isomorphism classes (as vector spaces) of such modules will
be denoted by Rep(R). Every representation ρ of Πλ(Q) can considered as a
representation ρ of the quiver Q̃ satisfying the additional condition∑

a∈Q1:h(a)=i

ρ(a) ◦ ρ(a∗)−
∑

a∈Q1:t(a)=i

ρ(a∗) ◦ ρ(a) = λiidρ(i).
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It is easy to see that the set of Rep(Πλ(Q),d) of representations of Πλ(Q)
with given dimension vector d forms a closed subvariety of Rep(kQ̃,d). It
follows from the definition of the action of the group GL(d) that this subvariety
is invariant with respect to the action. We will assume k = C and denote
by R(Πλ,d)θ the corresponding GIT-quotients Rep(Πλ(Q),d)//θGL(d), where
θ ∈ Zm defines the multiplicative character χθ : GL(d) → C∗.

Let

End(d) = Lie GL(d) =
m⊕

i=1

End(kdi) =
m⊕

i=1

Matdi
(k).

The center Z(d) of End(d) consists of m-tuples of scalar matrices and can be
identified with the vector space km. We will identify the parameter λ from
above with an element of the center.

Consider a regular map of affine varieties

µ : Rep(Q̃,d) → End(d), ρ = (ρ(a), ρ(a∗)) 7→
∑

a∈Q1

[ρ(a), ρ(a∗)]. (7.8)

It is clear that
Rep(Πλ(Q),d) = µ−1(λ).

Remark 7.4.1. One can give an analog of a homomorphism KQ→ Matd(k[tapq])
considered in Remark 7.1.1 for a deformed preprojective algebra Πλ. We assign
again to each arrow of the double quiver Q̃ a set of variables tapq. Now we see
that the coordinate ring of Rep(Πλ,d) becomes isomorphic to k[tapq]/Jλ, where
Jλ is generated by the elements

∑
a∈Q1:h(a)=i

dt(a)∑
s=1

tapsta∗sq−
∑

a∈Q1:t(a)=i

dh(a)∑
s=1

ta∗pstasq−δpqdi, i = 1, . . . ,m. (7.9)

Now the homomorphism k[Q̃] → Matd[k[tapq]) from (7.3) induces a homomor-
phism

Πλ → Matd(k[Rep(Πλ,d)]). (7.10)

The group GL(d) acts on the ring of matrices as in Example 7.1.1.

Example 7.4.2. We consider the example of the quiver Q′ from Example 1.9
defined by the McKay graph Q of a cyclic group of order n+ 1. We take Q′ by
leaving the arrows going in one direction only, i.e. t(ai) = i. The double of Q′

is Q. We take d = (1, . . . , 1). Then

Rep(Q,d) = Cn+1 ⊕ Cn+1.

The group GL(d) acts as the diagonal action of the action on Cn+1 as in the Ex-
ample (the first part). Let us take θ = 0. Then the ring of invariant polynomials
is generated by the polynomials

Xi = tit
′
i, i = 0, . . . , n, Y = t0 · · · tn, Z = t′0 · · · t′n.
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The basic relation is
X0 · · ·Xn = Y Z.

This shows that

Rep(Q,d)//GL(d) ∼= Spec C[x0, . . . , xn, yz]/(x0 · · ·xn − yz).

The map (7.8) defines the map

µ̄ : Rep(Q,d)//GL(d) → Z(d) = (C∗)n+1.

In our case it factors through the map

µ : Cn+1 ⊕ Cn+1 → Z(d) = (C∗)n+1, (t, t′) 7→ (X0 −X1, . . . , Xn −X0).

The image of this map lies in the subspace

h = {(λ0, . . . , λn) :
n∑

i=0

λi = 0}

which can be identified with the Cartan algebra of the Lie algebra of SL(n+1).
If we use the change of coordinates x = 1

n+1 (x0 + . . .+ xn), λi = x− xi, we get

X = Rep(Q,d)//GL(d) = Spec C[y, z, λ0, . . . , λn]/(
n∏

i=0

(x− λi)− yz,
n∑

i=0

λi).

The map µ is the projection to h. We see that

m̄u−1(0) ∼= C2/G = Spec C[x, y, z]/(xn+1 − yz).

It is the Klein surface corresponding to the cyclic group of order n+1. The sym-
metric group Sn+1 acts on h by permuting the coordinates λi. The ring of invari-
ant polynomials is generated by elementary symmetric functions σ2, . . . , σn+1

and the quotient h/Sn+1 is isomorphic to the affine space An. We also have

Y = X/Sn+1
∼= Spec C[x, y, z, u1, . . . , un]/(yz + xn+1 + u1x

n−1 + . . .+ un).

The projection

π : Y → An, (x, y, z, u1, . . . , un) 7→ (u1, . . . , un)

It is known in the theory of singularities as the semi-universal deformation of
the Klein singularity of type An. One can show that there exists a birational
morphism f : X̃ → X such that we have a commutative diagram

X̃

f ��?
??

??
??

?

X
µ

��

/Sn+1 // Y

π

��
h

/Sn+1 // An

.
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For any λ ∈ h the map f restricted to (µ ◦ f)−1(λ) is a minimal resolution
of singularities of the surface Vλ = µ−1(λ). The locus of λ such that Vλ is
singular is the union of hyperplanes λi − λj = 0, i 6= j (the arrangement of
affine hyperplanes of type An). The morphism µ ◦ f : X̃ → h is called a
simultaneous resolution of singularities of the Klein singularity of type An.
When n = 1, the singularity is x2 + yz = 0, the space X is the 3-dimensional
quadric x2 + yz − λ2

0 = 0 and the simultaneous resolution is a small resolution
of the quadric with the exceptional locus isomorphic to P1.

7.5 Exercises

7.1 Show that the path algebra of a quiver is finite-dimensional if and only if
the quiver has no oriented paths.
7.2 Consider the doubled quiver Q corresponding to the affine Dynkin diagram
of type D̃4. Following computations in Example 7.4.2 compute explicitly the
variety Rep(Q,d)//GL(d), where d = (2, 1, 1, 1, 1) with vertex 1 equal to the
middle vertex of the diagram. Find the equations of the fibres of the map µ.
7.3 Consider the quiver from Example 7.1.3 and double it by adding the ar-
rows with the reversed orientation. Show that the moduli space R(Π0(Q),d)θ,
where d = (n + 1, 1, . . . , 1), coincides with the GIT-quotient of the space
PTm−1

Pn //LSL(n+1) with respect to some linearization parameter L ∈ Pic(PTm−1
Pn ).

Here PTPn denotes the projectivization of the tangent bundle of Pn.



Lecture 8

McKay correspondence

8.1 Semi-simple rings

Let us remind some known facts from theory of non-commutative rings. LetR be
an associative ring with the unity 1. To distinguish left and right modules over
R we use the notation RM for a left R-module andMR for a right R-module. We
denote by RMS an R−S-bimodule with left and right multiplication satisfying
(rm)r′ = r(mr′). The tensor product MR ⊗R RN is defined similarly to the
commutative case as the universal objects for Z-bilinear maps f : MR×RN → A
with values in an abelian group satisfying f(mr, n) = f(m, rn), for all m ∈
M,n ∈ N and r ∈ R. In general, MR ⊗ RN is just an abelian group. To equip
it with a structure of a module, we have to assume additionally that M and N
are R − R-bimodules. Then we set r(m ⊗ n) := rm ⊗ n, (m ⊗ n)r := m ⊗ nr.
Now M ⊗RN becomes the universal object for bilinear maps with values in left
or right R-modules.

A structure of an algebra over a commutative ring K on a ring R is given
by a homomorphism φ : K → R whose image is contained in the center Z(R) of
R. Usually, we will take K to be a subfield contained in Z(R). One defines the
tensor product of any two K-algebras, considered as (K × K)-bimodules and
equip it with the natural structure of a K-algebra. Let M be a left R-module
which is a finite-dimensional vector space over K. The endomorphism ring
EndK(M) is isomorphic to the matrix algebra Matr(K), where r = dimK M .
The endomorphism ring EndR(M) is a subalgebra of EndK(M)

A (left) R-module is called simple if it does not contain proper submod-
ules and indecomposable if it is not isomorphic to the direct sum of proper
submodules. A module is semi-simple if it is isomorphic to the direct sum of
simple modules. For example, when R = K[G] is the group algebra of a finite
group over a field of characteristic prime to the order of G, Maschke’s theorem
implies that an indecomposable module is simple. Also any finite-dimensional
module over K[G] is semi-simple. This is not true in positive characteristic.
The representation of a cyclic group of order 2 over a field of characteristic 2

139
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given by the matrix ( 1 1
0 1 ) is indecomposable but not simple. There is an analog

of Schur’s lemma that asserts that the ring of endomorphisms EndR(M) of a
simple module is a division ring, i.e. every non-zero endomorphism is invertible.

We will be dealing with finite-dimensional K-algebras. We already dealt
with non-commutative finite-dimensional K-algebras: the group algebras K[G]
of finite groups G and the path algebras KQ of quivers without oriented loops.

It is a simple fact that the matrix algebra Matn(K) does not have two-sided
ideals. The latter property is taken for definition of a simple K-algebra.

Definition 8.1.1. A K-algebra is simple if it does not have non-trivial two-
sided ideals, it is semi-simple if it is isomorphic to the direct sum of simple
K-algebras.

The following characterization of semi-simple algebras is the following theo-
rem of Wedderburn-Artin Theorem.

Theorem 8.1.1. For any finite-dimensional algebra R over a field K the fol-
lowing properties are equivalent:

(i) The left (right) R-module R is semi-simple;

(ii) Every left (right) finite-dimensional R-module is semi-simple;

(iii) Every indecomposable left (right) R-module is simple;

(iv) The radical (the intersection of all maximal ideals, left or right) radR is
trivial;

(v) R is isomorphic to the direct sum of the matrix algebras over a division
ring (equal to K if K is algebraically closed).

Let R be a semi-simple K-algebra and L be a left ideal in R. Then R =
L ⊕ L′ for some ideal L′, hence one can write 1 = e + e′, where e ∈ L, e′ ∈ L′.
Multiplying both sides by e we get e = e2 + ee′ = e2 (since ee′ ∈ L ∩ L′). An
element e ∈ R satisfying e2 = e is called an idempotent . For any x ∈ R we can
write x = xe+ xe′, hence x 7→ xe is the projection onto L. Thus each left ideal
is generated by an idempotent.

For any idempotent e ∈ R the set eRe is a subring of R. It has the unity
equal to e, but the inclusion map is not a homomorphism of unitary rings. The
ring eRe is a division ring (equal to K if K is algebraically closed) if and only
if L = Re is a minimal left ideal. For any left ideal L = Re we decompose L
into a direct sum of minimal ideals Rei to get

e = e1 + · · ·+ es, eiej = 0, i 6= j.

(the condition eiej = 0, i 6= j is expressed by saying that e1, . . . , es are orthogo-
nal idempotents This gives

eRe = (e1 + · · ·+ es)R(e1 + . . .+ es) = e1Re1 + . . .+ esRes.
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Thus the ring eRe is semi-simple.
Two minimal left ideals L and L′ are isomorphic (as modules) if and only if

L′ = Lr for some r ∈ L′. In fact, if φ : L = Re→ L′ = Re′ is an isomorphism,
then φ(xe) = xφ(e). Since L(1−e) = 0, we get x = xe, hence φ(L) = Lr, where
r = φ(e) ∈ L′. This shows that the sum of isomorphic minimal left ideals is
a two-sided ideal a[L] in R, where [L] denotes the isomorphism class of a left
minimal ideal. The whole ring is isomorphic to the direct sum of the ideals
a[L], where [L] runs the set of isomorphism classes of left ideals. Since each a[L]

contains a minimal left ideal, it does not contain proper two-sided subideals. It
also contains the unity since, being a left ideal we can write it as Re[L] for some
idempotent e[L], and the decomposition of R into the sum of the ideals Re[L]

gives 1 =
∑

[L] e[L] showing that e[L] is the unity in Re[L]. Thus each two-sided
ideal a[L] is a simple algebra over K (embedded by a 7→ ae[L]).

Example 8.1.2. Let R = K[G] be the group algebra of a finite group G of
order prime to the characteristic of K. A minimal left ideal is isomorphic to an
irreducible representation Vi of G. The sum of isomorphic minimal left ideals
is the submodule K[G]i of K[G] equal to the direct sum of ni = dimRi copies
of an irreducible representation ρi : G→ GL(Ri). It is a simple algebra over K
isomorphic to EndK(Ri) ∼= Matni

(K). We have

K[G] ∼=
⊕

Ri∈Ir(G)

EndK(Ri).

Let K[G]i = K[G]ηi for some idempotent ηi. We can find an explicit expression
of ηi as an element of K[G]”

ηi =
1
|G|

∑
g∈G

χi(1)χi(g−1)g, (8.1)

where χi is the character of Ri. To see this formula we write ηi =
∑

g∈G agg

and apply the character χreg to g−1ηi of the regular representation to obtain
χreg(g−1ηi) = ag|G|. Since χreg =

∑
j χj(1)χj , we get

ag|G| =
∑

j

χj(1)χj(g−1ηi).

Since ηiηj = δijei, we have ρj(g−1ei) = ρj(g−1)ρj(ei) = ρi(g−1) if i = j and
0 otherwise. This implies χj(g−1ηi) = χi(g−1)δij . Collecting together we get
(8.1)

Another simple example is the ring of matrices Matn(K), where a minimal
left ideal is the set of matrices with all columns except a fixed one equal to zero.

Example 8.1.3. Let R = KQ be the path algebra of a quiver without oriented
loops. For any a ∈ Q1 we have a2 = 0. One can show that radR is the
largest two-sided nilpotent ideal of R. Thus a ∈ radR. The quotient R/radR ∼=∑

i∈Q0
Kei, where ei correspond to the vertices. By definition e2i = ei, i.e. each

ei is an idempotent.
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The next notion will be very important for us. Let RMod (resp. ModR)
denote the category of left (resp. right) R-modules.

Definition 8.1.2. Two rings R and S are called Morita equivalent if there is
an additive equivalence of the categories RMod and SMod.

Recall that a functor F from a category C to a category C′ is an equivalence
of categories if there exists a functor G : C′ → C and isomorphism of functors
idC → G◦F and idC′ → F ◦G. The categories of modules are additive categories
(i.e the set of morphisms are abelian groups and composition of morphisms is
bi-additive) and an additive functor between additive categories preserves the
structure of an abelian group on the sets of morphisms. Note that th categories
RMod and ModR are obviously additively equivalent: each left R-module defines
a right R-module by setting m · r := r ·m.

Let F : RMod → SMod and G : SMod → RMod define an additive equiv-
alence of categories. Then U = F (RR) is an left S-module, and also a right
R-module (since the right multiplications R→ R, x 7→ xr induce a right action
of R on F (R)). Similarly, V = G(S) is a left R-module and a right S-module.
We have

F (M) ∼= HomS(S, F (M)) ∼= HomR(G(S), G(F (M))) ∼= HomR(V,M),

G(N) ∼= HomR(R,G(N)) ∼= HomS(F (R), F (G(N))) ∼= HomS(U,N).

Taking M = RR we get U = F (R) = HomR(V,R), and taking N = SS, we get

V = G(S) = HomS(U, S). (8.2)

Now
F (M) ∼= HomR(HomS(U, S),M) ∼= U ⊗R M,

G(N) ∼= HomS(HomR(V,N)) ∼= V ⊗S N.

Thus a Morita equivalence is always given by a pair of bimodules SUR and
RVS . They satisfy some special properties. First, since R is a generator of
RMod (i.e. any object is a quotient of some free module RI), the bimodule
F (R) = U is a generator of SMod. Similarly, V = G(S) is a generator of
RMod. Moreover, since the equivalence of categories defines a bijection R ∼=
HomR(R,R) → HomS(U,U) = EndS(U) and a bijection S → EndR(V ), the
bimodules U and V are, by definition, (faithfully) balanced . Secondly, since R
is a projective finitely generated left module, it follows from the definition of a
projective module that U is a projective finitely generated S-module. Similarly,
V is a projective finitely generated left R-module. One can show that a balanced
bimodule SMR such that SM is a finitely generated projective generator of
SMod if and only if MR is a finitely generated projective generator of ModR.
Note that the bimodule V is reconstructed from the bimodule U via (8.2).

Theorem 8.1.4. (Morita) Any equivalence of categories F : RMod → SMod, G :
SMod → RMod is defined by a faithfully balanced bimodule SUR satisfying the
properties
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(i) F (M) = U ⊗R M, G(N) = V ⊗S N , where V = HomS(U, S);

(ii) SU is a finitely generated projective left S-module and UR is a finitely
projective right R-module;

(iii) SU is a generator of SMod and UR is a generator of ModR.

Example 8.1.5. Suppose R and S are Morita equivalent and U is a bimod-
ule defining an equivalence of the categories, then S ∼= EndR(UR). Consider
the special case where R = K is a local commutative ring. Then any finitely
generated projective R-module is isomorphic to Rn for some n, hence S =
EndR(Rn) ∼= Matn(R). In fact, for any ring R, the rings R and S = Matn(R)
are Morita equivalent. We take a free right R-module U = Rn and equip it
with the structure of a left S-module by using the matrix product A · v, where
A ∈ Matn(R) and v ∈ Rn. Since EndS(U) is the center of the matrtix algebra
Matn(R) ∼= EndR(Rn) =, it consists of scalar matrices, hence there is a bijection
R → EndS(U) and U is fathfully balanced. It is obviously a finitely generated
projective generator of SMod and ModR.

Example 8.1.6. Let e ∈ R be an idempotent, as we observed in above, S = eRe
is a K-algebra with the unity e. Suppose that ReR = R. Then the functor

F : RMod → SMod, M  eM

is isomorphic to the functorM  U⊗RM , where U = eR has natural structures
of a left eRe-module and a right R-module. It satisfies all the conditions of
Morita’s Theorem, hence R and eRe are Morita equivalent. For example, let
R = Matn(K) and e = E11, where Eij denotes the matrix with 1 at the ij-spot
and 0 at any other spot. We have eR = KE11 + . . .+KE1n and eRe = KE11

∼=
K. Obviously, ReR = (KE11 + . . .+KE1n)R = R, and the previous assertion
implies that K and Matn(K) are Morita equivalent.

8.2 Skew group algebra

Let R be any ring (not necessary commutative) and G be a finite group acting
on R by automorphisms via a homomorphism of groups ρ : G → Aut(R). We
denote the value of ρ(g) on r ∈ R by gr. Define the skew group algebra R#G of
G with coefficients in R as the R-module of R-valued functions on G with the
multiplication law

α · β(g) =
∑

g′g′′=g

α(g′)g′β(g′′).

Choose a basis formed by the delta-functions δg which we will identify with
elements of G. Then we can identify elements of R#G with linear combinations∑

g∈G rgg, where rg ∈ R. The multiplication is defined by

(rg) · (r′g′) = rgr′gg′.



144 LECTURE 8. MCKAY CORRESPONDENCE

Let RG = {r ∈ R : gr = r} be the ring of G-invariants. Then the subalgebra
RG#G of RG-valued functions on G is isomorphic to the group algebra RG[G].

From now on we assume that R is an algebra over a field K of characteristic
prime to |G|. The skew group algebra R#G acquires a structure of a K-algebra.
We also assume that G acts on R by automorphisms of the K-algebra R. In
this case R#G contains K[G] as the subalgebra of K-valued functions on G. It
also contains R as a subalgebra spanned by the delta-function δ1. Thus any left
module over R#G has a canonical structure of an R-module and also, considered
as a vector space over K, of a K[G]-module.

Let
e =

1
|G|

∑
g∈G

g ∈ K[G]

be the averaging operator in K[G] ⊂ R#G. Then eR = RG and

eR#Ge = RG[G]e = RGe ∼= RG.

Let Z(RG) be the center of RG. Any c ∈ Z(RG) commutes with any g ∈ RG[G]
and any r ∈ R, thus belongs to the center Z(R#G). If R is a commutative
ring with no zero divisors, then the converse is true. In fact, assume

∑
rgg ∈

Z(R#G), then, for any a ∈ R, we have

a(
∑
g∈G

rgg) =
∑
g∈G

argg = (
∑
g∈G

rgg)a =
∑
g∈G

rg
gag.

Comparing the coefficients at g, we get arg = rg
ga = ag. Since G is a nontrivial

subgroup of automorphisms of R (if it is trivial, there is nothing to prove), for
any g 6= 1, there exists a ∈ R such that ag 6= a. Since R has no zero divisors
we get rg = 0, g 6= 1. So our sum is just r1 and gr1 = r1g gives gr = r for all
g ∈ G. Thus r ∈ RG.

Let us record what we have proved.

Lemma 8.2.1. Let A be a commutative K-algebra without zero divisors and
G ⊂ AutK(R). Then

Z(A#G) = AG.

The assumption that G ⊂ AutK(R) is of course essential. For example,
consider the case when R = K, so that G acts trivially on R. By Proposition
5.1.8,

Z(K[G]) =
∑

C∈C(G)

KeC ,

where C(G) is the set of conjugacy classes in G and the elements eC =
∑

g∈C g
form a basis of K[G]. In fact, there is a better basis formed by orthogonal
idempotents from Example 8.1

ηi =
χi(1)
|G|

∑
g∈G

χ̄i(g)g =
χi(1)
|G|

∑
C∈C(G)

χ̄i(gC)eC ,
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where χ1, . . . , χc is the set of irreducible characters of G and gC is a represen-
tative of C ∈ C.

We will identify λ ∈ Kc with an element of the center of kΓ defined by

λ =
c∑

i=1

λi

χi(1)
ηi.

Let us choose now Γ to be a subgroup of SL(2,K) which acts on the algebra
of noncommutative polynomials K〈x, y〉 via linear change of variables. Let
λ ∈ Kc = Z(K[G]) ⊂ K〈x, y〉#G. We set

Cλ = K〈x, y〉#G/(xy − yx− λ).

Taking λ = 0 we get the algebra K[x, y]#G.
Let N be the standard 2-dimensional representation of G which we identify

with the space of linear polynomials K[x, y]1 by means of the G-invariant sym-
plectic form defined by Φ(x, y) = −Φ(y, x) = 1 (use that Φ(ax+ by, cx+ dy) =
(ad− bc)Φ(x, y) = Φ(x, y)). We consider N ⊗K[G] as a K[G]-bimodule, where
G acts on the left diagonally, and on the right it acts on K[G] by right mul-
tiplication. The algebra K〈x, y〉#G is isomorphic to the tensor algebra of the
bimodule N ⊗K[G].

Let Q̃ be the quiver obtained from an affine Dynkin diagram by fixing an
orientation of arrows. We assume that Q0 = {0, . . . , n} such that after deleting
the vertex 0 we obtain a Dynkin diagram of finite type. In other words 0
corresponds to the trivial representation in the corresponding McKay graph of
G. Let δ be the dimension vector with δi = dim ρi, ρi ∈ Ir(G). As before,
Πλ(Q) denotes a deformed preprojective algebra corresponding to the double of
the quiver Q.

Theorem 8.2.2. (W. Crowley-Boevy, M. Holland) The deformed preprojective
algebra Πλ(Q) is Morita equivalent to the algebra Cλ.

Proof. We consider only the case λ = 0 and give only a sketch of the proof. To
simplify the notation we set C0 = C. We know from section 7.3 that Rep(Q, δ)
can be identified with (End(R)⊗N)G, where R is the regular representation and
N is the standard 2-dimensional representation of G. Under this correspondence
an arrow a ∈ Q1 with t(a) = i, h(a) = j corresponds to a homomorphism
Ri → N ⊗Rj of K[G]-modules.

Recall that ηiK[G] is a 2-sided ideal in K[G]. It is equal to sum of left ideals
isomorphic to an irreducible representation Ri. Choose an idempotent fi such
that K[G]fi

∼= Ri. Let f = f1 + . . .+ fc. If K[G]i is identified with the ring of
matrices Matδi

(k), then we may take for fi the elementary matrix Ei
11, where

the superscript indicates that we are considering the i-component of K[G]. We
have fiK[G] = Ei

11K[G]i is the set of matrices with all rows except the first
one equal to zero. Similarily, K[G]fi = K[G]iEi

11 is equal to the set of matrices
with all columns except the first one equal to zero. Clearly, the identity matrix
in Matδi

(k) can be obtained as a sum of the products of a matrix from K[G]fi
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and a matrix from fiK[G]. Thus 1 ∈ K[G]fK[G] = ⊕K[G]fi · fiK[G]. This
shows that the rings K[G]fK[G] and K[G] are isomorphic. Also, since 1 ∈ CfC,
we obtain that the rings CfC and C are isomorphic. As we saw in Example 8.1.6
this implies that the rings C and fCf are Morita equivalent.

Let C1 = N ⊗K[G] ⊂ C. We have

HomK[G](Ri, N ⊗Rj) ∼= HomK[G](K[G]fi, N ⊗K[G]fj) = fiN ⊗K[G]fj .

Here we use that a homomorphism h : K[G]fi → N ⊗K[G]fj is defined by the
image h(fi) of fi which must satisfy h(fi) = h(f2

i ) = fih(fi), hense belongs to
fiC1fj .

Let Q be the McKay quiver, for any arrow a : i → j let φa be the ho-
momorphism of K[G]-modules Ri → N ⊗ Rj . It follows from above that we
can consider it as an element of fiC1fj . Now we can define an isomorphism
α : KQ→ f(K〈x, y〉#G)f by sending ei to fi, a : i→ j to φa ∈ fiC1fj and a∗

to ψa ∈ fjC1fi. One checks that∑
a∈Q:h(a)=i

(1⊗ φa)ψa −
∑

a∈Q:t(a)=i

(1⊗ ψa)φa = −δifi(xy − yx). (8.3)

This shows that α induces an isomorphism from Π(Q) to fCf . It remains to
use that the rings fCf and C are Morita equivalent.

The equation (8.3) is checked case by case for different types of the groups
G. Let us check it in the case Ãn. We identify N with the space Kx+Ky. By
diagonalizing the action ofG we may find another basis u = αx+βy, v = γx+δy,
where a generator g of G acts by g(u) = εu, g(v) = ε−1v. After scaling the basis
we may assume that v ⊗ u − u ⊗ v = y ⊗ x − x ⊗ y. We number the arrows
in such a way that t(ai) = i, h(ai) = i + 1 and t(a∗i ) = i + 1, h(a∗i ) = i. Thus
φai

: Ri 7→ N ⊗Ri+1 is given by z 7→ v⊗ z and ψai
: Ri+1 7→ N ⊗Ri is given by

z 7→ u⊗ z. Now we check (1⊗ φai−1)ψai−1 : Ri → N ⊗Ri−1 → N ⊗N ⊗Ri is
given by z 7→ v⊗z 7→ v⊗u⊗z. Similarily, (1⊗ψai)φai is given by z → u⊗v⊗z.
Thus the LHS in (8.3) is the map z → (v⊗u−u⊗v)⊗z = −(x⊗y−y⊗x)⊗z.
If we identify k〈x, y〉 with the tensor algebra of Kx + Ky we obtain what we
want.

Example 8.2.3. Any K[G]-module V can be considered as a K[x, y]#G-
module by considering the homomorphism of ring K[x, y]#G → K[G] sending∑
agg to

∑
āgg, where āg = ag +(x, y) ∈ K[x, y]/(x, y) ∼= K. Under the Morita

equivalence, V is sent to the fCf -module fV =
∑

i HomK[G](Ri, V ). Under the
isomorphism Π(Q) → fCf this module becomes a representation of the pre-
projective algebra with dimension vector

∑
miei, where mi is the multiplicity

of Ri in V . The regular representation K[G] corresponds to a Π(Q)-module
with dimension vector δ.
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8.3 Quiver resolution of Klein surfaces

Recall that a point Z ∈ G-Hilb(X) defines a G-module VZ = H0(OZ) and a
module over a ring A = OX(U), where U is any G-invariant open set containing
Z. The two structures can be combined together giving a structure of a A#G-
module on VZ . We assume that X = Spec A is an irreducible variety over a
field k of characteristic coprime to |G|. The ring A is a K-algebra, and the
module M = VZ is finite-dimensional over k. Also, it is a cyclic as a A-module
and cyclic as a k[G]-module (in fact isomorphic to K[G]). Let us study such
modules.

Let Q = (Q0, Q1) be a quiver with no oriented loops. For every vertex i ∈ Q0

let Pi denote KQ-module KQei. As a representation of Q it is given by vector
spaces Vj = ejKQei of dimension equal to the number of paths from i to j. In
particular, Vj = 0 if there exists an arrow a with t(a) = j and h(a) = i. If Q is
a tree, then dimVj ≤ 1 for all j ∈ Q0. For any KQ-module M corresponding
to a representation ρ of Q, we have

HomKQ(Pi,M) ∼= ρ(i).

The isomorphism is given by φ 7→ φ(ei). As we saw in the proof of the previous
theorem, φ(ei) is an element of eiM = ρ(i). In particular, since Q does not
contain oriented loops, we have dimEndKQ(Pi) = 1. This shows that Pi is
an indecomposable module. Being a direct summand of KQ, it is a projective
module. One can show that any indecomposbale projective module coincides
with some Pj . Note that Pi is not a simple module. For example, it admits
a non-trivial homomorphism to the simple module Si with dimension vector
ei = (0, . . . , 0, 1, 0, . . . , 0). Note that any simple module is isomorphic to one of
the Si’s. In fact, as always we order Q0 such that there are no arrows between
i and j if i > j. Let V be a simple module and i is the smallest such that
Vi 6= 0. Suppose Vi → Vj is a non-trivial map. Then M contains a non-trivial
submodule, the image of Pj under the map ej → v, where v is a nonzero element
of Vj .

Remark 8.3.1. It is easy to see that the modules Pi generate the Grothendieck
group K0(KQ) of finitely generated modules. Thus K0(KQ) ∼= Z|Q0| and the
isomorphism is given by the dimension vector. A character vector θ defines a
function θ : K0(KQ) → Z and a representation is θ-semistable if θ([M ]) = 0 and
any submoduleM ′ satisfies θ([M ′]) ≥ 0. This allows one to extend the definition
of stability to any abelian category A by considering a function θ : k0(A) → R
and defining a θ-stable object as an object M with θ([M ]) = 0 and θ([M ′]) ≥ 0
for any subobject M ′ of M .

Next we replace Q by its double Q̃ and consider representations of the pre-
projective algebra Π(Q). The analog of Pi is of course Π(Q)ei. A Π(Q)-module
M is called i-cyclic if it is generated by an element from eiM . For every i-cyclic
module M there is a surjective homomorphism Π(Q)i → M which sends ei to
a generator.
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Let Q(G) be the McKay graph of a group G and Π(Q) be the corresponding
preprojective algebra. We choose θ = (θ0, . . . ,θn) such that θi > 0 for i 6= 0.
Suppose we have a θ-semistable representation V with dimension vector d with
components equal to the dimensions of irreducible representations of Q. Since
δ0 = 1 we can choose a non-trivial map Π(Q)e0 → V sending e0 to 1 ∈ V0. If this
homomorphism is not surjective, then V contains a submodule with dimension
vector d′ = (0, d1, . . . , dn). Since θ · d′ > 0 this contradicts θ-semistability.
This shows that the set of θ-semistable representations Rep(Π(G),d)ss

θ of Π(G)
consists of 0-cyclic Π(G)-modules. Also one can see that all of them are θ-stable.

Let us describe simple A#G-modules, and by Morita-equivalence simple
modules over Π(Q). A simple left module over a ring R is a simple module over
the center Z(R) of R. Thus it is annihilated by a maximal ideal of R. This
defines a map from the set of simple R-modules of R to Spec Z(G). In our
situation when R = k[x, y]#G we see that Z(R) = k[x, y]G = ek[x, y]#Ge. A
simple module over k[x, y]G is just a point in Spec k[x, y]G identified with a G-
orbit O in A2(k). So any simple k[x, y]#G-module S must be annihilated by a
unique maximal ideal mO in k[x, y]G identified with aG-orbit, where kO = A/JO

is the space of k-valued functions on O on which G acts naturally. If O = {0}
corresponds to the origin, then kO#G ∼= K[G] and S must be a simple module
over K[G] isomorphic to one of the irreducible representations Ri. If O = Gx0,
where x0 is not the origin, then kO#G ∼= End(K[G]), if we identify kO with the
dual vector space K[G]∗ by using the nondegenerate bilinear pairing

kO ⊗K[G] → k, (φ, g) 7→ φ(g(x0)).

The ring End(K[G]) is a simple ring, so there is only one isomorphism class of
simple modules annihilated by mO. It is isomorphic to K[G] on which x, y act
as multiplication by scalars x0, y0 not both equal to zero.

Translating into the language of Π(Q)-modules, it is easy to see that a simple
k[x, y]#G annihilated by mO, O 6= {0} corresponds to a simple module over
Π(Q) with dimension vector δ. On the other hand, a simple module annihilated
by the maximal ideal of the origin corresponds to a simple Π(Q)-module Si =
eiΠ(Q)ei with dimension vector ei.

Theorem 8.3.2. Let Q be the McKay graph of a group G ⊂ SL(2, k). The
canonical map

π : Rθ(Π(Q), δ) → R0(Π(G), δ) = Rep(Π(Q), δ)//GL(δ)

is a resolution of singularities of the kleinian singularity A2(k)/G.

Proof. Let A = k[x, y]. We have already explained that, by Morita equivalence,
a representation of Π(Q) with dimension vector δ corresponds to a structure of a
A#G-modules on K[G]. Let ModK [G](A#G,K[G]) be the set of such modules.
The group GL(K[G]) ∼= GL(δ) acts on the set of such modules and the isomor-
phism classes 0-generated representations correspond to modules generated by
A#Gf0K[G] = A, i.e. quotients A/J as A-modules and isomorphic to K[G] as
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a K[G]-modules. But this is exactly the description of points in G-Hilb(A2).
Thus we can identify Rθ(Π(Q), δ) with G-Hilb(A2).

Now let us identify Rep(Π(Q), δ)//GL(δ) with A2/G. For any finite dimen-
sional module M over a k-algebra R let grM be equal to the direct sum of the
composition factors of M (this is well defined by the Jordan-Hölder Theorem).
Let radR be the radical of R (the largest two-sided ideal such the quotient is a
semi-simple ring). Any semi-simple module is annihilated by the radical, and
hence defines a module over R/radR. Applying the theory of characters for
modules over semi-simple rings (we discussed this theory for the special case
of finite group algebras, but the theory is similar), we obtain that grM ∼= grN
if and only if the trace functions trM (r) and trN (r) coincide for all r ∈ R.
Here trM (r) is equal to the trace of the endomorphism x 7→ r · x of M . In
our situation, a trace function is a GL(K[G])-invariant function on the space
ModK [G](A#G,K[G]). By Morita-equivalence this translates to trace to trace
functions on the space Rep(Π(Q), δ) and we use a well-known result of Le-Bruyn
and Procesi that the trace functions generate the ring of GL(δ)- invariant func-
tions. It also agrees with king’s criterion of λ-stability, we see that representa-
tions M and N in Rep(Π(Q), δ) define the same point in Rep(Π(Q), δ)//GL(δ)
if and only if grM ∼= grN . Note that it follows from the GIT that the fibres of
Rep(Π(Q), δ) → Rep(Π(Q), δ)//GL(δ) are the unions of orbits. Each fibre con-
tains a unique minimal closed orbit which represents the semi-simple modules.

Let us define a map A2 → Rep(Π(Q), δ)//GL(δ) by assigning to a point
p = (x0, y0) a structureMp of a A#G-module onK[G] by setting a·g = a(g(p))g.
If q = h(p) for some h ∈ G, then the map g 7→ gh−1 is an isomorphism of
modules Mp →Mq. This defines a map

A2/G→ ModK [G](A#G,K[G])//GL(K[G]) = Rep(Π(Q), δ)//GL(δ).

The inverse morphism is defined by assigning to a A#G-module M the AG-
module eM ∼= k (considered as a point of Spec AG = A2/G).

M ∈ ModK [G](A#G,K[G]) let grM denotes We already knoLet A = k[x, y]
and A#G be as above. The ring A can be considered as a module over A#G
since it has a natural action of A on itself and the action of G via action of G
on A2

k. Recall that e from (??) generates the trivial submodule of K[G]. For
any g ∈ G we have ge = e and hence the multiplication by e on the right defines
a homomorphisms of G-modules K[G] → ke ∼= R0 and A#G→ A. This shows
that one can identify A with the left A#G-module (A#G)e.

It remains to see that the map π coincides with the cycle map and hence
defines a minimal resolution of the klein surface Spec AG. The map π assigns
to a θ-stable module the point in Rep(Π(Q), δ)//GL(δ) corresponding the same
module considered as a 0-semi-stable module. Thus two points M,N go the
same point if and only if grM ∼= grN .

We have described already simple modules over Π(Q). Any module M in the
pre-image π−1(0) is has composition series isomorphic to the simple modules
Si. Since its dimension vector is equal to δ the module grM is isomorphic to the
direct sum ⊕n

i=0S
δi
i . This is the module in Rep(Π(Q), δ)//GL(δ) representing
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the origin. As a module over Ag it is equal to the direct sum of |G|-copies of
the residue field of the origin. So, this is exactly the cycle map from the Hilbert
scheme to the symmetric product.

8.4 The main theorem

In this section we give one the explanations of the McKay correspondence.
Recall that the socle of a left module over an associative ring R is the direct

sum soc(M) of simple submodules. In commutative case, a module is simple if
and only if it is isomorphic to the quotient of the ring by a maximal ideal (take
the annihilator ideal of its nonzero element). However, over a non-commutative
ring they are more interesting. For example, the socle of K[G] is K[G] since all
irreducible representations are simple K[G]-submodules.

To explain the McKay correspondence we have to match the irreducible com-
ponents of the exceptional locus of a minimal resolution of the klein singularity
A2(k)/G with irreducible representations of G in such a way that the inter-
section matrix coincides with the McKay graph with the vertex corresponding
to the trivial representation omitted. From the previous section we know that
the exceptional divisor can be described as the set of isomorphism classes of
Π(Q)-modules with dimension vector δ which are 0-generated and whose com-
position factors are isomorphic to simple modules Si’s. Here, as usual, Q is the
McKay graph and δ is the vector of dimensions of irreducible representations
of G. For any ideal J ∈ G-Hilb(A2) representing a point in the exceptional
locus we denote by MJ the corresponding isomorphism class of a 0-generated
representation of Π(Q) with dimension vector δ.

Let soc(MJ) be the socle of MJ . It must be isomorphic to the direct sum of
some modules Si’s. Note that S0 is not represented since otherwise the quotient
M ′ = MJ/S0 is still 0-generated but its component e0M ′ is equal to zero.

For any module semi-simple module M and a simple module S we denote
by [M : S] the number of simple summands of soc(M) isomorphic to S. It is
equal to dimHom(S,M).

Theorem 8.4.1. (W. Crawlwy-Boevey) Let E be the closed subset of G-Hilb(A2)
corresponding to ideals supported at the origin. If i 6= 0, then

E(i) = {J ∈ E : [MJ : Si] 6= 0}

is a closed subset of E isomorphic to P1. Moreover E(i)∩E(j) 6= ∅ if and only
if i and j are adjacent in the McKay graph, and in this case E(i)∩E(j) consists
of a unique module with soc(MJ) = Si ⊕ Sj.

We will prove this theorem at the end of this section.
As before we have a bilinear form on ZQ0 defined by the Cartan matrix of

the quiver Q̃.
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Lemma 8.4.2. (C. Ringel) Let M,N be finite-dimensional KQ-modules with
dimension vectors dM and dN .Then

dimHom(M,N)− dimExt1(M,N) = (dM ,dN ).

Proof. We use the following projective resolution of M

0 →
⊕

a∈Q1

Ph(a) ⊗ et(a)M →
⊕
i∈Q0

Pi ⊗ eiM →M → 0.

It is called the Ringel resolution. Here eh(a) ⊗ v ∈ Ph(a) ⊗ et(a)M is sent to
eh(a) ⊗ eav − ea ⊗ v ∈ eaPt(a) ⊗ et(a)M . Applying the functor Hom(?, N) and
writing N as the direct sum ⊕ejN , we get an exact sequence

0 → Hom(M,N) →
⊕

i,j∈Q0

Hom(eiM, ejN) →
⊕

a∈Q1

Hom(et(a)M, eh(a)N)

→ Ext1(M,N) → 0.

Now the lemma follows by taking the alternating sum of the dimensions.

We leave to the reader to prove the analog of this lemma for Π(Q)-modules.

Lemma 8.4.3. Let M,N be finite-dimensional Π(Q)-modules with dimension
vectors dM and dN .Then

dimHom(M,N) + dimHom(N,M)− dimExt1(M,N) = (dM ,dN ).

To prove the next lemmas, we need more information about 0-generated
modules over Π(Q). Recall that the vector space RQ0 = Rn+1 equipped with
the bilinear form (v, w) defined by the Cartan matrix C contains an affine root
system ∆ of the corresponding type. It consists of elements α such that (α, α) =
2. They are called roots. For any α ∈ ∆ one defines the reflection transformation

sα : x 7→ x− (x, α)α.

They generated subgroup of the orthogonal group of the quadratic form defined
by C. It is isomorphic to the affine Weyl group W (C) of the Cartan matrix
C. It is the semi-direct product Zn+1 o W (C ′), where W (C ′) is the Weyl
group of the Cartan matrix obtained from C by deleting the first row and the
first column. For example, for the type Ãn we get W (C) = Zn+1 o Sn+1 and
W (C ′) = W (An) = Sn+1. The roots corresponding to the unit vectors ei are
called simple roots. One can show that the Weyl group is generated by the
refelctions si = sei

in simple roots and all roots form one orbit.

Lemma 8.4.4. Let M be a t-generated Π(Q)-module with dimension vector d
such that dt = 1. Then d is a root or belongs to the kernel of the Cartan matrix
(proportional to the vector δ). For any root α there exists a unique t-generated
module with dimension vector α.
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Proof. We use induction on |d| = d0+. . .+dn. SupposeM is t-generated module
of dimension d. If (d, ei) > 0 for some vertex t 6= 0, then Hom(M,Si) = 0, so
by Ringel’s formula, we get k = dim Hom(Si,M) ≥ (d, ei) > 0 . Thus M has a
t-generated quotient of dimension α = d− dei. By induction, α is a root. Thus

si(α) = α− (α, ei)ei = d + (k − (d, ei))ei

is a root. By induction on m ≥ 0 we check that, for any root β and a positive
integer m the vector β −mei is a root or belongs to the kernel of C. In fact,
since C is semi-definite and non-negative, we have, for any two roots α, β

4 = (α, α)(β, β) ≥ (α, β)2.

Thus |(α, β)| ≤ 2 and hence (α−ei, α−ei) = 4−2(α, ei) ∈ {0, 2} if (α, ei) > 0.
So we may assume that (d, ei) ≤ 0 for all i 6= t. But δ =

∑
δiei belongs to

the kernel of the matrix C, hence (d, et) = −
∑

i 6=t di(d, ei) ≥ 0. So we may
assume that (d, et) > 0 (if (d, et) = 0, the vector d belongs to the kernel of C).
Let I(t) be the subset of Q0 which consists of vertices adjacent to t. We assume
that |(t) 6= ∅ since otherwise n = 0 and d = e0, so the assertion is true. We
have

(d, et) = (et, et) +
∑

j∈I(t)

dj(et, ej) = 2− |I(t)| > 0.

Thus |I(t)| = 1, and hence there is only one arrow a joining t and the unique
j ∈ I(t) and its reverse a∗ joining j with t. Moreover, we have 1 = (d, et) =
2 + dj(et, ej) and hence dj = 1. By the relation in k[Q̃] defining Π(Q) we have
ρ(a∗) ◦ ρ(a) = 0, thus one of the linear maps ρ(a) or ρ(a∗) is equal to zero.
This shows that M contains a j-generated submodule generated by ejM with
dimension vector α = d − et. By induction, α is a root, hence d = sα(et) =
et − (α, et)α = et + α is a root.

We will prove the uniqueness by induction on |d|. SupposeM is a t-generated
module with dimension vector d which is a root. Assume (d, ei) > 0 for some
vertex i 6= t. Then d′ = sei

(d) = d − (d, ei)ei has |d′| < |d|. By induction,
there exists a unique module M ′ with dimension vector d′. Since d′ − ei is not
a root and not in the kernel of C, we have Hom(Si,M

′) = 0 (otherwise the
quotient is a t-generated and has dimension d′ − ei which is not a root). Since
M ′ is t-generated and Si is not, we have Hom(M,Si) = 0. By Ringel’s formula,
we obtain dimExt1(M ′, Si) ∼= k(d,ei). This gives rise to a universal extension

0 → S
(d,ei)
i → E →M ′ → 0.

This extension defines a unique module with dimension vector d since M ′ is
unique.

Assume that (d, ei) ≤ 0 for all ei, i 6= t. As in above we find that t is adjacent
to a unique vertex j and dj = 1. Since α = d−et is a root, we find a j-generated
module L with dimension vector α with αt = 0, αj = 1. Representing the arrow
a : t→ j as a nonzero matrix of size 1 and taking a∗ to be zero, we reconstruct
uniquely M from L.
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Lemma 8.4.5. There is no module in R(Π(G),d)θ whose socle involves two
copies of a simple Si or two copies of Si and Sj if i and j are not adjacent.

Proof. If there is such module, then the quotient by Si⊕Sj gives a 0-generated
module of dimension δ − 2ei or δ − ei − ej , but none of them is a root.

Lemma 8.4.6. If i, j 6= 0 are adjacent in Q, then there is a unique module in
R(Π(G),d)θ with socle Si ⊕ Sj

Proof. Since δ − ei − ej is easily seen to be a root, there exists a unique 0-
generated module M of this dimension. Now, by Ringel formula,

dim Ext1(M,Si) = dim Hom(Si,M)− (ei, δ − ei − ej) = dim Hom(Si,M) + 1.

Since M cannot have quotients with dimension vector δ − 2ei − ej (it is not a
root), we see that Hom(Si,M) = 0. This shows that dim Ext1(M,Si) = 1 and
similarly dim Ext1(M,Sj) = 1. This gives a module given by extension

0 → Si ⊕ Sj →M ′ →M → 0.

Its dimension vector is δ and its socle contains Si ⊕ Sj . By Lemma 8.4.5 it
cannot contain larger socle. Since any module with this socle arises in this way
and the extension is unique, we get the uniqueness of M ′.

Lemma 8.4.7. If i 6= 0, then E(i) is a closed subvariety of R(Π(G), δ)θ iso-
morphic to P1.

Proof. Let L be the unique 0-generated module of dimension d+ei. By Ringel’s
formula dim Hom(Si, L) ≥ 2. In fact, we have the equality since the quotient
would have the dimension vector δ − 2ei which is not a root.

Any module M in E(i) has dim Ext1(M,Si) = dim Hom(Si,M) = 1 (apply
Lemma 8.4.5. ThusM is isomorphic to the quotient of L by a submodule isomor-
phic to Si (by the uniqueness of L). This gives a map c : P1 = P(Hom(Si, L)) →
E(i) which is onto, and one-to-one since L has trivial endomorphism ring (be-
cause dim e0L0 = 1 and L is 0-generated). We skip the proof that it is a
morphism of algebraic varieties.

8.5 Exercises

8.1 Let Cn be a finite-dimensional vector space equipped with a structure of a
C[x]-module by means of a matrix A ∈Matn(C). Show that Cn is semi-simple
if and only if A is diagonalizable. Show that Cn is indecomposable if and only if
A is similar to a Jordan matrix with one block. Describe its composition series
and its factors.
8.2 Given a left R-module M , let gM be the R-module obtained from M by

replacing the action R→ EndZ(M) of R on M with the composition R
g→ R→

EndZ(M). Show that R#G⊗R M ∼= ⊕g∈G
gM .
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8.3 Suppose a finite group Γ acts freely on an affine algebraic variety X. Show
that the rings O(X)#G and O(X)G are Morita equivalent.
8.4 As above, but assume that Γ acts with only isolated points with non-trivial
stabilizer. Let R = O(X)#Γ. Show that eRe is a two-sided ideal and the
quotient algebra R/ReR is finite-dimensional.
8.5 Let R∗ be the group of invertible elements of a ring R. Consider the map
α : R∗ → R#G which sends u ∈ R∗ to 1

|G|
∑

g∈Γ u
−1g(u)g. Show that α(u)2 =

α(u) for any u ∈ R∗.
8.6 Let G = C3 and J = (x, y)2 ∈ G-Hilb(A2). Check directly the assertion of
Theorem 8.4.1 that soc(k[x, y]/J) contains a direct sum of two simple modules.
8.7 Let G be a finite group of automorphisms of a quasi-projective algebraic
variety X and p : X → Y = X/G be the projection to the orbit space. De-
fine OX#G as the sheaf of OY -modules associated with the pre-sheaf U 7→
OX(p−1(U))#G. Show that in the case when X = Spec A is affine, (OX#G ∼=
EndOY

OX .
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