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Abstract. A relation is proved between the Poincaré series of the coordinate algebra of a
two-dimensional quasihomogeneous isolated hypersurface singularity and the characteris-
tic polynomial of its monodromy operator. For a Kleinian singularity not of typeA2n, this
amounts to the statement that the Poincaré series is the quotient of the characteristic polyno-
mial of the Coxeter element by the characteristic polynomial of the affine Coxeter element
of the corresponding root system. We show that this result also follows from the McKay
correspondence.

Introduction

S. M. Gusein-Zade, F. Delgado, and A. Campillo [GDC] have shown that for an
irreducible plane curve singularity the Poincaré series of the ring of functions on
the curve coincides with the zeta function of its monodromy transformation.

In this paper we show that there is also a relation between the Poincaré series
of the coordinate algebra of a two-dimensional quasihomogeneous isolated hyper-
surface singularity and the characteristic polynomial of its monodromy operator.

Let (X, x) be a normal surface singularity with goodC
∗-action. The coordinate

algebraA is a graded algebra. We consider the Poincaré seriespA(t) of A. Let
{g; b; (α1, β1), . . . , (αr , βr)} be the orbit invariants of(X, x). We define

ψA(t) := (1 − t)2−r
r∏

i=1

(1 − tαi ),

φA(t) := pA(t)ψA(t).

Let (X, x) be a hypersurface singularity. ThenφA(t) is a product of cyclotomic
polynomials.

K. Saito [Sa3,Sa4] has introduced a duality between polynomials which are
products of cyclotomic polynomials. He has shown thatV. I.Arnold’s strange duality
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between the 14 exceptional unimodal hypersurface singularities is related to such a
duality between the characteristic polynomials of the monodromy operators of the
singularities. It is now well-known that Arnold’s strange duality is related to the
mirror symmetry ofK3 surfaces (see e.g. [D5]).

The main results of the paper are the following. We show that the dual (in
Saito’s sense) of the rational functionφ̃A(t) := φA(t)/(1− t)2g is the characteristic
polynomial of the monodromy operator of(X, x) (Theorem 1). Similar results can
be proved for isolated complete intersection singularities (abbreviated ICIS in the
sequel) of certain types (see Theorem 3 and 4).

If (X, x) is a Kleinian singularity not of typeA2n, thenψA(t) is the characteristic
polynomial of the affine Coxeter element of the corresponding root system and
the above result implies thatφA(t) is the characteristic polynomial of the Coxeter
element. Hence the Poincaré series of a polyhedral group is the quotient of these two
polynomials. We derive this result also directly from the McKay correspondence
using ideas of the paper [Kos]. There are various formulas for Poincaré series of
binary polyhedral groups in [Kn,Kos,M2,Sp], but this relation seems to be new.

1. Main results

Let (X, x) be a normal surface singularity with a goodC
∗-action. SoX is a normal

two-dimensional affine algebraic variety overC which is smooth outside itsvertex
x. Its coordinate ringA has the structure of a gradedC-algebraA = ⊕∞

k=0 Ak,
A0 = C, andx is defined by the maximal idealm = ⊕∞

k=1Ak.
According to I. Dolgachev [D2], there exist a simply connected Riemann surface

D, a discrete cocompact subgroup� of Aut(D) and a line bundleL onD to which
the action of� lifts such that

Ak = H 0(D,Lk)�.

Let Z := D/�. By [P, Theorem 5.1] (see also [W2, Theorem 5.4.1]), there
exist a divisorD0 onZ, p1, . . . , pr ∈ Z, and integersαi , βi with 0 < βi < αi and
(αi, βi) = 1 for i = 1, . . . , r such that

Ak = L

(
kD0 +

r∑
i=1

[
k
αi − βi

αi

]
pi

)
.

Here[x] denotes the largest integer≤ x, andL(D) for a divisorD onZ denotes
the linear space of meromorphic functionsf on Z such that(f ) ≥ −D. We
number the pointspi so thatα1 ≤ α2 ≤ . . . ≤ αr . Let g be the genus ofZ and
defineb := degreeD0 + r. Then{g; b; (α1, β1), . . . , (αr , βr)} are called theorbit
invariants of (X, x), cf. e.g. [W3]. Define vdeg(L) := −b +∑r

i=1
βi
αi

.
Now assume that(X, x) is Gorenstein. By [D4], there exists an integerR such

thatL−R and the tangent bundleTD of D are isomorphic as�-bundles and

R · vdeg(L) = 2 − 2g − r +
r∑

i=1

1

αi
,

Rβi ≡ 1 modαi, i = 1, . . . , r.
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Following [D3, 3.3.15] we callR the exponent of (X, x). Sinceb and theβi are
determined by theαi and the numberR, we write the orbit invariants also as
g;α1, . . . , αr .

The Gorenstein surface singularities with goodC
∗-action fall into three classes

[D4,W3]:

(1) D = P
1(C): ThenR = −2 or R = −1, g = 0, and(X, x) is a Kleinian

singularity.
(2) D = C: ThenR = 0, r = 0, andg = 1. Hence(X, x) is a simply elliptic

singularity [Sa1].
(3) D = H, the upper half plane: The remaining Gorenstein surface singularities

with goodC
∗-action belong to this class. We haveR ≥ 1.

We consider thePoincaré series of the algebraA

pA(t) =
∞∑
k=0

akt
k,

whereak = dimAk. It is well known thatpA(t) is a rational function and the order
of the pole ofpA(t) at t = 1 is equal to the dimension ofA, hence equal to 2.
Moreover,pA(t) has simple poles at theαi-th roots of unity different from 1.

We define

ψA(t) := (1 − t)2−r
r∏

i=1

(1 − tαi ),

φA(t) := pA(t)ψA(t),

φ̃A(t) := φA(t)

(1 − t)2g
.

ThenφA(t) is a polynomial.
Now let (X, x) be an ICIS with weightsq1, . . . , qn and degreesd1, . . . , dn−2.

Then its Poincaré series is given by (see e.g. [W3, Proposition (2.2.2)])

pA(t) =
∏n−2

i=1 (1 − tdi )∏n
j=1(1 − tqj )

.

HencepA(t), ψA(t), φA(t), andφ̃A(t) are rational functions of the form

φ(t) =
∏
m|h

(1 − tm)χm for χm ∈ Z and for someh ∈ N.

Given a rational function

φ(t) =
∏
m|h

(1 − tm)χm,

K. Saito [Sa3] has defined a dual rational function

φ∗(t) =
∏
k|h

(1 − tk)−χh/k .

We are now able to state the main results of the paper.
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Theorem 1. Let (X, x) be a quasihomogeneous hypersurface singularity in C
3.

Then φ̃∗
A(t) is the characteristic polynomial of the classical monodromy operator

of (X, x).

The proof of Theorem 1 will be given in Sect. 2.
Let (X, x) be a Kleinian singularity. Theng = 0, and thereforẽφA(t) =

φA(t). It is well known that the Kleinian singularities correspond to root systems
of typeAl , Dl , E6, E7, orE8. The classical monodromy operator of(X, x) is the
Coxeter element of the corresponding root system. The polynomialψA(t) is the
characteristic polynomial of the affine Coxeter element of the corresponding root
system (see [St, p. 591] or [Sp, 6.2], if(X, x) is not of typeAl). In the caseA2n,
we have

φA(t) = 1 − t4n+2

1 − t2
.

In this case,φ∗
A(t) �= φA(t). In all other cases one can verify thatφ∗

A(t) = φA(t)

(cf. Table 1). Therefore we obtain from Theorem 1:

Theorem 2. Let (X, x) be a Kleinian singularity not of type A2n. Then φA(t) and
ψA(t) are the characteristic polynomials of the Coxeter element and the affine
Coxeter element respectively of the corresponding root system. Hence pA(t) is the
quotient of these polynomials.

In Sect. 3 we shall give a direct proof of Theorem 2 using the McKay corre-
spondence.

2. Poincaré series and monodromy

In this section we shall prove Theorem 1.
Let (X, x) be a Gorenstein surface singularity with a goodC

∗-action. The
residue of the Poincaré seriespA(t) at a primitiveαi-th root of unity can be com-
puted as follows.

Proposition 1. Let (X, x) be Gorenstein and R be the exponent of (X, x). Let
ξi = exp(2π

√−1/αi). Then the residue of pA(t) at t = ξi is equal to

∑
αi |αj

ξi · ξRi
αj (1 − ξRi )

.

From Proposition 1 we can derive the following proposition generalizing [W1,
Proposition (2.8)]). For integersa1, . . . , ar we denote by〈a1, . . . , ar 〉 their least
common multiple and by(a1, . . . , ar ) their greatest common divisor.

Proposition 2. Let A be the coordinate algebra of a Gorenstein surface singularity
with good C

∗-action. Suppose that A is generated by 3 elements of weights q1, q2,
q3. For each i = 1, . . . , r let ξi = exp(2π

√−1/αi). Then the Poincaré series is
given by

pA(t) = (1 − td )

(1 − tq1)(1 − tq2)(1 − tq3)

if and only if the following conditions hold:
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(a) (q1, q2, q3) = 1.
(b) 2g − 2 + r −∑r

i=1
1
αi

= Rd
q1q2q3

.
(c) For each i

∑
αi |αj

ξi · ξRi
αj (1 − ξRi )

=




−ξi (1−ξdi )

qi1(1−ξ
qi2
i )(1−ξ

qi3
i )

if αi |qi1 and αi � |qi2, qi3,
−dξi

qi1qi2(1−ξ
qi3
i )

if αi |qi1, αi |qi2, αi � |qi3.

(d) For all i and j so that i �= j , (qi, qj )|d .
(e) d = q1 + q2 + q3 + R.

Let (X, x) be an isolated hypersurface singularity inC
3 given by a quasihomo-

geneous equationf (z1, z2, z3) = 0 of degreed and weightsq1, q2, q3. Then the
Poincaré series is given by

pA(t) = (1 − td )

(1 − tq1)(1 − tq2)(1 − tq3)
.

From Proposition 2 one can easily derive the following proposition which was
proven by P. Orlik and P. Wagreich [OW, 3.6 Proposition 1] using another method.

Proposition 3 (Orlik,Wagreich). Let (X, x) be a quasihomogeneous isolated hy-
persurface singularity. Let wi = d/qi = ui/vi where (ui, vi) = 1 und ui, vi ≥ 1.
Assume 1 ≤ v1 ≤ v2 ≤ v3. Then the table below indicates the number of orbit
invariants α of each type:

α = (q2, q3) (q1, q3) (q1, q2) q3 q2 q1

1 = v1 = v2 = v3
d

〈q2,q3〉
d

〈q1,q3〉
d

〈q1,q2〉
1 = v1 = v2 < v3

d−q2
〈q2,q3〉

d−q1
〈q1,q3〉

d
〈q1,q2〉 1

1 = v1 < v2 ≤ v3
d−q2−q3
〈q2,q3〉

d−q1
〈q1,q3〉

d−q1
〈q1,q2〉 1 1

1 < v1 ≤ v2 ≤ v3
d−q2−q3
〈q2,q3〉

d−q1−q3
〈q1,q3〉

d−q1−q2
〈q1,q2〉 1 1 1

The blank entries are zero if qi does not divide qj for j �= i. If qi |qj , then (qi, qj ) =
qi and we list those orbit invariants under the column headed (qi, qj ).

On the other hand, we consider the characteristic polynomial of the monodromy
operator of(X, x). Let Xt be a Milnor fibre of the singularity(X, x) and denote
by M := H2(Xt ,Z) the corresponding Milnor lattice. Letc : M → M be the
classical monodromy operator of the singularity(X, x). It is well-known thatc is
quasi-unipotent and therefore the eigenvalues ofc are roots of unity. We write the
characteristic polynomialφM(t) = det(tI − c) of c as

φM(t) =
∏
m|h

(tm − 1)χm for χm ∈ Z and for someh ∈ N.
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The characteristic polynomialφM(t) can be computed as follows [MO] (see
also [Sa4]). Consider the rational function

1(T ) := T −d (T
d − T q1)(T d − T q2)(T d − T q3)

(T q1 − 1)(T q2 − 1)(T q3 − 1)
.

By [Sa2, (1.3) Theorem] there exist finitely many integersm1, . . . , mµ such that

1(T ) = T m1 + . . . + T mµ.

Thenωi := exp(2π
√−1mi/d), i = 1, . . . , µ, are the zeros ofφM(t). Put4k :=

ωk
1 + . . .+ωk

µ for k ∈ N and letω := exp(2π
√−1/d). Then one has4k = 1(ωk).

From this one can derive that

4k =
(
δ(kq1 modd)

d

q1
− 1

)(
δ(kq2 modd)

d

q2
− 1

)(
δ(kq3 modd)

d

q3
− 1

)

whereδ is the delta function, i.e.,δ(0) := 1 andδ(x) := 0 for x �= 0. The numbers
4k andχm are related by the formula

4k =
∑
m|k

mχm.

Proof of Theorem 1. We have

φ̃A(t) = (1 − td )(1 − tα1) · · · (1 − tαr )

(1 − t)2g−2+r (1 − tq1)(1 − tq2)(1 − tq3)
.

From Proposition 3 we conclude thatqi |d or qi = αj for somej , 1 ≤ j ≤ r, and
thatαi |d or αi = qj for somej , 1 ≤ j ≤ 3. Therefore we may assume that

φ̃A(t) = (1 − td )
∏

αi |d(1 − tαi )

(1 − t)2g−2+r
∏

qj |d(1 − tqj )
.

Hence

φ̃∗
A(t) =

(1 − td )2g−2+r
∏

qj |d(1 − td/qj )

(1 − t)
∏

αi |d(1 − td/αi )
.

Denote by4̃k the sum of thek-th powers of the roots of̃φ∗
A(t) = 0. For the proof

of Theorem 1 we must show that4̃k = 4k for all k ∈ N.
(a) We first have

4̃1 = −1 = 41.

(b) Now suppose thatkqi1 ≡ 0 modd but kqi2 �≡ 0 modd, kqi3 �≡ 0 modd.
Then we claim that for alli with αi |d the numberd

αi
does not dividek. For suppose

the contrary. By Proposition 3 we haveαi = (qj1, qj2) orαi = qj1. Now d
(qj1,qj2)

|k
impliesd|kqj1 andd|kqj2, which contradicts our assumption. Butαi = qj1 is only
possible ifαi � |d. Therefore we have shown

4̃k = −1 + d

qi1
= 4k.
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(c) We now consider the case thatkqi1 ≡ 0 modd, kqi2 ≡ 0 modd, kqi3 �≡
0 modd. By Proposition 3 and the same arguments as in (b), we see thatαi |d and
d
αi

|k only if αi = (qi1, qi2). By Proposition 3 we therefore get

4̃k = −1 + δ(d modqi1)
d

qi1
+ δ(d modqi2)

d

qi2
−

∑
αj=(qi1,qi2)

d

αj

= −1 + d

qi1
+ d

qi2
− d2

qi1qi2

= −
(

d

qi1
− 1

)(
d

qi2
− 1

)
= 4k.

(d) Finally, assume thatkq1 ≡ 0 modd, kq2 ≡ 0 modd, andkq3 ≡ 0 modd.
Since the greatest common divisor ofq1, q2, q3 is 1, it follows thatd|k. Then we
have

4̃k = (2g − 2 + r)d +
3∑

j=1

δ(d modqj )
d

qj
−

r∑
i=1

δ(d modαi)
d

αi
− 1

= (2g − 2 + r)d +
3∑

j=1

d

qj
−

r∑
i=1

d

αi
− 1.

By Proposition 2(b) and (e) we get

4̃k = Rd2

q1q2q3
+

3∑
j=1

d

qj
− 1

= d2(d − q1 − q2 − q3)

q1q2q3
+

3∑
j=1

d

qj
− 1

=
(
d

q1
− 1

)(
d

q2
− 1

)(
d

q3
− 1

)
= 4k.

This completes the proof of Theorem 1.��

3. The McKay correspondence

In this section we shall derive Theorem 2 from the McKay correspondence.
Let (X, x) be a Kleinian singularity. ThenD = P

1(C) and� is a finite subgroup
of Aut(P1(C)) = PGL(2,C). We may assume that� ⊂ PSU(2) ∼= SO(3). Up to
conjugacy, there are five classes of such groups: (1)Cn, the cyclic group of ordern,
n ≥ 1, (2)Dl−2, the dihedral group of order 2(l − 2), l ≥ 4, (3)T , the tetrahedral



278 W. Ebeling

Table 1. Kleinian singularities

� g;α1, . . . , αr Weights πA
A2n C2n+1 0; 2n+1,2n+1 2,2n+1,2n+1/4n+2 4n+2/2

A2n−1 Cn 0; n = 1
0; n, n n > 1

1, n, n/2n 2n/1

Dl Dl−2 0; 2,2, l−2 2, l−2, l−1/2(l−1) 2·2(l−1)/1·(l−1)
E6 T 0; 2,3,3 3,4,6/12 2·3·12/1·4·6
E7 O 0; 2,3,4 4,6,9/18 2·3·18/1·6·9
E8 I 0; 2,3,5 6,10,15/30 2·3·5·30/1·6·10·15

group of order 12, (4)O, the octahedral group of order 24, (5)I, the icosahedral
group of order 60.

If R = −2, thenL2 ∼= TD and� is a cyclic group of odd order 2n + 1, n ≥ 1.
The orbit invariants of(X, x) are{0; 1; (2n + 1, n), (2n + 1, n)} and(X, x) is a
singularity of typeA2n, which was excluded in Theorem 2.

Therefore it suffices to consider th e caseR = −1. It is well known that there is a
correspondence between the Kleinian singularities and the irreducible root systems
as indicated in Table 1.

Let R = −1. Then we haveL ∼= TD andAk = S2k(C2)� whereS2k(C2)

denotes the 2k-th symmetric power ofC2 and the action of� onS2k(C2) is induced
by its action onP1(C). We relate the seriespA(t) to another Poincaré series which
is considered in [Kos]. LetSU(2) → PSU(2) be the usual double covering and let
G ⊂ SU(2) be the inverse image of� ⊂ PSU(2). Letρm be the representation of
G onSm(C2) induced by its action onC2. Letγ0, . . . , γl be the equivalence classes
of irreducible finite dimensional complex representations ofGwhereγ0 is the class
of the trivial representation. For each integerm ≥ 0 we have a decompositionρm =∑l

i=0 vmiγi with vmi ∈ Z. We associate toρm the vectorvm = (vm0, . . . , vml)
t ∈

Z
l+1. As in [Kos, p. 211] we define

PG(t) :=
∞∑

m=0

vmt
m.

This is a formal power series with coefficients inZ
l+1. We also putPG(t)i :=∑∞

m=0 vmit
m. Note thatvm0 is the dimension of theG-invariant subspace ofSm(C2).

Since−I ∈ G, we havevm0 = 0 form odd. Therefore we get

pA(t
2) = PG(t)0.

J. McKay [M1] has observed that ifγ : G → SU(2) is the given 2-dimensional
representation ofG then the(l + 1) × (l + 1)-matrix B = (bij ), defined by
decomposing the tensor productsγj ⊗ γ = ⊕

i bij γi into irreducible components,
satisfiesB = 2I − C whereC is the affine Cartan matrix of the corresponding
root system. Moreover, the indexing is so that the additional vertex in the extended
Coxeter–Dynkin diagram corresponding to the matrixC has index 0.

Proof of Theorem 2. From the Clebsch–Gordon formula one can derive that

Bvm = vm+1 + vm−1
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for all non-negative integersm wherev−1 = 0 [Kos, (3.3.1)]. This can be reformu-
lated as follows (cf. [Kos, p. 222]). LetV denote the set of all formal power series
x = ∑∞

m=0 xmt
m with xm ∈ Z

l+1. This is a free module of rankl + 1 over the ring
R of formal power series with integer coefficients. Thenx = PG(t) is a solution
of the following linear equation inV :

((1 + t2)I − tB)x = v0.

Let M(t) be the matrix((1 + t2)I − tB) andM0(t) be the matrix obtained by
replacing the first column ofM(t) by v0 = (1,0, . . . ,0)t . Then Cramer’s rule
yields

PG(t)0 = detM0(t)

detM(t)
.

From [B, Ch. V, § 6, Exercice 3] we obtain

detM(t) = det(t2I − ca), detM0(t) = det(t2I − c),

wherec is the Coxeter element andca is the affine Coxeter element of the corre-
sponding root system. In the case� = Cn, we havel + 1 = 2n and we assume that
the numbering ofγ0, . . . , γl is so that the vertices of the extended Coxeter–Dynkin
diagram (which is a cycle) corresponding toγ0, . . . , γn−1 are not connected with
each other and the same holds for the vertices corresponding toγn, . . . , γl . Note
that this differs from the numbering in [B] but agrees with the numbering used for
the discussion of the affine Coxeter element in the cases different fromAl in [St].
(The caseAl is excluded in that paper.) This proves Theorem 2.��

For a polynomial

φ(t) =
∏
m|h

(1 − tm)χm,

we use the symbolic notation

π :=
∏
m|h

mχm.

In the theory of finite groups, this symbol is known as aFrame shape (cf. [CN]). The
Frame shapesπA corresponding to the polynomialsφA(t) are indicated in Table 1.

4. Generalizations to ICIS

In this section we shall consider generalizations of Theorem 1 to certain ICIS.
Let (X, x) be an ICIS inC

4 given by quasihomogeneous equationsg = 0
and f = 0 of degreesd1 and d2 respectively. As above, letM be the Milnor
lattice andc : M → M be the monodromy operator of(X, x). By [GH] the
characteristic polynomial of the monodromy operator can be computed as above
using an appropriate rational function1(T ). Similarly to the proof of Theorem 1
one can show:
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Theorem 3. Let (X, x) be a quasihomogeneous ICIS in C
4 with weights q1, q2, q3,

q4 and degrees d1, d2. Assume that g(z1, z2, z3, z4) = z1z4 + z2z3. Define

φ̃A(t) := φA(t)(1 − td2)

(1 − t)2g(1 − td1)
, φ

A
M(t) := φM(t)

(1 − t)
.

Then we have φ̃∗
A(t) = φ

A
M(t).

Theorem 4. Let (X, x) be a quasihomogeneous ICIS in C
4 with weights q1, q2, q3,

q4 and degrees d1, d2. Assume that either
(A) g(z1, z2, z3, z4) = z

q
1 + z2z3 and f (z1, z2, z3, z4) = f ′(z1, z2, z3) + z

p
4

for some integers p, q ≥ 2 where q|d2, or
(B)g(z1, z2, z3, z4) = z

q
1+(z2−z3)z4 andf (z1, z2, z3, z4) = az

q
1+z2(z3−z4)

for some a ∈ C, a �= 0,1, and some integer q ≥ 2 and p := 2.
Define

φ̃A(t) := φA(t)(1 − td2)p−1(1 − t
d1
q )(1 − t

d2
p )

(1 − t)2g(1 − td1)(1 − t
d2
q )p

,

φ
A
M(t) := φM(t)(1 − tq)p

(1 − t)p−1(1 − t 〈p,q〉)(p,q)
.

Then we have φ̃∗
A(t) = φ

A
M(t).

Note that in the casep = 2,p|q, the polynomialφA
M(t) in Theorem 4 reduces

to the corresponding polynomial of Theorem 3.
In case (A) of Theorem 4,(X, x) is ap-fold suspension and we use the following

result which can be derived from [ESt, Theorem 10]. Let(X,0) be an ICIS inCn+2

of dimensionn given by a map germF = (g, f ) : (Cn+2,0) → (C2,0). Let
X′ = g−1(0) and assume that(X′,0) is an isolated singularity. Letp ∈ N ,
p ≥ 2. Thep-fold suspension of (X,0) is the ICIS(X̃,0) defined byF̃ = (g̃, f̃ ) :
(Cn+2 × C,0) → (C2,0) whereg̃(y, z) = g(y) and f̃ (y, z) = f (y) + zp for
(y, z) ∈ C

n+2 × C. Let φM , φ′
M , andφ̃M be the characteristic polynomials of the

monodromy operators of the singularities(X,0), (X′,0), and(X̃,0) respectively.
Write

φM(t) =
∏
m|h

(1 − tm)χm, φ′
M(t) =

∏
k|h′

(1 − tk)χ
′
k .

By [ESt, loc.cit.] we have

φ̃M(t) =
∏
m|h

(1 − t 〈m,p〉)(m,p)χm

(1 − tm)χm

∏
k|h′

(1 − t 〈k,p〉)(k,p)χ ′
k .

In case (B),(X, x) is a Brieskorn-Hamm ICIS. A Brieskorn-Hamm ICIS is a
singularity(VB(w1, . . . , wn),0) (for integersw1, . . . , wn, wi ≥ 1,n ≥ 3), where

VB(w1, . . . , wn) := {z ∈ C
n | bi1zw1

1 + . . . + binz
wn
n = 0; i = 1, . . . , n − 2}
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Table 2. Simply elliptic ICIS

Name {g; b; } Weights wi πM πA

Ẽ8 {1; 1; } 1,2,3/6 2,3,6 2 · 3 · 6/1 1 · 6/2 · 3
Ẽ7 {1; 2; } 1,1,2/4 2,4,4 2 · 42/1 4/2
Ẽ6 {1; 3; } 1,1,1/3 3,3,3 33/1 3/1
D̃5 {1; 4; } 1,1,1,1/2,2 2,2,2,2 24/1 22/12

andB = (bij ) is a sufficiently general(n− 2)× n-matrix of complex numbers. In
our case(X, x) is analytically isomorphic to the singularity(VB(q,2,2,2),0) for
a suitable matrixB. The orbit invariants of a Brieskorn–Hamm ICIS are given in
[NR, Theorem 2.1] and the characteristic polynomial of the monodromy operator
is computed in [H].

Example 1. Let (X, x) be a simply elliptic ICIS. Then(X, x) is one of the sin-
gularities indicated in Table 2 (cf. [Sa1]). Letq1, . . . , qn be the weights andd
be the degree of the equation(s) of(X, x). Putwi = d

qn+1−i
, i = 1, . . . , n. Then

(X, x) ∼= (VB(w1, . . . , wn),0). Hence we can apply Theorem 1 or Theorem 4
if n = 3 or n = 4 respectively. We obtainψA(t) = (1 − t)2, φ̃A(t) = pA(t),
andφM(t) = p∗

A(t) if n = 3 andφA
M(t) = p∗

A(t) otherwise. The polynomial
φA(t) = 1 + (b − 2)t + t2 is the characteristic polynomial of a rotation of the
Euclidian plane by the angle2π

d
and hence of the Coxeter element corresponding

to the Coxeter graph [B]

❡ d ❡.
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