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Abstract. A relation is proved between the Poincaré series of the coordinate algebra of a
two-dimensional quasihomogeneous isolated hypersurface singularity and the characteris-
tic polynomial of its monodromy operator. For a Kleinian singularity not of tyipg, this
amounts to the statement that the Poincaré series is the quotient of the characteristic polyno-
mial of the Coxeter element by the characteristic polynomial of the affine Coxeter element
of the corresponding root system. We show that this result also follows from the McKay
correspondence.

Introduction

S. M. Gusein-Zade, F. Delgado, and A. Campillo [GDC] have shown that for an
irreducible plane curve singularity the Poincaré series of the ring of functions on
the curve coincides with the zeta function of its monodromy transformation.

In this paper we show that there is also a relation between the Poincaré series
of the coordinate algebra of a two-dimensional quasinomogeneous isolated hyper-
surface singularity and the characteristic polynomial of its monodromy operator.

Let (X, x) be a normal surface singularity with go@d-action. The coordinate
algebraA is a graded algebra. We consider the Poincaré serig€s) of A. Let
{g; b; (@1, B1), - - ., (ar, Br)} be the orbit invariants ofX, x). We define

Ya) == (L-n>" ],
i=1
da(t) == pa)Ya().

Let (X, x) be a hypersurface singularity. Then (1) is a product of cyclotomic
polynomials.

K. Saito [Sa3,Sa4] has introduced a duality between polynomials which are
products of cyclotomic polynomials. He has shown thatV. I. Arnold’s strange duality
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between the 14 exceptional unimodal hypersurface singularities is related to such a
duality between the characteristic polynomials of the monodromy operators of the
singularities. It is now well-known that Arnold’s strange duality is related to the
mirror symmetry ofK 3 surfaces (see e.g. [D5]).

The main results of the paper are the following. We show that the dual (in
Saito’s sense) of the rational functign (r) := ¢4 (r)/(1—1)%¢ is the characteristic
polynomial of the monodromy operator @f, x) (Theorem 1). Similar results can
be proved for isolated complete intersection singularities (abbreviated ICIS in the
sequel) of certain types (see Theorem 3 and 4).

If (X, x)isaKleinian singularity not of typd,, themy 4 (¢) is the characteristic
polynomial of the affine Coxeter element of the corresponding root system and
the above result implies thats (1) is the characteristic polynomial of the Coxeter
element. Hence the Poincaré series of a polyhedral group is the quotient of these two
polynomials. We derive this result also directly from the McKay correspondence
using ideas of the paper [Kos]. There are various formulas for Poincaré series of
binary polyhedral groups in [Kn,Kos, M2, Sp], but this relation seems to be new.

1. Main results

Let (X, x) be a normal surface singularity with a go@d#-action. SaX is a normal
two-dimensional affine algebraic variety o¥@mwhich is smooth outside itgertex
x. Its coordinate ringA has the structure of a gradédalgebrad = @572 Ax,
Ap = C, andx is defined by the maximal ideal = @,fil Ag.

Accordingtol. Dolgachev [D2], there exist a simply connected Riemann surface
D, a discrete cocompact subgrobipf Aut(D) and a line bundl& on D to which
the action ofl" lifts such that

Ap = HO(D, £M)T.

Let Z := D/T. By [P, Theorem 5.1] (see also [W2, Theorem 5.4.1)), there
existadivisorDponZ, p1, ..., pr € Z,and integers;, B; with0 < 8; < «; and
(o, B;) =1fori =1,...,r such that

Ak:L<kDo+Z[kai;ﬂi}p,~>.
i=1 !

Here[x] denotes the largest integerx, and L (D) for a divisor D on Z denotes
the linear space of meromorphic functiofison Z such that(f) > —D. We
number the pointy; so thatw; < a2 < ... < «,. Let g be the genus of and
defineb := degreeDg + r. Then{g; b; (a1, 1), ... , (o, B-)} are called therbit
invariants of (X, x), cf. e.g. [W3]. Define vde@) := —b+ > ;_; 5—’

Now assume thatX, x) is Gorenstein. By [D4], there exists an intedgesuch
that £~® and the tangent bundig> of D are isomorphic a§-bundles and

.
1
R-vdegl)=2-2¢—r+) —,
i1 %i

RBi=1mode;, i=1,...,r
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Following [D3, 3.3.15] we callR the exponent of (X, x). Sinceb and theg; are
determined by they; and the numbeR, we write the orbit invariants also as
g, 01, ..., 0.

The Gorenstein surface singularities with gdgidaction fall into three classes
[D4,W3]:

(1) D = PXC): ThenR = —2 orR = —1, g = 0, and(X, x) is a Kleinian
singularity.

(2) D =C: ThenR = 0,r = 0, andg = 1. Hence(X, x) is a simply elliptic
singularity [Sal].

(3) D = H, the upper half plane: The remaining Gorenstein surface singularities
with goodC*-action belong to this class. We hake> 1.

We consider théoincaré series of the algebrad

o0
pat) =Y at",
k=0

whereq; = dim Ay. Itis well known thatp 4 (¢) is a rational function and the order
of the pole ofpa(¢) atr = 1 is equal to the dimension of, hence equal to 2.
Moreover,p 4 (1) has simple poles at the-th roots of unity different from 1.

We define

Ya) == A—0>"[]d—1%),
i=1
Pa(t) == paO)Ya(d),
S $a)
Pat) == A-nx
Theng, (¢) is a polynomial.
Now let (X, x) be an ICIS with weightg1, ... , g, and degreesy, ... , d,—2.
Then its Poincaré series is given by (see e.g. [W3, Proposition (2.2.2)])

=2 — %)
[T —19)

Hencepa (1), va(r), (), andp (¢) are rational functions of the form

pa(t) =

¢(t) = J@—+")*" for y, € Z and for somé: € N.
m|h

Given a rational function
o) = Ja-mm,
mlh
K. Saito [Sa3] has defined a dual rational function
¢ () =[Ja—H7mn
klh
We are now able to state the main results of the paper.
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Theorem 1. Let (X, x) be a quasihomogeneous hypersurface singularity in Cs.
Then ¢ (¢) isthe characteristic polynomial of the classical monodromy operator
of (X, x).

The proof of Theorem 1 will be given in Sect. 2.

Let (X, x) be a Kleinian singularity. Theg = 0, and thereforep,(r) =
¢4(2). Itis well known that the Kleinian singularities correspond to root systems
of type A;, Dy, Eg, E7, or Eg. The classical monodromy operator(©f, x) is the
Coxeter element of the corresponding root system. The polynamiél) is the
characteristic polynomial of the affine Coxeter element of the corresponding root
system (see [St, p. 591] or [Sp, 6.2](iX, x) is not of typeA,;). In the casedy,,

we have
1— t4n+2

Palt) = -2

In this caseg’ (1) # ¢a(¢). In all other cases one can verify thelf (1) = ¢4 (1)
(cf. Table 1). Therefore we obtain from Theorem 1.:

Theorem 2. Let (X, x) be a Kleinian singularity not of type A2,. Then ¢4 (¢) and
¥a(t) are the characteristic polynomials of the Coxeter element and the affine
Coxeter element respectively of the corresponding root system. Hence p 4 (¢) isthe
quotient of these polynomials.

In Sect. 3 we shall give a direct proof of Theorem 2 using the McKay corre-
spondence.

2. Poincaré series and monodromy

In this section we shall prove Theorem 1.

Let (X, x) be a Gorenstein surface singularity with a gaBthaction. The
residue of the Poincaré seripg (¢) at a primitivea;-th root of unity can be com-
puted as follows.

Proposition 1. Let (X, x) be Gorenstein and R be the exponent of (X, x). Let
& = exp2r/—1/a;). Thentheresidue of p4(¢) atr = &; isequal to

Z Ei . SiR
ajloj o1&
From Proposition 1 we can derive the following proposition generalizing [W1,

Proposition (2.8)]). For integers, ... , a, we denote byay, ... , a,) their least
common multiple and byay, ... , a,) their greatest common divisor.

Proposition 2. Let A bethe coordinate algebra of a Gorenstein surface singularity
with good C*-action. Suppose that A is generated by 3 elements of weights g1, g2,
g3.Foreachi =1,...,r let & = exp2r+/—1/a;). Then the Poincaré series is
given by
(1—19)
(1 —r9)(1 —192)(1 — 193)
if and only if the following conditions hold:

pa(t) =
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(@) (91,92, 93) = 1.
(b) 2 —2+r—Yj 4 =_R

q19293°

(c) For each i
R _Slq(l—_‘id)q if ojlgiy and o AGiys Giss
Z E,—glR _ q,-lu,fi%zz)(lfs,. i)
Jors Olj(l—n‘;‘_i ) m if o;lqiy, «ilgiy, @i Aqis-

(d) For all i and j sothati # j, (qi, q;)ld.
(e)d =q1+qg2+ g3+ R.

Let (X, x) be an isolated hypersurface singularitydf given by a quasihomo-
geneous equatiori(z1, z2, z3) = 0 of degreed and weights;1, g2, g3. Then the
Poincaré series is given by

(1—19)
(1 —1r92)(1—r22)(1 — tqa)'

pat) =

From Proposition 2 one can easily derive the following proposition which was
proven by P. Orlik and P. Wagreich [OW, 3.6 Proposition 1] using another method.

Proposition 3 (Orlik,Wagreich). Let (X, x) be a quasihomogeneous isolated hy-
persurface singularity. Let w; = d/q; = u;/v; where (u;, v;) = Lund u;, v; > 1.
Assume 1 < v1 < vz < ws. Then the table below indicates the number of orbit
invariants o of each type:

o= (92,93)  (q1.93) (q1.92) 93 92 q1
l=v=v2=1s (qicm <611‘,Jq3> <qlc,lq2)
l=ni=wv<w G oo o
l=w<vy<vy LA o 1
l<wswpsvg G ne w111

Theblank entriesare zeroif ¢; doesnot divideg; for j # i.1fg;lq;,then (¢, q;) =
g; and we list those orbit invariants under the column headed (¢;, ¢;).

Onthe other hand, we consider the characteristic polynomial of the monodromy
operator of(X, x). Let X; be a Milnor fibre of the singularityX, x) and denote
by M := H(X;, Z) the corresponding Milnor lattice. Let: M — M be the
classical monodromy operator of the singulaKiy, x). It is well-known thatc is
quasi-unipotent and therefore the eigenvaluasane roots of unity. We write the
characteristic polynomiapy, (z) = det(zI — ¢) of c as

om(t) = [ ™ — 1% for x, € Z and for some € N.
mlh
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The characteristic polynomial,; (r) can be computed as follows [MO] (see
also [Sa4]). Consider the rational function

7d (T4 — 790 (T — T92)(T9 — T9)
(T4 — 1)(T42 — 1)(T% — 1)
By [Sa2, (1.3) Theorem] there exist finitely many integers . . . , m, such that

S(T)=T"+...+T"~.

Thenw; := exp(2r+/—1m;/d),i = 1,..., u, are the zeros aby, (t). PutAy :=
wf+...+of fork € Nand letw := exp(27v/—1/d). Then one has; = ® (k).
From this one can derive that

Ay = <8(kq1 modd)i — 1) (5(qu modd)i - 1) (S(kqg modd)i - 1)
q1 q2 q3

wheres is the delta function, i.e§(0) := 1 ands(x) := 0 forx # 0. The numbers
Ay andy,, are related by the formula

Ay = Z mym.-
mlk
Proof of Theorem 1. We have

1= H@L—r"1)...(1— o)
(1 — 1)28=2+r (1 — ra1) (1 — 192)(1 — 193)

da(t) =

From Proposition 3 we conclude thatd or g; = «; for somej, 1 < j < r, and
thate; |d or o; = ¢, for somej, 1 < j < 3. Therefore we may assume that

(L= 19 [Ty 0L — 1%)

da(t) = Az I'L,,-m(l— )

Hence I2e o L
(1 — td)28—2tr Hqﬂd(l_t /47

(1= 1) [Tgy (1 — 197)

Denote byA, the sum of the-th powers of the roots o};’; (t) = 0. For the proof
of Theorem 1 we must show that = Ay for all k € N.
(a) We first have

Ph(t) =

[\1 =-1=A1.

(b) Now suppose thdtg;, = 0modd butkg;, = 0modd, kg;; # 0modd.
Then we claim that for all with «;|d the numben;iiZ does not divideé. For suppose
the contrary. By Proposition 3 we have= (g, g;,) Oro; = g;;. Now m |k
impliesd|kq ;, andd|kq ;,, which contradicts our assumption. Byt= qjl' is only
possible ifa; fd. Therefore we have shown

~ d
Ap=—-14+— = Ay.
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(c) We now consider the case thaf;, = 0modd, kq;, = 0modd, kq;; #
0 modd. By Proposition 3 and the same arguments as in (b), we see;tdeand
O%|k only if «; = (gi,, gi,). By Proposition 3 we therefore get

. d d d
Ay = —1+45(dmodgy) —~ +5(d modg;,) - — P
1

iz aj=(qiyqip)

d d d?
=1+ —4——
qgin 4i;  qi14iz

LRI

= Ag.

(d) Finally, assume thdig; = 0 modd, kg2 = 0 modd, andkgz = 0 modd.
Since the greatest common divisorqf g2, g3 is 1, it follows thatd|k. Then we
have

3 r
- d d
Ar=02g—24+rd+ E 8(dmodg;)— — E §(dmodo;)— — 1
— T qj — o
]_1 l—l

4 Kd
=@2-2+nd+y —-Y — -1
49 %
J l
By Proposition 2(b) and (e) we get
3

_ Rd? d
Ay = + Z — -1
919293 = 4j

-1

3
d’d —q1—q2 — d
_dd—q1-492—43) +y L
919293 o4

()

This completes the proof of Theorem 10

3. TheMcKay correspondence

In this section we shall derive Theorem 2 from the McKay correspondence.
Let (X, x) be a Kleinian singularity. TheR = P1(C) andr is a finite subgroup
of Aut(P1(C)) = PGL(2, C). We may assume th&tc PSU(2) = SO(3). Upto
conjugacy, there are five classes of such group<,{1the cyclic group of ordet,
n > 1, (2) D;—2, the dihedral group of ordern2— 2),! > 4, (3) T, the tetrahedral
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Table 1. Kleinian singularities

r g 01, ..., ay Weights TA
A2y | Copt1|0;2n4+1,2n41 | 2,2n+1, 2n+1/4n+2 4n+2/2
Aou_1| Cn 0;?!” 0 Z ; 1 1,n,n/2n 2n/1
Dy D;_» 0,2,2,1-2 2,1-2,1-1/2(1-1) 2.2(1-1)/1-(1-1)
Eg T 0,233 3,4,6/12 2.3-12/1-4-6
E7 @) 0,234 4,6,9/18 2.3-18/1-6-9
Eg T 0,235 6, 10, 15/30 2.3-5-30/1-6-10-15

group of order 12, (41, the octahedral group of order 24, (b)the icosahedral
group of order 60.

If R = —2, then£? = T'p andT is a cyclic group of odd orden2+ 1,n > 1.
The orbit invariants of X, x) are{0; 1; 2n + 1,n), (2n + 1,n)} and (X, x) is a
singularity of typeA,,, which was excluded in Theorem 2.

Therefore it suffices to consider th e cadse- —1. Itis well known that thereisa
correspondence between the Kleinian singularities and the irreducible root systems
as indicated in Table 1.

Let R = —1. Then we havel = Tp and Ay = S%(C%" where $%(C?)
denotes the/2th symmetric power of 2 and the action of on $%(C?) is induced
by its action oriP1(C). We relate the series, (1) to another Poincaré series which
is considered in [Kos]. LeSU (2) — PSU (2) be the usual double covering and let
G C SU(2) be the inverse image &f C PSU (2). Let p,, be the representation of
G onS™(C?) induced by its action ofi%. Letyy, .. . , y; be the equivalence classes
of irreducible finite dimensional complex representations @fhereyg is the class
of the trivial representation. For each integer 0 we have a decompositigr), =
Zﬁ:o vmi vi With v,; € Z. We associate tp,, the vectow,, = (v0, ... , vu)' €
7!*1. Asin [Kos, p. 211] we define

o0
Ps(t) = Z vmt™.
m=0

This is a formal power series with coefficients 41, We also putPg(r); :=
3% o umit™. Note thaw,, is the dimension of thé-invariant subspace 6f" (C?).
Since—I € G, we havev,,o = 0 for m odd. Therefore we get

pa(t®) = Pg()o.

J. McKay [M1] has observed thatjif : G — SU (2) is the given 2-dimensional
representation otz then the(! + 1) x (I + 1)-matrix B = (b;;), defined by
decomposing the tensor produgts® y = @; b;;y; into irreducible components,
satisfiesB = 21 — C whereC is the affine Cartan matrix of the corresponding
root system. Moreover, the indexing is so that the additional vertex in the extended
Coxeter—Dynkin diagram corresponding to the maftikas index 0.

Proof of Theorem 2. From the Clebsch—Gordon formula one can derive that

Bvy = vyl +vpm—1
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for all non-negative integers wherev_1 = 0 [Kos, (3.3.1)]. This can be reformu-
lated as follows (cf. [Kos, p. 222]). Lat denote the set of all formal power series
x =Y o xut"™ with x,, € Z!T1. This is a free module of rank+ 1 over the ring

R of formal power series with integer coefficients. Thea= Ps(¢) is a solution
of the following linear equation ifv:

(L4131 —tB)x = .

Let M(r) be the matrix((1 + t2)I — tB) and Mo(¢) be the matrix obtained by

replacing the first column o#(z) by vp = (1,0, ... ,0)". Then Cramer’s rule
yields
detMy(1)
P =——.
6o detM ()

From [B, Ch.V, § 6, Exercice 3] we obtain
detM (1) = det(t’I — c,), detMo(r) = det(t’I — ¢),

wherec is the Coxeter element ang is the affine Coxeter element of the corre-
sponding root system. In the caSe= C,, we havd + 1 = 2n and we assume that
the numbering ofn, . .. , y; is so that the vertices of the extended Coxeter—Dynkin
diagram (which is a cycle) corresponding)i® . . . , y,—1 are not connected with
each other and the same holds for the vertices corresponding to. , y;. Note

that this differs from the numbering in [B] but agrees with the numbering used for
the discussion of the affine Coxeter element in the cases different4Afam[St].

(The caseq; is excluded in that paper.) This proves Theorem Q.

For a polynomial

¢t =[Ja—-em»,

mlh

we use the symbolic notation

= Hme.

mlh

Inthe theory of finite groups, this symbol is known &3 ame shape (cf. [CN]). The
Frame shapes, corresponding to the polynomiajs, (¢) are indicated in Table 1.

4. GeneralizationstoICIS

In this section we shall consider generalizations of Theorem 1 to certain ICIS.

Let (X, x) be an ICIS inC* given by quasihomogeneous equatigns= 0
and f = 0 of degrees/; andd, respectively. As above, le” be the Milnor
lattice andc : M — M be the monodromy operator ¢¥, x). By [GH] the
characteristic polynomial of the monodromy operator can be computed as above
using an appropriate rational functidn(7"). Similarly to the proof of Theorem 1
one can show:
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Theorem 3. Let (X, x) bea quasihomogeneous ICISin C# with weightsqi, g2, g3,
g4 and degrees d1, do. Assumethat g(z1, z2, 23, 74) = 2124 + z2z3. Define

- paH(A— 1)
Pa0) = T o gy

oM (t)
1-0

@y (1) =

Then we have ¢* (1) = ¢, (¢).

Theorem 4. Let (X, x) bea quasihomogeneous ICISin C* with weightsqi, g2, g3,
g4 and degrees d1, d». Assume that either

(A) g(z1. 22, 23. 24) = 2] + z2z3 and f (21,22, 23.24) = [f'(21.22,23) + 24
for someintegers p, g > 2 where g|do, or

(B) g(z1, 22, 23, z4) = 21 +(z2—z3)za@nd f (21, 22, 23, 24) = Az} +22(z3—24)
for somea € C,a # 0, 1, and someinteger ¢ > 2and p := 2.

Define
d d-
50y s PAOA= DI A7)
(1= 1)2(L— 1)L — (%)
1 _ 4P
¢’1bv1(t) - om(t)(L—19)

A - P11 —¢tpa)ypa)”
Then we have ¢ (1) = ¢, (¢).

Note that in the casg = 2, p|q, the polynomiablbw (t) in Theorem 4 reduces
to the corresponding polynomial of Theorem 3.

Incase (A) of Theorem 4 X, x) is ap-fold suspension and we use the following
result which can be derived from [ESt, Theorem 10]. 0&t0) be an ICIS inC+2
of dimensionn given by a map gernf = (g, f) : (C"t2,0) — (C2,0). Let
X' = ¢g~1(0) and assume thatX’, 0) is an isolated singularity. Lep € N,
p > 2. Thep-fold suspension of (X, 0) is the ICIS(X, 0) defined byF = (g, f) :
(C"2 x C,0) — (C?,0) whereg(y,z) = g(y) and f(y,z) = f(y) + z? for
(y,2) € C"T2 x C. Let gy, Dy andgy; be the characteristic polynomials of the
monodromy operators of the singulariti€s, 0), (X', 0), and(X, 0) respectively.
Write

ou() =[Ja—1mr, ¢y, =]]a- %

mlh k|h'

By [ESt, loc.cit.] we have

- (1 — ¢m-p)y(m.p)xm N
¢M(t) = l_[ (l _ tm))(m l_[(l -1 ) P

mlh klh'

In case (B),X, x) is a Brieskorn-Hamm ICIS. A Brieskorn-Hamm ICIS is a
singularity(Vg (w1, ... , wy), 0) (for integersws, ... , w,, w; > 1,n > 3), where

Ve(wi, ..., wy,) ::{ZE(C”|b,'1le+...+binz}f" =0,i=1..., n—2}
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Table 2. Simply elliptic ICIS

Name | {g; b;} Weights w; M TA
Eg | (11} 1,2,3/6 2,36 |2.3.6/1|1-6/2-3
E7 | {12} 1,1,2/4 2,44 | 2-42)1 4/2
Es | {13} 1,1,1/3 3,33 331 3/1
Ds | (L4} | 1,1,1,1/22]2222 24/1 22/12

andB = (b;;) is a sufficiently generaln — 2) x n-matrix of complex numbers. In

our casg X, x) is analytically isomorphic to the singularity’z (¢, 2, 2, 2), 0) for

a suitable matrixB. The orbit invariants of a Brieskorn—Hamm ICIS are given in
[NR, Theorem 2.1] and the characteristic polynomial of the monodromy operator
is computed in [H].

Example 1. Let (X, x) be a simply elliptic ICIS. Ther(X, x) is one of the sin-
gularities indicated in Table 2 (cf. [Sal]). Let, ... , g, be the weights and

be the degree of the equation(s)(&f, x). Putw; = (M% i =1,...,n. Then
(X,x) = (Vp(wy, ..., w,),0). Hence we can apply Theorem 1 or Theorem 4
if n = 3 orn = 4 respectively. We obtaiti4 (1) = (1 —1)2, ¢a(t) = pa(t),
andgy (1) = pi()ifn =3 andq’;,bw(t) = p} (1) otherwise. The polynomial
oa(t) = 1+ (b — 2)t + 12 is the characteristic polynomial of a rotation of the
Euclidian plane by the ang@— and hence of the Coxeter element corresponding
to the Coxeter graph [B]

o—4 0.
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