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1
The Krull-Remak-Schmidt Theorem
[Brief introduction here. A little history.]

§1 KRS in an additive category

Looking ahead to an application in Chapter 22, we will clutter things up

slightly by working in an additive category, rather than a category of mod-

ules. An additive category is a category A with 0-object such that (i)

HomA (M1, M2) is an abelian group for each pair M1, M2 of objects, (ii)

composition is bilinear, and (iii) every finite set of objects has a biprod-

uct. A biproduct of M1, . . . , Mm consists of an object M together with maps

ui : Mi −→ M and pi : M −→ Mi, i = 1, . . . ,m, such that piu j = δi j and

u1 p1 +·· ·+um pm = 1M . We denote the biproduct by M1 ⊕·· ·⊕Mm.

We will need an additional condition on our additive category, namely,

that idempotents split (cf. [Bas68Bas68, Chapter I, §3, p. 19]). Given an object

M and an idempotent e ∈EndA (M), we say that e splits provided there is a

factorization M
p−−→ K u−−→ M such that e = up and pu = 1K .

The reader is probably familiar with the notion of an abelian category,

that is, an additive category in which every map has a kernel and a cok-

ernel, and in which every monomorphism (respectively epimorphism) is a

kernel (respectively cokernel). Over any ring R the category R-Mod of all

left R-modules is abelian; if R is left Noetherian, then the category R-mod

of finitely generated left R-modules is abelian. It is easy to see that idem-

potents split in an abelian category. Indeed, suppose e : M −→ M is an

1



2 The Krull-Remak-Schmidt Theorem

idempotent, and let u : K −→ M be the kernel of 1M − e. Since (1M − e)e = 0,

the map e factors through u; that is, there is a map p : M −→ K satisfying

up = e. Then upu = eu = eu+ (1M − e)u = u = u1K . Since u is a mono-

morphism (as kernels are always monomorphisms), it follows that pu = 1K .

A non-zero object M in the additive category A is said to be decom-

posable if there exist non-zero objects M1 and M2 such that M ∼= M1 ⊕M2.

Otherwise, M is indecomposable. We leave the proof of the next result as

an exercise:

1.1 Proposition. Let M be a non-zero object in an additive category A ,

and let E =EndA (M).

(i) If 0 and 1 are the only idempotents of E, then M is indecomposable.

(ii) Conversely, if e = e2 ∈ E, if both e and 1− e split, and if e 6= 0,1, then

M is decomposable.

We say that the Krull-Remak-Schmidt Theorem (KRS for short) holds

in the additive category A provided

(i) every object in A is a biproduct of indecomposable objects, and

(ii) if M1⊕·· ·⊕Mm ∼= N1⊕·· ·⊕Nn, with each Mi and each N j an indecom-

posable object in A , then m = n and, after renumbering, Mi ∼= Ni for

each i.

It is easy to see that every Noetherian object is a biproduct of finitely

many indecomposable objects (cf. Exercise 1.191.19), but there are easy ex-

amples to show that (iiii) can fail. For perhaps the simplest example, let
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R = k[x, y], the polynomial ring in two variables over a field. Letting m =
Rx+R y and n= R(x−1)+R y, we get a short exact sequence

0−→m∩n−→m⊕n−→ R −→ 0,

since m+n = R. This splits, so m⊕n ∼= R ⊕ (m∩n). Since neither m nor

n is isomorphic to R as an R-module, KRS fails for finitely generated R-

modules.

This example indicates that KRS is likely to fail for modules over rings

that aren’t local. It can fail even for finitely generated modules over local

rings. An example due to R. G. Swan is in E. G. Evans’s paper [Eva73Eva73].

In Chapter 1212 we will see just how badly it can fail. G. Azumaya [Azu48Azu48]

observed that the crucial property for guaranteeing KRS is that the endo-

morphism rings of the summands be local in the non-commutative sense.

To avoid a conflict of jargon, we define a ring Λ (not necessarily commuta-

tive) to be nc-local provided Λ/J (Λ) is a division ring, where J (−) denotes

the Jacobson radical. Equivalently (cf. Exercise 1.201.20) Λ 6= {0} and J (Λ) is

exactly the set of non-units of Λ. It is clear from Proposition 1.11.1 that any

object with nc-local endomorphism ring must be indecomposable.

We’ll model our proof of KRS after the proof of unique factorization in

the integers, by showing that an object with nc-local endomorphism ring

behaves like a prime element in an integral domain. We’ll even use the

same notation, writing “M | N”, for objects M and N, to indicate that there

is an object Z such that N ∼= M⊕Z. Our inductive proof depends on direct-

sum cancellation ((iiii) below), analogous to the fact that mz = my =⇒ z = y

for non-zero elements m, z, y in an integral domain. Later in the chap-

ter (Corollary 1.151.15) we’ll prove cancellation for arbitrary finitely generated
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modules over a local ring, but for now we’ll prove only that objects with

nc-local endomorphism rings can be cancelled.

1.2 Lemma. Let A be an additive category in which idempotents split. Let

M, X , Y , and Z be objects of A , let E = EndA (M), and assume that E is

nc-local.

(i) If M | X ⊕Y , then M | X or M |Y (“primelike”).

(ii) If M⊕Z ∼= M⊕Y , then Z ∼=Y (“cancellation”).

Proof. We’ll prove (ii) and (iiii) sort of simultaneously. In (ii) we have an object

Z such that M⊕Z ∼= X ⊕Y . In the proof of (iiii) we set X = M and again get

an isomorphism M⊕Z ∼= X ⊕Y . Put J =J (E), the set of non-units of E.

Choose reciprocal isomorphisms ϕ : M ⊕ Z −→ X ⊕Y and ψ : X ⊕Y −→
M⊕Z. Write

ϕ=
α β

γ δ

 and ψ=
µ ν

σ τ

 ,

where α : M −→ X , β : Z −→ X , γ : M −→Y , δ : Z −→Y , µ : X −→ M, ν : Y −→
M, σ : X −→ Z and τ : Y −→ Z. Since ψϕ = 1M⊕Z =

[
1M 0
0 1Z

]
, we have µα+

νγ = 1M . Therefore, as E is local, either µα or νγ must be outside J and

hence an automorphism of M. Assuming that µα is an automorphism, we

will produce an object W and maps

M u−−→ X
p−−→ M W v−−→ X

q−−→W

satisfying pu = 1M , pv = 0, qv = 1W , qu = 0, and up+ vq = 1X . This will

show that X = M⊕W . (Similarly, the assumption that νγ is an isomorphism

forces M to be a direct summand of Y .)
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Letting u =α, p = (µα)−1µ and e = up ∈EndA (X ), we have pu = 1M and

e2 = e. By hypothesis, the idempotent 1−e splits, so we can write 1−e = vq,

where X
q−−→ W v−−→ X and qv = 1W . From e = up and 1− e = vq, we get

the equation up + vq = 1X . Moreover, qu = (qv)(qu)(pu) = q(vq)(up)u =
q(1− e)eu = 0; similarly, pv = pupvqv = pe(1− e)v = 0. We have verified all

of the required equations, so X = M⊕W . This proves (ii).

To prove (iiii) we assume that X = M. Suppose first that α is a unit of E.

We use α to diagonalize ϕ: 1 0

−γα−1 1

α β

γ δ

1 −α−1β

0 1

=
α 0

0 −γα−1β+δ


Since all the matrices on the left are invertible, so must be the one on the

right, and it follows that −γα−1β+δ : Z −→Y is an isomorphism.

Suppose, on the other hand, that α ∈ J. Then νγ ∉ J (as µα+νγ= 1M),

and it follows that α+νγ ∉ J. We define a new map

ψ′ =
1M ν

σ τ

 : M⊕Y −→ M⊕Z ,

which we claim is an isomorphism. Assuming the claim, we can diagonalize

ψ′ as we did ϕ, obtaining, in the lower-right corner, an isomorphism from

Y onto Z, and finishing the proof. To prove the claim, we use the equation

ψϕ= 1M⊕Z to get

ψ′ϕ=
α+νγ β+νγ

0 1Z

 .

As α+ νγ is an automorphism of M, ψ′ϕ is clearly an automorphism of

M⊕Z. Therefore ψ′ = (ψ′ϕ)ϕ−1 is an isomorphism.
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1.3 Theorem (Krull-Remak-Schmidt-Azumaya). Let A be an additive cat-

egory in which every idempotent splits. Let M1, . . . , Mm and N1, . . . , Nn be

indecomposable objects of A , with M1 ⊕ ·· · ⊕ Mm ∼= N1 ⊕ ·· · ⊕ Nn. Assume

that EndA (Mi) is nc-local for each i. Then m = n and, after renumbering,

Mi ∼= Ni for each i.

Proof. We use induction on m, the case m = 1 being trivial. Assuming m>

2, we see that Mm | N1⊕·· ·⊕Nn. By (ii) of Lemma 1.21.2, Mm | N j for some j; by

renumbering, we may assume that Mm | Nn. Since Nn is indecomposable

and Mm 6= 0, we must have Mm ∼= Nn. Now (iiii) of Lemma 1.21.2 implies that

M1 ⊕ ·· ·⊕ Mm−1
∼= N1 ⊕ ·· ·⊕ Nn−1, and the inductive hypothesis completes

the proof.

Azumaya [Azu48Azu48] actually proved the infinite version of Theorem 1.31.3: If⊕
i∈I Mi ∼= ⊕

j∈J N j and the endomorphism ring of each Mi is nc-local, and

each N j is indecomposable, then there is a bijection σ : I −→ J such that

Mi ∼= Nσ(i) for each i. (Cf. [Fac98Fac98, Chapter 2].)

We want to find some situations where indecomposables automatically

have nc-local endomorphism rings. It is well known that idempotents lift

modulo any nil ideal. A typical proof of this fact actually yields the follow-

ing stronger result, which we will use in the next section.

1.4 Proposition. Let I be a two-sided ideal of a (possibly non-commutative)

ring Λ, and let e be an idempotent of Λ/I. Given any positive integer n, there

is an element x ∈Λ such that x+ I = e and x ≡ x2 (mod In).

Proof. Start with an arbitrary element u ∈ Λ such that u+ I = e, and let

v = 1−u. In the binomial expansion of (u+ v)2n−1, let x be the sum of the
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first n terms: x = u2n−1+·· ·+(2n−1
n−1

)
unvn−1. Putting y= 1−x (the other half

of the expansion), we see that x−x2 = xy ∈Λ(uv)nΛ. Since uv = u(1−u) ∈ I,

we have x− x2 ∈ In.

Here is an easy consequence, which will be needed in Chapter 22:

1.5 Corollary. Let M be an indecomposable object in an additive category

A . Assume that idempotents split in A . If E := EndA (M) is left or right

Artinian, then E is nc-local.

Proof. Since M is indecomposable, E has no non-trivial idempotents. Since

J (E) is nilpotent, Proposition 1.41.4 implies that E/J (E) has no idempotents

either. It follows easily from the Wedderburn–Artin Theorem [Lam91Lam91,

(3.5)] that E/J (E) is a division ring, whence nc-local.

§2 KRS over Henselian rings

We now proceed to prove KRS for finitely generated modules over complete

and, more generally, Henselian local rings. Here we define a local ring

(R,m,k) to be Henselian provided, for every module-finite R-algebra Λ (not

necessarily commutative), each idempotent of Λ/J (Λ) lifts to an idempo-

tent of Λ. For the classical definition of “Henselian” in terms of factoriza-

tion of polynomials, and for other equivalent conditions, see Theorem A.26A.26.

1.6 Lemma. Let R be a commutative ring and Λ a module-finite R-algebra

(not necessarily commutative). Then ΛJ (R)⊆J (Λ).

Proof. Let f ∈ΛJ (R). We want to show that Λ(1−λ f )=Λ for every λ ∈Λ.

Clearly Λ(1−λ f )+ΛJ (R)=Λ, and now NAK completes the proof.
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1.7 Theorem. Let (R,m,k) be a Henselian local ring, and let M be an in-

decomposable finitely generated R-module. Then EndR(M) is nc-local. In

particular, KRS holds for the category of finitely generated modules over a

Henselian local ring.

Proof. Let E = EndR(M) and J = J (E). Since E is a module-finite R-

algebra (cf. Exercise 1.211.21), Lemma 1.61.6 implies that mE ⊆ J and hence that

E/J is a finite-dimensional k-algebra. It follows that E/J is semisimple

Artinian. Moreover, since E has no non-trivial idempotents, neither does

E/J. By the Wedderburn–Artin Theorem [Lam91Lam91, (3.5)], E/J is a division

ring.

1.8 Corollary (Hensel’s Lemma). Every complete local ring is Henselian.

Proof. Let (R,m,k) be a complete local ring, let Λ be a module-finite R-

algebra, and put J = J (Λ). Again, mΛ ⊆ J, and J/mΛ is a nilpotent ideal

of Λ/mΛ (since Λ/mΛ is Artinian). By Proposition 1.41.4 we can lift each idem-

potent of Λ/J to an idempotent of Λ/mΛ. Therefore it will suffice to show

that every idempotent e of Λ/mΛ lifts to an idempotent of Λ. Using Propo-

sition 1.41.4, we can choose, for each positive integer n, an element xn ∈ Λ
such that xn +mΛ = e and xn ≡ x2

n (mod mnΛ). (Of course mnΛ = (mΛ)n.)

We claim that (xn) is a Cauchy sequence for the mΛ-adic topology on Λ.

To see this, let n be an arbitrary positive integer. Given any m > n, put

z = xm+xn−2xmxn. Then z ≡ z2 (mod mnΛ). Also, since xm ≡ xn (mod mΛ),

we see that z ≡ 0 (mod mΛ), so 1− z is a unit of Λ. Since z(1− z) ∈mnΛ, it

follows that z ∈mnΛ. Thus we have

xm + xn ≡ 2xmxn, xm ≡ x2
m, xn ≡ x2

n (mod mnΛ) .
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Multiplying the first congruence, in turn, by xm and by xn, we learn that

xm ≡ xmxn ≡ xn (mod mnΛ). If, now, `> n and m> n, we see that x` ≡ xm

(mod mnΛ). This verifies the claim. Since Λ is mΛ-adically complete (cf.

Exercise 1.241.24), we let x be the limit of the sequence (xn) and check that x is

an idempotent lifting e.

1.9 Corollary. KRS holds for finitely generated modules over complete local

rings.

Henselian rings are almost characterized by the Krull-Remak-Schmidt

property. Indeed, a theorem due to E. G. Evans [Eva73Eva73] states that a local

ring R is Henselian if and only if for every module-finite commutative local

R-algebra A the finitely generated A-modules satisfy KRS.

§3 R-modules vs. R̂-modules

A major theme in this book is the study of direct-sum decompositions over

local rings that are not necessarily complete. Here we record a few results

that will allow us to use KRS over R̂ to understand R-modules.

We begin with a result due to Guralnick [Gur85Gur85] on lifting homomor-

phisms modulo high powers of the maximal ideal of a local ring. Given

finitely generated modules M and N over a local ring (R,m), we define a lift-

ing number for the pair (M, N) to be a non-negative integer e satisfying the

following property: For each positive integer f and each R-homomorphism

ξ : M/me+ f M −→ N/me+ f N, there exists σ ∈HomR(M, N) such that σ and ξ

induce the same homomorphism M/m f M −→ N/m f N. (Thus the outer and

bottom squares in the diagram below both commute, though the top square
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may not.)

M σ //

��

N

��
M/me+ f M

ξ //

��

N/me+ f N

��
M/m f M

ξ=σ // N/m f N

For example, 0 is a lifting number for (M, N) if M is projective. Lemma 1.111.11

below shows that every pair of finitely generated modules has a lifting num-

ber.

1.10 Lemma. If e is a lifting number for (M, N) and e′ > e, then e′ is also

a lifting number for (M, N).

Proof. Let f ′ be a positive integer, and let ξ : M/me′+ f ′M −→ N/me′+ f ′N be

an R-homomorphism. Put f = f ′+e′−e. Since e′+ f ′ = e+ f and e is a lifting

number, there is a homomorphism σ : M −→ N such that σ and ξ induce the

same homomorphism M/m f M −→ N/m f N. Now f > f ′, and it follows that

σ and ξ induce the same homomorphism M/m f ′M −→ N/m f ′N.

1.11 Lemma ([Gur85Gur85, Theorem A]). Every pair (M, N) of modules over a

local ring (R,m) has a lifting number.

Proof. Choose exact sequences

F1
α−−→ F0 −→ M −→ 0 ,

G1
β−−→G0 −→ N −→ 0 ,

where Fi and G i are finite-rank free R-modules. Define an R-homomorphism

Φ : HomR(F0,G0)×HomR(F1,G1) −→ HomR(F1,G0) by Φ(µ,ν) = µα−βν.
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Applying the Artin-Rees Lemma to the submodule im(Φ) of HomR(F1,G0),

we get a positive integer e such that

(1.11.1) im(Φ)∩me+ f HomR(F1,G0)⊆m f im(Φ) for each f > 0 .

Suppose now that f > 0 and ξ : M/me+ f M −→ N/me+ f N is an R-homomorphism.

We can lift ξ to homomorphisms µ0 and ν0 making the following diagram

commute:

(1.11.2)

F1/me+ f F1
α //

ν0
��

F0/me+ f F0 //

µ0
��

M/me+ f M //

ξ
��

0

G1/me+ f G1
β

// G0/me+ f G0 // N/me+ f N // 0

Now lift µ0 and ν0 to maps µ0 ∈ HomR(F0,G0) and ν0 ∈ HomR(F1,G1).

The commutativity of (1.11.21.11.2) implies that the image ofΦ(µ0,ν0) : F1 −→G0

lies in me+ f G0. Choosing bases for F1 and G0, we see that the matrix repre-

sentingΦ(µ0,ν0) has entries in me+ f , so thatΦ(µ0,ν0) ∈me+ f HomR(F1,G0).

By (1.11.11.11.1), Φ(µ0,ν0) ∈ m f im(Φ) = Φ(m f (HomR(F0,G0) × HomR(F1,G1))).

Choose (µ1,ν1) ∈ m f (HomR(F0,G0)×HomR(F1,G1)) such that Φ(µ1,ν1) =
Φ(µ0,ν0), and set (µ,ν)= (µ0,ν0)− (µ1,ν1). Then Φ(µ,ν)= 0, so µ induces an

R-homomorphism σ : M −→ N. Since µ and µ0 agree modulo m f , it follows

that σ and ξ induce the same map M/m f M −→ N/m f N.

We denote by e(M, N) the smallest lifting number for the pair (M, N).

1.12 Theorem ([Gur85Gur85, Corollary 2]). Let (R,m) be a local ring, and let M

and N be finitely generated R-modules. If r >max{e(M, N), e(N, M)} and

M/mr+1M | N/mr+1N, then M | N.
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Proof. Choose R-module homomorphisms ξ : M/mr+1M −→ N/mr+1N and

η : N/mr+1N −→ M/mr+1M such that ηξ= 1M/mr+1M . Since r is a lifting num-

ber (Lemma 1.101.10), there exist R-homomorphisms σ : M −→ N and τ : N −→
M such that σ agrees with ξ modulo m and τ agrees with η modulo m.

By Nakayama’s lemma, τσ : M −→ M is surjective and therefore, by Exer-

cise 1.271.27, an automorphism. It follows that M | N.

1.13 Corollary. Let (R,m) be a local ring and M, N finitely generated R-

modules. If M/mnM ∼= N/mnN for all n À 0, then M ∼= N.

Proof. By Theorem 1.121.12, M | N and N | M. In particular, we have surjec-

tions N α−−→ M and M
β−−→ N. Then βα is a surjective endomorphism of N

and therefore is an automorphism (cf. Exercise 1.271.27). It follows that α is

one-to-one and therefore an isomorphism.

1.14 Corollary. Let (R,m) be a local ring and (R̂,m̂) its m-adic completion.

Let M and N be finitely generated R-modules.

(i) If R̂⊗R M | R̂⊗R N, then M | N.

(ii) If R̂⊗R M ∼= R̂⊗R N , then M ∼= N.

1.15 Corollary. Let M, N and P be finitely generated modules over a local

ring (R,m). If M⊕P ∼= N ⊕P, then M ∼= N.

Proof. We have (R̂ ⊗R M)⊕ (R̂ ⊗R P) ∼= (R̂ ⊗R N)⊕ (R̂ ⊗R P). Using KRS for

complete rings (Corollary 1.81.8) we see easily that R̂ ⊗R M ∼= R̂ ⊗R N. Now

apply Corollary 1.141.14.
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Given an R-module M, let us say that two direct-sum decompositions

M ∼= M1 ⊕ ·· · ⊕ Mm and M ∼= N1 ⊕ ·· · ⊕ Nn are equivalent provided m = n

and, after a permutation, Mi ∼= Ni for each i. (We do not require that the

summands be indecomposable.)

1.16 Corollary. A finitely generated module over a local ring has, up to

isomorphism, only finitely many direct summands and, up to equivalence,

only finitely many direct-sum decompositions.

We leave the proof as an exercise.

§4 Exercises

1.17 Exercise. Prove Proposition 1.11.1: For a non-zero object M in an addi-

tive category A , and E = EndA (M), if 0 and 1 are the only idempotents of

E, then M is indecomposable. Conversely, if e = e2 ∈ E, if both e and 1− e

split, and if e 6= 0,1, then M is decomposable.

1.18 Exercise. Let M be an object in an additive category. Show that every

direct-sum (i.e., coproduct) decomposition M = M1 ⊕ M2 has a biproduct

structure.

1.19 Exercise. Let M be an object in an additive category.

(i) Suppose that M has either the ascending chain condition or the

descending chain condition on direct summands. Prove that M has

an indecomposable direct summand.
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(ii) Prove that M is a direct sum (biproduct) of finitely many indecom-

posable objects.

1.20 Exercise. Let Λ be a ring with 1 6= 0. Prove that the following condi-

tions are equivalent:

(i) Λ is nc-local.

(ii) J (Λ) is the set of non-units of Λ.

(iii) The set of non-units of Λ is closed under addition.

(Warning: In a non-commutative ring one can have non-units x and y such

that xy= 1.)

1.21 Exercise. Let M and N be finitely generated modules over a commu-

tative Noetherian ring R. Prove that HomR(M, N) is finitely generated as

an R-module.

1.22 Exercise. Let (R,m) be a local ring. Prove that the following two

conditions are equivalent:

(i) Every module-finite commutative R-algebra is a direct product of

local rings.

(ii) If Λ is a module-finite R-algebra (not necessarily commutative),

then every idempotent of Λ/J (Λ) lifts to an idempotent of E.

Hint: To see that (ii) implies (iiii), let x ∈ Λ be an arbitrary lifting of some

idempotent e ∈ΛJ (Λ). Let A = R[x], and show that J (A)= A∩J (Λ).
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1.23 Exercise. Let (R,m) be a Henselian local ring and X , Y , M finitely

generated R-modules. Let α : X −→ M and β : Y −→ M be homomorphisms

which are not split surjections. Prove that [α β] : X ⊕Y −→ M is not a split

surjection.

1.24 Exercise. Let M be a finitely generated module over a complete lo-

cal ring (R,m). Show that M is complete for the topology defined by the

submodules mnM,n> 1.

1.25 Exercise. Prove Fitting’s Lemma: Let Λ be any ring and M a Λ-

module of finite length n. If f ∈ EndΛ(M), then M = ker( f n) ⊕ f n(M).

Conclude that if M is indecomposable then every non-invertible element

of EndΛ(M) is nilpotent.

1.26 Exercise. Use Exercise 1.201.20 and Fitting’s Lemma (Exercise 1.251.25)

to prove that the endomorphism ring of any indecomposable finite-length

module is nc-local. Thus, over any ring R, KRS holds for the category of

left R-modules of finite length. (Be careful: You’re in a non-commutative

setting, where the sum of two nilpotents might be a unit! If you get stuck,

consult [Fac98Fac98, Lemma 2.21].)

1.27 Exercise. Let M be a Noetherian left Λ-module, and let f ∈EndΛ(M).

(i) If f is surjective, prove that f is an automorphism of M. (Consider

the ascending chain of submodules ker( f n).)

(ii) If f is surjective and f 2 = f , prove that f = 1M .
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1.28 Exercise. Prove Corollary 1.161.16: A finitely generated module over a

local ring has, up to isomorphism, only finitely many direct summands and,

up to equivalence, only finitely many direct-sum decompositions.



2
Dimension zero
In this chapter we prove that the zero-dimensional commutative, Noethe-

rian rings of finite representation type are exactly the Artinian principal

ideal rings. We also introduce Artinian pairs, which will be used in the

next chapter to classify the one-dimensional rings of finite Cohen-Macaulay

type. The Drozd–Roı̆ter conditions (DR1) and (DR2) are shown to be nec-

essary for finite representation type in Theorem 2.52.5, and in Theorem 2.212.21

we reduce the proof of their sufficiency to some special cases, where we can

appeal to the matrix calculations of Green and Reiner.

§1 Artinian rings with finite

Cohen-Macaulay type

A commutative Artinian ring R with finite Cohen-Macaulay type has only

finitely many indecomposable finitely generated R-modules. To see that

this condition forces R to be a principal ideal ring, and in several other

constructions of indecomposable modules, we use the following result:

2.1 Lemma. Let R be any commutative ring, n a positive integer and H the

nilpotent n×n Jordan block with 1’s on the superdiagonal and 0’s elsewhere.

If α is an n×n matrix over R and αH = Hα, then α ∈ R[H].

Proof. Let α= [
ai j

]
. Left multiplication by H moves each row up one step

and kills the bottom row, while right multiplication shifts each column to

17
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the right and kills the first column. The relation αH = Hα therefore yields

the equations ai, j−1 = ai+1, j for i, j = 1, . . . ,n, with the convention that ak` =
0 if k = n+1 or `= 0. These equations show (a) that each of the diagonals

(of slope -1) is constant and (b) that a21 = ·· · = an1 = 0. Combining (a)

and (b), we see that α is upper triangular. Letting b j be the constant on

the diagonal
[
a1, j+1 a2, j+2 . . . an− j,n

]
, for 0 6 j 6 n−1, we see that α =∑n−1

j=0 b jH j.

When R is a field (the only case we will need), there is a fancy proof: H

is “cyclic" or “ non-derogatory", that is, its characteristic and minimal poly-

nomials coincide. The centralizer of a non-derogatory matrix B is always

just R[B] (cf. [Jac75Jac75, Corollary, p. 107]).

2.2 Theorem. Let R be a Noetherian ring. These are equivalent:

(i) R is an Artinian principal ideal ring.

(ii) R has only finitely many indecomposable finitely generated modules,

up to isomorphism.

(iii) R is Artinian, and there is a bound on the number of generators

required for indecomposable finitely generated R-modules.

Under these conditions, the number of isomorphism classes of indecompos-

able finitely generated modules is exactly the length of R.

Proof. Assuming (ii), we will prove (iiii) and verify the last statement. Since

R is a product of finitely many local rings, we may assume that R is local,

with maximal ideal m. The length ` of R is the least integer t such that
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mt = 0. Since every finitely generated R-module is a direct sum of cyclic

modules, the indecomposable modules are exactly the modules R/mt,1 6

t6 `.

To see that (iiii) =⇒ (iiiiii), suppose R is not Artinian. Choose a maximal

ideal m of positive height. The ideals mt, t > 1 then form a strictly de-

scending chain of ideals (cf. Exercise 2.222.22). Therefore the R-modules R/mt

are indecomposable and, since they have different annihilators, pairwise

non-isomorphic, contradicting (iiii).

To complete the proof, we show that (iiiiii) =⇒ (ii). Again, we may as-

sume that R is local with maximal ideal m. Supposing R is not a principal

ideal ring, we will build, for every n, an indecomposable finitely generated

R-module requiring exactly n generators. By passing to R/m2, we may as-

sume that m2 = 0, so that now m is a vector space over k := R/m. Choose

two k-linearly independent elements x, y ∈m.

Fix n > 1, let I be the n× n identity matrix, and let H be the n× n

nilpotent Jordan block of Lemma 2.12.1. Put Ψ = yI + xH and M = cok(Ψ).

Since the entries ofΨ are in m, the R-module M needs exactly n generators.

To show that M is indecomposable, let f = f 2 ∈ EndR(M), and assume

that f 6= 1M . We will show that f = 0. There exist n×n matrices F and G

over R making the following diagram commute:

R(n) Ψ //

G
��

R(n) //

F
��

M //

f
��

0

R(n)
Ψ
// R(n) // M // 0

The equation FΨ =ΨG yields yF + xFH = yG + xHG. Since x and y are

linearly independent, we obtain, after reducing all entries of F, G and H
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modulo m, that F = G and F H = H G. Therefore F and H commute, and

by Lemma 2.12.1 F is an upper-triangular matrix with constant diagonal.

Now f is not surjective, by Exercise 1.271.27, and therefore neither is F.

By NAK, F is not surjective, so F must be strictly upper triangular. But

then F
n = 0, and it follows that im( f ) = im( f n) ⊆mM. Now NAK implies

that 1− f is surjective. Since 1− f is idempotent, Exercise 1.271.27 implies that

f = 0.

This construction is far from new. See, for example, the papers of Hig-

man [Hig54Hig54], Heller and Reiner [HR61HR61], and Warfield [War70War70]. Similar

constructions can be found in the classification, up to simultaneous equiv-

alence, of pairs of matrices. (Cf. Dieudonné’s discussion [Die46Die46] of the work

of Kronecker [Kro74Kro74] and Weierstrass [Wei68Wei68].)

§2 Artinian pairs

Here we introduce the main computational tool for building indecompos-

able maximal Cohen-Macaulay modules over one-dimensional rings.

2.3 Definition. An Artinian pair is a module-finite extension (A ,→ B) of

commutative Artinian rings. Given an Artinian pair A = (A ,→ B), an A-

module is a pair (V ,→ W), where W is a finitely generated projective B-

module and V is an A-submodule of W with the property that BV = W .

A morphism (V1 ,→ W1) −→ (V2 ,→ W2) of A-modules is a B-homomorphism

from W1 to W2 that carries V1 into V2. We say that the A-module (V ,→W)

has constant rank n provided W ∼= B(n).
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With direct sums defined in the obvious way, we get an additive cate-

gory A-mod. To see that Theorem 1.31.3 applies in this context, we note first

that the endomorphism ring of every A-module is a module-finite A-algebra

and therefore is left Artinian. Next, suppose ε is an idempotent endomor-

phism of an A-module X = (V ,→ W). Then Y = (ε(V ) ,→ ε(W)) is also an

A-module. The projection p : X−→Y and inclusion u : Y ,→X give a factor-

ization ε= up, with pu = 1Y. Thus idempotents split in A-mod. Combining

Theorem 1.31.3 and Corollary 1.51.5, we obtain the following:

2.4 Theorem. Let A be an Artinian pair, and let M1, . . . ,Ms and N1, . . . ,Nt

be indecomposable A-modules such that M1 ⊕·· ·⊕Ms ∼= N1 ⊕·· ·⊕Nt. Then

s = t, and, after renumbering, Mi ∼=Ni for each i.

We say A has finite representation type provided there are, up to isomor-

phism, only finitely many indecomposable A-modules.

Our main result in this chapter is Theorem 2.52.5, which gives necessary

conditions for an Artinian pair to have finite representation type. As we

will see in the next chapter, these conditions are actually sufficient for finite

representation type. The conditions were introduced by Drozd and Roı̆ter

[DR67DR67] in 1966, and we will refer to them as the Drozd–Roı̆ter conditions.

(See the historical remarks in Section §2§2 of Chapter 33.)

2.5 Theorem. Let A = (A ,→ B) be an Artinian pair in which A is local,

with maximal ideal m and residue field k. Assume that at least one of the

following conditions fails:

(dr1) dimk (B/mB)6 3
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(dr2) dimk

(
mB+ A
m2B+ A

)
6 1.

Let n be an arbitrary positive integer. Then there is an indecomposable A-

module of constant rank n. Moreover, if |k| is infinite, there are at least |k|
pairwise non-isomorphic indecomposable A-modules of rank n.

2.6 Remark. If k is infinite then the number of isomorphism classes of A-

modules is at most |k|. To see this, note that there are, up to isomorphism,

only countably many finitely generated projective B-modules W . Also, since

any such W has finite length as an A-module, we see that |W | 6 |k| and

hence that W has at most |k| A-submodules V . It follows that the number

of possibilities for (V ,→W) is bounded by ℵ0|k| = |k|.

The proof of Theorem 2.52.5 involves a basic construction and a dreary

analysis of the many cases that must be considered in order to implement

the construction.

2.7 Assumptions. Throughout the rest of this chapter, A = (A ,→ B) is an

Artinian pair in which A is local, with maximal ideal m and residue field

k.

The next three results will allow us to pass to a more manageable Ar-

tinian pair k ,→ D, where D is a suitable finite-dimensional k-algebra. The

proofs of the first two lemmas are exercises.

2.8 Lemma. Let C be a subring of B containing A. The functor (V ,→W) 

(V ,→ B⊗C W) from (A ,→ C)-mod to (A ,→ B)-mod is faithful and full. The

functor is injective on isomorphism classes and preserves indecomposability.
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2.9 Lemma. Let I be a nilpotent ideal of B, and put E = ( A+I
I ,→ B

I
)
. The

functor (V ,→ W) 
(V+IW

IW ,→ W
IW

)
, from A-mod to E-mod, is surjective on

isomorphism classes and reflects indecomposable objects.

2.10 Proposition. Let A ,→ B be an Artinian pair for which either (dr1) or

(dr2) fails. There is a ring C between A and B such that, with D = C/mC,

we have either

(i) dimk(D)> 4, or

(ii) D contains elements α and β such that {1,α,β} is linearly indepen-

dent over k and α2 =αβ=β2 = 0.

Proof. If (dr1) fails, we take C = B. Otherwise (dr2) fails, and we put C =
A+mB. Since dimk

(
mB+A
m2B+A

)
> 2, we can choose elements x, y ∈mB such that

the images of x and y in mB+A
m2B+A are linearly independent. Since D := CmC

maps onto mB+A
m2B+A , the images α,β ∈ D of x, y are linearly independent, and

they obviously satisfy the required equations.

Now let’s begin the proof of Theorem 2.52.5. We have an Artinian pair A ,→
B, where (A,m,k) is local and either (dr1) or (dr2) fails. We want to build

indecomposable A-modules V ,→W , with W = B(n). By Lemmas 2.82.8 and 2.92.9,

we can pass to the Artinian pair k ,→ D provided by Proposition 2.102.10. We

fix a positive integer n. Our goal is to build an indecomposable (k ,→ D)-

module (V ,→ D(n)) and, if k is infinite, a family {(Vt ,→ D(n))}t∈T of pairwise

non-isomorphic indecomposable (k ,→ D)-modules, with |T| = |k|.

2.11 Construction. We describe a general construction, a modification of

constructions found in [DR67DR67, Wie89Wie89, ÇWW95ÇWW95]. Let n be a fixed positive
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integer, and suppose we have chosen α,β ∈ D with {1,α,β} linearly inde-

pendent over k. Let I be the n× n identity matrix, and let H the n× n

nilpotent Jordan block in Lemma 2.12.1. For t ∈ k, we consider the n×2n ma-

trix Ψt =
[
I | αI +β(tI +H)

]
. Put W = D(n), viewed as columns, and let

Vt be the k-subspace of W spanned by the columns of Ψt.

Suppose we have a morphism (Vt ,→W)−→ (Vu ,→W), given by an n×n

matrix ϕ over D. The requirement that ϕ(V ) ⊆ V says there is a 2n×2n

matrix θ over k such that

(2.11.1) ϕΨt =Ψuθ.

Write θ = [ A B
P Q

]
, where A,B,P,Q are n×n blocks. Then (2.11.12.11.1) gives the

following two equations:

ϕ= A+αP +β(uI +H)P

αϕ+βϕ(tI +H)= B+αQ+β(uI +H)Q
(2.11.2)

Substituting the first equation into the second and combining terms, we

get a mess:

(2.11.3) −B+α(A−Q)+β(tA−uQ+ AH−HQ)+ (α+ tβ)(α+uβ)P

+αβ(HP +PH)+β2(HPH+ tHP +uPH)= 0.

2.12 Case. D satisfies (iiii). (There exist α,β ∈ D such that {1,α,β} is linearly

independent and α2 =αβ=β2 = 0.)

From (2.11.32.11.3) and the linear independence of {1,α,β}, we get the equa-

tions

(2.12.1) B = 0, A =Q, A((t−u)I +H)= HA.
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If ϕ is an isomorphism, we see from (2.11.22.11.2) that A has to be invertible.

If, in addition, t 6= u, the third equation in (2.12.12.12.1) gives a contradiction,

since the left side is invertible and the right side is not. Thus (Vt ,→ W) 6∼=
(Vu ,→ W) if t 6= u. To see that (Vt ,→ W) is indecomposable, we take u = t

and suppose that ϕ, as above, is idempotent. Squaring the first equation

in (2.11.22.11.2), and comparing “1" and “A" terms, we see that A2 = A and P =
AP +P A. But equation (2.12.12.12.1) says that AH = HA, and it follows that A

is in k[H], which is a local ring. Therefore A = 0 or I, and either possibility

forces P = 0. Thus ϕ = 0 or 1, as desired. Thus we may take T = k in this

case.

2.13 Assumptions. Having dealt with the case (iiii), we assume from now

on that (ii) holds, that is dimk(D)> 4.

2.14 Case. D has an element α such that {1,α,α2} is linearly independent.

Choose any element β ∈ D such that {1,α,β,α2} is linearly independent.

We let E be the set of elements t ∈ k for which {1,α,β, (α+ tβ)2} is linearly

independent. Then E is non-empty (since it contains 0). Also, E is open in

the Zariski topology on k and therefore is cofinite in k. Moreover, if t ∈ E,

the set E t = {u ∈ E | {1,α,β, (α+ tβ)(α+uβ)} is linearly independent} is non-

empty and cofinite in E. We will show that (Vt ,→W) is indecomposable for

each t ∈ E, and that (Vt ,→ W) 6∼= (Vu ,→ W) if t and u are distinct elements

of E with u ∈ E t. Assuming this has been done we can complete the proof

in this case as follows: Define an equivalence relation ∼ on E by declaring

that t ∼ u if and only if (Vu ,→ D) ∼= (Vt ,→ D), and let T be a set of repre-

sentatives. Then T 6= ;, and (Vt ,→ W) is indecomposable for each t ∈ T.
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Moreover, each equivalence class is finite and E is cofinite in k. Therefore,

if k is infinite, it follows that |T| = |k|.
Suppose t ∈ E and u ∈ E t (possibly with t = u), and let ϕ : (Vt ,→ W) −→

(Vu ,→ W) be a homomorphism. With the notation of (2.11.12.11.1)–(2.11.32.11.3), one

can show, by descending induction on i and j, that H iPH j = 0 for all i, j =
0, . . . ,n. (Cf. Exercise 2.282.28.) Therefore P = 0, and we again obtain equa-

tions (2.12.12.12.1). The rest of the proof proceeds exactly as in Case 2.122.12.

The following lemma, whose proof is left as an exercise, is useful in

treating the remaining case, when every element of D satisfies a monic

quadratic equation over k:

2.15 Lemma. Let ` be a field, and let A be a finite-dimensional `-algebra

with dim`(A) > 3. Assume that {1,α,α2} is linearly dependent over ` for

every α ∈ A. Write A = A1 ×·· ·× As, where each A i is local, with maximal

ideal mi. Let N=m1 ×·· ·×ms, the nilradical of A.

(i) If x ∈N, then x2 = 0.

(ii) There are at least |`| distinct rings between ` and A.

(iii) If s> 2, then A i/mi = ` for each i.

(iv) If s> 3 then |`| = 2

2.16 Assumptions. From now on, we assume that {1,α,α2} is linearly

dependent over k for each α ∈ D (and that dimk(D) > 4). We write D =
D1 × ·· · ×Ds, where each D i is local, with maximal ideal mi; we let N =
m1 ×·· ·×mt, the nilradical of D.
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2.17 Case. dimk(N)> 2

Choose α,β ∈N so that {1,α,β} is linearly independent. Then α2 =β2 =
0 by Lemma 2.152.15. If {1,α,β,αβ} is linearly independent, we can use the

mess (2.11.32.11.3) to complete the proof. Otherwise, we can write αβ= a+bα+cβ

with a,b, c ∈ k. Multiplying this equation first by α and then by β, we learn

that αβ= 0, and we are in Case 2.122.12.

2.18 Assumption. We assume from now on that dimk(N)6 1.

From Lemma 2.152.15 we see that s (the number of components) cannot be

2. Also, if s = 3, then, after renumbering if necessary, we have N=m1×0×0

with m1 6= 0. Now put α = (x,1,0), where x is a non-zero element of m1,

and check that {1,α,α2} is linearly independent, contradicting Assump-

tion 2.162.16. We have proved that either s = 1 or s> 4.

2.19 Case. s = 1. (D is local.)

By Assumptions 2.132.13 and 2.182.18, K := D/N must have degree at least

three over k. On the other hand, Assumption 2.162.16 implies that each ele-

ment of K has degree at most 2 over k. Therefore K /k is not separable,

char(k)= 2, α2 ∈ k for each α ∈ K , and [K : k]> 4. Now choose two elements

α,β ∈ K such that [k(α,β) : k] = 4. By Lemma 2.92.9 we can safely pass to the

Artinian pair (k,K) and build our modules there; for compatibility with the

notation in Construction 2.112.11, we rename K and call it D. Now we have

α,β ∈ D such that {1,α,β,αβ} is linearly independent and both α2 and β2

are in k. If, now, ϕ : (Vt ,→W)−→ (Vu ,→W) is a morphism, the mess (2.11.32.11.3)
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provides the following equations:

B = (α2 + tuβ2)P +β2(HPH+ tHP +uPH), A =Q,

A((t−u)I +H)=HA, (t+u)P +HP +PH = 0.
(2.19.1)

Suppose t 6= u. Then t+ u 6= 0 (characteristic 2), and the fourth equation

shows, via a descending induction argument as in Case 2.142.14, that P = 0.

(Cf. Exercise 2.282.28.) Now the third equation shows, as in Case 2.122.12, that ϕ

is not an isomorphism.

Now suppose t = u and ϕ2 = ϕ. Using the third and fourth equations

of (2.19.12.19.1), the fact that char(k) = 2, and Lemma 2.12.1, we see that both A

and P are in k[H]. In particular, A,P and H commute, and, since we are in

characteristic two, we can square both sides of (2.11.22.11.2) painlessly. Equating

ϕ and ϕ2, we see that P = 0 and A = A2. Since k[H] is local, A = 0 or I.

One case remains:

2.20 Case. s> 4.

By Lemma 2.152.15, |k| = 2 and D i/mi = k for each i. By Lemma 2.92.9 we

can forget about the radical and assume that D = k × ·· · × k (at least 4

components). Alas, this case does not yield to our general construction, but

E. C. Dade’s construction [Dad63Dad63] saves the day. (Dade works in greater

generality, but the main idea is visible in the computation that follows.

The key issue is that D has at least 4 components.)

Put W = D(n), and let V be the k-subspace of W consisting of all ele-

ments (x, y, x+ y, x+ H y, x, . . . , x), where x and y range over k(n). (Again,

H is the nilpotent Jordan block with 1’s on the superdiagonal.) Clearly

DW = V . To see that (V ,→ W) is indecomposable, suppose ϕ is an endo-
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morphism of (V ,→W), that is, a D-endomorphism of W carrying V into V .

We write ϕ= (α,β,γ,δ,ε5, . . . ,εs), where each component is an n×n matrix

over k. Since ϕ((x,0, x, x, x, . . . , x)) and ϕ((0, y, y,H y,0, . . . ,0)) are in V , there

are matrices σ,τ,ξ,η satisfying the following two equations for all x ∈ k(n):

(αx, 0, γx, δx, ε5x, . . . , εsx)= (σx, τx, (σ+τ)x, (σ+Hτ)x, σx, . . . , σx)

(0, βy, γy, δH y, 0, . . . , 0)= (ξy, ηy, (ξ+η)y, (ξ+Hη)y, ξy, . . . , ξy)

The first equation shows that ϕ= (α, α, . . . , α), and the second then shows

that αH = Hα. By Lemma 2.12.1 α ∈ k[H]∼= k[x]/(xn), which is a local ring. If,

now, ϕ2 =ϕ, then α2 = α, and hence α= 0 or In. This shows that (V ,→ W)

is indecomposable and completes the proof of Theorem 2.52.5.

We close this chapter with the following partial converse to Theorem 2.52.5.

This is due to Drozd–Roı̆ter [DR67DR67] and Green-Reiner [GR78GR78] in the special

case where the residue field A/m is finite. In this case they reduced to the

situation where where A/m −→ B/n is an isomorphism for each maximal

ideal n of B. In this situation they showed, via explicit matrix decomposi-

tions, that conditions (dr1) and (dr2) imply that A has finite representation

type. These matrix decompositions depend only on the fact that the residue

fields of B are all equal to k, and not on the fact that k is finite. The gen-

eralization stated here is due to R. Wiegand [Wie89Wie89] and depends crucially

on the matrix decompositions in [GR78GR78].

2.21 Theorem. Let A = (A ,→ B) be an Artinian pair in which A is local,

with maximal ideal m and residue field k. Assume that B is a principal

ideal ring and either
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(i) the field extension k ,→ B/n is separable for every maximal ideal n of

B, or

(ii) B is reduced (hence a direct product of fields).

If A satisfies (dr1) and (dr2), then A has finite representation type.

Proof. As in [GR78GR78] we will reduce to the case where the residue fields of

B are all equal to k. By (d1) B has at most three maximal ideals, and at

most one of these has a residue field ` properly extending k. Moreover,

[` : k] 6 3. Assuming ` 6= k, we choose a primitive element θ for `/k, let

f ∈ A[T] be a monic polynomial reducing to the minimal polynomial for θ

over k, and pass to the Artinian pair A′ = (A′ ,→ B′), where A′ = A[T]/( f )

and B′ = B⊗A A′ = B[T]/( f ). Each of the conditions (ii), (iiii) guarantees that

B′ is a principal ideal ring.

One checks that the Drozd–Roı̆ter conditions ascend to A′, and finite

representation type descends. (This is not difficult; the details are worked

out in [Wie89Wie89].) If k(θ)/k is a separable, non-Galois extension of degree 3,

then B′ has a residue field that is separable of degree 2 over k, and we

simply repeat the construction. Thus it suffices to prove the theorem in the

case where each residue field of B is equal to k. For this case, we appeal to

the matrix decompositions in [GR78GR78], which work perfectly well over any

field.
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§3 Exercises

2.22 Exercise. Let m be a maximal ideal of a Noetherian ring R, and

assume that m is not a minimal prime ideal of R. Then {mt | t > 1} is an

infinite strictly descending chain of ideals.

2.23 Exercise. Let (R,m,k) be a commutative local Artinian ring, and as-

sume k is infinite.

(i) If G is a set of pairwise non-isomorphic finitely generated R-modules,

prove that |G |6 |k|.

(ii) Suppose R is not a principal ideal ring. Modify the proof of The-

orem 2.22.2 to show that for each n > 1 there is a family Gn of pair-

wise non-isomorphic indecomposable modules, all requiring exactly

n generators, with |Gn| = |k|.

2.24 Exercise. Prove Lemmas 2.82.8 and 2.92.9.

2.25 Exercise. Prove Lemma 2.152.15. (For the second assertion, suppose

there are fewer than |`| intermediate rings. Mimic the proof of the primi-

tive element theorem to show that D = k[α] for some α.)

2.26 Exercise. With E and E t as in 2.142.14, prove that |k−E|6 1 and that

|E−E t|6 1.

2.27 Exercise. Let A= (A ,→ B) be an Artinian pair, and let C1 and C2 be

distinct rings between A and B. Prove that the A-modules (C1 ,→ B) and

(C2 ,→ B) are not isomorphic.
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2.28 Exercise. Work out the details of the descending induction argu-

ments in Case 2.142.14 and Case 2.192.19. (In Case 2.142.14, assuming H i+1γH j = 0

and H iγH j+1 = 0, multiply the mess (2.11.32.11.3) by H i on the left and H j on

the right. In Case 2.192.19, use the fourth equation in (2.19.12.19.1) and do the same

thing.
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Dimension one
In this chapter we give necessary and sufficient conditions for a one-dimensional

local ring to have finite Cohen-Macaulay type. In the main case of inter-

est, where the completion R̂ is reduced, these conditions are simply the

liftings of the Drozd–Roı̆ter conditions (dr1) and (dr2) of Chapter 22. Ne-

cessity of these conditions follows easily from Theorem 2.52.5. To prove that

they are sufficient, we will reduce the problem to consideration of some

special cases, where we can appeal to the matrix decompositions of Green

and Reiner [GR78GR78] and, in characteristic two, Çimen [Çim94Çim94, Çim98Çim98].

Throughout this chapter (R,m,k) is a one-dimensional local ring (with

maximal ideal m and residue field k). Let K denote the total quotient ring

{non-zerodivisors}−1R and R the integral closure of R in K . If R is reduced

(hence CM), then R = R/p1 ×·· ·×R/ps, where the pi are the minimal prime

ideals of R, and each ring R/pi is a semilocal principal ideal domain.

When R is CM, a finitely generated R-module M is MCM if and only if

it is torsion-free, that is, the torsion submodule is zero.

We say that a finitely generated R-module M has constant rank n pro-

vided K ⊗R M ∼= K (n). If R is CM, then K = Rp1 × ·· · ×Rps ; hence M has

constant rank if and only if Mp
∼= R(n)

p for each minimal prime ideal p. (If R

is not CM, then K = R, so free modules are the only modules with constant

rank.)

The main result in this chapter is Theorem 3.103.10, which states that a

one-dimensional local ring (R,m,k), with reduced completion , has finite

CM type if and only if R satisfies the following two conditions:

33



34 Dimension one

(DR1) µR(R)6 3, and

(DR2) mR+R
R is a cyclic R-module.

The first condition just says that the multiplicity of R is at most three

(cf. Theorem A.23A.23). When the multiplicity is three we have to consider the

second condition. One can check, for example, that k[[t3, t5]] satisfies (DR2)

but that k[[t3, t7]] does not.

The case where the completion is not reduced is dealt with separately, in

Theorem 3.163.16. In particular, we find (Corollary 3.173.17) that a one-dimensional

local ring R has finite CM type if and only if its completion does. The anal-

ogous statement fails badly in higher dimension; cf. Chapter 1111. Further-

more, Proposition 3.153.15 shows that if a one-dimensional CM local ring has

finite CM type, then its completion is reduced; in particular R is an isolated

singularity, which property will appear again in Chapter 66. We also treat

the case of multiplicity two directly, without any reducedness assumption.

As a look ahead to later chapters, in §3§3 we discuss the alternative clas-

sification of finite CM type in dimension one due to Greuel and Knörrer in

terms of the ADE hypersurface singularities.

§1 Necessity of the Drozd–Roı̆ter conditions

Looking ahead to Chapter 1515, we work in a somewhat more general context

than is strictly required for Theorem 3.103.10. In particular, we will not assume

that R is reduced, and R will be replaced by a more general extension ring

S. By a finite birational extension of R we mean a ring S between R and

its total quotient ring K such that S is finitely generated as an R-module.
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3.1 Construction. Let (R,m,k) be a CM local ring of dimension one, and

let S be a finite birational extension of R. Put c = (R :R S), the conductor

of S into R. This is the largest common ideal of R and S. Set A = R/c and

B = S/c. Then the conductor square of R,→S

(3.1.1) R �
� //

����

S
π
����

A �
� // B

is a pullback diagram, that is, R = π−1(A). Since S is a module-finite ex-

tension of R contained in the total quotient ring K , the conductor contains

a non-zerodivisor (clear denominators), so that the bottom line A := (A,→B)

is an Artinian pair in the sense of Chapter 22.

Suppose that M is a MCM R-module. Then M is torsion-free, so the

natural map M −→ K⊗R M is injective. Let SM be the S-submodule of K⊗R

M generated by the image of M; equivalently, SM = (S⊗R M)/torsion. If we

furthermore assume that SM is a projective S-module, then the inclusion

M/cM,→SM/cM gives a module over the Artinian pair A,→B.

In the special case where S is the integral closure R, the situation

clarifies. Since R is a direct product of semilocal principal ideal domains,

and RM is torsion-free for any MCM R-module M, it follows that RM is

R-projective. Thus M/cM,→RM/cM is automatically a module over the

Artinian pair R/c,→R/c. We dignify this special case with the notation

Rart = (R/c,→R/c) and Mart = (McM,→RM/cM).

Now return to the case of a general finite birational extension S, and let

V ,→W be a module over the Artinian pair A= (A,→B)= (R/c,→S/c). Assume

that there exists a finitely generated projective S-module P such that W ∼=
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P/cP. (This is a real restriction; see the comments below.) We can then

define an R-module M by a similar pullback diagram

(3.1.2) M �
� //

����

P
τ
����

V �
� //W

so that M = τ−1(V ). Using the fact that BV =W , one can check that SM =
P, so that in particular M is a MCM R-module. Moreover, M/cM = V and

SM/cM = W , so that two non-isomorphic A-modules that are both liftable

have non-isomorphic liftings.

If in particular V ,→W is an A-module of constant rank, so that W ∼=
B(n) for some n, then there is clearly a projective S-module P such that

P/cP ∼=W , namely P = S(n). Furthermore, in this case M has constant rank

n over R. It follows that every A-module of constant rank lifts to a MCM

R-module of constant rank. Moreover, every A-module is a direct summand

of one of constant rank, so is a direct summand of a module extended from

R.

By analogy with the terminology “weakly liftable” of [ADS93ADS93], we say

that a module V ,→W over the Artinian pair A = R/c,→S/c is weakly ex-

tended (from R) if there exists a MCM R-module M such that V ,→W is a

direct summand of the A-module M/cM,→SM/cM. The discussion above

shows that every A-module is weakly extended from R.

Now we lift the Drozd–Roı̆ter conditions up to the finite birational ex-

tension R,→S.

3.2 Theorem. Let (R,m,k) be a local ring of dimension one, and let S be a

finite birational extension of R. Assume that either
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(i) µR(S)> 4, or

(ii) µR
(
mS+R

R
)
> 2.

Then R has infinite Cohen-Macaulay type. Moreover, given an arbitrary

positive integer n, there is an indecomposable MCM R-module M of con-

stant rank n; if k is infinite, there are at least |k| pairwise non-isomorphic

indecomposable MCM R-modules of constant rank n.

3.3 Remark. With R as in Theorem 3.23.2 and with k infinite, there are at

most |k| isomorphism classes of R-modules of constant rank. To see this, we

note that there are at most |k| isomorphism classes of finite-length modules

and that every module of finite length has cardinality at most |k|. Given

an arbitrary MCM R-module M of constant rank n, one can build an exact

sequence

0−→ T −→ M −→ R(n) −→U −→ 0,

in which both T and U have finite length. Let W be the kernel of R(n) −→U

(and the cokernel of T −→ M). Since |U |6 |k|, we see that |HomR(R(n),U)|6
|k|. Since there are at most |k| possibilities for U , we see that there are at

most |k|2 = |k| possibilities for W . Since there are at most |k| possibilities

for T, and since
∣∣Ext1

R(W ,T)
∣∣6 |k|, we see that there are at most |k| possi-

bilities for M.

Proof of Theorem 3.23.2. The assumptions imply immediately that either (dr1)

or (dr2) of Theorem 2.52.5 fails for the Artinian pair A= (R/c,→S/c). Therefore

there exist indecomposable A-modules of arbitrary constant rank n, in fact,

|k| of them if k is infinite. Each of these pulls back to R, so that there ex-

ist the same number of MCM R-modules of constant rank n for each n> 1.
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Furthermore these MCM modules are pairwise non-isomorphic. Finally, we

must show that if V ,→W is indecomposable and M is a lifting to R, then M

is indecomposable as well. Suppose M ∼= X ⊕Y . Then SM = SX ⊕SY , and

it follows that (V ,→W) is the direct sum of the A-modules (X /cX ,→SX /cX )

and (Y /cY ,→SY /cY ). Therefore either X /cX = 0 or Y /cY = 0. By NAK,

either X = 0 or Y = 0.

The requisite extension S of Theorem 3.23.2 always exists if R is CM of

multiplicity at least 4, as we now show.

3.4 Proposition. Let (R,m) be a one-dimensional CM local ring and set

e = e(R), the multiplicity of R. (See Appendix AA §2§2.) Then R has a finite

birational extension S requiring e generators as an R-module.

Proof. Let K again be the total quotient ring of R. Let Sn = (mn :K mn) for

n> 1, and put S = ⋃
n Sn. To see that this works, we may harmlessly as-

sume that k is infinite. (This is relatively standard, but see Theorem 11.1611.16

for the details on extending the residue field.) Let R f ⊆m be a principal

reduction of m. Choose n so large that

(a) mi+1 = fmi for i> n, and

(b) µR(mi)= e(R) for i> n.

Since f is a non-zerodivisor (as R is CM), it follows from (aa) that S = Sn. We

claim that S f n =mn. We have S f n = Sn f n ⊆mn. For the reverse inclusion,

let α ∈ mn. Then α
f nmn ⊆ 1

f nm2n = 1
f n f nmn = mn. This shows that α

f n ∈
Sn, and the claim follows. Therefore S ∼=mn (as R-modules), and now (bb)

implies that µ(S)= e(R).
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3.5 Remark. Observe that the proof of this Proposition shows more: for

any one-dimensional CM local ring R and any ideal I of R containing a

non-zerodivisor, there exists n > 1 such that In is projective as a module

over its endomorphism ring S = EndR(In), which is a finite birational ex-

tension of R. (Ideals projective over their endomorphism ring are called

stable in [Lip71Lip71] and [SV74SV74].) Since S is semilocal, In is isomorphic to S as

an S-module, whence as an R-module. Furthermore, n may be taken to be

the least integer such that µR(In) achieves its stable value. Sally and Vas-

concelos show in [SV74SV74, Theorem 2.5] that this n is at most max{1,e(R)−1},

where e(R) is the multiplicity of R. This will be useful in Theorem 3.183.18 be-

low.

§2 Sufficiency of the Drozd–Roı̆ter

conditions

In this section we will prove, modulo the matrix calculations of Green and

Reiner [GR78GR78] and Çimen [Çim94Çim94, Çim98Çim98], that the Drozd–Roı̆ter condi-

tions imply finite CM type. Recall that a local ring (R,m) is said to be

analytically unramified provided its completion R̂ is reduced. The next re-

sult gives an equivalent condition—finiteness of the integral closure—for

one-dimensional CM local rings.

3.6 Theorem ([Kru30Kru30]). Let (R,m) be a local ring, and let R be the integral

closure of R in its total quotient ring.
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(i) ([Nag58Nag58] If R is analytically unramified, then R is finitely generated

as an R-module.

(ii) ([Kru30Kru30]) Suppose R is one-dimensional and CM. If R is finitely

generated as an R-module then R is analytically unramified.

Proof. See [Mat86Mat86, p. 263] or [HS06HS06, 4.6.2] for a proof of (ii). With the

assumptions in (iiii), we’ll show first that R is reduced. Suppose x is a non-

zero nilpotent element of R and t a non-zerodivisor in m. Then

R
x
t
⊂ R

x
t2 ⊂ R

x
t3 ⊂ ·· ·

is an infinite strictly ascending chain of R-submodules of R, contradicting

finiteness of R. Now assume that R is reduced and let p1 . . . ,ps be the

minimal prime ideals of R. There are inclusions

R ,→ R/p1 ×·· ·×R/ps ,→ R/p1 ×·· ·×R/ps = R .

Each of the rings R/pi is a semilocal principal ideal domain. Since R is

a finitely generated R-module, the m-adic completion of R is the product

of the completions of the localizations of the R/pi at their maximal ideals.

In particular, the m-adic completion of R is a direct product of discrete

valuation rings. The flatness of R̂ implies that R̂ is contained in the m-adic

completion of R, hence is reduced.

In the proof of part (iiii) of the following proposition we encounter the

subtlety mentioned in Construction 3.13.1: not every projective module over

B is of the form P/cP for a projective S-module. This is because R might not

be a direct product of local rings. For example, the integral closure R of the
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ring R =C[x, y](x,y)/(y2− x3− x2) has two maximal ideals (cf. Exercise 3.223.22),

and so R/c is a direct product B1 ×B2 of two local rings. Obviously B1 ×0

does not come from a projective R-module and hence cannot be the second

component of an Rart-module of the form Mart. The reader may recognize

that exactly the same phenomenon gives rise to modules over the comple-

tion R̂ that don’t come from R-modules, a situation that we will exploit

shamelessly in Chapter 1212.

Recall that we use the notation M1 | M2, introduced in Chapter 11, to

indicate that M1 is isomorphic to a direct summand of M2.

3.7 Proposition. Let (R,m,k) be an analytically unramified local ring of

dimension one, and assume R 6= R. Let Rart be the Artinian pair R/c,→R/c.

(i) The functor M Mart = (M/cM,→RM/cM), for M a MCM R-module,

is injective on isomorphism classes.

(ii) If M1 and M2 are MCM R-modules, then M1 | M2 if and only if

(M1)art | (M2)art.

(iii) The ring R has finite CM type if and only if the Artinian pair Rart

has finite representation type.

Proof. (ii) First observe that M  Mart is indeed well-defined: since R is

a direct product of principal ideal rings, RM is a projective R-module, so

RM/cM is a projective R/c-module. Thus Mart is a module over Rart. Let

M1 and M2 be MCM R-modules, and suppose that (M1)art
∼= (M2)art. Write

(Mi)art = (Vi ,→ Wi), and choose an isomorphism ϕ : W1 −→ W2 such that

ϕ(V1)=V2. Since RM1 is R-projective, we can lift ϕ to an R-homomorphism
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ψ : RM1 −→ RM2 carrying M1 into M2.

M2 //

����

RM2

����

M1 //

����

aa

RM1

����

ψ
;;

M1
cM1

//

��

RM1
cM1

ϕ

!!
M2
cM2

// RM2
cM2

Since c ⊆ m, the induced R-homomorphism M1 −→ M2 is surjective, by

Nakayama’s Lemma. (Here we need the assumption that R 6= R.) Similarly,

M2 maps onto M1, and it follows that M1
∼= M2 (cf. Exercise 3.253.25).

(iiii) The “only if” direction is clear. For the converse, suppose there

is an Rart-module X = (V ,→ W) such that (M1)art ⊕X ∼= (M2)art. Write

R = D1 ×·· ·×Ds, where each D i is a semilocal principal ideal domain. Put

Bi = D i/cD i, so that R/c= B1×·· ·×Bs. Since RM1, and RM2 are projective

R-modules, there are non-negative integers e i, f i such that RM1
∼=∏

i D(e i)
i

and RM2
∼=∏

i D( f i)
i . Then RM1/cM1

∼=∏
i B(e i)

i , similarly RM2/cM2
∼=∏

i B( f i)
i ,

and W = ∏
i B( f i−e i)

i . Letting P = ∏
i D( f i−e i)

i , we see that W ∼= P/cP. As dis-

cussed in Construction 3.13.1, it follows that there is a MCM R-module N

such that Nart
∼=X. We see from (ii) that M1 ⊕N ∼= M2.

(iiiiii) Suppose Rart has finite representation type, and let X1, . . . ,Xt be

a full set of representatives for the non-isomorphic indecomposable Rart-

modules. Given a MCM R-module M, write Mart
∼= X(n1)

1 ⊕ ·· · ⊕X(nt)
t , and

put j([M])= (n1, . . . ,nt). By KRS (Theorem 2.42.4), j is a well-defined function

from the set of isomorphism classes of MCM R-modules to N(t)
0 , where N0
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is the set of non-negative integers. Moreover, j is injective, by (ii). Letting

Σ be the image of j, we see, using (iiii), that M is indecomposable if and

only if j[M] is a minimal non-zero element of Σ with respect to the product

ordering. Dickson’s Lemma (Exercise 3.263.26) says that every antichain in

N
(t)
0 is finite. In particular, Σ has only finitely many minimal elements, and

R has finite CM type.

We leave the proof of the converse (which will not be needed here) as an

exercise.

3.8 Remark. It’s worth observing that the proof of Proposition 3.73.7 uses

KRS only over Rart, not over R (which is not assumed to be Henselian).

In fact, if the completion R̂ is reduced, then (R̂)art = Rart. Indeed, the bot-

tom row R/c,→R/c of the conductor square for R is unaffected by completion

since R/c has finite length. Therefore the m-adic completion of the conduc-

tor square for R is

(3.8.1) R̂ �
� //

��

R̂⊗R R

π̂
��

R/c �
� // R/c

which is still a pullback diagram by flatness of the completion. Note that

R̂⊗R R is the integral closure of R̂. No non-zero ideal of R/c is contained in

R/c, so ker π̂ is the largest ideal of R̂⊗R R contained in R̂. Since also ker π̂

contains a non-zerodivisor, ker π̂ is the conductor for R̂ and (3.8.13.8.1) is the

conductor square for R̂.

In particular, this shows that an analytically unramified R has finite

CM type if and only if R̂ does. This is true as well in the case where R̂ is

not reduced, cf. Corollary 3.173.17 below.
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Returning now to sufficiency of the Drozd–Roı̆ter conditions, we will

need the following observation from Bass’s “ubiquity” paper [Bas63Bas63, (7.2)]:

3.9 Lemma (Bass). Let (R,m) be a one-dimensional Gorenstein local ring.

Let M be a MCM R-module with no non-zero free direct summand. Let

E = EndR(m). Then E (viewed as multiplications) is a subring of R which

contains R properly, and M has an E-module structure that extends the

action of R on M.

Proof. The inclusion HomR(M,m) −→ HomR(M,R) is bijective, since a sur-

jective homomorphism M −→ R would produce a non-trivial free summand

of M. Now HomR(M,m) is an E-module via the action of E on m by en-

domorphisms, and hence so is M∗ = HomR(M,R). Therefore M∗∗ is also

an E-module, and since the canonical map; M −→ M∗∗ is bijective (as R is

Gorenstein and M is MCM), M is an E-module. The other assertions re-

garding E are left to the reader. (Cf. Exercise 3.293.29. Note that the existence

of the module M prevents R from being a discrete valuation ring.)

Now we are ready for the main theorem of this chapter. We will not

give a self-contained proof that the Drozd–Roı̆ter conditions imply finite

CM type. Instead, we will reduce to a few special situations where the

matrix decompositions of Green and Reiner [GR78GR78] and Çimen [Çim94Çim94],

[Çim98Çim98] apply.

3.10 Theorem. Let (R,m,k) be an analytically unramified local ring of

dimension one. These are equivalent:

(i) R has finite CM type.
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(ii) R satisfies both (DR1) and (DR2).

Let n be an arbitrary positive integer. If either (DR1) or (DR2) fails, there

is an indecomposable MCM R-module of constant rank n; moreover, if |k|
is infinite, there are at least |k| pairwise non-isomorphic indecomposable

MCM R-modules of constant rank n.

Proof. By Theorem 3.63.6, R is a finite birational extension of R. The last

statement of the theorem and the fact that (ii) =⇒ (iiii) now follow immedi-

ately from Theorem 3.23.2 with S = R.

Assume now that (DR1) and (DR2) hold. Let A = R/c and B = R/c, so

that Rart = (A ,→ B). Then Rart satisfies (dr1) and (dr2). By Proposition 3.73.7

it will suffice to prove that Rart has finite representation type. If every

residue field of B is separable over k, then Rart has finite representation

type by Theorem 2.212.21.

Now suppose that B has a residue field ` = B/n that is not separable

over k. By (dr1), `/k has degree 2 or 3, and ` is the only residue field of B

that is not equal to k.

3.11 Case. `/k is purely inseparable of degree 3.

If B is reduced (that is, R is seminormal), we can appeal to Theo-

rem 2.212.21. Suppose now that B is not reduced. A careful computation of

lengths (cf. Exercise 3.283.28) shows that R is Gorenstein, with exactly one ring

S (the seminormalization of R) strictly between R and R. By Lemma 3.93.9,

E := EndR(m) ⊇ S, and every non-free indecomposable MCM R-module is

naturally an S-module. The Drozd–Roı̆ter conditions clearly pass to the
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seminormal ring S, which therefore has finite Cohen-Macaulay type. It

follows that R itself has finite Cohen-Macaulay type.

3.12 Case. `/k is purely inseparable of degree 2.

In this case, we appeal to Çimen’s tour de force [Çim94Çim94],[Çim98Çim98], where

he shows, by explicit matrix decompositions, that Rart has finite represen-

tation type.

Let’s insert here a few historical remarks. The conditions (DR1) and

(DR2) were introduced by Drozd and Roı̆ter in a remarkable 1967 paper

[DR67DR67], where they classified the module-finite Z-algebras having only

finitely many indecomposable finitely generated torsion-free modules. Ja-

cobinski [Jac67Jac67] obtained similar results at about the same time. The the-

orems of Drozd–Roı̆ter and Jacobinski imply the equivalence of (ii) and (iiii)

in Theorem 3.103.10 for rings essentially module-finite over Z. In the same pa-

per they asserted the equivalence of (ii) and (iiii) in general. In 1978 Green

and Reiner [GR78GR78] verified the classification theorem of Drozd and Roı̆ter,

giving more explicit details of the matrix decompositions needed to verify

finite CM type. Their proof, like that of Drozd and Roı̆ter, depended cru-

cially on arithmetic properties of algebraic number fields and thus did not

provide immediate insight into the general problem. An important point

here is that the matrix reductions of Green and Reiner work in arbitrary

characteristics, as long as the integral closure R has no residue field prop-

erly extending that of R.

In 1989 R. Wiegand [Wie89Wie89] proved necessity of the Drozd–Roı̆ter con-

ditions (DR1) and (DR2) for a general one-dimensional local ring (R,m,k)
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and, via the separable descent argument in the proof of Theorem 2.212.21, suffi-

ciency under the assumption that every residue field of the integral closure

R is separable over k. By (DR1), this left only the case where k is imper-

fect of characteristic two or three. In [Wie94Wie94], he used the seminormality

argument above to handle the case of characteristic three. Finally, in his

1994 Ph.D. dissertation [Çim94Çim94], N. Çimen solved the remaining case—

characteristic two—by difficult matrix reductions. It is worth noting that

Çimen’s matrix decompositions work in all characteristics and therefore

confirm the computations done by Green and Reiner in 1978. The exis-

tence of |k| indecomposables of constant rank k, when |k| is infinite and

(DR) fails, was proved by Karr and Wiegand [KW09KW09] in 2009.

§3 ADE singularities

Of course we have not really proved sufficiency of the Drozd–Roı̆ter condi-

tions, since we have not presented all of the difficult matrix calculations

of Green and Reiner [GR78GR78] and Çimen [Çim94Çim94, Çim98Çim98]. If R contains

the field of rational numbers, there is an alternate approach that uses

the classification, which we present in Chapter 55, of the two-dimensional

hypersurface singularities of finite Cohen-Macaulay type. First we recall

the 1985 classification, by Greuel and Knörrer [GK85GK85], of the complete,

equicharacteristic-zero curve singularities of finite Cohen-Macaulay type.

Suppose k is an algebraically closed field of characteristic different from

2,3 or 5. The complete ADE (or simple) plane curve singularities over k are

the rings k[[x, y]]/( f ), where f is one of the following polynomials:
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(An): x2 + yn+1 , n> 1

(Dn): x2 y+ yn−1 , n> 4

(E6): x3 + y4

(E7): x3 + xy3

(E8): x3 + y5

We will encounter these singularities again in Chapter 55. Here we will

discuss briefly their role in the classification of one-dimensional rings of

finite CM type. Greuel and Knörrer [GK85GK85] proved that the ADE singular-

ities are exactly the complete plane curve singularities of finite CM type in

equicharacteristic zero. In fact, they showed much more, obtaining, essen-

tially, the conclusion of Theorem 3.23.2 in this context:

3.13 Theorem (Greuel and Knörrer). Let (R,m,k) be a one-dimensional

reduced complete local ring containing Q. Assume that k is algebraically

closed.

(i) R satisfies the Drozd–Roı̆ter conditions if and only if R is a finite

birational extension of an ADE singularity.

(ii) Suppose that R has infinite CM type.

(a) There are infinitely many rings between R and its integral clo-

sure.

(b) For every n> 1 there are infinitely many isomorphism classes of

indecomposable MCM R-modules of constant rank n.
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Greuel and Knörrer used Jacobinski’s computations [Jac67Jac67] to prove

that ADE singularities have finite CM type. The fact that finite CM type

passes to finite birational extensions (in dimension one!) is recorded in

Proposition 3.143.14 below. We note that (iiaiia) can fail for infinite fields that are

not algebraically closed. Suppose, for example, that `/k is a separable field

extension of degree d > 3. Put R = k+ x`[[x]]. Then R = `[[x]] is minimally

generated, as an R-module, by {1, x, . . . , xd−1}. Theorem 3.103.10 implies that R

has infinite CM type. There are, however, only finitely many rings between

R and R. Indeed, the conductor square (3.1.13.1.1) shows that the intermediate

rings correspond bijectively to the intermediate fields between k and `.

In Chapter 77 we will use the classification of two-dimensional hyper-

surface rings of finite CM type to show that the one-dimensional ADE sin-

gularities have finite CM type (even in characteristic p, as long as p> 7).

Then, in Chapter 1111, we will deduce that the Drozd–Roı̆ter conditions im-

ply finite CM type for any one-dimensional local ring CM ring (R,m,k) con-

taining a field, provided k is perfect and of characteristic 6= 2,3,5. Together

with Greuel and Knörrer’s result and the next proposition, this will give a

different, slightly roundabout, proof that the Drozd–Roı̆ter conditions are

sufficient for finite CM type in dimension one.

3.14 Proposition. Let R and S be one-dimensional local rings, and sup-

pose S is a finite birational extension of R.

(i) If M and N are MCM S-modules, then HomR(M, N)=HomS(M, N).

(ii) Every MCM S-module is a MCM R-module.
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(iii) If M is a MCM S-module then M is indecomposable over S if and

only if M is indecomposable over R.

(iv) If R has finite CM type, so has S.

Proof. We may assume that R is CM, else R = S, and everything is boring.

(ii) We need only verify that HomR(M, N) ⊆ HomS(M, N). Let ϕ : M −→
N be an R-homomorphism. Given any s ∈ S, write s = r/t, where r ∈ R and

t is a non-zerodivisor of R. Then, for any x ∈ M, we have tϕ(sx) = ϕ(rx) =
rϕ(x) = tsϕ(x). Since N is torsion-free, we have ϕ(sx) = sϕ(x). Thus ϕ is

S-linear.

(iiii) If M is a MCM S-module, then M is finitely generated and torsion-

free, hence MCM, over R.

(iiiiii) is clear from (ii) and the fact that SM is indecomposable if and

only if HomS(M, M) contains no idempotents. Finally, (iviv) is clear from

(iiiiii), (iiii) and the fact that by (ii) non-isomorphic MCM S-modules are non-

isomorphic over R.

§4 The analytically ramified case

Let (R,m) be a local Noetherian ring of dimension one, let K be the total

quotient ring {non-zerodivisors}−1R, and let R be the integral closure of R

in K . Suppose R is not finitely generated over R. Then, since algebra-

finite integral extensions are module-finite, no finite subset of R generates

R as an R-algebra, and we can build an infinite ascending chain of finitely

generated R-subalgebras of R. Each algebra in the chain is a maximal

Cohen-Macaulay R-module, and it is easy to see (Exercise 3.313.31) that no
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two of the algebras are isomorphic as R-modules. Moreover, each of these

algebras is isomorphic, as an R-module, to a faithful ideal of R. Therefore R

has an infinite family of pairwise non-isomorphic faithful ideals. It follows

(Exercise 3.323.32) that R has infinite CM type. Now Theorem 3.63.6 implies the

following result:

3.15 Proposition. Let (R,m,k) be a one-dimensional CM local ring with

finite Cohen-Macaulay type. Then R is analytically unramified.

In particular, this proposition shows that R itself is reduced; equiva-

lently, R is an isolated singularity: Rp is a regular local ring (a field!) for

every non-maximal prime ideal p. See Theorem 6.126.12.

What if R is not Cohen-Macaulay? The next theorem and Theorem 3.103.10

provide the full classification of one-dimensional local rings of finite Cohen-

Macaulay type. We will leave the proof as an exercise.

3.16 Theorem ([Wie94Wie94, Theorem 1]). Let (R,m) be a one-dimensional local

ring, and let N be the nilradical of R. Then R has finite Cohen-Macaulay

type if and only if

(i) R/N has finite Cohen-Macaulay type, and

(ii) mi ∩N = (0) for i À 0.

For example, k[[x, y]]/(x2, xy) has finite Cohen-Macaulay type, since (x)

is the nilradical and (x, y)2∩ (x)= (0). However k[[x, y]]/(x3, x2 y) has infinite

CM type: For each i> 1, xyi−1 is a non-zero element of (x, y)i ∩ (x).
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3.17 Corollary ([Wie94Wie94, Corollary 2]). Let (R,m) be a one-dimensional lo-

cal ring. Then R has finite CM type if and only if the m-adic completion R̂

has finite CM type.

Proof. Suppose first that R is analytically unramified. Since the bottom

lines of the conductor squares for R and for R̂ are identical (Remark 3.83.8),

it follows from (iiiiii) of Proposition 3.73.7 that R has finite CM type if and only

if R̂ has finite CM type.

For the general case, let N be the nilradical of R. Suppose R has finite

CM type. The CM ring R/N then has finite CM type by Theorem 3.163.16

and hence is analytically unramified by Proposition 3.153.15. It follows that

N̂ is the nilradical of R̂. By the first paragraph, R̂/N̂ has finite CM type;

moreover, m̂i ∩ N̂ = (0) for i À 0. Therefore R̂ has finite CM type. For the

converse, assume that R̂ has finite CM type. Since every MCM R̂/N̂-module

is also a MCM R̂-module, we see that �R/N = R̂/N̂ has finite CM type. Since

R/N is CM, so is �R/N, and now Theorem 3.153.15 implies that �R/N is reduced.

By the first paragraph, R/N has finite CM type. Now N̂ is contained in

the nilradical of R̂, so Theorem 3.163.16 implies that m̂i ∩ N̂ = (0) for i À 0. It

follows that mi∩N = (0) for i À 0, and hence that R has finite CM type.

It is interesting to note that the proof of the corollary does not depend

on the characterization (Theorem 3.103.10) of one-dimensional analytically un-

ramified local rings of finite CM type. We remark that in higher dimen-

sions finite CM type does not always ascend to the completion (cf. Exam-

ple 11.1411.14).
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§5 Multiplicity two

Suppose (R,m) is an analytically unramified one-dimensional local ring

and that dimk(R/mR) = 2. One can show (cf. Exercise 3.303.30) that R auto-

matically satisfies (DR2) and therefore has finite CM type. Here we will

give a direct proof of finite CM type in multiplicity two, using some results

in Bass’s “ubiquity” paper [Bas63Bas63]. We don’t assume that R is a finitely

generated R-module.

We refer the reader to Appendix AA, §2§2 for basic stuff on multiplicities,

particularly for one-dimensional rings.

3.18 Theorem. Let (R,m,k) be a one-dimensional Cohen–Macaulay local

ring with e(R)= 2.

(i) Every ideal of R is generated by at most two elements.

(ii) Every ring S with R ⊆ S ( R and finitely generated over R is local

and Gorenstein. In particular R itself is Gorenstein.

(iii) Every MCM R-module is isomorphic to a direct sum of ideals of R.

In particular, every indecomposable MCM R-module has multiplic-

ity at most 2 and is generated by at most 2 elements.

(iv) The ring R has finite CM type if and only if R is analytically unram-

ified.

Proof. Item (ii) follows from [Sal78Sal78, Chap. 3, Theorem 1.1] or [Gre82Gre82].

(iiii) Let S be a module-finite R-algebra properly contained in R. Ev-

ery ideal I of S is isomorphic to an ideal of R (clear denominators) and
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hence is two-generated as an R-module; therefore I is generated by two

elements as an ideal of S. Since the maximal ideal of S is two-generated,

Exercise 3.343.34 guarantees that S is Gorenstein. Moreover, the multiplicity

of S as a module over itself is two. If S is not local, then its multiplicity is

the sum of the multiplicities of its localizations at maximal ideals, so S is

regular, contradicting S 6= R.

(iiiiii) Let M first be a faithful MCM R-module. As M is torsion-free, the

map j : M −→ K ⊗R M is injective. Let H = {t ∈ K | t j(M)⊆ j(M)}; then M is

naturally an H-module. Since M is faithful, H ,→HomR(M, M), and thus H

is a module-finite extension of R contained in R. Suppose first that H = R.

Then R is reduced by Lemma 3.63.6, and hence R is a principal ideal ring.

It follows from the structure theory for modules over a principal ideal ring

that M has a copy of H as a direct summand, and of course H is isomorphic

to an ideal of R. If H is properly contained in R, then, since H/R has finite

length, we can apply Lemma 3.93.9 repeatedly, eventually getting a copy of

some subring of H as a direct summand of M. In either case, we see that

M has a faithful ideal of R as a direct summand.

Suppose, now, that M is an arbitrary MCM R-module, and let I = (0 :R

M). Then R/I embeds in a direct product of copies of M (one copy for each

generator); therefore R/I has depth 1 and hence is a one-dimensional CM

ring. Of course e(R)6 2, and, since M is a faithful MCM R/U-module, M

has a non-zero ideal of R/I as a direct summand. To complete the proof,

it will suffice to show that R/I is isomorphic to an ideal of R. By basic

duality theory over the Gorenstein ring R, the type of R/I is equal to the

number of generators µR((R/I)∗) of its dual (R/I)∗. Since R/I is Gorenstein,
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this implies that (R/I)∗ is cyclic. Choosing a surjection R∗� (R/I)∗ and

dualizing again, we have (since R/I is MCM and R is Gorenstein) R/I ,→ R

as desired.

(iviv) The “only if” implication is Proposition 3.153.15. For the converse, we

assume that R is analytically unramified, so that R is a finitely generated

R-module by Theorem 3.63.6. It will suffice, by item (iiiiii), to show that R

has only finitely many ideals up to isomorphism. We first observe that

every submodule of R/R is cyclic. Indeed, if H is an R-submodule of R and

H ⊇ R, then H is isomorphic to an ideal of R, whence is generated by two

elements, one of which can be chosen to be 1R . Since R/R in particular

is cyclic, it follows that R/R ∼= R/(R :R R) = R/c. Thus every submodule of

R/c is cyclic; but then R/c is an Artinian principal ideal ring and hence R/c

has only finitely many ideals. Since R/R ∼= R/c, we see that there are only

finitely many R-modules between R and R.

Given a faithful ideal I of R, put E = (I :R I), the endomorphism ring

of I. Then I is a projective E-module by Remark 3.53.5. Since E is semilocal,

I is isomorphic to E as an E-module and therefore as an R-module. In

particular, R has only finitely many faithful ideals up to R-isomorphism.

Suppose now that J is a non-zero unfaithful ideal; then R is not a do-

main. Notice that if R had more than two minimal primes pi, the direct

product of the R/pi would be an R-submodule of R requiring more than

two generators. Therefore R has exactly two minimal prime ideals p and q.

Exercise 3.353.35 implies that J is a faithful ideal of either R/p or R/q. Now R/p

and R/q are discrete valuation rings: if, say, R/p were properly contained in

R/p, then R/p×R/q would need at least three generators as an R-module.
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Therefore there are, up to isomorphism, only two possibilities for J.

§6 Ranks of indecomposable MCM modules

Suppose (R,m,k) is a reduced local ring of dimension one, and let p1, . . . ,ps

be the minimal prime ideals of R. Let us define the rank of a finitely gener-

ated R-module M to be the s-tuple rankR(M) = (r1, . . . , rs), where r i is the

dimension of Mpi as a vector space over the field Rpi . If R has finite CM

type, it follows from (DR1) and Theorem A.23A.23 that s6 e(R)6 3. There are

universal bounds on the ranks of the indecomposable MCM R-modules, as

R varies over one-dimensional reduced local rings with finite CM type. The

precise ranks that occur have recently been worked out by N. Baeth and M.

Luckas.

3.19 Theorem ([BL10BL10]). Let (R,m) be a one-dimensional, analytically un-

ramified local ring with finite CM type. Let s6 3 be the number of minimal

prime ideals of R.

(i) If R is a domain, then every indecomposable finitely generated torsion-

free R-module has rank 1, 2, or 3.

(ii) If s = 2, then the rank of every indecomposable finitely generated

torsion-free R-module is (0,1), (1,0), (1,1), (1,2), (2,1), or (2,2).

(iii) If s = 3, then one can choose a fixed ordering of the minimal prime

ideals so that the rank of every indecomposable finitely generated

torsion-free R-module is (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1),

(1,1,0), (1,1,1), or (2,1,1).
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Moreover, there are examples showing that each of the possibilities listed

actually occurs.

The lack of symmetry in the last possibility is significant: One cannot

have, for example, both an indecomposable of rank (2,1,1) and one of rank

(1,2,1). An interesting consequence of the theorem is a universal bound

on modules of constant rank, even in the non-local case. First we note the

following local-global theorem:

3.20 Theorem ([WW94WW94]). Let R be a one-dimensional reduced ring with

finitely generated integral closure, let M be a finitely generated torsion-free

R-module, and let r be a positive integer. If, for each maximal ideal m of R,

the Rm-module Mm has a direct summand of constant rank r, then M has a

direct summand of constant rank r.

3.21 Corollary ([BL10BL10]). Let R be a one-dimensional reduced ring with

finitely generated integral closure. Assume that Rm has finite Cohen-Macaulay

type for each maximal ideal m of R. Then every indecomposable finitely gen-

erated torsion-free R-module of constant rank has rank 1, 2, 3, 4, 5 or 6.

Theorem 3.193.19 and Corollary 3.213.21 correct an error in a 1994 paper of R.

and S. Wiegand [WW94WW94] where it was claimed that the sharp universal

bounds were 4 in the local case and 12 in general.

If one allows non-constant ranks, there is no universal bound, even if

one assumes that all localizations have multiplicity two (cf. [Wie88Wie88]). An

interesting phenomenon is that in order to achieve rank (r1, . . . , rs) with all

of the r i large, one must have the ranks sufficiently spread out. For exam-

ple [BL10BL10, Theorem 5.5], if R has finite CM type locally and n> 8, every
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finitely generated torsion-free R module whose local ranks are between n

and 2n−8 has a direct summand of constant rank 6.

§7 Exercises

3.22 Exercise. Let R = C[x, y](x,y)/(y2 − x3 − x2). Prove that the integral

closure R is R
[ y

x
]

and that R has two maximal ideals. Prove that the

completion R̂ = C[[x, y]]/(y2 − x2 − x3) has two minimal prime ideals. Show

that the conductor square for R is

R �
� //

����

k[t]U
π
����

k �
�

∆
// k×k

where ∆ is the diagonal embedding, U is a certain multiplicatively closed

set, and the right-hand vertical map sends t to (1,−1).

3.23 Exercise. Let R be a one-dimensional CM local ring with integral

closure R, and let M be a torsion-free R-module. Show that R ⊗R M is

torsion-free over R if and only if M is free.

3.24 Exercise. Let c1, . . . , cn be distinct real numbers, and let S be the

subring of R[t] of real polynomial functions f satisfying

f (k)(ci)= f (k)(c j)

for all i, j = 1, . . . ,n and all k = 0, . . . ,3, where f (k) denotes the kth derivative.

Let S′ be the semilocalization of S at the union of prime ideals (t−c1)∪·· ·∪
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(t−cn). Let m= { f ∈ S | f (c1)= 0}, and set R = Sm. Show that m is a maximal

ideal of S and that

R �
� //

����

S′

π
����

k �
� // k[t1]/(t4

1)×·· ·×k[tn]/(t4
n)

is the conductor square for R.

3.25 Exercise. Let Λ be a ring (not necessarily commutative), and let M1

and M2 be Noetherian left Λ-modules. Suppose there exist surjective Λ-

homomorphisms M1�M2 and M2�M1. Prove that M1
∼= M2.

3.26 Exercise. A subset C of a poset X is called a clutter (or antichain)

provided no two elements of C are comparable. Consider the following

property of a poset X : (†) X has the descending chain condition, and every

clutter in X is finite. Prove that if X and Y both satisfy (†), then X ×Y

(with the product partial ordering: (x1, y1)6 (x2, y2) ⇐⇒ x1 6 x2 and y1 6

y2) satisfies (†). Deduce Dickson’s Lemma [Dic13Dic13]: Every clutter in N(t)
0 is

finite.

3.27 Exercise. Prove the “only if” direction of (iiiiii) in Proposition 3.73.7. (Hint:

Use the fact that any indecomposable Rart-module is weakly extended from

R, and use KRS (Theorem 2.42.4). See Proposition 11.711.7 if you get stuck.)

3.28 Exercise ([Wie94Wie94, Lemma 4]). Let (R,m,k) be a one-dimensional re-

duced local ring satisfying (DR1) and (DR2). Assume that R has a maximal

ideal n such that ` = R/n has degree 3 over k. Further, assume that R is

not seminormal (equivalently, R/c is not reduced). Prove the following:
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(i) R is local and mR = n.

(ii) There is exactly one ring strictly between R and R, namely S =
R+n.

(iii) R is Gorenstein.

(iv) S is seminormal.

3.29 Exercise. Let (R,m) be a one-dimensional CM local ring which is

not a discrete valuation ring. Let R be the integral closure of R in its

total quotient ring K . Identify E = {c ∈ K | cm ⊆m} with EndR(m) via the

isomorphism taking c to multiplication by c. Prove that E ⊆ R and that E

contains R properly.

3.30 Exercise. Let (R,m,k) be a one-dimensional reduced local ring for

which R is generated by two elements as an R-module. Prove that R satis-

fies the second Drozd–Roı̆ter condition (DR2). (Hint: Pass to R/c and count

lengths carefully.)

3.31 Exercise. Let R be a commutative ring with total quotient ring K =
{non-zerodivisors}−1R.

(i) Let M be an R-submodule of K . Assume that M contains a non-

zerodivisor of R. Prove that HomR(M, M) is naturally identified

with {α ∈ K |αM ⊆ M}, so that every endomorphism of M is given by

multiplication by an element of K .

(ii) ([Wie94Wie94, Lemma 1]) Suppose A and B are subrings of K with R ⊆
A ∩B. Prove that if A and B are isomorphic as R-modules then

A = B.
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3.32 Exercise. Let R be a reduced one-dimensional local ring. Suppose

R has an infinite family of ideals that are pairwise non-isomorphic as R-

modules. Prove that R has infinite CM type. (Hint: the Goldie dimension

of R is the least integer s such that every ideal of R is a direct sum of at

most s indecomposable ideals. Prove that s <∞.)

3.33 Exercise. Prove Theorem 3.163.16.

3.34 Exercise ([Bas63Bas63, Theorem 6.4]). Let (R,m) be a one-dimensional CM

ring, and suppose m can be generated by two elements. Prove that R is

Gorenstein.

3.35 Exercise. Let (R,m) be a reduced one-dimensional local ring, and

let M be a MCM R-module. Prove that (0 :R M) is the intersection of the

minimal prime ideals p for which Mp 6= 0.



4
Invariant Theory
In this chapter we describe an abundant source of maximal Cohen–Macaulay

modules coming from invariant theory. We consider subrings of elements of

a power series ring S = k[[x1, . . . , xn]] left fixed by the action of a finite group

of linear changes of variable G ⊆GL(n,k). We assume that |G| is invertible

in k. Then the invariant subring R = SG is a Cohen–Macaulay complete

local normal domain of dimension n, and comes equipped with a natural

MCM module, namely the ring S considered as an R-module. The main

goal of this chapter is a collection of one-one correspondences between:

• the indecomposable R-direct summands of S;

• the indecomposable projective modules over the endomorphism ring

EndR(S);

• the indecomposable projective modules over the twisted group ring

S#G; and

• the irreducible k-representations of G.

We also introduce two directed graphs (quivers) associated with the

data above, the McKay quiver and the Gabriel quiver, and show that they

are isomorphic.

In the next chapter we will specialize to the case n = 2, and show that

in fact every indecomposable MCM R-module is a direct summand of S, so

that the correspondences above classify all the MCM R-modules. We will

62
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also see that the McKay–Gabriel quiver is isomorphic to the Auslander–

Reiten quiver of R.

We begin with a little general invariant theory, then define a central

object, the skew group ring.

§1 The skew group ring

We intend to investigate invariant subrings of elements of a power series

ring S = k[[x1, . . . , xn]] left immobile by the action of a finite group of ring

automorphisms G ⊆ Aut(S). Denote this fixed ring by R = SG . First we

observe that we may assume the action of G is linear on the variables xi,

via an argument going back to Cartan [Car57Car57].

4.1 Lemma. Let k be a field, S = k[[x1, . . . , xn]] a power series ring over k,

and G ⊆Aut(S) a finite group of ring automorphisms of S with |G| invertible

in k. Then there exists a finite group G′ ⊆ GL(n,k), acting on S via linear

changes of variable such that SG′ ∼= SG .

Proof. Let V = (x1, . . . , xn)/(x1, . . . , xn)2 be the vector space of linear forms of

S. Then G acts on V , giving a group homomorphism ρ : G −→ GL(V ). Set

G′ = ρ(G), and extend the action of G′ linearly to all of S. For σ ∈G, denote

by σ̂ its image in G′.

Define a ring homomorphism θ : S −→ S by the rule

θ( f )= 1
|G|

∑
σ∈G

σ̂−1σ( f ) .

Since θ restricts to the identity on V , it is an automorphism of S. For an

invariant f ∈ SG , θ( f ) is the average of the G′-orbit of f , so is invariant
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under the action of G′. Restricting θ to SG thus delivers the isomorphism

SG ∼= SG′
.

4.2 Notation. Here is our primary setup for the entire chapter. Let k be a

field, and fix the power series ring S = k[[x1, . . . , xn]] of dimension n over k.

Let n= (x1, . . . , xn) be the maximal ideal of S, and V = n/n2 the vector space

of linear forms. Let G be a finite subgroup of GL(V )∼=GL(n,k), and assume

that |G| is non-zero in k. Let G act on V by left-multiplication. Then G

acts naturally on the left on elements of S by extending the action on V

multiplicatively. Set R = SG , the invariant ring.

4.3 Remarks. Here is a laundry list of properties of R = SG in the notation

of 4.24.2. Most of the unproved assertions can be found in D. Benson’s ad-

mirable book [Ben93Ben93]. (Some adjustments are necessary for passage from

the case of polynomials to that of power series.) First observe that when

n = 1, R is again a regular local ring. We consider this situation dull, and

rule it out from now on.

The assumption that |G| is invertible in k is essential for what we do be-

low; virtually everything breaks terribly in the “modular” situation. Since

we do insist upon it, we have an R-linear Reynolds operator ρ : S −→ R,

defined by sending f ∈ S to the average of its orbit:

ρ( f )= 1
|G|

∑
σ∈G

σ( f ) .

This splits the inclusion R ⊆ S, thereby making R an R-direct summand

of S. It follows (cf. Exercise 4.244.24) that IS ∩R = I for every ideal I of R,

whence R is Noetherian, local, and even complete, with maximal ideal

m = (x1, . . . , xn)∩ R. (The Reynolds operator is not strictly necessary for
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the Noetherian property, but it simplifies matters significantly and will

definitely be needed below.)

Let K be the quotient field of S and F the quotient field of R. Then

G acts naturally on K with fixed field equal to F. Thus K /F is a Galois

extension of F with Galois group G. Any element in F which is integral

over R is also integral over S; since S is integrally closed in K , this means

that R is integrally closed in F, i.e. a normal domain. Now every element

f ∈ S is a root of the monic polynomial
∏
σ∈G (X −σ( f )), whose coefficients

are elementary symmetric polynomials in the conjugates {σ( f )}. This shows

that S is an integral extension of R. In particular dimR = dimS = n.

If S were replaced by a ring of polynomials, rather than power series,

then clearly S would be a finitely generated R-algebra, whence a module-

finite R-algebra since it is integral. Our current situation is just the com-

pletion of the polynomial case, so we see that here too S is a finitely gen-

erated R-module. (Alternatively, one can use the “complete Nakayama’s

Lemma” for this assertion.) The equality IS∩R = I for ideals I of R then

shows that S is a maximal Cohen–Macaulay R-module (cf. Exercise 4.244.24).

The rank of S as an R-module is equal to dimF (K)= |G|.

By Cohen’s structure theorems, R has a power series subring T over

which it is a finitely generated module; since S is finite over R it is also

finite over T. The power series generating T form s system of parame-

ters in S, hence a regular sequence there. Thus in particular S is a free

T-module. The Reynolds operator ρ : S −→ R is also T-linear, so that R

is a direct summand of S over T, and is T-free as well. In particular R

is Cohen–Macaulay. (This argument is essentially due to Hochster and
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Eagon [HE71HE71]. By the way, it is true that even if G is not invertible in k

then R has depth at least two; see [Ben93Ben93, Prop. 4.3.7].)

4.4 Remark. Many of the results in this chapter remain true under weaker

assumptions than those in 4.24.2. In particular the fundamental result, Theo-

rem 4.134.13 of Auslander, does not require S to be complete, to contain a field,

or even to be regular. This additional generality is used in Appendix BB.

Accordingly, we will state some results more generally than is strictly nec-

essary for this chapter.

Generally speaking, what is essential is that (S,n) be a local ring, G ⊆
GL(n/n2) a finite group with |G| invertible in S, and that the action of G be

compatible with the relations among the basis elements of n/n2, so that G

acts via linear automorphisms of S. We will refer briefly to this scenario

with “G acts via linear automorphisms on S.”

To understand the subring R, we move to an extension of S. Perhaps

surprisingly, we choose a non-commutative one.

4.5 Definition. Let S be a local ring and G a finite group with order in-

vertible in S, acting via linear automorphisms on S. Let S#G denote the

skew group ring of S and G. As an S-module, S#G = ⊕
σ∈G S ·σ is free on

the elements of G; the product of two elements s ·σ and t ·τ is

(s ·σ)(t ·τ)= sσ(t) ·στ .

Thus moving σ past t “twists” the ring element. See the next section for an

explanation of this rule.
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4.6 Remarks. In the notation of Definition 4.54.5, a left S#G-module M is

nothing but an S-module with a compatible action of G, in the sense that

σ(sm) = σ(s)σ(m) for all σ ∈ G, s ∈ S, m ∈ M. Since the action of G on S

is defined on the variables and extended multiplicatively, we have σ(st) =
σ(s)σ(t) for all s and t in S, and so S itself is a left S#G-module. Of course

S#G is also a left module over itself.

Similarly, an S#G-linear map between left S#G-modules is an S-module

homomorphism f : M −→ N respecting the action of G, so that f (σ(m)) =
σ( f (m)). This allows us to define a left S#G-module structure on HomS(M, N),

when M and N are S#G-modules, by σ( f )(m) = σ( f (σ−1(m))). It follows

that an S-linear map f : M −→ N between S#G-modules is S#G-linear

if and only if it is invariant under the G-action. Indeed, if σ( f ) = f for

all σ ∈ G, then f (m) = σ( f (σ−1(m))), so that σ−1( f (m)) = f (σ−1(m)) for all

σ ∈G. Concisely,

(4.6.1) HomS#G(M, N)=HomS(M, N)G .

Since the order of G is invertible in k, taking G-invariants of an S#G-

modules is an exact functor. (To see this, first note that −G is clearly left-

exact. Then for an S#G-linear surjection f : M −→ N, and n ∈ NG , note

that f (σ(m)) = σ( f (m) = σ(n) = n for every preimage m ∈ M of n. Tak-

ing the average of the orbit of such preimages, then, gives an element of

MG mapping to n.) In particular, −G commutes with taking cohomology,

so (4.6.14.6.1) extends to higher Exts:

(4.6.2) Exti
S#G(M, N)=Exti

S(M, N)G
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for all S#G-modules M and N and all i> 0. This has the following wonder-

ful consequence, the easy proof of which we leave as an exercise.

4.7 Proposition. An S#G-module M is projective if and only if it is pro-

jective (that is, free) as an S-module. If in particular S = k[[x1, . . . , xn]] is

regular, then the twisted group ring S#G has finite global dimension, equal

to n.

The next example may come in handy when proving the last assertion

of the proposition.

4.8 Example. Set S = k[[x1, . . . , xn]]. The Koszul complex K• on the se-

quence of variables x= x1, . . . , xn is a minimal S#G-linear resolution of the

residue field k of S (with trivial action of G). In detail, let V = n/n2 again

be the k-vector space with basis x1, . . . , xn, and

Kp = Kp(x,S)= S⊗k

p∧
V

for p> 0. The differential ∂p : Kp −→ Kp−1 is given by

∂p(xi1 ∧·· ·∧ xi p )=
p∑

j=1
(−1) j+1xi j (xi1 ∧·· ·∧ x̂i j ∧·· ·∧ xi p ) ,

where {xi1 ∧·· ·∧ xi p }, 16 i1 < i2 < ·· · < i p6 n, are the natural basis vectors

for
∧p V . Since the xi form an S-regular sequence, Kp is acyclic, minimally

resolving k.

The exterior powers
∧p V carry a natural action of G, by σ(xi1 ∧ ·· · ∧

xi p ) = σ(xi1)∧ ·· ·∧σ(xi p ), and it’s easy to see that the differentials ∂p are

S#G-linear for this action. Since the modules appearing in K• are free

S-modules, they are projective over S#G, so we see that K• resolves the
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trivial module k over S#G. Since every projective over S#G is free over S,

the Depth Lemma then shows that pdS#G k cannot be any smaller than n.

4.9 Remark. Let S be local and G a finite group with order invertible

in S, acting via linear automorphisms on S. The ring S sits inside S#G

naturally via S = S ·1. However, it also sits in a more symmetric fashion

via a modified version of the Reynolds operator. Define ρ̂ : S −→ S#G by

ρ̂(s)= 1
|G|

∑
σ∈G

σ(s) ·σ .

One checks easily that ρ̂ is an injective ring homomorphism, and that the

image of ρ̂ is precisely equal to (S#G)G , the fixed points of S#G under the

left action of G. In particular, ρ̂(1) is an idempotent of S#G.

§2 The endomorphism algebra

The “twisted” multiplication on the skew group ring S#G is cooked up pre-

cisely so that the homomorphism

γ : S#G −→EndR(S) , γ(s ·σ)(t)= sσ(t) ,

is a ring homomorphism extending the group homomorphism G −→EndR(S)

defining the action of G on S. Colloquially, γ simply considers an element

of S#G as an endomorphism of S.

In general, γ is neither injective nor surjective, even when S is a power

series ring. Under an additional assumption on G, however, it is both, by a

theorem of Auslander [Aus62Aus62]. We turn now to this additional assumption,

explaining which will necessitate a brief detour through classical invariant

theory and ramification theory. We banish all the details to Appendix BB.
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4.10 Definition. An element σ ∈ GL(V ) of finite order is called a pseudo-

reflection provided the fixed subspace Vσ = {v ∈V |σ(v)= v} has codimen-

sion one in V . Equivalently, σ−1V has rank 1. A pseudo-reflection σ is

a reflection if it has order 2. We say a subgroup G ⊆ GL(V ) is small if it

contains no pseudo-reflections.

If a non-identity pseudo-reflection σ is diagonalizable, then σ is similar

to a diagonal matrix with diagonal entries 1, . . . ,1,λ with λ 6= 1 a root of

unity.

The importance of pseudo-reflections in invariant theory generally be-

gins with the foundational theorem of Shephard–Todd (Theorem B.28B.28),

which says that, the case S = k[[x1, . . . , xn]], the invariant ring R = SG is

a regular local ring if and only if G is generated by pseudo-reflections.

More apposite for our immediate application, pseudo-reflections control

the “large ramification” of the extension R,→S. To explain this, recall (Def-

inition B.1B.1) that a local homomorphism of local rings (A,m,k) −→ (B,n,`)

which is essentially of finite type is called unramified provided mB = n and

the induced homomorphism A/m−→ B/mB is a finite separable field exten-

sion. Equivalently (Proposition B.9B.9), the exact sequence

(4.10.1) 0 //J //B⊗A B
µ //B //0 ,

where µ : B⊗A B −→ B is the diagonal map defined by µ(b⊗b′)= bb′ and J

is generated by all elements of the form b⊗1−1⊗b, splits as B⊗AB-modules.

We say that a ring homomorphism A −→ B which is essentially of finite

type is unramified in codimension one if the induced local homomorphism

Aq∩A −→ Bq is unramified for every prime ideal q of height one in B. If
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A −→ B is module-finite, then it is equivalent to quantify over height-one

primes in A.

Here is the connection with invariant subrings. See Theorem B.30B.30.

4.11 Proposition. In the notation of 4.24.2, the group G is small if and only

if the extension R −→ S is unramified in codimension one.

In fact, by a theorem of Prill, we could always assume that G is small.

Specifically, we may replace S, V , and G by another power series ring S′,

vector space V ′, and finite group G′, respectively, so that G ⊆ GL(V ′) is

small and S′G′ ∼= SG . See Appendix BB for this, which will we will not use in

this chapter.

In order to leverage codimension-one information into a global conclu-

sion, we will use a general lemma about normal domains due to Auslander

and Buchsbaum [AB59AB59], which will reappear repeatedly in other contexts.

4.12 Lemma. Let A be a normal domain and let f : M −→ N be a homomor-

phism of finitely generated A-modules such that M satisfies the condition

(S2) and N satisfies (S1). If fp is an isomorphism for every prime ideal p of

codimension 1 in A, then f is an isomorphism.

Proof. Set K = ker f and C = cok f , so that we have the exact sequence

(4.12.1) 0 //K //M
f //N //C //0 .

Since f(0) is an isomorphism, K(0) = 0, which means that K is annihilated

by a non-zero element of A. But M is torsion-free, so K = 0. As for C,

suppose that C 6= 0 and choose p ∈ AssC. Then p has height at least 2.
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Localize (4.12.14.12.1) at p:

0 //Mp
//Np

//Cp
//0 .

As M is reflexive, it satisfies (S2), so Mp has depth at least 2. On the other

end, however, Cp has depth 0, which contradicts the Depth Lemma.

4.13 Theorem (Auslander [Aus62Aus62, Prop. 3.4]). Let (S,n) be a local normal

domain and let G be a finite subgroup of GL(n/n2) with order invertible in

S. Assume that G acts via linear automorphisms on S, and set R = SG .

If R −→ S is unramified in codimension one, then the ring homomorphism

γ : S#G −→ EndR(S) defined by γ(s ·σ)(t) = sσ(t) is an isomorphism. If in

particular S = k[[x1, . . . , xn]] as in 4.24.2 and G is small, then γ is an isomor-

phism.

Proof. Since S#G is isomorphic to a direct sum of copies of S as an S-

module, it in particular satisfies (S2) over R. The endomorphism ring

EndR(S) has depth at least 2 over R by Exercise 4.254.25, so satisfies (S1).

Thus by Lemma 4.124.12 it suffices to prove that γ is an isomorphism in height

one. At height one primes, the extension is unramified, so we may assume

for the proof that R −→ S is unramified.

The strategy of the proof is to define a right splitting EndR(S) −→ S#G

for γ : S#G −→EndR(S) based on the diagram below.

(4.13.1) S#G
γ // EndR(S)

f 7→ f⊗ρ̂
��

S⊗R (S#G)

µ̃

OO

HomS(S⊗R S,S⊗R (S#G))evε
oo

We now define each of the arrows in (4.13.14.13.1) in turn. Recall from Re-

mark 4.94.9 that the homomorphism
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ρ̂ : S −→ S#G, ρ̂(s)= 1
|G|

∑
σ∈G

σ(s) ·σ

embeds S as the fixed points (S#G)G of S#G. Thus −⊗ ρ̂ defines the right-

hand vertical arrow in (4.13.14.13.1).

Since we assume R −→ S is unramified, the short exact sequence

(4.13.2) 0 //J //S⊗R S
µ //S //0 ,

splits as S ⊗R S-modules, where as before µ : S ⊗R S −→ S is the diagonal

map and J is generated by all elements of the form s⊗1−1⊗ s for s ∈ S.

Tensoring (4.13.24.13.2) on the right with S#G thus gives another split exact

sequence

(4.13.3) 0 //J ⊗S (S#G) //S⊗R (S#G)
µ̃ //S#G //0

with µ̃(t⊗s·σ)= ts·σ ∈ S#G defining the left-hand vertical arrow in (4.13.14.13.1).

Let j : S −→ S ⊗R S be a splitting for (4.13.24.13.2), and set ε = j(1). Then

µ(ε)= 1 and

(4.13.4) (1⊗ s− s⊗1)ε= 0

for all s ∈ S. Evaluation at ε ∈ S⊗R S defines

evε : HomS(S⊗R S,S⊗R (S#G))−→ S⊗R (S#G) ,

the bottom row of the diagram. Now we show that for an arbitrary f ∈
EndR(S), we have

γ
(
µ̃

(
evε

(
f ⊗ ρ̂)))= 1

|G| f .
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Write ε=∑
i xi ⊗ yi for some elements xi, yi ∈ S. We claim first that

∑
i

xiσ(yi)=


1 if σ= 1, and

0 otherwise.

To see this, recall from (4.13.44.13.4) that J ε= 0, so that

(s⊗1)

(∑
i

xi ⊗ yi

)
= (1⊗ s)

(∑
i

xi ⊗ yi

)

for every s ∈ S. Apply the endomorphism 1⊗σ to both sides, obtaining

∑
i

sxi ⊗σ(yi)=
∑

i
xi ⊗σ(s)σ(yi) .

Collapse the tensor products with µ : S ⊗R S −→ S, and factor each side,

getting

s

(∑
i

xiσ(yi)

)
=σ(s)

(∑
i

xiσ(yi)

)
.

This holds for every s ∈ S, so that either σ= 1 or
∑

i xiσ(yi)= 0, proving the

claim.

Now fix f ∈EndR(S) and s ∈ S. Then unravelling all the definitions, we

find

γ
[
µ̃

[
( f ⊗ ρ̂)(ε)

]]
(s)= γ[

µ̃
[
( f ⊗ ρ̂)

(∑
ixi ⊗ yi

)]]
(s)

= γ[
µ̃

(∑
i f (xi)⊗ ρ̂(yi)

)]
(s)

= γ[(∑
i f (xi)ρ̂(yi)

)]
(s)

= γ
[(∑

i f (xi)
(

1
|G|

∑
σ
σ(yi) ·σ

))]
(s)

= 1
|G|

∑
i f (xi)

(∑
σ
σ(yi)σ(s)

)
.
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Now, since the sum over σ is fixed by G, it lives in R, so

= 1
|G| f

(∑
ixi

(∑
σ
σ(yi)σ(s)

))
= 1

|G| f
(∑

σ

(∑
ixiσ(yi)

)
σ(s)

)
= 1

|G| f
(∑

ixi yis
)

by the claim. By the definition of ε=∑
xi ⊗ yi, this last expression is equal

to 1
|G| f (s), as desired. Therefore γ : S#G −→ EndR(S) is a split surjection.

Since both source and target of γ are R-modules of rank equal to |G|2, this

forces γ to be an isomorphism.

4.14 Corollary. With notation as in 4.24.2, assume that G acts without pseudo-

reflections. Then we have ring isomorphisms

S#G ι // (S#G)op ν // EndS#G(S#G) res // EndR(S)

where ι(s ·σ) = σ−1(s) ·σ−1, ν(s ·σ)(t · τ) = (t · τ)(s ·σ), and res is restriction

to the subring ρ̂(S). The composition of these maps is the isomorphism γ.

These isomorphisms induce one-one correspondences among

• the indecomposable direct summands of S as an R-module;

• the indecomposable direct summands of EndR(S) as an EndR(S)-module;

and

• the indecomposable direct summands of S#G as an S#G-module.

Explicitly, if P0, . . . ,Pd are the indecomposable direct summands of S#G,

then PG
j , for j = 0, . . . ,d are the direct summands of S as an R-module.

They are in particular MCM R-modules.
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Proof. It’s easy to check that ι and ν are isomorphisms, and that the com-

position res◦ν◦ι is equal to γ. The primitive idempotents of EndR(S) corre-

spond both to the indecomposable R-direct summands of S and to the inde-

composable EndR(S)-projectives, while those of EndS#G(S#G) correspond

to the indecomposable S#G-projective modules. The fact that (S#G)G = S

implies the penultimate statement, and the fact that S is MCM over R was

observed already.

We have not yet shown that the indecomposable direct summands of

S#G as an S#G-module are all the indecomposable projective S#G-modules.

This will follow from the first result of the next section, where we prove that

S#G (and hence EndR(S)) satisfies the Krull-Remak-Schmidt Theorem.

§3 Group representations and the

McKay–Gabriel quiver

The module theory of the skew group ring faithfully reflects the representa-

tion theory of G, in a precise sense. Let’s keep all the notation established

in 4.24.2. The extra generality mentioned in Remark 4.44.4 will not be useful in

this section.

4.15 Definition. Let M be an S#G-module and W a k-representation of

G, that is, a module over the group algebra kG. Define an S#G-module

structure on M⊗k W by the diagonal action

sσ(m⊗w)= sσ(m)⊗σ(w) .
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Define a functor F from the category of finite-dimensional k-representations

W of G to that of finitely generated S#G-modules by

F (W)= S⊗k W

and similarly for homomorphisms. For any W , F (W) is obviously a free

S-module and thus a projective S#G-module.

In the opposite direction, let P be a finitely generated projective S#G-

module. Then P/nP is a finite-dimensional k-vector space with an action

of G, that is, a k-representation of G. Define a functor G from projective

S#G-modules to k-representations of G by

G (P)= P/nP

and correspondingly on homomorphisms.

4.16 Proposition. The functors F and G form an adjoint pair, that is,

HomkG(G (P),W)=HomS#G(P,F (W)) ,

and are inverses of each other on objects. Concretely, for a projective S#G-

module P and a k-representation W of G, we have

S⊗k P/nP ∼= P

and

(S⊗k W)/n(S⊗k W)∼=W .

In particular, there is a one-one correspondence between the isomorphism

classes of indecomposable projective S#G-modules and the irreducible k-

representations of G.
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Proof. It is clear that G (F (W))∼=W , since

(S⊗k W)/n(S⊗k W)∼= S/n⊗k W ∼=W .

To show that the other composition is also the identity, let P be a projective

S#G-module. Then F (G (P))= S⊗kP/nP is a projective S#G-module, with a

natural projection onto P/nP. Of course, the original projective P also maps

onto P/nP. This latter is in fact a projective cover of P/nP (since idempo-

tents in kG lift to S#G via the retraction kG −→ S#G −→ kG). There is

thus a lifting S⊗k P/nP −→ P, which is surjective modulo nP. Nakayama’s

Lemma then implies that the lifting is surjective, so split, as P is projective.

Comparing ranks over S, we must have S⊗k P/nP ∼= P.

4.17 Corollary. Let V0, . . . ,Vd be a complete set of non-isomorphic simple

kG-modules. Then

S⊗k V0, . . . ,S⊗k Vd

is a complete set of non-isomorphic indecomposable finitely generated pro-

jective S#G-modules. Furthermore, the category of finitely generated pro-

jective S#G-modules satisfies the Krull–Remak–Schmidt property, i.e. each

finitely generated projective P is isomorphic to a unique direct sum
⊕d

i=0(S⊗k

Vi)ni .

Putting together the one-one correspondences obtained so far, we have

4.18 Corollary. Let k be a field, S = k[[x1, . . . , xn]], and G ⊆GL(n,k) a finite

group acting linearly on S without pseudo-reflections and such that |G| is

invertible in k. Then there are one-one correspondences between

• the indecomposable direct summands of S as an R-module;
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• the indecomposable finitely generated projective EndR(S)-modules;

• the indecomposable finitely generated projective S#G-modules; and

• the irreducible kG-modules.

The correspondence between the first and last items is induced by the equiv-

alence of categories between k-representations of G and addR(S) defined by

W 7→ (S⊗k W)G .

Explicitly, if V0, . . . ,Vd are the non-isomorphic irreducible representa-

tions of G over k, then

M j = (S⊗k Vj)G , j = 0, . . . ,d

are the indecomposable R-direct summands of S. They are in particular

MCM R-modules. Furthermore, we have rankR M j = dimk Vj.

The one-one correspondence between projectives, representations, and

certain MCM modules obtained so far extends to an isomorphism of two

graphs naturally associated to these data, as we now explain. We will meet

a third incarnation of these graphs in Chapter 1010.

We keep all the notation from 4.24.2, and additionally let V0, . . . ,Vd be a

complete set of the non-isomorphic irreducible k-representations of G, with

V0 the trivial representation k. The given linear action of G on S is induced

from an n-dimensional representation of G on the space V = n/n2 of linear

forms.

4.19 Definition. The McKay quiver of G ⊆GL(V ) has

• vertices V0, . . . ,Vd, and
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• mi j arrows Vi −→Vj if the multiplicity of Vi in an irreducible decom-

position of V ⊗k Vj is equal to mi j.

In case k is algebraically closed, the multiplicities mi j in the McKay

quiver can also be computed from the characters χ,χ0, . . . ,χd for V ,V0, . . . ,Vd [FH91FH91,

2.10]:

mi j = 〈χi,χχ j〉 = 1
|G|

∑
σ∈G

χi(σ)χ(σ−1)χ j(σ−1) .

For each i = 0, . . . ,d, we set Pi = S ⊗k Vi, the corresponding indecom-

posable projective S#G-module. Then in particular P0 = S ⊗k V0 = S, and

{P0, . . . ,Pd} is a complete set of non-isomorphic indecomposable projective

S#G-modules by Prop. 4.164.16. The Vj are simple S#G-modules via the sur-

jection S#G −→ kG, with minimal projective cover P j. Since pdS#G Vj 6 n

by Proposition 4.74.7, the minimal projective resolution of Vj over S#G thus

has the form

0−→Q( j)
n −→Q( j)

n−1 −→ ·· · −→Q( j)
1 −→ P j −→Vj −→ 0

with projective S#G-modules Q( j)
i for i = 1, . . . ,n and j = 0, . . . ,d.

4.20 Definition. The Gabriel quiver of G ⊆GL(V ) has

• vertices P0, . . . ,Pd, and

• mi j arrows Pi −→ P j if the multiplicity of Pi in Q( j)
1 is equal to mi j.

4.21 Theorem ([Aus86bAus86b]). The McKay quiver and the Gabriel quiver of R

are isomorphic directed graphs.
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Proof. First consider the trivial module V0 = k. The minimal S#G-resolution

of k was computed in Example 4.84.8; it is the Koszul complex

K• : 0−→ S⊗k

n∧
V −→ ·· · −→ S⊗k V −→ S −→ 0 .

To obtain the minimal S#G-resolution of Vj, we simply tensor the Koszul

complex with Vj over k, obtaining

0−→ S⊗k

( n∧
V ⊗k Vj

)
−→ ·· · −→ S⊗k

(
V ⊗k Vj

)−→ S⊗k Vj −→ 0 .

This displays Q( j)
1 = S ⊗k

(
V ⊗k Vj

)
, so that the multiplicity of Pi in Q( j)

1 is

equal to that of Vi in V ⊗k Vj.

4.22 Example. Take n = 3, and write S = k[[x, y, z]]. Let G = Z/2Z, with

the generator acting on V = kx⊕ ky⊕ kz by negating each variable. Then

R = SG = k[[x2, xy, xz, y2, yz, z2]]. There are only two irreducible represen-

tations of G, namely the trivial representation k and its negative, which

is isomorphic to the inverse determinant representation V1 = det(V )−1 =∧3 V∗. The Koszul complex

0−→ S⊗
3∧

V −→ S⊗k

2∧
V −→ S⊗k V −→ S −→ 0

resolves k, while the tensor product

0 // S⊗ (∧3 V ⊗k
∧3 V∗)

// S⊗k
(∧2 V ⊗k

∧3 V∗)
//

S⊗k
(
V ⊗k

∧3 V∗)
// S⊗k

∧3 V∗ // 0

is canonically isomorphic to

0−→ S −→ S⊗k V∗ −→ S⊗k

2∧
V∗ −→ S⊗k

3∧
V∗ −→ 0 .
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Since the given representation V = (∧3 V∗)(3) is just 3 copies of V1, we ob-

tain the McKay quiver

V0
++++
++

V1kkkkkk

or the Gabriel quiver

S⊗k V0
----
--

S⊗k V1mmmmmm
.

Taking fixed points as specified in Corollary 4.184.18, we find MCM modules

M0
∼= R and M1 = (S⊗k V1)G .

Since V1 is the negative of the trivial representation, the fixed points of

S⊗k V1 , with the diagonal action, are generated over R by those elements

f ⊗α such that σ( f ) = − f . These are generated by the linear forms of S,

so that M1 is the submodule of S generated by (x, y, z). This is isomorphic

to the ideal (x2, xy, xz) of R. In particular we recover the obvious R-direct

sum decomposition S = R⊕R(x, y, z) of S.

From now on, we draw the McKay quiver for a group G, and refer to it

as the McKay–Gabriel quiver.

4.23 Example. Let n = 2 now, and write S = k[[u,v]]. Let r > 2 be an

integer not divisible by char(k), and choose 0 < q < r with (q, r) = 1. Take

G = 〈g〉 ∼=Z/rZ to be the cyclic group of order r generated by

g =
ζr

ζ
q
r

 ∈GL(2,k) ,

where ζr is a primitive rth root of unity. Let R = k[[u,v]]G be the corre-

sponding ring of invariants, so that R is generated by the monomials uavb

satisfying a+bq ≡ 0mod r.
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As G is Abelian, it has exactly r irreducible representations, each of

which is one-dimensional. We label them V0, . . . ,Vr−1, where the generator

g is sent to ζi
r in Vi. The given representation V of G is isomorphic to

V1 ⊕Vq, so that for any j we have

V ⊗k Vj ∼=Vj+1 ⊕Vj+q ,

where the indices are of course to be taken modulo r. The corresponding

MCM R-modules are M j = (S⊗k Vj)G , each of which is an R-submodule of

S:

M j = R
(
uavb

∣∣∣ a+ qb ≡− j mod r
)

.

The general picture is a bit chaotic, so here are a few particular examples.

Take r = 5 and q = 3. Then R = k[[u5,u2v,uv3,v5]]. The McKay–Gabriel

quiver takes the following shape.

V0

%%

		

V4

99

((

V1oo

��
V3

[[ 66

V2oo

UU

The associated indecomposable MCM R-modules appearing as R-direct

summands of S are the ideals

M0 = R

M1 = R(u4,uv,v3)∼= (u5,u2v,uv3)

M2 = R(u3,v)∼= (u5,u2v)

M3 = R(u2,uv2,v4)∼= (u5,u4v2,u3v4)

M4 = R(u,v2)∼= (u5,u4v2) .
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For another example, take r = 8, q = 5, so that R = k[[u8,u3v,uv3,v8]].

The McKay–Gabriel quiver looks like

V0 //

��

V1

  

~~

V7

>>

  

V2oo

��
V6

OO

// V3

~~

``

V5

``

>>

V4oo

OO

and the indecomposable MCM R-modules arising as direct summands of S

are

M0 = R

M1 = R(u7,u2v,v3)∼= (u8,u3v,uv3)

M2 = R(u6,uv,v6)∼= (u8,u3v,u2v6)

M3 = R(u5,v)∼= (u8,u3v)

M4 = R(u4,u2v2,v4)∼= (u8,u6v2,u4v4)

M5 = R(u3,uv2,v7)∼= (u8,u6v2,u5v7)

M6 = R(u2,u5v,v2)∼= (u2v6,u5v7,v8)

M7 = R(u,v5)∼= (uv3,v8) .

Finally, take r = n+1 arbitrary, and q = n. Then R = k[[un+1,uv,vn+1]]∼=
k[[x, y, z]]/(xz− yn+1) is isomorphic to an (An) hypersurface singularity (see

the next chapter). There are n+1 irreducible representations V0, . . . ,Vn,
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and the McKay–Gabriel quiver looks like the one below.

V0

((ww
V1

77

// V2
oo // · · ·oo // Vn−1

oo // Vn
oo

hh

The non-free indecomposable MCM R-modules take the form

M j = R
(
uavb

∣∣∣ b−a ≡ j modn+1
)

for j = 1, . . . ,n. They have presentation matrices over k[[un+1uv,vn+1]]

ϕ j =
(uv)n+1− j −un+1

−vn+1 (uv) j


or over k[[x, y, z]]/(xz− yn+1)

ϕ j =
yn+1− j −x

−z y j

 .

§4 Exercises

4.24 Exercise. In the notation of 4.24.2, prove the following statements.

(i) IS∩R = I for every ideal I of R.

(ii) R is Noetherian and local with maximal ideal m= n∩R.

(iii) R is complete (use Cauchy sequences: if {r i} is Cauchy in R, then it

converges in S to, say, s; apply Krull Intersection to σ(s)− s).

(iv) S is a finitely generated R-module (use the complete version of

Nakayama’s Lemma).
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(v) S is a MCM R-module and R is a CM ring. (Hint: xN
1 , . . . , xN

n is an

S-sequence contained in R for some N À 0; the colon ideal xN
i+1 :R

(xN
1 , . . . , xN

i ) can be computed in R or S.)

By the way, the hypothesis that |G| be invertible in k is not essential for

item (iiii) (cf. [Ben93Ben93, Theorem 1.3.1]), but is definitely needed for (vv). Foga-

rty [Fog81Fog81] has given an example of a finite group G acting on a CM ring S

such that SG is Noetherian but not CM.

4.25 Exercise. Let A be a local ring and M, N two finitely generated A-

modules. Then depthHomA(M, N)>min{2,depth N}.



5
Kleinian Singularities and Finite

Representation Type

In the previous chapter we saw that when S = k[[x1, . . . , xn]] is a power se-

ries ring endowed with a linear action of a finite group G whose order is

invertible in k, and R = SG is the invariant subring, then the R-direct sum-

mands of S are MCM R-modules, and are closely linked to the representa-

tion theory of G. In dimension two, we shall see in this chapter that every

indecomposable MCM R-modules is a direct summand of S. This is due to

Herzog [Her78bHer78b]. Thus in particular two-dimensional rings of invariants

under finite non-modular group actions have finite CM type. In the next

chapter we shall prove that in fact every two-dimensional complete normal

domain containing C and having finite CM type arises in this way.

In the present chapter, we first recall some basic facts on reflexive mod-

ules over normal domains, then prove the theorem of Herzog mentioned

above. Next we discuss the two-dimensional invariant rings k[[u,v]]G that

are Gorenstein; by a result of Watanabe [Wat74Wat74] these are the ones for

which G ⊆ SL(2,k). The finite subgroups of SL(2,C) are well-known, their

classification going back to Klein, so here we call the resulting invariant

rings Kleinian singularities, and we derive their defining equations follow-

ing [Kle93Kle93]. It turns out that the resulting equations are precisely the

three-variable versions of the ADE hypersurface rings from Chapter 33 §3§3.

This section owes many debts to previous expositions, particularly [Slo83Slo83].

87
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In the last two sections, we describe two incarnations of the so-called

McKay correspondence: first, the identification of the McKay–Gabriel quiver

of G ⊆ SL(2,C) with the corresponding ADE Coxeter-Dynkin diagram, and

then the original observation of McKay that both these are the same as the

desingularization graph of Speck[[u,v]]G .

§1 Invariant rings in dimension two

In the last chapter we considered invariant rings R = k[[x1, . . . , xn]]G , where

G is a finite group with order invertible in k acting linearly on the power

series ring S = k[[x1, . . . , xn]]. In general, the direct summands of S as an

R-module are MCM modules. Here we prove that in dimension two, every

indecomposable MCM module is among the R-direct summands of S.

First we recall some background on reflexive modules over normal do-

mains. See Chapter 1313 for some extensions to the non-normal case.

5.1 Remarks. Recall (from, for example, Appendix AA) that for a normal

domain R, if a finitely generated R-module M is MCM then it is reflexive,

that is the natural map

σM : M −→ M∗∗ =HomR(HomR(M,R),R) ,

defined by σM(m)( f ) = f (m), is an isomorphism. If moreover dimR = 2,

then the converse holds as well, so that M is MCM if and only if it is reflex-

ive.

The first assertion of the next proposition is due to Herzog [Her78bHer78b],

and will imply that two-dimensional rings of invariants have finite CM
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type.

5.2 Proposition. Let R −→ S be a module-finite extension of two-dimensional

normal domains, and assume that R is a direct summand of S as an R-

module. Then every finitely generated reflexive R-module is a direct sum-

mand of a finitely generated reflexive S-module. If in particular R is com-

plete and S has finite CM type, then R has finite CM type as well.

Proof. Let M be a reflexive R-module and set M∗ =HomR(M,R). Then the

split monomorphism R −→ S induces a split monomorphism M =HomR(M∗,R)−→
HomR(M∗,S). Now HomR(M∗,S) is an S-module via the action on the

codomain, and Exercise 4.254.25 shows that it satisfies (S2) as an R-module,

hence as an S-module, so is reflexive over S.

Let N1, . . . , Nn be representatives for the isomorphism classes of inde-

composable MCM S-modules. Then each Ni is a MCM R-module as well, so

we write Ni = Mi,1 ⊕·· ·⊕Mi,mi for indecomposable MCM R-modules Mi, j.

By the first statement of the Proposition, every indecomposable MCM R-

module is a direct summand of a direct sum of copies of the Ni, so is among

the Mi, j by KRS.

5.3 Theorem. Let S = k[[u,v]] be a power series ring in two variables over

a field, G a finite subgroup of GL(2,k) acting linearly on S, and R = SG .

Assume that R is a direct summand of S as an R-module. Then every inde-

composable finitely generated reflexive R-module is a direct summand of S

as an R-module. In particular, R has finite CM type.1

1Note: add a counterexample in dim 3 to the section where we do Herzog’s theorem
that Gorenstein rings of finite CM type are hypersurfaces: C[x, y, z], g : x 7→ −x, y 7→ i y, z 7→
iz. Then R is Gorenstein but not a hypersurface.
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Proof. Let M be an indecomposable reflexive R-module. By Proposition 5.25.2

M is an R-summand of a reflexive S-module N. But S is regular, so in fact

N is free over S. Since R is complete, the KRS Theorem 1.81.8 implies that M

is a direct summand of S.

The one-one correspondences of Corollary 4.184.18 can thus be extended in

dimension two.

5.4 Corollary. Let k be a field, S = k[[x, y]], and G ⊆GL(2,k) a finite group,

with |G| invertible in k, acting linearly on S without pseudo-reflections. Put

R = SG . Then there are one-one correspondences between

• the indecomposable reflexive (MCM) R-modules;

• the indecomposable direct summands of S as an R-module;

• the indecomposable projective EndR(S)-modules;

• the indecomposable projective S#G-modules; and

• the irreducible kG-modules.

Observe that while we need the assumption that |G| be invertible in k

for Corollary 5.45.4, Proposition 5.25.2 requires only the weaker assumption that

R be a direct summand of S as an R-module. We will make use of this in

Remark 5.215.21 below.

§2 Kleinian singularities

Having seen the privileged position that dimension two holds in the story

so far, we are ready to define and study the two-dimensional hypersurface
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rings of finite CM type. These turn out to coincide with a class of rings ubiq-

uitous throughout algebra and geometry, variously called Kleinian singu-

larities, Du Val singularities, two-dimensional rational double points, and

other names. Even more, they are the two-dimensional analogues of the

ADE hypersurfaces seen in the previous chapter.

For historical reasons, we introduce the Kleinian singularities in a slightly

opaque fashion. The rest of the section will clarify matters. For the first

part of this chapter, we work over C for ease of exposition. We will in the

end define the complete Kleinian singularities over any algebraically closed

field of characteristic not 2, 3, or 5 (see Definition 5.205.20).

5.5 Definition. A complete complex Kleinian singularity (also rational dou-

ble point, Du Val singularity) over k is a ring of the form C[[u,v]]G , where

G is a finite subgroup of SL(2,C).

The reason behind the restriction to SL(2,C) rather than GL(2,C) as

in the previous chapter is the fact, due to Watanabe [Wat74Wat74], that R =
SG is Gorenstein when G ⊆ SL(n,k), and the converse holds if G is small.

Thus the complete Kleinian singularities are the two-dimensional complete

Gorenstein rings of invariants of finite group actions.

In order to make sense of this definition, we recall the fact that the finite

subgroups of SL(2,C) are the “binary polyhedral” groups, which are double

covers of the rotational symmetry groups of the Platonic solids, together

with two degenerate cases.

The classification of the Platonic solids goes back to Theaetetus around

400 BCE, and is at the center of Plato’s Timaeus; the final book of Euclid’s

Elements is devoted to their properties. According to Bourbaki [Bou02Bou02], the
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determination of the finite groups of rotations in R3 goes back to Hessel,

Bravais, and Möbius in the early 19th century, though they did not yet

have the language of group theory. Jordan [Jor77Jor77] was the first to explicitly

classify the finite groups of rotations of R3.

5.6 Theorem. The finite subgroups of the group SO(3), of rotations of R3,

are up to conjugacy the following rotational symmetry groups.

Cn+1: The cyclic group of order n+1 for n> 0, the symmetry group of a

pyramid (or of a regular plane polygon).

Dn−2: The dihedral group of order 2(n−2) for n> 4, the symmetry group

of a beach ball (“hosohedron”).

T: The symmetry group of a tetrahedron, which is isomorphic to the

alternating group A4 of order 12.

O: the symmetry group of the octahedron, which is isomorphic to the

symmetric group S4 of order 24.

I: The symmetry group of the icosahedron, which is isomorphic to

the alternating group A5 of order 60.

In order to leverage this classification into a description of the finite

subgroups of SL(2,C), we recall some basics of classical group theory. Recall

first that the unitary group U(n) is the subgroup of GL(n,C) consisting of

unitary transformations, i.e. those preserving the standard Hermitian dot

product on Cn. The special unitary group SU(n) is SL(n,C)∩U(n). We first

observe that to classify the finite subgroups of SL(n,C), it suffices to classify

those of SU(n).
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5.7 Lemma. Every finite subgroup of GL(n,C) (resp., SL(n,C)) is conjugate

to a subgroup of U(n) (resp., SU(n)).

Proof. Let G be a finite subgroup of GL(n,C). Denote the usual Hermitian

inner product on Cn by 〈 , 〉. It suffices to define a new inner product { , }

on Cn such that {σu, σv} = {u, v} for every σ ∈ G and u, v ∈ Cn. Indeed, if

we find such an inner product, let B be an orthonormal basis for { , }, and

let ρ : Cn −→ Cn be the change-of-basis operator taking B to the standard

basis. Then ρGρ−1 ⊆U(n), as

〈
ρσρ−1u, ρσρ−1v

〉= {
σρ−1u, σρ−1v

}
= {

ρ−1u, ρ−1v
}

= 〈u, v〉

for every σ ∈G and u,v ∈Cn. Define the desired new product by

{u,v}= 1
|G|

∑
σ∈G

〈σ(u), σ(v)〉 .

Then it is easy to check that { , } is again an inner product on Cn, and that

{σu, σv}= {u, v} for every σ, u, v.

The special unitary group SU(2) acts on the complex projective line P1
C

by fractional linear transformations (Möbius transformations):α −β
β α

 [z : w]=
[
αz−βw :βz+αw

]
.

Since the matrices ±I act trivially, the action factors through PSU(2) =
SU(2)/{±I}. We claim now that PSU(2)∼=SO(3), the group of symmetries of

the 2-sphere S2. Position S2 with its south pole at the origin, and consider
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the stereographic projection onto the equatorial plane, which we identify

with C. Extend this to an isomorphism S2 −→ P1
C

by sending the north

pole to the point at infinity. This isomorphism identifies the conformal

transformations of P1
C

with the rotations of the sphere, and gives a double

cover of SO(3).

5.8 Proposition. There is a surjective group homomorphism π : SU(2) −→
SO(3) with kernel {±I}.

5.9 Lemma. The only element of order 2 in SU(2) is −I.

Proof. This is a direct calculation using the general form
(
α −β
β α

)
of an arbi-

trary element of SU(2).

5.10 Lemma. Let Γ be a finite subgroup of SU(2). Then either Γ is cyclic

of odd order, or |Γ| is even and Γ = π−1(π(Γ)) is the preimage of a finite

subgroup G of SO(3).

Proof. If Γ has odd order, then −I ∉ Γ, so Γ∩kerπ= {I}, and the restriction

of π to Γ is an isomorphism of Γ onto its image. By the classification of

finite subgroups of SO(3), we see that the only ones of odd order are the

cyclic groups Cn+1 with n+1 odd. If |Γ| is even, then by Cauchy’s Theorem

there is an element of order 2 in Γ, which must be −I. Thus kerπ⊆ Γ and

Γ=π−1(π(Γ)).

5.11 Theorem. The finite non-trivial subgroups of SL(2,C), up to conju-

gacy, are the following groups, called binary polyhedral groups. Let ζr de-

note a primitive rth root of unity in C.
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Cm: The cyclic group of order m for m> 2, generated by

ζm

ζ−1
m

 .

Dm: The binary dihedral group of order 4m for m> 1, generated by

C2m and  i

i

 .

T : The binary tetrahedral group of order 24, generated by D2 and

1p
2

ζ8 ζ3
8

ζ8 ζ7
8

 .

O : The binary octahedral group of order 48, generated by T and

ζ3
8

ζ5
8

 .

I : The binary icosahedral group of order 120, generated by

1p
5

ζ4
5 −ζ5 ζ2

5 −ζ3
5

ζ2
5 −ζ3

5 ζ5 −ζ4
5

 and
1p
5

ζ2
5 −ζ4

5 ζ4
5 −1

1−ζ5 ζ3
5 −ζ5

 .

5.12 Theorem. The complete complex Kleinian singularities are the rings

of invariants of the groups above acting linearly on the power series ring

S =C[[u,v]]. We name them as follows:
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Singularity Name Group Name

An Cn+1, cyclic (n> 1)

Dn Dn−2, binary dihedral (n> 4)

E6 T , binary tetrahedral

E7 O , binary octahedral

E8 I , binary icosahedral

At this point the naming system is utterly mysterious, but we continue

anyway.

It is a classical fact from invariant theory that the Kleinian singular-

ities “embed in codimension one,” that is, are isomorphic to hypersurface

rings.2 We can make this explicit by writing down a set of generating in-

variants for each of the binary polyhedral groups. These calculations go

back to Klein [Kle93Kle93], and are also found in Du Val’s book [DV64DV64]; for a

more modern treatment see [Lam86Lam86]. We like the concreteness of having

actual invariants in hand, so we present them here. The details of the

derivations are quite involved, so we only sketch them.

5.13 (An). In this case, the only monomials fixed by the generator (u,v) 7→
(ζn+1u,ζ−1

n+1v) are uv,un+1, and vn+1. Thus we set

XC (u,v)= un+1+vn+1 YC (u,v)= uv, and ZC (u,v)= un+1−vn+1 .

2Abstractly, we can see this from the connection with Platonic solids as fol-
lows [McK01McK01, Dic59Dic59]: drawing a sphere around the platonic solid, we project from the
north pole to the equatorial plane, which we interpret as C. Thus the projection of
each vertex v gives a complex number zv, and we form the homogeneous polynomial
V (x, y) = ∏

v(x− zv y). Similarly, the center of each edge e gives a complex number ze,
and the center of each face f a corresponding z f , which we compile into the polynomials
E(x, y)=∏

e(x− ze y) and F(x, y)=∏
f (x− z f y). These are three functions in two variables,

and so there must be a relation f (V ,E,F)= 0.
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These generate all the invariants, and satisfy the relation

Z2
C = X2

C −4Y n+1
C .

5.14 (Dn). The subgroup C2(n−2) of Dn−2 has invariants a = u2(n−2)+v2(n−2),

b = uv, and c = u2(n−2) − v2(n−2) as in the case above. The additional gener-

ator (u,v) 7→ (iv, iu) changes the sign of b, multiplies a by (−1)n, and sends

c to −(−1)nc. Now we have two cases to consider depending on the parity

of n. If n is even, then c, a2, ab, and b2 are all fixed, but we can throw

out b2 since b2 = c2 −4(a2)n−2. In the other case, when n is odd, similar

considerations imply that the invariants are generated by b, a2, and ac.

Thus in this case we set

XD(u,v)= u2(n−2) + (−1)nv2(n−2), YD(u,v)= u2v2

ZD(u,v)= uv
(
u2(n−2) − (−1)nv2(n−2)

)
.

For these generating invariants we have the relation

Z2
D =YD X2

D +4(−YD)n−1 .

5.15 (E6). The invariants (D4) of the subgroup D2 are

u4 +v4 , u2v2 , and uv
(
u4 −v4) .

The third of these is invariant under the whole group T , so we set

YT (u,v)= uv
(
u4 −v4) .

Searching for an invariant (or coinvariant) of the form P(u,v)= XD + tYD =
u4 + tu2v2 +v4, we find that if t =p−12, and we set

P(u,v)= u4 +
p
−12 u2v2 +v4 and P(u,v)= u4 −

p
−12 u2v2 +v4 ,
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then

XT (u,v)= P(u,v) P(u,v)= u8 +14u4v4 +v8

is invariant.

Furthermore,
[1

4 (t−2)
]3 = 1, so that every linear combination of P3 and

P
3

is invariant, such as

ZT (u,v)= 1
2

[
P3 +P

3]
= u12 −33u8v4 −33u4v8 +v12 .

These three invariants generate all others, and satisfy the relation

Z2
T = X3

T +108Y 4
T .

5.16 (E7). Begin with the above invariants for T . The additional generator

for O leaves XT fixed but changes the signs of YT and ZT . We therefore

obtain generating invariants

XO (u,v)=YT (u,v)2 = (
u5v−uv5)2

YO (u,v)= XT (u,v)= u8 +14v4v4 +v8

ZO (u,v)=YT (u,v)ZT (u,v)= uv
(
u4 −v4)(u12 −33u8v4 −33u4v8 +v12)

(of degrees 8, 12, and 18, respectively). These satisfy

Z2
O =−XO

(
108X2

O −Y 3
O

)
.

5.17 (E8). From the geometry of the 12 vertices of the icosahedron, Klein

derives an invariant of degree 12:

YI (u,v)= uv(u5 +ϕ5v5)(u5 −ϕ−5v5)

= uv(u10 +11u5v5 +v10) ,
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where ϕ = (1+p
5)/2 is the golden ratio. The Hessian of this form is also

invariant, and takes the form −121XI (u,v), where

XI (u,v)=
∣∣∣∣∣∣
 ∂2/∂u2 ∂2/∂v∂u

∂2/∂u∂v ∂2/∂v2

∣∣∣∣∣∣
= (

u20 +v20)−228
(
u15v5 −u5v15)+494u10v10 .

The Jacobian of these two forms (i.e. the determinant of the 2×2 matrix of

partial derivatives) is invariant as well:

ZI (u,v)= (
u30 +v30)+522

(
u25v5 −u5v25)−10005

(
u20v10 +u10v20) .

Now one checks that3

Z2
I = X3

I +1728Y 5
I .

It’s interesting to note that in each case above, we have deg X ·degY =
2 |G|, namely 2(n+1),8(n−2),48,96,240.

Adjusting the polynomials by certain nth roots (of integers at most 5),

one obtains the following normal forms for the Kleinian singularities

5.18 Theorem. The complete complex Kleinian singularities are the hyper-

surface rings defined by the following polynomials in C[[x, y, z]].

(An): x2 + yn+1 + z2, n> 1

(Dn): x2 y+ yn−1 + z2, n> 4

(E6): x3 + y4 + z2

(E7): x3 + xy3 + z2

3tempting one to call E8 the great gross singularity (1728 = 12×144, a dozen gross,
aka a great gross).
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(E8): x3 + y5 + z2

We summarize the information we have on the Kleinian singularities

so far in Table 5.15.1.

Table 5.1: Complete Kleinian Singularities

Name f (x, y, z) G |G| (p, q, r)

(An), n> 1 x2 + yn+1 + z2 Cn+1, cyclic n+1 (1,1,n)

(Dn), n> 4 x2 y+ yn−1 + z2 Dn−2, b. dihedral 4(n−2) (2,2,n−2)

(E6) x3 + y4 + z2 T , b. tetrahedral 24 (2,3,3)

(E7) x3 + xy3 + z2 O , b. octahedral 48 (2,3,4)

(E8) x3 + y5 + z2 I , b. icosahedral 120 (2,3,5)

5.19 Remark. Now we relax our requirement that we work over C. As-

sume from now on only that k is an algebraically closed field of character-

istic different from 2, 3, and 5.

With this restriction on the characteristic, the groups defined by gener-

ators in Theorem 5.115.11 exist equally well in SL(2,k), with two exceptions:

Cn and Dn are not defined if chark divides n. We therefore use the gen-

erating invariants X , Y , and Z listed in 5.135.13 and 5.145.14 to determine the

(An−1) and (Dn+2) singularities in positive characteristic. The derivation

of the normal forms listed in Theorem 5.185.18 involves only taking roots of or

inverting integers a for a6 5, so are equally valid for chark 6= 2, 3, 5.

5.20 Definition. Let k be an algebraically closed field of characteristic

not equal to 2, 3, or 5. The complete Kleinian singularities over k are the
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hypersurface rings k[[x, y, z]]/( f ), where f is one of the polynomials listed

in Theorem 5.185.18.

5.21 Remark. There is one further technicality to address. In the cases Cn

and Dn where n is divisible by the characteristic of k, we lose the ability

to define the Reynolds operator. However, in each case we can verify that

the Kleinian singularity is a direct summand of the regular ring k[[u,v]] by

using the generating invariants X , Y , and Z.

The case (An−1) was mentioned in passing already in Example 4.234.23. Set

R = k[[un,uv,vn]]. Then k[[u,v]] is isomorphic as an R-module to
⊕n−1

j=0 M j,

where M j is the R-span of the monomials uavb such that b− a ≡ j modn.

In particular, R is a direct summand of k[[u,v]] in any characteristic.

For the case (Dn+2), we have R = k[[u2n+v2n,u2v2,uv
(
u2n −v2n)

]]. Then

R is a direct summand of A = k[[u2n,uv,v2n]]: observe that A = R⊕R
(
uv,u2n −v2n)

and that the second summand is generated by elements negated by τ : (u,v) 7→
(v,−u). As A is an (A2n−1) singularity, it is a direct summand of k[[u,v]] by

the previous case.

Combined with Herzog’s theorem 5.35.3, these observations prove the fol-

lowing theorem.

5.22 Theorem. Let k be an algebraically closed field of characteristic not

equal to 2, 3, or 5, and let R be a complete Kleinian singularity over k. Then

R has finite CM type.
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§3 McKay–Gabriel quivers of the Kleinian

singularities

In this section we compute the McKay–Gabriel quivers (defined in Chap-

ter 44) for the complete complex Kleinian singularities. We will recover

McKay’s observation that the underlying graphs of the quivers are exactly

the extended (also affine, or Euclidean) Coxeter–Dynkin diagrams Ãn, D̃n,

Ẽ6, Ẽ7, Ẽ8, corresponding to the name of the singularity from Table 5.15.1.

For background on the Coxeter–Dynkin diagrams An, Dn, E6, E7, E8,

and their extended counterparts Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, we recommend I. Re-

iten’s survey article in the Notices [Rei97Rei97]. They have their vertices in far

too many pies for us to enumerate. Beyond the connections we will make

explicitly in this and the next section, we will content ourselves with the

following brief description. The extended ADE diagrams are the finite con-

nected graphs with no loops (a loop is a single edge with both ends at the

same vertex) bearing an additive function, i.e. a function f from the ver-

tices {1, . . . ,n} to N satisfying 2 f (i) = ∑
j f ( j) for every i, where the sum is

taken over all neighbors j of i. Similarly, the (non-extended) ADE diagrams

are the graphs bearing a sub-additive but not additive function, that is, one

satisfying 2 f (i)>
∑

j f ( j) for each i, with strict inequality for at least one

i. The non-extended diagrams are obtained by removing a single distin-

guished vertex and its incident edges from the extended ADE diagrams.

They’re all listed in Table 5.25.2, with their (sub-)additive functions label-

ing the vertices. The distinguished vertex to be removed in obtaining the

ordinary diagrams from the extended ones is circled. We shall see that,
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furthermore, the ranks of the irreducible representations (that is, inde-

composable MCM modules) attached to each vertex of the quiver gives the

(sub)additive function on the diagram.

Table 5.2: ADE and Extended ADE Diagrams

(An)
1

1 1 · · · 1 1

(Ãn)

(Dn)

1 1

2 2 · · · 2 2

1 1

(D̃n)

(E6)

1

2

1 2 3 2 1

(Ẽ6)

(E7)

2

1 2 3 4 3 2 1 (Ẽ7)

(E8)

2

2 3 4 5 4 3 2 1
(Ẽ8)
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Recall from Definition 4.194.19 that the vertices of the McKay–Gabriel quiver

of a two-dimensional representation G ,→ GL(V ) are the irreducible repre-

sentations V0, . . . ,Vd of the group G, with an arrow Vi −→ Vj for each copy

of Vi in the direct-sum decomposition of V ⊗k Vj. The number of arrows

Vi −→ Vj will (temporarily) be denoted mi j. Recall that when k is alge-

braically closed

mi j = 〈χi,χχ j〉 = 1
|G|

∑
σ∈G

χi(σ)χ(σ−1)χ j(σ−1) ,

where χ,χ0, . . . ,χd are the characters of V ,V0, . . . ,Vd.

5.23 Lemma. Let G be a finite subgroup of SL(2,C) other than the two-

element cyclic group. Then mi j ∈ {0,1} and mi j = m ji for all i, j = 1, . . . ,d.

In other words, the arrows in the McKay–Gabriel quiver appear in opposed

pairs.

Proof. Let G be one of the subgroups of SL(2,C) listed in Theorem 5.115.11; in

particular, the given two-dimensional representation V is defined by the

matrices listed there. By Schur’s Lemma and the Hom-tensor adjointness,

we have

mi j = dimCHomCG(V ⊗CG Vj,Vi)

= dimCHomCG(Vj,HomCG(V ,Vj)) .

The inner Hom has dimension equal to the number of copies of Vi appear-

ing in the irreducible decomposition of V . These irreducible decompositions

are easily read off from the listed matrices; the only one consisting of two

copies of a single irreducible is (A1), which corresponds to the two-element

cyclic subgroup C2. Thus HomCG(Vi,V ) has dimension at most 1 for all i,

and so mi j 6 1 for all i, j.
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Since the trace of a matrix in SL(2,C) is the same as that of its inverse,

the given representation V satisfies χ(σ−1)= χ(σ) for every σ. Thus

mi j = 〈χi,χχ j〉 = 〈χiχ,χ j〉 = m ji

for every i and j.

In displaying the McKay–Gabriel quivers for the Kleinian singularities,

we replace each opposed pair of arrows by a simple edge. This has the

effect, thanks to Lemma 5.235.23, of reducing the quiver to a simple graph

with no multiple edges.

5.24 (An). We have already calculated the McKay–Gabriel quiver for the

(An) singularities xz− yn+1, for n> 1, in Example 4.234.23. Replacing the pairs

of arrows there by single edges, we obtain

V0

V1 V2 · · · Vn−1 Vn .

5.25 (Dn). The binary dihedral group Dn−2 is generated by two elements

α=
ζ2(n−2)

ζ−1
2(n−2)

 and β=
 i

i


satisfying the relations

αn−2 =β2 = (αβ)2, and β4 = 1 .

There are four natural one-dimensional representations as follows:
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V0 : α 7→ 1, β 7→ 1 ;

V1 : α 7→ 1, β 7→ −1 ;

Vn−1 : α 7→ −1, β 7→ i ;

Vn : α 7→ −1, β 7→ −i .

Furthermore, there is for each j = 2, . . . ,n−2 an irreducible two-dimensional

representation Vj given by

a 7→
ζ j−1

2(n−2)

ζ
− j+1
2(n−2)

 and b 7→
 i j−1

i j−1

 .

In particular, the given representation V is isomorphic to V2. It’s easy to

compute now that

V ⊗k Vj ∼=Vj+1 ⊕Vj−1

for 26 j 6 n−2, leading to the McKay–Gabriel quiver for the (Dn) singu-

larity.

V0 Vn−1

V2 V3 · · · Vn−3 Vn−2

V1 Vn

For the remaining examples, we will take the character table of G as

given (see, for example, [Hum94Hum94], [IN99IN99], or [GAP08GAP08]). From these data,

we will be able to calculate the McKay–Gabriel quiver, since the charac-

ter of a tensor product is the product of the characters and the irreducible

representations are uniquely determined up to equivalence by their char-

acters.
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5.26 (E6). The given presentation of T is defined by the generators

α=
i

−i

 , β=
 i

i

 , and γ= 1p
2

ζ8 ζ3
8

ζ8 ζ7
8

 .

The character table has the following form.

representative I −I β γ γ2 γ4 γ5

|class| 1 1 6 4 4 4 4

order 1 2 4 6 3 3 6

V0 1 1 1 1 1 1 1

V1 2 −2 0 1 −1 −1 1

V2 3 3 −1 0 0 0 0

V3 2 −2 0 ζ3 −ζ3 −ζ2
3 ζ2

3

V ∨
3 2 −2 0 ζ2

3 −ζ2
3 −ζ3 ζ3

V4 1 1 1 ζ3 ζ3 ζ2
3 ζ2

3

V ∨
4 1 1 1 ζ2

3 ζ2
3 ζ3 ζ3

Here V =V1 is the given two-dimensional representation. Now one verifies

for example that the character of V1 ⊗k V4, that is the element-wise prod-

uct of the second and sixth rows of the table, is equal to the character of

V3. Hence V1 ⊗k V4
∼= V3 and the McKay–Gabriel quiver contains an edge

connecting V3 and V4. Similarly, V1 ⊗k V2
∼= V1 ⊕V3 ⊕V ∨

3 , so V2 is a vertex

of degree three. Continuing in this way gives the following McKay–Gabriel
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quiver.

V0

V1

V ∨
4 V ∨

3 V2 V3 V4

5.27. (E7) The binary octahedral group O is generated by α, β, and γ from

the previous case together with

δ=
ζ3

8

ζ5
8

 .

This time the character table is as follows.

representative I −I β γ γ2 δ βδ δ3

|class| 1 1 6 8 8 6 12 6

order 1 2 4 6 3 8 4 8

V0 1 1 1 1 1 1 1 1

V1 2 2 0 1 −1 −p2 0
p

2

V2 3 3 −1 0 0 1 −1 1

V3 4 −4 0 −1 1 0 0 0

V4 3 3 −1 0 0 −1 1 −1

V5 2 −2 0 1 −1
p

2 0 −p2

V6 1 1 1 1 1 −1 −1 −1

V7 2 2 2 −1 −1 0 0 0

Again V = V1 is the given two-dimensional representation. Now we com-
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pute the McKay–Gabriel quiver to be the following.

V7

V0 V1 V2 V3 V4 V5 V6

5.28. (E8) Finally, we consider the binary icosahedral group, generated by

σ= 1p
5

ζ4
5 −ζ5 ζ2

5 −ζ3
5

ζ2
5 −ζ3

5 ζ5 −ζ4
5

 and τ= 1p
5

ζ2
5 −ζ4

5 ζ4
5 −1

1−ζ5 ζ3
5 −ζ5

 .

Set ϕ+ = (1+p
5)/2, the golden ratio, and ϕ− = (1−p

5)/2. The character

table for I is below.

representative I −I σ τ τ2 στ (στ)2 (στ)3 (στ)4

|class| 1 1 30 20 20 12 12 12 12

order 1 2 4 6 3 10 5 10 5

V0 1 1 1 1 1 1 1 1 1

V1 2 −2 0 1 −1 ϕ+ −ϕ− ϕ− −ϕ+

V2 3 3 −1 0 0 ϕ+ ϕ− ϕ− ϕ+

V3 4 −4 0 −1 1 1 −1 1 −1

V4 5 5 1 −1 −1 0 0 0 0

V5 6 −6 0 0 0 −1 0 −1 0

V6 4 4 0 1 1 −1 −1 −1 −1

V7 2 −2 0 1 −1 ϕ− −ϕ+ ϕ+ −ϕ−

V8 3 3 −1 0 0 ϕ− ϕ+ ϕ+ ϕ−

We find that the McKay–Gabriel quiver is the extended Coxeter–Dynkin
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diagram Ẽ8.

V8

V7 V6 V5 V4 V3 V2 V1 V0

We have verified the first sentence of the following result, and the rest

is straightforward to check from the definitions.

5.29 Proposition. The McKay–Gabriel quivers of the finite subgroups of

SL(2,C) are the extended Coxeter-Dynkin diagrams. The dimensions of the

irreducible representations appearing in the McKay–Gabriel quiver define

an additive function on the quiver: Twice the dimension at a given vertex

is equal to the sum of the dimensions at the neighboring vertices. In accor-

dance with Corollary 4.184.18, these dimensions coincide with the ranks of the

indecomposable MCM modules over the Kleinian singularity.

§4 Geometric McKay correspondence

The one-one correspondences derived in Chapter 44 in general, and in this

chapter in dimension two, connect the representation theories of a finite

subgroup of SL(2,k) and of its ring of invariants to the (extended) ADE

Coxeter–Dynkin diagrams. These diagrams were known to be related to

the geometry of the Kleinian singularities much earlier. P. Du Val’s three-

part 1934 paper [DV34DV34] showed that the desingularization graphs of sur-

faces “not affecting the conditions of adjunction” are of ADE type; these are

exactly the Kleinian singularities [Art66Art66].



§4. Geometric McKay correspondence 111

The first direct link between the representation theory of a Kleinian

singularity and geometric information is due to G. Gonzalez-Sprinberg and

J.-L. Verdier [GSV81GSV81]. They constructed, on a case-by-case basis, a one-one

correspondence between the irreducible representations of a binary poly-

hedral group and the irreducible components of the exceptional fiber in a

minimal resolution of singularities of the invariant ring. (See below for

definitions.) At the end of this section we describe M. Artin and Verdier’s

direct argument linking MCM modules and exceptional components.

This section is significantly more geometric than other parts of the book;

in particular, we omit many of the proofs which would take us too far afield

to justify. Most unexplained terminology can be found in [Har77Har77].

Throughout the section, (R,m,k) will be a two-dimensional normal local

domain with algebraically closed residue field k. We do not assume chark =
0. Let X = SpecR, a two-dimensional affine scheme, that is, a surface. In

particular, since R is normal, X is regular in codimension one, so m is the

unique singular point of X .

A resolution of singularities of X is a non-singular surface Y with a

proper birational map π : Y −→ X such that the restriction of π to Y \π−1(m)

is an isomorphism. Since dim X = 2, resolutions of X exist as long as R is

excellent [Lip78Lip78]. The geometric genus g(X ) of X is the k-dimension of the

first cohomology group H1(Y ,OY ). This number is finite, and is indepen-

dent of the choice of a resolution Y . Again since dim X = 2, there is among

all resolutions of X a minimal resolution π : X̃ −→ X such that any other

resolution factors through π.

5.30 Definition. We say that X and R have (or are) rational singularities
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if g(X )= 0, that is, H1(X̃ ,O X̃ )= 0.

We can rephrase this definition in a number of ways. Since X = SpecR

is affine, the cohomology Hi(X̃ ,O X̃ ) is isomorphic to the higher direct image

R iπ∗(O X̃ ), so R has a rational singularity if and only if R1π∗(O X̃ )= 0. This

is equivalent to the condition that R iπ∗(O X̃ )= 0 for all i> 1, since the fibers

of a resolution π are at most one-dimensional [Har77Har77, III.11.2]. The direct

image π∗O X̃ itself is easy to compute: it is a coherent sheaf of R-algebras,

so S =Γ(X ,π∗O X̃ ) is a module-finite R-algebra. But since π is birational, S

has the same quotient field as R. Thus S is an integral extension, whence

equal to R by normality, and so π∗O X̃ =O X .

Alternatively, recall that the arithmetic genus of a scheme Y is defined

by pa(Y ) = χ(OY )−1, where χ is the Euler characteristic, defined by the

alternating sum of the k-dimensions of the Hi(Y ,OY ). It follows from the

Leray spectral sequence, for example, that if π : X̃ −→ X is a resolution of

singularities, then

pa(X )− pa(X̃ )= dimk H1(X̃ ,O X̃ ) ,

so that X is a rational singularity if and only if the arithmetic genus of X

is not changed by resolving the singularity.

For a more algebraic criterion, assume momentarily that R is a non-

negatively graded ring over a field R0 = k of characteristic zero. Flen-

ner [Fle81Fle81] and Watanabe [Wat83Wat83] independently proved that R has a ra-

tional singularity if and only if the a-invariant a(R) is negative. In gen-

eral, a(R) is the largest n such that the nth graded piece of the local co-

homology module HdimR
m (R) is non-zero. For a two-dimensional weighted-
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homogeneous hypersurface singularity such as the Kleinian singularities

in Theorem 5.185.18, the definition is particularly easy to apply:

a(k[x, y, z]/( f ))= deg f −deg x−deg y−deg z .

In particular, we check from Table 5.15.1 that the Kleinian singularities have

rational singularities in characteristic zero.

More generally, any two-dimensional quotient singularity k[u,v]G or

k[[u,v]]G , where G is a finite group with |G| invertible in k, has rational

singularities [Bur74Bur74, Vie77Vie77]. In fact, the restriction on |G| is unnecessary

for the Kleinian singularities: if S has rational singularities and R is a

subring of S which is a direct summand as R-module, then R has ratio-

nal singularities [Bou87Bou87]. Thus the Kleinian singularities have rational

singularities in any characteristic in which they are defined.

As a final bit of motivation for the study of rational surface singulari-

ties, we point out that a normal surface X =SpecR is a rational singularity

if and only if the divisor class group Cl(R) is finite, if and only if R has only

finitely many rank-one MCM modules up to isomorphism [Mum61Mum61, Lip69Lip69].

Return now to our two-dimensional normal domain R, its spectrum

X , and π : X̃ −→ X the minimal resolution of singularities. With 0 ∈ X

the unique singular point of X , set E = π−1(0), the exceptional fiber of π.

Then E is connected by Zariski’s Main Theorem [Har77Har77, III.5.2], and is

one-dimensional since π is birational. In other words, E is a union of irre-

ducible curves on X̃ , so we write E =⋃n
i=1 E i.

5.31 Lemma ([Bri68Bri68, Lemma 1.3]). Let π : X̃ −→ X be the minimal reso-

lution of a rational singularity X , and let E = ⋃n
i=1 E i be the exceptional
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fiber.

(i) Each E i is non-singular, in particular reduced, and furthermore is

a rational curve, i.e. E i ∼=P1.

(ii) E i ∩E j ∩Ek =; for pairwise distinct i, j,k.

(iii) E i∩E j is either empty or a single reduced point for i 6= j, that is, the

E i meet transversely if at all.

(iv) E is cycle-free.

To describe the intersection properties of the exceptional curves more

precisely, recall a bit of the intersection theory of curves on non-singular

surfaces. Let C and D be curves on X̃ with no common component. The

intersection multiplicity of C and D at a closed point x ∈ X̃ is the length

of the quotient O X̃ ,x/( f , g), where f = 0 and g = 0 are local equations of

C and D at x. The intersection number C · D of C and D is the sum of

intersection multiplicities at all common points x. The self-intersection C2,

a special case, is defined to be the degree of the normal bundle to C in X̃ .

Somewhat counter-intuitively, this can be negative; see [Har77Har77, V.1.9.2] for

an example.

The first part of the next theorem is due to Du Val [DV34DV34] and Mum-

ford [Mum61Mum61, Hir95aHir95a]; it immediately implies the second and third parts [Art66Art66,

Prop. 2 and Thm. 4].

5.32 Theorem. Let π : X̃ −→ X be the minimal resolution of a surface sin-

gularity (not necessarily rational) with exceptional fiber E =⋃n
i=1 E i. Define

the intersection matrix of X to be the symmetric matrix E(X )i j = (E i ·E j).
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(i) The matrix E(X ) is negative definite with off-diagonal entries either

0 or 1.

(ii) There exist positive divisors supported on E (that is, divisors of the

form Z =∑n
i=1 miE i with mi > 1 for all i) such that Z ·E i 6 0 for all

i.

(iii) Among all such Z as in (iiii), there is a unique smallest one, which is

called the fundamental divisor of X and denoted Z f .

To find the fundamental divisor there is a straightforward combinato-

rial algorithm: begin with mi = 1 for all i, so that Z1 =∑
i E i. If Z1 ·E i 6 0

for each i, we set Z f = Z1 and stop; otherwise Z1 ·E j > 0 for some j. In

that case, we put Z2 = Z1+E j and continue. The process terminates by the

negative definiteness of the matrix E(X ). See below for two examples.

For a rational singularity, we can identify Z f more precisely, and this

will allow us to identify the Gorenstein rational singularities.

5.33 Proposition ([Art66Art66, Thm 4]). The fundamental divisor Z f of a sur-

face X with a rational singularity satisfies

(
O X̃ ⊗O X m

)
/torsion=O X̃ (−Z f ) .

In particular, we have formulas for the multiplicity and the embedding di-

mension µR(m) of R:

e(R)=−Z2
f

embdim(R)=−Z2
f +1
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5.34 Corollary. A two-dimensional normal local domain R with a rational

singularity has minimal multiplicity [Abh67Abh67]:

e(R)=µR(m)−dimR+1 .

5.35 Corollary. Let (R,m) be a two-dimensional normal local domain, and

assume that R is Gorenstein. If R is a rational singularity, then R is a

hypersurface ring of multiplicity two (a “double point”).

Proof. By the Proposition, we have e(R) = −Z2
f and µR(m) = −Z2

f +1. Cut

down by a regular sequence of length two in m\m2 to arrive at an Artinian

local ring R with e(R) = `(R) and µR(m) = µR(m)−2. These together im-

ply that µR(m) = `(R)−1, so the Hilbert function of R is (1,−Z2
f −1,0, . . . ).

However, R is Gorenstein, so has socle dimension equal to 1. This forces

Z2
f =−2, which gives e(R)= 2 and µR(m)= 3. In particular R is a hypersur-

face ring.

5.36 Corollary. Let R be a Gorenstein rational surface singularity. The

self-intersection number E2
i of each exceptional component is −2. Equiva-

lently the normal bundle N E i /X̃ is OE i (−2).

Proof. This is a straightforward calculation using the adjunction formula

and Riemann–Roch Theorem, see [Dur79Dur79, A3], together with Z2
f =−2.

5.37 Remark. At this point, we can describe the connection between Goren-

stein rational surface singularities and the ADE Coxeter–Dynkin diagrams.

To do this, we define the desingularization graph of a surface X to be the

dual graph of the exceptional fiber in a minimal resolution of singularities.

Precisely, let π : X̃ −→ X be the minimal resolution of singularities, and let
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E1, . . . ,En be the irreducible components of the exceptional fiber. Then the

desingularization graph has vertices E1, . . . ,En, with an edge joining E i to

E j for i 6= j if and only if E i ∩E j 6= ;.

Let Z f =∑
i miE i be the fundamental divisor of X , and define a function

f from the vertices {E1, . . . ,En} to N by f (E i) = mi. Then for i = 1, . . . ,n we

have

0> Z ·E i =−2mi +
∑

j
m j(E i ·E j)=−2mi +

∑
j

m j ,

where the sum is over all j 6= i such that E i ∩E j 6= ;. This gives 2 f (E i)>∑
j f (E j), and the negative definiteness of the intersection matrix (Theo-

rem 5.325.32) implies that f is a sub-additive, non-additive function on the

graph. Thus the graph is ADE.

We illustrate the general facts described so far with two examples of

resolutions of rational double points: the (A1) and (D4) hypersurfaces. We

will also draw the desingularization graphs for these two examples.

5.38 Example. Let X be the hypersurface in A3 defined by the (A1) poly-

nomial x2 + y2 + z2. To resolve the singularity of X at the origin, we blow

up the origin in A3. Precisely, we set

Ã3 = {
((x, y, z) , (a : b : c)) ∈A3 ×P2 ∣∣ xb = ya, xc = za, yc = zb

}
.

(See [Har77Har77] for basics on blowups.) The projection ϕ : Ã3 −→ A3 is an

isomorphism away from the origin in A3, while ϕ−1(0,0,0) is the projective

plane P2 ⊆ Ã3.

Let X̃ be the blowup of X at the origin. That is, X̃ is the Zariski closure

of ϕ−1(X \ (0,0,0)) in Ã3. Then X̃ is defined in Ã3 by the vanishing of a2 +
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b2 + c2. The restriction of ϕ gives π : X̃ −→ X , and the exceptional fiber E

is the preimage of (0,0,0) in X̃ . We claim that X̃ is smooth, and that E is a

single projective line P1.

The blowup X̃ is covered by three affine charts Ua, Ub, Uc, defined by

a 6= 0, b 6= 0, c 6= 0 respectively, or equivalently by a = 1, b = 1, c = 1. In

the chart Ua, we have y= xb and z = xc, so that the defining equation of X

becomes

x2 + x2b2 + x2z2 = x2 (
1+b2 + c2)

Above X \ (0,0,0), we have x 6= 0, so the preimage of X \ (0,0,0) is defined

by x 6= 0 and 1+b2+ c2 = 0. The Zariski closure of ϕ−1(X \(0,0,0)) is thus in

this chart the cylinder 1+ b2 + c2 = 0 in Ua ∼=A3. Since all three charts are

symmetric, we conclude that X̃ is smooth.

Remaining in the chart Ua, we see that the exceptional fiber E is defined

in X̃ by x = 0, so is defined in Ua by 1+ b2 + c2 = x = 0. Again we use

the symmetry of the three charts to conclude that E is smooth, and even

rational, so E ∼=P1.

Drawing the desingularization graph of X is thus quite trivial: it has a

single node and no edges.

E

Observe that this is the (A1) Coxeter–Dynkin diagram. Since E2 = −2 by

Corollary 5.365.36, we find that Z f = E is the fundamental divisor.

5.39 Example. For a slightly more sophisticated example, consider the

(D4) hypersurface X ⊆A3 defined by the vanishing of x2 y+ y3 + z2. Again
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blowing up the origin in A3, we obtain as before

Ã3 = {
((x, y, z) , (a : b : c)) ∈A3 ×P2 ∣∣ xb = ya, xc = za, yc = zb

}
,

with projection ϕ : Ã3 −→ A3. This time let X1 be the Zariski closure of

ϕ−1(X \ (0,0,0)). In the affine chart Ua where a = 1, we again have y = xb

and z = xc, so the defining polynomial becomes

x3b+ x3b3 + x2c2 = x2 (
x
(
b+b3)+ c2) .

Thus X1 is defined by x(b+b3)+c2 in Ua, so is a singular surface. In fact, an

easy change of variables reveals that in this chart X1 is isomorphic to an

(A1) hypersurface singularity (in the variables 1
2 (x+ (b+b3)), i

2 (x− (b+b3),

and c). In particular, X1 has three singular points, with coordinates x =
c = 0 and b+b3 = 0. In the coordinates of Ã3, they are at ((0,0,0) , (1 : b : 0)),

where b3 =−b. The exceptional fiber, which we denote E1, corresponds in

this chart to x = 0, whence c = 0, so is just the b-axis.

In the other charts, we find no further singularities. On Ub, the defining

polynomial is

y3a+ y3 + y2c2 = y2 (
ya+ y+ c2)

so that X1 is defined in Ub by ya+y+c2 = 0. This is also an (A1) singularity,

this time with a single singular point at y = c = 0. However, we’ve already

seen this point, as its Ã3 coordinates are ((0,0,0) , (−1 : 1 : 0)), which is in

Ua. The exceptional fiber here is the a-axis. Finally, in the chart Uc, we

find

z3a2b+ z3b3 + z2 = z2 (
za2b+ zb3 +1

)
so that X1 is smooth in this chart and E1 is not visible. In particular we

find that E1
∼=P1.
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Since the first blowup X1 is not smooth, we continue, resolving the sin-

gularities of the surface x(b+ b3)+ c2 = 0 by blowing up its three singular

points. Since each singular point is locally isomorphic to an (A1) hypersur-

face, we appeal to the previous example to see that the resulting surface

X̃ is smooth, and that each of the three new exceptional fibers E2, E3, E4

intersects the original one E1 transversely. The desingularization graph

thus has the shape of the (D4) Coxeter–Dynkin diagram:

E2

E3 E1 E4

To compute the fundamental divisor Z f , we begin with Z1 = E1+E2+E3+
E4. Since E2

i =−2 and E j ·E1 = 1 for each j = 2,3,4, we find

Z1 ·E1 =−2+1+1+1= 1> 0 .

Thus we replace Z1 by Z2 = 2E1 +E2 +E3 +E4. Now

Z2 ·E1 =−4+1+1+16 0 ,

and for j = 2,3,4 we have Z2 ·E j = 2−2+0+06 0 , so that Z f = Z2 = 2E1 +
E2 +E3 +E4 is the fundamental divisor.

The calculations in the examples can be carried out for each of the

Kleinian singularities in Table 5.15.1, and one verifies the next result, which

was McKay’s original observation.

5.40 Theorem (McKay). Let G be a finite subgroup of SL(2,C) and let

R = C[[u,v]]G be the corresponding ring of invariants. Then the desingu-

larization graph of X = SpecR is an ADE Coxeter–Dynkin diagram. In
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particular, it is equal to the McKay–Gabriel quiver of G with the vertex

corresponding to the trivial representation removed. Furthermore, the coef-

ficients of the fundamental divisor Z f coincide with the dimensions of the

corresponding irreducible representations of G, and with the ranks of the

corresponding indecomposable MCM R-modules.

We can now state the theorem of Artin and Verdier on the geometric

McKay correspondence. Here is the notation in effect through the end of

the section:

5.41 Notation. Let (R,m,k) be a complete local normal domain of dimen-

sion two, which is a rational singularity. Let π : X̃ −→ X = SpecR be its

minimal resolution of singularities, and E = π−1(m) the exceptional fiber,

with irreducible components E1, . . . ,En. Let Z f = ∑
i miE i be the funda-

mental divisor of X . We identify a reflexive R-module M with the associ-

ated coherent sheaf of O X -modules, and define the strict transform of M

by

M̃ = (M⊗O X O X̃ )/torsion ,

a sheaf on X̃ .

5.42 Theorem (Artin-Verdier). With notation as above, assume moreover

that R is Gorenstein. Then there is a one-one correspondence, induced by the

first Chern class c1(−), between indecomposable non-free MCM R-modules

and irreducible components E i of the exceptional fiber. Precisely: Let M be

an indecomposable non-free MCM R-module, and let [C] = c1(M̃) ∈ Pic(X̃ ).

Then there is a unique index i such that C ·E i = 1 and C ·E j = 0 for i 6= j.

Furthermore, we have rankR(M)= C ·Z f = mi.
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The first Chern class mentioned in the Theorem is a mechanism for

turning a locally free sheaf E into a divisor c1(E ) in the Picard group Pic(X̃ ).

In particular, c1(−) is additive on short exact sequences over X̃ .

The main ingredients of the proof of Theorem 5.425.42 are compiled in the

next propositions.

5.43 Proposition. With notation as in 5.415.41, M̃ enjoys the following prop-

erties.

(i) M̃ is a locally free O X̃ -module, generated by its global sections.

(ii) Γ(X̃ , M̃)= M and H1(X̃ , M̃∗)= 0.

(iii) There is a short exact sequence of sheaves on X̃

(5.43.1) 0−→O (r)
X̃

−→ M̃ −→OC −→ 0 ,

where r = rankR(M), and C is a closed one-dimensional subscheme

of X̃ which meets the exceptional fiber E transversely. Furthermore,

the global sections of (5.43.15.43.1) give an exact sequence of R-modules

(5.43.2) 0−→ R(r) −→ M −→Γ(X̃ ,OC)−→ 0

Observe that the class [C] of the curve C in the Picard group Pic(X̃ ) is

equal to the first Chern class c1(M̃) of M̃, since c1(−) is additive on short

exact sequences and c1(L )= [L ] ∈Pic(X̃ ) for any line bundle L .

5.44 Proposition. Keep all the notation of 5.415.41, and assume moreover that

R is Gorenstein. Fix a reflexive R-module M, and let C be the curve guar-

anteed by Prop. 5.435.43. Then
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(i) C·Z f 6 r, with equality if and only if M has no non-trivial free direct

summands.

(ii) If C = C1 ∪·· ·∪Cs is the decomposition of C into irreducible compo-

nents, then M can be decomposed accordingly: M ∼= M1⊕·⊕Ms, with

each Mi indecomposable and c1(M̃i)= [Ci] for each i.

The proofs of Propositions 5.435.43 and 5.445.44 are relatively straightforward

algebraic geometry. The key observation giving the existence of the short

exact sequence (5.43.15.43.1) is a general-position argument: r generically cho-

sen sections of M̃ generate a free subsheaf O (r)
X̃

, and one checks that the

choice can be made so that the restriction of the kernel to each E i is iso-

morphic to a direct sum of residue fields at points distinct from each other

and from the intersections E i ∩E j. The statements in Proposition 5.445.44 fol-

low from the fact that Z f ·C is equal to the minimal number of generators

of the R-module Γ(X̃ ,OC) by Proposition 5.335.33, together with duality for the

proper map π.

§5 Exercises

5.45 Exercise. Let R be a reduced Noetherian ring and let M be a finitely

generated R-module. Set −∗ =HomR(−,R).

(i) Prove that there is an exact sequence

0−→ tor(M)−→ M
σM−−→ M∗∗ −→ T −→ 0

where σM : M −→ M∗∗ is the natural biduality homomorphism σM(m)( f )=
f (m), and T is a torsion module.
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(ii) If in addition R is CM with canonical module ω, prove that there is

an exact sequence

0−→ tor(M)−→ M
τM−−→ M∨∨ −→ T ′ −→ 0

where −∨ = HomR(−,ω) and τM : M −→ M∨∨ is another biduality

map defined analogously to σM . Again, T ′ is torsion.

5.46 Exercise. Let R be a reduced Noetherian ring satisfying (S2) and let

M, N be finitely generated R-modules with N reflexive. Prove that

HomR(M, N)=HomR(M∗∗, N) .

If in addition R is CM with canonical module ω, then

HomR(M, N)=HomR(M∨∨, N) .

(Hint: first reduce to the torsion-free case, then show that when M is

torsion-free, Tp = 0 for every prime p of height one, and conclude Ext1
R(T, N)=

0.)

5.47 Exercise. Let R be a reduced CM local ring with canonical module ω,

and assume that R is Gorenstein on the punctured spectrum. Prove that

M∗∗ ∼= M∨∨ for every finitely generated R-module M.

5.48 Exercise. Let R be a reduced Noetherian ring and M, N, P finitely

generated reflexive R-modules. Define the reflexive product of M and N by

M ·N = (M⊗R N)∗∗

Prove the following isomorphisms.
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(i) M ·N ∼= N ·M.

(ii) HomR(M ·N,P)cHomR(M,HomR(N,P)).

(iii) M · (N ·P)∼= (M ·N) ·P.

5.49 Exercise. Let R −→ S be a homomorphism of reduced Noetherian

rings satisfying (S2), and such that S is a finitely generated reflexive R-

module. Let M be a finitely generated reflexive R-module. Define S ·M to

be the S-module (S⊗R M)††, where −† =HomS(−,S).

(i) Prove that if N is a reflexive S-module, then HomR(M, N)∼=HomS(S·
M, N).

(ii) Conclude that we may compute S ·M as (S⊗R M)∗∗, with the double

dual occurring over R.

5.50 Exercise. In the setup of 4.24.2, prove that if M is a reflexive R-module

such that Exti
R(M∗,S)= 0 for i = 1, . . . ,n−2, then M ∈ addR(S).



6
Isolated Singularities and

Classification in Dimension Two
In this chapter we present a pair of celebrated theorems due originally to

Auslander. The first, Theorem 6.126.12, states that a CM local ring of finite CM

type has at most an isolated singularity. We give the simplified proof due

to Huneke and Leuschke, which requires some easy general preliminaries

on elements of Ext1. The second, Theorem 6.196.19, gives a strong converse to

Herzog’s Theorem 5.35.3, namely that in dimension two over a field of char-

acteristic zero, every CM complete local algebra having finite CM type is a

ring of invariants.

§1 Miyata’s theorem

The classical Yoneda correspondence (see [ML95ML95]) allows us to identify el-

ements of an Ext-module Exti
R(M, N) as equivalence classes of i-fold ex-

tensions of N by M. In the case i = 1, this is particularly simple: an

element α ∈ Ext1
R(M, N) is an equivalence class of short exact sequences

0−→ N −→ X −→ M −→ 0, where we declare two such sequences, with mid-

dle terms X , X ′, to be equivalent if they fit into a commutative diagram

0 // N // X //

��

M // 0

0 // N // X ′ // M // 0 .
126
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It follows from the Snake Lemma that in this situation X ∼= X ′, so the

middle term Xα is determined by the element α. The converse is false (cf.

Exercise 6.226.22), but Miyata’s Theorem [Miy67Miy67] gives a partial converse: if

a short exact sequence “looks” split—the middle term is isomorphic to the

direct sum of the other two—then it is split.

6.1 Theorem (Miyata). Let R be a commutative Noetherian ring and let

α : N
p // Xα

q // M // 0

be an exact sequence of finitely generated R-modules. If Xα
∼= M⊕N, then α

is a split short exact sequence.

Proof. It suffices to show that p : N −→ Xα is a pure homomorphism, that

is, Z ⊗R p : Z ⊗R N −→ Z ⊗R Xα is injective for every finitely generated R-

module Z. Indeed, taking Z = R will show that p is injective, and by Ex-

ercise 6.236.23 (or Exercise 10.5010.50), pure submodules with finitely-presented

quotients are direct summands.

Fix a finitely generated R-module Z. To show that Z⊗R p is injective, we

may localize at a maximal ideal and assume that (R,m) is local. Suppose

c ∈ Z ⊗ N is a non-zero element of the kernel of Z ⊗R p. Take n so large

that c ∉ mn(Z ⊗R N) = mnZ ⊗R N. Tensoring further with R/mn gives the

right-exact sequence

(Z/mnZ)⊗R N
p // (Z/mnZ)⊗R Xα

// (Z/mnZ)⊗R M // 0

of finite length R-modules. Counting lengths shows that p is injective,

contradicting the presence of the nonzero element c in the kernel.
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Let

α : 0 // N // Xα
// M // 0

β : 0 // N // Xβ
// M // 0

be two extensions of N by M, with Xα
∼= Xβ. As mentioned above, α and

β need not represent the same element of Ext1
R(M, N). In the rest of this

section we describe a result of Striuli [Str05Str05] giving a partial result in that

direction.

6.2 Remark. We recall briefly a few more details of the Yoneda correspon-

dence for Ext1. First, recall that if α ∈ Ext1
R(M, N) is represented by the

short exact sequence

α : 0 // N // Xα
// M // 0 ,

then for r ∈ R, the product rα can be computed via either a pullback or a

pushout. Precisely, rα is represented either by the top row of the diagram

rα : 0 //// N // P //

��

M //

r
��

0

α : 0 // N p
// X q

// M // 0

or the bottom row of the diagram

α : 0 //// N
p //

r
��

X
q //

��

M // 0

rα : 0 // N // Q // M // 0

where

P = {(x,m) ∈ X ⊕M |q(x)= rm}
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and

Q = X ⊕N/〈(p(n),−rn) |n ∈ N〉 .

More generally, the same sorts of diagrams define actions of EndR(M) and

EndR(N) on Ext1
R(M, N), on the right and left respectively, replacing r by

an endomorphism of the appropriate module.

Pullbacks and pushouts also define the connecting homomorphisms δ

in the long exact sequences of Ext. If α ∈ Ext1
R(M, N) is as above, then for

an R-module Z the long exact sequence looks like

· · · //HomR(Z, X )
q∗ //HomR(Z, M) δ //Ext1

R(Z, N) // · · · .

The image of a homomorphism g : Z −→ M in Ext1
R(M, N) is the top row of

the pullback diagam below.

0 //// N //U //

��

Z //

g
��

0

0 // N p
// X q

// M // 0

In particular, when Z = M we find that δ(1M) = α. Similar considerations

apply for the long exact sequence attached to HomR(−, Z).

Here is the result that will occupy the rest of the section. In fact Striuli’s

result holds for arbitrary Noetherian rings; we leave the straightforward

extension to the interested reader.

6.3 Theorem (Striuli). Let R be a local ring. Let

α : 0 // N // Xα
// M // 0

β : 0 // N // Xβ
// M // 0
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be two short exact sequences of finitely generated R-modules. Suppose that

Xα
∼= Xβ and that β ∈ I Ext1

R(M, N) for some ideal I of R. Then the complex

α⊗R R/I is a split exact sequence.

We need one preliminary result.

6.4 Proposition. Let (R,m) be a local ring and I an ideal of R. Let

α : 0 // N
p // Xα

q // M // 0

be a short exact sequence of finitely generated R-modules, and denote by

α=α⊗R R/I the complex

α : 0 // N/IN
p // Xα/IXα

q // M/IM // 0 .

If α ∈ I Ext1
R(M, N), then α is a split exact sequence.

Proof. By Miyata’s Theorem 6.16.1 it is enough to show that Xα/IXα
∼= M/IM⊕

N/IN. Let

ξ : 0 // Z i // F0
d0 // M // 0

be the beginning of a minimal resolution of M over R, so that Z = syzR
1 (M)

is the first syzygy of M. Then applying HomR(−, N) gives a surjection

HomR(Z, N)−→Ext1
R(M, N). In particular I HomR(Z, N) maps onto I Ext1

R(M, N),

so there exists ϕ ∈ I HomR(Z, N) such that α is obtained from the pushout

diagram below.

ξ : 0 // Z
ϕ

��

i // F0

ψ

��

d0 // M // 0

α : 0 // N p
// Xα q

// M // 0
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In particular, we have ϕ(Z) ⊆ IN. The pushout diagram also induces an

exact sequence

ν : 0 // Z

[
i−ϕ

]
// F0 ⊕N [ψ p ] // Xα

// 0 .

Let L be an arbitrary R/I-module of finite length, and tensor both ξ and ν

with L:

Z⊗R L
i⊗1L // F0 ⊗R L

d0⊗1L // M⊗R L // 0

Z⊗R L

[ i⊗1L−ϕ⊗1L

]
// (F0 ⊗R L)⊕ (N ⊗R L)

[
ψ⊗1L
p⊗1L

]T

// Xα⊗R L // 0 .

Since ϕ(Z)⊂ IN and IL = 0, the image of −ϕ⊗1L is zero in N⊗RL. Denoting

the image of i⊗1 by K , we get exact sequences

0 // K // F0 ⊗R L // M⊗R L // 0

0 // K // (F0 ⊗R L)⊕ (N ⊗R L) // Xα⊗R L // 0 .

Counting lengths (over either R or R/I, equally) now gives

`(Xα⊗R L)= `(M⊗R L)+`(N ⊗R L) .

In particular, since L is an R/I-module, we have

`(Xα/IXα⊗R/I L)= `(M/IM⊗R/I L)+`(N/IN ⊗R/I L) .

Proposition ?? now applies, as L was arbitrary, to give Xα/IXα
∼= M/IM ⊕

N/IN.

Proof of Theorem 6.36.3. Since β ∈ I Ext1
R(M, N), Miyata’s Theorem 6.16.1 im-

plies that Xβ/IXβ
∼= M/IM⊕N/IN and hence Xα/IXα

∼= M/IM⊕N/IN. Ap-

plying Miyata’s Theorem 6.16.1, we have that α⊗R R/I is split exact.
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Here is an amusing consequence.

6.5 Corollary. Let (R,m) be a local ring and M a non-free finitely generated

module. Let α be the short exact sequence

α : 0 // M1 // F // M // 0 ,

where F is a finitely generated free module and M1 ⊆ mF. Then α is a

minimal generator of Ext1
R(M, M1).

Proof. If α ∈mExt1
R(M, M1), then α=α⊗R/m is split exact. But since M1 ⊆

mF, the image of M1 ⊗R/m is zero, a contradiction.

6.6 Example. The converse of Lemma 6.46.4 fails. Consider the one-dimensional

(A2) singularity R = k[[t2, t3]]. Since R is Gorenstein, Ext1
R(k,R) ∼= k, and

so every nonzero element of Ext1
R(k,R) is a minimal generator. Define α to

be the bottom row of the pushout diagram

0 // m //

ϕ

��

R //

��

k // 0

0 // R // X // k // 0

where ϕ is defined by ϕ(t2) = t3 and ϕ(t3) = t4. Then α is non-split, since

there is no map R −→ R extending ϕ, whence α ∉ mExt1
R(k,R). On the

other hand, µ(X )= 2 and hence X /mX ∼= k⊕k.

These results raise the following question, which will be particularly

relevant in Chapter 1414.

6.7 Question. Let (R,m) be a CM local ring and let M and N be MCM

R-modules. Take a maximal regular sequence x on R, M, and N, and take
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α ∈ Ext1
R(M, N). Is it true that α ∈ xExt1

R(M, N) if and only if α⊗R/(x) is

split exact?

§2 Isolated singularities

Now we come to the first major theorem in the general theory of CM lo-

cal rings of finite CM type: that they have at most isolated singularities.

The result is due originally to Auslander [Aus86aAus86a] for complete local rings,

though as Yoshino observed, the original proof relies only on the KRS prop-

erty, hence works equally well for Henselian rings by Theorem 1.71.7. Aus-

lander’s argument is a tour de force of functorial imagination, and an early

vindication of the use of almost split sequences in commutative algebra

(cf. Chapter 1010). Here we give a simple argument due to Huneke and

Leuschke [HL02HL02], valid for all CM local rings, using the results of the pre-

vious section.

6.8 Definition. Let (R,m) be a local ring. We say that R is, or has, an

isolated singularity provided Rp is a regular local ring for all non-maximal

prime ideals p.

Note that we include the case where R is regular under the definition

above. We also say R has “at most” an isolated singularity to explicitly

allow this possibility.

The next lemma is standard, and we leave its proof as an exercise (Ex-

ercise 6.256.25).
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6.9 Lemma. Let (R,m) be a CM local ring. Then the following conditions

are equivalent.

(i) The ring R has at most an isolated singularity.

(ii) Every MCM R-module is locally free on the punctured spectrum.

(iii) For all MCM R-modules M and N, Ext1
R(M, N) has finite length.

6.10 Lemma. Let (R,m) be a local ring, r ∈m, and

α : 0 //// N i //

r
��

Xα
//

f
��

M // 0

rα : 0 // N
j
// Xrα // M // 0

a commutative diagram of short exact sequences of finitely generated R-

modules. Assume that Xα
∼= Xrα (not necessarily via the map f ). Then

α ∈ rExt1
R(M, N).

Note that the case r = 0 is Miyata’s Theorem 6.16.1.

Proof. The pushout diagram gives an exact sequence

0 // N

[ r
−i

]
// N ⊕ Xα

[ j f ] // Xrα // 0 .

Since N ⊕ Xα
∼= N ⊕ Xrα, Miyata’s Theorem 6.16.1 implies that the sequence

splits. In particular, the induced map on Ext,

[ r
−i∗

]
: Ext1

R(M, N)−→Ext1
R(M, N)⊕Ext1

R(M, Xα) ,

is a split injection. Let h be a right inverse for
[ r
−i∗

]
.
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Now apply HomR(M,−) to α, getting an exact sequence

· · · // HomR(M, M) δ // Ext1
R(M, N)

i∗ // Ext1
R(M, Xα) // · · · .

The connecting homomorphism δ takes 1M to α, so i∗(α)= 0. Thus

α= h(rα,0)= rh(α,0) ∈ rExt1
R(M, N) .

6.11 Theorem. Let (R,m) be local and M, N finitely generated R-modules.

Suppose there are only finitely many isomorphism classes of modules X for

which there exists a short exact sequence

0−→ N −→ X −→ M −→ 0.

Then Ext1
R(M, N) has finite length.

Proof. Let α ∈ Ext1
R(M, N), and let r ∈m. By Exercise 6.246.24, it will suffice

to prove that rnα = 0 for n À 0. For any integer n > 0, we consider a

representative for rnα, namely

rnα : 0−→ N −→ Xn −→ M −→ 0 .

Since there are only finitely many such isomorphism classes of Xn, there

exists an infinite sequence n1 < n2 < ·· · such that Xni
∼= Xn j for every i, j.

Set β = rn1α, and let i > 1. Note that rniα = rni−n1β. Hence we get the

commutative diagram

β : 0 // N //

rni−n1

��

Xn1
//

��

M // 0

rni−n1β : 0 // N // Xni
// M // 0
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for each i. By Lemma 6.106.10, Xn1
∼= Xni implies β ∈ rni−n1 Ext1

R(M, N) for

every i. This implies β ∈ mt Ext1
R(M, N) for every t > 1, whence, by the

Krull Intersection Theorem, β= 0.

If R has finite CM type, then for all MCM modules M and N, there

exist only finitely many MCM modules X generated by at most µR(M)+
µR(N) elements, thus finitely many potential middle terms for short exact

sequences. Thus we obtain Auslander’s theorem:

6.12 Theorem (Auslander). Let (R,m) be a CM ring with finite CM type.

Then R has at most an isolated singularity.

6.13 Remark. A non-commutative version of Theorem 6.126.12 is easy to state,

and the same proof applies. This was Auslander’s original context [Aus86aAus86a].

Specifically, Auslander considers the following situation: Let T be a com-

plete regular local ring and letΛ be a (possibly non-commutative) T-algebra

which is a finitely generated free T-module. Say that Λ is nonsingular

if gldimΛ = dimT, and that Λ has finite representation type if there are

only finitely many isomorphism classes of indecomposable finitely gener-

ated (left) Λ-modules that are free as T-modules. If Λ has finite represen-

tation type, then Λp is nonsingular for all non-maximal primes p of T.

We mention here a few further applications of Theorem 6.116.11, all based

on the same observation. Suppose that R is a CM local ring and M is

a MCM R-module such that there are only finitely many non-isomorphic

MCM modules of multiplicity less than or equal to µR(M) · e(R); then M

is locally free on the punctured spectrum. This follows immediately from

Theorem 6.126.12 upon taking N to be the first syzygy of M in a minimal free
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resolution. If in addition R is a domain, then the criterion simplifies to the

existence of only finitely many MCM modules of rank at most µR(M).

Obvious candidates for M are the canonical module ω, the conormal

I/I2 of a regular presentation R = A/I, and the module of Kähler differen-

tials Ω1
R/k if R is essentially of finite type over a field k. Since the free-

ness of these modules implies that R is Gorenstein, resp. complete inter-

section [Mat86Mat86, 19.9], resp. regular [Kun86Kun86, Theorem 7.2], we obtain the

following corollaries.

6.14 Corollary. Let (R,m) be a CM local ring with canonical module ω. If

R has only finitely many non-isomorphic MCM modules of multiplicity up

to r(R)e(R), where r(R) = dimk ExtdimR
R (k,R) denotes the Cohen–Macaulay

type of R, then R is Gorenstein on the punctured spectrum.

6.15 Corollary. Let (A,n) be a regular local ring, and suppose I ⊆ n2 is an

ideal such that R = A/I is CM. Assume that I/I2 is a MCM R-module. If

R has only finitely many non-isomorphic MCM modules of multiplicity at

most µA(I)·e(R), then R is complete intersection on the punctured spectrum.

6.16 Corollary. Let k be a field of characteristic zero, and let R be a k-

algebra essentially of finite type. Let Ω1
R/k be the module of Kähler differen-

tials of R over k. Assume that Ω is a MCM R-module. If R has only finitely

many non-isomorphic MCM modules of multiplicity up to embdim(R)·e(R),

then R has at most an isolated singularity.

The second corollary naturally raises the question of when I/I2 is a

MCM A/I-module for an ideal I in a regular local ring A. Herzog [Her78aHer78a]
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showed that this is the case if A/I is Gorenstein and I has height three;

see [HU89HU89] and [Buc81Buc81, 6.2.10] for some further results in this direction.

§3 Classification of two-dimensional CM

rings of finite CM type

Our aim in this section is to prove a converse to Herzog’s Theorem 5.35.3,

which states that rings of invariants in dimension two have finite CM type.

The result, due to Auslander and Esnault, is that if a complete local ring R

of dimension two, with a coefficient field k of characteristic zero, has finite

CM type, then R ∼= k[[u,v]]G for some finite group G ⊆GL(n,k).

Auslander’s proof relies on a deep topological result of Mumford [Mum61Mum61],

[Hir95bHir95b]. We give Mumford’s theorem below, followed by the interpre-

tation and more general statement in commutative algebra due to Flen-

ner [Fle75Fle75], see also [CS93CS93].

6.17 Theorem (Mumford). Let V be a normal complex space of dimension

2 and x ∈V a point. Then the following properties hold.

(i) The local fundamental group π(V , x) is finitely generated.

(ii) If the local homology group H1(V , x) vanishes, then π(V , x) is isomor-

phic to the fundamental group of a valued tree with negative definite

intersection matrix.

(iii) If π(V , x)= {1} is trivial, then x is a regular point.
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To translate Mumford’s result into commutative algebra, we recall the

definition of the étale fundamental group, also called the algebraic funda-

mental group. See [Mil08Mil08] for more details. (We will not attempt maximal

generality in this brief sketch; in particular, we will ignore the need to

choose a base point.) For a connected normal scheme X , the étale funda-

mental group πet
1 (X ) classifies the finite étale coverings of X in a manner

analogous to the usual fundamental group classifying the covering spaces

of a topological space.

The construction of πet
1 is clearest when X =Spec A for a normal domain

A. Let K be the quotient field of A, and fix an algebraic closure Ω of K .

Then πet
1 (X )∼=Gal(L/K), where L is the union of all the finite separable field

extensions K ′ of K contained in Ω, and such that the integral closure of A

in K ′ is étale over A. There is a Galois correspondence between subgroups

H ⊆πet
1 (X ) of finite index and finite étale covers A −→ B of A. In particular,

πet
1 (X )= 0 if and only if A has no non-trivial finite étale covers.

With some extra work, the étale fundamental group can be defined for

arbitrary schemes X . In particular, one may take X to be the punctured

spectrum Spec◦ A =Spec A \{m} of a local ring (A,m). We say that the local

ring (A,m) is pure if the induced morphism of étale fundamental groups

πet
1 (Spec◦ A) −→ πet

1 (Spec A) is an isomorphism. (Unfortunately this usage

of the word “pure” has nothing to do with the usage of the same word earlier

in this chapter.) The point is the surjectivity: A is pure if and only if every

étale cover of the punctured spectrum extends to an étale cover of the whole

spectrum.

6.18 Theorem (Flenner). Let (A,m,k) be an excellent Henselian local nor-
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mal domain of dimension two. Assume that chark = 0. Consider the follow-

ing conditions.

(i) πet
1 (Spec◦ A)= 0;

(ii) A is pure;

(iii) A is a regular local ring.

Then (a) =⇒ (b) ⇐⇒ (c), and the three conditions are equivalent if k is

algebraically closed.

The implication “A regular =⇒ A pure” is a restatement of the theo-

rem on the purity of the branch locus (Theorem B.12B.12). The content of the

theorem of Mumford and Flenner is in the other implications, in particular,

a converse to purity of the branch locus.

Now we come to Auslander’s characterization of the two-dimensional

complete local rings of finite CM type in characteristic zero.

6.19 Theorem. Let R be a complete CM local ring of dimension two with a

coefficient field k. Assume that k has characteristic zero. If R has finite CM

type, then there exists a power series ring S = k[[u,v]] and a finite group G

acting on S by linear changes of variables such that R ∼= SG .

Proof. First, notice that by Theorem 6.126.12 R is regular in codimension one,

whence a normal domain.

Let K be the quotient field of the normal domain R, and fix an alge-

braic closure Ω. Consider the family of all finite field extensions K ′ of K ,

contained in Ω, and such that the integral closure of R in K ′ is unramified
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in codimension one over R. Let L be the field generated by all these K ′,

and let S be the integral closure of R in L.

We will show that L is a finite Galois extension of K , so that in partic-

ular S is a module-finite R-algebra. Observe that if we show this, then by

construction S has no module-finite ring extensions which are unramified

in codimension one; indeed, any such ring extension would also be module-

finite and unramified in codimension one over R. (See Appendix BB.) In

other words, we will have πet
1 (SpecS \ {mS}) = 0 and it will follow that S is

a regular local ring, hence S ∼= k[[u,v]].

To show that L/K is a finite Galois extension, assume that there is an

infinite ascending chain

K ( L1 ( L2 ( · · ·( L

of finite Galois extensions of K inside L. Let Si be the integral closure of R

in L i. Then we have a corresponding infinite ascending chain

R ( S1 ( S2 ( · · ·( S

of module-finite ring extensions. Each Si is a normal domain, so in par-

ticular a reflexive R-module. By Exercise 3.313.31, the Si are pairwise non-

isomorphic as R-modules, contradicting the assumption that R has finite

CM type. Thus L/K is finite, and it’s easy to see it is a Galois extension. Let

G be the Galois group of L over K . Then G acts on S with fixed ring R, and

the argument of Lemma 4.14.1 allows us to assume the action is linear.

Theorem 6.196.19 is false in positive characteristic. Artin [Art77Art77] has given

counterexamples to Mumford’s characterization of smoothness in charac-

teristic p > 0; the simplest is the (Ap−1) singularity x2 + yp + z2 = 0, which
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has trivial étale fundamental group, and which has finite CM type by The-

orem 5.225.22. Thus in particular k[[x, y, z]]/(x2+ yp+ z2) is not a ring of invari-

ants when k has characteristic p.

Among other things, Theorem 6.196.19 implies that the two-dimensional

CM local rings of finite CM type with residue field C have rational singu-

larities (see Definition 5.305.30). This suggests the following conjecture.

6.20 Conjecture. Let (R,m) be a CM local ring of dimension at least two.

Assume that R has finite CM type. Then R has a rational singularity.

The assumption dimR > 2 is necessary to allow for the existence of

non-normal, that is, non-regular, one-dimensional rings of finite CM type.

To add some evidence for this conjecture, we recall that by Mumford [Mum61Mum61]

(in characteristic zero) and Lipman [Lip69Lip69] (in characteristic p > 0), a nor-

mal surface singularity X =SpecR has a rational singularity if and only if

there are only finitely many rank one MCM R-modules up to isomorphism.

Here is a weaker version of Conjecture 6.206.20.

6.21 Conjecture. Let (R,m) be a CM local ring of dimension at least two.

If R has finite CM type, then R has minimal multiplicity, that is,

e(R)=µR(m)−dimR+1 .

Recall that rational singularity implies minimal multiplicity, Corollary 5.345.34.

We will prove Conjecture 6.216.21 for hypersurfaces in ??, and in fact Conjec-

ture 6.206.20 for the hypersurface case will follow from the classification in

Chapter 88.
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§4 Exercises

6.22 Exercise. Prove that the p−1 non-zero elements of Ext1
Z(Z/pZ,Z/pZ)

all have isomorphic middle terms. Find an example of two elements of

Ext1
Z(A,B) with isomorphic middle terms but different annihilators. (See [Str05Str05]

for one example, due to G. Caviglia.)

6.23 Exercise. Let N ⊂ M be modules over a commutative ring R. Prove

that N is a pure submodule of M if and only if the following condition

is satisfied: Whenever x1, . . . , xt is a sequence of elements in N, and xi =∑s
j=1 r i jm j for some r i j ∈ R and m j ∈ M, there exist y1, . . . , ys ∈ N such that

xi = ∑s
j=1 r i j yj for i = 1, . . . , t. Conclude that if M/N is finitely presented

and N ⊂ M is pure, then the inclusion of N into M splits. (See also Exer-

cise 10.5010.50.)

6.24 Exercise. Let (R,m) be local, and let M be a finitely generated R-

module. Show that M has finite length if and only if for all r ∈m and for all

x ∈ M, there exists an integer n such that rnx = 0.

6.25 Exercise. Prove a slightly more general version of Lemma 6.96.9: if R

is a local ring, then for the conditions below we have (ii) =⇒ (iiii) =⇒ (iiiiii),

and (iiiiii) =⇒ (ii) if R is CM.

(i) The ring R has at most an isolated singularity.

(ii) Every MCM R-module is locally free on the punctured spectrum.

(iii) For all MCM R-modules M and N, Ext1
R(M, N) has finite length.



7
The Double Branched Cover
In this chapter we introduce two key tools in the representation theory of

hypersurface rings: matrix factorizations and the double branched cover.

We fix the following notation for the entire chapter.

7.1 Conventions. Let (S,n,k) be a regular local ring and let f be a non-

zero element of n2. Put R = S/( f ) and m = n/( f ). We let d = dim(R) =
dim(S)−1.

§1 Matrix factorizations

With the notation of 7.17.1, suppose M is a MCM R-module. Then M has

depth d when viewed as an R-module or as an S-module. By the Auslander-

Buchsbaum formula, M has projective dimension 1 over S. Therefore the

minimal free resolution of M as an S-module is of the form

(7.1.1) 0 // G
ϕ // F // M // 0 ,

where G and F are finitely generated free S-modules. Since f ·M = 0, M is

a torsion S-module, so rankS G = rankS F.

For any x ∈ F, the image of f x in M vanishes, so there is a unique ele-

ment y ∈G such that ϕ(y)= f x. Since the element y is linearly determined

by x, we get a homomorphism ψ : F −→ G satisfying ϕψ = f 1F . It follows

from the injectivity of the map ϕ that ψϕ = f 1G too. This construction

motivates the following definition [Eis80Eis80].

144
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7.2 Definition. Let (S,n,k) be a regular local ring, and let f be a non-zero

element of n2. A matrix factorization of f is a pair (ϕ,ψ) of homomorphisms

between free S-modules of the same rank, ϕ : G −→ F and ψ : F −→G, such

that

ψϕ= 1G and ϕψ= 1F .

Equivalently (after choosing bases), ϕ and ψ are square matrices of the

same size over S, say n×n, such that

ψϕ=ϕψ= In .

Let (ϕ,ψ) be a matrix factorization of f as in Definition 7.27.2. Since f is

a non-zerodivisor, it follows that ϕ and ψ are injective, and we have short

exact sequences

(7.2.1)
0 // G

ϕ // F // cokϕ // 0

0 // F
ψ // G // cokψ // 0

of S-modules. As f F = ϕψ(F) is contained in the image of ϕ, the cokernel

of ϕ is annihilated by f . Similarly, f · cokψ = 0. Thus cokϕ and cokψ are

naturally finitely generated modules over R = S/( f ).

7.3 Proposition. Let (S,n) be a regular local ring and let f be a non-zero

element of n2.

(i) For every MCM R-module, there is a matrix factorization (ϕ,ψ) of f

with cokϕ∼= M.

(ii) If (ϕ,ψ) is a matrix factorization of f , then cokϕ and cokψ are MCM

R-modules.
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Proof. Only the second statement needs verification. The exact sequences (7.2.17.2.1)

and the fact that f · cokϕ = 0 = f · cokψ imply that the cokernels have

projective dimension one over S. By the Auslander-Buchsbaum formula,

they have depth equal to dimS − 1 = dimR and therefore are MCM R-

modules.

7.4 Notation. When we wish to emphasize the provenance of a presenta-

tion matrix ϕ as half of a matrix factorization (ϕ,ψ), we write cok(ϕ,ψ) in

place of cokϕ. We also write (ϕ : G −→ F, ψ : F −→ G) to include the free

S-module G and F in the notation.

There are two distinguished trivial matrix factorizations of any element

f , namely ( f ,1) and (1, f ). Note that cok(1, f )= 0, while cok( f ,1)∼= R.

7.5 Definition. Let (ϕ : G −→ F, ψ : F −→G) and (ϕ′ : G′ −→ F ′, ψ′ : F ′ −→
G′) be matrix factorizations of f ∈ S. A homomorphism of matrix factor-

izations between (ϕ,ψ) and (ϕ′,ψ′) is a pair of S-module homomorphisms

α : F −→ F ′ and β : G −→G′ rendering the diagram

(7.5.1)

F
ψ //

α
��

G
ϕ //

β
��

G

α
��

F ′
ψ′
// G′

ϕ′
// F ′

commutative. (In fact, commutativity of just one of the squares is sufficient;

see Exercise 7.317.31.)

A homomorphism of matrix factorizations (α,β) : (ϕ,ψ) −→ (ϕ′,ψ′) in-

duces a homomorphism of R-modules cok(ϕ,ψ) −→ cok(ϕ′,ψ′), which we

denote cok(α,β). Conversely, every S-module homomorphism cok(ϕ,ψ) −→
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cok(ϕ′,ψ′) lifts to give a commutative diagram

0 // G
ϕ //

β
��

F //

α
��

cok(ϕ,ψ)

��

// 0

0 // G′
ϕ′
// F ′ // cok(ϕ′,ψ) // 0

with exact rows, and thus a homomorphism of matrix factorizations.

Two matrix factorizations (ϕ,ψ) and (ϕ′,ψ′) are equivalent if there is

a homomorphism of matrix factorizations (α,β) : (ϕ,ψ) −→ (ϕ′,ψ′) in which

both α and β are isomorphisms.

Direct sums of matrix factorizations are defined in the natural way:

(ϕ,ψ)⊕ (ϕ′,ψ′)=
ϕ

ϕ′

 ,

ψ
ψ′

 .

We say that a matrix factorization is reduced provided it is not equivalent

to a matrix factorizations having a trivial direct summand ( f ,1) or (1, f ).

It’s straightforward to see that (ϕ,ψ) is reduced if and only if all the entries

of ϕ and ψ are in the maximal ideal of S. See Exercise 7.327.32. In particular,

ϕ has no unit entries if and only if cok(ϕ,ψ) has no non-zero R-free direct

summands.

Letting bars denote reduction modulo f , a matrix factorization (ϕ : G −→
F, ψ : F −→G) induces a complex

(7.5.2) · · · // G
ϕ // F

ψ // G
ϕ // F // cok(ϕ,ψ) // 0

in which G and F are finitely generated free modules over R = S/( f ). In fact

(Exercise 7.337.33), this complex is exact, hence is a free resolution of cok(ϕ,ψ).

If (ϕ,ψ) is a reduced matrix factorization, then (7.5.27.5.2) is a minimal R-free

resolution of cok(ϕ,ψ).
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The reversed pair (ψ,ϕ) is also a matrix factorization of f , and the reso-

lution (7.5.27.5.2) exhibits cok(ψ,ϕ) as a first syzygy of cok(ϕ,ψ) and vice versa:

(7.5.3)
0 // cok(ψ,ϕ) // F // cok(ϕ,ψ) // 0

0 // cok(ϕ,ψ) // G // cok(ψ,ϕ) // 0

are exact sequences of R-modules. This gives the first assertion of the

next result; we leave the rest, and the proof of the theorem following, as

exercises. Recall that an R-module M is stable provided it does not have

a direct summand isomorphic to R. We remark that a direct sum of two

stable modules is again stable, by KRS (or directly, cf. Exercise 7.347.34).

7.6 Proposition. Keep the notation of 7.17.1.

(i) Let M be a MCM R-module. Then M has a free resolution which is

periodic of period at most two.

(ii) Let M be a stable MCM R-module. Then the minimal free resolution

of M is periodic of period at most two.

(iii) Let M be a MCM R-module. Then syzR
1 M is a stable MCM R-

module. If M is indecomposable, so is syzR
1 M.

(iv) Let M be a finitely generated R-module. Then the minimal free reso-

lution of M is eventually periodic of period at most two. In particular

the minimal free resolution of M is bounded.

(v) Let M and N be R-modules with M finitely generated. For each

i > dimR, we have Exti
R(M, N) ∼= Exti+2

R (M, N) and TorR
i (M, N) ∼=

TorR
i+2(M, N).
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In the next chapter we will see a converse to (iiiiii): If every minimal free

resolution over a local ring R is bounded, then (the completion of) R is a

hypersurface ring.

7.7 Theorem ([Eis80Eis80, Theorem 6.3]). Keep the notation of 7.17.1. The associ-

ation

(ϕ,ψ)←→ cok(ϕ,ψ)

induces an equivalence of categories between reduced matrix factorizations

of f up to equivalence and of stable MCM R-modules up to isomorphism. In

particular, it gives a bijection between equivalence classes of reduced matrix

factorizations and isomorphism classes of stable MCM modules.

7.8 Remark. If in addition f is a prime/irreducible element of S, so that

R is an integral domain, then from ϕψ= f · In it follows that both detϕ and

detψ are, up to units, powers of f . Specifically, we must have detϕ = uf k

and detψ = u−1 f n−k for some unit u ∈ S and k 6 n. In this case the R-

module cok(ϕ,ψ) has rank k, while cok(ψ,ϕ) has rank n− k. To see this,

localize at the prime ideal ( f ). Then over the discrete valuation ring S( f ),

ϕ is equivalent to f ·1k⊕1n−k and so cokϕ has rank k over the field R( f ).

Similar remarks hold when f is merely reduced, provided we consider

rank M as the tuple (rankRp Mp) as p runs over the minimal primes in R.

7.9 Remark. Let (ϕ : G −→ F, ψ : F −→ G) and (ϕ′ : G′ −→ F ′, ψ′ : F ′ −→
G′) be two matrix factorizations of f . Put M = cok(ϕ,ψ), N = cok(ψ,ϕ),

M′ = cok(ϕ′,ψ′), and N ′ = cok(ψ′,ϕ′). Then any homomorphism of matrix

factorizations (α,β) : (ψ,ϕ) −→ (ϕ′,ψ′) (note the order!) defines a pushout
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diagram

(7.9.1)

0 // N //

��

F //

��

M // 0

0 // M′ // Q // M // 0

of R-modules, the bottom row of which is the image of cok(α,β) under the

surjective connecting homomorphism

HomR(N, M′)−→Ext1
R(M, M′) .

In particular, every extension of M′ by M arises in this way.

The middle module Q is of course MCM as well. Splicing (7.9.17.9.1) together

with the R-free resolutions of N and M′, we obtain a morphism of exact

sequences

· · · ϕ // F
ψ //

β
��

G
ϕ //

α
��

F //

��

M // 0

· · ·
ψ′
// G′

ϕ′
// F ′ // Q // M // 0

defined, after the first step, by α and β. The mapping cone of this morphism

is thus the exact complex

· · · −→ F ′⊕F

[
ψ′ β

−ϕ
]

−−−−−−→G′⊕G

[
ϕ′ α

−ψ
]

−−−−−−→ F ′⊕F −→Q⊕M −→ M −→ 0 .

We may cancel the two occurrences of M (since the map between them is

the identity) and find that

Q ∼= cok

ϕ′ α

−ψ

 ,

ψ′ β

−ϕ

 .
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§2 The double branched cover

We continue with the notation and conventions established in 7.17.1 and as-

sume, in addition, that S is complete. Thus (S,n,k) is a complete regular

local ring of dimension d +1, 0 6= f ∈ n2, and R = S/( f ). We will refer to a

ring R of this form as a complete hypersurface singularity.

7.10 Definition. The double branched cover of R is

R] = S[[z]]/( f + z2) ,

a complete hypersurface singularity of dimension d+1.

7.11 Warning. It is important to have a particular defining equation in

mind, since different equations defining the same hypersurface R can lead

to non-isomorphic rings R]. For example, we have R[[x]]/(x2) = R[[x]]/(−x2),

yet R[[x, z]]/(x2+ z2) 6∼=R[[x, z]]/(−x2+ z2). (One is a domain; the other is not.)

Exercise 7.367.36 shows that such oddities cannot occur if k is algebraically

closed and of characteristic different from two.

We want to compare the MCM modules over R] with those over R. Ob-

serve that we have a surjection R] −→ R, killing the class of z. There is no

homomorphism the other way in general. However, R] is a finitely gener-

ated free S-module, generated by the images of 1 and z; cf. Exercise 7.387.38.

7.12 Definition. Let N be a MCM R]-module. Set

N[ = N/zN ,
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a MCM R-module. Contrariwise, let M be a MCM R-module. View M as

an R]-module via the surjection R] −→ R, and set

M] = syzR]

1 M .

Notice that there is no conflict of notation if we view R as an R-module

and sharp it: Since z is a non-zerodivisor of R] (cf. Exercise 7.377.37), we have

a short exact sequence

0 // R] z // R] // R // 0 .

Thus R] is indeed the first syzygy of R as an R]-module.

7.13 Notation. Let ϕ : G −→ F be a homomorphism of finitely generated

free S-modules, or equivalently a matrix with entries in S. We use the

same symbol ϕ for the induced homomorphism S[[z]]⊗S G −→ S[[z]]⊗S F;

as a matrix, they are identical. In particular we abuse the notation 1F ,

using it also for the identity map S[[z]]⊗S 1F .

Furthermore let ϕ̃ : G̃ −→ F̃ denote the corresponding homomorphism

over R], obtained via the composition of natural homomorphisms S −→
S[[z]] −→ S[[z]]/( f + z2) = R]. Finally, as in §1§1, we let ϕ : G −→ F denote

the matrix over R = S/( f ) obtained via the natural map S −→ R. Thus

F = F̃/zF̃.

7.14 Lemma. Let (ϕ : G −→ F, ψ : F −→ G) be a matrix factorization of f ,

let M = cok(ϕ,ψ), and let π : F̃�M be the composition F̃� F�M.

(i) There is an exact sequence

F̃ ⊕ G̃

[
ψ̃ −z1G̃

z1F̃ ϕ̃

]
−−−−−−−−−→ G̃⊕ F̃ [ ϕ̃ z1F̃ ]−−−−−−→ F̃ π−→ M −→ 0
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of R]-modules.

(ii) The matrices over S[[z]]

 ψ −z1G

z1F ϕ

 and

 ϕ z1F

−z1G ψ



form a matrix factorization of f + z2 over S[[z]].

(iii) We have

M] ∼= cok

 ψ −z1G

z1F ϕ

 ,

 ϕ z1F

−z1G ψ


and

syzR]

1 (M])∼= M] .

Proof. The proof of (iiii) amounts to matrix multiplication, and (iiiiii) is an

immediate consequence of (ii), (iiii), and the matrix calculation

 1

1

 ϕ z1F

−z1G ψ

 1

1

=
 ψ −z1G

z1F ϕ



over S[[z]]. It thus suffices to prove (ii). First we note that z is a non-

zerodivisor of R] (Exercise 7.377.37). Therefore the columns of the following
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commutative diagram are exact.

0

��

0

��

0

��
F̃

ψ̃ //

z
��

G̃
ϕ̃ //

z
��

F̃

z
��

F̃
ψ̃ //

��

G̃
ϕ̃ //

��

F̃
π

����

· · ·
ϕ
// F

ψ
//

��

G
ϕ
//

��

F //

��

M // 0

0 0 0

The bottom row is also exact by (7.5.27.5.2), but the first two rows aren’t even

complexes. In fact,

(7.14.1) ϕ̃ψ̃=−z2 1F .

An easy diagram chase shows that kerπ= im ϕ̃+ zF̃ = im[ ϕ̃ z1F̃ ]. Also,

ker
[
ϕ̃ z1F̃

]
⊇ im

 ψ̃ −z1G̃

z1F̃ ϕ̃


by (7.14.17.14.1). For the opposite inclusion, let

[ x
y
] ∈ ker[ ϕ̃ z1F̃ ], so that ϕ̃(x) =

−zy. A diagram chase yields elements a ∈ F̃ and b ∈ G̃ such that [ ψ̃ −z1G̃ ]
[a

b
]=

x. We need to show that [ z1F̃ ϕ̃ ]
[a

b
]= y. Using (7.14.17.14.1), we obtain the equa-

tions

z(za+ ϕ̃(b))=−ϕ̃ψ̃(a)+ zϕ̃(b)=−ϕ̃(ψ̃(a)− zb)=−ϕ̃(x)= zy.

Cancelling the non-zerodivisor z, we get the desired result.
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This allows us already to prove one “natural” relation between sharping

and flatting.

7.15 Proposition. Let M be a MCM R-module. Then

M][ ∼= M⊕syzR
1 M .

Moreover, M is a stable R-module if and only if M] is a stable R]-module.

Proof. The R-module M][ is presented by the matrix factorization (Φ⊗R]

R, Ψ⊗R]R), where (Φ,Ψ) is the matrix factorization for M] given in Lemma 7.147.14.

Killing z in that matrix factorization gives

M][ ∼= cok

ϕ
ψ

 ,

ψ
ϕ

 ,

as desired. The “Moreover” statement follows form Exercise 7.327.32, since the

entries of the matrix factorization for M] are those in the matrix factoriza-

tion for M, together with z.

Now we turn to the other “natural” relation. Recall that R] is a free S-

module of rank 2; in particular any MCM R]-module is a finitely generated

free S-module.

7.16 Lemma. Let N be a MCM R]-module. Let ϕ : N −→ N be an S-linear

homomorphism representing multiplication by z on N.

(i) The pair (ϕ,−ϕ) is a matrix factorization of f with cok(ϕ,−ϕ)∼= N[.

(ii) If N is stable, then

N[ ∼= syzR
1 (N[) .
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(iii) Consider z1N ±ϕ as an endomorphism of S[[z]]⊗S N, a finitely gen-

erated free S[[z]]-module. Then

(z1N −ϕ, z1N +ϕ)

is a matrix factorization of f + z2 with cok(z1N −ϕ, z1N +ϕ) ∼= N. If

N is stable, then it is a reduced matrix factorization.

Proof. On the S-module N, −ϕ2 corresponds to multiplication by −z2. But

since N is an R]-module, the action of −z2 on N agrees with that of f . In

other words, −ϕ2 = f 1N . Now ϕ and −ϕ obviously have isomorphic coker-

nels, each isomorphic to N/zN = N[, so (ii) and (iiii) are proved. We leave the

first assertion of (iiiiii) as Exercise 7.397.39. For the final sentence, note that if

z1N −ϕ contains a unit of S[[z]], then ϕ contains a unit of S as an entry.

But then z1N +ϕ has a unit entry, so that the trivial matrix factorization

( f + z2,1) is a direct summand of (z1N −ϕ, z1N +ϕ) up to equivalence. This

exhibits R] as a direct summand of N, contradicting the stability of N.

7.17 Proposition. Let N be a stable MCM R]-module. Assume that chark 6=
2. Then

N[] ∼= N ⊕syzR]

1 N .

Proof. Let ϕ : N −→ N be the homomorphism of free S-modules represent-

ing multiplication by z as in Lemma 7.167.16. Then (ϕ,−ϕ) is a matrix factor-

ization of f with cok(ϕ,−ϕ)∼= N[ by the Lemma, so that

N[] = syzR]

1 (N[)

∼= cok

 −ϕ −z1N

z1N ϕ

 ,

 ϕ z1N

−z1N −ϕ
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by (iiiiii) of Lemma 7.147.14. Passing to the equivalent matrixz1N −ϕ 0

0 z1N +ϕ

= 1
2

 1 1

−1 1

 −ϕ −z1N

z1N ϕ

 1 1

−1 1

 ,

(this is legal since 1/2 ∈ R and hence the matrix
[ 1 1−1 1

]
is invertible over R),

we see that

N[] ∼= cok(z1N −ϕ, z1N +ϕ)⊕cok(z1N +ϕ, z1N −ϕ)

∼= N ⊕syzR]

1 N

by (iiiiii) of Lemma 7.167.16.

7.18 Theorem (Knörrer). Let (S,n,k) be a complete regular local ring, f a

non-zero element of n2, and R = S/( f ).

(i) If R] has finite CM type, then so has R.

(ii) If R has finite CM type and chark 6= 2, then R] has finite CM type.

Proof. We will prove (iiii), leaving the almost identical proof of (ii) to the

reader. Let M1, . . . , Mt be a representative list of the indecomposable non-

free MCM R-modules. Write Mi
] = Ni1 ⊕ ·· · ⊕ Nir i , where each Ni j is an

indecomposable R]-module. We will show that every indecomposable non-

free MCM R]-module is isomorphic to some Ni j.

Let N be an indecomposable non-free MCM R]-module. Then N⊕syzR]

1 (N)

is stable, by (vv) of Proposition 7.67.6. It follows from Proposition 7.177.17 that N[

is a stable R-module. For, if N[ ∼= X ⊕R, then N ⊕syzR]

1 (N)∼= N[] ∼= X ]⊕R],

a contradiction.

Write N[ ∼= M(e1)
1 ⊕ ·· · ⊕ M(e t)

t , where the e i are non-negative integers.

Then N⊕syzR]

1 (N)∼= N[] ∼= (M1
])(e1)⊕·· ·⊕(Mt

])(e t). By KRS, N is isomorphic
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to a direct summand of some Mi
], and therefore isomorphic to some Ni j.

7.19 Corollary (ADE Redux). Let (R,m,k) be an ADE (or simple) plane

curve singularity (cf. Chapter 33, §3§3) over a field k of characteristic different

from 2, 3 or 5. Then R has finite CM type.

Proof. The hypersurface R] is a complete Kleinian singularity and there-

fore has finite CM type by Theorem 5.225.22. By Theorem 7.187.18, R has finite

CM type.

7.20 Example. Assume k is a field with chark 6= 2, and let n and d be

integers with n> 1 and d> 0. Put Rn,d = k[[x, z1, . . . , zd]]/(xn+1+z2
1+·· ·+z2

d).

The ring Rn,0 = k[[x]]/(xn+1) obviously has finite CM type (see Theorem 2.22.2).

By applying Theorem 7.187.18 repeatedly, we see that the d-dimensional (An)-

singularity Rn,d has finite CM type for every d. Consequently, the ring

R = k[[x1, . . . , xt, y1, . . . , yt]]/(x1 y1 + ·· · + xt yt) also has finite CM type: The

change of variables xi = ui+
p−1vi, yi = ui−

p−1vi shows that R ∼= R1,2d+2.

§3 Knörrer’s periodicity

The results of the previous section on the double branched cover imply that

if M and N are indecomposable MCM modules over R and R], respectively,

then M][ and N[] both decompose into precisely two indecomposable MCM

modules. However, we do not yet know whether this splitting occurs on

the way up or the way down. In this section we clarify this point, and use
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the result to prove Knörrer’s theorem that the MCM modules over R are in

bijection with those over the double double branched cover R]].

7.21 Notation. We keep all the notations of the last section, so that (S,n,k)

is a complete regular local ring, f ∈ n2 is a non-zero element, and R = S/( f )

is the corresponding complete hypersurface singularity. In addition, we

assume throughout this section that k is an algebraically closed field of

characteristic different from 2.

We first prove a sort of converse to Lemma 7.167.16.

7.22 Lemma. Let M be a MCM R-module such that M ∼= syzR
1 M. Then

M ∼= cok(ϕ0,ϕ0) for an n×n matrix ϕ0 satisfying ϕ2
0 = f In.

Proof. We may assume that M is indecomposable, and write M = cok(ϕ : G −→
F, ψ : F −→ G) by Theorem 7.77.7. By assumption there is an equivalence of

matrix factorizations (α,β) : (ϕ,ψ)−→ (ψ,ϕ), i.e. a commutative diagram of

free S-modules

F
ψ //

α
��

G
ϕ //

β
��

F
α
��

G ϕ
// F

ψ
// G

with α and β isomorphisms. Thus cok(βα,αβ) is an automorphism of M.

Since M is indecomposable and R is complete, EndR(M) is a nc-local ring.

Furthermore, EndR(M)/radEndR(M) ∼= k since k is algebraically closed.

Hence we may write

(βα,αβ)= (1F ,1G)+ (ρ1,ρ2)

with cok(ρ1,ρ2) ∈ radEndR(M). In particular αρ1 = ρ2α and βρ2 = ρ1β.
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Choose a (convergent) power series representing (1+ x)−1/2 and set

α′ =α(1F +ρ1)−1/2 = (1G +ρ2)−1/2α

β′ =β(1G +ρ2)−1/2 = (1G +ρ1)−1/2β .

Then the homomorphism of matrix factorizations (α′,β′) : (ϕ,ψ) −→ (ψ,ϕ)

satisfies β′α′ = 1F and α′β′ = 1G . Finally choose an automorphism γ of the

free module F ∼= S(n) ∼=G such that γ2 =α′. Then

ϕ0 := γψγ= γ−1ϕγ−1

satisfies ϕ2
0 = f In and cok(ϕ0,ϕ0)∼= M.

Let R] = S[[z]]/( f + z2) be the double branched cover of the previous sec-

tion. Then R] carries an involution σ, which fixes S and sends z to −z.

Denote by R][σ] the twisted group ring of the two-element group generated

by σ (cf. Chapter 44), i.e. R][σ] = R]⊕ (R] ·σ) as R]-modules, with multipli-

cation

(r+ sσ)(r′+ s′σ)= (rr′+ sσ(s′))+ (rs′+ sσ(r′))σ .

The modules over R][σ] are precisely the R]-modules carrying a compatible

action of the involution σ. We will call a R][σ]-module N maximal Cohen–

Macaulay (MCM, as usual) if it is MCM as an R]-module.

Let N be a finitely generated R][σ]-module, and set

N+ = {x ∈ M |σ(x)= x}

N− = {x ∈ M |σ(x)=−x} .

Then N = N+ ⊕ N− as R]-modules. If N is a MCM R][σ]-module, then

it follows that N+ and N− are MCM modules over (R])+ = S, i.e. free S-

modules of finite rank.
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7.23 Definition. Let R, R], and R][σ] be as above.

(i) Let N be a MCM R][σ]-module. Define a MCM R-module A (N)

as follows: Multiplication by z, resp. −z, defines an S-linear map

between finitely generated free S-modules

ϕ : N+ −→ N− , resp. ψ : N− −→ N+

which together constitute a matrix factorization of f . Set

A (N)= cok(ϕ,ψ) .

(ii) Let M be a MCM R-module, and define a MCM R]-module B(M)

with compatible σ-action as follows: Write M = cok(ϕ : G −→ F, ψ : F −→
G) with F and G finitely generated free S-modules. Set

B(M)=G⊕F ,

with multiplication by z defined via

z(x, y)= (−ψ(y),ϕ(x))

and σ-action

σ(x, y)= (x,−y) .

7.24 Proposition. The mappings A (−) and B(−) induce mutually inverse

bijections between the isomorphism classes of MCM R-modules and the iso-

morphism classes of MCM R][σ]-modules having no direct summand iso-

morphic to R].

Proof. It is easy to verify that A (R])= cok(1, f )= 0 (here R] has the natural

σ-action), and that A B and BA are naturally the identities otherwise.



162 The Double Branched Cover

In fact A and B can be used to define equivalences of categories be-

tween the MCM R][σ]-modules and the matrix factorizations of f , though

we will not need this fact.

7.25 Lemma. Let M be a MCM R-module. Then

M] ∼=B(M)

as R]-modules, ignoring the action of σ on the right-hand side. Thus M]

admits the structure of a R][σ]-module for every MCM R-module M.

Proof. Write M = cok(ϕ : G −→ F, ψ : F −→ G), so that B(M) = G ⊕F as

S-modules, with z(x, y)= (−ψ(y),ϕ(x)). On the other hand, by Lemma 7.147.14,

M] ∼= cok

 ψ −z1G

z1F ϕ

 ,

 ϕ z1F

−z1G ψ

 .

Choose bases for the free modules to write

M] ∼= (R])(n) ⊕ (R])(n)
/

span
((
ψ(u),−zu

)
,
(
zu,ϕ(u)

))
where u runs over (R])(n). Now R] ∼= S ⊕ S · z as S-modules, so writing

u = v+wz gives

M] ∼= S(n) ⊕S(n) ⊕S(n) ⊕S(n)

span
((
ψ(v),0,0,−v

)
,
(
0,ψ(w), f w,0

)
,
(
0,v,ϕ(v),0,0

)
,
(− f w,0,0,ϕ(w)

))
as v and w run over S(n). Multiplication by z on this representation of M]

is defined by

z(s1, s2, s3, s4)= (− f s2, s1,− f s4, s3)

for s1, s2, s3, s4 ∈ S(n). We therefore define a homomorphism of R]-modules

M] −→B(M) by

(s1, s2, s3, s4) 7→ (− f s4 −ψ(s1),− f s2 −ϕ(s3)) .
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This is easily checked to be well-defined and surjective, hence an isomor-

phism of R]-modules.

7.26 Proposition. Let N be a stable MCM R]-module. Then N is in the

image of (−)], that is, N ∼= M] for some MCM R-module M, if and only if

N ∼= syzR]

1 N.

Proof. If N ∼= M] and N is stable, then N ∼= syzR]

1 N by Lemma 7.147.14(iiiiii).

For the converse, it suffices to show that if N is an indecomposable MCM

R]-module such that N ∼= syzR]

1 N, then N has the structure of an R][σ]-

module. Indeed, in that case N ∼= B(A (N)) ∼= A (N)] by Proposition 7.247.24

and Lemma 7.257.25, so that N is in the image of (−)].

By assumption, there is an isomorphism of R]-modules α : N −→ syzR]

1 N,

which induces an isomorphism β = syzR]

1 (α) : syzR]

1 N −→ N. As N is inde-

composable, R] is complete, and k is algebraically closed we may, as in

Lemma 7.227.22, assume that

βα= 1N +ρ ,

where ρ ∈ radEndR](N). Choose again a convergent power series for (1+
x)−1/2, and set

α̃=α(1N +ρ)−1/2 .

Then α̃ itself induces an isomorphism β̃ = syzR]

1 (α̃) : syzR]

1 N −→ N, which

is easily seen to be

β̃= (1N +ρ)−1/2β

so that β̃α̃= 1N . Therefore α̃ defines an action of σ on N, whence N has a

structure of R][σ]-module.
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Now we can say exactly which modules decompose upon sharping or

flatting.

7.27 Proposition. Keep all the notation of 7.217.21. In particular, assume that

k is an algebraically closed field of characteristic not equal to 2.

(i) Let M be an indecomposable non-free MCM R-module. Then M] is

indecomposable if, and only if, M ∼= syzR
1 M. In this case M] ∼= N ⊕

syzR]

1 N for an indecomposable R]-module N such that N 6∼= syzR]

1 N.

(ii) Let N be a non-free indecomposable MCM R]-module. Then N[ is

indecomposable if, and only if, N ∼= syzR]

1 N. In this case N[ ∼= M ⊕
syzR

1 M for an indecomposable R-module M such that M 6∼= syzR
1 M.

Proof. First let R M be indecomposable, MCM, and non-free. If M ∼= syzR
1 M,

then M ∼= cok(ϕ,ϕ) for some ϕ by Lemma 7.227.22, so that by Lemma 7.147.14

M] ∼= cok

 ϕ −z1F

z1F ϕ

 ,

 ϕ z1F

−z1F ϕ


∼= cok

(
ϕ+ iz1F , ϕ− iz1F

)⊕cok
(
ϕ− iz1F , ϕ+ iz1F

)
is decomposable, where i is a square root of −1 in k. Conversely, suppose

M] ∼= N1 ⊕N2 for non-zero MCM R]-modules N1 and N2. Then

N1
[⊕N2

[ ∼= M][ ∼= M⊕syzR
1 M

by Proposition 7.157.15. Since M is indecomposable and R is complete, by KRS

we may interchange N1 and N2 if necessary to assume that N1
[ ∼= M and

N2
[ ∼= syzR

1 M. Note that N1 is stable since M is not free. Then syzR
1 (N1

[)∼=
N1

[ by Lemma 7.167.16(iiii), so

M ∼= N1
[ ∼= syzR

1 (N1
[) ∼= syzR

1 M ,
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as desired.

Next let N be a non-free indecomposable MCM R]-module. By Proposi-

tion 7.267.26, if N ∼= syzR]

1 N then N ∼= M] for some R M, whence

N[ ∼= M][ ∼= M⊕syzR
1 M

is decomposable by Proposition 7.157.15. The converse is shown as above.

To complete the proof of (ii), suppose M ∼= syzR
1 M, so that M] ∼= N ⊕

syzR]

1 N for some R]N. Then M][ ∼= M⊕syzR
1 M has exactly two indecompos-

able direct summands, so N[ must be indecomposable. Hence N 6∼= syzR]

1 N

by the part of (iiii) we have already proved. The last sentence of (iiii) follows

similarly.

7.28 Definition. In the notation of 7.217.21, set

R]] = S[[u,v]]/( f +uv) .

(Since we assume k is algebraically closed of characteristic not 2, this is

isomorphic to (R])].) For a MCM R-module M = cok(ϕ : G −→ F, ψ : F −→
G), we define a MCM R]]-module M5 by

M5 = cok

 ϕ −v1F

u1G ψ

 ,

 ψ v1G

−u1F ϕ

 .

Here we continue our convention (cf. 7.137.13) of using 1F and 1G for the iden-

tity maps on the free S[[u,v]]-modules induced from F and G.

We leave verification of the next lemma as an exercise.

7.29 Lemma. Keep the notation of the Definition.
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(i) (M])] ∼= M5⊕syzR]]

1 (M5).

(ii) (M5)[[ ∼= M⊕syzR
1 M.

(iii) (syzR
1 M)5 ∼= syzR]]

1 (M5).

Now we can prove a more precise version of Theorem 7.187.18.

7.30 Theorem (Knörrer). The association M 7→ M5 defines a bijection be-

tween the isomorphism classes of indecomposable non-free MCM modules

over R and over R]].

Proof. Let M be a non-free indecomposable MCM R-module. Then M]]

splits into precisely two indecomposable direct summands by Proposition 7.277.27(ii),

so that M5 is indecomposable by Lemma 7.297.29(ii).

If M′ is another indecomposable MCM R-module with (M′)5 ∼= M5, then

by Lemma 7.297.29(iiii) we have either M′ ∼= M or M′ ∼= syzR
1 M. Assume M 6∼=

M′ ∼= syzR
1 M. Then by Proposition 7.277.27 M] is indecomposable. Therefore

the two indecomposable direct summands of M]] are non-isomorphic by

Proposition 7.277.27 again. It follows from Lemma 7.297.29(ii) and (iiiiii) that

M5 6∼= syzR]]

1 (M5) ∼= (syzR
1 )5 ∼= (M′)5 ,

a contradiction.

Finally let N be an indecomposable non-free MCM R]]-module. We

must show that N is a direct summand of M5 for some R M. From Lemma 7.297.29(ii)

we find

(N[[)]] ∼= (N[[)5⊕syzR]]

1 ((N[[)5)

∼= (N[[⊕syzR]]

1 (N[[))5 .
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On the other hand,

(N[[)]] ∼=
(
(N[)[]

)]
∼=

(
N[⊕syzR]

1 (N[)
)]

∼= N[]⊕syzR]

1 (N[])

∼= N(2) ⊕ (syzR]

1 N)(2) .

Hence N is in the image of (−)5.

We will not prove Knörrer’s stronger result than in fact M ←→ M5
induces an equivalence between the stable categories of MCM modules;

see [Knö87Knö87] for details.

§4 Exercises

7.31 Exercise. Prove that commutativity of one of the squares in the dia-

gram (7.5.17.5.1) implies commutativity of the other.

7.32 Exercise. Prove that a matrix factorization (ϕ,ψ) is reduced if and

only if all entries of ϕ and ψ are in the maximal ideal n of S.

7.33 Exercise. Verify exactness of the sequence (7.5.27.5.2).

7.34 Exercise. Let Λ be a ring, not necessarily commutative, with exactly

one maximal left ideal, and let M and N be left Λ-modules. If M ⊕N has

a direct summand isomorphic to ΛΛ, then either M or N has a direct sum-

mand isomorphic to ΛΛ. Is this still true if, instead, Λ has exactly one

maximal two-sided ideal?
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7.35 Exercise. Fill in the details of the proofs of Proposition 7.67.6 and The-

orem 7.77.7.

7.36 Exercise. Let (S,n,k) be a complete local ring, let f ∈ n2\{0}, and put

g = uf , where u is a unit of R. If k is closed under square roots and has

characteristic different from 2, show that S[[z]]/( f + z2)∼= S[[z]]/(g+ z2).

7.37 Exercise. Prove that z is a non-zerodivisor of R] = S[[z]]/( f + z2).

7.38 Exercise. Prove that the natural map S[z]/( f + z2) −→ S[[z]]/( f + z2)

is an isomorphism. In particular, R] is a free S-module with basis {1, z}.

Show by example that if S is not assumed to be complete then S[[z]]/( f +z2)

need not be finitely generated as an S-module.

7.39 Exercise. With notation as in the proof of (iiiiii) of Lemma 7.167.16, show

that the sequence

S[[z]](n) zIn−ϕ−−−−→ S[[z]](n) −→ N −→ 0

is exact. (Hint: Use Exercise 7.387.38 and choose bases.)

7.40 Exercise. Prove Lemma 7.297.29.
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Hypersurfaces with finite CM type
In this chapter we will show that the complete, equicharacteristic hyper-

surface singularities with finite CM type are exactly the higher-dimensional

ADE singularities. In any characteristic but two, Theorem 8.68.6 shows that

such a hypersurface of dimension d> 2 is the double branched cover (Chap-

ter 77) of one with dimension d−1. In Theorem 8.78.7, proved in 1987 by Buch-

weitz, Greuel, Knörrer and Schreyer [Knö87Knö87, BGS87BGS87], we restrict to rings

having an algebraically closed coefficient field of characteristic different

from 2, 3, and 5, and show that finite CM type is equivalent to simplicity

(Definition 8.18.1), and to being an ADE singularity. We’ll also prove Her-

zog’s theorem [Her78bHer78b]: Gorenstein rings of finite CM type are abstract

hypersurfaces. In §3§3 we derive matrix factorizations for the Kleinian sin-

gularities (two-dimensional ADE hypersurface singularities). At the end

of the chapter we will discuss the situation in characteristics 2,3 and 5.

Later, in Chapter 1111 we will see how to eliminate the assumption that R

be complete, and also we’ll weaken “algebraically closed” to “perfect”.

§1 Hypersurfaces in characteristics 6= 2,3,5

For this section k is an algebraically closed field and d is a positive integer.

Put S = k[[x0, . . . , xd]] and n = (x0, . . . , xd). We will consider d-dimensional

hypersurface singularities: rings of the form S/( f ) where 0 6= f ∈ n2.

8.1 Definition. A non-zero power series f ∈ n2 is simple provided S has

169
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only finitely many ideals I for which f ∈ I2. A complete local ring R is a

(d-dimensional) simple hypersurface singularity provided R is isomorphic

to a ring of the form S/( f ) for some simple power series f .

8.2 Theorem (Buchweitz, Greuel and Schreyer [BGS87BGS87]). Let f be a non-

zero non-unit of S = k[[x0, . . . , xd]]. If S/( f ) has finite CM type, then f is a

simple power series.

Proof. Given a reduced matrix factorization (ϕ,ψ) of f , let L(ϕ,ψ) be the

ideal of S generated by the entries of
[
ϕ

∣∣ψ]
. By Theorem 7.77.7, f has, up

to equivalence, only finitely many indecomposable reduced matrix factor-

izations (ϕ1,ψ1), . . . , (ϕt,ψt). Let S be the set of ideals that are ideal sums

of subsets of {L(ϕ1,ψ1), . . . ,L(ϕt,ψt)}. Then S is finite, and we claim that

every proper ideal L for which f ∈ L2 belongs to S . To see this, let a0, . . . ,ar

generate L, and write f = a0b0 + ·· ·+ arbr, with bi ∈ L. For 06 s6 r, let

fs = a0b0 +·· ·+asbs. Put σ0 = a0, τ0 = b0, and for 16 s6 r define, induc-

tively, a 2s ×2s matrix factorization of fs by

(8.2.1) σs =
asI2s−1 σs−1

τs−1 −bsI2s−1

 and τs =
bsI2s−1 σs−1

τs−1 −asI2s−1

 .

Letting σ=σr and τ= τr, we see that (σ,τ) is a reduced matrix factorization

of f with L(σ,τ) = L. Write (σ,τ) as a direct sum of the indecomposable

matrix factorizations, (σ,τ)= (ϕ1,ψ1)(n1)⊕·· ·⊕(ϕt,ψt)(nt), and note that L =
L(σ,τ)=∑{

L(ϕ j,ψ j)
∣∣n j > 0

} ∈S .

The following lemma (cf. [Yos90Yos90, Lemma 8.2]), together with the Weier-

strass Preparation Theorem, will show that every simple singularity of di-
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mension d > 2 is a double branched cover of a (d −1)-dimensional simple

singularity:

8.3 Lemma. Let R be a simple singularity of dimension d> 1.

(i) R is reduced.

(ii) e(R)6 3.

(iii) If d> 2, then e(R)= 2.

Proof. Write R = S/( f ), where S = k[[x0, . . . , xd]] and f is a simple power

series in S.

(ii) Suppose R is not reduced. Then f has a repeated prime factor, and

we can write f = gh2, where g ∈ S and h ∈ n. Now dim(S/(h)) = d > 1, so

S/(h) has infinitely many ideals. Therefore S has infinitely many ideals

that contain h, and f is in the square of each, a contradiction.

(iiii) Suppose e(R)> 4. Then f ∈ n4 (cf. Example 8.288.28). If L is any ideal

such that n2 ( L ( n, then f ∈ J2. These ideals correspond to non-zero

proper subspaces of the k-vector space n/n2, so there are infinitely many of

them, a contradiction.

(iiiiii) We know that e(R) is either 2 or 3, so we suppose e(R) = 3. Write

f = f3 + f4 +·· · , where f i ∈ T := k[x0, x1, . . . , xd] is homogeneous of degree i

and f3 6= 0. Set V = {
p ∈Pd

k

∣∣ f3(p)= 0
}
. Then dim(V ) = d −1 > 1; in par-

ticular, V is infinite. Given λ ∈ V , let I(λ) be the ideal of T generated by

forms vanishing at λ. Then I(λ) = (`1, . . . ,`d)T, where the `i form a ba-

sis for the d-dimensional vector space of linear forms in I(λ). Now put

Lλ = (`1, . . . ,`d)S+n2. Since f3 ∈ (`1, . . . ,`d)n2 and f − f3 ∈ n4, we see that
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f ∈ L2
λ
. Finally, if λ and µ are two distinct points of V , we can choose a

linear form ` vanishing at λ but not at µ. Then ` ∈ Lλ\Lµ. Thus we have

infinitely many distinct ideals Lλ with f ∈ L2
λ

for each λ, and once again

simplicity is contradicted.

We refer to [Lan02Lan02, Chapter IV, Theorem 9.2] for the following version

of the Weierstrass Preparation Theorem:

8.4 Theorem (WPT). Let (D,m) be a complete local ring, and let g ∈ D[[x]].

Suppose g = a0+a1x+·· ·+aexe+higher degree terms, with a0,a1, . . . ,ae−1 ∈
m and ae ∈ D\m. Then there exist b1, . . . ,be ∈m and a unit u ∈ D[[x]] such

that g = (xe +b1xe−1 +·· ·+be)u.

8.5 Corollary. Let k be an infinite field, and let g be a non-zero power series

in k[[x0, . . . , xn]], n> 1. Assume that the order e of g is at least 2 and is not a

multiple of char(k). Then R = `[[x0, . . . , xn]]/(g) is isomorphic as a k-algebra

to a ring of the form k[[x0, . . . , xn]]/(h), where h = xe
n + b2xe−2

n + b3xe−3
n +·· ·+

be−1xn +be and where b2, . . . ,be are non-units of D = k[[x0, . . . , xn−1]].

Proof. We will make a linear change of variables, following Zariski and

Samuel [ZS75ZS75, p. 147], so that Theorem 8.48.4 applies, with respect to the

new variables. Write g = ge + ge+1 + ·· · , where each g j is a homogeneous

polynomial of degree j and ge 6= 0. Then xn ge 6= 0, and, since k is infinite,

there is a point (c0, c1, . . . , cn) ∈ kn+1 such that (xn ge)(c0, . . . , cn) 6= 0. Then

cn 6= 0, and since xn ge is homogeneous we can scale and assume that cn = 1.
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We change variables as follows:

ϕ : xi 7→


xi + cixn if i < n

xn if i = n .

Now, ϕ(g) = ϕ(ge)+ higher-order terms, and ϕ(ge) contains the term

ge(c0, c1, . . . , cn−1,1)xe
n = cxe

n, where c ∈ k×. It follows that ϕ(g) has the form

required in Theorem 8.48.4, with D = k[[x0, . . . , xd−1]] and x = xn. Replacing g

by ϕ(g), we now have g = (xe
n+b1xe−1

n +·· ·+be)u, where the bi are non-units

of D and u is a unit of k[[x0, . . . , xn]]. Finally, we put h = gu−1, and make the

substitution xn 7→ xn− b1
e xe−1

n to eliminate the term of degree e−1 in h.

Here is the main theorem of this chapter, proved in 1987 by Buchweitz,

Greuel, Knörrer and Schreyer [Knö87Knö87, BGS87BGS87].

8.6 Theorem. Let k be an algebraically closed field of characteristic dif-

ferent from 2, and put S = k[[x0, . . . , xd]], where d > 2. Let R = S/( f ), where

0 6= f ∈ (x0, . . . , xd)2. Then R has finite CM type if and only if there is a non-

zero element g ∈ (x0, x1)2k[[x0, x1]] such that k[[x0, x1]]/(g) has finite CM type

and R ∼= k[[x0, . . . , xd]]/(g+ x2
2 +·· ·+ x2

d).

Proof. The “if” direction follows from Theorem 7.187.18 and induction on d.

For the converse, we assume that R has finite CM type. Then R is a simple

singularity (Theorem 8.28.2), and (iiiiii) of Lemma 8.38.3 implies that e(R) = 2.

Since char(k) 6= 2, we may assume, by Corollary 8.58.5, that f = x2
d + b, with

b ∈ (x0, . . . , xd−1)2k[[x0, x1, . . . , xd−1]]. Also, b 6= 0, by (ii) of Lemma 8.38.3. Then

R = A#, where A = k[[x0, x1, . . . , xd−1]]
/

(b). Now Theorem 7.187.18 implies that

B has finite CM type. If d = 2 we set g = b, and we’re done. Otherwise, we

simply repeat the procedure, eventually getting f into the desired form.
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If the characteristic of k is different from 2, 3 and 5, we get a more

explicit version of the theorem.

8.7 Theorem. Let k be an algebraically closed field with char(k) 6= 2 ,3 ,5,

let d > 1, and let R = k[[x, y, x2, . . . , xd]]/( f ), where 0 6= f ∈ (x, y, x2, . . . , xd)2.

These are equivalent:

(i) R has finite CM type.

(ii) f is a simple power series.

(iii) R is a simple singularity.

(iv) R ∼= k[[x, y, x2, . . . , xd]]/(g + x2
2 + ·· · + x2

d), where g ∈ k[x, y] defines a

one-dimensional ADE singularity (cf. Chapter 33, §3§3).

The proof of this theorem will occupy the rest of the section.

Proof. (ii) =⇒ (iiii) by Theorem 8.28.2, and (iiii) =⇒ (iiiiii) trivially.

(iiiiii) =⇒ (iviv): Suppose first that d> 2; then e(R)= 2 by (iiiiii) of Lemma 8.38.3.

By Corollary 8.58.5, we may assume that f = x2
d+b, where b is a non-zero non-

unit of k[[x0, x1, . . . , xd−1]]. Then R = A#, where A = k[[x0, x1, . . . , xd−1]]
/

(b).

Simplicity passes from R to A: If there were an infinite number of ide-

als L i of k[[x0, x1, . . . , xd−1]] with b ∈ L2
i for each i, we would have x2

d +
b ∈ (L iS + xdS)2 for each i, where S = k[[x0, . . . , xd]]. Since (L iS + xdS)∩
k[[x0, x1, . . . , xd−1]]= L i, the extended ideals would be distinct, contradicting

simplicity of R. Thus we can continue the process, dropping dimensions till

we reach dimension one. It suffices, therefore, to prove that (iiiiii) =⇒ (iviv)

when d = 1.
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Changing notation, we set S = k[[y, x]] and n= (y, x)S. (The silly order-

ing of the variables stems from the choice of the normal forms for the ADE

singularities in Chapter 33, §3§3.) We have a simple power series f ∈ n2\{0},

and we want to show that R = S/( f ) is an ADE singularity. We will fol-

low Yoshino’s proof of [Yos90Yos90, Proposition 8.5] closely, adding a few details

and making a few necessary modifications (some of them to accommodate

non-zero characteristic p > 5).

Suppose first that e(R) = 2. By Corollary 8.58.5, we may assume that f =
x2 + g, where g ∈ yk[[y]]. Then g 6= 0 by (ii) of Lemma 8.38.3, and we write

g = xtu, where u ∈ k[[x]]×. Then t> 2, else R would be a discrete valuation

ring. Replacing f by u−1 f , we now have f = u−1x2 + yt. Now we let v ∈
k[[y]]× be a square root of u−1 (using Corollary A.27A.27) and make the change

of variables x 7→ vx. Then f = x2 + yt, so R is an (At−1)-singularity.

Before taking on the more challenging case e(R) = 3, we pause for a

primer on tangent directions of an analytic curve. Given any non-zero, non-

unit power series g ∈ K[[x, y]], where K is any algebraically closed field, let

ge be the initial form of g. Thus ge is a non-zero homogeneous polynomial

of degree e > 1 and g = ge +higher-degree forms. We can factor ge as a

product of powers of distinct linear forms:

ge = `m1
1 · · · · ·`mh

h ,

where each mi > 0 and the linear forms `i are not associates in K[x, y]. (To

do this, dehomogenize, then factor, then homogenize.) The tangent lines to

the curve g = 0 are the lines `i = 0, 16 i 6 h. We will need the “Tangent

Lemma” (cf. [Abh90Abh90, p. 141]):
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8.8 Lemma. Let g be a non-zero non-unit in K[[x, y]], where K is an alge-

braically closed field. If g is irreducible, then g has a unique tangent line.

The lemma is exemplified by the nodal cubic g = y2 − x2 − x3 = y2 −
x2(1+ x), which, though irreducible in K[x, y], factors in K[[x, y]], as long

as char(K) 6= 2. It has two distinct tangent lines, x+ y= 0 and x− y= 0; and

indeed it factors: If h is a square root of 1+ x (obtained from the binomial

expansion of (1+ x)
1
2 , or via Hensel’s Lemma—Corollaries 1.81.8 and A.27A.27),

then g = (y+ xh)(y− xh).

We will use the following lemma (cf. [Yos90Yos90, Lemma 8.4]) to control the

order of the higher-degree terms in the normal forms for f :

8.9 Lemma. Let f ∈ k[[x, y]] be a simple power series. Let α,β ∈ (x, y)k[[x, y]].

Then f ∉ (α,β2)3.

Proof. For each λ ∈ k, put Iλ = (α+λβ2,β3), and check easily that (α,β2)3 ⊆
I2
λ
. Moreover, as shown in the proof of [Yos90Yos90, Lemma 8.4], Iλ 6= Iµ if λ and

µ are distinct elements of k. By simplicity, f ∉ (α,β2)3.

Now assume e(R) = 3, and write f = x3 + xa+ b, where a,b ∈ yk[[y]].

Since f has order 3, we have a ∈ y2k[[y]] and b ∈ y3k[[y]].

8.10 Case. f is irreducible.

Then b 6= 0. The initial form f3 of f is a power of a single linear form by

Lemma 8.88.8, and it follows that f3 = x3. Therefore the order of a is at least

3, and b has order n> 4. If a = 0 we have f = x3+uyn, where u ∈ k[[y]]×. By

extracting a cube root of u−1 (using Corollary A.27A.27), we may assume that

f = x3+ yn. Now Lemma 8.98.9 implies that n must be 4 or 5, and R is an (E6)
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or (E8) singularity. If a 6= 0 we can assume that f = x3 +uxym + yn, where

m> 3 and u ∈ k[[y]]×. Suppose for a moment that m = 3 and n> 5. Then

one can find a root ξ ∈ k[[y]]× of T3 +uT2 + y2n−9 = 0 by lifting the simple

root −u of T3−uT2 ∈ k[T]. One checks that then x = ξ−1 ym−3 is a root of f ,

contradicting irreducibility. Thus either m> 4 or n = 4.

Suppose n = 4, so f = x4 + uxym + y4. After the transformation y 7→
y− 1

4 uxym−3, f takes the form

f =


x3 +bx2 y2 + y4 (b ∈ k[[x, y]]) if m > 3

vx3 + cx2 y2 + y4 (c ∈ k[[x, y]], v ∈ k[[x, y]]×) if m = 3 .

If m = 3, we use the transformation x 7→ v
1
3 x to eliminate the unit v (mod-

ifying c along the way). Thus in either case we have f = x3 + bx2 y2 + y4,

and now the transformation x 7→ x− 1
3 by2 puts f into the form f = x3+wy4,

where w ∈ k[[x, y]]×. Replacing y by w
1
4 y, we obtain the (E6)-singularity.

Now assume that n 6= 4 (and, consequently, m> 4). Lemma 8.98.9 implies

that n = 5. The transformation y 7→ y− 1
5 uxym−4 (with a unit adjustment

to x if m = 4) puts f in the form x3 + bx2 y3 + y5. The change of variable

x 7→ x−1
3 by3 now transforms f to x3+wy5, where w ∈ k[[x, y]]×. On replacing

y with w
1
5 y, we obtain the (E8) singularity, finishing this case.

8.11 Case. f is reducible but has only one tangent line.

Changing notation, we may assume that f = x(x2+ax+b), where a and

b are non-units of k[[y]]. As before, x3 must be the initial form of f , so

f = x(x2 + cxy2 +d y3), where c,d ∈ k[[y]]. By Lemma 8.98.9 d must be a unit.

After replacing y by d
1
3 y, we can write f = x(x2+exy2+ y3), where e ∈ k[[y]].

Next do the change of variable y 7→ y− 1
3 ex to eliminate the y2 term. Now
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f = x(ux2 + y3), where u ∈ k[[x, y]]×. Replacing x by u− 1
2 x, we have, up to a

unit multiple, an (E7) singularity.

8.12 Case. f is reducible and has more than one tangent line.

Write f = `q, where ` is linear in x and q is quadratic. If the tangent

line of ` happens to be a tangent line of q, then, by Lemma 8.88.8, q factors

as a product of two linear polynomials with distinct tangent lines. In any

case, we can write f = (x− r)(x2 + sx+ t), where r, s, t ∈ yk[[y]], and where

the tangent line to x− r is not a tangent line of x2 + sx+ t. After the usual

changes of variables and multiplication by a unit, we may assume that

f = (x−r)(x2+yn), where n> 2. If n = 2, then f is a product of three distinct

lines, and we get (D4). Assume now that n> 3. Then x = 0 is the tangent

line to x2 + yn and therefore cannot be the tangent line to x− r. Hence

r = uy for some unit u ∈ k[[y]]×. We make the coordinate change y 7→ x−uy.

Now f = y(ax2 + bxyn−1 + cyn), where a and c are units of k[[x, y]]. Better,

up to the unit multiple c, we have f = y(ac−1x2 + bc−1xyn−1 + yn). Replace

x by (ac−1)
1
2 ; now f = y(x2 +dxyn−1 + yn). After the change of coordinates

x 7→ x− 1
2 d yn−1, we have f = y(x2− 1

4 d2 y2n−2+ yn). Since 2n−2> n, we can

rewrite this as f = y(x2 + eyn), where e ∈ k[[x, y]]×. Finally, we factor out e

and replace x by e−
1
2 x, bringing f into the form y(x2 + yn), the equation for

the (Dn+2) singularity.

To finish the cycle and complete the proof of Theorem 8.78.7, we now show

that (iviv) =⇒ (ii). If d = 1 we invoke Corollary 7.197.19. Assuming inductively

that k[[x0, . . . , xr]]/(g+ z2
2+·· ·+ z2

r ) has finite CM type for some r> 1, we see,

by (iiii) of Theorem 7.187.18, that k[[x0, . . . , xr+1]]/(g+ z2
2+·· ·+ z2

r+1) has finite CM

type as well.
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§2 Gorenstein singularities of finite CM type

In this section we will prove Herzog’s theorem [Her78bHer78b] stating that the

rings of the title are hypersurfaces. Before giving the proof, we establish

the following result (also from [Her78bHer78b]) of independent interest. Recall

that a MCM module M is stable provided it has no non-zero free summands.

8.13 Lemma. Let (R,m) be a CM local ring, let M be a stable MCM R-

module, and let N = syzR
1 (M).

(i) N is stable.

(ii) Assume M is indecomposable, that Ext1
R(M,R) = 0, and that Rp is

Gorenstein for every prime ideal p of R with heightp6 1. Then N is

indecomposable.

Proof. We have a short exact sequence

(8.13.1) 0 // N // F // M // 0 ,

where F is free and N ⊆mF. Let (x) = (x1, . . . , xd) be a maximal R-regular

sequence in m. Since M is MCM, (x) is M-regular, and it follows that

xN = xF ∩ N. The map N/xN −→ F/xF is therefore injective, and it gives

an injection N/xN ,→mF/xF. Since (x) is a maximal N-regular sequence,

m ∈ Ass N/xN, so m ∈ Ass(mF/xF) = Ass(m/(x)). It follows that m/x is an

unfaithful R/(x)-module and hence that N/xN is unfaithful too. But then

N/xN cannot have have R/x as a direct summand, and item (ii) follows.

For the second statement, we note at the outset that both M and N are

reflexive R-modules, by Proposition A.15A.15. We dualize (8.13.18.13.1), using the
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vanishing of Ext1
R(M,R), to get an exact sequence

(8.13.2) 0 // M∗ // F∗ // N∗ // 0 .

Suppose N = N1 ⊕N2, with both summands non-zero. By (ii), neither sum-

mand is free. Since N is reflexive, neither N∗
1 nor N∗

2 is free, and it follows

from (8.13.28.13.2) that M∗ decomposes non-trivially. As M is reflexive, this con-

tradicts indecomposability of M.

8.14 Theorem (Herzog). Let (R,m,k) be a Gorenstein local ring with a

bound on the number of generators required for indecomposable MCM mod-

ules. Then R̂ is a hypersurface ring.

Proof. Let M = syzR
d (k), and write M = M1 ⊕·· ·⊕Mt, where each Mi is in-

decomposable and the summands are indexed so that Mi ∼= R if and only

if i > s. By Lemma 8.138.13, syzR
j (M) is a direct sum of at most s indecompos-

able modules for j > d. (The requisite vanishing of Ext comes from Corol-

lary A.19A.19.) It follows that the Betti numbers of k are bounded. The fact

that they have polynomial growth implies, by [Gul80Gul80], that R̂ is a complete

intersection, and now [Tat57Tat57] implies that R̂ is a hypersurface.

8.15 Theorem. Let (R,m,k) be a Gorenstein complete local ring of finite

CM type. Assume that k is algebraically closed of characteristic different

from 2, 3, and 5, and that R contains k as a coefficient field. Then R is a

complete ADE hypersurface singularity.

8.16 Corollary. Let R be as in Theorem 8.158.15. Then R has rational singu-

larities.
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§3 Matrix factorizations for the Kleinian

singularities

Theorem 5.225.22 shows that the complete Kleinian singularities k[[x, y, z]]/( f )

have finite CM type, where f is one of the polynomials listed in Table 5.15.1

and k is an algebraically closed field of characteristic not 2, 3, or 5. This

was the key step in the classification of Gorenstein rings of finite CM type

in the previous section. Given their central importance, it is worthwhile to

have a complete listing of the matrix factorizations for the indecomposable

MCM modules over these rings.

To describe the matrix factorizations, we return to the setup of Defini-

tion 5.55.5: Let G be a finite subgroup of SL(2,C), that is, one of the binary

polyhedral groups of Theorem 5.115.11. Let G act linearly on the power series

ring S = C[[u,v]], and set R = SG . Then R is generated over C by three in-

variants x(u,v), y(u,v), and z(u,v), which satisfy a relation z2 + g(x, y) = 0

for some polynomial g depending on G, so that R ∼=C[[x, y, z]]/(z2 + g(x, y)).

Set A =C[[x(u,v), y(u,v)]]⊂ R. Then A is a power series ring, in particu-

lar a regular local ring. Since z2 ∈ A, we see that as in Chapter 77, R is a free

A-module of rank 2. Moreover, any MCM R-module is A-free as well. It is

known [ST54ST54, Coh76Coh76] that A is also a ring of invariants of a finite group

G′ ⊂ U(2,C), generated by complex reflections of order 2 and containing G

as a subgroup of index 2.

Let V0, . . . ,Vd be a full set of the non-isomorphic irreducible represen-

tations of G; then we know from Corollary 4.184.18 and Theorem 5.35.3 that

M j = (S ⊗C Vj)G , for j = 0, . . . ,d, are precisely the direct summands of S
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as R-module and are also precisely the indecomposable MCM R-modules.

To get a handle on the M j, we can express them as (S⊗C IndG′
G Vj)G

′
. Being

free over A, each M j will have a basis of G′-invariants. These, and the

identities of the representations IndG′
G Vj, are computed in [GSV81GSV81].

Now we show how to obtain the matrix factorization corresponding to

each M j, following [GSV81GSV81]. The proof of the next proposition is a straight-

forward verification, mimicking the proof (see B.6B.6(ii)) that the kernel of the

multiplication map µ : B⊗A B −→ B is generated by all elements of the form

b⊗1−1⊗b. The essential observation is that z2 =−g(x, y) ∈ A.

8.17 Proposition. Let σ : S −→ S be the R-module endomorphism sending

z to −z, and let σS be the R-module with underlying abelian group S, but

with R-module structure given by r · s = σ(r)s. Then we have two exact

sequences of R-modules:

0 // σS i− // R⊗A S
p+
// S // 0

and

0 // S i+ // R⊗A S
p−
// σS // 0 ,

where i−(s)= i+(s)= z⊗ s−1⊗ zs, j+(r⊗ s)= rs, and j−(r⊗ s)=σ(r)s.

From this proposition one deduces the following theorem. We omit the

details.

8.18 Theorem. Let S = C[[u,v]], G a finite subgroup of SL(2,C) acting lin-

early on S, and R = SG . Let x, y, and z be generating invariants for R

satisfying the relation z2 + g(x, y) = 0, and let A = C[[x, y]]. Then the R-free



§3. Matrix factorizations for the Kleinian singularities 183

resolution of S has the form

· · · T−
// R⊗A S T+

// R⊗A S T−
// R⊗A S

p+
// S // 0 ,

where

T±(r⊗ s)= zr⊗ s± r⊗ zs .

Moreover, the R-free resolution of each indecomposable R-direct summand

M j of S is the direct summand of the above resolution of the form

· · ·
T−

j // R⊗A M j
T+

j // R⊗A M j
T−

j // R⊗A M j
p+

j // M j // 0 .

In terms of matrices, the resolution and corresponding matrix factoriza-

tion of the MCM R-module M j can be deduced from the theorem as follows.

Let Φ : S −→ S denote the R-linear homomorphism given by multiplication

by z, and let Φ j : M j −→ M j be the restriction to M j. Then each Φ j is an

A-linear map of free A-modules. Choose a basis and represent Φ j by an

n×n matrix ϕ j with entries in x and y. Then ϕ2
j is equal to multiplication

by z2 =−g(x, y) ∈ A on M j, so that

(zIn −ϕ j, zIn +ϕ j)

is a matrix factorization of z2 + g(x, y) with cokernel M j.

Our task is thus reduced to computing the matrix representing multi-

plication by z on each M j. As in Chapter 55, we treat each case separately.

8.19 (An). We have already computed the presentation matrices of the

MCM modules over C[[x, y, z]]/(xz− yn+1) in Example 4.234.23, but we illustrate
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Theorem 8.188.18 in this easy case before proceeding to the more involved ones

below. The cyclic group Cn+1, generated by

εn+1 =
ζn+1

ζ−1
n+1

 ,

has invariants x = un+1 +vn+1, y= uv, and z = un+1 −vn+1, satisfying

z2 − (x2 −4yn+1)= 0 .

Set A =C[[x, y]]⊂ R = k[[x, y, z]]. Then A =C[un+1+vn+1,uv]] is an invariant

ring of the group G′ generated by εn+1 and the additional reflection s =( 1
1

)
.

Let Vj, for j = 0, . . . ,n, be the irreducible representation of Cn+1 with

character χ j(g) = ζ
j
n+1. Then the MCM R-modules M j = (S ⊗C Vj)G are

generated over R by the monomials uavb such that b − a ≡ j modn+ 1.

Over A, each M j is freely generated by u j and vn+1− j. Since

zu j = (un+1 −vn+1)u j = (un+1 +vn+1)u j −2(uv) jvn+1− j

and

zvn+1− j = (un+1 −vn+1)vn+1− j = 2(uv)n+1− ju j − (un+1 +vn+1)vn+1− j ,

the matrix ϕ j representing the action of z on M j is

ϕ j =
 x 2yn+1− j

−2y j −x

 .

One checks that ϕ2
j = (x2 − 4yn+1)I2, so (zI2 −ϕ j, zI2 +ϕ j) is the matrix

factorization corresponding to M j.
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Making a linear change of variables, we find that the indecomposable

matrix factorizations of the (An) singularity defined by x2 + yn+1 + z2 = 0

are (zI2 −ϕ j, zI2 +ϕ j), where

ϕ j =
 ix yn+1− j

−y j −ix

 ,

for j = 0, . . . ,n, and where i denotes a square root of −1.

8.20 (Dn). The dihedral group Dn−2 is generated by

α=
ζ2(n−2)

ζ−1
2(n−2)

 and β=
 i

i

 ,

where again i denotes a square root of −1. The invariants of α and β are

x = u2(n−2) + (−1)nv2(n−2), y = u2v2, and z = uv(u2(n−2) − (−1)nv2(n−2), which

satisfy

z2 − y(x2 −4(−1)n yn−2)= 0 .

Again we set A = C[[x, y]] = C[[u2(n−2) + (−1)nv2(n−2),u2v2]] and again A is

the ring of invariants of the group G′ generated by ε2(n−2), τ, and s = ( 1
1

)
.

In the matrices below, we will implicitly make the linear changes of

variable necessary to put the defining equation of R into the form

z2 − (−y
(
x2 + yn−2))= 0 .

Consider first the one-dimensional representation V1 given by α 7→ 1 and

β 7→ −1. The MCM R-module M1 = (S ⊗C V1)G has A-basis (uv,u2(n−2) −
(−1)nv2(n−2)), and after the change of variable the matrix ϕ1 for multiplica-

tion by z is

ϕ1

 −x2 − yn−1

y

 .



186 Hypersurfaces with finite CM type

Next consider the two-dimensional irreducible representations Vj, for j =
2, . . . ,n−2, given by

α 7→
ζ j−1

2(n−2)

ζ
− j+1
2(n−2)

 and β 7→
 i j−1

i j−1

 .

For each j, the corresponding MCM R-module M j has A-basis (u j−1,uv2n− j−2,u jv,v2n− j−3).

The matrix ϕ j depends on the parity of j; for j even, it is

ϕ j =



0 0 −xy −yn−1− j/2

0 0 −y j/2 x

x yn−1− j/2 0 0

y j/2 −xy 0 0


while if j is odd we have

ϕ j =



0 0 −xy −yn−1−( j−1)/2

0 0 −y( j+1)/2 xy

x yn−2−( j−1)/2 0 0

y( j−1)/2 −x 0 0

 .

Finally consider Vn−1 and Vn, which are the irreducible components of

the two-dimensional reducible representation

α 7→
−1

−1

 , β 7→
 i

i

 .

The MCM R-modules Mn−1 and Mn have bases (uv(un−2+(−1)n+1vn−2),un−2+
(−1)nvn−2) and (uv(un−2+(−1)nvn−2),un−2+(−1)n+1vn−2), respectively. Again

the corresponding matrices ϕn−1 and ϕn depend on parity: for n odd we

have

ϕn−1 =
i y(n−1)/2 −x

xy −i y(n−1)/2

 and ϕn =
i y(n−1)/2 −xy

x −i y(n−1)/2

 ,
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and for n even

ϕn−1 =
 0 −x− i y(n−2)/2

xy− i yn/2 0

 and ϕn =
 0 −x+ i y(n−2)/2

xy+ i yn/2 0

 .

For the E-series examples, we suppress the details of the complex re-

flection group G′ and the A-bases for the M j. See [ST54ST54] and [GSV81GSV81].

8.21 (E6). The defining equation of the (E6) singularity is z2−(−x3−y4)= 0.

For each of the six non-trivial irreducible representations V1, V2, V3, V ∨
3 , V4,

and V4∨, one can choose A-bases for M j so that multiplication by z is given

by the following matrices. The matrix factorizations for the corresponding

MCM R-modules are given by (zIn −ϕ, zIn +ϕ).

ϕ1 =



0 0 −x2 −y3

0 0 −y x

x y3 0 0

y −x2 0 0

 ϕ2 =



0 0 0 −x2 −y3 xy2

0 0 0 xy −x2 −y3

0 0 0 −y2 xy −x2

x 0 y2 0 0 0

y x 0 0 0 0

0 y x 0 0 0



ϕ3 =



i y2 0 −x2 0

0 i y2 −xy −x2

x 0 −i y2 0

−y x 0 −i y2

 ϕ∨
3 =



−i y2 0 −x2 0

0 −i y2 −xy −x2

x 0 i y2 0

−y x 0 i y2



ϕ4 =
i y2 −x2

x −i y2

 ϕ∨
4 =

−i y2 −x2

x iy2
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8.22 (E7). The (E7) singularity is defined by z2− (−x3− xy3)= 0. There are

7 non-trivial irreducible representations V1, . . . , V7, and the matrices ϕ j

corresponding to multiplication by z are given below. The matrix factoriza-

tions for the corresponding MCM R-modules are given by (zIn−ϕ, zIn+ϕ).

ϕ1 =



0 0 −x2 −xy2

0 0 −y x

x xy2 0 0

y −x2 0 0

 ϕ2 =



0 0 0 −x2 −xy2 x2 y

0 0 0 xy −x2 −xy2

0 0 0 −y2 xy −x2

x 0 xy 0 0 0

y x 0 0 0 0

0 y x 0 0 0



ϕ3 =



0 0 0 0 0 0 −x2 −xy2

0 0 0 0 0 0 −xy x2

0 0 0 0 −x −y2 0 xy

0 0 0 0 −y x −x 0

0 −xy x2 xy2 0 0 0 0

x 0 xy −x2 0 0 0 0

x y2 0 0 0 0 0 0

y −x 0 0 0 0 0 0



ϕ4 =



0 0 0 xy −x2 −xy2

0 0 0 −y2 xy −x2

0 0 0 −x −y2 xy

0 xy x2 0 0 0

x 0 xy 0 0 0

y x 0 0 0 0


ϕ5 =



0 0 −xy −x2

0 0 −x y2

y2 x2 0 0

x −xy 0 0
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ϕ6 =
 0 y3 + x2

−x 0

 ϕ7 =



0 0 −x2 −xy2

0 0 −xy x2

x y2 0 0

y −x 0 0


8.23 (E8). The defining equation of the (E6) singularity is z2−(−x3−y5)= 0.

Here are the matrices ϕ j representing multiplication by z on the 8 non-

trivial indecomposable MCM R-modules. The matrix factorizations are

given by (zIn −ϕ, zIn +ϕ).

ϕ1 =



0 0 −x2 −y4

0 0 −y x

x y4 0 0

y −x2 0 0

 ϕ2 =



0 0 0 −x2 −y4 xy3

0 0 0 xy −x2 −y4

0 0 0 −y2 xy −x2

x 0 y3 0 0 0

y x 0 0 0 0

0 y x 0 0 0



ϕ3 =



0 0 0 0 xy −y2 −x2 0

0 0 0 0 −y3 0 0 −x

0 0 0 0 x2 0 0 −y2

0 0 0 0 0 x −y3 −y

0 y2 −x 0 0 0 0 0

y3 xy 0 −x2 0 0 0 0

x 0 −y y2 0 0 0 0

0 x2 y3 0 0 0 0 0
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ϕ4 =



0 0 0 0 0 −y3 x2 0 0 0

0 0 0 0 0 0 y3 −x2 xy2 −y4

0 0 0 0 0 0 −xy −y3 −x2 xy2

0 0 0 0 0 y2 0 xy −y3 −x2

0 0 0 0 0 −x −y2 0 0 0

y2 0 0 0 x2 0 0 0 0 0

−x 0 0 0 y3 0 0 0 0 0

0 x y2 0 0 0 0 0 0 0

y 0 x y2 0 0 0 0 0 0

0 y 0 x y2 0 0 0 0 0



ϕ5 =



0 0 0 0 0 0 0 0 0 −x2 xy2 −y4

0 0 0 0 0 0 0 0 0 −y3 −x2 xy2

0 0 0 0 0 0 0 0 0 xy −y3 −x2

0 0 0 0 0 0 −x −y2 0 0 0 y3

0 0 0 0 0 0 0 −x −y2 y2 0 0

0 0 0 0 0 0 −y 0 −x 0 y2 0

0 0 y3 x2 −xy2 y4 0 0 0 0 0 0

y2 0 0 y3 x2 −xy2 0 0 0 0 0 0

0 y2 0 −xy y3 x2 0 0 0 0 0 0

x y2 0 0 0 0 0 0 0 0 0 0

0 x y2 0 0 0 0 0 0 0 0 0

y 0 x 0 0 0 0 0 0 0 0 0
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ϕ6 =



0 0 0 0 0 −y3 −x2 0

0 0 0 0 −y2 0 xy −x2

0 0 0 0 −x −y2 0 y3

0 0 0 0 0 −x y2 0

0 y3 x2 −xy2 0 0 0 0

y2 0 0 x2 0 0 0 0

x 0 0 −y3 0 0 0 0

y x −y2 0 0 0 0 0



ϕ7 =



0 0 −y3 −x2

0 0 x −y2

y2 −x2 0 0

x y3 0 0



ϕ8 =



0 0 0 −x2 xy2 −y4

0 0 0 −y3 −x2 xy2

0 0 0 xy −y3 −x2

x y2 0 0 0 0

0 x y2 0 0 0

y 0 x 0 0 0



8.24 Remark. We observe that the forms above for the indecomposable

matrix factorizations over the two-dimensional ADE singularities make it

easy to find the indecomposable matrix factorizations in dimension one.

When the matrix (involving only x and y) has the distinctive anti-diagonal

block shape, the non-zero blocks constitute (up to a sign) an indecompos-

able matrix factorization for the one-dimensional ADE polynomial in x and

y. When the matrix does not have block form, (ϕ,−ϕ) is an indecomposable

matrix factorization. See §3§3 of Chapter 1010.
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§4 Characteristics 2, 3, 5

If the characteristic of k is different from 2, Theorem 8.68.6 reduces the clas-

sification of hypersurfaces of finite CM type to the case of dimension one.

We quote the following two theorems due to Greuel and Kröning [GK90GK90]

(cf. also the paper [KS85KS85] by Kiyek and Steinke):

8.25 Theorem (Characteristic 3). Let k be an algebraically closed field of

characteristic 3, let d > 1, and let R = k[[x, y, x2, . . . , xd]]/( f ), where 0 6= f ∈
(x, y, x2, . . . , xd)2. Then R has finite CM type if and only if R ∼= k[[x, y, x2, . . . , xd]]/(g+
x2

2 +·· ·+ x2
d), where g ∈ k[x, y] is one of the following:

(An): x2 + yn+1 , n> 1

(Dn): x2 y+ yn−1 , n> 4

(E0
6): x3 + y4

(E1
6): x3 + y4 + x2 y2

(E0
7): x3 + xy3

(E1
7): x3 + xy3 + x2 y2

(E0
8): x3 + y5

(E1
8): x3 + y5 + x2 y3

(E2
8): x3 + y5 + x2 y2

8.26 Theorem (Characteristic 5). Let k be an algebraically closed field of

characteristic 5, let d > 1, and let R = k[[x, y, x2, . . . , xd]]/( f ), where 0 6= f ∈
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(x, y, x2, . . . , xd)2. Then R has finite CM type if and only if R ∼= k[[x, y, x2, . . . , xd]]/(g+
x2

2 +·· ·+ x2
d), where g ∈ k[x, y] is one of the following:

(An): x2 + yn+1 , n> 1

(Dn): x2 y+ yn−1 , n> 4

(E6): x3 + y4

(E7): x3 + xy3

(E0
8): x3 + y5

(E1
8): x3 + y5 + xy4

There is a similar, but longer, list in characteristic two.

In characteristics different from two, notice that S[[u,v]]/( f +u2 + v2) ∼=
S[[u,v]]/( f + uv), via the transformation u 7→ u+v

2 , v 7→ u−v
2
p−1

. Thus, if one

does not mind skipping a dimension, one can transfer finite CM type up

and down along the iterated double branched cover R]] = S[[u,v]]/( f +uv),

where R = S/( f ). Remarkably, this works in characteristic two as well.

8.27 Theorem (Solberg, Greuel and Kroning [Sol89Sol89, GK90GK90]). Let k be an

algebraically closed field of arbitrary characteristic, let d > 3, and let R =
k[[x0, . . . , xd]]/( f ), where 0 6= f ∈ (x0, . . . , xd)2. Then R has finite CM type if

and only if there exists a non-zero non-unit g ∈ k[[x0, . . . , xd−2]] such that

k[[x0, . . . , xd−2]]/(g) has finite CM type and R ∼= k[[x0, . . . , xd]]/(g+ xd−1xd).

Solberg proved the “if” direction in his 1987 dissertation [Sol89Sol89]. He

showed, in fact, that, for any non-zero non-unit g ∈ k[[x0, . . . , xd−2]], k[[x0, . . . , xd−2]]/(g)
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has finite CM type if and only if k[[x0, . . . , xd]]/(g+ xd−1xd) has finite CM

type. The proof, which uses the theory of AR sequences (cf. Chapter 1010, is

quite unlike the proof in characteristics different from two, in that there

seems to be no nice correspondence between MCM R-modules and MCM

R]]-modules (such as in Theorem 7.307.30). In 1988 Greuel and Kröning [GK90GK90]

used deformation theory to show that if R as in the theorem has finite CM

type, then R ∼= k[[x0, . . . , xd]]/(g+ xd−1xd) for a suitable non-zero non-unit

element g ∈ k[[x0, . . . , xd−2]], thereby establishing the converse of the theo-

rem.

In order to finish the classification of complete hypersurface singular-

ities of finite CM type in characteristic two, one needs to classify those

singularities in dimensions one and two. The normal forms are itemized in

Section 5 of [Sol89Sol89] and in [GK90GK90] and depend on earlier work of Artin [Art77Art77],

Artin and Verdier [AV85AV85], and Kiyek and Steinke [KS85KS85].

§5 Exercises

8.28 Exercise. Let (S,n) be a regular local ring, and f ∈ nr \nr+1. Show

that the hypersurface ring S/( f ) has multiplicity r.



9
Auslander–Buchweitz Theory

As we saw back in Chapter 22, trying to understand the whole category of

finitely generated modules over a local ring is impractical, so we restrict

to maximal Cohen–Macaulay modules. In fact, this is not as restrictive

as it seems at first: any finitely generated module over a CM local ring

with canonical module can be “approximated” by a MCM module, in a pre-

cise sense due originally to Auslander and Buchweitz [AB89AB89]. The theory

as originally constructed in [AB89AB89] is quite abstract, and has since been

further generalized. In keeping with our general strategy, we adopt a stub-

bornly concrete point of view. We deal exclusively with CM local rings,

finitely generated modules, and approximations by MCM modules. We also

use the more limited terminology of MCM approximations and FID hulls,

rather than the general notions of (pre)covers and (pre)envelopes.

In the first section we recall some basics on finitely generated modules

of finite injective dimension, and particularly canonical modules, which oc-

cupy the central locus in the theory. We then detail the theory of MCM

approximations and FID hulls, following (a de-categorified version of) Aus-

lander and Buchweitz’s original construction closely. Finally, we give some

applications in terms of Auslander’s δ-invariant. Other applications will

appear in later chapters.

195
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§1 Canonical modules

Here we give a mostly self-contained, if hasty, primer on finitely generated

modules of finite injective dimension over local rings and the most distin-

guished of such modules, the canonical module. Of course we focus on those

aspects most relevant to the study of MCM modules.

As usual, we mulishly stick to the case of finitely generated modules,

ignoring generalizations such as dualizing complexes and, in another di-

rection, semidualizing modules.

The one fact we state without proof is not hard, but would take us away

from our planned route. See the exercises or [BH93BH93, Theorems 3.1.14 and

3.1.17] for a proof.

9.1 Lemma. Let (R,m,k) be a local ring and N a non-zero finitely generated

R-module. Then

injdimR N = sup
{

i
∣∣∣ Exti

R(k, N) 6= 0
}

.

If the injective dimension of N is finite, then it is equal to depthR.

As an aside, we should point out here the conjecture of H. Bass [Bas63Bas63]:

“It seems conceivable that, say for A local, there exist finitely generated

M 6= 0 with finite injective dimension only if A is a Cohen–Macaulay ring.”

As Bass points out in the next sentence, the converse is true.

9.2 Proposition. Let (R,m,k) be a CM local ring. Then R admits a non-

zero finitely generated module of finite injective dimension.

Proof. Let x be a system of parameters for R and R the quotient R/(x). The

injective hull E = ER(k) of the residue field of R has finite length over R and
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hence over R. It follows that M =HomR(R,E) is finitely generated over R,

and dualizing the Koszul resolution of R into E displays injdim M <∞.

Bass’ conjecture, that the converse of Proposition 9.29.2 holds, was estab-

lished for local rings of prime characteristic or essentially of finite type

over a field of characteristic zero by C. Peskine and L. Szpiro [PS73PS73] using

their Intersection Theorem. Since P. Roberts has proved the Intersection

Theorem for all local rings [Rob87Rob87], Bass’ Conjecture holds in general.

The first hint of a connection between modules of finite injective dimen-

sion and MCM modules comes in the next result, also due to Peskine and

Szpiro [PS73PS73, I, 4.15].

9.3 Theorem. Let (R,m,k) be a local ring and M, N non-zero finitely gen-

erated R-modules with injdimR N <∞. Then

depthR−depth M = sup
{

i
∣∣∣ Exti

R(M, N) 6= 0
}

.

Proof. By Lemma 9.19.1, we know that t := injdimR N, since finite, is equal to

depthR. Induct on depth M. We have Exti
R(M, N) = 0 for all i > t, giving

one inequality when depth M = 0. For the other, observe that depth M = 0

means that m is an associated prime of M, so the residue field k embeds

into M, giving a short exact sequence

0−→ k −→ M −→ C −→ 0 .

Apply HomR(−, N) to obtain an exact sequence

· · · −→Extt
R(M, N)−→Extt

R(k, N)−→Extt+1
R (C, N) .
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The right-most term vanishes as t = injdimR N, while the middle term is

non-zero by Lemma 9.19.1. The left-hand term is thus non-zero as well, giving

the equality in this case.

Supposing now depth M > 0, take x ∈m a non-zerodivisor on M, and use

the long exact sequence of Ext and induction to finish the proof.

9.4 Proposition. Let (R,m,k) be a CM local ring and M, N non-zero finitely

generated R-modules. Then

(i) M is MCM if and only if Exti
R(M,Y ) = 0 for all i > 0 and all finitely

generated R-modules Y of finite injective dimension, and

(ii) N has finite injective dimension if and only if Exti
R(X , N)= 0 for all

i > 0 and all MCM R-modules X .

Proof. The forward direction of each statement is immediate from the The-

orem, as is the converse in (ii) (since we know that there is at least one Y to

test against, by Proposition 9.29.2). The only assertion remaining is to show

that injdimR N < ∞ if Exti
R(X , N) = 0 for all i > 0 and all MCM X . Take

for X a sufficiently high syzygy of the residue field k and use standard

index-shifting to see that Exti
R(k, N) = 0 for i À 0, so N has finite injective

dimension by Lemma 9.19.1.

Colloquially, we interpret Prop. 9.49.4 as expressing that MCM modules

and finitely generated modules of finite injective dimension are “orthogo-

nal.” It will transpire that the intersection is “spanned” by a single module,

namely the canonical module, to which we now turn.
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9.5 Definition. Let (R,m,k) be a CM local ring of dimension d. A finitely

generated R-module ω is a canonical module for R if ω is MCM, has finite

injective dimension, and satisfies

dimk Extd
R(k,ω)= 1 .

The condition on Extd
R(k,ω) is a sort of rank-one normalizing assump-

tion: taking into account the calculation of both depth and injective dimen-

sion in terms of Exti
R(k,−), we see that the only non-vanishing such Ext is

for i = d, where it must be a finite-dimensional vector space. In particular,

we can write Definition 9.59.5 compactly as

Exti
R(k,ω)∼=


k if i = dimR, and

0 otherwise.

We need a laundry list of properties of canonical modules. First, here is

a standard lemma. See Exercise 9.479.47 for a proof.

9.6 Lemma. Let (R,m) be a local ring and ϕ : M −→ N a homomorphism

of finitely generated R-modules. Let x be an N-regular element in m. If

ϕ : M/xM −→ N/xN is an isomorphism, then ϕ is an isomorphism.

For an Artinian local ring (R,m,k), a canonical module ω is injective

with one-dimensional socle, and therefore ω ∼= ER(k), the injective hull of

the residue field. In general, suppose that R is CM local, x is a system

of parameters, and ω is a canonical module for R. Then standard index-

shifting reveals that ω = ω/xω is a canonical module for R = R/(x), so ω ∼=
ER(k). Since Exti

R(ω,ω)= 0 for i > 0 by Theorem 9.39.3, it’s easy to see that

HomR(ω,ω)⊗R R ∼=HomR(ω,ω)∼= R
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and so HomR(ω,ω) is cyclic by NAK. It is also MCM: apply HomR(−,ω)

to a free resolution of ω and use the Depth Lemma on the resulting exact

sequence. Choosing a generator ϕ ∈ HomR(ω,ω), we apply Lemma 9.69.6 to

the induced homomorphism R −→ HomR(ω,ω), 1 7→ ϕ, which shows that

HomR(ω,ω) ∼= R. Repeating the argument with putatively different canon-

ical modules ω and ω′, and applying Lemma 9.69.6 to ϕ itself, shows that ω is

unique up to isomorphism.

If the canonical module ω has finite projective dimension, then it is free

by the Auslander–Buchsbaum formula, and EndR(ω) ∼= R forces ω ∼= R. In

this case R is Gorenstein (either by definition or by observation). Con-

versely, if R is Gorenstein, then the regular module R is its own canonical

module.

A canonical module is also sometimes called a dualizing module, as we

now explain. Let ω be a canonical module for R and M a MCM module.

Then Theorem 9.39.3 yields Exti
R(M,ω) = 0 for i > 0, so M∨ := HomR(M,ω) is

again a MCM module (as can be seen by dualizing a free resolution of M

and applying the Depth Lemma). There is a natural biduality homomor-

phism

M −→ M∨∨ =HomR(HomR(M,ω),ω) ,

sending z ∈ M to “evaluation at z,” which one shows to be an isomorphism

by reducing to the Artinian case and applying Lemma 9.69.6 again. More

generally, if M is just CM of codepth t = dimR−depth M, then Exti
R(M,ω)=

0 for all i 6= t; for i > t this is Theorem 9.39.3 again, and for i < t it follows

upon contemplating a maximal regular sequence in Ann M. The single

non-vanishing M∨ = Extt
R(M,ω) is again CM of codepth t by induction on
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dim M, and again one checks that M −→ M∨∨ = Extt
R(Extt

R(M,ω),ω) is an

isomorphism.

We encapsulate the preceding discussion in a single statement.

9.7 Theorem. Let (R,m,k) be a CM local ring and ω a canonical module

for R. Then

(i) ω is unique up to isomorphism, and R is Gorenstein if and only if

ω∼= R ;

(ii) EndR(ω)∼= R .

(iii) Let M be a CM R-module of codepth t, and set M∨ = Extt
R(M,ω).

Then

(a) M∨ is also CM of codepth t;

(b) Extt
R(M,ω)= 0 for i 6= t; and

(c) M∨∨ is naturally isomorphic to M.

It’s straightforward to check that in addition to behaving well with re-

spect to factoring out a regular sequence, the canonical module ωR of a CM

local ring R behaves well with respect to completion and localization:

ωR̂
∼= ω̂R and ωRp

∼= (ωR)p .

In particular, a local ring R is Gorenstein if and only if the completion hatR

is Gorenstein, and localizations of Gorenstein rings are again Gorenstein.

Let S and R be CM local rings and ϕ : S −→ R now a module-finite ring

homomorphism. Then R is a CM S-module of codepth t = dimS −dimR.
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If ωS is a canonical module for S, then, we have Exti
S(R,ωS) = 0 for i 6= t,

and one checks easily by reducing to the case t = 0 that Extt
S(R,ωS) is a

canonical module for R. In particular, if R is a homomorphic image of a

Gorenstein local ring S, then R has a canonical module. This was first

observed by Sharp [Sha71Sha71]. In particular, a complete CM local ring is a

homomorphic image of a regular local ring by Cohen’s structure theorems,

so has a canonical module.

The converse of Sharp’s result also holds, as proved by Foxby [Fox72Fox72]

and Reiten [Rei72Rei72] independently, so that a CM local ring R has a canonical

module if and only if R is a homomorphic image of a Gorenstein local ring.

The stipulation that ExtdimR
R (k,ωR) ∼= k is, as we observed, a kind of

rank-one condition. Indeed, under a mild additional condition it forces ωR

to be isomorphic to an ideal of R. We say that R is generically Gorenstein if

Rp is Gorenstein for each minimal prime p of R.

9.8 Proposition. Let R be a CM local ring and ω a canonical module for

R. If R is generically Gorenstein, then ω is isomorphic to an ideal of R, and

conversely. In this case, ω is an ideal of pure height one (that is, every associ-

ated prime of ω has height one), and R/ω is a Gorenstein ring of dimension

dimR−1.

Proof. As Rp is Gorenstein for every minimal p, we conclude that ωp is free

of rank one for those primes. In particular if we denote by K the total quo-

tient ring, obtained by inverting the complement of the union of those min-

imal primes, then ω⊗R K is a rank-one projective module over the semilocal

ring K . Thus ω⊗R K ∼= K . Fixing an isomorphism and composing with the

natural map gives an R-homomorphism ω−→ K , which is injective as ω is



§1. Canonical modules 203

torsion-free. Multiplying the image by a carefully chosen non-zerodivisor

clears the denominators and knocks the image down into R, where it is an

ideal. Being locally free at the minimal primes, it has height at least one.

Since ω is MCM, the short exact sequence

0−→ω−→ R −→ R/ω−→ 0

forces depth(R/ω) > dimR −1, and since heightω > 1 we have dimR/ω 6

dimR −1. Thus R/ω is a CM ring, in particular, unmixed, so ω has pure

height one. Furthermore, R/ω is a CM R-module of codepth 1. Applying

HomR(−,ω) thus gives an exact sequence

HomR(R/ω,ω)−→ω−→ R −→Ext1
R(R/ω,ω)−→ 0

and Ext1
R(R/ω,ω)= (R/ω)∨ is the canonical module for R/ω by the discussion

after Theorem 9.79.7. Since the leftmost term in the exact sequence vanishes,

(R/ω)∨ is clearly isomorphic to R/ω itself, so R/ω is Gorenstein.

For the converse, assume that ω is embedded into R as an ideal. Then

as before we see that heightω > 1, so ω is not contained in any minimal

prime and Rp is Gorenstein for every minimal p.

We quickly observe, using this result, that there does indeed exist a CM

local ring which is not a homomorphic image of a Gorenstein local ring, and

hence does not admit a canonical module. This was first constructed by Fer-

rand and Raynaud [FR70FR70]. Specifically, they construct a one-dimensional

local domain (R,m) such that the completion R̂ is not generically Goren-

stein. If R were to have a canonical module ωR , it would be embeddable as

an m-primary ideal of R. The completion ω̂R is then a canonical module for

R̂, and is an ideal of R̂. But this contradicts the criterion above.
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We finish the section with the promised identification of the intersec-

tion of the class of MCM modules with that of modules of finite injective

dimension.

9.9 Proposition. Let R be a CM local ring with canonical module ω and

let M be a finitely generated R-module. If M is both MCM and of finite

injective dimension, then M is isomorphic to a direct sum of copies of ω.

Proof. Let F be a free module mapping onto the dual M∨ = HomR(M,ω)

with kernel K . Dualizing gives a short exact sequence

0−→ M −→ F∨ −→ K∨ −→ 0

where K∨ is MCM as K is. Proposition 9.49.4(iiii) implies that the sequence

splits as injdimR M < ∞, making M a direct summand of F∨. Dualizing

again displays M∨ as a direct summand of the free module F ∼= F∨∨, whence

M∨ is free and M is a direct sum of copies of ω.

If R is not assumed to have a canonical module, the MCM modules of

finite injective dimension are called Gorenstein modules. Should any exist,

there is one of minimal rank and all others are direct sums of copies of the

minimal one. See Corollary A.18A.18 for an application of Gorenstein modules.

§2 MCM approximations and FID hulls

Throughout this section, (R,m,k) denotes a CM local ring with canonical

module ω.

Propositions 9.49.4 and 9.99.9 suggest that we view the MCM modules and

modules of finite injective dimension over R as orthogonal subspaces of the
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space of all finitely generated modules, with intersection spanned by the

canonical module ω. Guided by this intuition and memories of basic linear

algebra, we expect to be able to project any R-module onto these subspaces.

9.10 Definition. Let M be a non-zero finitely generated R-module. An

exact sequence of finitely generated R-modules

0−→Y −→ X −→ M −→ 0

is a MCM approximation of M if X is MCM and injdimR Y <∞. Dually, an

exact sequence

0−→ M −→Y ′ −→ X ′ −→ 0

is a hull of finite injective dimension or FID hull if injdimY ′ <∞ and either

X ′ is MCM or X ′ = 0.1

We sometimes abuse language and refer in a synecdoche to the modules

X and Y ′ as the MCM approximation and FID hull of M, rather than the

whole extensions.

The orthogonality relations between MCM modules and modules of fi-

nite injective dimension translate into lifting properties for the MCM ap-

proximations and FID hulls.

9.11 Proposition. Let 0−→Y −→ X −→ M −→ 0 be a MCM approximation

of M and let ϕ : Z −→ M be a homomorphism with Z MCM. Then ϕ factors

through X . Any two liftings of ϕ are homotopic, i.e. their difference factors

through Y .

1The definition is made slightly unwieldy by the possibility X ′ = 0, but this is far
preferable to the alternative, which would lead to considering the zero module to be MCM.
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Proof. Applying HomR(Z,−) to the approximation gives the exact sequence

0−→HomR(Z,Y )−→HomR(Z, X )−→HomR(Z, M)−→Ext1
R(Z,Y ) ,

the rightmost term of which vanishes by Proposition 9.49.4(iiii). Thus ϕ ∈
HomR(Z, M) lifts to an element of HomR(Z, X ). The final assertion follows

as well from exactness.

We leave it as an exercise for the reader to state and prove the dual

statement for FID hulls.

The lifting property of Proposition 9.119.11 allows a Schanuel-type result:

if 0−→Y1 −→ X1 −→ M −→ 0 and 0−→Y2 −→ X2 −→ M −→ 0 are two MCM

approximations of the same module M, then X1⊕Y2
∼= X2⊕Y1. We leave the

details to the reader. (One can also proceed directly, via the orthogonality

relation Ext1
R(X i,Y j) = 0; compare with Lemma A.8A.8.) Just as for free reso-

lutions, this motivates a notion of minimality for MCM approximations.

9.12 Definition. Let s : 0 −→ Y i−→ X
p−−→ M −→ 0 be a MCM approxima-

tion of a non-zero finitely generated R-module M. We say that s is minimal

provided Y and X have no non-zero direct summand in common via i. In

other words, for any direct-sum decomposition X = X0 ⊕ X1 with X0 ⊆ im i,

we must have X0 = 0.

Observe that any common direct summand of Y and X is both MCM

and of finite injective dimension, so by Proposition 9.99.9 is a direct sum of

copies of the canonical module ω.

While the definition of minimality above is quite natural, in practice a

more technical notion is useful.
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9.13 Definition. Let s : 0 −→ Y i−→ X
p−−→ M −→ 0 be a MCM approxima-

tion of a non-zero finitely generated R-module M. We say that s is right

minimal if whenever ϕ : X −→ X is an endomorphism such that pϕ= p, in

fact ϕ is an automorphism.

The equivalence of minimality and right minimality is “well-known to

experts”; the proof we give here is due to M. Hashimoto and A. Shida [HS97HS97]

(see also [Yos93Yos93]). It turns out that passing to the completion is essential

to the argument.

9.14 Lemma. Let s : 0 −→ Y i−→ X
p−−→ M −→ 0 be a MCM approximation

of a non-zero R-module M. Let ŝ : 0 −→ Ŷ î−→ X̂
p̂−−→ M̂ −→ 0 be the com-

pletion of s. Then ŝ is a MCM approximation of M̂, and the following are

equivalent.

(i) ŝ is right minimal;

(ii) s is right minimal;

(iii) s is minimal;

(iv) ŝ is minimal.

Proof. That ŝ is a MCM approximation of M̂ is trivial; the real matter is

the equivalence.

(ii) =⇒ (iiii) Assume that ŝ is right minimal, and ϕ ∈ EndR(X ) satisfies

pϕ= p. Then p̂ϕ̂= p̂, so ϕ̂ is an automorphism by hypothesis, whence ϕ is

an automorphism as well.
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(iiii) =⇒ (iiiiii) If X = X0 ⊕ X1 is a direct sum decomposition of X with

X0 ⊆ im i, then the idempotent ϕ : X� X0,→X obtained from the projection

onto X0 satisfies pϕ= p. Thus X0 6= 0 implies that s is not right minimal.

(iiiiii) =⇒ (iviv) Assume that ŝ is not minimal, so that Ŷ and X̂ have a

common non-zero direct summand via i. We have already observed that

such a direct summand must be a direct sum of copies of the canonical

module ω̂, so there exist homomorphisms σ : X̂ −→ ω̂ and τ : ω̂ −→ Ŷ such

that

σ îτ : ω̂−→ Ŷ −→ X̂ −→ ω̂

is the identity on ω̂. Write σ=∑
j a jσ̂ j and τ=∑

k bkτ̂k, where σ j ∈HomR(X ,ω),

τk ∈HomR(ω,Y ), and a j,bk ∈ R̂. Then

∑
j,k

a jbkσ̂ j îτ̂k = 1 ∈ EndR̂(ω̂)∼= R̂ .

Since R̂ is local, at least one of the summands a jbkσ̂ j îτ̂k is a unit of R̂. It

follows that σ j iτk is a unit of R, that is, σk iτk : ω−→ω is an isomorphism.

Thus s is not minimal.

(iviv) =⇒ (ii) We assume that R = R̂ is complete. Let ϕ : X −→ X be a non-

isomorphism satisfying pϕ= p. Let Λ⊂EndR(X ) be the subring generated

by R and ϕ, and observe that Λ is commutative and is a finitely generated

R-module.

As ϕ carries the kernel of p into itself, s is naturally a short exact se-

quence of (finitely generated) Λ-modules. In particular, multiplication by

ϕ ∈Λ is the identity on the non-zero module M, so by Nakayama’s Lemma

ϕ is not contained in the radical of Λ. On the other hand, ϕ is not an iso-

morphism on X , so is not a unit of Λ. Thus Λ is not an nc-local ring. Since
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R is Henselian (Corollary 1.81.8), it follows thatΛ contains a non-trivial idem-

potent e 6= 0,1.

Now ϕ ∈ R+ (1−ϕ)Λ, so R+ (1−ϕ)Λ=Λ. In particular, Λ :=Λ/(1−ϕ)Λ

is a quotient of R, so is a local ring. Replacing e by 1− e if necessary, we

may assume that e = 1 in Λ. Since ϕ acts as the identity on M, we see that

M is naturally a Λ-module, and in particular e also acts as the identity on

M.

Set X0 = im(1− e) = ker(e) ⊆ X . Then X0 is a non-zero direct summand

of X , and p(X0)= 0 since e acts trivially on M. Thus s is not minimal.

9.15 Proposition. If a finitely generated module M admits a MCM ap-

proximation, then there is a minimal one, which moreover is unique up to

isomorphism of exact sequences inducing the identity on M.

Proof. Removing any direct summands isomorphic to ω common to Y and

X via i in a given MCM approximation of M, we arrive at a minimal one.

For uniqueness, suppose we have two minimal approximations s : 0 −→
Y i−→ X

p−−→ M −→ 0 and s′ : 0 −→ Y ′ i′−−→ X ′ p′
−−→ M −→ 0. The lifting prop-

erty delivers a commutative diagram with exact rows

0 // Y

��

i // X

α
��

p // M // 0

0 // Y ′

��

i′ // X ′

β
��

p′
// M // 0

0 // Y i // X
p // M // 0

in which, in particular, pβα= p. Since minimality implies right minimal-

ity, βα is an isomorphism. A similar diagram shows that αβ is an iso-
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morphism as well, so that s and s′ are isomorphic exact sequences via an

isomorphism which is the identity on M.

Here is yet a third notion of minimality for MCM approximations, in-

troduced by Hashimoto and Shida [HS97HS97] and used to good effect by Simon

and Strooker [SS02SS02]. Set d = dimR. It’s immediate from the definition that

a MCM approximation 0−→Y −→ X −→ M −→ 0 induces isomorphisms

Exti
R(k, M)∼=


Exti+1

R (k,Y ) for 06 i6 d−2 and

Exti
R(k, X ) for i> d+1 ,

and a 4-term exact sequence

0−→Extd−1
R (k, M)−→Extd

R(k,Y )−→Extd
R(k, X )−→Extd

R(k, M)−→ 0 .

We will call the approximation Ext-minimal if the induced map of k-vector

spaces Extd
R(k,Y ) −→ Extd

R(k, X ) in the middle of this exact sequence is

the zero map. Equivalently, one of the natural maps Extd−1
R (k, M) −→

Extd
R(k,Y ) and Extd

R(k, X ) −→ Extd
R(k, M) is an isomorphism (and hence

both are). This means in particular that the Bass numbers of M are com-

pletely determined by X and Y .

If in an approximation of M there is a non-zero indecomposable direct

summand of Y carried isomorphically to a summand of X , then we’ve al-

ready seen that the summand must be isomorphic toω, and so Extd
R(k,Y )−→

Extd
R(k, X ) has as a summand the identity map on k = Extd

R(k,ω). Thus

Ext-minimality implies minimality as defined above. In fact, all three no-

tions of minimality are equivalent. As the proof of this fact uses some local

cohomology, we relegate it to the Exercises.
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9.16 Proposition. Let (R,m) be a CM local ring with canonical module,

and let M be a non-zero finitely generated R-module. For a given MCM

approximation of M, minimality, right minimality, and Ext-minimality are

equivalent.

The considerations above are exactly paralleled on the FID hull side.

A FID hull 0 −→ M
j−−→ Y

q−−→ X −→ 0 is minimal if Y and X have no non-

zero direct summand in common via q, is left minimal if every endomor-

phism ψ ∈ EndR(Y ) such that ψ j = j is in fact an automorphism, and is

Ext-minimal if the induced linear map Extd
R(k,Y ) −→ Extd

R(k, X ) is zero.

The three notions are equivalent by arguments exactly similar to those

above.

We turn now to existence. The construction of MCM approximations is

most transparent when the approximated module is CM, so we state that

case separately. In particular, the construction below applies when M is an

R-module of finite length, for example M = R/mn for some n> 1. We will

return to this example in §4§4.

9.17 Proposition. Let (R,m) be a CM local ring with canonical module ω,

and let M be a CM R-module. Then M has a minimal MCM approximation.

Proof. Let t = codepth M. By Theorem 9.79.7, M∨ =Extt
R(M,ω) is again CM of

codepth t. In a truncated minimal free resolution of M∨

0−→ syzR
t (M∨)−→ Ft−1 −→ ·· · −→ F1 −→ F0 −→ M∨ −→ 0

the tth syzygy syzR
t (M∨) is MCM. Apply HomR(−,ω) to get a complex

0−→ F∨
0 −→ F∨

1 −→ ·· · −→ F∨
t−1 −→ syzR

t (M∨)∨ −→ 0
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with homology Exti
R(M∨,ω), which is M∨∨ ∼= M for i = t and trivial other-

wise. Inserting the homology at the rightmost end, and defining K to be

the kernel, we get a short exact sequence

(9.17.1) 0−→ K −→ syzR
t (M∨)∨ −→ M −→ 0 ,

in which the middle term is MCM. Since K has a finite resolution by direct

sums of copies of R∨ = ω, it has finite injective dimension, so that (9.17.19.17.1)

is a MCM approximation of M.

It is easy to see that our initial choice of a minimal resolution forces the

obtained approximation to be minimal as well.

For the general case, we give an independent construction of a MCM ap-

proximation of a finitely generated module, which simultaneously produces

an FID hull as well. This argument is essentially that of [AB89AB89], though

in a more concrete setting. (There are [at least] two other constructions:

the pitchfork construction, originally due also to Auslander and Buchweitz,

and the gluing construction of Herzog and Martsinkovsky [HM93HM93].)

9.18 Theorem. Let (R,m,k) be a CM local ring with canonical module ω,

and let M be a finitely generated R-module. Then M admits a MCM ap-

proximation and a FID hull.

Proof. We construct the approximation and hull by induction on t := codepth M.

When M is MCM itself, the MCM approximation is trivial. For a FID hull,

take a free module F mapping onto the dual M∨ = HomR(M,ω) as in the

proof of Prop. 9.179.17. In the short exact sequence

0−→ syzR
1 (M∨)−→ F −→ M∨ −→ 0 ,
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the syzygy module syzR
1 (M∨) is again MCM, so applying HomR(−,ω) gives

another exact sequence

0−→ M −→ F∨ −→ syzR
1 (M∨)∨ −→ 0

in which F∨ ∼=ωn has finite injective dimension and syzR
1 (M∨)∨ is MCM.

Suppose now that codepth M = t> 1. Taking a syzygy of M in a minimal

free resolution

0−→ syzR
1 (M)−→ F −→ M −→ 0

we have by induction a FID hull of syzR
1 (M)

0−→ syzR
1 (M)−→Y ′ −→ X ′ −→ 0 .

Construct the pushout diagram from these two sequences.

0

��

0

��
0 // syzR

1 (M) //

��

F //

��

M // 0

0 // Y ′ //

��

W //

��

M // 0

X ′

��

X ′

��
0 0

As X ′ is MCM and F is free, the exact middle column forces W to be MCM,

so that the middle row is a MCM approximation of M.

A FID hull for W exists by the base case of the induction:

0−→W −→Y ′′ −→ X ′′ −→ 0
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and constructing another pushout

0

��

0

��
Y ′

��

Y ′

��
0 //W //

��

Y ′′ //

��

X ′′ // 0

0 // M //

��

Z //

��

X ′′ // 0

0 0

we see from the middle column that Z has finite injective dimension, so the

bottom row is a FID hull for M.

9.19 Notation. Having now established both existence and uniqueness of

minimal MCM approximations and FID hulls, we introduce some notation

for them. The minimal MCM approximation of M is denoted by

0−→YM −→ XM −→ M −→ 0 ,

while the minimal FID hull of M is denoted

0−→ M −→Y M −→ X M −→ 0 .

To show off the new notation, here is the final diagram of the proof of
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Theorem 9.189.18.

(9.19.1) 0

��

0

��
YM

��

YM

��
0 // XM //

��

ω(n) //

��

X M // 0

0 // M //

��

Y M

��

// X M // 0

0 0

Here n =µR(X∨
M) as the middle row is an FID hull for XM .

We also record a few curiosities that arose in the proof of Theorem 9.189.18.

9.20 Proposition. Up to adding or deleting direct summands isomorphic

to ω, we have

(i) YM ∼=Y syzR
1 (M) ;

(ii) X M ∼= X XM ; and

(iii) XM is an extension of a free module by X syzR
1 (M) , that is, there is a

short exact sequence 0−→ F −→ XM −→ X syzR
1 (M) −→ 0 with F free.

In particular, if R is Gorenstein then we have as well

(iv) XM ∼= X syzR
1 (M) ;

(v) XM ∼= syzR
1 (X M) ; and

(vi) YM ∼= syzR
1 (Y M) .
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We see already that the case of a Gorenstein local ring is special. In this

case, finite injective dimension coincides with finite projective dimension,

making the theory more tractable. We will see more advantages of the

Gorenstein condition in §4§4; see also Exercises 9.489.48 and 9.499.49.

We record here for later reference the case of codepth 1.

9.21 Proposition. Let R be a CM local ring with canonical module and let

M be an R-module of codepth 1, that is depth M = dimR −1. Let ξ1, . . . ,ξt

be a minimal set of generators for the (nonzero) module Ext1
R(M,ω), and let

E be the extension of M by ω(t) corresponding to the element ξ= (ξ1, . . . ,ξt) ∈
Ext1

R(M,ω(t))∼=Ext1
R(M,ω)(t). Then E is a MCM module and

ξ : 0−→ωt −→ E −→ M −→ 0

is the minimal MCM approximation of M. In particular, this construction

coincides with that of Proposition 9.179.17 if M is CM, i.e. if HomR(M,ω)= 0.

To close out this section, we have a few more words to say about unique-

ness. Since every MCM module is its own MCM approximation, the func-

tion M XM is in general neither injective nor surjective. However, we

may restrict to CM modules of a fixed codepth and ask whether every MCM

module X is a MCM approximation of a CM module of codepth r. For r = 1

and r = 2, these questions have essentially been answered by Yoshino–

Isogawa [YI00YI00] and Kato [Kat07Kat07]. Here is the criterion for r = 1.

9.22 Proposition. Let R be a CM local ring with a canonical module, and

assume that R is generically Gorenstein. Let X be a MCM R-module. Then
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X is a MCM approximation of some CM module M of codepth 1 if and only

if X has constant rank.

Proof. First assume that X has constant rank s. Then there is a short exact

sequence

0−→ R(s) −→ X −→ N −→ 0

in which N is a torsion module. In particular, N has dimension at most

dimR −1. However, the Depth Lemma ensures that N has depth at least

dimR −1, so N is CM of codepth 1. As R is generically Gorenstein, the

canonical module ω embeds into R as an ideal of pure height one (Prop. 9.89.8).

We therefore have embeddings ω(s),→R(s) and R(s),→X fitting into a comm-

utative diagram

0 // ω(s) //

��

X // M //

��

0

0 // R(s) // X // N // 0 .

The Snake Lemma delivers an isomorphism from the kernel of M −→ N

onto (R/ω)(s), and hence an exact sequence

0−→ (R/ω)(s) −→ M −→ N −→ 0 .

Therefore M is also CM of codepth 1, and the top row of the diagram is a

MCM approximation of M.

For the converse, suppose that M is CM of codepth 1 and that X is

a MCM approximation of M. Then X ∼= XM ⊕ω(t) for some t > 0. In the

minimal MCM approximation

0−→YM −→ XM −→ M −→ 0 ,
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we see that M is torsion, whence of rank zero, and YM is isomorphic to a

direct sum of copies of ω. As R is generically Gorenstein, YM has constant

rank, and so XM and X do as well.

It’s clear that a local ring R is a domain if and only if every finitely

generated R-module has constant rank. If in addition R is CM, then it

follows that R is a domain if and only if every MCM module has constant

rank. (Take a high syzygy of an arbitrary finitely generated module M and

compute the rank of M as an alternating sum.) These observations prove

the following corollary.

9.23 Corollary. Let R be a CM local ring with a canonical module and as-

sume that R is generically Gorenstein. The following statements are equiv-

alent.

(i) For every MCM R-module X , there exists a CM module M of codepth

1 such that X is MCM approximation of M.

(ii) R is a domain.

The question of the injectivity of the function M XM for modules M of

a fixed codepth is, as far as we can tell, still open. The corresponding ques-

tion for FID hulls, however, has a positive answer when R is Gorenstein,

due to Kato [Kat99Kat99].

§3 Numerical invariants

Since the minimal MCM approximation and minimal FID hull of a module

M are uniquely determined up to isomorphism by M, any numerical infor-



§3. Numerical invariants 219

mation we derive from XM , YM , X M , and Y M are invariants of M. For ex-

ample, if R is Henselian we might consider the number of indecomposable

direct summands appearing in a direct sum decomposition of XM or Y M

as a kind of measure of the complexity of M, or if R is generically Goren-

stein we might consider rankY M . All these possibilities were pointed out

by Buchweitz [Buc86Buc86], but seem not to have gotten much attention. In this

section we introduce two other numerical invariants of M, namely δ(M),

first defined by Auslander; and γ(M), defined by Herzog and Martsinkov-

sky. We also introduce a mysterious new invariant, ε(M), about which we

can say little.

Throughout, (R,m) is still a CM local ring with canonical module ω. For

an arbitrary finitely generated R-module Z, we define the free rank of Z,

denoted f-rank Z, to be the rank of a maximal free direct summand of Z. In

other words, Z ∼= Z⊕R(f-rank Z) with Z stable, i.e. having no non-trivial free

direct summands. Dually, the canonical rank of Z, ω-rank Z, is the largest

integer n such that ω(n) is a direct summand of Z.

9.24 Definition. Let M be a finitely generated R-module with minimal

MCM approximation 0 −→ YM −→ XM −→ M −→ 0 and minimal FID hull

0−→ M −→Y M −→ X M −→ 0. Then we define

δ(M)= f-rank XM ;

γ(M)=ω-rank XM ; and

ε(M)=ω-rankY M .

For the rest of the section, we fix once and for all the minimal MCM

approximation

0−→YM
i−→ XM

p−−→ M −→ 0
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and minimal FID hull

0−→ M
j−−→Y M q−−→ X M −→ 0

of a chosen R-module M. Note first that since we chose our approximation

and hull to be (Ext-)minimal, we have

Extd
R(k, XM)∼=Extd

R(k, M)∼=Extd
R(k,Y M) ,

where d = dimR. This, together with the fact (see Exercise 9.529.52) that

Extd
R(k, Z) 6= 0 for every non-zero finitely generated R-module Z, imme-

diately gives the following crude bounds.

9.25 Proposition. Set s = dimk Extd
R(k, M). Then

(i) δ(M) ·dimk Extd
R(k,R)6 s, with equality if and only if XM is free. In

particular, if dimk Extd
R(k, M)< dimk Extd

R(k,R), then δ(M)= 0.

(ii) γ(M)6 s, with equality if and only if M has finite injective dimen-

sion.

(iii) ε(M)6 s, with equality if and only if M is MCM.

Note that the question of which modules M satisfy “XM is free” is quite

subtle. One situation in which it holds is when R is Gorenstein and M

has finite projective dimension; see Exercise 9.489.48. However, it may hold in

other cases as well, for example M = R/ω, where ω is embedded as an ideal

of height one as in Prop. 9.89.8.

To obtain sharper bounds, as well as a better understanding of what ex-

actly each invariant measures, we consider them separately. Of the three,

δ(M) has received the most attention, and we begin there.
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9.26 Lemma. Let M be a finitely generated R-module. Write XM = X ⊕F,

where F is a free module of rank δ(M) and X is stable. Then

δ(M)=µR
(
M/p

(
X

))
.

Proof. The commutative diagram of short exact sequences

0

��

0

��

0

��
0 // ker(p|X ) //

��

YM //

��

ker p //

��

0

0 // X //

��

XM //

p
��

F //

p
��

0

0 // p(X ) //

��

M //

��

M/p(X ) //

��

0

0 0 0

shows that δ(M) = rankF > µR(M/p(X )). If rankF > µR(M/p(X )), then

ker p has a non-zero free direct summand. Since YM maps onto ker p, YM

also has a free summand, which we easily see is a common direct summand

of YM and XM . As our approximation was chosen minimal, we must have

equality.

The lemma allows us to characterize δ(M) without referring to the

MCM approximation of M.

9.27 Proposition. Let M be a finitely generated R-module. The delta-

invariant δ(M) is the minimum free rank of all MCM modules Z admitting

a surjective homomorphism onto M.
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Proof. Denote the minimum by δ′ = δ′(M), and set δ= δ(M). Then evidently

δ′ 6 δ. For the other inequality, let ϕ : Z −→ M be a surjection with Z

MCM and f-rank Z = δ′. Write Z = Z⊕R(δ′) and XM = X ⊕R(δ). The lifting

property applied to ϕ|Z gives a homomorphism α : Z −→ X⊕R(δ) fitting into

a commutative diagram

0 // kerϕ|Z //

��

Z

α
��

ϕ|Z // M

0 // YM // X ⊕R(δ)
p

// M // 0

As Z has no free direct summands, the image of the composition Z −→
X ⊕R(δ)� R(δ) is contained in mR(δ). Thus α

(
Z

)
contributes no minimal

generators to M/p(X ), and therefore δ = µR
(
M/p

(
X

))
6 µR

(
M/pα

(
Z

))
6

δ′.

In particular, Prop. 9.279.27 implies that for a MCM module X , we have

δ(X ) = f-rank X , and for M arbitrary, δ(M) = 0 if and only if M is a ho-

momorphic image of a stable MCM module. We also obtain some basic

properties of δ.

9.28 Corollary. Let M and N be finitely generated R-modules.

(i) δ(M⊕N)= δ(M)+δ(N).

(ii) δ(N)6 δ(M) if there is a surjection M�N.

(iii) δ(M)6µR(M).

Proof. Since minimality is equivalent to Ext-minimality, the direct sum

of minimal MCM approximations of M and N is again minimal. Thus
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XM⊕N ∼= XM ⊕XN . The free rank of XM ⊕XN is the sum of those of XM and

XN , since a direct sum has a free summand if and only if one summand

does. The second and third statements are clear from the Proposition.

9.29 Remark. We point out a historically significant consequence of Cor. 9.289.28.

Suppose that R is Gorenstein and M is an R-module equipped with a sur-

jection onto a non-zero module N of finite projective dimension. Since the

minimal MCM approximation of N is simply a free cover (Ex. 9.489.48), we

have δ(N)> 0, and hence δ(M)> 0. It was at first conjectured that δ(M)> 0

if and only if M has a non-zero quotient module of finite projective dimen-

sion, but a counterexample was given by S. Ding [Din94Din94]. Ding proves a

formula for δ(R/I), where R is a one-dimensional Gorenstein local ring and

I is an ideal of R containing a non-zerodivisor:

δ(R/I)= 1+λ (soc(R/I))−µR
(
I∗

)
.

He then takes R = k[[t3, t4]], where k is a field, and I = (t8 + t9, t10). He

shows that δ(R/I) = 1 and that I is not contained in any proper principal

ideal of R, so R/I cannot map onto a non-zero module of finite projective

dimension.

We also mention here in passing a remarkable application of the δ-

invariant, due to A. Martsinkovsky [Mar90Mar90, Mar91Mar91]. Let S = k[[x1, . . . , xn]]

be a power series ring over an algebraically closed field of characteristic

zero. Let f ∈ S be a polynomial such that the hypersurface ring R = S/( f )

is an isolated singularity. The Jacobian ideal j( f ), generated by the partial

derivatives of f , and its image j( f ) in R, are thus primary to the respec-

tive maximal ideals. Martsinkovsky shows that δ
(
R/ j ( f )

)
= 0 if and only if
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f ∈ j( f ). In fact, these are equivalent to f ∈ (x1, . . . , xn) j( f ), which by a foun-

dational result of Saito [Sai71Sai71] occurs if and only if f is quasi-homogeneous,

i.e. there is an integral weighting of the variables x1, . . . , xn under which f

is homogeneous.

Turning now to γ(M)=ω-rank XM , we have an analogue of Lemma 9.269.26,

the proof of which is similar enough that we skip it.

9.30 Lemma. Let M be a finitely generated R-module, and write XM =
X ⊕ω(γ(M)), where X has no direct summand isomorphic to ω. Then

γ(M) ·µR(ω)=µR

(
M/p(X )

)
.

As a consequence, we find an unexpected restriction on the R-modules

of finite injective dimension.

9.31 Proposition. Let M be a finitely generated R-module of finite injective

dimension. Then γ(M) ·µR(ω) = µR(M). In particular, µR(M) is an integer

multiple of µR(ω).

There is obviously no direct analogue of Prop. 9.279.27 for γ(M); as long as

R is not Gorenstein, every M is a homomorphic image of a MCM module

without ω-summands, namely, a free module. Still, we do retain additivity,

and in certain cases the other assertions of Cor. 9.289.28.

9.32 Proposition. Let M and N be R-modules. Then γ(M ⊕ N) = γ(M)+
γ(N).

The next result fails without the assumption of finite injective dimen-

sion. For example, consider a non-Gorenstein ring R and a free module F

mapping onto the canonical module ω. We have γ(F)= 0 and γ(ω)= 1.
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9.33 Proposition. Let N ⊆ M be R-modules, both of finite injective dimen-

sion. Then γ(M/N)6 γ(M)−γ(N).

Proof. Since each of M, N, and M/N has finite injective dimension, Prop. 9.259.25

allows us to compute γ(−) as dimk Extd
R(k,−). The long exact sequence of

Ext ends with

Extd
R(k, N)−→Extd

R(k, M)−→Extd
R(k, M/N)−→ 0 ,

and a dimension count gives the inequality.

In case M has codepth 1, the explicit construction of MCM approxima-

tions in Prop. 9.219.21 allows us to compute γ(M) directly. We leave the proof

as yet another exercise.

9.34 Proposition. Let M be an R-module of codepth 1 (not necessarily

Cohen–Macaulay). Then we have γ(M)=µR(Ext1
R(M,ω)).

For CM modules, the δ- and γ-invariants are dual. This follows easily

from the construction of MCM approximations in this case.

9.35 Proposition. Let M be a CM R-module of codepth t, and write M∨ =
Extt

R(M,ω) as usual. Then δ(M∨)= γ(syzR
t (M)).

In fact, one can show, using the gluing construction of Herzog and Mart-

sinkovsky [HM93HM93], that δ
(
syzi(M∨)

)= γ(
syzt−i(M)

)
for i = 0, . . . , t.

When R is Gorenstein, δ and γ coincide, allowing us to combine all the

above results, and enabling new ones. Here is an example.
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9.36 Proposition. Assume that R is a Gorenstein ring, and let M be a

finitely generated R-module. Then

δ(M)=µR

(
Y M

)
−µR

(
X M

)
.

Proof. Consider the diagram (9.19.19.19.1) following the construction of MCM

approximations and FID hulls. In the Gorenstein situation, the ω(n) in the

center becomes a free module R(n). Thus δ(M) = f-rank XM = n−µR(X M).

The middle column implies n> µR(Y M), but in fact we have equality: the

image of the vertical arrow YM −→ Rn is contained in mR(n) by the mini-

mality of the left-hand column. Combining these gives the formula of the

statement.

Closing out this section, we turn to the ε-invariant ε(M)=ω-rank(Y M).

This number seems quite mysterious. We record a few basic observations,

but much remains to be learned. The first assertion follows from the con-

struction of Y M , and the second from the definition.

9.37 Proposition. Let M be a finitely generated R-module.

(i) If M is MCM, then ε(M)=µR(M∨).

(ii) If M has finite injective dimension, then ε(M)=ω-rank(M).

§4 The index and applications to finite CM

type

Once again, in this section (R,m) is a CM local ring with canonical module

ω. As a warm-up exercise, here is a straightforward result attributed to
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Auslander.

9.38 Proposition. The following conditions are equivalent.

(i) R is a regular local ring.

(ii) δ(syzR
n (k))> 0 for all n> 0.

(iii) δ(k)= 1, i.e. k is not a homomorphic image of a stable MCM module.

(iv) γ(syzR
d (k))> 0, where d = dimR.

Proof. If R is a regular local ring, then every MCM module is free, so

δ(M) > 0 for every module M in particular (iiii) holds. Statement (iiii) im-

plies (iiiiii) trivially. If R is non-regular, then there is at least one MCM

R-module M without free summands, and the composition M −→ M/mM ∼=
k(µR (M))� k shows δ(k)= 0. Thus the first three statements are equivalent.

Finally, the construction of minimal MCM approximations for CM mod-

ules in Prop. 9.179.17 shows that δ(k) = f-rank(syzR
d (k∨)∨) = ω-rank(syzR

d (k)) =
γ(syzR

d (k)), whence (iiiiii) ⇐⇒ (iviv).

For a moment, let us set δn = δ(R/mn) for each n> 0. Then the Propo-

sition says simply that if R is not regular, then δ0 = 0. The surjection

R/mn+1� R/mn gives δn+1 > δn, and every δn is at most 1 by Cor. 9.289.28.

Thus the sequence {δn} is non-decreasing, with

0= δ06 δ16 · · ·6 δn6 δn+16 · · ·6 1 .

If ever δn = 1, the sequence stabilizes there. Let us define the index of R to

be the point at which that stabilization occurs, that is,

index(R)=min
{

n
∣∣ δ(

R/mn)= 1
}



228 Auslander–Buchweitz Theory

and set index(R) =∞ if δ(R/mn) = 0 for every n. Equivalently, index(R) is

the least integer n such that any MCM R-module X mapping onto R/mn

has a free direct summand. In these terms, the Proposition says that R is

regular if and only if index(R)= 1.

Next we point out that the index of R is finite if R is Gorenstein. Let x

be a system of parameters in the maximal ideal m. Then R/(x) has finite

projective dimension, so δ(R/(x)) > 0 since the MCM approximation is just

a free cover (Exercise 9.489.48). The ideal generated by x being m-primary,

we have mn ⊆ (x) for some n, and the surjection R/mn −→ R/(x) gives δn >

δ(R/(x)) > 0. Thus index(R) 6 n. In fact, we see that the index of R is

bounded above by the generalized Loewy length of R,

`̀ (R)= inf
{

n
∣∣ there exists a s.o.p. x with mn ⊆ (x)

}
.

It has been conjectured by Ding that in fact index(R)= `̀ (R); as long as the

residue field of R is infinite [HS97HS97], this is still open, despite partial results

by Ding [Din92Din92, Din93Din93, Din94Din94] and Herzog [Her94Her94], who proved it in case

R is homogeneous graded over a field.

In this section we will give Ding’s proof that the index of R is finite if

and only if R is Gorenstein on the punctured spectrum; moreover, in this

case the index is bounded by the Loewy length. This will be Theorem 9.429.42,

to which we come after some preliminaries.

9.39 Lemma. Let (R,m) be a CM local ring with canonical module ω and

let x ∈m be a non-zerodivisor. Then δ(R/(x)) > 0 if and only if syzR
1 (ω/xω)

has a direct summand isomorphic to ω.



§4. The index and applications to finite CM type 229

Proof. The minimal MCM approximation of a module of codepth 1 is com-

puted in Prop. 9.219.21; in the case of R/(x) we see that it is obtained by dualiz-

ing a free resolution of (R/(x))∨ =Ext1
R(R/(x),ω)∼=ωR/(x)

∼=ω/xω. It therefore

takes the form

0−→ F∨ −→ syzR
1 (ω/xω)∨ −→ R/(x)−→ 0

where F is a free module. Thus δ(R/(x)) = f-rank
(
syzR

1 (ω/xω)∨
)

is equal to

ω-rank
(
syzR

1 (ω/xω)
)
.

9.40 Lemma. The following are equivalent for a non-zerodivisor x ∈m:

(i) syzR
1 (ω/xω) has a direct summand isomorphic to ω;

(ii) syzR
1 (ω/xω)∼=ω⊕syzR

1 (ω);

(iii) the multiplication map ω
x−−→ω factors through a free module.

Proof. (ii) =⇒ (iiii) Form the pullback of a free cover F −→ ω/xω and the

surjection ω−→ω/xω to obtain a diagram as below.

0

��

0

��
syzR

1 (ω/xω)

��

syzR
1 (ω/xω)

��
0 // ω // P //

��

F //

��

0

0 // ω // ω //

��

ω/xω //

��

0

0 0
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The middle row splits, giving a short exact sequence

0−→ syzR
1 (ω/xω)−→ F ⊕ω−→ω−→ 0

in the middle column. As Ext1
R(ω,ω) = 0, any ω-summand of syzR

1 (ω/xω)

must split out as an isomorphism ω−→ω, leaving syzR
1 (ω) behind.

(iiii) =⇒ (iiiiii) Letting F −→ω now be a free cover of ω, another pullback

gives the diagram

0

��

0

��
syzR

1 (ω)

��

syzR
1 (ω)

��
0 // syzR

1 (ω/xω) //

��

F //

��

ω/xω // 0

0 // ω x
//

��

ω //

��

ω/xω // 0

0 0

Applying Miyata’s theorem (Theorem 6.16.1), the left-hand column must split,

so that ω x−−→ω factors through F.

(iiiiii) =⇒ (ii) If we have a factorization of the multiplication homomor-

phism ω
x−−→ω through a free module, say ω−→G −→ω, we may pull back

in two stages:

0 // syzR
1 (ω) // Q //

��

ω //

��

0

0 // syzR
1 (ω) // P //

��

G //

��

0

0 // syzR
1 (ω) // F // ω // 0
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The result is the same as if we had pulled back by ω
x−−→ ω directly, by

the functoriality of Ext. Doing so in two stages, however, reveals that the

middle row splits as G is free, and so the top row splits as well. This gives

Q ∼=ω⊕syzR
1 (ω) and the middle column thus presents Q as the first syzygy

of cok(ω x−−→ω)∼=ω/xω, giving even property (iiii) and in particular (ii).

Putting the lemmas together, we see that δ(R/(x))= 0 for a nonzerodivi-

sor x ∈m if and only if x is in the ideal of EndR(ω) ∼= R consisting of those

elements for which the corresponding multiplication factors through a free

module. Let us identify this ideal explicitly.

9.41 Lemma. Let R be a CM local ring with canonical module ω. The

following three ideals of R coincide.

(i)
{

x ∈ R
∣∣∣ ω x−−→ω factors through a free module

}
;

(ii) the trace τω(R) of ω in R, which is generated by all homomorphic

images of ω in R;

(iii) the image of the natural map

α : HomR(ω,R)⊗R ω−→EndR(ω)= R

defined by α( f ⊗a)(b)= f (b) ·a. (Note that this is not the evaluation

map ev( f ⊗a)= f (a).)

Proof. We prove (ii) ⊇ (iiii) ⊇ (iiiiii) ⊇ (ii).

Let x ∈ τω(R), so that there is a linear functional f : ω −→ R and an

element a ∈ ω with f (a) = x. Defining g : R −→ ω by g(1) = a, we have a

factorization x = g ◦ f : ω−→ω.
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Now if x ∈ imα, then there exist homomorphisms f i : ω −→ R and ele-

ments ai ∈ω such that

α

(∑
i

f i ⊗ai

)
(b)= xb

for every b ∈ω. Define homomorphisms g i : ω−→ R by g i(b) =α( f i ⊗ b) for

all b ∈ω. Then
∑

i g i(ai)= x, so that x is contained in the sum of the images

of the g i, hence in the trace ideal.

Finally, suppose we have a commutative diagram

ω
x //

∑
f i   

ω

F

∑
g i

>>

with F a free module and
∑

f i,
∑

g i the decompositions along an isomor-

phism F ∼= R(n). Then for a ∈ω, we have

α
(∑

f i ⊗ g i(1)
)
(a)=∑

f i(a) · g i(1)

=∑
g i( f i(a))

= xa

so that x ∈ imα.

From either of the first two descriptions above, we see that 1 ∈ τω(R)

if and only if R is Gorenstein. It follows that τω(R) defines the Gorenstein

locus of R, that is, a localization Rp is Gorenstein if and only if τω(R) 6⊆ p. In

particular, R is Gorenstein on the punctured spectrum if and only if τω(R)

is m-primary.

9.42 Theorem (Ding). The index of a CM local ring (R,m) with canonical

module ω is finite if and only if R is Gorenstein on the punctured spectrum.
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Proof. Assume first that R is Gorenstein on the punctured spectrum, so

that τω(R) is m-primary. Then there exists a regular sequence x1, . . . , xd in

τω(R), where d = dimR. We claim by induction on d that δ(R/(x1, . . . , xd)) 6=
0. The case d = 1 is immediate from Lemmas 9.399.39 and 9.409.40.

Suppose d > 1 and X is a MCM R-module with a surjection X −→
R/(x1, . . . , xd). Tensor with R = R/(x1) to get a surjection X /x1X −→ R/(x2, . . . , xd),

where overlines indicate passage to R. Since x2, . . . , xd are in τω(R), the in-

ductive hypothesis says that X /x1X has an R/(x1)-free direct summand.

But then there is a surjection X −→ X /x1X −→ R, so that f-rank X > δ(R)>
0, and X has a non-trivial R-free direct summand, showing δ(R/(x1, . . . , xd))>
0.

Now let us assume that τω(R) is not m-primary. For any power mn of

the maximal ideal, we may find a non-zerodivisor z(n) ∈mn\τω(R). By Lem-

mas 9.399.39 and 9.409.40, δ(R/(z(n)))= 0 for every n, and the surjection R/(z(n))−→
R/mn gives δ(R/mn)= 0 for all n, so that index(R)=∞.

As an application of Ding’s theorem, we prove that CM local rings of

finite CM type are Gorenstein on the punctured spectrum. Of course this

follows trivially from Theorem 6.126.12, since isolated singularities are Goren-

stein on the punctured spectrum. This proof is completely independent,

however, and may have other applications. It relies upon Guralnick’s re-

sults in Chapter 66.

9.43 Theorem. Let (R,m) be a CM local ring of finite CM type. Then R has

finite index. If in particular R has a canonical module, then R is Gorenstein

on the punctured spectrum.
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Proof. Let {M1, . . . , Mr} be a complete set of representatives for the iso-

morphism classes of non-free indecomposable MCM R-modules. By Corol-

lary 1.131.13, since R is not a direct summand of any Mi, there exist inte-

gers ni, i = 1, . . . , r, such that for s> ni, R/ms is not a direct summand of

Mi/msMi. Then for s> ni, there exists no surjection Mi/msMi −→ R/ms by

Lemma 1.111.11. Set N = max {ni}. Let X be any stable MCM R-module, and

decompose X ∼= M(a1)
1 ⊕ ·· · ⊕ M(ar)

r . If there were a surjection X −→ R/mN ,

then (since R is local) one of the summands Mi would map onto R/mN , con-

tradicting the choice of N. As X was arbitrary, this shows that index(R) <
∞.

9.44 Remark. The foundation of Ding’s theorem is in identifying the non-

zerodivisors x such that δ(R/(x)) > 0. One might also ask about δ(ω/xω),

as well as the corresponding values of the γ-invariant. It’s easy to see

that the minimal MCM approximation of ω/xω is the short exact sequence

0−→ω
x−−→ω−→ω/xω−→ 0, which gives δ(ω/xω)= 0 and γ(ω/xω)= 1. How-

ever, γ(R/(x)) is much more mysterious. We have XR/(x)
∼= syzR

1 (ω/xω)∨, so

γ(R/(x)) > 0 if and only if syzR
1 (ω/xω) has a non-zero free direct summand.

We know of no effective criterion for this.

9.45 Remark. As a final note, we observe that Auslander’s criterion for

regularity, Proposition 9.389.38, can be interpreted via the construction of MCM

approximations for CM modules in Proposition 9.179.17. Assume that R is

Gorenstein. Then condition (iviv) can be written δ(syzR
d (k)) > 0, and since

syzR
d (k) is MCM, this says simply that R is regular if and only if syzR

d (k)

has a non-trivial free direct summand. This is a special case of a result

of Herzog [Her94Her94], which generalizes a case of Levin’s solution of a conjec-
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ture of Kaplansky: if there exists a finitely generated R-module M such

that mM 6= 0 and mM has finite projective dimension, then R is regular; in

particular, if syzR
d (R/mn) is free for some n then R is regular. Yoshino has

conjectured [Yos98Yos98] that for any positive integers t and n, δ(syzR
t (R/mn))> 0

if and only if R is regular local, and has proven the conjecture when R is

Gorenstein and the associated graded ring grm(R) has depth at least d−1.

§5 Exercises

9.46 Exercise. Finish the proof of Theorem 9.39.3.

9.47 Exercise. Prove Lemma 9.69.6, using Nakayama’s Lemma for surjectiv-

ity and Krull’s Intersection Theorem for injectivity.

9.48 Exercise. Assume that R is Gorenstein and M is an R-module of

finite projective dimension. Then the minimal MCM approximation of M

is just a minimal free cover.

9.49 Exercise. Let R be a CM local ring with canonical module ω, and

let M be a finitely generated R-module of finite injective dimension. Show

that M has a finite resolution by copies of ω

0−→ωnt −→ ·· · −→ωn1 −→ωn0 −→ M −→ 0 .

9.50 Exercise. Let x ∈m be a non-zerodivisor. Prove that X R/(x) ∼= syzR
2 (ω/xω)∨,

and so ε(R/(x))= δ(syzR
2 (ω/xω)).

9.51 Exercise. Let R be CM local and M a finitely generated R-module.

Define the stable MCM trace of M to be the submodule τ(M) generated
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by all homomorphic images f (X ), where X is a stable MCM module and

f ∈HomR(X , M). Show that δ(M)=µR(M/τ(M)).

9.52 Exercise. Let (R,m) be a local ring. Denote by µi(p, M) the number

of copies of the injective hull of R/p appearing at the ith step of a minimal

injective resolution of M. This integer is called the ith Bass number of M at

p. It is equal to the vector-space dimension of Exti
R(R/p, M)p over the field

(R/p)p.

(i) If µi(p, M)> 0 and heightq/p= 1, prove that µi+1(q, M)> 0.

(ii) If M has infinite injective dimension, prove that µi(m, M) > 0 for

all i> dim M. (Hint: go by induction on dim M, the base case being

easy. For the inductive step, distinguish two cases: (a) injdimRp
(Mp)=

∞ for some prime p 6=m, or (b) injdimRp
(Mp)<∞ for every p 6=m. In

the first case, use the previous part of this exercise; in the second,

conclude that injdimR(M)<∞.)

9.53 Exercise. (This exercise still needs some work.) This exercise gives a

proof of the last remaining implication in Proposition 9.169.16, following [SS02SS02].

Let (R,m,k) be a CM complete local ring of dimension d with canonical

module ω.

(i) Let M be a MCM R-module with minimal injective resolution I•.

Prove that Extd
R(k, M) = socle(Id) is an essential submodule of the

local cohomology Hd
m(M)= Hd(Γ(I•)).

(ii) Let M and N be finitely generated R-modules with M MCM and N

having FID. Let f : N −→ M be a homomorphism. Prove that the ω-



§5. Exercises 237

rank of f (that is, the number of direct summands isomorphic to ω

common to N and M via f ) is equal to the k-dimension of the image

of the homomorphism Extd
R(k, f ).

9.54 Exercise. Let R be a Gorenstein local ring (or, more generally, a CM

local ring with canonical module ω and satisfying τω(R) ⊇m) with infinite

residue field. Assume that R is not regular. Then

e(R)>µR(m)−dimR−1+ index(R) .

In particular, if R has minimal multiplicity e(R) = µR(m)−dimR +1, then

index(R)= 2. (Compare with Corollary 5.345.34.)
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Auslander-Reiten Theory
In this chapter we give an introduction to Auslander–Reiten sequences,

also known as almost split sequences, and the Auslander–Reiten quiver.

AR sequences are certain short exact sequences which were first introduced

in the representation theory of Artin algebras, where they have played a

central role. They have since been used fruitfully throughout representa-

tion theory. The information contained within the AR sequences is conve-

niently arranged in the AR quiver, which in some sense gives a picture of

the whole category of MCM modules. We illustrate with several examples

in §3§3.

§1 AR sequences

For this section, (R,m,k) will be a Henselian CM local ring with a canonical

module ω.

We begin with the definition.

10.1 Definition. Let M and N be indecomposable MCM R-modules, and

let

(10.1.1) 0−→ N i−→ E
p−−→ M −→ 0

be a short exact sequence of R-modules.

(i) We say that (10.1.110.1.1) is an AR sequence ending in M if it is non-split,

but for every MCM module X and every homomorphism f : X −→ M

which is not a split surjection, f factors through p.

238
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(ii) We say that (10.1.110.1.1) is an AR sequence starting from N if it is non-

split, but for every MCM module Y and every homomorphism g : N −→
Y which is not a split injection, g lifts through i.

We will be concerned almost exclusively with AR sequences ending in

a module, and in fact will often call (10.1.110.1.1) an AR sequence for M. In

fact, the two halves of the definition are equivalent; see Exercise 10.4110.41. We

will therefore even allow ourselves to call (10.1.110.1.1) an AR sequence without

further qualification if it satisfies either condition.

Observe that if (10.1.110.1.1) is an AR sequence, then in particular it is non-

split, so that M is not free and N is not isomorphic to the canonical module

ω.

As with MCM approximations, we take care of the uniqueness of AR

sequences first, then consider existence.

10.2 Proposition. Suppose that 0−→ N i−→ E
p−−→ M −→ 0 and 0−→ N ′ i′−−→

E′ p′
−−→ M −→ 0 are two AR sequences for M. Then there is a commutative

diagram

0 // N i //

��

E
p //

��

M // 0

0 // N ′
i′
// E′

p′
// M // 0

in which the first and second vertical maps are isomorphisms.

Proof. Since both sequences are AR sequences for M, neither p nor p′ is a

split surjection. Therefore each factors through the other, giving a commu-
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tative diagram

0 // N i //

ψ
��

E
p //

ϕ
��

M // 0

0 // N ′ i′ //

ψ′
��

E′ p′
//

ϕ′
��

M // 0

0 // N
i
// E p

// M // 0

with exact rows.

Consider ψ′ψ ∈EndR(N). If ψ′ψ is a unit of this nc-local ring, then ψ′ψ

is an isomorphism, so ψ is a split injection. As N and N ′ are both indecom-

posable, ψ is an isomorphism, and ϕ is as well by the Snake Lemma.

If ψ′ψ is not a unit of EndR(N), then σ := 1N −ψ′ψ is. Define τ : E −→ N

by τ(e)= e−ϕ′ϕ(e). This has image in N since pϕ′ϕ(e)= p(e) for all e by the

commutativity of the diagram. Now τ(i(n)) =σ(n) for every n ∈ N. Since σ

is a unit of EndR(N), this implies that i is a split surjection, contradicting

the assumption that the top row is an AR sequence.

For existence of AR sequences, we first observe that we will need to

impose an additional restriction on M or R.

10.3 Proposition. Assume that there exists an AR sequence for M. Then

M is locally free on the punctured spectrum of R. In particular, if every

indecomposable MCM R-module has an AR sequence, then R has at most

an isolated singularity.

Proof. Let α : 0 −→ N −→ E −→ M −→ 0 be an AR sequence for M. Since α

is non-split, M is not free. Let L = syzR
1 (M), so that there is a short exact

sequence

0−→ L −→ F −→ M −→ 0
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with F a finitely generated free module. Suppose that Mp is not free for

some prime ideal p 6=m. Then

0−→ Lp −→ Fp −→ Mp −→ 0

is still non-split, so in particular Ext1
Rp

(Mp,Lp) = Ext1
R(M,L)p is non-zero.

Choose an indecomposable direct summand K of L such that Ext1
R(M,K)p

is non-zero, and let β ∈Ext1
R(M,K) be such that β

1 6= 0 in Ext1
R(M,K)p. Then

the annihilator of β is contained in p. Let r ∈m\p. Then for every n> 0,

rn ∉ p, so that rnβ 6= 0. In particular rnβ is represented by a non-split short

exact sequence for all n> 0. Choosing a representative 0 −→ K −→ G −→
M −→ 0 for β, and representatives 0 −→ K −→Gn −→ M −→ 0 for each rnβ

as well, we obtain a commutative diagram

β : 0 // K //

rn

��

G //

��

M // 0

rnβ : 0 // K //

fn
��

Gn //

��

M // 0

α : 0 // N // E // M // 0

with exact rows. The top half of this diagram is the pushout representing

rnβ as a multiple of β, while the vertical arrows in the bottom half are

provided by the lifting property of AR sequences. Let fn∗ : Ext1
R(M,K) −→

Ext1
R(M, N) denote the homomorphism induced by fn. Then α= fn∗(rnβ)=

rn fn∗(β) ∈ rn Ext1
R(M, N) for every n> 0, and so α= 0, a contradiction.

The last assertion follows from the first and Lemma 6.96.9.

In fact, the converse of Proposition 10.310.3 holds as well. The proof re-

quires a few technical results and two auxiliary tools, which are useful in

other contexts as well: the stable Hom and the Auslander transpose.
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10.4 Definition. Let M and N be finitely generated modules over a comm-

utative (Noetherian, as always) ring A. Denote by P(M, N) the submod-

ule of A-homomorphisms from M to N that factor through a projective

A-module, and put

HomR(M, N)=HomR(M, N)
/
P(M, N) .

We call HomR(M, N) the stable Hom module. We also write EndA(M) for

HomA(M, M) and refer to it as the stable endomorphism ring.

Observe that P(M, M) is a two-sided ideal of the (non-commutative)

ring EndA(M), so that EndA(M) really is a ring. In particular, it is a quo-

tient of EndA(M), so the stable endomorphism ring is nc-local if the usual

endomorphism ring is.

As with the usual Hom, the stable Hom module HomA(M, N) is natu-

rally a left EndA(M)-module and a right EndA(N)-module. We leave the

straightforward check that these actions are well-defined to the reader.

10.5 Remark. Recall that we write M∗ for HomR(M,R). Note that P(M, N)

is the image of the natural homomorphism

ρN
M : M∗⊗A N −→HomR(M, N)

defined by ρ( f ⊗ y)(x)= f (x)y for f ∈ M∗, y ∈ N, and x ∈ M. In particular M

is projective if and only if ρM
M is surjective.

The other auxiliary tool we need to construct AR sequences is just as

easy to define, though we need some more detailed properties from it.
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10.6 Definition. Let A be a ring and M a finitely generated A-module

with projective presentation

(10.6.1) P1
ϕ−−→ P0 −→ M −→ 0 .

The Auslander transpose Tr M of M is defined by

Tr M = cok(ϕ∗ : P∗
0 −→ P∗

1 ) ,

where (−)∗ =HomA(−, A). In other words, Tr M is defined by the exactness

of the sequence

0−→ M∗ −→ P∗
1

ϕ∗
−−−→ P∗

0 −→Tr M −→ 0 .

10.7 Remarks. The Auslander transpose depends, up to projective direct

summands, only on M. That is, if ϕ′ : P ′
1 −→ P ′

0 is another projective pre-

sentation of M, then there are projective A-modules Q and Q′ such that

cokϕ∗ ⊕Q ∼= cok(ϕ′)∗ ⊕Q′. In particular Tr M is only well-defined up to

“stable equivalence.” However, we will work with Tr M as if it were well-

defined, taking care only to apply in it in situations where the ambiguity

will not matter, such as the vanishing of Exti
A(Tr M,−) or TorA

i (Tr M,−) for

i> 1.

It is easy to check that TrP is projective if P is, and that Tr(M ⊕N) ∼=
Tr M⊕Tr N up to projective direct summands. Furthermore, in (10.6.110.6.1) ϕ∗

is a projective presentation of Tr M, and ϕ∗∗ = ϕ canonically, so we have

Tr(Tr M) = M up to projective summands for every finitely generated A-

module M.

When A is a local (or graded) ring, we can give a more apparently in-

trinsic definition of Tr M by insisting that ϕ be a minimal presentation, i.e.
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all the entries of a matrix representing ϕ lie in the maximal ideal. How-

ever, even then we will not have Tr(Tr M)= M on the nose in general, since

the Auslander transpose of any free module will be zero.

Finally, one can check that Tr(−) commutes with arbitrary base change.

For example, it commutes (up to projective summands, as always) with

localization and passing to A/(x) for an arbitrary element x ∈ A.

The Auslander transpose is intimately related to the canonical bidual-

ity homomorphism σM : M −→ M∗∗, defined by

σM(x)( f )= f (x)

for x ∈ M and f ∈ M∗. More generally, we have the following proposition.

10.8 Proposition. Let M and N be finitely generated A-modules. Then

there is an exact sequence

0−→Ext1
A(Tr M, N)−→ M⊗A N

σN
M−−−→HomA(M∗, N)−→Ext2

A(Tr M, N)−→ 0

in which σN
M is defined by σN

M(x⊗ y)( f )= f (x)y for x ∈ M, y ∈ N, and f ∈ M∗.

Moreover we have

Exti
A(Tr M, N)∼=Exti−2

A (M∗, N)

for all i> 3. In particular, taking N = A gives an exact sequence

0−→Ext1
A(Tr M, A)−→ M

σM−−−→ M∗∗ −→Ext2
A(Tr M, A)−→ 0

and isomorphisms

Exti
A(Tr M,R)∼=Exti−2

A (M∗,R)

for i> 3.
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We leave the proof as an exercise. The proposition motivates the follow-

ing definition.

10.9 Definition. A finitely generated A-module M is called n-torsionless

if Exti
A(Tr M, A)= 0 for i = 1, . . . ,n.

In particular, M is 1-torsionless if and only if σM : M −→ M∗∗ is injec-

tive, 2-torsionless if and only if M is reflexive, and n-torsionless for some

n> 3 if and only if M is reflexive and Exti
A(M∗,R)= 0 for i = 1, . . . ,n−2.

10.10 Proposition. Suppose that a finitely generated A-module M is n-

torsionless. Then M is a nth syzygy.

Proof. For n = 0 there is nothing to prove. For n = 1, let P −→ M∗ be a sur-

jection with P projective; then the composition of the injections M −→ M∗∗

and M∗∗ −→ P∗ shows that M is a submodule of a projective, whence a first

syzygy. Similarly for n> 2, let Pn−1 −→ ·· ·P0 −→ M∗ −→ 0 be a projective

resolution of M∗. Dualizing and using the definition of n-torsionlessness,

we see that

0−→ M −→ P∗
0 −→ ·· · −→ P∗

n−1

is exact, so M is a nth syzygy.

10.11 Proposition. Let R be a CM local ring of dimension d, and let M be a

finitely generated R-module. Assume that R is Gorenstein on the punctured

spectrum. Then the following are equivalent:

(i) M is MCM;

(ii) M is a dth syzygy;
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(iii) M is d-torsionless, i.e. Exti
R(Tr M,R)= 0 for i = 1, . . . ,d.

Proof. Items (ii) and (iiii) are equivalent by Corollary A.18A.18, since R is Goren-

stein on the punctured spectrum. The implication (iiiiii) =⇒ (iiii) follows from

the previous proposition. We have only to prove (ii) implies (iiiiii). So assume

that M is MCM. The case d = 0 is vacuous. For d = 1, the four-term ex-

act sequence of Proposition 10.810.8 and the hypothesis that R is Gorenstein

on the punctured spectrum combine to show that Ext1
R(Tr M,R) has finite

length. Since Ext1
R(Tr M,R) embeds in M by Proposition 10.810.8 and M is

torsion-free, this implies Ext1
R(Tr M,R)= 0.

Now assume that d> 2. Let P1 −→ P0 −→ M −→ 0 be a free presentation

of M, so that

0−→ M∗ −→ P∗
0 −→ P∗

1 −→Tr M −→ 0

is exact. Splice this together with a free resolution of M∗ to get a resolution

of Tr M

Gd+1
ϕd+1−−−→Gd

ϕd−−→ ·· · ϕ3−→G2 −→ P∗
0 −→ P∗

1 −→Tr M −→ 0.

Dualize, obtaining a complex

0−→ (Tr M)∗ −→ P1 −→ P0 −→G∗
2
ϕ∗

3−−→ ·· · ϕ
∗
d−−→G∗

d
ϕ∗

d+1−−−→G∗
d+1

in which kerϕ∗
3
∼= M since M is reflexive. The truncation of this complex at

M

(10.11.1) 0−→ M −→G∗
2
ϕ∗

3−−→ ·· · ϕ
∗
d−−→G∗

d
ϕ∗

d+1−−−→G∗
d+1

is a complex of MCM R-modules, and since R is Gorenstein on the punc-

tured spectrum, the homology Exti−2
R (M∗,R) has finite length. The Lemme
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d’Acyclicité (Exercise 10.4510.45) therefore implies that (10.11.110.11.1) is exact, so

that M is a dth syzygy.

The most useful consequence of Proposition 10.1110.11 from the point of view

of AR theory is the following fact. Recall that we write redsyzR
n (M) for the

reduced nth syzygy module, i.e. the module obtained by deleting any non-

trivial free direct summands from the nth syzygy module syzR
n (M). In par-

ticular redsyzR
0 (M) is gotten from M by deleting any free direct summands.

10.12 Proposition. Let R be a CM local ring of dimension d and assume

that R is Gorenstein on the punctured spectrum. Let M be an indecompos-

able non-free MCM R-module which is locally free on the punctured spec-

trum. Then redsyzR
j (Tr M) is indecomposable for every j = 0, . . . ,d.

Proof. Fix a free presentation P1
ϕ−−→ P0 −→ M −→ 0 of M, so that Tr M

appears in an exact sequence

0−→ M∗ −→ P∗
0

ϕ∗
−−−→ P∗

1 −→Tr M −→ 0 .

First consider the case j = 0. It suffices to prove that if Tr M ∼= X ⊕Y

for R-modules X and Y , then one of X or Y is free. If Tr M ∼= X ⊕Y , then

ϕ∗ can be decomposed as the direct sum of two matrices, that is, ϕ∗ is

equivalent to a matrix of the form
[α

β

]
with X ∼= cokα and Y ∼= cokβ. But

then M = cokϕ∼= cokα∗⊕cokβ∗. This forces one of cokα or cokβ to be zero,

which means that one of X ∼= cokα∗ or Y ∼= cokβ∗ is free.

Next assume that j = 1, and let N be the image of ϕ∗ : P∗
1 −→ P∗

0 , so that

N ∼= redsyzR
1 (Tr M)⊕G for some finitely generated free module G. Again it

suffices to prove that if N ∼= X ⊕Y , then one of X or Y is free. Let F be
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a finitely generated free module mapping onto M∗, and let f : F −→ P∗
0 be

the composition so that we have an exact sequence

F
f−−→ P∗

0
ϕ∗

−−−→ P∗
1 −→Tr M −→ 0 .

The dual of this sequence is exact since Ext1
R(Tr M,R) = 0 by Proposi-

tion 10.1110.11, so we obtain the exact sequence

P∗∗
1

ϕ∗∗
−−−→ P∗∗

0
f ∗−−−→ F∗

It follows that M ∼= cokϕ∗∗ ∼= im f ∗. Now, if N = cok f decomposes as N ∼=
X ⊕Y , then f can be put in block-diagonal form

[α
β

]
. It follows that M ∼=

imα∗⊕ imβ∗, so that one of imα∗ or imβ∗ is zero. This implies that one of

X = cokα or Y = cokβ is free.

Now assume that j> 2, and we will show by induction on j that redsyzR
j (Tr M)

is indecomposable. Note that since d> 2 and R is Gorenstein in codimen-

sion one, M is reflexive by Proposition A.15A.15. Thus the case j = 2 is clear: if

redsyzR
2 (Tr M)= redsyzR

0 (M∗) decomposes, then so does M ∼= M∗∗.

Assume 2 < j < d, and that redsyzR
j−1(Tr M) is indecomposable. Note

that Proposition A.15A.15 again implies that redsyzR
j−1(Tr M) and redsyzR

j (Tr M)

are reflexive. We have an exact sequence

0−→ redsyzR
j (Tr M)⊕G −→ F −→ redsyzR

j−1(Tr M)−→ 0 ,

with F and G finitely generated free modules. By Proposition 10.1110.11, we

have

Ext1
R(redsyzR

j−1(Tr M),R)=Ext j
R(Tr M,R)= 0 ,

so that the dual sequence

0−→ (redsyzR
j−1(Tr M))∗ −→ F∗ −→ (redsyzR

j (Tr M))∗⊕G∗ −→ 0
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is also exact. If redsyzR
j (Tr M) decomposes as X ⊕Y with neither X nor Y

free, then syzR
1 (X∗) and syzR

1 (Y ∗) are direct summands of (redsyzR
j−1(Tr M))∗.

We know that X∗ and Y ∗ are non-zero since both X and Y embed in a free

module, and neither X∗ nor Y ∗ is free by the reflexivity of redsyzR
j (Tr M).

Thus (redsyzR
j−1(Tr M))∗ is decomposed non-trivially, so that redsyzR

j−1(Tr M)

is as well, a contradiction.

Next we see how the Auslander transpose and stable Hom interact.

Notice that for any A-module M, Tr M is naturally a module over EndA(M),

since any endomorphism of M lifts to an endomorphism of its projective

presentation, thus inducing an endomorphism of Tr M.

10.13 Proposition. Let A be a commutative ring and M, N two finitely

generated A-modules. Then

HomA(M, N)∼=TorA
1 (Tr M, N) .

Furthermore, this isomorphism is natural in both M and N, and is even an

isomorphism of EndA(M)- and EndA(N)-modules.

Proof. Let P1
ϕ−−→ P0 −→ M −→ 0 be our chosen projective presentation of

M. Then we have the exact sequence

0−→ M∗ −→ P∗
0

ϕ∗
−−−→ P∗

1 −→Tr M −→ 0 .

Tensoring with N yields the complex

M∗⊗A N −→ P∗
0 ⊗A N

ϕ∗⊗1N−−−−−→ P∗
1 ⊗A N −→Tr M⊗A N −→ 0 .

The homology of this complex at P∗
0 ⊗A N is identified as TorA

1 (Tr M, N). On

the other hand, since the Pi are projective A-modules, the natural homo-

morphisms P∗
i ⊗A N −→HomA(P∗

i , N) are isomorphisms (Exercise 10.4610.46). It



250 Auslander-Reiten Theory

follows that ker(ϕ∗⊗A 1N) ∼= HomR(M, N), and so TorA
1 (Tr M, N) is isomor-

phic to the quotient of HomA(M, N) by the image of M∗⊗AN −→HomA(P0, N),

namely TorA
1 (Tr M, N)∼=HomA(M, N).

We leave the “Furthermore” to the reader.

Our last preparation before showing the existence of AR sequences is a

short sequence of technical lemmas. The first one has the appearance of a

spectral sequence, but can be proven by hand just as easily, and we leave it

to the reader.

10.14 Lemma ([CE99CE99, VI.5.1]). Let A be a commutative ring and X , Y , Z

A-modules. Then the Hom-⊗ adjointness isomorphism

HomA(X ,HomA(Y , Z))−→HomA(X ⊗A Y , Z)

induces homomorphisms

Exti
A(X ,HomA(Y , Z))−→HomA(TorA

i (X ,Y ), Z)

for every i> 0, which are isomorphisms if Z is injective.

10.15 Lemma. Let (R,m,k) be a CM local ring of dimension d with canon-

ical module ω. Let E = ER(k) be the injective hull of the residue field of R.

For any two R-modules X and Y such that Y is MCM and TorR
i (X ,Y ) has

finite length for all i > 0, we have

Exti
R(X ,HomR(Y ,E))∼=Exti+d

R (X ,HomR(Y ,ω)) .

Proof. Let 0 −→ ω −→ I0 −→ ·· · −→ Id −→ 0 be a (finite) injective resolu-

tion of ω. Let κ(p) denote the residue field of Rp for a prime ideal p of
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R. Since Exti
Rp

(κ(p),ω) = 0 for i < heightp, and is isomorphic to κ(p) for

i = heightp, we see first that Id ∼= E, and second (by an easy induction) that

HomR(L, I j)= 0 for every j < d and every R-module L of finite length.

Apply HomR(Y ,−) to I•. Since Y is MCM, Exti
R(Y ,ω) = 0 for i > 0, so

the result is an exact sequence

(10.15.1) 0−→HomR(Y ,ω)−→HomR(Y , I0)−→ ·· · −→HomR(Y , Id)−→ 0

Now from Lemma 10.1410.14, we have

Exti
R(X ,HomR(Y , I j))∼=HomR(TorR

i (X ,Y ), I j)

for every i, j> 0, For i> 1 and j < d, however, the right-hand side vanishes

since TorR
i (X ,Y ) has finite length. Thus applying HomR(X ,−) to (10.15.110.15.1),

we may use the long exact sequence of Ext to find that

Exti
R(X ,HomR(Y , Id))∼=Exti

R(X ,HomR(Y ,ω)) .

10.16 Proposition. Let (R,m,k) be a CM local ring of dimension d with

canonical module ω. Let M and N be finitely generated R-modules with

M locally free on the punctured spectrum and N MCM. Then there is an

isomorphism

HomR(HomR(M, N),ER(k))∼=Ext1
R(N, (syzR

d (Tr M))∨) ,

where −∨ as usual denotes HomR(−,ω). This isomorphism is natural in M

and N, and is even an isomorphism of EndR(M)- and EndR(N)-modules.
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Proof. By Proposition 10.1310.13, we have HomR(M, N) ∼= TorR
1 (Tr M, N). Mak-

ing that substitution in the left-hand side and applying Lemma 10.1410.14, we

see

HomR(HomR(M, N),ER(k))∼=HomR(TorR
1 (Tr M, N)),ER(k)

∼=Ext1
R(Tr M,HomR(N,ER(k))) .

By Lemma 10.1510.15, this last is isomorphic to Extd+1
R (Tr M,HomR(N,ω)) since

`(TorR
i (Tr M, N)) < ∞ for all i > 1. Take a reduced dth syzygy of Tr M,

as foreshadowed by Proposition 10.1210.12, to get Ext1
R(redsyzR

d (Tr M), N∨). Fi-

nally, canonical duality for the MCM modules syzR
d Tr M and N∨ shows that

this last module is naturally isomorphic to Ext1
R(N, (redsyzR

d Tr M)∨).

Again we leave the assertion about naturality to the reader.

For brevity, from now on we write

τ(M)=HomR(redsyzR
d Tr M,ω)

and call it the Auslander translate of M.

10.17 Theorem. Let (R,m,k) be a Henselian CM local ring of dimension

d and let M be an indecomposable MCM R-module which is locally free on

the punctured spectrum. Then there exists an AR sequence for M

α : 0−→ τ(M)−→ E −→ M −→ 0 .

Precisely, the EndR(M)-module Ext1
R(M,τ(M)) has one-dimensional socle,

and any representative for a generator for that socle is an AR sequence for

M.
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Proof. First observe that EndR(M) is a quotient of the nc-local ring EndR(M),

so is again nc-local. Thus the Matlis dual HomR(EndR(M),ER(k)) has a

one-dimensional socle. By Proposition 10.1610.16, this Matlis dual is isomor-

phic to Ext1
R(M,τ(M)). Let α : 0 −→ τ(M) −→ E −→ M −→ 0 be a generator

for the socle of Ext1
R(M,τ(M)).

We know from Proposition 10.1210.12 that redsyzR
d Tr M is indecomposable,

so its canonical dual τ(M) is indecomposable as well. It therefore suf-

fices to check the lifting property. Let f : X −→ M be a homomorphism

of MCM R-modules. Then pullback along f induces a homomorphism

f ∗ : Ext1
R(M,τ(M)) −→ Ext1

R(X ,τ(M)). If f does not factor through E, then

the image of α in Ext1
R(X ,τ(M)) is non-zero. Since α generates the socle

and α does not go to zero, we see that in fact f ∗ must be injective. By

Proposition 10.1610.16, this injective homomorphism is the same as the one

HomR(EndR(M),ER(k))−→HomR(Hom(X , M),ER(k))

induced by f : X −→ M. Since f ∗ is injective, Matlis duality implies that

HomR(X , M)−→EndR(M)

is surjective. In particular, the map HomR(X , M) −→ EndR(M) induced by

f is surjective. It follows that f is a split surjection, so we are done.

10.18 Corollary. Let R be a Henselian CM local ring with canonical mod-

ule, and assume that R is an isolated singularity. Then every indecompos-

able non-free MCM R-module has an AR sequence.
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§2 AR quivers

The Auslander–Reiten quiver is a convenient scheme for packaging AR se-

quences. Up to first approximation, we could define it already: The AR

quiver of a Henselian CM local ring with isolated singularity is the di-

rected graph having a vertex [M] for each indecomposable non-free MCM

module M, a dotted line joining [M] to [τ(M)], and an arrow [X ]−→ [M] for

each occurrence of X in a direct-sum decomposition of the middle term of

the AR sequence for M.

Unfortunately, this first approximation omits the indecomposable free

module R. It is also manifestly asymmetrical: it takes into account only

the AR sequences ending in a module, and omits those starting from a

module. To remedy these defects, as well as for later use (particularly in

Chapter 1414), we introduce now irreducible homomorphisms between MCM

modules, and use them to define the AR quiver. We then reconcile this

definition with the naive one above, and check to see what additional infor-

mation we’ve gained.

In this section, (R,m,k) is a Henselian CM local ring with canonical

module ω, and we assume that R has an isolated singularity.

10.19 Definition. Let M and N be MCM R-modules. A homomorphism

ϕ : M −→ N is called irreducible if it is neither a split injection nor a split

surjection, and in any factorization

M

g   

ϕ // N

X
h

>>
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with X a MCM R-module, either g is a split injection or h is a split surjec-

tion.

Observe that the set of irreducible homomorphisms is not a submodule

of HomR(M, N). We can, however, describe it more precisely.

10.20 Definition. Let M and N be MCM R-modules.

(i) Let rad(M, N) ⊆ HomR(M, N) be the submodule consisting of those

homomorphisms ϕ : M −→ N such that, when we decompose M =⊕
j M j and N = ⊕

i Ni into indecomposable modules, and accord-

ingly decompose ϕ= (ϕi j : M j −→ Ni)i j, no ϕi j is an isomorphism.

(ii) Let rad2(M, N)⊆HomR(M, N) be the submodule of those homomor-

phisms ϕ : M −→ N for which there is a factorization

M

α   

ϕ // N

X
β

>>

with X MCM, α ∈ rad(M, X ) and β ∈ rad(X , N).

10.21 Remark. Suppose that M and N are indecomposable. If M and

N are not isomorphic, then rad(M, N) is simply HomR(M, N). If, on the

other hand, M ∼= N, then rad(M, N) is the Jacobson radical of the nc-local

ring EndR(M), whence the name. In particular mEndR(M)⊆ rad(M, M) by

Lemma 1.61.6.

For any M and N, not necessarily indecomposable, it’s clear that the

set of irreducible homomorphisms from M to N coincides with rad(M, N)\

rad2(M, N). Furthermore we have mrad(M, N)⊆ rad2(M, N) (Exercise 10.4810.48),

so that the following definition makes sense.
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10.22 Definition. Let M and N be MCM R-modules, and put

Irr(M, N)= rad(M, N)
/

rad2(M, N) .

Denote by irr(M, N) the k-vector space dimension of Irr(M, N).

Now we are ready to define the AR quiver of R. We impose an additional

hypothesis on R, that the residue field k be algebraically closed.

10.23 Definition. Let (R,m,k) be a Henselian CM local ring with a canon-

ical module. Assume that R has an isolated singularity and that k is al-

gebraically closed. The Auslander–Reiten (AR) quiver for R is the graph Γ

with

• vertices [M] for each indecomposable MCM R-module M;

• r arrows from [M] to [N] if irr(M, N)= r; and

• a dotted (undirected) line between [M] and its AR translate [τ(M)]

for every M.

Without the assumption that k be algebraically closed, we would need

to define the AR quiver as a valued quiver, as follows. Suppose [M] and [N]

are vertices in Γ, and that there is an irreducible homomorphism M −→ N.

The abelian group Irr(M, N) is naturally a EndR(N)-EndR(M) bimodule,

with the left and right actions inherited from those on HomR(M, N). As

such, it is annihilated by the radical of each endomorphism ring (see again

Exercise 10.4810.48). Let m be the dimension of Irr(M, N) as a right vector

space over EndR(M)
/

rad(M, M), and symmetrically let n be the dimension

of Irr(M, N) over EndR(N)
/

rad(N, N). Then we would draw an arrow from
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[M] to [N] in Γ, and decorate it with the ordered pair (m,n). In the spe-

cial case of an algebraically closed field k, EndR(M)
/

rad(M, M) is in fact

isomorphic to k for every indecomposable M, so we always have m = n.

We now reconcile the definition of the AR quiver with our earlier naive

version, which included only the non-free indecomposable MCM modules.

10.24 Proposition. Let 0−→ N i−→ E
p−−→ M −→ 0 be an AR sequence. Then

i and p are irreducible homomorphisms.

Proof. We prove only the assertion about p, since the other is exactly dual.

First we claim that p is right minimal, that is (see Definition 9.139.13), that

whenever ϕ : E −→ E is an endomorphism such that pϕ= p, in fact ϕ is an

automorphism. The proof of this is similar to that of Proposition 10.210.2: the

existence of ϕ ∈EndR(E) such that pϕ= p defines a commutative diagram

0 // N i //

ψ
��

E
p //

ϕ

��

M // 0

0 // N
i
// E p

// M // 0

of exact sequences, where ψ is the restriction of ϕ to N. To see that ϕ is an

isomorphism, it suffices by the Snake Lemma to show that ψ is an isomor-

phism. If not, then since N is indecomposable and EndR(N) is therefore

nc-local, 1N −ψ is an isomorphism. Then (1E −ϕ) : E −→ N restricts to an

isomorphism on N, so splits the AR sequence. This contradiction proves

the claim.

We now show p is irreducible. Assume that we have a factorization

E
p //

f   

M

X
g

>>
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in which g is not a split surjection. The lifting property of AR sequences

delivers a homomorphism u : X −→ E such that g = pu. Thus we obtain a

larger commutative diagram

E
f //

p !!

X
g
��

u // E

p}}
M .

Since p is right minimal by the claim, uf is an automorphism of E. In

particular, f is a split injection.

Recall that we write A | B to mean that A is isomorphic to a direct

summand of B.

10.25 Proposition. Let 0−→ N i−→ E
p−−→ M −→ 0 be an AR sequence.

(i) A homomorphism ϕ : X −→ M is irreducible if and only if X | E and

ϕ factors through the inclusion j of X as a direct summand of E,

that is, ϕ= p j for a split injection j.

(ii) A homomorphism ψ : N −→ Y is irreducible if and only if Y | E and

ψ lifts over the projection π of E onto Y , that is, ψ = πi for a split

surjection π.

Proof. Again we prove only the first part and leave the dual to the reader.

Assume first that ϕ : X −→ M is irreducible. The lifting property of

AR sequences gives a factorization ϕ = p j for some j : X −→ E. Since ϕ is

irreducible and p is not a split surjection, j is a split injection.

For the converse, assume that E ∼= X⊕X ′, and write p = [α β] : X⊕X ′ −→
M along this decomposition. We must show that α is irreducible. First
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observe that neither α nor β is a split surjection, since p is not. If, now, we

have a factorization

X α //

g   

M

Z
h

>>

with Z MCM and h not a split surjection, then we obtain a diagram

X ⊕ X ′ [α β] //

[ g 0
0 1X ′

]
%%

M

Z⊕ X ′ .
[h β]

;;

As p = [α β] is irreducible by Proposition 10.2410.24, and [h β] is not a split

surjection by Exercise 1.231.23, we find that g is a split injection.

10.26 Corollary. Let 0 −→ N −→ E −→ M −→ 0 be an AR sequence. Then

for any indecomposable MCM R-module X , irr(N, X )= irr(X , M) is the mul-

tiplicity of X in the decomposition of E as a direct sum of indecomposables.

Now we deal with [R].

10.27 Proposition. Let (R,m) be a Henselian local ring with a canonical

module, and assume that R has an isolated singularity. Let 0 −→ Y −→
X

q−−→m−→ 0 be the minimal MCM approximation of the maximal ideal m.

(If dimR6 1, we take X =m and Y = 0.) Then a homomorphism ϕ : M −→ R

with M MCM is irreducible if and only if M | X and ϕ factors through the

inclusion of M as a direct summand of X , that is, ϕ = q j for some split

injection j.

Proof. Assume that ϕ : M −→ R is irreducible. Since ϕ is not a split sur-

jection, the image of ϕ is contained in m. We can therefore lift ϕ to fac-
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tor through q, obtaining a factorization M
j−−→ X

q−−→ m. This factoriza-

tion composes with the inclusion of m into R to give a factorization of

ϕ : M
j−−→ X −→ R. Since ϕ is irreducible and X −→ R is not surjective,

j is a split injection.

10.28 Remark. Putting Propositions 10.2510.25 and 10.2710.27 together, we find

in particular that the AR quiver is locally finite, i.e. each vertex has only

finitely many arrows incident to it. The local structure of the quiver is

[E1]

��

...
''

[N]

??

88

&&

��

... [M]

...

77

[Es]

??

where N = τ(M) and E = ⊕s
i=1 E i is the middle term of the AR sequence

ending in M.

§3 Examples

10.29 Example. We can compute the AR quiver for a power series ring

R = k[[x1, . . . , xd]] directly. It has a single vertex, [R], and the irreducible

homomorphisms R −→ R are by Proposition 10.2710.27 and Exercise 9.489.48 the

direct summands of R(d) [x1 ... xd]−−−−−−→ R, the beginning of the Koszul resolution

of m= (x1, . . . , xd). Thus irr(R,R)= d and

[R] d__
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is the AR quiver. Note alternatively that m= rad(R,R), while m2 = rad2(R,R),

and d = dimk(m/m2).

10.30 Example. We can also compute directly the AR quiver for the two-

dimensional (A1) singularity k[[x, y, z]]/(xz−y2), though this one is less triv-

ial. By Example 4.234.23, there is a single non-free indecomposable MCM mod-

ule, namely the ideal

I = (x, y)R ∼= cok

 y −x

−z y

 ,

y x

z y

 .

We compute Irr(I, I) from the definition: we have HomR(I, I)∼= R since R is

integrally closed, so that rad(I, I) =m, the maximal ideal (x, y, z). Further-

more, for any element f ∈m, the endomorphism of I given by multiplication

by f factors through R(2). Indeed, I is isomorphic to the submodule of R(2)

generated by the column vectors
( y

x
)

and
( z

y
)
. If f = ax+ by+ cz, then the

diagram

I
ax+by+cz //� p

  

I

R(2)
ϕ

>>

commutes, where ϕ is defined by ϕ(e1)= (ax+cz
cy

)
and ϕ(e2)=

(
bz

ax+by

)
. There-

fore rad2(I, I)=m= rad(I, I) and Irr(I, I)= 0.

It follows that in the AR sequence ending in I,

0−→ τ(I)−→ E −→ I −→ 0 ,

E has no direct summands isomorphic to I, so is necessarily free. Since

τ(I)= (redsyzR
2 (Tr I))∨ = (I∗)∨ = I, the AR sequence is of the form

0−→ I −→ R(2) −→ I −→ 0 ,
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and is the beginning of the free resolution of I. We conclude that the AR

quiver of R is

[R]
++++

[I] .kkkk

The direct approach of Example 10.3010.30 is impractical in general, but we

can use the material of Chapters 44 and 55 to compute the AR quivers of the

complete Kleinian singularities (An), (Dn), (E6), (E7), and (E8) of Table 5.25.2.

They are isomorphic to the McKay–Gabriel quivers of the associated finite

subgroups of SL(2,k).

Recall the setup and definition of the McKay–Gabriel quiver in dimen-

sion two. Let k be a field and V = ku+kv a two-dimensional k-vector space.

Let G ⊆ GL(V ) ∼= GL(2,k) be a finite group with order invertible in k, and

assume that G acts on V with no non-trivial pseudo-reflections. In this sit-

uation the k-representations of G, the projective modules over the twisted

group ring S#G, and the MCM R-modules are equivalent as categories by

Corollaries 4.184.18 and 5.45.4 and Theorem 5.35.3. Explicitly, the functor defined

by W 7→ S⊗k W is an equivalence between the finite-dimensional represen-

tations of G and the finitely generated projective S#G-modules, while the

functor given by P 7→ PG gives an equivalence between the latter category

and addR(S), the R-direct summands of S. Since dimV = 2, these are all

the MCM R-modules by Theorem 5.35.3.

Writing V0 = k,V1, . . . ,Vd for a complete set of non-isomorphic irreducible

representations of G, we set

P j = S⊗k Vj and M j = (S⊗k Vj)G

for j = 0, . . . ,d. Then P0 = S,P1, . . . ,Pd are the indecomposable finitely gen-
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erated projective S#G-modules, and M0 = R, M1, . . . , Md are the indecom-

posable MCM R-modules.

The McKay–Gabriel quiver Γ for G (see Definitions 4.194.19 and 4.204.20 and

Theorem 4.214.21) has for vertices the indecomposable projective S#G-modules

P0, . . . ,Pd. For each i and j, we draw mi j arrows Pi −→ P j if Vi appears

with multiplicity mi j in the irreducible decomposition of V ⊗k Vj.

10.31 Proposition. With notation as above, the McKay–Gabriel quiver is

isomorphic to the AR quiver of R = SG . (We ignore the Auslander translate

τ.)

Proof. First observe that R is a two-dimensional normal domain, whence

an isolated singularity, so that AR quiver of R is defined.

It follows from Corollaries 4.184.18 and 5.45.4 and Theorem 5.35.3, as in the dis-

cussion above, that the equivalence of categories defined by

P j = S⊗k Vj 7→ M j = (S⊗k Vj)G

induces a bijection between the vertices of the McKay–Gabriel quiver and

those of the AR quiver. It remains to determine the arrows.

Consider the Koszul complex over S

0−→ S⊗k

2∧
V −→ S⊗k V −→ S −→ k −→ 0 ,

which is also an exact sequence of S#G-modules, and tensor with Vj to

obtain

(10.31.1) 0−→ S⊗k

(
2∧

V ⊗k Vj

)
−→ S⊗k

(
V ⊗k Vj

)−→ P j −→Vj −→ 0 .
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Since
∧2 V has k-dimension 1, we see that

∧2 V ⊗k Vj is a simple k[G]-

module, so S⊗k
(∧2 V ⊗k Vj

)
is an indecomposable projective S#G-module.

Take fixed points; since each Vj is simple, we have Vj
G = 0 for all j 6= 0, and

V0
G = kG = k. We obtain exact sequences of R-modules

(10.31.2) 0−→
(
S⊗k

(
2∧

V ⊗k Vj

))G

−→ (
S⊗k

(
V ⊗k Vj

))G p j−−→ M j −→ 0

for each j 6= 0, and

(10.31.3) 0−→
(
S⊗k

2∧
V

)G

−→ (S⊗k V )G
p0−−−→ R −→ k −→ 0

for j = 0.

We now claim that (10.31.210.31.2) is the AR sequence ending in M j for all

j = 1, . . . ,d, while the map p0 in (10.31.310.31.3) is the minimal MCM approxima-

tion of the maximal ideal of R. It will then follow from Propositions 10.2510.25

and 10.2710.27 that the number of arrows [Mi]−→ [M j] in the AR quiver is equal

to the multiplicity of Mi in a direct-sum decomposition of
(
S⊗k

(
V ⊗k Vj

))G ,

which is equal to the multiplicity of Vi in the direct-sum decomposition of

V ⊗k Vj.

First assume that j 6= 0. We observed already that S ⊗k
(∧2 V ⊗k Vj

)
is an indecomposable projective S#G-module, whence its fixed submodule(
S⊗k

(∧2 V ⊗k Vj
))G is an indecomposable MCM R-module. Since (10.31.110.31.1)

is not split, p j is non-split as well. Assume that X is a MCM R-module and

f : X −→ M j is a homomorphism that is not a split surjection. There then

exists a homomorphism of projective S#G-modules f̃ : X̃ −→ P j, also not a
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split surjection, such that X̃G = X and f̃ G = f . This fits into a diagram

X̃

f̃
��

S⊗k
(
V ⊗k Vj

) p̃ j // S⊗k Vj // Vj // 0 .

Since the image of f : X −→ M j is contained in that of p j :
(
S⊗k

(
V ⊗k Vj

))G −→
M j, the image of f̃ is contained in that of p̃ j. But X̃ is projective, so there

exists g̃ : X̃ −→ S⊗k
(
V ⊗k Vj

)
such that f̃ = p̃ j g̃. Set g = g̃G ; then f = p j g,

proving the claim in this case.

For j = 0, the argument is essentially the same; if f : X −→m is any ho-

momorphism from a MCM R-module X to the maximal ideal of R, then the

composition X −→m−→ R lifts to a homomorphism f̃ : X̃ −→ S of projective

S#G-modules. The image of f̃ is contained in the image of p̃0 : S⊗kV −→ S,

so again there exists g̃ : X̃ −→ S⊗kV making the obvious diagram commute,

and f factors through p0.

It follows from Proposition 10.3110.31 and §3§3 of Chapter 55 that the AR quiv-

ers for the Kleinian singularities (An), (Dn), (E6), (E7), and (E8) are (after

replacing pairs of opposing arrows by undirected edges) the correspond-

ing extended ADE diagrams listed in Table 5.25.2. Indeed, we need not even

worry about the Auslander translate τ: since R is Gorenstein of dimension

two, τ(X )= (syzd
R(Tr X ))∨ ∼= X for every MCM X .

Glancing back at Example 4.234.23, we can write down a few more AR quiv-

ers. For instance, let R = k[[u5,u2v,uv3,v5]], the fixed ring of the cyclic
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group of order 5 generated by diag(ζ5,ζ3
5). The AR quiver looks like

[R]

&&

��

M4

88

))

M1oo

��
M3

]] 55

M2oo

VV

where

M1 = R(u4,uv,v3)∼= (u5,u2v,uv3)

M2 = R(u3,v)∼= (u5,u2v)

M3 = R(u2,uv2,v4)∼= (u5,u4v2,u3v4)

M4 = R(u,v2)∼= (u5,u4v2) .

For another example, let R = k[[u8,u3v,uv3,v8]]. The AR quiver is

[R] //

��

M1

!!

}}

M7

==

!!

M2oo

��
M6

OO

// M3

}}

aa

M5

aa

==

M4oo

OO
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where this time

M1 = R(u7,u2v,v3)∼= (u8,u3v,uv3)

M2 = R(u6,uv,v6)∼= (u8,u3v,u2v6)

M3 = R(u5,v)∼= (u8,u3v)

M4 = R(u4,u2v2,v4)∼= (u8,u6v2,u4v4)

M5 = R(u3,uv2,v7)∼= (u8,u6v2,u5v7)

M6 = R(u2,u5v,v2)∼= (u2v6,u5v7,v8)

M7 = R(u,v5)∼= (uv3,v8) .

Before leaving the case of dimension two, we briefly describe how to

compute the AR quiver for an arbitrary two-dimensional normal domain

which is not necessarily a ring of invariants. The short exact sequence (10.31.310.31.3)

0−→
(
S⊗k

2∧
V

)G

−→ (S⊗k V )G
p0−−−→ R −→ k −→ 0

appearing in the proof of Proposition 10.3110.31 is called the fundamental se-

quence for R, and contains within it all the information carried by the en-

tire AR quiver, as the proof of Proposition 10.3110.31 shows. There is an analog

of this sequence for general two-dimensional normal domains.

Assume that (R,m,k) is a complete local normal domain of dimension 2.

Let ω be the canonical module for R. Then we know that Ext2
R(k,ω)= k, so

there is up to isomorphism a unique four-term exact sequence of the form

0−→ω
a−−→ E b−−→ R −→ k −→ 0

representing a non-zero element of Ext2
R(k,ω). Call this the fundamental

sequence for R. The module E is easily seen to be MCM of rank 2.
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Let f : X −→ R be a homomorphism of MCM R-modules which is not a

split surjection. Then the image of f is contained in m = imb, and since

Ext1
R(X ,ω)= 0, the pullback diagram

0 // ω // Q

��

// X //

f
��

0

0 // ω a
// E

b
// R

has split-exact top row. It follows that f factors through b : E −→ R, so that

b is a minimal MCM approximation of the maximal ideal m.

More is true. Recall from Exercise 5.485.48 that for reflexive (MCM) R-

modules A and B, the reflexive product A ·B is defined by A ·B = (A⊗R B)∗∗.

10.32 Theorem ([Aus86bAus86b]). Let (R,m,k) be a two-dimensional complete

local normal domain with canonical module ω. Let

0−→ω−→ E −→ R −→ k −→ 0

be the fundamental sequence for R, and let M be an indecomposable non-

free MCM R-module. Then the induced sequence

(10.32.1) 0−→ω ·M −→ E ·M −→ M −→ 0

is exact. If (10.32.110.32.1) is non-split, then it is the AR sequence ending in M. In

particular, if rank M is a unit in R, then (10.32.110.32.1) is non-split, so is an AR

sequence. The converse is true if k is algebraically closed.

Let us return to the ADE singularities. The AR quivers for the one-

dimensional ADE hypersurface singularities can also be obtained from those
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in dimension two, together with the explicit matrix factorizations for the

indecomposable MCM modules listed in §3§3 of Chapter 55.

For example, consider the one-dimensional (E6) singularity R = k[[x, y]](x3+
y4), where k is a field of characteristic not 2, 3, or 5. Let R# = k[[x, y, z]]/(x3+
y4 + z2) be the double branched cover. The matrix factorizations for the in-

decomposable MCM R]-modules are all of the form (zIn−ϕ, zIn+ϕ), where

ϕ is one of the matrices ϕ1, ϕ2, ϕ3, ϕ3, ϕ4, or ϕ4 of 8.218.21. Flatting those

matrix factorizations, i.e. killing z, amounts to ignoring z entirely and fo-

cusing simply on the ϕ j. When we do this, certain of the matrix factor-

izations split into non-isomorphic pairs (as indicated by the block format

of the matrices), while certain other pairs of matrix factorizations collapse

into a single isomorphism class.

Specifically, we can see that ϕ1 splits into two non-equivalent matricesx y3

y −x2

 ,

x2 y3

y −x


forming a matrix factorization, and ϕ2 splits similarly into the matrix fac-

torization 


x 0 y2

y x 0

0 0 x

 ,


x2 y3 −xy2

−xy x2 y3

y2 −xy x2


 .

On the other hand, over R,

ϕ3 =



i y2 0 −x2 0

0 i y2 −xy −x2

x 0 −i y2 0

−y x 0 −i y2

 and ϕ3 =



−i y2 0 −x2 0

0 −i y2 −xy −x2

x 0 i y2 0

−y x 0 i y2
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have isomorphic cokernels, as do

ϕ4 =
i y2 −x2

x −i y2

 and ϕ4 =
−i y2 −x2

x iy2

 .

Therefore R has 6 non-isomorphic non-free indecomposable MCM modules,

namely

M1a = cok

x y3

y −x2

 , M1b = cok

x2 y3

y −x

 ,

M2a = cok


x 0 y2

y x 0

0 0 x

 M2b = cok


x2 y3 −xy2

−xy x2 y3

y2 −xy x2


M3 = cokϕ3 = cokϕ3

M4 = cokϕ4 = cokϕ4 .

Since each of these modules is self-dual and the Auslander translate τ is

given by (syzR
1 (−∗))∗, we have τ(M1a)= M1b, τ(M2a)= M2b, and vice versa,

while τ fixes M3 and M4. One can compute the irreducible homomorphisms

among these modules and obtain the AR quiver

M1a //

||

M2a
##

R
""

M3
//

cc

{{

M4oo

M1b // M2b

;;

where τ is given by reflection across the horizontal axis.

For completeness, we list the AR quivers for all the one-dimensional

ADE singularities below.
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10.33. The extended (An) Coxeter-Dynkin diagram has n+1 nodes. The

splitting/collapsing behavior of the matrix factorizations depends on the

parity of n. When n = 2m is even, we find

R // •oo // · · ·oo // •oo ee

with m+1 vertices. The Auslander translate τ is the identity. When n =
2m+1 is odd, the quiver is

•
zzR // •oo // · · ·oo // •oo

$$

::

•
dd

with m+2 vertices. Here τ is reflection across the horizontal axis.

10.34. The extended (Dn) diagram also has n + 1 nodes, and again the

quiver depends on the parity of n. When n = 2m is even, every non-free

MCM module splits, and the quiver looks like

• // • //

��

��

•

��

· · · · · · • // • //

��

•

��

�� ��
(D2m) : R

��

· · · · · · a
��

b
��

c

gg

d

ii

• // •

]]

// •

]]

· · · · · · • // • //

\\

•

\\

77 55

with 4m+1 vertices. The translate τ is given by reflection in the horizontal

axis for those vertices not on the axis, swaps a and d, and swaps b and

c. When n = 2m+1 is odd, the two “legs” at the opposite end of the (Dn)

diagram from the free module collapse into a single module, giving the
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quiver

• // • //

��

��

•

��

· · · · · · • // • //

��

•

��

��
(D2m+1) : R

��

· · · · · · a

��

^^

• // •

]]

// •

]]

· · · · · · • // • //

\\

•

\\

@@

with 4m vertices. Again, τ is reflection across the horizontal axis.

10.35. We saw above the the quiver for the one-dimensional (E6) singular-

ity has the form

• //

��

•
��

R
��

a //

__

��

boo

• // •
??

with 7 vertices and τ given by reflection across the horizontal axis.

10.36. For the (E7) singularity, every non-free indecomposable splits, giv-

ing 15 vertices in the AR quiver for the one-dimensional singularity.

•

��

��

•oo

��

•oo

��

a b



TT •oo

��

•oo

��

•oo

R

��•

DD

•oo

DD

•oo

DD

JJ

�� •oo

DD

•oo

DD

•oo

The translate is reflection across the horizontal axis for every vertex except

a and b, which are interchanged by τ.
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10.37. For the (E8) singularity, once again every non-free indecomposable

splits when flatted.

•

��

��

•oo

��

•oo

��

•oo

��

•oo

��

a b



TT •oo

��

•oo

R

��•

DD

•oo

DD

•oo

DD

•oo

DD

•oo

DD

JJ

�� •oo

DD

•oo

Here there are 17 vertices; the translate is reflection across the horizontal

axis and interchanges a and b.

10.38 Example. Let A = k[[t3, t4, t5]]. Then A is a finite birational ex-

tension of the (E6) singularity R = k[[x, y]]/(x3 + y4) ∼= k[[t3, t4]], so has fi-

nite CM type by Theorem 3.133.13. In fact, A is isomorphic to the endomor-

phism ring of the maximal ideal of R. By Lemma 3.93.9 every indecompos-

able MCM R-module other than R itself is actually a MCM A-module, and

HomR(M, N) = HomA(M, N) for all non-free MCM R-modules M and N.

Thus the AR quiver for A is obtained from the one for R by erasing [R] and

all the arrows into and out of [R]. As R-modules, A ∼= (t4, t6), so the quiver

is the one below.

[A] // •
��
a //

]]

��

boo

• // •
??

§4 Exercises

10.39 Exercise. Prove that a short exact sequence 0−→ N −→ E −→ M −→
0 is split if and only if every homomorphism X −→ M factors through E.
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10.40 Exercise. Let R = D/(tn), where (D, t) is a complete DVR. Then the

indecomposable finitely generated R-modules are D/(t),D/(t2), . . . ,D/(tn) =
R. Compute the AR sequences for each of the indecomposables, directly

from the definition. (Hint: start with n = 2.)

10.41 Exercise. Prove, by mimicking the proof of Proposition 10.210.2, that

(10.1.110.1.1) is an AR sequence ending in M if and only if it is an AR sequence

starting from N. (Hint: Given ψ : N −→ Y , it suffices to show that the

short exact sequence obtained from the pushout is split. If not, use the

lifting property to obtain an endomorphism α of N such that either α is an

isomorphism and splits ψ, or α−1N is an isomorphism and splits (10.1.110.1.1).)

10.42 Exercise. Assume that 0−→ N i−→ E
p−−→ M −→ 0 is a non-split short

exact sequence of MCM modules satisfying the lifting property to be an AR

sequence ending in M. Prove that M is indecomposable.

10.43 Exercise. Prove Remark 10.510.5: there is an exact sequence

M∗⊗A N
ρ−−→HomA(M, N)−→HomA(M, N)−→ 0 ,

where ρ sends f ⊗ y to the homomorphism x 7→ f (x)y.

10.44 Exercise. Let R be an abstract hypersurface and M, N two MCM

R-modules. Prove that Ext2i
R (M, N)∼=HomR(M, N) for all i> 1.

10.45 Exercise (Lemme d’Acyclicité, [PS73PS73]). Let (A,m) be a local ring

and M• : 0 −→ Ms −→ ·· · −→ M0 −→ 0 a complex of finitely generated A-

modules. Assume that depth Mi > i for each i, and that every homology

module Hi(M•) either has finite length or is zero. Then M• is exact.
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10.46 Exercise. Prove that the natural map ρN
M : M∗⊗A N to HomA(M, N),

defined by ρ( f ⊗ y)(x)= f (x)y, is an isomorphism if either M or N is projec-

tive. In particular ρM
M is an isomorphism if and only if M is projective.

10.47 Exercise. This exercise shows that if R is an Artinian local ring and

M is an indecomposable R-module with an AR sequence

0−→ N −→ E −→ M −→ 0 ,

then N ∼= (Tr M)∨.

(a) Let P1 −→ P0 −→ X −→ 0 be an exact sequence with P0, P1 finitely

generated projective, and let Z be an arbitrary finitely generated R-

module. Use the proof of Proposition 10.1310.13 to show the existence of

an exact sequence

0−→HomR(X , Z)−→HomR(P0, Z)−→HomR(P1, Z)−→Tr X⊗R Z −→ 0

and conclude that we have an equality of lengths

`(HomR(X , Z))−`(HomR(Z, (Tr X )∨))= `(HomR(P0, Z))−`(HomR(P1, Z)) .

(b) Let σ : 0 −→ A
f−−→ B

g−−→ C −→ 0 be an exact sequence of finitely gen-

erated R-modules, and define the defects of σ on an R-module X by

σ∗(X )= cok[HomR(B, X )−→HomR(A, X )]

σ∗(X )= cok[HomR(X ,B)−→HomR(X ,C)] .

Show that `(σ∗(X )) = `(σ∗((Tr X )∨)) for every X . Conclude that the

following two conditions are equivalent:
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(i) every homomorphism X −→ C factors through g;

(ii) every homomorphism A −→ (Tr X )∨ factors through f .

(c) Prove that if 0 −→ N −→ E −→ M −→ 0 is an AR sequence for M,

then N ∼= (Tr M)∨. (Hint: let h : N −→ Y be given with Y indecom-

posable and not isomorphic to (Tr M)∨. Apply the previous part to

X =Tr(Y ∨).)

10.48 Exercise. Prove that rad(M, N)/rad2(M, N) is annihilated by the

maximal ideal m, so is a finite-dimensional k-vector space. Your proof will

actually show that the quotient is annihilated by the radical of EndR(M)

(acting on the right) and the radical of EndR(N) (acting on the left).

10.49 Exercise ([Eis95Eis95, A.3.22]). If σ : A −→ B −→ C −→ 0 is an exact se-

quence, prove that (there exists a choice of Tr M such that) the sequence

0−→HomR(Tr M, A)−→HomR(Tr M,B)−→HomR(Tr M,C)−→ M⊗R A −→ M⊗RB −→ M⊗RC −→ 0

is exact. In other words, Tr can be thought of as measuring the non-

exactness of M⊗R − and, if we set N =Tr M, of HomR(N,−).

10.50 Exercise. Say that an inclusion of modules A ⊂ B is pure if M ⊗R

A −→ M ⊗R B is injective for all R-modules M. If σ is as in the previous

exercise with A −→ B pure, then prove that

0−→HomR(N, A)−→HomR(N,B)−→HomR(N,C)−→ 0

is exact for every finitely presented module N. Conclude that if C is finitely

presented, then σ splits. (See Exercise 6.236.23 for a different proof.)
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Ascent and Descent
We have seen in Chapter 88 that the hypersurface rings (R,m,k) of finite

Cohen-Macaulay type have a particularly nice description when R is com-

plete, k is algebraically closed and R contains a field of characteristic dif-

ferent from 2, 3, and 5. In this section we will see to what extent finite

Cohen-Macaulay type ascends to and descends from faithfully flat exten-

sions such as the completion or Henselization, and how it behaves with re-

spect to residue field extension. In 1987 F.-O. Schreyer [Sch87Sch87] conjectured

that a local ring (R,m,k) has finite Cohen-Macaulay type if and only if the

m-adic completion R̂ has finite Cohen-Macaulay type. We have already

seen that Schreyer’s conjecture is true in dimension one (Corollary 3.173.17).

We shall see that the “if” direction holds in general, and the “only if” di-

rection holds when R is excellent and Cohen-Macaulay. For rings that are

neither excellent nor CM, there are counterexamples (cf. 11.1411.14). Schreyer

also conjectured ascent and descent of finite CM type along extensions of

the residue field (cf. Theorem 11.1611.16 below). We shall prove descent in gen-

eral, and ascent in the separable case. Inseparable extensions, however,

can cause problems (cf. Example 11.1811.18). We will revisit some of these is-

sues in Chapter 1515, where we consider ascent and descent of bounded CM

type.

§1 Descent

Here is the main result of this section ([Wie98Wie98, Theorem 1.5]).

277
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11.1 Theorem. Let (R,m)−→ (S,n) be a flat local homomorphism such that

S/mS is Cohen-Macaulay. If S has finite Cohen-Macaulay type, then so has

R.

The proof requires some preparation.

11.2 Notation. Given a ring A and a finitely generated A-module M, we

let add(M) = addA(M) denote the full subcategory of A-mod consisting of

finitely generated modules that are isomorphic to direct summands of di-

rect sums of copies of M. Thus N ∈ add(M) if and only if N | M t for some

positive integer t. We let +(M) = +A(M) denote the set of isomorphism

classes [N] of modules N ∈ add(M).

11.3 Proposition ([Wie98Wie98, Theorem 1.1]). Let A −→ B be a faithfully flat

homomorphism of commutative rings, and let U and V be finitely presented

A-modules. Then U ∈ addA V if and only if B⊗A U ∈ addB(B⊗A V ).

Proof. The “only if” direction is clear. For the converse, we may assume, by

replacing V by a direct sum of copies of V , that B⊗A U | B⊗A V . Choose

B-homomorphisms B⊗A U α−→ B⊗A V and B⊗A V
β−→ B⊗A U such that βα=

1B⊗AU . Since V is finitely presented and B is flat over A, the natural map

B⊗A HomA(V ,U) −→ HomB(B⊗A V ,B⊗A U) is an isomorphism. Therefore

we can write β = b1 ⊗σ1 + ·· · + br ⊗σr, with bi ∈ B and σi ∈ HomA(V ,U)

for each i. Put σ = [σ1 · · ·σr] : V (r) −→ U . We will show that σ is a split

surjection. Since

(1B ⊗σ)


b1
...

br

α = 1B⊗AU ,
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we see that 1B ⊗σ : B⊗A V (r) −→ B⊗A U is a split surjection. Therefore the

induced map (1B⊗σ)∗ : HomB(B⊗A U ,B⊗A V (r))−→HomB(B⊗A U ,B⊗A U)

is surjective. Since U too is finitely presented, the vertical maps in the

following commutative square are isomorphisms.

(11.3.1) B⊗A HomA(U ,V (r))
1B⊗σ∗ //

∼=
��

B⊗A HomA(U ,U)

∼=
��

HomB(B⊗A U ,B⊗A V (r))
(1B⊗σ)∗

// HomB(B⊗A U ,B⊗A U)

Therefore 1B ⊗A σ∗ is surjective as well. By faithful flatness, σ∗ is surjec-

tive, and hence σ is a split surjection.

The next theorem appears as Theorem 1.1 in [Wie99Wie99], with a slightly

non-commutative proof. We will give a commutative proof here.

11.4 Theorem. Let (R,m) be a local ring, and let M be a finitely gener-

ated R-module. Then there are only finitely many isomorphism classes of

indecomposable modules in add(M).

Proof. Let R̂ be the m-adic completion of R, and write R̂⊗R M =V (n1)
1 ⊕·· ·⊕

V (nt)
t , where each Vi is an indecomposable R̂-module and each ni > 0. If

L ∈ add(M), then R̂⊗RL ∼=V (a1)
1 ⊕·· ·⊕V (at)

t for suitable non-negative integers

ai; moreover, the integers ai are uniquely determined by the isomorphism

class [L], by Corollary 1.81.8. Thus we have a well-defined map j : + (M) −→
Nt

0, taking [L] to (a1, . . . ,at). Moreover, this map is one-to-one, by faithfully

flat descent (Corollary 1.141.14).

If [L] ∈ +(M) and j([L]) is a minimal non-zero element of j(+(M)), then

L is clearly indecomposable. Conversely, if [L] ∈ add(M) and L is indecom-

posable, we claim that j([L]) is a minimal non-zero element of j(+(M)). For,
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suppose that j([X ]) < j([L]), where [X ] ∈ +(M) is non-zero. Then R̂ ⊗R X |
R̂⊗R L, so X | L by Corollary 1.141.14. But X 6= 0 and X 6∼= L (else j([X ]= j([L])),

and we have a contradiction to the indecomposability of L.

By Dickson’s Lemma (Exercise 3.263.26), j(+(M)) has only finite many min-

imal non-zero elements, and, by what we have just shown, add(M) has only

finitely many isomorphism classes of indecomposable modules.

With Proposition 11.311.3 and Theorem 11.411.4 at our disposal, we can now

prove Theorem 11.111.1.

Proof of Theorem 11.111.1. The hypothesis that the closed fiber S/mS is CM

guarantees that S ⊗R M is a MCM S-module whenever M is a MCM R-

module (cf. Exercise 11.2111.21). Let U be the class of MCM S-modules that

occur in direct-sum decompositions of extended MCM modules; thus Z ∈U

if and only if there is a MCM R-module X such that Z is isomorphic to an

S-direct-summand of S⊗R X . Let Z1, . . . , Zt be a complete set of representa-

tives for isomorphism classes of indecomposable modules in U . Choose, for

each i, a MCM R-module X i such that Zi | S⊗R X i, and put Y = X1⊕·· ·⊕X t.

Suppose now that L is an indecomposable MCM R-module. Then S⊗R

L ∼= Z(a1)
1 ⊕ ·· · ⊕ Z(at)

t for suitable non-negative integers ai, and it follows

that S ⊗R L is isomorphic to a direct summand of S ⊗R Y (a), where a =
max{a1, . . . ,at}. By Proposition 11.311.3, L is a direct summand of a direct

sum of copies of Y . Then, by Theorem 11.411.4, there are only finitely many

possibilities for L, up to isomorphism.

By the way, the class U in the proof of Theorem 11.111.1 is not necessar-

ily the class of all MCM S-modules. For example, consider the extension
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R = k[[t2]] −→ k[[t2, t3]] = S; in this case, the only extended modules are

the free ones. (Cf. also Exercise 13.3113.31). The first order of business in the

next section will be to find situations where this unfortunate behavior can-

not occur, that is, where every MCM S-module is a direct summand of an

extended MCM module.

§2 Ascent to the completion

It’s a long way to the completion of a local ring, so we will make a stop at the

Henselization. In this section and the next, we will need to understand the

behavior of finite CM type under direct limits of étale and, more generally,

unramified extensions. We will recall the basic definitions here and refer

to Appendix BB for details, in particular, for reconciling our definitions with

others in the literature.

11.5 Definition. A local homomorphism of local rings (R,m,k) −→ (S,n,`)

is unramified provided S is essentially of finite type over R (that is, S is a

localization of some finitely generated R-algebra) and the following prop-

erties hold.

(i) mS = n, and

(ii) S/mS is a finite separable field extension of R/m.

If, in addition, ϕ is flat, then we say ϕ is étale. (We say also that S is an

unramified, respectively, étale extension of R.) Finally, a pointed étale ex-

tension is an étale extension (R,m,k)−→ (S,n,`) inducing an isomorphism

on residue fields.
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By Proposition B.9B.9, properties (ii) and (??) are equivalent to the single

requirement that the diagonal map µ : S⊗R S −→ R (taking s1⊗ s2 to s1s2)

splits as S ⊗R S-modules (equivalently, ker(µ) is generated by an idempo-

tent).

It turns out (see [Ive73Ive73] for details) that the isomorphism classes of

pointed étale extensions of a local ring (R,m) form a direct system. The

remarkable fact that makes this work is that if R −→ S and R −→ T are

pointed étale extensions then there is at most one homomorphism S −→ T

making the obvious diagram commute.

11.6 Definition. The Henselization Rh of R is the direct limit of a set of

representatives of the isomorphism classes of pointed étale extensions of

R.

The Henselization is, conveniently, a Henselian ring (cf. Chapter 11 ??

and Appendix BB).

Suppose R ,→ S is a flat local homomorphism. By analogy with the

terminology “weakly liftable" of [ADS93ADS93], we say that a finitely generated

S-module M is weakly extended (from R) provided there is a finitely gener-

ated R-module N such that M | S⊗R N. If N can be chosen to be a MCM

R-module, we say that M is weakly extended from CM(R).have we ever

used this

notation before?

Our immediate goal is to show that if R has finite CM type then Rh

does too. We show in Proposition 11.711.7 that it will suffice to show that ev-

ery MCM Rh-module is weakly extended from CM(R). In Lemma 11.811.8 we

show that every finitely generated Rh-module is weakly extended. Then

in Proposition 11.911.9 we show, assuming R has finite CM type, that MCM
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Rh-modules are weakly extended from CM(R). The proof depends on the

fact (Theorem 6.126.12) that rings of finite CM type have isolated singularities.

11.7 Proposition. Let (R,m) −→ (S,n) be a local homomorphism. Assume

that every MCM S-module is weakly extended from CM(R). If R has finite

CM type, so has S.

Proof. Let L1, . . . ,L t be a complete list of representatives for the isomor-

phism classes of indecomposable MCM R-modules. Let L = L1 ⊕ ·· · ⊕L t,

and put V = S ⊗R L. Given a MCM S-module M, we choose a MCM R-

module N such that M | S⊗R N. Writing N = L(a1)
1 ⊕·· ·⊕L(at)

t , we see that

N ∈ addR(L) and hence that M ∈ addS(V ). Thus CM(S) ⊆ addS(V ); now

Theorem 11.411.4 completes the proof.

11.8 Lemma ([HW09HW09, Theorem 5.2]). Let ϕ : (R,m)−→ (S,n) be a flat local

homomorphism, and assume that S is a direct limit of étale extensions of R.

Then every finitely generated S-module is weakly extended from R.

Proof. Let M be a finitely generated S-module, and choose a matrix A

whose cokernel is M. Since all of the entries of A live in some étale exten-

sion T of R, we see that M = S⊗T N for some finitely generated T-module

N. Refreshing notation, we may assume that ϕ : R −→ S is étale. We apply

−⊗S M to the diagonal map µ : S⊗R S, getting a commutative diagram

(11.8.1) S⊗R S⊗S M
δ⊗1M //

∼=
��

S⊗S M
∼=
��

S⊗R M // M

in which the horizontal maps are split surjections of S-modules. The S-

module structure on S⊗R M comes from the S-action on S, not on M. (The
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distinction is important; cf. Exercise 11.2411.24.) Thus we have a split injection

of S-modules j : M −→ S⊗R M. Now write R M as a directed union of finitely

generated R-modules Nα. The flatness of ϕ implies that S ⊗R M is the

directed union of the modules S⊗R Nα. Since j(M) is a finitely generated S-

module, there is an index α0 such that j(M)⊆ S⊗R Nα0 . We put R N = R Nα0 .

Since j(M) is a direct summand of S⊗R M, it must be a direct summand of

the smaller module S⊗R N.

Even if we start with a MCM S-module, there is no reason to believe

that the R-module N in the proof of Lemma 11.811.8 is MCM. The next propo-

sition refines the lemma and will be used both here and in the next section,

where we prove ascent along separable extensions of the residue field.

11.9 Proposition. Let (R,m) −→ (S,n) be a flat local homomorphism of

CM local rings. Assume that the closed fiber S/mS is Artinian and that Sq

is Gorenstein for each prime ideal q 6= n. If every finitely generated S-module

is weakly extended from R, then every MCM S-module is weakly extended

from CM(R). In particular, if R has finite CM type, so has S.

Proof. Note that dim(R) = dim(S) =: d by [BH93BH93, (A.11)]. Let M be a

MCM S-module. Corollary A.18A.18 implies that M is a dth syzygy of some

finitely generated S-module U . We choose a finitely generated R-module

V such that U | S⊗R V , say, U ⊕ X ∼= S⊗R V . Let W be a dth syzygy of V .

Then W is MCM by Corollary A.18A.18. Since R −→ S is flat, S⊗R W is a dth

syzygy of S⊗R V , as is M⊕L, where L is a dth syzygy of X . By Schanuel’s

Lemma (A.8A.8) there are finitely generated free S-modules G1 and G2 such

that (S⊗R W)⊕G1
∼= (L⊕M)⊕G2. Of course G1 is extended from a free
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R-module F. Putting N = W ⊕F, we see that M | S⊗R N. This proves the

first assertion, and the second follows from Proposition 11.711.7.

11.10 Theorem. Let (R,m) −→ (S,n) be a flat local homomorphism of CM

local rings. Assume that R has finite CM type and that S is the direct limit

of a system {(Sα,nα)}α∈Λ of étale extensions of (R,m). Then S has finite CM

type. In particular, the Henselization Rh has finite CM type.

Proof. By Lemma 11.811.8 and Propositions 11.711.7 and 11.911.9, it will suffice to

show that Sq is Gorenstein for each prime ideal q 6= n.

Given an arbitrary non-maximal prime ideal q of S, put qα = q∩Sα for

α ∈Λ, and let p = q∩R. Since by Exercise 11.2311.23 mSα = nα for each α ∈Λ,

we see that mS = n, and it follows that p is a non-maximal prime ideal of

R. By Theorem 6.126.12, Rp is a regular local ring. Each extension Rp −→ Sqα

is étale by Exercise 11.2311.23, and it follows (again from the exercise) that

pSqα = qαSqα for each α. Therefore pSq = qSq, so the closed fiber Sq/pSq is

a field. Since Rp and Sq/pSq are Gorenstein and Rp −→ Sq is flat, [BH93BH93,

(3.3.15)] implies that Sq is Gorenstein.

Finally, we prove ascent of finite CM type to the completion for excel-

lent rings. Actually, a condition weaker than excellence suffices. Recall

that a Noetherian ring A is regular provided Am is a regular local ring

for each maximal ideal m of A. A Noetherian ring A containing a field k

is geometrically regular over k provided `⊗k A is a regular ring for every

finite algebraic extension ` of k. A homomorphism ϕ : A −→ B of Noethe-

rian rings is regular provided ϕ is flat, and for each p ∈ Spec(A) the fiber

Bp/pBp is geometrically regular over the field Ap/pAp. Part of the definition
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of A being excellent is that A −→ Â is a regular homomorphism. (The other

parts are that A is universally catenary and that the non-singular locus of

B is open in Spec(B) for every finitely generated A-algebra B.)

We will need the following consequences of regularity of a ring homo-

morphism. The first assertion is clear from the definition, while the second

follows from the first and from [Mat86Mat86, (32.2)].

11.11 Proposition. Let A −→ B be a regular homomorphism, q ∈ Spec(B),

and put p= q∩ A.

(i) The homomorphism Ap −→ Bq is regular.

(ii) If Ap is a regular local ring, so is Bq.

We’ll also need the following remarkable theorem due to R. Elkik (cf. [Elk73Elk73]).

11.12 Theorem (Elkik). Let (R,m) be a local ring and M a finitely gener-

ated R̂-module. If Mp is a free Rp-module for each non-maximal prime ideal

p of R̂, then M is extended from the Henselization Rh.

11.13 Corollary. Let (R,m) be a CM local ring with m-adic completion R̂.

If R̂ has finite CM type, so has R. The converse holds if R −→ R̂ is regular,

in particular if R is excellent.

Proof. The first assertion is a special case of Theorem 11.111.1. Suppose now

that R −→ R̂ is regular and that R has finite Cohen-Macaulay type. Let q

be an arbitrary non-maximal prime ideal of R̂, and set p= q∩R. Then Rp

is a regular local ring by Theorem 6.126.12, and Proposition 11.1111.11 implies that

R̂q is a regular local ring too. Thus R̂ has an isolated singularity.
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Now let M be an arbitrary MCM R̂-module. Then Mq is a free R̂q-

module for each non-maximal prime ideal q of R̂. By Theorem 11.1211.12, M

is extended from the Henselization, that is, there is an Rh-module N such

that M ∼= N ⊗Rh R̂; moreover, N is a MCM Rh-module by [BH93BH93, (1.2.16)

and (A.11)]. Since Rh has finite CM type (Theorem 11.1011.10), Proposition 11.711.7

implies that R̂ has finite CM type.

It is unknown whether or not Corollary 11.1311.13 would be true without

the hypothesis that R be CM, or without the hypothesis that R −→ R̂ be

regular. The following example, from [LW00LW00], shows, however, that we

can’t omit both hypotheses:

11.14 Example. Let T = k[[x, y, z]]/
((

x3 − y7)∩ (y, z)
)
, where k is any field.

We claim that T has infinite CM type. To see this, set R = k[[x, y]]/(x3−y7)∼=
k[[t3, t7]]. Then R has infinite CM type by Theorem 3.103.10, since (DR2) fails

for this ring. Further, R[[z]] has infinite CM type: the map R −→ R[[z]] is

flat with CM closed fiber, and Theorem 11.111.1 applies. Now R[[z]] ∼= T/(x3 −
y7). By item (vv) of Proposition A.2A.2, every MCM T/(x3 − y7)-module is MCM

over T. since T/(x3 − y7) has infinite CM type, the claim follows.

It is easy to check that the image of x is a nonzerodivisor in T. By [Lec86Lec86,

Theorem 1], T is the completion of some local integral domain A. Then A

has finite CM type; in fact, it has no MCM modules at all! For if A had

a MCM module, then A would be universally catenary [Hoc73Hoc73, Section 1].

But this would imply, by [Mat86Mat86, Theorem 31.7], that A is formally equidi-

mensional, that is, all minimal primes of Â (= T) have the same dimension.

But the two minimal primes of T obviously have dimensions two and one,

contradiction.
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Another example of this behavior, using a very different construction,

can be found in [LW00LW00].

§3 Ascent along separable field extensions

Let (R,m,k) be a local ring and `/k a field extension. We want to lift the

extension k ,→ ` to a flat local homomorphism (R,m,k)−→ (S,n,`) with cer-

tain nice properties. The type of ring extension we seek is dubbed a gon-

flement by Bourbaki [Bou06Bou06, Appendice]. Translations of the term range

from the innocuous “inflation” to the provocative “swelling” or “intumes-

cence”. To avoid choosing one, we have decided to stick with the French

word.

11.15 Definition. Let (R,m,k) be a local ring.

(i) An elementary gonflement of R is either

a) a purely transcendental extension R −→ (R[x])mR[x] (where x

is a single indeterminate), or

b) an extension R −→ R[x]/( f ), where f is a monic polynomial

whose reduction modulo m is irreducible in k[x].

(ii) A gonflement is an extension (R,m,k)−→ S with the following prop-

erty: There is a well-ordered family {Rα}06α6λ of local extensions

(R,m,k) ,→ (Rα,mα,kα) such that

a) R0 = R and Rλ = S,

b) Rβ =⋃
α<βRα if β is a limit ordinal, and
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c) Rβ+1 is an elementary gonflement of Rβ if β 6=λ.

Elementary gonflements of type (iaia) are often used to pass to a local

ring with infinite residue field. (See Proposition 3.43.4 for an application.)

In this section we will need gonflements that are iterations of elementary

gonflements of type (ibib).

The following theorem (cf. [Bou06Bou06, Appendice, Proposition 2 and Théorème

1, pp. 39–40]) summarizes the basic properties of gonflements.

11.16 Theorem. Let (R,m,k) be a local ring.

(i) Let (R,m,k)−→ S be a gonflement.

a) S is local with, say, maximal ideal n. In particular, S is Noethe-

rian.

b) mB = n.

c) R −→ S is a flat local homomorphism.

d) With the notation as in the definition, if α6β6λ, then Rα −→
Rβ is a gonflement.

(ii) If k −→ ` is an arbitrary field extension, there is a gonflement (R,m,k)−→
(S,n,`) lifting k −→ `.

We now prove ascent of finite CM type along gonflements with separa-

ble residue field growth.

11.17 Theorem. Let (R,m,k)−→ (S,n,`) be a gonflement.

(i) If S has finite CM type, then R has finite CM type.
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(ii) Assume R is CM and k −→ ` is a separable algebraic extension. If R

has finite CM type, so has S.

Proof. Item (ii) is, again, a special case of Theorem 11.111.1. For the proof

of (iiii), we keep the notation of Definition 11.1511.15. Each elementary gon-

flement Rα −→ Rα+1 is of type (ibib). Moreover, since the induced map on

residue fields is a finite separable extension, we see from Exercise 11.2311.23

that Rα −→ Rα+1 is étale. By Exercise 11.2111.21 and [BH93BH93, A.11], S is Cohen-

Macaulay and dim(S)= dim(R). We will show by transfinite induction that

each ring Rβ is Gorenstein on the punctured spectrum. Theorem 6.126.12 says

R is in fact regular on the punctured spectrum, so we have the case α= 0.

Now assume 0 < β6 λ and that Rα is Gorenstein on the punctured spec-

trum for each α < β. Let qβ be a non-maximal prime ideal of Rβ, and put

qα = qβ∩Rα, for each α< β. In either case, whether β is a limit ordinal or

β= γ+1 for some γ, the proof of Theorem 11.1011.10 shows that (Rβ)qβ is Goren-

stein. Now, setting β = λ, we see that S is Gorenstein on the punctured

spectrum.

By Propositions 11.711.7 and 11.911.9, we need only show that every finitely

generated S-module is weakly extended from R. We shall show that, for

every β6λ, every finitely generated Rβ-module M is weakly extended from

R. We proceed by transfinite induction again, the case β= 0 being trivial.

Suppose 0 < β 6 λ. If β = α+1 for some α, then Lemma 11.811.8 provides a

finitely generated Rα-module N such that M | (Rβ⊗Rα N
)
. By induction, N

is weakly extended from R, and it follows that M too is weakly extended

from R. If β is a limit ordinal, then M is extended from Rα for some α<β,

and again the inductive hypothesis shows that M is weakly extended from



§3. Ascent along separable field extensions 291

R.

The separability condition in 11.1711.17 cannot be omitted. Indeed, here

is an example of a local ring R with finite CM type and an elementary

gonflement R −→ S such that S has infinite CM type.

11.18 Example ([Wie98Wie98, Example 3.4]). Let k be an imperfect field of char-

acteristic 2, and let α ∈ k − k2. Put R = k[[x, y]]/(x2 +αy2). Then R is a

one-dimensional local domain with multiplicity two, so by Theorem 3.183.18

R has finite Cohen-Macaulay type. However, by Proposition 3.153.15, S =
R ⊗k k(

p
α) = k(

p
α)[[x, y]]/(x+p

αy)2 does not have finite Cohen-Macaulay

type, since it is Cohen-Macaulay but not reduced.

Recall that we did not give a self-contained proof of Theorem 3.103.10. Here

we describe a proof, independent of the matrix decompositions in [GR78GR78],

in an important special case.

11.19 Theorem. Let (R,m,k) be an analytically unramified local ring of

dimension one. Assume R contains a field and that char(k) 6= 2,3 or 5. Then

R has finite CM type if and only if R satisfies the Drozd-Roı̆ter conditions

(DR1) and (DR2) of Chapter 33.

Proof. A complete proof of the “only if” direction is in Chapter 33. For the

converse, we may assume, by Theorems 11.1611.16 and 11.1711.17, that k is al-

gebraically closed. Corollary 3.173.17 (whose proof did not depend on Theo-

rem 3.103.10!) allows us to assume that R is complete. Then R = k[[t1]]×·· ·×
k[[ts]], where s6 3 and the ti are analytic indeterminates. An elementary

but tedious computation (cf. [Yos90Yos90, pages 72–73]) now shows that R is a
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finite birational extension of an ADE singularity A. Since A has finite CM

type (Corollary 7.197.19), Proposition 3.143.14 implies that R has finite CM type

too.

§4 Equicharacteristic Gorenstein

singularities

We now assemble the pieces and obtain a nice characterization of the equichar-

acteristic Gorenstein singularities of finite CM type.

11.20 Corollary. Let (R,m,k) be an excellent, Gorenstein ring containing

a field of characteristic different from 2, 3, 5, and let K be an algebraic

closure of k. Assume d := dim(R) > 1 and that k is perfect. Then R has

finite CM type if and only if there is a non-zero non-unit f ∈ k[[x0, . . . xd]]

such that R̂ ∼= k[[x0, . . . , xd]]/( f ) and K[[x0, . . . , xd]]/( f ) is a simple singularity

(cf. Chapter 88).

Proof. Using [Mat86Mat86, Theorem 22.5], we see that K[[x0, . . . , xd]]/( f ) is flat

over k[[x0, . . . , xd]]/( f ) for any non-unit f ∈ k[[x0, . . . , xd]]. The “if" direction

now follows from Theorem 11.111.1 and the fact (cf. Chapter 88) that simple

singularities have finite CM type.

For the converse, suppose R has finite CM type. Since R is CM and ex-

cellent, the completion R̂ has finite CM type by Corollary 11.1311.13. Moreover,

Theorem ?? implies, since R is Gorenstein, that R̂ is a hypersurface, that

is, R̂ ∼= k[[x0, . . . , xd]]/( f ) for some non-zero non-unit f .
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We next pass to the ring A := K ⊗k R̂, which we claim is a direct limit

of finite étale extensions of R̂. To see this, write K = ⋃
α∈ΛFα, where each

Fα is a finite extension of k. For each α ∈Λ, the field extension k −→ Fα is

unramified (since Fα is separable over k), and it follows easily that R̂ −→
Fα⊗k R̂ is unramified as well. Since each Fα⊗k R̂ is a finitely generated

free R̂-module and K ⊗k R̂ =⋃
α(Fα⊗k R̂), the claim follows.

Since R̂ is excellent (being complete) and since A is a direct limit of étale

extensions of R̂, a theorem of S. Greco [Gre76Gre76, Theorem 5.3] implies that A

is excellent. Since K is a gonflement of k, Exercise 11.2511.25 implies that A is

a gonflement of R̂, and that K is a coefficient field for A. Therefore A has

finite CM type, by Theorem 11.1711.17.

Now A = T/( f ), where T = K ⊗k k[[x0, . . . , xd]]=⋃
αFα[[x0, . . . , xd]], where,

as before, the Fα are finite extensions of k contained in K . Clearly T̂ =
K[[x0, . . . , xd]], so Â = K[[x0, . . . , xd]]/( f ). By Corollary 11.1311.13, we see that

Â has finite CM type. Therefore, by ?? K[[x0, . . . , xd]]/( f ) = Â is a simple

singularity.

§5 Exercises

11.21 Exercise. Let (R,m,k) −→ (S,n,`) be a flat local homomorphism,

and let M be a finitely generated R-module. Prove that S⊗R M is a MCM

S-module if and only if M is MCM and the closed fiber S/mS is a CM ring.

(Cf. [BH93BH93, (1.2.16) and (A.11)].)

11.22 Exercise. Let (R,m) −→ (S,n) be a flat local homomorphism. Prove

that the following two conditions are equivalent:
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(i) The induced map R/m−→ S/mS is an isomorphism.

(ii) The induced map R/m−→ S/n is an isomorphism and mS = n.

11.23 Exercise. Let ϕ : (R,m) −→ (S,n) be a local homomorphism that is

essentially of finite type (that is, S is a localization of a finitely generated

R-algebra).

(i) Prove that S/mS is Artinian.problems here

(ii) Prove that R −→ S is unramified if and only if

a) mS = n, and

b) S/n is a finite, separable field extension of R/m.

(iii) Let q be a prime ideal of S, and put p=ϕ−1(q). If R −→ S is unram-

ified, prove that Rp −→ Sq is unramified.

11.24 Exercise. Find an example of an étale local homomorphism R −→ S

and a finitely generated S-module M such that the two S-actions on S⊗R M

(one via the action on S, the other via the action on M) give non-isomorphic

S-modules.

11.25 Exercise. Let (R,m) be a local ring with a coefficient field k, and let

K /k be an algebraic field extension. Prove that K ⊗k R is a gonflement of R

and that K is a coefficient field for R. (First do the case where k −→ K is

an elementary gonflement of type (ibib) in Definition 11.1511.15.)

11.26 Exercise. Let (R,m,k) be a one-dimensional local ring satisfying

the Drozd-Roı̆ter conditions (DR1) and (DR2) of Chapter 33, and let R −→
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(S,n,`) be a gonflement. Prove, without reference to finite CM type, that S

satisfies (DR1) and (DR2).



12
Semigroups of modules
In this chapter we study the different ways in which a finitely generated

module over a local ring can be decomposed as a direct sum of indecompos-

able modules. Put another way, we are interested in exactly how badly the

Krull-Remak-Schmidt uniqueness property can fail.

Let (R,m,k) be a local ring and choose a set V(R) of representatives for

the isomorphism classes [M] of finitely generated R-modules. We make

V(R) into an additive semigroup in the obvious way: [M]+ [N] = [M ⊕N].

This monoid encodes information about the direct-sum decompositions of

finitely generated R-modules. (In what follows, we use the terms “semi-

group” and “monoid” interchangeably, though technically a semigroup need

not have an identity element.)

In the special case where R is a complete local ring, it follows from

the Krull-Remak-Schmidt Theorem 1.81.8 that V(R) is a free monoid, that is,

V (R) ∼= N(I)
0 , where N0 is the additive semigroup of non-negative integers

and the index set I is the set of atoms of V(R), that is, the set of represen-

tatives [N] for the indecomposable finitely generated R-modules. Further-

more, if M is a finitely generated R-module, then the semigroup +(M) of

isomorphism classes [N] of modules N ∈ add(M) is free as well.

For a general local ring R, the semigroup V(R) is naturally a subsemi-

group of V(R̂), and similarly +(M) is a subsemigroup of +(M̂) for an R-

module M. This forces various structural restrictions on which semigroups

can arise as V(R) for a local ring R, or as +(M) for a finitely generated

R-module M. In short, the semigroup must be a finitely generated Krull

296
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monoid. In §1§1 we detail these restrictions, and in the rest of the chapter

we prove two realization theorems, which show that every finitely gener-

ated Krull monoid can be realized in the form +(M) for a suitable local

ring R and MCM R-module M. Both these theorems actually realize a

semigroup Λ together with a given embedding Λ⊆N(n)
0 . The first construc-

tion (Theorem 12.1112.11) gives a one-dimensional domain R and a finitely gen-

erated torsion-free module M realizing an expanded subsemigroup Λ as

+(M), while the second (Theorem 12.1612.16) gives a two-dimensional unique

factorization domain R and a finitely generated reflexive module M realiz-

ing Λ as +(M), assuming only that Λ is a full subsemigroup of N(t)
0 . (See

Proposition 12.312.3 for the terminology.)

§1 Krull monoids

In this section, let (R,m,k) be a local ring with completion (R̂,m̂,k). Let

V(R) and V(R̂) denote the (commutative) semigroups, with respect to di-

rect sum, of finitely generated modules over R and R̂, respectively. We

write all our semigroups additively, though we will keep the “multiplica-

tive” notation inspired by direct sums, x | y, meaning that there exists z

such that x+ z = y. We write 0 for the neutral element [0] corresponding to

the zero module.

There is a natural homomorphism of semigroups

j : V(R)−→V(R̂)

taking [M] to [R̂⊗R M]. This homomorphism is injective by Corollary 1.141.14,

so we consider V(R) as a subsemigroup of V(R). It follows that V(R) is can-
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cellative: if x+z = y+z for x, y, z ∈V(R), then x = y. Since in this chapter we

will deal only with local rings, all of our semigroups will be tacitly assumed

to be cancellative. We also see that V(R) is reduced, i.e. x+ y = 0 implies

x = y= 0.

The homomorphism j : V(R)−→V(R̂) actually satisfies a much stronger

condition than injectivity. A divisor homomorphism is a semigroup homo-

morphism j : Λ−→Λ′ such that j(x) | j(y) implies x | y for all x and y in Λ.

Corollary 1.141.14 says that j : V(R) −→ V(R̂) is a divisor homomorphism. In

fact, this holds more generally.

12.1 Proposition ([HW09HW09, Theorem 1.3]). Let R −→ S be a flat local homo-

morphism of Noetherian local rings. Then the map j : V(R)−→V(S) taking

[M] to [S⊗R M] is a divisor homomorphism.

Proof. Suppose M and N are finitely generated R-modules and that S⊗R

M | S⊗R N. We want to show that M | N. By Theorem 1.121.12 it will be enough

to show that M/mtM | N/mtN for all t > 1. By passing to the flat local

homomorphism R/mt −→ S/mtS, we may assume that R is Artinian and so

satisfies Krull-Remak-Schmidt uniqueness. By Proposition 11.311.3, we know

at least that M | N(r) for some r> 1. By Corollary 1.81.8 (or Theorem 1.31.3 and

Corollary 1.51.5) M is uniquely a direct sum of indecomposable modules. If

M itself is indecomposable, KRS immediately implies that M | N. An easy

induction argument using direct-sum cancellation completes the proof (cf.

Exercise 12.1712.17).

12.2 Definition. A Krull monoid is a monoid that admits a divisor homo-

morphism into a free monoid.
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Every finitely generated Krull monoid admits a divisor homomorphism

into N(t)
0 for some positive integer t. Conversely, it follows easily from Dick-

son’s Lemma (Exercise 3.263.26) that a monoid admitting a divisor homomor-

phism to N(t)
0 must be finitely generated.

Finitely generated Krull monoids are called positive normal affine semi-

groups in [BH93BH93]. From [BH93BH93, 6.1.10], we obtain the following character-

ization of these monoids:

12.3 Proposition. The following conditions on a semigroup Λ are equiva-

lent:

(i) Λ is a finitely generated Krull monoid.

(ii) Λ∼=G∩N(t)
0 for some positive integer t and some subgroup G of Z(t).

(That is, Λ is isomorphic to a full subsemigroup of N(t)
0 .)

(iii) Λ ∼= W ∩N(u)
0 for some positive integer u and some Q-subspace W of

Q(n). (That is, Λ is isomorphic to an expanded subsemigroup of N(u)
0 .)

(iv) There exist positive integers m and n, and an m×n matrix α over Z,

such that Λ∼=N(n) ∩ker(α).

Observe that the descriptors “full” and “expanded” refer specifically to a

given embedding of a semigroup into a free semigroup, while the definition

of a Krull monoid is intrinsic. In addition, note that the group G and the

vector space W are not mysterious; they are the group, resp. vector space,

generated by Λ.
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It’s obvious that every expanded subsemigroup of N(t) is also a full sub-

semigroup, but the converse can fail. For example, the semigroup

Λ=
{[ x

y
] ∈N(2)

0

∣∣∣x ≡ ymod3
}

of is not the restriction to N(2)
0 of the kernel of a matrix, so is not expanded.

However, Λ is isomorphic to

Λ′ =
{[ x

y
z

]
∈N(3)

0

∣∣∣x+2y= 3z
}

.

As this example indicates, the number n of (iiiiii) might be larger than the

number t of (iiii).

Condition (iviv) says that a finitely generated Krull monoid can be re-

garded as the collection of non-negative integer solutions of a homogeneous

system of linear equations. For this reason these monoids are sometimes

called Diophantine monoids.

In order to study uniqueness of direct-sum decompositions in V(R), it’s

really enough to examine the local structure around each finitely gener-

ated R-module M. Recall that we denote by add(M) the full subcategory of

finitely generated R-modules that are isomorphic to a direct summand of

a direct sum of finitely many copies of M, and we let +(M) ⊆ V(R) be the

subset of isomorphism classes [N] of modules N ∈ add(M). Then we see

that +(M) is also a finitely generated Krull monoid, since the divisor homo-

morphism j : V(R) −→ V(R̂) carries +(M) into +(R̂⊗R M), which is the free

submonoid generated by the isomorphism classes of the indecomposable

direct summands of R̂⊗R M.

The key to understanding the monoids V(R) and +(M) is knowing which

modules over the completion R̂ actually come from R-modules. Recall that
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if R −→ S is a ring homomorphism, we say that an S-module N is extended

(from R) provided there is an R-module M such that N ∼= S ⊗R M. In the

two remaining sections, we will prove criteria—one in dimension one, and

one in dimension two—for identifying which finitely generated modules

over the completion R̂ of a local ring R are extended. In both cases, a key

ingredient is that modules of finite length are always extended. We leave

the proof of this fact as an exercise.

12.4 Lemma. Let R be a local ring with completion R̂, and let L be an R̂-

module of finite length. Then L also has finite length as an R-module, and

the natural map L −→ R̂⊗R L is an isomorphism.

§2 Realization in dimension one

In dimension one, a beautiful result due to Levy and Odenthal [LO96LO96] tells

us exactly which R̂-modules are extended from R. See Corollary 12.712.7 below.

First, we define for any one-dimensional local ring (R,m,k) the Artinian

localization K(R) by K(R)=U−1R, where U is the complement of the mini-

mal prime ideals (the prime ideals distinct from m). If R is CM, then K(R)

is just the total quotient ring {non-zerodivisors}−1R as in Chapter 33. If R

is not CM, then the natural map R −→K(R) is not injective.

12.5 Proposition. Let (R,m,k) be a one-dimensional local ring, and let N

be a finitely generated R̂-module. Then N is extended from R if and only if

K(R̂)⊗R̂ N is extended from K(R).
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Proof. To simplify notation, we set K =K(R) and L =K(R̂). (Keep in mind,

however, that these are not fields.) If q is a minimal prime ideal of R̂,

then q∩R is a minimal prime ideal of R, since “going down” holds for flat

extensions [BH93BH93, Lemma A.9]. Therefore the inclusion R −→ R̂ induces

a homomorphism K −→ L, and this homomorphism is faithfully flat, since

the map Spec(R̂) −→ Spec(R) is surjective [BH93BH93, Lemma A.10]. The “only

if” direction is then clear from L⊗K K ⊗R M ∼= L⊗R̂ R̂⊗R M.

For the converse, let X be a finitely generated K-module such that L⊗K

X ∼= L⊗R̂ N. Since K is a localization of R, there is a finitely generated R-

module M such that K ⊗R M ∼= X . Since L⊗R̂ N ∼= L⊗R̂ (R̂⊗R M), there is a

homomorphism ϕ : N −→ R̂⊗R M inducing an isomorphism from L⊗R̂ N to

L⊗R̂ (R̂⊗R M). Then the kernel U and cokernel V of ϕ have finite length and

therefore are extended by Lemma 12.412.4. Now we break the exact sequence

0−→U −→ N −→ S⊗R M −→V −→ 0

into two short exact sequences:

0−→U −→ N −→W −→ 0

0−→W −→ R̂⊗R M −→V −→ 0 .

Applying (iiii) of Lemma 12.612.6 below to the second short exact sequence, we

see that W is extended. Now we apply (ii) of the lemma to the first short

exact sequence, to conclude that N is extended.

12.6 Lemma. Let (R,m) be a local ring with completion R̂, and let

0−→ X −→Y −→ Z −→ 0

be an exact sequence of finitely generated R̂-modules.
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(i) Assume X and Z are extended. If Ext1
R̂

(Z, X ) has finite length as an

R-module (e.g. if Z is locally free on the punctured spectrum of R̂),

then Y is extended.

(ii) Assume Y and Z are extended. If HomR̂(Y , Z) has finite length as

an R-module (e.g. if Z has finite length), then X is extended.

(iii) Assume X and Y are extended. If HomR̂(X ,Y ) has finite length as

an R-module (e.g. if X has finite length), then Z is extended.

Proof. For (ii), write X = R̂ ⊗R X0 and Z = R̂ ⊗R Z0, where X0 and Z0 are

finitely generated R-modules. The natural map

R̂⊗R Ext1
R(Z0, X0)−→Ext1

R̂
(Z, X )

is an isomorphism since Z0 is finitely presented, and Ext1
R(Z0, X0) has fi-

nite length by faithful flatness. Therefore the natural map Ext1
R(Z0, X0)−→

R̂ ⊗R Ext1
R(Z0, X0) is an isomorphism by Lemma 12.412.4. Combining the two

isomorphisms, we see that the given exact sequence, regarded as an ele-

ment of Ext1
R̂

(Z, X ), comes from a short exact sequence 0 −→ X0 −→ Y0 −→
Z0 −→ 0. Clearly, then, R̂⊗R Y0

∼=Y .

To prove (iiii), we write Y = R̂⊗R Y0 and Z = R̂⊗R Z0, where Y0 and Z0 are

finitely generated R-modules. As in the proof of (ii) we see that the natural

map HomR(Y0, Z0)−→HomR̂(Y , Z) is an isomorphism. Therefore the given

R̂-homomorphism β : Y −→ Z comes from a homomorphism β0 : Y0 −→ Z0

in HomR(Y0, Z0). Clearly, then, X ∼= R̂⊗R (kerβ0). The proof of (iiiiii) is essen-

tially the same: Write Y = R̂⊗R Y0 and X = R̂⊗R X0; show that α : X −→Y

comes from some α0 ∈HomR(X0,Y0), and deduce that Z ∼= R̂⊗R (cokα0).
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12.7 Corollary ([LO96LO96]). Let (R,m,k) be a one-dimensional local ring whose

completion R̂ is reduced, and let N be a finitely generated R̂-module. Then

N is extended from R if and only if dimRp(Np)= dimRq(Nq) (vector space di-

mension) whenever p and q are prime ideals of R̂ lying over the same prime

ideal of R. In particular, if R is a domain, then N is extended if and only if

N has constant rank.

This gives us a strategy for producing strange direct-sum behavior:

(i) Find a one-dimensional domain R whose completion is reduced but

has lots of minimal primes.

(ii) Build indecomposable R̂-modules with highly non-constant ranks.

(iii) Put them together in different ways to get constant-rank modules.

Suppose, to illustrate, that R is a domain whose completion R̂ has two

minimal primes p and q. Suppose we can build indecomposable R̂-modules

U ,V ,W and X , with ranks (dimRp(−),dimRq(−)) = (2,0), (0,2), (2,1), and

(1,2), respectively. Then U ⊕V has constant rank (2,2), so is extended;

say, U ⊕V ∼= M̂. Similarly, there are R-modules N, F and G such that

V ⊕W ⊕W ∼= N̂, W ⊕ X ∼= F̂, and U ⊕ X ⊕ X ∼= Ĝ. Using the Krull-Remak-

Schmidt theorem over R̂, we see easily that no non-zero proper direct

summand of any of the modules M̂, N̂, F̂, Ĝ has constant rank. It fol-

lows from Corollary 12.712.7 that M, N, F, and G are indecomposable, and

of course no two of them are isomorphic since (again by Krull-Remak-

Schmidt) their completions are pairwise non-isomorphic. Finally, we see

that M⊕F⊕F ∼= N⊕G, since the two modules have isomorphic completions.
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Thus we easily obtain a mild violation of Krull-Remak-Schmidt uniqueness

over R.

It’s easy to accomplish (ii), getting a one-dimensional domain with a lot

of splitting but no ramification. In order to facilitate (iiii), however, we want

to ensure that each analytic branch has infinite Cohen-Macaulay type. The

following construction from [Wie01Wie01] does the job nicely:

12.8 Construction ([Wie01Wie01, (2.3)]). Fix a positive integer s, and let k be

any field with |k|> s. Choose distinct elements t1, . . . , ts ∈ k. Let Σ be the

complement of the union of the maximal ideals (x− ti)k[x], i = 1, . . . , s. We

define R by the pullback diagram

(12.8.1) R //

��

Σ−1k[x]

π��

k // Σ−1k[x]
(x− t1)4 · · · (x− ts)4 ,

where π is the natural quotient map. Then R is a one-dimensional local

domain, (12.8.112.8.1) is the conductor square for R (cf. Construction 3.13.1), and R̂

is reduced with exactly s minimal prime ideals. Indeed, we can rewrite the

bottom line Rart as k,→D1 × ·· · ×Ds, where D i ∼= k[x]/(x4) for each i. The

conductor square for the completion is then

R̂ //

��

T1 ×·· ·×Ts

π

��
k // D1 ×·· ·×Ds ,

where each Ti is isomorphic to k[[x]].

We remark that R is the ring of rational functions f ∈ k(T) such that

f (t1)= ·· · = f (ts) 6=∞ and the derivatives f ′, f ′′ and f ′′′ vanish at each ti.
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Let p1, . . . ,ps be the minimal prime ideals of R̂. Recall that the rank of

a finitely generated R̂-module N is the s-tuple (r1, . . . , rs), where r i is the

dimension of Npi as a vector space over Rpi .

The next theorem says that even the case s = 2 of this example yields

the pathology discussed after Corollary 12.712.7).

12.9 Theorem ([Wie01Wie01, (2.4)]). Fix a positive integer s, and let R be the

ring of Construction 12.812.8. Let (r1, . . . , rs) be any sequence of non-negative

integers with not all the r i equal to zero. Then R̂ has an indecomposable

MCM module N with rank(N)= (r1, . . . , rs).

Proof. Set P = T(r1)
1 × ·· ·×T(rs)

s , a projective module over R̂ ∼= T1 × ·· ·×Ts.

Lemma 12.1012.10 below, a jazzed-up version of Theorem 2.52.5, yields an indecom-

posable R̂art-module V ,→W with W = D(r1)
1 ×·· ·D(rs)

s . Since P/cP ∼=W , Con-

struction 3.13.1 implies that there exists a torsion-free R̂-module M, unique

up to isomorphism, such that Mart = (V ,→W). NAK implies that M is in-

decomposable, and the ranks of M at the minimal primes are precisely

(r1, . . . , rs).

We leave the proof of this lemma as an exercise (Exercise 12.2012.20

12.10 Lemma. Let k be a field. Fix an integer s> 1, set D i = k[x]/(x4) for

i = 1, . . . , s, and let D = D1 × ·· · ×Ds. Let (r1, . . . , rs) be an s-tuple of non-

negative integers with at least one positive entry, and assume that r1 > r i

for every i. Then the Artinian pair k,→D has an indecomposable module

V ,→W , where W = D(r1)
1 ×·· ·×D(rs)

s .
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Recalling Condition (iviv) of Proposition 12.312.3, we say that the finitely

generated Krull semigroup Λ can be defined by m equations provided Λ ∼=
N

(n)
0 ∩ker(α) for some n and some m×n integer matrix α. Given such an

embedding of Λ in N(n)
0 , we say a column vector λ ∈Λ is strictly positive pro-

vided each of its entries is a positive integer. By decreasing n (and remov-

ing some columns from α) if necessary, we can harmlessly assume, without

changing m, that Λ contains a strictly positive element λ. Specifically,

choose an element λ ∈Λ with the largest number of strictly positive coordi-

nates, and throw away all the columns corresponding to zero entries of λ.

If any element λ′ ∈Λ had a non-zero entry in one of the deleted columns,

then λ+λ′ would have more positive entries than λ, a contradiction.

12.11 Theorem ([Wie01Wie01, Theorem 2.1]). Fix a non-negative integer m, and

let R be the ring R of Construction 12.812.8 obtained from s = m+1. Let Λ be a

finitely generated Krull semigroup defined by m equations and containing

a strictly positive element λ. Then there exist a maximal Cohen-Macaulay

R-module M and a commutative diagram

Λ �
� //

ϕ

��

N
(n)
0

ψ

��
+(M)

j
// +(R̂⊗R M)

in which

(i) j is the natural map taking [N] to [R̂⊗R N],

(ii) ϕ and ψ are semigroup isomorphisms, and

(iii) ϕ(λ)= [M].
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Proof. We have Λ=N(n)
0 ∩ker(α), where α= [ai j] is an m×n matrix over Z.

Choose a positive integer h such that ai j +h> 0 for all i, j. For j = 1, . . . ,n,

choose, using Theorem 12.912.9, a MCM R̂-module L j such that rank(L j) =
(a1 j +h, . . . ,am j +h,h).

Given any column vector β= [b1,b2, . . . ,bn]tr ∈N(n)
0 , put Nβ = L(b1)

1 ⊕·· ·⊕
L(bn)

n . The rank of Nβ is(
n∑

j=1

(
a1 j +h

)
b j, . . . ,

n∑
j=1

(
am j +h

)
b j,

(
n∑

j=1
b j

)
h

)
.

Since R is a domain, Corollary 12.712.7 implies that Nβ is in the image of

j : V(R) −→ V(R̂) if and only if
∑n

j=1(ai j +h)b j =
(∑n

j=1 b j

)
h for each i, that

is, if and only if β ∈N(n)
0 ∩ker(α)=Λ. To complete the proof, we let M be the

R-module (unique up to isomorphism) such that M̂ ∼= Nλ.

This corollary makes it very easy to demonstrate spectacular failure of

Krull-Remak-Schmidt uniqueness:

12.12 Example. Let

Λ=
{[ x

y
z

]
∈N(3)

0

∣∣∣72x+ y= 73z
}

.

This has three atoms (minimal non-zero elements), namely

α=


1

1

1

 , β=


0

73

1

 , γ=


73

0

72

 .

Note that 73α = β+γ. Taking s = 2 in Construction 12.812.8, we get a local

ring R and indecomposable R-modules A, B, C such that A(t) has only the

obvious direct-sum decompositions for t6 72, but A(73) ∼= B⊕C.
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We define the splitting number spl(R) of a one-dimensional local ring R

by

spl(R)= ∣∣Spec(R̂)
∣∣−|Spec(R)| .

The splitting number of the ring R in Construction 12.812.8 is s− 1. Corol-

lary 12.1112.11 says that every finitely generated Krull monoid defined by m

equations can be realized as +(M) for some finitely generated module over

a one-dimensional local ring (in fact, a domain essentially of finite type

over Q) with splitting number m. This is the best possible:

12.13 Proposition. Let M be a finitely generated module over a one-dimensional

local ring R with splitting number m. The embedding +(M),→V(R̂) exhibits

+(M) as an expanded subsemigroup of the free semigroup +(R̂⊗R M). More-

over, +(M) is defined by m equations.

Proof. Write R̂ ⊗R M = V (e1)
1 ⊕ ·· · ⊕V (en)

n , where the Vj are pairwise non-

isomorphic indecomposable R̂-modules and the e i are all positive. We have

an embedding +(M) ,→ N
(n)
0 taking [N] to [b1, . . . ,bn]tr, where R̂ ⊗R N ∼=

V (b1)
1 ⊕ ·· ·⊕V (bn)

n , and we identify +(M) with its image Λ in N
(n)
0 . Given a

prime p ∈ Spec(R) with, say, t primes q1, . . . ,qt lying over it, there are t−1

homogeneous linear equations on the b j that say that N̂ has constant rank

on the fiber over p (cf. Corollary 12.712.7). Letting p vary over Spec(R), we

obtain exactly m = spl(R) equations that must be satisfied by elements of

Λ. Conversely, if the b j satisfy these equations, then N :=V (b1)
1 ⊕·· ·⊕V (bn)

n

has constant rank on each fiber of Spec(R̂) −→ Spec(R). By Corollary 12.712.7,

N is extended from an R-module, say N ∼= R̂⊗R L. Clearly R̂⊗R L | �M(u) if u
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is large enough, and it follows from Proposition 12.112.1 that L ∈+(M), whence

[b1, . . . ,bn]tr ∈Λ.

In [Kat02Kat02] K. Kattchee showed that, for each m, there is a finitely gen-

erated Krull monoid Λ that cannot be defined by m equations. Thus no

single one-dimensional local ring can realize every finitely generated Krull

monoid in the form +(M) for a finitely generated module M.

§3 Realization in dimension two

Suppose we have a finitely generated Krull semigroup Λ and a full embed-

ding Λ ⊆ N(t)
0 ., i.e. Λ is the intersection of N(t) with a subgroup of Z(t). By

Proposition 12.1312.13, we cannot realize this embedding in the form +(M) ,→
+(R̂⊗R M) for a module M over a one-dimensional local ring R unless Λ is

actually an expanded subsemigroup of N(t)
0 , i.e. the intersection of N(t) with

a subspace of Q(t). If, however, we go to a two-dimensional ring, then we can

realize Λ as +(M), though the ring that does the realizing is less tractable

than the one-dimensional rings that realize expanded subsemigroups.

As in the last section, we need a criterion for an R̂-module to be ex-

tended from R. For general two-dimensional rings, we know of no such

criterion, so we shall restrict to analytically normal domains. (A local do-

main (R,m) is analytically normal provided its completion (R̂,m̂) is also a

normal domain.)

We recall two facts from Bourbaki [Bou98Bou98, Chapter VII]. Firstly, over

a Noetherian normal domain R one can assign to each finitely generated

R-module M a divisor class cl(M) ∈Cl(R) in such a way that
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1. Taking divisor classes cl(−) is additive on exact sequences, and

2. if J is a fractional ideal of R, then cl(J) is the isomorphism class [J∗∗]

of the divisorial (i.e. reflexive) ideal J∗∗, where −∗ denotes the dual

HomR(−,R).

Secondly, each finitely generated torsion-free module M over a Noethe-

rian normal domain R has a “Bourbaki sequence,” namely a short exact

sequence

(12.13.1) 0−→ F −→ M −→ J −→ 0

wherein F is a free R-module and J is an ideal of R.

The following criterion for a module to be extended is Proposition 3

of [RWW99RWW99] (cf. also [Wes88Wes88, (1.5)]).

12.14 Proposition. Let R be a two-dimensional local ring whose m-adic

completion R̂ is a normal domain. Let N be a finitely generated torsion-free

R̂-module. Then N is extended from R if and only if cl(N) is in the image of

the natural homomorphism Φ : Cl(R)−→Cl(R̂).

Proof. Suppose N ∼= R̂⊗R M. Then M is finitely generated and torsion-free,

by faithfully flat descent. Choose a Bourbaki sequence (12.13.112.13.1) for M;

tensoring with R̂ and using the additivity of cl(−) on short exact sequences,

we find

cl(N)= cl(R̂⊗R J)= [(R̂⊗R J)∗∗]=Φ(cl(J)) .

For the converse, choose a Bourbaki sequence

0−→G −→ N −→ L −→ 0
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over R̂, so that G is a free R̂-module and L is an ideal of R̂. Then cl(L) =
cl(N), and since cl(N) is in the image of Φ there is a divisorial ideal I of R

such that R̂⊗R I ∼= L∗∗. Set V = L∗∗/L. Then V has finite length and hence

is extended by Lemma 12.412.4; it follows from Lemma 12.612.6(ii) and the short

exact sequence 0 −→ L −→ L∗∗ −→ V −→ 0 that L is extended. Moreover,

R̂p is a discrete valuation ring for each height-one prime ideal p, so that

Ext1
R̂

(I,G) has finite length. Now Lemma 12.612.6(iiii) says that N is extended

since G and L are.

As in the last section, we need to guarantee that the complete ring R̂

has a sufficiently rich supply of MCM modules.

12.15 Lemma ([Wie01Wie01, Lemma 3.2]). Let s be any positive integer. There is

a complete local normal domain B, containing C, such that dim(B) = 2 and

Cl(B) contains a copy of (R/Z)(s).

Proof. Choose a positive integer d such that (d − 1)(d − 2) > s, and let

V be a smooth projective plane curve of degree d over C. Let A be the

homogeneous coordinate ring of V for some embedding V ,→ P2
C
. Then

A is a two-dimensional normal domain, by [Har77Har77, Chap. II, Exercise

8.4(b)]. By [Har77Har77, Appendix B, Sect. 5], Pic0(V ) ∼= D := (R/Z)2g, where

g = 1
2 (d −1)(d −2), the genus of V . Here Pic0(V ) is the kernel of the de-

gree map Pic(V )−→Z, so Cl(V )=Pic(V )= D⊕Zσ, where σ is the class of a

divisor of degree 1. There is a short exact sequence

0−→Z−→Cl(V )−→Cl(A)−→ 0,

in which 1 ∈ Z maps to the divisor class τ := [H ·V ], where H is a line in

P2
C
. (Cf. [Har77Har77, Chap. II, Exercise 6.3].) Thus Cl(A) ∼= Cl(V )/Zτ. Since
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τ has degree d, we see that τ− dσ ∈ D. Choose an element δ ∈ D with

dδ= τ−dσ. Recalling that Cl(V ) = Pic(V ) = D⊕Zσ, we define a surjection

f : Cl(V )−→ D⊕Z/(d) by sending x ∈ D to (x,0) and σ to (−δ,1+ (d)). Then

ker( f )=Zτ, so Cl(A)∼= D⊕Z/dZ.

Let P be the irrelevant maximal ideal of A. By [Har77Har77, Chap. II, Exer-

cise 6.3(d)], Cl(AP) ∼= Cl(A). The P-adic completion B of A is an integrally

closed domain, by [ZS75ZS75, Chap. VIII, Sect. 13]. Moreover Cl(AP) −→
Cl(B) is injective by faithfully flat descent, so Cl(B) contains a copy of

D = (R/Z)(d−1)(d−2), which, in turn, contains a copy of (R/Z)(s).

We now have everything we need to prove our realization theorem for

full subsemigroups of N(t)
0 .

12.16 Theorem. Let t be a positive integer, and letΛ be a full subsemigroup

of N(t)
0 . Assume that Λ contains an element λ with strictly positive entries.

Then there exist a two-dimensional local unique factorization domain R,

a finitely generated reflexive (= MCM) R-module M, and a commutative

diagram of semigroups

Λ �
� //

ϕ

��

N
(t)
0

ψ

��
+(M)

j
// +(R̂⊗R M)

in which

(i) j is the natural map taking [N] to [R̂⊗R N],

(ii) ϕ and ψ are isomorphisms, and

(iii) ϕ(λ)= [M].
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Proof. Let G be the subgroup of Z(t) generated by Λ, and write Z(t)/G =
C1 ⊕·· ·⊕Cs, where each Ci is a cyclic group. Then Z(t)/G can be embedded

in (R/Z)(s).

Let B be the complete local domain provided by Lemma 12.1512.15. Since

Z(t)/G embeds in Cl(B), there is a group homomorphism $ : Z(t) −→ Cl(B)

with ker($) = G. Let {e1, . . . , e t} be the standard basis of Z(t). For each

i6 t, write $(e i)= [L i], where L i is a divisorial ideal of B representing the

divisor class of $(e i).

Next we use Heitmann’s amazing theorem [Hei93Hei93], which implies that

B is the completion of some local unique factorization domain R. For each

element m = (m1, . . . ,mt) ∈N(t)
0 , we let ψ(m) be the isomorphism class of the

B-module L(m1)
1 ⊕·· ·⊕L(mt)

t . The divisor class of this module is m1[L1]+·· ·+
mt[L t] =$(m1, . . . ,mt). By Proposition 12.1412.14, the module L(m1)

1 ⊕·· ·⊕L(mt)
t

is the completion of an R-module if and only if its divisor class is trivial,

that is, if and only if m ∈ G ∩N(t)
0 . But m ∈ G ∩N(t)

0 = Λ, since Λ is a full

subsemigroup of N(t)
0 . Therefore L(m1)

1 ⊕ ·· · ⊕L(mt)
t is the completion of an

R-module if and only if m ∈ Λ. If m ∈ Λ, we let ϕ(m) be the isomorphism

class of a module whose completion is isomorphic to L(m1)
1 ⊕ ·· ·⊕L(mt)

t . In

particular, choosing a module M such that [M] = ϕ(λ), we get the desired

commutative diagram.

§4 Exercises

12.17 Exercise. Complete the proof of Proposition 12.112.1.
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12.18 Exercise. Prove the equivalence of conditions (ii)–(iviv) of Proposi-

tion 12.312.3.

12.19 Exercise. Prove Lemma 12.412.4.

12.20 Exercise ([Wie01Wie01, Lemma 2.2]). Prove the existence of the inde-

composable R̂art-module V ,→W in Lemma 12.1012.10, as follows. Let C = k(r1),

viewed as column vectors. Define the “truncated diagonal” ∂ : C −→ W =
D(r1)

1 × ·· · × D(rs)
s by setting the ith component of ∂([c1, . . . , cr1]tr) equal to

[c1, . . . , cr i ]
tr. (Here we use r1 > r i for all i.) Let V be the k-subspace of W

consisting of all elements

{
∂(u)+ X∂(v)+ X3∂(Hv)

}
,

as u and v run over C, where X = (x,0, . . . ,0) and H is the nilpotent Jordan

block with 1 on the superdiagonal and 0 elsewhere.

(i) Prove that W is generated as a D-module by all elements of the

form ∂(u), u ∈ C, so that in particular DV = W . (Hint: it suffices to

consider elements w = (w1, . . . ,ws) with only one non-zero entry wi,

and such that wi ∈ D(r i)
i has only one non-zero entry, which is equal

to 1.)

(ii) Prove that V ,→W is indecomposable along the same lines as the ar-

guments in Chapter 33. (Hint: use the fact that {1, x, x2, x3} is linearly

independent over k.)
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Countable Cohen–Macaulay type
We shift directions now, and focus on a hitherto unmentioned representa-

tion type: countable type.

13.1 Definition. A Cohen-Macaulay local ring (R,m) is said to have count-

able Cohen–Macaulay type if it admits only countably many isomorphism

classes of maximal Cohen–Macaulay modules.

The property of countable type has received much lass attention than

finite type, and correspondingly less is known about it. There is however

an analogue of Auslander’s Theorem (Theorem 13.413.4), as well as a complete

classification of complete hypersurface singularities over C with countable

CM type, due to Buchweitz–Greuel–Schreyer [BGS87BGS87]. This has recently

been revisited by Burban–Drozd [BD08BD08, BD10BD10]; we present here their ap-

proach, which echoes nicely the material in Chapter 33. They use a construc-

tion similar to the conductor square to prove that the A∞ = k[[x, y, z]]/(xy)

and D∞ = k[[x, y, z]]/(x2 y−z2) singularities have countable type. Apart from

these results, there are a few examples due to Schreyer (see Section §4§4), but

much remains to be done.

§1 Structure

The main structural result on CM local rings of countable CM type was

conjectured by Schreyer in 1987 [Sch87Sch87, Section 7]. He predicted that

an analytic local ring R over the complex numbers having countable type

316
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has at most a one-dimensional singular locus, that is, Rp is regular for all

p ∈ SpecR with dimR/p > 1. In this section we prove Schreyer’s conjec-

ture more generally for all CM local rings satisfying a souped-up version of

prime avoidance due to Burch and Sharp–Vamos. In practice, this means

either the ring is complete or the residue field is uncountable. Some as-

sumption of uncountability is necessary to avoid the degenerate case of

a countable ring, which has only countably many isomorphism classes of

finitely generated modules!

13.2 Lemma ([Bur72Bur72, Lemma 3]; see also [SV85SV85]). ] Let A be a Noetherian

ring satisfying either of these conditions.

1. A is complete local, or

2. there is an uncountable set of elements {uλ}λ∈Λ of A such that uλ−uµ

is a unit of A for every λ 6=µ.

Let {pi}∞i=1 be a countable set of prime ideals of R, and I an ideal with

I ⊆⋃∞
i=1pi. Then I ⊆ pi for some i.

Notice that the second condition is satisfied if, for example, (A,m) is

local with A/m uncountable. In fact, when 22 is verified, the ideals pi need

not even be prime.

We postpone the proof to the end of this section, and move on to a nice

application of MCM approximations.

13.3 Lemma. Let R be a CM local ring of countable CM type, and {Mi}∞i=1

a complete list of all the indecomposable MCM R-modules. Consider the set
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of ideals

Ω=
{
AnnR

(
Exti

R(M j, Mk)
)
| i, j,k> 1

}
.

Assume that R has a canonical module. Then the following modules have

annihilator in Ω:

(i) Exti
R(M, N) for i> 1, where M is MCM and N is finitely generated;

(ii) Exti
R(M, N) for i> dimR+1, where M and N are finitely generated.

Proof. (i) Let N be an arbitrary R-module, and consider a minimal MCM

approximation of N

0−→YN −→ XN −→ N −→ 0 ,

so injdimR YN <∞ and XN is MCM. Applying HomR(M,−) and using the

fact that Exti
R(M,YN)= 0 for all i > 0 by Theorem 9.39.3, we get Exti

R(M, N)∼=
Exti

R(M, XN) for i> 1.

(ii) If i> dimR+1, then Exti
R(M, N)∼=Exti−dimR

R (syzR
dimR M, N) and the

result follows from (i).

The set Ω in the statement of Lemma 13.313.3 is of course at most count-

able. The subset of non-maximal prime ideals in Ω

Ω′ =Ω∩ (SpecR \{m})

is then countable as well.

13.4 Theorem. Let (R,m) be an excellent CM local ring of countable CM

type. Assume that R satisfies countable prime avoidance. Then the singular

locus of R has dimension at most one.
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Proof. Set d = dimR, and assume that the singular locus of R has dimen-

sion greater than one. Since R is excellent, SingR is a closed subset of

SpecR, defined by an ideal J such that dimR/J> 2. Consider the set Ω′ of

prime Ext-annihilators. Each p ∈Ω′ contains J. Applying countable prime

avoidance to R/J, we find an element r ∈ m\
⋃
p∈Ω′ p. Choose a minimal

prime q of J + (r); since dimR/J > 2 we have q 6=m, and over course q ∉Ω′.

Enlarging q if necessary, we may assume dimR/q= 1.

Set M = syzR
d−1 R/q and N = syzR

d R/q, and consider a=AnnR
(
Ext1

R(M, N)
)
.

Clearly q is contained in a, as Ext1
R(M, N)∼=Extd

R(R/q, N). Since q contains

J, the localization Rq is not regular, so the residue field Rq/qRq has infinite

projective dimension and Ext1
R(M, N)q 6= 0. Therefore a⊆ q, and we see that

q ∈Ω′, a contradiction.

13.5 Remarks. With a suitable assumption of prime avoidance for sets of

cardinality ℵn, the same proof shows that if R has at most ℵm−1 CM type,

then the singular locus of R has dimension at most m.

Theorem 13.413.4 implies that for an excellent CM local ring of countable

CM type, satisfying countable prime avoidance, there are at most finitely

many non-maximal prime ideals p1, . . . ,pn such that Rpi is not a regular

local ring. Each of these localizations has dimension d−1. Naturally, one

would like to know more about these Rpi . Peeking ahead at the examples

later on in this chapter, we find that in each of them, every Rpi has finite

CM type! Whether or not this holds in general is still an open question.

The next result gives partial information: at least each Rpi has countable

type.
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13.6 Theorem. Let (R,m) be a CM local ring with a canonical module. If R

has countable CM type, then Rp has countable CM type for every p ∈SpecR.

Proof. Let p ∈ SpecR and suppose that {Mα} is an uncountable family of

finitely generated R-modules such that {Mα
p } are non-isomorphic MCM Rp-

modules. For each α there is a MCM approximation of Mα

(13.6.1) χα : 0−→Yα −→ Xα −→ Mα −→ 0

with Xα MCM and injdimR Yα <∞.

Since there are uncountably many MCM modules Xα, there must be

uncountably many of some fixed multiplicity e. The fact that there are

only countably many non-isomorphic MCM modules of multiplicity e then

implies that there are uncountably many short exact sequences

(13.6.2) χβ : 0−→Y β −→ X −→ Mβ −→ 0

where X is a fixed MCM module.

Localize at p; since Mβ
p is MCM over Rp and Y β

p has finite injective

dimension, Ext1
R(Mβ,Y β)p ∼= Ext1

Rp
(Mβ

p ,Y β
p ) = 0 by Prop. 9.49.4. In particular,

the extension χβ splits when localized at p. This implies that Mβ
p | Xp for

uncountably many β, which cannot happen by Corollary 1.161.16

The results above, together with the examples in Section §4§4, suggest a

plausible question:

13.7 Question. Let R be a complete local Cohen-Macaulay ring of dimen-

sion at least one, and assume that R has an isolated singularity. If R has

countable CM type, must it have finite CM type?
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Here is the proof we omitted earlier.

Proof of Lemma 13.213.2. Suppose first that (A,m) is a complete local ring.

Suppose that I 6⊆ pi for each i, but that I ⊆⋃
i pi. Obviously I ⊆m. Since A

is Noetherian, all chains in Spec A are finite, so we may replace each chain

by its maximal element to assume that there are no containments among

the pi.

Construct a Cauchy sequence in A as follows. Choose x1 ∈ I \p1, and

suppose inductively that we have chosen x1, . . . , xr to satisfy

(a) x j ∉ pi, and

(b) xi − x j ∈ I i ∩pi

for all i6 j6 r. If xr ∉ pr+1, put xr+1 = xr. Otherwise, take yr+1 ∈ (Ir ∩ p1 ∩
·· ·∩pr) \pr+1 (this is possible since there are no containments among the

pi) and set xr+1 = xr + yr+1. In either case, we have

(a’) xr+1 ∉ pi for i6 r+1, and

(b’) xr+1−xr ∈mr+1∩p1∩·· ·∩pr, so that if i < r+1 then xi−xr+1 ∈mi∩pi.

By condition (bb), {x1, x2, . . . } is a Cauchy sequence, so converges to x ∈ A.

Since xi − xs ∈ pi for all i6 s, and xi ∉ pi, we obtain xi − x ∈ pi for all i, since

pi is closed in the I-adic topology. Therefore x ∉ pi for all i, as needed.

Now let {uλ}λ∈Λ be an uncountable family of elements of A as in (22) of

Lemma 13.213.2. Take generators a1, . . . ,ak for the ideal I, and for each λ ∈Λ,

set

zλ = a1 +uλa2 +u2
λa3 +·· ·+uk−1

λ ak ∈ I .
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Since {pi} is countable, and I ⊆⋃
pi, there exist some j> 1 and uncountably

many λ ∈ Λ such that zλ ∈ p j. In particular there are distinct elements

λ1, . . . ,λk such that zλi ∈ p j for i = 1, . . . ,k.

The k×k Vandermonde matrix

P =
(
u j−1
λi

)
i, j

has determinant
∏

i 6= j(uλi −uλ j ), so is invertible. But

P
(
a1 · · · ak

)T
=

(
zλ1 · · · zλk

)T
,

so (
a1 · · · ak

)T
= P−1

(
zλ1 · · · zλk

)T
,

which implies I = (a1, . . . ,ak)⊆ p j.

§2 Burban–Drozd triples

Our goal in this section and the next is to classify the complete equichar-

acteristic hypersurfaces of countable CM type in characteristic other than

2. They are the “natural limits” (A∞) and (D∞) of the (An) and (Dn) sin-

gularities. This classification is originally due to Buchweitz, Greuel, and

Schreyer [BGS87BGS87]; they show that in dimension one, a hypersurface of

countable CM type must satisfy an analogue of the simplicity property (see

Chapter 88), and then that only the (A∞) and (D∞) singularities satisfy this

criterion. They then construct all indecomposable MCM modules on these

curve singularities. Since there are only countably many in dimension one,

Knörrer’s periodicity result Corollary ?? gives the result in all dimensions.
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Instead of following this path, we describe a special case of some recent

results of Burban and Drozd [BD10BD10], which proceed to the same conclusion

by way of the surface singularities rather than the curves. In addition to its

satisfying parallels with our treatment of hypersurfaces of finite CM type

in Chapters 55 and 88, this method is also pleasantly akin to the “conductor

square” construction in Chapter 33. It also allows us to write down, in a

manner analogous to §3§3 of Chapter 88, a complete list of the indecompos-

able matrix factorizations over the two-dimensional (A∞) and (D∞) hyper-

surfaces.

13.8 Notation. Throughout this section we consider a reduced, CM, com-

plete local ring (R,m) of dimension 2 which is not normal. (The assumption

that R is reduced is no imposition, thanks to Theorem 13.413.4.) We will im-

pose further assumptions later on, cf. 13.1313.13. Since normality is equivalent

to both (R1) and (S2), this means that R is not regular in codimension one.

Let S be the integral closure of R in its total quotient ring. Since R is com-

plete and reduced, S is a finitely generated R-module (Theorem 3.63.6), which

is a direct product of complete local normal domains, each of which is CM.

Let c = (R :R S) = HomR(S,R) be the conductor ideal as in Chapter 33,

the largest common ideal of R and S. Set R = R/c and S = S/c.

13.9 Lemma. With notation as above we have the following properties.

(i) The conductor ideal c is a MCM module over both R and S.

(ii) The quotients R and S are (possibly non-reduced) one-dimensional

CM rings with R ⊆ S.
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(iii) The diagram

R �
� //

��

S

����

R �
� // S

is a pullback diagram of ring homomorphisms.

Proof. Since c=HomR(S,R), Exercise 4.254.25 implies that c has depth 2 when

considered as an R-module. Since R ⊆ S is a finite extension, c is also MCM

over S.

The conductor c defines the non-normal locus of SpecR. Since for a

height-one prime p of R, Rp is normal if and only if it is regular, and R

is not regular in codimension one, we see that c has height at most one in

R. On the other hand, R is reduced, so its localizations at minimal primes

are fields, and it follows that c has height exactly one in R, hence also in

S since R ⊆ S is integral. Therefore R and S are one-dimensional. Since c

has depth 2, the quotients R and S have depth 1 by the Depth Lemma.

The third statement is easy to check.

Recall from Chapter 55 that the reflexive product of two R-modules M

and N

N ·M = (N ⊗R M)∨∨

is a MCM R-module, where −∨ = HomR(−,ωR). In the special case N = S,

the reflexive product S ·M inherits an S-module structure and so is a MCM

S-module. Recall also that for any (not necessarily reflexive) S-module X ,

there is a short exact sequence (reference Exercises ?? and ?????)

(13.9.1) 0−→ tor(X )−→ X −→ X∨∨ −→ L −→ 0 ,
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where tor(X ) denotes the torsion submodule of N and L is an S-module of

finite length.

Let M be a MCM R-module. Set M = M/cM and S ·M = (S · M)/c(S ·
M), modules over R and S, respectively. By Exercise 13.3213.32, applied to R

and to Rp, respectively, we have M
∨∨ ∼= M/ tor(M) and (S · M)p ∼= (Sp ⊗Rp

Mp)/ tor(Sp⊗Rp Mp).

Finally, let A and B be the total quotient rings of R and S, respectively.

We are thus faced with a commutative diagram of ring homomorphisms

(13.9.2) R �
� //

��

S

����

R �
� //
_�

��

S� _

��
A �
� // B

in which the top square is a pullback. Furthermore, the bottom row is an

Artinian pair in the sense of Chapter 22, and a MCM R-module yields a

module over the Artinian pair, as we now show.

13.10 Lemma. Keep the notation established so far, and let M be a MCM

R-module.

(i) We have B = A⊗R S, that is, if U denotes the set of non-zerodivisors of

R, then B =U−1S. In particular B is a finitely generated A-module.

(ii) The natural homomorphism of B-modules

θM : B⊗A (A⊗R M)
∼=−→ B⊗S (S⊗R M)−→ B⊗S (S ·M)

is surjective.
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(iii) The natural homomorphism of A-modules

A⊗R M −→ B⊗A (A⊗R M)
θM−−→ B⊗S (S ·M)

is injective.

Proof. For the first statement, set C = U−1S. Any b ∈ B can be written

b = c
v where c ∈ C and v is a non-zerodivisor of S. Since C is Artinian, there

is an integer n such that Cvn = Cvn+1, say vn = dvn+1. Then vn(1−dv) = 0

so that dv = 1 in B. This shows that b = dc ∈ C.

The exact sequence (13.9.113.9.1), with N = S⊗R M, shows that the cokernel

of the natural homomorphism S ⊗R M −→ S · M has finite length. Hence

that cokernel vanishes upon tensoring with B and θM is surjective.

To prove (iiiiii), set N = (S ⊗R M)/ tor(S ⊗R M). Then the natural map

M −→ N sending x ∈ M to 1⊗ x is injective. It follows that the restriction

cM −→ cN is also injective. In fact, it is also surjective: for any a ∈ c, s ∈ S,

and x ∈ M, we have

s(s⊗ x)= as⊗ x = 1⊗asx

in the image of cM, since as ∈ c.
Since N is torsion-free, we have an exact sequence

0−→ N −→ N∨∨ −→ L −→ 0

where the duals −∨ are computed over S and L is an S-module of finite

length. It follows that the cokernel of the restriction cN,→cN∨∨ also has fi-

nite length. Consider the composition g : M −→ N −→ N∨∨ and the induced
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diagram

0 // cM //

f
��

M //

g
��

M //

h
��

0

0 // cN∨∨ // N∨∨ // N∨∨ // 0

with exact rows, where f is the restriction of g to cM. Since g is injective

and the cokernel of f has finite length, the Snake Lemma implies that kerh

has finite length as well. Thus A ⊗R h : A ⊗R M −→ A ⊗R N∨∨ is injective.

Finally we observe that A⊗R h is the natural homomorphism in (iiiiii), since

(S ·M)p ∼= (Sp⊗Rp Mp)/ tor(Sp⊗Rp Mp) for all primes p minimal over c.

13.11 Definition. Keeping all the notation introduced in this section so

far, consider the following category of Burban–Drozd triples BD(R). The

objects of BD(R) are triples (N,V ,θ), where

• N is a MCM S-module,

• V is a finitely generated A-module, and

• θ : B⊗AV −→ B⊗S N is a surjective homomorphism of B-modules such

that the composition

V −→ B⊗A V θ−→ B⊗S N

is injective.

The induced map of A-modules V −→ B⊗S N is called a gluing map.

A morphism between to triples (N,V ,θ) and (N ′,V ′,θ′) is a pair ( f ,F)

such that f : V −→V ′ is a homomorphism of A-modules and F : N −→ N ′ is
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a homomorphism of S-modules combining to make the diagram

B⊗A V
θV //

1⊗ f
��

B⊗S N

1⊗F
��

B⊗A V ′
θV ′
// B⊗S N ′

commutative.

The category of Burban–Drozd triples is finer than the category of mod-

ules over the Artinian pair A,→B, since the homomorphism F above must

be defined over S rather than just over B. In particular, an isomorphism of

pairs ( f ,F) : (V , N) −→ (V ′, N ′) includes as part of its data an isomorphism

of S-modules F : N −→ N ′, of which there are fewer than isomorphisms of

B-modules B⊗S N −→ B⊗S N ′.

13.12 Theorem (Burban–Drozd). Let R be a reduced CM complete local

ring of dimension 2 which is not an isolated singularity. Let F be the functor

from MCM R-modules to BD(R) defined on objects by

F(M)= (S ·M, A⊗R M,θM) .

Then F is an equivalence of categories.

Lemma 13.1013.10 shows that the functor F is well-defined. The proof that

it is an equivalence is somewhat technical. For the applications we have in

mind, a more restricted version suffices.

13.13 Assumptions. We continue to assume that R is a two-dimensional,

reduced, CM, complete local ring and that S 6= R is its normalization. Let c

be the conductor and R = R/c, S = S/c. We impose two additional assump-

tions.
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(i) Assume that S is a regular ring. Since R is Henselian, this is equiv-

alent to S being a direct product of regular local rings. Every MCM

S-module is thus projective.

(ii) Assume that R = R/c is also a regular local ring, that is, a DVR.

It follows that S is a free R-module, and even more, that a finitely

generated S module is MCM if and only if it is free over R. Also,

the total quotient ring A of R is a field.

Under these simplifying assumptions, we may define a category of mod-

ified Burban-Drozd triples BD′(R) as follows: it consists of triples (N, X , θ̃),

where

• N is a finitely generated projective S-module,

• X ∼= R
(n)

is a free R module of finite rank, and

• θ̃ : X −→ N = N ⊗S S is a split injection of R-modules such that the

induced homomorphism

B⊗R X −→ B⊗S N

is a split surjection.

Morphisms of modified triples are defined as in the un-modified case.

Assume the restrictions of 13.1313.13, and let M be a MCM R-module. Since

S is a regular ring of dimension 2, the reflexive S-module S · M is in fact

projective. Furthermore, the natural homomorphism of R-modules M −→
S ·M is obtained by applying HomR(c,−) to the short exact sequence 0 −→
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c−→ R −→ R −→ 0. In particular, we have the short exact sequence

(13.13.1) 0−→ M −→ S ·M −→Ext1
R(R, M)−→ 0 .

The cokernel Ext1
R(R, M) is annihilated by c, so is naturally an R-module.

Moreover, it has depth 1 by the Depth Lemma, so is free over R since R is

a DVR. The induced sequence of R-modules

M
θ̃M−−→ S ·M −→Ext1

R(R, M)−→ 0

is thus split exact on the right. The projective S-module S ·M is torsion-

free as an R-module, so the torsion submodule of M must be in the kernel of

the map to S ·M. On the other hand, the kernel is torsion, since it vanishes

upon passing to the localization A by Lemma 13.1013.10(iiii). Thus we have a

short exact sequence

0−→ (M)∨∨ −→ S ·M −→Ext1
R(R, M)−→ 0

which is even split exact over R. That the induced map θM : B⊗R (M)∨∨ −→
B⊗S (S · M) is split surjective follows from Lemma 13.1013.10(iiiiii) and the fact

that S ·M is S-projective, so B⊗S (S ·M) is B-projective. These considera-

tions show that the functor F from MCM R-modules to BD′(R), given by

F (M)= (S ·M, (M)∨∨, θ̃M)

is well-defined.

We now define a quasi-inverse functor G from BD′(R) to MCM R-modules,

still under the assumptions 13.1313.13. Let (N, X , θ̃) be an object of BD′(R). Let
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π : N −→ N = S ⊗S N be the natural projection, and define M by the pull-

back diagram

(13.13.2) M //

��

N

π
��

X
θ̃

// N

of R-modules. Since θ̃ is a split injection of torsion-free modules over the

DVR R, cok θ̃ is an R-module of depth 1. This cokernel is isomorphic to the

cokernel of M −→ N, and it follows that depthR M = 2, so that M is a MCM

R-module. Define

G (N, X , θ̃)= M .

13.14 Theorem. The functors F and G are inverses on objects, namely, for

a MCM R-module M and a modified Burban-Drozd triple (N, X , θ̃), we have

GF (M)∼= M

and

FG (N, X , θ̃)∼= (N, X , θ̃) .

Proof. For the first assertion, it suffices to show that

M //

��

S ·M
π
��

(M)∨∨
θ̃

// S ·M

is a pullback diagram. We have already seen that the homomorphisms

M −→ S·M and (M)∨∨ −→ S ·M have the same cokernel, namely Ext1
R(R, M).

It follows from the Snake Lemma that

ker(M −→ (M)∨∨)∼= ker(S ·M −→ S ·M) .
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From this it follows easily that M is the pullback of the diagram above.

For the converse, let (N, X , θ̃) be an object of BD′(R) and let M be defined

by the pullback (13.13.213.13.2). Then cok(M −→ N) is isomorphic to cok(θ̃ : X −→
N), and is in particular an R-module. The Snake Lemma applied to the

diagram

0 // cM //� _

��

M //� _

��

M //

��

0

0 // cN // N // N // 0

gives an exact sequence

0−→ ker(M −→ N)−→ cok(cM −→ cN)−→ cok(M −→ N) .

This shows that cok(cM −→ cN) is annihilated by c2, so in particular is a

torsion R-module.

Now the diagram

0 // cM //� _

��

M // M //

��

0

0 // cN // M // X // 0

implies that M −→ X is surjective with torsion kernel. Therefore X ∼=
M/ tor(M)∼= (M)∨∨.

The inclusion M,→N induces a homomorphism S ·M −→ N of reflexive

S-modules, so in particular of reflexive R-modules. It suffices by Exer-

cise 13.3913.39 to prove that this is an isomorphism in codimension 1 in R, that

is, (S · M)p −→ Np is an isomorphism for all height-one primes p ∈ SpecR.
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Over Rp, the localization of (13.13.213.13.2) is still a pullback diagram.

Mp
//

��

(S ·M)p // Np

��

(M)p // Np

Since (S ·M)p ∼= (Sp⊗Rp Mp)/ tor(Sp⊗Rp Mp) and the bottom line is a module

over the Artinian pair A,→B, we can use the machinery of Chapter 33 to see

that (S ·M)p ∼= Np.

§3 Hypersurfaces of countable CM type

We apply Theorem 13.1413.14 to obtain the complete classification of indecom-

posable MCM modules over the two-dimensional (A∞) and (D∞) complete

hypersurface singularities, and derive the Buchweitz–Greuel–Schreyer char-

acterization of hypersurfaces of countable type:

13.15 Theorem (Buchweitz–Greuel–Schreyer). Let R = k[[x, y, z2, . . . , zn]]/( f )

be a complete hypersurface singularity with k an algebraically closed un-

countable field of characteristic different from 2. Then R has countably

infinite CM type if and only if R ∼= k[[x, y, z2 . . . , zn]]/(g+ z2
2 +·· ·+ z2

n), where

g ∈ k[x, y] is one of the following:

(A∞) g = x2, or

(D∞) g = x2 y.

By Corollary ??, the proof of Theorem 13.1513.15 reduces to considering hy-

persurfaces of any fixed dimension. We’ll use the results of the previous
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section to show that the two-dimensional (A∞) and (D∞) hypersurfaces

have countable type. For the converse, we will use a variant of the notion

of simplicity, cf. §2§2.

Throughout, we assume that k is a field. If the characteristic of k is

different from 2, let i be an element with i2 =−1.

13.16 Proposition. Let R = k[[x, y, z]]/(x2 + z2) be an (A∞) hypersurface

singularity with k a field of characteristic other than 2. Let M be an in-

decomposable non-free MCM R-module. Then M is isomorphic to cok(zI −
ϕ, zI +ϕ), where ϕ is one of the following matrices over k[[x, y]].

•
(
ix

)
or

(
−ix

)

•

−ix y j

ix

 for some j> 1

In particular R has countable CM type.

Observe that the indecomposable matrix factorizations for the (A∞) sin-

gularity are the “limits” of the matrix factorizations for (An) (cf. 8.198.19) as

n −→∞, since high powers are very small in an adic topology.

Proof. For simplicity in the proof we replace x by ix to assume that

R = k[[x, y, z]]/(z2 − x2) .

The integral closure S of R is then

S = R/(z− x)×R/(z+ x)

with the normalization homomorphism ν : R −→ S = S1 ×S2 given by the

diagonal embedding ν(r)= (r, r). In particular, S is a regular ring.
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Put another way, S is the R-submodule of the total quotient ring gener-

ated by the orthogonal idempotents

e1 = z+ x
2z

∈ S1 and e2 = z− x
2z

∈ S2 ,

which are the identity elements of S1 and S2 respectively. In these terms,

ν(r)= r(e1 + e2) for r ∈ R.

The conductor of S into R is the ideal c= (x, z)R = (x, z)S, so that

R = k[[x, y, z]]/(x, z)∼= k[[y]]

is a DVR, and S ∼= R×R is a direct product of two copies of R. The inclusion

ν : R −→ S is again diagonal, ν(r) = (r, r). Finally, the quotient field A of

R is k((y)), which embeds diagonally into B = k((y))× k((y)). Thus all the

assumptions of 13.1313.13 are verified, and we may apply Theorem 13.1413.14.

Let (N, X , θ̃) be an object of BD′(R), so that N ∼= S(p)
1 ⊕ S(q)

2 for some

p, q > 0, while X ∼= R
(n)

for some n and θ̃ : X −→ N is a split injection.

The gluing morphism θ : B⊗R X −→ B⊗S N is thus a linear transformation

of A-vector spaces B(n) −→ B(p) ⊕B(q). More precisely, θ̃ defines a pair of

matrices

(θ1,θ2) ∈ Mp×n(A)×Mq×n(A)

representing an embedding

θ =
θ1

θ2

 : A(n) −→ B(p) ⊕B(q)

such that θ is injective (has full column rank) and both θ1 and θ2 are sur-

jective (full row rank). Thus in particular we have max(p, q)6 n6 p+ q.
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Two pairs of matrices (θ1,θ2) and (θ′1,θ′2) define isomorphic Burban-

Drozd triples if and only if there exist isomorphisms

f : A(n) −→ A(n)

F1 : S(p)
1 −→ S(p)

1

F2 : S(q)
2 −→ S(q)

2

such that as homomorphisms B(n) −→ B(p) and B(n) −→ B(q) we have

θ′1 = F−1
1 θ1 f

θ′2 = F−1
2 θ2 f .

See Exercise 13.3713.37 for a guided proof of the next Lemma.

13.17 Lemma. The indecomposable objects of BD(R) are

(i)
(
S1,R, ((1),;)

)
and

(
S2,R, (;, (1))

)
(ii)

(
S1 ×S2,R, ((1), (1))

)
(iii)

(
S1 ×S2,R,

(
(1), (y j)

))
and

(
S1 ×S2,R,

(
(y j), (1)

))
for some j> 1.

Now we derive the matrix factorizations corresponding to the listed

Burban–Drozd triples. The pullback diagram corresponding to the triple(
S1,R, ((1),;)

)
M //

��

S1

��

R (
1;

) // S1

clearly gives M ∼= S1 = cok(z− x, z+ x), the first component of the normal-

ization. Similarly, the triple
(
S2,R, (;, (1))

)
yields M ∼= S2 = cok(z+ x, z− x).
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The diagonal map ((1), (1)) : R −→ S1 × S2 obviously defines the free

module R. By symmetry, it suffices now to consider the Burban–Drozd

triple (S1 ×S2,R, ((1), (y j))). The pullback diagram

M //

��

S1 ×S2

��

R ( 1
y j

) // S1 ×S2

defines M as the module of ordered triples of polynomials

( f (y), g1(x, y, x), g2(x, y,−x)) ∈ R×S1 ×S2

such that f − g1 ∈ cS1 and y j f − g2 ∈ cS2. This is equal to the R-submodule

of S generated by c= (x, z)= (z+x, z−x) and e1+ y j e2, where again e1 = (z+
x)/2z and e2 = (z− x)/2z are idempotent. Multiplying by the nonzerodivisor

(2z) j = ((z− x)+ (z+ x)) j to knock the generators down into R, we find

(x, z, e1 + y j e2)S ∼= (2z) j
(
z+ x, z− x,

z+ x
2z

+ y j z− x
2z

)
=

(
(z+ x) j+1, (z− x) j+1, (2z) j

( z+ x
2z

) j
+ y j(2z) j

( z− x
2z

) j
)

=
(
(z+ x) j+1, (z− x) j+1, (z+ x) j + (z− x) j y j

)
=

(
(z− x) j, (z+ x) j + (z− x) j y j

)
.

The matrix factorizationz+ x y j

z− x

 ,

z− x −y j

z+ x


provides a minimal free resolution of this ideal and finishes the proof.

As an aside, we note that the restriction on the characteristic of k could

be removed by working instead with the hypersurface defined by xz instead
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of x2 + z2. In characteristic not two, of course they are isomorphic, and the

former can be shown to have countable type in all characteristics.

13.18 Proposition. Let R = k[[x, y, z]]/(x2 y+z2) be a (D∞) hypersurface sin-

gularity, where k is a field of arbitrary characteristic. Let M be an indecom-

posable non-free MCM R-module. Then M is isomorphic to cok(zI−ϕ, zI+ϕ)

for ϕ one of the following matrices over k[[x, y]].

•

 −y

x2



•

 −xy

x



•



−xy

−y j+1 xy

x

y j −x

 for some j> 1

•



−xy

−y j+1 x

x

y j+1 −xy

 for some j> 1

In particular R has countable CM type.

Observe once more that the indecomposable matrix factorizations for

the (D∞) singularity are limits as n −→∞ of the matrix factorizations for

(Dn), cf. 8.208.20.
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Proof. In this case, the integral closure of R is obtained by adjoining the

element t = z
x of the quotient field, so S = R

[ z
x
]
. The maximal ideal of R

is then (x, y, z)R = (x, t2, tx)R and that of S is (x, t)S. In particular, S is a

regular local ring. The conductor is now c = (x, z)R = (x, tx)S = xS, so that

R = R/(x, z) ∼= k[[t2]] and S = S/(x) ∼= k[[t]] are both DVRs, with ν : R −→ S

the obvious inclusion. The Artinian pair A = k((t2)) −→ B = k((t) is thus a

field extension of degree 2.

Let (N, X , θ̃) be an object of BD′(R). The normalization S being regular

local, N ∼= S(n) is a free S-module, while X ∼= R
(m)

is a free R-module. The

gluing map θ : B⊗AV ∼= B(m) −→ B(n) ∼= B⊗S N is thus simply an n×m matrix

over B with full row rank. The condition that the composition A(m) −→ B(n)

be injective amounts to writing θ = θ0 + tθ1 and requiring
(
θ0
θ1

)
: A(m) −→

A(2n) ∼= B(n) to have full column rank as a matrix over A. In particular we

have n6m6 2n.

Two n×m matrices θ,θ′ over B define isomorphic Burban–Drozd triples

if and only if there exist isomorphisms

f : A(m) −→ A(m) and F : S(n) −→ S(n)

such that, when considered as matrices over B, we have

θ′ = F−1θ f .

In other words, we are allowed to perform row operations over S = k[[t]]

and column operations over A = k((t2)).

13.19 Lemma. The indecomposable objects of BD(R) are

(i)
(
S,R, (1)

)
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(ii)
(
S,R, (t)

)
(iii)

(
S,R

(2)
, (1 t)

)
(iv)

(
S(2),R

(2)
,
(

1 t
td

))
for some d> 1.

We leave the proof of Lemma 13.1913.19 as Exercise 13.3813.38.

The MCM R-module corresponding to
(
S,R, (1)

)
is given by the pullback

M //

��

S

��

R // S

where the bottom line is the given inclusion of A = k((t2)) into B = k((t)), so

is clearly the free module R. In (S,R, (t)), the natural inclusion is replaced

by multiplication by t. The pullback M is the R-submodule of S generated

by c = (x, z) and t = z
x . Multiplying through by the non-zerodivisor x, we

find

M ∼= (x2, xz, z)R

= (x2, z)R

∼= cok

 z y

−x2 z

 ,

 z −y

x2 z

 .

The Burban–Drozd triple
(
S,R, (1 t)

)
is defined by the isomorphism

θ : A (1 t)−−−→ B, so corresponds to the normalization S, which has matrix fac-

torization  z xy

−x z

 ,

z −xy

x z

 .
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Finally, let M be the R-module defined by the pullback

M //

��

S2

��

R
(2) ( 1 t

td 0

)// S(2)
.

Then M is the R-submodule of S(2) generated by cS(2) and the elements 1

td

 ,

 t

0

 .

Substitute t = z
x to see that the generators are thereforex

0

 ,

z

0

 ,

0

x

 ,

0

z

 ,

 1

zd/xd

 , and

z/x

0

 .

Notice that the second generator is a multiple of the last. Multiplication by

x on the first component and xd on the second is injective on S2, so M1 is

isomorphic to the module generated byx2

0

 ,

 0

xd+1

 ,

 0

xd z

 ,

 x

zd

 , and

z

0

 .

Observe that x2

0

= x

 x

zd

−
 0

xzd

 ,

so we may replace the first generator by
(

0
xzd

)
, getting

M =
〈 0

xzd

 ,

 0

xd+1

 ,

 0

xd z

 ,

 x

zd

 ,

z

0

〉
.



342 Countable Cohen–Macaulay type

At this point we distinguish two cases. If d = 2m is even, then using the

relation xy2 =−z2 in R,

xzd = xz2m = xx2m ym = xd+1 ym

up to sign, so the first generator is a multiple of the second. If d = 2m+1 is

odd, then

xzd = xz2m+1 = xx2m ymz = xd+1 ymz

again up to sign, so that again the first generator is a multiple of the sec-

ond. In either case, M is generated by〈 x

zd

 ,

 0

xd z

 ,

z

0

 0

xd+1

 ,

〉
.

Now, it’s easy to check that in the case where d = 2 j+1, j> 0, is odd,

M ∼= cok





z −xy

z −y j+1 x

x z

y j+1 −xy z

 ,



z xy

z y j+1 −x

−x z

−y j+1 xy z




and in case d = 2 j, j> 0, is even,

M ∼= cok





z −xy

z −y j+1 xy

x z

y j −xy z

 ,



z xy

z y j+1 −xy

−x z

−y j xy z




(after a permutation of the generators).

Now that we have seen that the (A∞) and (D∞) hypersurface singulari-

ties have countable CM type (in all dimensions, by Corollary ??), we modify
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the definition of a simple singularity (see Section ??) to show that these are

the only ones.

13.20 Definition. Let (S,n) be a regular local ring and R = S/( f ) a hyper-

surface singularity, with f a non-zero non-unit. We say R is a countably

simple singularity (relative to the given presentation) if there are at most

countably many ideals I ⊆ S such that f ∈ I2.

The proof of the next proposition is exactly similar to that of Theo-

rem ??.

13.21 Proposition. If a hypersurface ring R = S/( f ) as above has countable

CM type, then R is a countably simple singularity.

To prove the converse, we need a weakening of (some Lemma in Chap-

ter 88).

13.22 Lemma. Let k be an algebraically closed uncountable field of charac-

teristic different from 2, and let f ∈ k[[z0, z1]] be a non-reduced power series

such that the quotient R = k[[z0, z1]]/( f ) is countably simple. Then for all

x, y ∈m we have

(i) f ∉ (x, y)4, and

(ii) f ∉ (x3, x2 y2, xy4, y6)= (x, y2)3.

Proof. If either (ii) or (iiii) fails, then we have seen already in (something

from Chapter 88) that f is not countably simple: in the first case take

Iλ = (λ0x+λ1 y)+ (x, y)2, [λ0 :λ1] ∈P1
k;
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and in the second

Iλ = (x+λy2, y3), λ ∈ k .

Then f ∈ I2
λ

for all λ in either case.

13.23 Proposition. Let k be algebraically closed field of characteristic not

equal to 2, and f ∈ k[[u,v]] a non-reduced power series satisfying (ii) and (iiii)

of Lemma 13.2213.22. Then there is a coordinate system x0, y0 ∈ (u,v) such that

either

f = x2
0 or f = x2

0 y0 .

In particular the hypersurface ring R = k[[u,v]]/( f ) is isomorphic to one of

the (A∞) or (D∞) hypersurface singularities.

Proof. As k[[u,v]] is a UFD, we write f = α f e1
1 · · · f er

r with α a unit, each

f i irreducible, and e i > 1 for i = 1, . . . , r. Since f is non-reduced, we have

e i > 2 for at least one i, say e1. By (iiii), we must have e1 < 3 as well, so

e1 = 2. We see from (ii) that f has multiplicity at most 3, which forces r6 2

and each f i to have non-zero linear term. Set x0 =
p
α f1, so that f = x2

0 f e2
2

with e2 ∈ {0,1}. Now if e2 = 0, then we have f = x2
0, while if e2 = 1 we take

y0 = f2 so that f = x2
0 y0.

Proof of Theorem 13.1513.15. Putting together the pieces, we see from Prop. 13.2113.21

that countable CM type implies countable simplicity, which implies either

the (A∞) or (D∞) singularity by Lemma 13.2213.22 and Prop. 13.2313.23. Since the

(A∞) and (D∞) singularities have countable type by Propositions 13.1613.16

and 13.1813.18, the circle closes.

The equations defining the (A∞) and (D∞) hypersurface singularities

are natural limiting cases of the (An) and (Dn) equations as n −→∞. Even
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more, we saw that the indecomposable matrix factorizations over (A∞) and

(D∞) are limits of those over (An) and (Dn).

13.24 Question. Are all CM local rings of countable CM type “natural lim-

its” of a “series of singularities” of finite CM type? For those that are, are the

indecomposable MCM modules “limits” of MCM modules over singularities

in the series?

To address the question, of course, the first order of business must be

to give meaning to the phrases in quotation marks. This is problematic, as

Arnold remarked [Arn81Arn81]: “Although the series undoubtedly exist, it is not

at all clear what a series of singularities is.”

§4 Other examples

Besides the hypersurface examples of the last section, very few nontrivial

examples of countable CM type are known. In this section we present a

few, taken from Schreyer’s survey article [Sch87Sch87].

In dimension one, we have the following example, which will return

triumphantly in Chapter 1515.

13.25 Example. Consider the one-dimensional (D∞) hypersurface singu-

larity R = k[[x, y]]/(x2 y), where k is a field of arbitrary characteristic. Set

E =EndR(m), where m= (x, y) is the maximal ideal. Then we claim that

E ∼= k[[x, y, z]]/(yz, x2 − xz, xz− z2)

∼= k[[a,b, c]]/(ab,ac, c2) .

In particular E is local, so has countable CM type by Lemma 3.93.9.
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That the two alleged presentations of E are isomorphic is a simple mat-

ter of a linear change of variables:

a = z , b = y , c = x− z .

To show that in fact E is isomorphic to A = k[[x, y, z]]/(yz, x2 − xz, xz−
z2), note that the element x + y of R is a non-zerodivisor, and that the

fraction z := x2

x+y is easily checked to be in EndR(m) but not in R. Now E =
HomR(m,R) since m does not have a free direct summand, and it follows by

duality over the Gorenstein ring R that E/R ∼=Ext1
R(R/m,R)∼= k. Therefore

E = R[z]. Since

z2 = x2(x+ y)2

(x+ y)2 = x2 ∈m ,

E is local. One verifies the relations yz = 0 and x2 = xz = z2 in E. Thus

we have a surjective homomorphism of R-algebras A −→ E. Since R is a

subring of E, and the inclusion R,→E factors through A, we see that R is

also a subring of A, and that the surjection A −→ E fixes R.

The induced homomorphism A/R −→ E/R is still surjective, and in fact

is bijective since A/R is simple as well. It follows from the Five Lemma

that A −→ E is an isomorphism.

By Lemma 3.93.9, the indecomposable MCM E-modules are precisely the

non-free indecomposable MCM R-modules. By Theorem ?? and Propo-

sition 13.1813.18, these are the cokernels of the following matrices over R =
k[[x, y]]/(x2 y):

(y); (x2); (x); (xy) x

y j −x

 ;

 xy

y j+1 −xy

 ;

 x

y j+1 −xy

 ;

 xy

y j+1 −x
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for j> 1.

For two-dimensional examples, we note that the proof of Herzog’s The-

orem 5.25.2 applies equally well to give the following.

13.26 Proposition. Quotients of the two-dimensional (A∞) and (D∞) hy-

persurface singularities by a linearly acting finite group of invertible order

have at most countable CM type.

13.27 Example. Let R be the two-dimensional (A∞) hypersurface R =
k[[x, y, z]]/(xy), where k is an algebraically closed field of characteristic not

2, and let the cyclic group Z/rZ act on R, the generator sending (x, y, z) to

(x,ζr y,ζr z), where ζr is a primitive rth root of unity. The invariant subring

is generated by x, yr, yr−1z, . . . , zr, and is thus isomorphic to the quotient of

k[[t0, t1, . . . , tr, x]] by the 2×2 minors oft0 · · · tr−1 0

t1 · · · tr x

 .

13.28 Example. Let R be the two-dimensional (D∞) hypersurface k[[x, y, z]]/(x2 y−
z2), where k is an arbitrary field. Let r = 2m+1 be an odd positive integer,

and let Z/rZ act on R by the action sending (x, y, z) 7→ (ζ2
r x,ζ−1

r y,ζm+2z).

The ring of invariants is complicated to describe in general. If m = 1, it

is generated by x3, xy2, y3, z and hence is isomorphic to

k[[a,b, c, z]]/I2

 a z2 b

z2 b c

 .

If m = 2, there are 7 generating invariants

x5, x3 y, x3z, xy2, xyz, y5, y4z ,
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and 15 relations among them. When m = 4, the greatest common divisor of

m+2 and 2m+1 is no longer 1, and things get really weird.

13.29 Remark. As Schreyer points out [Sch87Sch87], the phenomenon observed

in Question 13.2413.24 repeats here. The one-dimensional example E is ob-

tained as a limit of the endomorphism rings of the maximal ideals of Dn:

EndDn(m)∼= k[[x, y, z]]/In ,

where In is the ideal of 2×2 minors of
(

y x−z 0
x−z yn z

)
.

Similarly, for example 13.2713.27 we may take the quotient of k[[t0, t1, . . . , tr+1]]

by the 2×2 minors of t0 · · · tr−1 tn
r

t1 · · · tr tr+1

 ,

and for example 13.2813.28 with m = 1, we take the quotient of k[[a,b, c,d]] by

the maximal minors of d2 +an c b

b d2 a

 .

As assured by Theorem 6.196.19, both of these are invariant rings of a finite

group acting on power series, the first for a cyclic group action Cnr−n+1,n,

and the second by a binary dihedral D2+3n,2+2n (cf. [Sch87Sch87, Rie81Rie81]).

These examples add some strength to Question 13.2413.24. We also mention

the related question, first asked by Schreyer [Sch87Sch87]:

13.30 Question. Is every CM local ring of countable CM type a quotient of

one of the (A∞) or (D∞) hypersurface singularities by a finite group action?
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Burban and Drozd have recently announced a negative answer to this

question [BD10BD10]. Namely, set

Am,n = k[[x1, x2, y1, y2, z]]/(x1 y1, x1 y2, x2 y1, x2 y2, x1z− xn
2 , y1z− ym

2 ) .

Then Am,n has countable CM type for every n,m> 0. For n = m this ring is

isomorphic to a ring of invariants of the (A∞) hypersurface, but for m 6= n

it is not.

§5 Exercises

13.31 Exercise. Let R =Q[x, y, z](x,y,z)/(x2). The completion R̂ =Q[[x, y, z]]/(x2)

has a two-dimensional singular locus and therefore has uncountable CM

type. Since R is countable, only countably many indecomposable R̂-modules

are used in direct-sum decompositions of modules of the form R̂ ⊗R M, for

MCM R-modules M. Thus the set U in the proof of Theorem 11.111.1 is prop-

erly contained in the set of all MCM R̂-modules.

13.32 Exercise. Let R be a one-dimensional CM local ring with canonical

module ω, and let M be a finitely generated R-module. Prove that M∨∨ ∼=
M/ tor(M).

13.33 Exercise. Assume that R is a CM local ring which is Gorenstein in

codimension one. Prove that M∗∗ ∼= M∨∨.

13.34 Exercise. Prove S =EndR(c).

13.35 Exercise. Prove that we can compute double duals over R or S, as

we like.
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13.36 Exercise. Let R be a CM local ring and M a reflexive R-module

which is locally free in codimension one. Show that M ·N ∼= HomR(M∗, N).

Conclude that S ·N ∼=HomR(c, N).

13.37 Exercise. Prove Lemma 13.1713.17, that the listed Burban-Drozd triples

are a full set of representatives for the indecomposables of BD′(R), along

the following lines.

• The listed forms are pairwise non-isomorphic and cannot be further

decomposed.

• Every object of BD′(R) splits into direct summands with either n =
p = q or n = p+ q. (Consider the complement of (kerθ1)+ker(θ2) in

A(n).)

• In the case n = p+ q, the object further splits into direct summands

with either n = p or n = q. Any triple with n = p or n = q can be com-

pletely diagonalized, giving one of the factors of the normalization.

• If n = p = q, . . . (proof commented out)

13.38 Exercise. Prove Lemma 13.1913.19, that the listed Burban-Drozd triples

are a full set of representatives for the indecomposables of BD′(R), along

the following lines.

• The listed forms are pairwise non-isomorphic and cannot be further

decomposed.
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• The m×n matrix θ can be reduced (using the rules of Lemma 13.1913.19)

to the block form

td1 Is1 A1,2 · · · A1,ν A1,ν+1

td2 Is2 · · · A2,ν A2,ν+1

. . .
...

...

tdν Isν Aν,ν+1


where

– d1 < d2 < ·· · < dν and d1 = 0 or 1.

– Each entry of A i, j has order in t at least di +1 for 16 i6 ν and

16 j6 ν+1.

– Each entry of A i, j has order in t at most d j for 1 6 i 6 ν and

16 j6 ν.

• If A1, j = 0 for all j = 2, . . . ,ν+1, then either (1) or (t) is a direct sum-

mand of θ and we are done by induction on the number of rows.

• If A1, j 6= 0 for some j 6 ν, write A1, j = td1B1, j for some matrix B1, j

with entries in k[[t]]. Show that we may assume B1, j has entries in

k[[t2]], and then diagonalize over k[[t2]] to assume B1, j =
(

Is′ 0
0 0

)
. If

s′ = 0, return to the previous step, while if s′ > 0, split out one of1 t

td j

 or

t t2

td j

 .

• Consider two cases for each of the above matrices: d j = 1 versus d j 6=
1 in the first matrix, and d j = 2 versus d j 6= 2 in the second. Split out

one of the forms listed in Lemma 13.1913.19 in each case.
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• Finally, if A1, j = 0 for all j = 2, . . . ,ν but A1,ν+1 6= 0, then one of (1), (t),

(1 t), or (t t2)∼ (1 t) is a direct summand of θ.

13.39 Exercise. Generalize Lemma 4.124.12 as follows. Let R be a CM re-

duced two-dimensional complete local ring, not necessarily normal, and let

f : M −→ N be a homomorphism of MCM R-modules. Then f is an isomor-

phism if and only if fp : Mp −→ Np is an isomorphism for every height-one

prime p of R.



14
The Brauer–Thrall Conjectures
In a brief abstract published in the 1941 Bulletin of the AMS [Bra41Bra41], R.

D. Brauer announced that he had found sufficient conditions for a finite-

dimensional algebra A over a field k to have infinitely many non-isomorphic

indecomposable finitely generated modules. Some years later, R. M. Thrall

[Thr47Thr47] claimed similar results: he wrote that Brauer had in fact given

three conditions, each sufficient to ensure that A has indecomposable mod-

ules of arbitrarily high k-dimension, and he gave a fourth sufficient con-

dition. These were stated in terms of the so-called “Cartan invariants”

[ANT44ANT44, p. 106] of the rings A, A/rad(A), A/rad(A)2, etc. Neither Brauer

nor Thrall ever published the details of their work, leaving it to Thrall’s

student J. P. Jans [Jan57Jan57] to publish them. Jans attributes to Brauer

and Thrall the following conjectures. Let’s say that a finite-dimensional

k-algebra A has bounded representation type if the k-dimensions of inde-

composable finitely generated A-modules are bounded, and strongly un-

bounded representation type if A has infinitely many non-isomorphic mod-

ules of k-dimension n for infinitely many n.

14.1 Conjecture ( Brauer–Thrall Conjectures). Let A be a finite-dimensional

algebra over a field k.

I. If A has bounded representation type then A actually has finite rep-

resentation type.

II. Assume that k is infinite. If A has unbounded representation type,

then A has strongly unbounded representation type.

353
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Both conjectures are now theorems. Brauer–Thrall I is due to A. V. Roı̆ter[Roı̆68Roı̆68],

while Brauer–Thrall II was proved (as long as k is perfect) by L. A. Nazarova

and Roı̆ter [NR73NR73]. See [Rin80Rin80] or [Gus82Gus82] for some history on these re-

sults. (It’s perhaps interesting to note that Auslander gave a proof of

Roı̆ter’s theorem for arbitrary Artinian rings [Aus74Aus74]—with length stand-

ing in for k-dimension—and that this is where “almost split sequences”

made their first appearance.)

We import the definition of bounded type to the context of MCM mod-

ules almost verbatim. Recall that the multiplicity of a finitely generated

module M over a local ring R is denoted e(M).

14.2 Definition. We say that a CM local ring R has bounded CM type

provided there is a bound on the multiplicities of the indecomposable MCM

R-modules.

If an R-module M has constant rank r, then it is known that e(M) =
re(R). Thus for modules with constant rank, a bound on multiplicities is

equivalent to a bound on ranks.

The first example showing that that bounded and finite type are not

equivalent in the context of MCM modules, that is, that Brauer–Thrall

I fails, was given by Dieterich in 1980 [Die80Die80]: Let k be a field of char-

acteristic 2, let A = k[[x]], and let G be the two-element group. Then

the group ring AG has bounded but infinite CM type. Indeed, note that

AG ∼= k[[x, y]]/(y2) (via the map sending the generator of the group to y−1).

Thus AG has multiplicity 2 but is analytically ramified, whence AG has

bounded but infinite CM type by Theorem 3.183.18. In fact, as we saw in Chap-

ter 1313, k[[x, y]]/(y2) has (countably) infinite CM type for every field k.
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Theorem 3.103.10 says, in part, that if an analytically unramified local ring

(R,m,k) of dimension one with infinite residue field k fails to have finite

CM type, then R has |k| indecomposable MCM modules of every rank n.

Thus, for these rings, finite CM type and bounded CM type are equiva-

lent, just as for finite-dimensional algebras, and moreover Brauer–Thrall

II even holds for these rings. In this chapter we present the proof, due

independently to Dieterich [Die87Die87] and Yoshino [Yos87Yos87], of Brauer–Thrall

I for all complete, equicharacteristic, CM isolated singularities over a per-

fect field (Theorem 14.2114.21) and show how to use the results of the previ-

ous chapters to weaken the hypothesis of completeness to that of excel-

lence. We also give a new proof (independent of the one in Chapter 33) that

Brauer–Thrall II holds for complete one-dimensional reduced rings with

infinite residue field (Theorem 14.2814.28). The latter result uses Smalø’s “in-

ductive step”(Theorem 14.2714.27) for building infinitely many indecomposables

in a higher rank from infinitely many in a lower one.

§1 The Harada-Sai Lemma

We will reduce the proof of the first Brauer–Thrall conjecture to a state-

ment about modules of finite length, namely the Harada–Sai Lemma 14.414.4.

In this section we give Eisenbud–de la Peña’s proof [EdlP98EdlP98] of Harada–

Sai, and in the next section we show how to extend it to MCM modules.

The Lemma gives an upper bound on the lengths of non-zero paths in the

Auslander–Reiten quiver. To state it, we make a definition.
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14.3 Definition. Let R be a commutative ring and let

(14.3.1) M1
f1−→ M2

f2−→ ·· · fs−1−−−→ Ms

be a sequence of homomorphisms between R-modules. We say (14.3.114.3.1) is a

Harada-Sai sequence if

(i) each Mi is indecomposable of finite length;

(ii) no f i is an isomorphism; and

(iii) the composition fs−1 fs−2 · · · f1 is non-zero.

Fitting’s Lemma (Exercise 1.251.25) implies that, in the special case where

Mi = M and f i = f are constant for all i, the longest possible Harada–Sai

sequence has length `(M)−1, where as usual `(M) denotes the length of

M. In general, the Harada–Sai Lemma gives a bound on the length of a

Harada-Sai sequence in terms of the lengths of the modules.

14.4 Lemma. Let (14.3.114.3.1) be a Harada-Sai sequence with the length of each

Mi bounded above by b. Then s6 2b −1.

In fact we will prove a more precise statement, which determines ex-

actly which sequences of lengths `(Mi) are possible in a Harada–Sai se-

quence.

14.5 Definition. The length sequence of a sequence (14.3.114.3.1) of modules of

finite length is the integer sequence λ= (`(M1),`(M2), . . . ,`(Ms)).
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We define special integer sequences as follows:

λ(1) = (1)

λ(2) = (2,1,2)

λ(3) = (3,2,3,1,3,2,3)

and, in general, λ(b) is obtained by inserting b at the beginning, the end,

and between every two entries of λ(b−1). Alternatively,

λ(b+1) = (λ(b) +1,1,λ(b) +1) ,

where 1 is the sequence of all 1s. Notice that λ(b) is a list of 2b −1 integers.

We say that one integer sequence λ of length n embeds in another

integer sequence µ of length m if there is a strictly increasing function

σ : {1, . . . ,n}−→ {1, . . . ,m} such that λi =µσ(i).

Lemma 14.414.4 follows from the next result.

14.6 Theorem. There is a Harada–Sai sequence with length sequence λ if

and only if λ embeds in λ(b) for some b.

Proof. First let

(14.6.1) M1
f1−→ M2

f2−→ ·· · fs−1−−−→ Ms

be a Harada–Sai sequence with length sequence λ = (λ1, . . . ,λs). Set b =
max{λi}. If b = 1, then each Mi is simple. As the composition is non-zero

and no f i is an isomorphism, the length of the sequence must be 1. Thus

λ= (1) embeds in λ(1) = (1).

Suppose then that b > 1. If two consecutive entries of λ are both equal

to b, say λi =λi+1 = b, then we may insert some indecomposable summand
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of im( f i) between Mi and Mi+1, chosen so that the composition is still non-

zero. This gives a new Harada–Sai sequence, one step longer. Thus we may

assume that no two consecutive λi are equal to b.

Observe that any sub-composition g = f j f j−1 · · · f i : Mi −→ M j+1, with

i 6 j, is a non-isomorphism. Indeed, if g were an isomorphism, then

f i : Mi −→ Mi+1 would be injective, so that `(Mi+1)> `(Mi). Then

Mi
f i−→ Mi+1

f j f j−1··· f i+1−−−−−−−−→ M j
g−1

−−→ Mi

is the identity on Mi, so f i is a split monomorphism. This contradicts the

indecomposability of Mi+1.

Let λ′ be the integer sequence gotten from λ by deleting every occur-

rence of b. Then λ′ is the length sequence of the Harada–Sai sequence

obtained by “collapsing” (14.6.114.6.1): for each Mi having length equal to b,

delete Mi and replace the pair of homomorphisms f i and f i+1 by the com-

position f i+1 f i : Mi−1 −→ Mi+1. By induction λ′ embeds into λ(b−1). Since

every second element of λ(b) is b and the b’s in λ never repeat, this can be

extended to an embedding λ−→λ(b).

For the other direction, it suffices by the same “collapsing” argument to

show that there is a Harada–Sai sequence with length sequence equal to

λ(b). We state this separately as Example 14.714.7 below.

14.7 Example. There is a Harada–Sai sequence with length sequence λ(b)

for every b> 1. We construct examples over the ring R = k[x, y]/(xy), where

k is an arbitrary field, following [EdlP98EdlP98].

For any (non-commutative) word ω in the symbols x and y, we build an

indecomposable R-module M(ω) of length one more than the length of ω.
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Let M(ω) be the vector space spanned by basis vectors ea, one for each let-

ter a ∈ {x, y} in ω, together with an additional distinguished basis element

?. Let s(a) denote the successor of a in ω, and p(a) the predecessor; we

interpret ? as the last letter of ω, so that p(?) is the last x or y appearing

in ω, and s(?) is empty. Define the R-module structure on the elements

ea ∈ M(ω) by

yea =


es(a) if a = y, and

0 otherwise,
xea =


ep(a) if p(a)= x, and

0 otherwise.

Further define x? to be the last x or y appearing in ω, and finally set

y? = 0. Note two things: that in particular xy and yx both annihilate all

basis vectors ea and ?, so that M(ω) is an R-module, and that ? ∉ xM(ω).

For example, if ω = 1 is the empty word, then M(ω) is the simple R-

module generated by ?.

Here is an example to clarify. Suppose ω = yx2 y2x3; then M(ω) has 9

basis vectors, which we represent by bullets and ?, and the multiplication

table is given by the following “string diagram.”

?x
uu•x

tt
y
**

•x
tt• y

**
•x

tt
• y

**
•x

tt• •

For the example, it is clear that M(yx2 y2x3) is indecomposable, since

the string diagram is connected. In general, the same observation suffices

to see that M(ω) is indecomposable for all ω.

We will construct inductively Harada–Sai sequences εb with length se-

quence λ(b). Every homomorphism in these sequences will take basis ele-
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ments to basis elements; in particular, they will take? to ?, so the compo-

sition will be non-zero. For b = 1, take ε1 to be the trivial sequence with a

single module M(1).

Suppose εb has the form

εb : M(ω1)−→ M(ω2)−→ ·· · −→ M(ω2b−1)

where the lengths of M(ωi) are given by the sequence λ(b) and each map

takes ? to ?. Observe that for any ω, the module M(ω) is naturally a

submodule of M(ωx), where we take the new ? to be the newly added basis

element. If f : M(η) −→ M(ω) is a homomorphism taking ? to ?, then f

naturally extends to f̃ : M(ηx) −→ M(ωx), taking the new ? to the new ?.

Applying this operation to εb yields

ε̃b : M(ω1x)−→ M(ω2x)−→ ·· · −→ M(ω2b−1 x)−→ ·· · −→ M(ω2b−1x) .

Since the (2b−1)th entry of λ(b) is 1, we see that ω2b−1 was the empty word

1, so that ω2b−1 x = x. We truncate ε̃b at M(ω2b−1 x) = M(x), dropping the

right-hand half.

Next, observe that R admits a k-algebra automorphism defined by in-

terchanging x and y; this also induces a map on words ω, sending ω to, say,

ω̂. Again, if f : M(η) −→ M(ω) is a homomorphism preserving ?, then we

obtain f̂ : M(ω̂)−→ M(η̂) with f̂ (?)=?. Following this inversion with the ?̃

operation described above gives

ε̂b : M(ω̂2b−1x)−→ ·· · −→ M(ω̂2b−1 x)−→ ·· · −→ M(ω̂2x)−→ M(ω̂1x) .

We again truncate at the (2b−1)th stage, this time dropping the left-hand
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half, and define α to be the sequence

M(ω1x) //M(ω2x) // · · · //M(ω2b−1 x)

M(x)

M(ω̂2b−1 x) // · · · //M(ω̂2x) //M(ω̂1x) .

As each homomorphism in the sequence α takes ? to ?, and ? is outside

the radical of each module, we may extend α one step to the right, with

the map M(ω̂1x) −→ M(1) sending ? to ? and killing all the other basis

elements.

Finally, the k-vector space dual −∨ = Homk(−,k) is a functor on R-

modules. We take the distinguished element of Homk(M(ω),k) to be the

dual basis element corresponding to the distinguished element ? of M(ω).

We have M(1)∨ ∼= M(1), so we may splice α together with α∨ to obtain

εb+1 : α−→ M(1)∼= M(1)∨ −→α∨

which has length vector
(
λ(b) +1,1,λ(b) +1

)=λ(b+1).

§2 Faithful systems of parameters

The goal of this section is to prove an analogue of the Harada–Sai Lemma 14.414.4

for MCM modules. We will reduce to the case of finite-length modules by

killing a particularly nice regular sequence: one that preserves indecom-

posability, non-isomorphism, and even non-split short exact sequences of

MCM modules.
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Throughout, (R,m,k) is a CM local ring of dimension d. We will need to

impose additional restrictions later on; see Theorem 14.2014.20 for the full list.

14.8 Definition. Let x= x1, . . . , xd be a system of parameters for R. We say

x is a faithful system of parameters if x annihilates Ext1
R(M, N) for every

pair of R-modules with M MCM.

In what follows, we write x2 for the system of parameters x2
1, . . . , x2

d.

Here is the basic property of faithful systems of parameters that makes

them well suited to our purposes.

14.9 Proposition. Let x= x1, . . . xd be a faithful system of parameters, and

let M and N be MCM R-modules. For every homomorphism ϕ : M/x2M −→
N/x2N, there exists ϕ̃ ∈ HomR(M, N) such that ϕ and ϕ̃ induce the same

homomorphism M/xM −→ N/xN.

It’s interesting to observe the similarity of this statement to Guralnick’s

Lemma 1.111.11. The statement could even be given the same form: a comm-

utative rectangle consisting of two squares, the bottom of which also com-

mutes, though the top square might not.

Proof. Our goal is the case i = 0 of the following statement: there exists a

homomorphism

ϕi : M/
(
x2

1, . . . x2
i
)
M −→ N/

(
x2

1, . . . , x2
i
)
N

such that ϕi ⊗R R/(x) = ϕ⊗R R/(x). We prove this by descending induction

on i, taking ϕd =ϕ for the base case i = d.
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Assume that ϕi+1 has been constructed. Then it suffices to find a homo-

morphism ϕi : M/
(
x2

1, . . . x2
i
)
M −→ N/

(
x2

1, . . . , x2
i
)
N with the following stronger

property:

ϕi ⊗R R/
(
x2

1, . . . , x2
i , xi+1

)=ϕ⊗R R/
(
x2

1, . . . , x2
i , xi+1

)
,

for then of course killing x1, . . . , xi, xi+2, . . . , xd we obtain ϕi ⊗R R/(x) =ϕ⊗R

R/(x).

Set yi = x2
1, . . . , x2

i and zi = x2
1, . . . , x2

i , xi+1. Then we have a commutative

diagram with exact rows (as N is MCM and xi+1 is an R-regular element)

0 // N/yiN
x2

i+1 //

xi+1
��

N/yiN // N/yi+1N //

��

0

0 // N/yiN
xi+1 // N/yiN // N/ziN // 0 .

Apply HomR(M,−) to obtain a commutative exact diagram

HomR(M, N/yiN) // HomR(M, N/yi+1N) //

��

Ext1
R(M, N/yiN)

xi+1
��

HomR(M, N/yiN) // HomR(M, N/ziN) // Ext1
R(M, N/yiN) .

By the definition of a faithful system of parameters, the right-hand vertical

map is zero. We have ϕi+1 living in HomR(M, N/yi+1N) in the middle of the

top row, and an easy diagram chase delivers ϕi in the top-left corner such

that ϕi ⊗R R/(zi)∼=ϕi+1 ⊗R R/(zi).

Here are the main consequences of Proposition 14.914.9. The first and third

corollaries are sometimes called “Maranda’s Theorem,” having first been

proven by Maranda [Mar53Mar53] in the case of the group ring of a finite group

over the ring of p-adic integers, and extended by Higman [Hig60Hig60] to arbi-

trary orders over complete discrete valuation rings.
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14.10 Corollary. Let x be a faithful system of parameters for R, and let

M and N be MCM R-modules. Suppose that ϕ : M/x2M −→ N/x2N is an

isomorphism. Then there exists an isomorphism ϕ̃ : M −→ N such that ϕ̃⊗R

R/(x)=ϕ⊗R R/(x).

Proof. Proposition 14.914.9 gives us the homomorphism ϕ̃; it remains to see

that ϕ̃ is an isomorphism. Since ϕ̃ is surjective modulo x2, it is at least

surjective by NAK. Similarly, applying the Proposition to ϕ−1, we find

that there is a surjection ϕ̃−1 : N −→ M. By Exercise 3.253.25, the surjection

ϕ̃−1ϕ̃ : M −→ M is an isomorphism, so ϕ̃ is as well.

14.11 Corollary. Let x be a faithful system of parameters for R, and let

s : 0−→ N i−→ E
p−→ M −→ 0 be a short exact sequence of MCM modules. Then

s is non-split if and only if s⊗R R/(x2) is non-split.

Proof. Sufficiency is clear: a splitting for s immediately gives a splitting for

s⊗RR/(x2). For the other direction, suppose p = p⊗RR/(x2) is a split epimor-

phism. Then there exists ϕ : M/x2M −→ E/x2E such that pϕ is the identity

on M/x2M. Let ϕ̃ : M −→ E be the lifting guaranteed by Proposition 14.914.9.

Then (pϕ̃)⊗R R/(x) is the identity on M/xM, so pϕ̃ is an isomorphism. Thus

s is split.

14.12 Corollary. Assume that R is Henselian. Let x be a faithful system of

parameters for R, and let M be a MCM R-module. Then M is indecompos-

able if and only if M/x2M is indecomposable.

Proof. Again, we have only to prove one direction: if M decomposes non-

trivially, then so must M/x2M by NAK. For the other direction, assume that
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M is indecomposable. Then EndR(M) is a nc-local ring since R is Henselian

(see Chapter 11). We have a commutative diagram

EndR(M) //

τ
%%

EndR(M/x2M)

π
ww

EndR(M/xM)

where each map is the natural one induced by tensoring with R/(x) or

R/(x2). Let e ∈EndR(M/x2M) be an idempotent; we’ll show that e is either 0

or 1, so that M/x2M is indecomposable. The image π(e) of e in EndR(M/xM)

is still idempotent, and is contained in τ(EndR(M)) by Proposition 14.914.9.

Since EndR(M) is nc-local, so is its homomorphic image τ(EndR(M)), so

π(e) is either 0 or 1.

If π(e) = 0, then e⊗R R/(x) = 0, so that e(M/x2M) ⊆ x(M/x2M). But e

is idempotent, so that im(e) = im(e2) ⊆ im(x2) = 0 and so e = 0. If π(e) = 1,

then the same argument applies to 1− e, giving e = 1.

To address the existence of faithful systems of parameters, consider a

couple of general lemmas. We leave the proof of the first as an exercise.

The second is an easy special case of [Wan94Wan94, Lemma 5.10].

14.13 Lemma. Let Γ be a ring, I an ideal of Γ, and Λ = Γ/I. Then AnnΓ I

annihilates Ext1
Γ(Λ,K) for every Γ-module K .

14.14 Lemma. Let Γ be a ring, I an ideal of Γ, and Λ=Γ/I. Let

(14.14.1) L
ϕ−→ M

ψ−→ N

be an exact sequence of Γ-modules. Then the homology H of the complex

(14.14.2) HomΓ(Λ,L)
ϕ∗−−→HomΓ(Λ, M)

ψ∗−−→HomΓ(Lambda, N)
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is annihilated by AnnΓ I.

Proof. Let K = kerϕ and X = imϕ, and let η : L −→ X be the surjection

induced by ϕ. Then applying HomΓ(Λ,−), we see that the cohomology of

(14.14.214.14.2) is equal to the cokernel of HomΓ(Λ,η) : HomΓ(Λ,L)−→HomΓ(Λ, X ).

This cokernel is also a submodule of Ext1
Γ(Λ,K), so we are done by the pre-

vious lemma.

We will apply Lemma 14.1414.14 to the homological different HT(R) of a ho-

momorphism T −→ R, where R is as above a CM local ring and T is a reg-

ular local ring. Recall from Appendix BB that if A −→ B is a homomorphism

of commutative rings, we let µ : B⊗A B −→ B be the multiplication map de-

fined by µ(b⊗ b′) = bb′, and we set J = kerµ. The homological different

HA(B) is then defined to be

HA(B)=µ(AnnB⊗AB J ) .

Notice that for any two B-module M and N, HomA(M, N) is naturally a

B⊗AB-module via the rule [ϕ(b⊗b′)](m)=ϕ(bm)b′ for any ϕ ∈HomA(M, N),

m ∈ M, and b,b′ ∈ B. Since for any B⊗A B-module X , HomB⊗AB(R, X ) is the

submodule of X annihilated by J , and J is generated by elements of the

form b⊗1−1⊗b, we see that

HomB⊗AB(B,HomA(M, N))=HomB(M, N)

for all M, N. Thus in particular HomB(M, N) is a B⊗A B-module as well,

with structure via the map µ.
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14.15 Proposition. Let R be a CM local ring and let T ⊆ R by a regular

local ring such that R is a finitely generated T-module. Then HT(R) an-

nihilates Ext1
R(M, N) for every MCM R-module M and arbitrary R-module

N.

Proof. Let 0−→ N −→ I0 −→ I1 −→ I2 −→ ·· · by an injective resolution of N

over R. Since M is MCM over R, it is finitely generated and free over T,

and the complex

HomT(M, I0)
ϕ−→HomT(M, I1)

ψ−→HomT(M, I2)

is exact. Apply HomR⊗T R(R,−); by the discussion above the result is

HomR(M, I0)
ϕ∗−−→HomR(M, I1)

ψ∗−−→HomR(M, I2) .

The homology H of this complex is naturally Ext1
R(M, N), and is by Lemma 14.1414.14

annihilated by AnnR⊗T R J . Since the R ⊗T R-module structure on these

Hom modules is via µ, we see that HT(R) = µ(AnnR⊗T R J ) annihilates

Ext1
R(M, N).

Put H(R)=∑
T HT(R), where the sum is over all regular local subrings T

of R such that R is a finitely generated T-module. It follows immediately

from Proposition 14.1514.15 that H(R) annihilates Ext1
R(M, N) whenever M is

MCM.

Let us now introduce a more classical ideal, the Jacobian. Let T be

a Noetherian ring and R a finitely generated T-algebra. Then R has a

presentation R = T[x1, . . . , xn]/( f1, . . . , fm) for some n and m. The Jacobian

ideal of R over T is the ideal JT(R) in R generated by the n×n minors of
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the Jacobian matrix (∂ f i/∂x j)i j. We set J(R) = ∑
T JT(R), where again the

sum is over all regular subrings T of R over which R is module-finite.

One can see ([Wan94Wan94, Prop. 5.8] or Exercise 14.3014.30) that JT(R) ⊆HT(R)

for every T, so that J(R)⊆H(R). Thus we have

14.16 Corollary. Let R be a CM local ring and let J(R) be the Jacobian

ideal of R. Then J annihilates Ext1
R(M, N) for every pair of R-modules M,

N with M MCM.

There are two problems with this result. The first is the question of

whether any regular local subrings T as in the definition of J(R) actually

exist. Luckily, Cohen’s structure theorems assure us that when R is com-

plete and contains its residue field k, there exist plenty of regular local

rings T = k[[x1, . . . , xd]] over which R is module-finite.

The second problem is that J(R) may be trivial if the residue field is not

perfect.

14.17 Remark. If R = T[x]/( f (x)), then it is easy to see that JT(R) is the

ideal of R generated by the derivative f ′(x). Thus in the case when R is

a hypersurface R = k[[x1, . . . , xd]], J(R) is the ideal of R generated by the

partial derivatives ∂ f /∂xi of f . If k is not perfect, this ideal can be zero.

For example, suppose that k is an imperfect field of characteristic p,

and let α ∈ k\kp. Put R = k[[x, y]]/(xp−αyp). Then J(R)= 0. Note that R is

a one-dimensional domain, so is an isolated singularity. Thus in particular

J does not define the singular locus of R.

To address this second problem, we appeal to Nagata’s Jacobian Crite-

rion for smoothness of complete local rings [GD64GD64, 22.7.2] (see also [Wan94Wan94,
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Props. 4.4 and 4.5]).

14.18 Theorem. Let (R,m,k) be an equidimensional complete local ring

containing its residue field k. Assume that k is perfect. Then the Jacobian

ideal J(R) of R defines the singular locus: for a prime ideal p, Rp is a

regular local ring if and only if J(R) 6⊆ p.

This immediately gives existence of faithful systems of parameters, and

our extension of the Harada–Sai Lemma to MCM modules. We leave the

details of the proof of existence as an exercise (Exercise 14.3114.31).

14.19 Theorem (Yoshino). Let (R,m,k) be a complete CM local ring con-

taining its residue field k. Assume that k is perfect and that R has an

isolated singularity. Then R admits a faithful system of parameters.

14.20 Theorem (Harada–Sai for MCM modules). Let R be an equicharac-

teristic complete CM local ring with perfect residue field and an isolated sin-

gularity. Let x be a faithful system of parameters for R. Let M0, M1, . . . , M2n

be indecomposable MCM R-modules, and let f i : Mi −→ Mi+1 be homomor-

phisms that are not isomorphisms. If `(Mi/x2Mi) 6 n for all i = 0, . . . ,2n,

then f2n−1 · · · f2 f1 ⊗R R/(x2)= 0.

Proof. Set M̃i = Mi/x2Mi and f̃ i = f i ⊗R R/(x2). Then M̃0
f̃0−→ . . .

�f2n−1−−−→ �M2n

is a sequence of indecomposable modules, each with length at most n, in

which no f̃ i is an isomorphism. It is too long to be a Harada–Sai sequence,

however, so we conclude f2n · · · f2 f1 ⊗R R/(x2)= 0.
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§3 Proof of Brauer–Thrall I

We’re now ready for the proof of the following theorem, proved indepen-

dently in the complete case by Dieterich [Die87Die87] and Yoshino [Yos87Yos87]. See

also [PR90PR90] and [Wan94Wan94].

14.21 Theorem. Let (R,m,k) be an excellent equicharacteristic CM local

ring with algebraically closed residue field k. Then R has finite CM type if

and only if R has bounded CM type and at most an isolated singularity.

Of course one direction of the theorem follows immediately from Aus-

lander’s Theorem 6.126.12, and requires no hypotheses apart from Cohen–

Macaulayness. The content of the theorem is that bounded type and iso-

lated singularity together imply finite type. We need k to be algebraically

closed to use the AR quiver.

We begin by considering the complete case, and at the end of the section

we show how to relax this restriction. When R is complete and has at most

an isolated singularity, we have access to the Auslander-Reiten quiver of

R, as well as to faithful systems of parameters. In this case, we will prove

14.22 Theorem. Let (R,m,k) be a complete equicharacteristic CM local

ring with algebraically residue field k. Assume that R has at most an iso-

lated singularity. Let Γ be the AR quiver of R and Γ◦ a non-empty connected

component of Γ. If there exists an integer B such that e(M) 6 B for all

[M] ∈Γ◦, then Γ=Γ◦ and Γ is finite. In particular R has finite CM type.

Here is the strategy of the proof. Assume that Γ◦ is a connected com-

ponent of Γ with bounded multiplicities. We want to show that for any
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[M] and [N] in Γ, if either of [M] or [N] is in Γ◦ then there is a path from

[M] to [N] in Γ, and furthermore that such a path can be chosen to have

bounded length. To do this, we assume no such path exists and derive a

contradiction to the Harada–Sai Lemma 14.2014.20.

We fix notation as in Theorem 14.2214.22: (R,m,k) is a complete equichar-

acteristic CM local ring with perfect residue field k and with an isolated

singularity. Let Γ be the AR quiver of R. By Theorem 14.1914.19 there exists

a faithful system of parameters x for R. We say that a homomorphism

ϕ : M −→ N between R-modules is non-trivial modulo x2 if ϕ⊗R R/(x2) 6= 0.

Abusing notation slightly, we also say that a path in Γ is non-trivial mod-

ulo x2 if the corresponding composition of irreducible maps is non-trivial

modulo x2.

14.23 Lemma. Fix a non-negative integer n. Let M and N be indecom-

posable MCM R-modules and ϕ : M −→ N a homomorphism which is non-

trivial modulo x2. Assume that there is no directed path in Γ from [M] to

[N] of length < n which is non-trivial modulo x2. Then the following two

statements hold.

(i) There is a sequence of homomorphisms

M = M0
f1−→ M1

f2−→ ·· · fn−→ Mn
g−→ N

with each Mi indecomposable, each f i irreducible, and the composi-

tion gfn · · · f1 non-trivial modulo x2.

(ii) There is a sequence of homomorphisms

M h−→ Nn
gn−−→ Nn−1

gn−1−−−→ ·· · g1−→ N0 = N
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with each Ni indecomposable, each g i irreducible, and the composi-

tion g1 · · · gnh non-trivial modulo x2.

Proof. We prove part (iiii); the other half is similar.

If n = 0, then we may simply take h = ϕ : M −→ N. Assume therefore

that n > 0, there is no directed path of length < n from [M] to [N] which is

non-trivial modulo x2, and that we have constructed a sequence of homo-

morphisms

M h−→ Nn−1
gn−1−−−→ ·· · g1−→ N0 = N

with each Ni indecomposable, each g i irreducible, and the composition

g1 · · · gn−1h non-trivial modulo x2. We wish to insert an indecomposable

module Nn into the sequence, extending it by one step. There are two

cases, according to whether or not Nn−1 is free.

If Nn−1 is not free, then there is an AR sequence 0 −→ τ(Nn−1) i−→ E
p−→

Nn−1 −→ 0 ending in Nn−1. Since there is no path from [M] to [N] of length

n − 1, we see that h is not an isomorphism, so is not a split surjection

since M and Nn−1 are both indecomposable. Therefore h factors through

E, say as M α−→ E
p−→ Nn−1. Write E as a direct sum of indecomposable

MCM modules E = ⊕r
i=1 E i, and decompose α and q accordingly, M

αi−→
E

pi−→ Nn−1. Each pi is irreducible by Proposition 10.2510.25, and there must

exist at least one i such that g1 · · · gn−1 piαi is non-trivial modulo x2. Set

Nn = E i and gn = pi, extending the sequence one step.

If Nn−1 is free, then Nn−1
∼= R, and the image of M is contained in m

since h is not an isomorphism. Let 0 −→ Y i−→ X
p−→ m −→ 0 be a minimal

MCM approximation of m. (If dimR 6 1, we take X =m and Y = 0.) The

homomorphism h : M −→ m factors through X as M α−→ X
p−→ m. Decom-
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pose X =⊕r
i=1 X i where each X i is indecomposable, and write p =∑r

i=1 pi,

where pi : X i −→m. By Proposition 10.2710.27, each composition X i
pi−→m,→R

is an irreducible homomorphism, and again we may choose i so that the

composition g1 · · · gn−1 piαi is non-trivial modulo x2.

14.24 Lemma. Let Γ◦ be a non-empty connected component of the AR quiver

Γ of R, and assume that `(M/x2M)6m for every [M] in Γ◦. Let ϕ : M −→ N

be a homomorphism between indecomposable MCM R-modules which is

non-trivial modulo x2, and assume that either [M] or [N] is in Γ◦. Then

there is a directed path of length < 2m from [M] to [N] in Γ which is non-

trivial modulo x2. In particular, both [M] and [N] are in Γ◦ if either one

is.

Proof. Assume that [N] is in Γ◦. If there is no directed path of length < 2m

from [M] to [N], then by Lemma 14.2314.23 there is a sequence of homomor-

phisms

M h−→ Nn
gn−−→ Nn−1

gn−1−−−→ ·· · g1−→ N0 = N

with each Ni indecomposable, each g i irreducible, and the composition

g1 · · · g2m h non-trivial modulo x2. Since Γ◦ is connected, each [Ni] is in

Γ◦, so that `(Ni/x2Ni)6 m for each i. By the Harada–Sai Lemma 14.2014.20,

g1 · · · g2m is trivial modulo x2, a contradiction.

A symmetric argument using the other half of Lemma 14.2314.23 takes care

of the case where [M] is in Γ◦.

We are now ready for the proof of Brauer–Thrall I in the complete case.

Keep notation as in the statement of Theorem 14.2214.22.
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Proof of Theorem 14.2214.22. We have e(M) 6 B for every [M] in Γ◦. Choose t

large enough that mt ⊆ (x2), where x is the faithful system of parameters

guaranteed by Theorem 14.1914.19. Then (see Appendix AA) `(M/x2M)6 tdimRB

for every [M] in Γ◦. Set m = tdimRB.

Let M be any indecomposable MCM module such that [M] is in Γ◦. By

NAK, there is an element z ∈ M \x2M. Define ϕ : R −→ M by ϕ(1)= z; then

ϕ is non-trivial modulo x2. By Lemma 14.2414.24, [R] is in Γ◦, and is connected

to [M] by a path of length < 2m in Γ◦.

Now let [N] be arbitrary in Γ. The same argument shows that there is

a homomorphism ψ : R −→ N which is non-trivial modulo x2, whence [N]

is in Γ◦ as well, connected to [R] by a path of length < 2m. Thus Γ=Γ◦, and

since Γ is a locally finite group of finite diameter, Γ is finite.

To complete the proof of Theorem 14.2114.21, we need to know that for R

an excellent isolated singularity, the hypotheses ascend to the completion

R̂, and the conclusion descends back down to R. We have verified most of

these details in previous chapters, and all that remains is to assemble the

pieces.

Proof of Theorem 14.2114.21. Let R be as in the statement of the theorem, so

that R is excellent and has a perfect coefficient field. If R has finite CM

type, then R has at most an isolated singularity by Theorem 6.126.12, and of

course R has bounded CM type.

Suppose now that R has bounded CM type and at most an isolated

singularity. Since R is excellent, both the Henselization Rh and the com-

pletion R̂ have isolated singularities as well (this was verified in the course
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of the proof of Corollary 11.1311.13). In particular, Rh is Gorenstein on the

punctured spectrum, so by Proposition 11.911.9, every MCM Rh-module M is a

direct summand of an extended MCM R-module N. Since R has bounded

CM type, we can write N as a direct sum of MCM R-modules Ni of bounded

multiplicity. Using KRS over Rh, we deduce that M is a direct summand

of some Ni ⊗R Rh, thereby getting a bound on the multiplicity of M. Thus

Rh has bounded CM type as well.

Next we must verify that bounded CM type ascends from Rh to R̂. An

arbitrary MCM R̂-module M is locally free on the punctured spectrum of R̂,

since R̂ has at most an isolated singularity. Thus by Elkik’s Theorem 11.1211.12,

M is extended from the Henselization. It follows immediately that R̂ has

bounded CM type.

By Theorem 14.2214.22, R̂ has finite CM type. This descends to R by Theo-

rem 11.111.1, completing the proof.

One cannot completely remove the hypothesis of excellence in Theo-

rem 14.2114.21. For example, let S be any one-dimensional analytically rami-

fied local domain. It is known [Mat73Mat73, pp. 138–139] that there is a one-

dimensional local domain R between S and its quotient field such that

e(R) = 2 and R̂ is not reduced. Of course R is not excellent. Then R has

bounded but infinite CM type by Theorem 3.183.18, and of course R has an

isolated singularity.
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§4 Brauer–Thrall II in dimension one

The second Brauer–Thrall conjecture for MCM modules is known in only

a few special cases. See [Die87Die87], [PR90PR90], [PR91PR91] for some results in this

direction.

The results of Chapter 33 imply Brauer–Thrall II for one-dimensional

reduced rings with algebraically closed residue field. Here we give another

proof in the same context. This proof rests on an inductive step, due to

Smalø [Sma80Sma80], for concluding from the existence of infinitely many in-

decomposable modules of a given multiplicity, infinitely many of a higher

multiplicity. Smalø’s result is quite general, and we feel it deserves to be

better-known.

We need two lemmas aimed at controlling the growth of multiplicity as

one walks through an AR quiver. The first is a general fact about Betti

numbers [Avr98Avr98, Lemma 4.2.7].

14.25 Lemma. Let (R,m,k) be a CM local ring of dimension d and multi-

plicity e, and let M be a finitely generated R-module. Then

µR(syzR
n+1(M))6 (e−1)µR(syzR

n (M))

for all n > d−depth M.

Proof. We may replace M by syzR
d−depth M(M) to assume that M is MCM. We

may also assume that the residue field k is infinite, by passing if necessary

to an elementary gonflement R′ = R[t]m[t], which preserves the multiplicity

of R and number of generators of syzygies of M. In this case, there exists an

R-regular and M-regular sequence x= x1, . . . , xd such that e(R)= e(R/(x))=
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`(R/(x)), and we have µR(syzR
n (M)) = µR/(x)(syzR/(x)

n (M ⊗R R/(x))). We are

thus reduced to the case where R is Artinian of length e.

In a minimal free resolution F• of M, we have syzR
n+1(M)⊆mFn, so that

(e−1)µR(syzR
n (M))= `(mFn)> `(syzR

n+1(M))>µR(syzR
n+1(M)) ,

for all n> 1.

14.26 Lemma. Let (R,m) be a complete CM local ring with algebraically

closed residue field, and assume that R has an isolated singularity. Then

there exists a constant c = c(R) such that if X −→Y is an irreducible homo-

morphism of MCM R-modules, then e(X )6 ce(Y ) and e(Y )6 ce(X ).

Proof. Recall from Chapter 1010 that the Auslander-Reiten translate τ is

given by τ(M) = HomR(syzR
d Tr M,ω), where ω is the canonical module for

R. We first claim that

(14.26.1) e(τ(M))6 e(e−1)d+1 e(M) ,

where e = e(R) is the multiplicity of R. To see this, it suffices to prove

the inequality for e(syzR
d Tr M), since dualizing into the canonical mod-

ule preserves multiplicity. By Lemma 14.2514.25, we have only to prove that

e(Tr M)6 e(e−1)e(M). Let F1 −→ F0 −→ M −→ 0 be a minimal free presen-

tation of M, so that F∗
0 −→ F∗

1 −→Tr M −→ 0 is a free presentation of Tr M.

Then

e(Tr M)6 e(F∗
1 )= e µR(syzR

1 (M))6 e(e−1)µR(M)6 e(e−1)e(M) ,

finishing the claim.
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Now to the proof of the lemma. We may assume that X and Y are

indecomposable. First suppose that Y is not free. Then there is an AR

sequence

0−→ τ(Y )−→ E −→Y −→ 0

ending in Y , and X is a direct summand of E by Proposition 10.2510.25. Then

e(E)= e(τ(Y ))+e(Y )

6 [e(e−1)d+1 +1]e(Y )

so e(X )6 [e(e−1)d+1 +1]e(Y ).

Now suppose that Y ∼= R is free. Then X is a direct summand of the

MCM approximation E of the maximal ideal m by Proposition 10.2510.25, so

e(X )6 e(E) is bounded in terms of e(R).

The other inequality is similar.

14.27 Theorem (Smalø). Let (R,m) be a complete CM local ring with alge-

braically closed residue field, and assume that R has an isolated singular-

ity. Assume that {Mi |i ∈ I } is an infinite family of pairwise non-isomorphic

indecomposable MCM R-modules of multiplicity b. Then there exists an

integer b′ > b, a positive integer t, and a subset J ⊆ I with |J| = |I| such

that there is a family
{
N j | j ∈ J

}
of pairwise non-isomorphic indecompos-

able MCM R-modules of multiplicity b′. Furthermore there exist non-zero

homomorphisms M j −→ N j, each of which is a composition of t irreducible

maps.

Proof. Set s = 2b −1. First observe that since the AR quiver of R is locally

finite, there are at most finitely many Mi such that there is a chain of
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strictly fewer than s irreducible maps starting at Mi and ending at the

canonical module ω. Deleting these indices i, we obtain J′ ⊆ I.

Each Mi remaining is MCM, so HomR(Mi,ω) is non-zero. By NAK,

there exists ϕ ∈ HomR(Mi,ω) which is non-trivial modulo x2. Hence by

Lemma 14.2314.23 there is a sequence of homomorphisms

Mi = Ni,0
f i,1 // Ni,1

f i,2 // · · · // Ni,s−1
f i,s // Ni,s

g // ω

with each Ni, j indecomposable, each f i, j irreducible, and the composition

g i f i,s · · · f i,1 non-trivial modulo x2.

By the Harada–Sai Lemma 14.2014.20, not all the Ni, j can have multiplicity

less than or equal to b. So there exists J′′ ⊆ J′, of the same cardinality, and

t6 s such that e(Ni,t)> b for all i.

Applying Lemma 14.2614.26 to the irreducible maps connecting Mi to Ni,t,

we find that

b < e(Ni,t)6 ct e(Ni,0)= ctb

for some constant c depending only on R. There are thus only finitely many

possibilities for e(Ni.t) as i ranges over J′′, and we take J′′′ ⊆ J′′ such that

e(Ni,t)= b′ > b for all i ∈ J′′′.

There may be some repetitions among the isomorphism classes of the

Ni,t. However, for any indecomposable MCM module N, there are only

finitely many M with chains of irreducible maps of length t from M to N,

so each isomorphism class of Ni,t occurs only finitely many times. Pruning

away these repetitions, we finally obtain J = J′′′′ ⊆ I as desired.

Since we have proved in Chapter 33 that a one-dimensional local ring

(R,m,k) with reduced completion, infinite residue field, and infinite CM
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type has at least |k| distinct MCM modules of rank one, we conclude that

such a ring has strongly unbounded CM type:

14.28 Theorem. Let (R,m,k) be a complete CM local ring of dimension

one with algebraically closed residue field k. Suppose that R does not have

finite CM type. Then for infinitely many positive integers n, there exist |k|
pairwise non-isomorphic indecomposable MCM R-modules of multiplicity

n.

§5 Exercises

14.29 Exercise. Prove Lemma 14.1314.13: For any ring Γ and any quotient ring

Λ = Γ/I, the annihilator AnnΓ I annihilates Ext1
Γ(Λ,K) for every Γ-module

K .

14.30 Exercise. Let R be a Noetherian ring and T a subring over which

R is finitely generated as an algebra. Prove that JT(R)⊆HT(R).

14.31 Exercise. Fill in the details of the proof of Theorem 14.1914.19: show

by induction on j that we may find regular local subrings T1, . . . ,T j and

elements xi ∈ JTi (R) such that x1, . . . , x j is part of a system of parameters.

For the inductive step, use prime avoidance.

14.32 Exercise. Suppose that x= x1, . . . , xd is an faithful system of param-

eters in a local ring R. Prove that R has at most an isolated singularity.
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Bounded Type
In this chapter we classify the complete equicharacteristic hypersurface

rings of bounded CM type with residue field of characteristic not equal to

2. It is an astounding coincidence that the answer turns out to be pre-

cisely the same as in Chapter 1313: The hypersurface rings of bounded but

infinite type are the (A∞) and (D∞) hypersurface singularities in all pos-

itive dimensions. Note that the families of ideals showing countable non-

simplicity in Lemma 13.2213.22 for certain classes of hypersurface rings do not

give rise to indecomposable modules of large rank; thus there does not seem

to be a way to use the results of Chapter 1313 to demonstrate unbounded CM

type directly.

We also classify the one-dimensional complete CM local rings contain-

ing an infinite field and having bounded CM type. There is only one ad-

ditional isomorphism type, which we have seen already in Example 13.2513.25.

The explicit classification, together with the results of Chapter 1212, allows

us to show that bounded type descends from the completion in dimension

one.

§1 Hypersurface rings

To classify the complete hypersurface rings of bounded CM type, we must

use Knörrer’s results from Chapter 77 to reduce the problem to the case of

dimension one. It will be more convenient in what follows to find bounds

on the minimal number of generators of MCM modules; luckily, this is the

381
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same as bounding their multiplicity. We leave the proof of this fact as an

exercise (Exercise 15.1315.13).

15.1 Lemma. Let A be a local ring. The multiplicities of indecomposable

MCM A-modules are bounded if and only if their minimal numbers of gen-

erators are bounded.

15.2 Proposition. Let R = S/( f ) be a complete equicharacteristic hypersur-

face singularity, where S = k[[x0, . . . xd]] and f is a non-zero non-unit of S.

(i) If R] has bounded CM type, then R has bounded CM type.

(ii) If the characteristic of k is not 2, then the converse holds as well.

More precisely, if µR(M)6B for each indecomposable MCM R-module,

then µR](N)6 2B for each indecomposable MCM R]-module N.

Proof. Assume that R] has bounded CM type, and let B bound the minimal

number of generators of MCM R]-modules. Let M be an indecomposable

non-free MCM R-module. Then by Proposition 7.157.15 M][ ∼= M ⊕ syzR
1 (M),

so M is a direct summand of M][. Decompose M] into indecomposable

MCM R]-modules, M] ∼= N1 ⊕ ·· · ⊕ Nt. Then M][ ∼= N1
[⊕ ·· · ⊕ Nt

[, and by

Krull-Remak-Schmidt M is a direct summand of some N j
[. Since µR(N j

[)=
µR](N j) for each j, the result follows.

For the converse, assume µR(M)6B for every indecomposable MCM R-

module M, and let N be an indecomposable non-free MCM R]-module. By

Proposition 7.177.17, N[] ∼= N ⊕ syzR]

1 (N). Decompose N[ into indecomposable

MCM R-modules, N[ ∼= M1 ⊕·· ·⊕Ms. Then N[] ∼= M1
]⊕·· ·⊕Ms

]. By KRS

again, N is a direct summand of some M j
]. It will suffice to show that

µR](M j
])6 2B for each j.



§1. Hypersurface rings 383

If M j is not free, we have µR](M]
j)=µR(M j

][)=µR(M j)+µR(syzR
1 (M)) by

Proposition 7.157.15. But since M j is a MCM R-module, all of its Betti numbers

are equal to µR(M j) by Proposition 7.67.6. Thus µR(M j
][) = 2µR(M j)6 2B. If,

on the other hand, M j = R, then M j
] ∼= R], and so µR](M j

])= 1.

Our next concern is to show that a hypersurface ring of bounded rep-

resentation type has multiplicity at most two, as long as the dimension is

greater than one. This is a corollary of the following result of Kawasaki

[Kaw96Kaw96, Theorem 4.1], due originally in the graded case to Herzog and

Sanders [HS88HS88]. (A similar result was obtained by Dieterich [Die87Die87] using

a theorem on the structure of the AR quiver of a complete isolated hyper-

surface singularity.) Recall that an abstract hypersurface ring is a Noethe-

rian local ring (A,m) such that the m-adic completion Â is isomorphic to

B/( f ) for some regular local ring B and non-unit f .

15.3 Theorem. Let (A,m) be an abstract hypersurface ring of dimension d.

Assume that the multiplicity e = e(A) is greater than 2. Then for each n > e,

the module syzA
d+1(A/mn) is indecomposable and

µR

(
syzA

d+1
(
A/mn))

>

(
d+n−1

d−1

)
.

We omit the proof, but see Theorem ?? for a stronger result if d> 2 and

e(A)> 4.

Putting Kawasaki’s theorem together with Herzog’s Theorem 8.148.14, we

have the following result.

15.4 Proposition. Let (R,m,k) be a Gorenstein local ring of bounded CM

type. Assume dimR > 2. Then R is an abstract hypersurface ring of multi-

plicity at most 2.
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When the hypersurface ring in Proposition 15.415.4 is complete and con-

tains an algebraically closed field of characteristic other then 2, we can

show by the same arguments as in Chapter 88 that it is an iterated double

branched cover of a one-dimensional hypersurface ring of bounded type.

15.5 Theorem. Let k be an algebraically closed field of characteristic not

equal to 2, and let R = k[[x0, . . . , xd]]/( f ), where f is a non-zero non-unit of

the formal power series ring and d > 2. Then R has bounded CM type if

and only if R ∼= k[[x, . . . , xd]]/(g+x2
2+·· ·+x2

d) for some g ∈ k[[x0, x1]] such that

k[[x0, x1]]/(g) has bounded CM type.

Actually, the arguments above (and in Chapter 88) do not apply to rings

like k[[x0, . . . , xd]]/(x2
d), since they tacitly assume that g 6= 0. Indeed, these

rings do not have finite or bounded CM type. Here is a proof of a more

general result.

15.6 Proposition. Let (S,n,k) be a CM local ring of dimension at least two,

and let z be an indeterminate. Set R = S[z]/(z2). Then R has unbounded

CM type.

Proof. We will show that for every n> 2 there is an indecomposable MCM

R-module of rank 2n. In fact, the proof is essentially identical to that of

Theorem 2.22.2.

Fix n > 2, and let W be a free S-module of rank 2n. Let I be the n×
n identity matrix and H the n× n nilpotent Jordan block with 1 on the

superdiagonal and 0 elsewhere. Let {x, y} be part of a minimal generating

set for the maximal ideal n of S, and put Ψ = yI + xJ. Finally, put Φ =[
0 Ψ
0 0

]
. Noting that Φ2 = 0, we make W into an R-module by letting z act as
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Φ : W −→W . Then W is a MCM R-module, and one shows as in the proof of

Theorem 2.22.2 that W is indecomposable over R.

§2 Dimension one

The results of the previous section reduce the problem of classifying hyper-

surface rings of bounded CM type to dimension one. In this section we will

deal with those one-dimensional hypersurface rings, as well as the case of

non-hypersurface rings of dimension one.

Our problem breaks down according to the multiplicity of the ring. Re-

call from Theorem 3.183.18 that over a one-dimensional CM local ring of mul-

tiplicity 2 or less, every MCM R-module is isomorphic to a direct sum of

ideals of R, whence R has bounded CM type. If on the other hand R has

multiplicity 4 or more, then by Proposition 3.43.4 R has an overring S with

µR(S)> 4, and then we may apply Theorem 3.23.2 to obtain an indecompos-

able MCM module of constant rank n for every n> 1.

Now we address the troublesome case of multiplicity three for complete

equicharacteristic hypersurface rings. Let R = k[[x, y]]/( f ), where k is a

field and f ∈ (x, y)3 \ (x, y)4. If R is reduced, we know by Theorem 3.103.10 that

R has bounded CM type if and only if R has finite CM type, that is, if and

only if R satisfies the condition

(DR2) mR+R
R is cyclic as an R-module.

Hence we focus on the case where R is not reduced. Our strategy will

be to build finite birational extensions S of R satisfying the hypotheses of

Theorem 3.23.2.
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15.7 Theorem. Let R = k[[x, y]]/( f ), where k is a field and f is a non-zero

non-unit of the formal power series ring k[[x, y]]. Assume that

(i) e(R)= 3;

(ii) R is not reduced; and

(iii) R 6∼= k[[x, y]]/(x2 y).

For each positive integer n, R has an indecomposable MCM module of con-

stant rank n.

Proof. We know f has order 3 and that its factorization into irreducibles

has a repeated factor. Thus, up to a unit, we have either f = g3 or f =
g2h, where g and h are irreducible elements of k[[x, y]] of order 1, and, in

the second case, g and h are relatively prime. After a k-linear change of

variables we may assume that g = x.

In the second case, if the leading form of h is not a constant multiple of

x, then by another change of variable [ZS75ZS75, Cor. 2, p. 137] we may assume

that h = y. This is the case we have ruled out in (iiiiii).

Suppose now that the leading form of h is a constant multiple of x. By

a corollary [ZS75ZS75, Cor. 1, p.145] of the Weierstrass Preparation Theorem,

there exist a unit u and a non-unit power series q ∈ k[[y]] such that h =
u(x+ q). Moreover, q ∈ y2k[[y]] (since the leading form of h is a constant

multiple of x). In summary, there are two cases to consider:

(a) f = x3.

(b) f = x2(x+ q) for some 0 6= q ∈ y2k[[y]].
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Let m = (x, y) be the maximal ideal of R. We must show that R has a

finite birational extension S such that µR(S) = 3 and mS/m is not cyclic as

an R-module.

In Case (aa) we put S = R
[

x
y2

]
= R +R x

y2 +R x2

y4 . Clearly µR(S) = 3, and

one checks that mS
m2S+m is two-dimensional over R/m.

Assume now that we are in Case (bb). One can argue by descending

induction that it suffices to consider the case where q has order 2 in k[[y]].

(The case of order 1 is the one we have ruled out.) Put u = x
y2 , v = x2+qx

y5 ,

and S = R[u,v]. Once again this can be seen to satisfy the assumptions of

Theorem 3.23.2, and this finishes the proof.

The argument in the proof of Theorem 15.715.7 does not apply to the (D∞)

hypersurface ring R = k[[x, y]]/(x2 y)∼= k[[u,v]]/(u2v−u3). Adjoining the idem-

potent u2

v2 , one obtains a ring isomorphic to k[[v]]× k[[u,v]]/(u2), whose in-

tegral closure is k[[v]]×⋃∞
n=1 R

[ u
vn

]
. From this information one can easily

check that mS/m is a cyclic R-module for every finite birational extension

S of (R,m), so we cannot apply Theorem 3.23.2. However, the calculations in

Chapter 1313 do indeed verify that the one-dimensional (D∞) and (A∞) hy-

persurface rings have bounded type. Combining this with Theorem 15.715.7,

we have a complete classification of the complete one-dimensional equichar-

acteristic hypersurface rings of bounded CM type.

15.8 Theorem. Let k be an arbitrary field, and let R = k[[x, y]]/( f ) be a

complete hypersurface ring of dimension one, where f is a non-zero non-

unit of the power series ring. Then R has bounded but infinite CM type if

and only if R is isomorphic either to the (A∞) singularity or to the (D∞)

singularity.
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Further, if R has unbounded CM type, then R has, for each positive

integer r, an indecomposable MCM module of constant rank r.

Turning now to the non-hypersurface situation in multiplicity 3, we

have the following structural result for the relevant rings.

15.9 Lemma. Let (R,m,k) be a one-dimensional local CM ring with k infi-

nite, and suppose e(R)=µR(m)= 3. Let N be the nilradical of R. Then:

(i) N2 = 0.

(ii) µR(N)6 2.

(iii) If µR(N)= 2, then m is generated by three elements u, v, w such that

m2 =mu and N = Rv+Rw.

(iv) If µR(N)= 1, then m is generated by three elements u, v, w such that

m2 =mu, N = Rw, and vw = w2 = 0.

Proof. Since the residue field of R is infinite, we can find a minimal reduc-

tion for m, that is, a non-zerodivisor u ∈ m such that mn+1 = umn for all

n À 0. Now, using the formula [Sal78Sal78, (1.1)]

(15.9.1) µR(J)6 e(R)−e(R/J)

for an ideal J of height 0 in a one-dimensional CM local ring R, it is

straightforward to show (ii) and (iiii). The other two assertions are easy as

well; cf. [LW05LW05] for the details.

15.10 Theorem. Let k be an infinite field. The following is a complete list,

up to k-isomorphism, of the one-dimensional, complete, equicharacteristic,

CM local rings with bounded but infinite CM type and with residue field k:
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(i) the (A∞) hypersurface singularity k[[x, y]]/(x2) ;

(ii) the (D∞) hypersurface singularity k[[x, y]]/(x2 y) ;

(iii) the endomorphism ring E of the maximal ideal of the (D∞) singu-

larity, which satisfies

E ∼= k[[x, y, z]]/(yz, x2 − xz, xz− z2)∼= k[[a,b, c]]/(ab,ac, c2) .

Moreover, if (R,m,k) is a one-dimensional, complete, equicharacteristic CM

local ring and R does not have bounded CM type, then R has, for each

positive integer r, an indecomposable MCM module of constant rank r.

Proof. The (A∞) and (D∞) hypersurface rings have bounded but infinite

CM type by the calculations in Chapter 1313. In Example 13.2513.25, we showed

that E has the presentations asserted above, and that E has countable CM

type. More precisely, we used Lemma 3.93.9 to see that the indecomposable

MCM E-modules are precisely the non-free indecomposable MCM modules

over the (D∞) hypersurface ring, whence E has bounded but infinite CM

type as well.

To prove that the list is complete and to prove the “Moreover” state-

ment, assume now that (R,m,k) is a one-dimensional, complete, equichar-

acteristic CM local ring with k infinite, and that R has infinite CM type but

does not have indecomposable MCM modules of arbitrarily large constant

rank. We will show that R is isomorphic to one of the rings in the state-

ment of the Theorem. As above, we proceed by building finite birational

extensions of R to which we may apply Theorem 3.23.2.
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If R is a hypersurface ring, Theorem 15.815.8 tells us that R is isomorphic

to either k[[x, y]]/(x2) or k[[x, y]]/(x2 y). Thus we assume that µR(m) > 3.

But e(R) 6 3 by Theorem 3.23.2 and we know by Exercise 9.549.54 that e(R) >

µR(m)−dimR +1. Therefore we may assume that e(R) = µR(m) = 3. Thus

we are in the situation of Lemma 15.915.9. Moreover, we may assume that

R is not reduced, else we are done by Theorem 3.103.10, so R has non-trivial

nilradical N.

If N requires two generators, then by Lemma 15.915.9(iiiiii), we can find ele-

ments u, v, w in R such that m= Ru+Rv+Rw, u is a minimal reduction of

m with m2 =mu, and N = Rv+Rw. Put S = R
[

v
u2 , w

u2

]
. It is easy to verify

(by clearing denominators) that {1, v
u2 , w

u2 } is a minimal generating set for S

as an R-module, and that the images of v
u and w

u form a minimal generating

set for mS
m . Thus our basic assumption is violated.

We may therefore assume that N is principal. This is the hard case

of the proof; we sketch the argument, and point to [LW05LW05] for the details.

Using Lemma 15.915.9(iviv), we once again find elements u, v, w in R such that

m= Ru+Rv+Rw, u is again a minimal reduction of m with m2 =mu, and

N = Rw with vw = w2 = 0.

Since v2 ∈mu ⊂ Ru, we see that R/Ru is a three-dimensional k-algebra.

Further, since
⋂

n(Run)= 0, it follows that R is finitely generated (and free)

as a module over the discrete valuation ring D = k[[u]]. One checks that

R = D+Dv+Dw (and therefore {1,v,w} is a basis for R as a D-module).

In order to understand the structure of R we must analyze the equation

that puts v2 into um. Thus we write v2 = ur(αu+βv+γw), where r > 1

and α, β, γ ∈ D. Since u is a non-zerodivisor and vw = w2 = 0, we see
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immediately that α= 0. Thus we have

v2 = ur (
βv+γw

)
,

with β and γ in D. Moreover, at least one of β and γ must be a unit of D.

If r > 2, put S = R[ v
u2 , w

u2 ]. This finite birational extension contradicts

our basic assumption, so we must have v2 = u(βv+γw) with β, γ ∈ D and

at least one of β, γ a unit of D. We will produce a hypersurface subring

A = D[[g]] of R such that R = EndA(mA). We will then show that A ∼=
k[[x, y]]/(x2 y) and the proof will be complete.

In the case where γ is not a unit, set A = D[v+w]. Then one can show

that A is a local ring with maximal ideal mA = Au+A(v+w), and that R is

a finite birational extension of A. Since v(v+w)= (v+w)2 and w(v+w)= 0,

we see that v and w are in EndA(mA). Since EndA(mA)/A is simple (as A is

Gorenstein), it follows that R =EndA(mA).

If on the other hand γ is a unit of D, we put A = D[v] ⊆ R. Then A is

a local ring with maximal ideal mA = Au+ Av. (The relevant equation this

time is v3 = uβv2.) We have uw = γ−1v2−γ−1βuv ∈mA. As in the first case,

we conclude that R =EndA(mA).

By Lemma 3.93.9, A has infinite CM type but does not have indecompos-

able MCM modules of arbitrarily large constant rank. Moreover, A cannot

have multiplicity 2, since it has a module-finite birational extension of mul-

tiplicity greater than 2. By Theorem 15.815.8, A ∼= k[[x, y]]/(x2 y), as desired.
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§3 Descent in dimension one

In this section we use the classification theorem in the previous section,

together with the results on extended modules in Chapter 1212, to show that

bounded CM type passes to and from the completion of an equicharacteris-

tic one-dimensional CM local ring (R,m,k) with k infinite. Contrary to the

situation in Chapter 1111, we do not assume that R is excellent with an iso-

lated singularity; indeed, in dimension one this assumption would make

R̂ reduced, in which case finite and bounded CM type are equivalent by

Theorem 3.103.10. We do, however, insist that k be infinite, in order to use the

crucial fact from §2§2 that failure of bounded CM type implies the existence of

indecomposable MCM modules of unbounded constant rank and also to use

the explicit matrices worked out in Proposition 13.1813.18 and Example 13.2513.25

for the indecomposable MCM modules over k[[x, y]]/(x2 y).

15.11 Theorem. Let (R,m,k) be a one-dimensional equicharacteristic CM

local ring with completion R̂. Assume that k is infinite. Then R has bounded

CM type if and only if R̂ has bounded CM type. If R has unbounded CM

type, then R has, for each r, an indecomposable MCM module of constant

rank r.

Proof. Assume that R̂ does not have bounded CM type. Fix a positive in-

teger r. By Theorem 15.1015.10 we know that R̂ has an indecomposable MCM

module M of constant rank r. By Corollary 12.712.7 there is a finitely gener-

ated R-module N, necessarily MCM and with constant rank r, such that

N̂ ∼= M. Obviously N too must be indecomposable.
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Assume from now on that R̂ has bounded CM type. If R̂ has finite CM

type, the same holds for R by Theorem 11.111.1. Therefore we assume that

R̂ has infinite CM type. Then R̂ is isomorphic to one of the three rings of

Theorem 15.1015.10.

If R̂ ∼= k[[x, y]]/(x2), then e(R) = e(R̂) = 2, and R has bounded CM type

by Theorem 3.183.18. Suppose for the moment that we have verified bounded

CM type for any local ring S whose completion is isomorphic to E. If, now,

R̂ ∼= k[[x, y]]/(x2 y), put S = EndR(m). Then Ŝ ∼= E, whence S has bounded

CM type. Therefore so has R, by Lemma 3.93.9. Thus we assume that R̂ ∼= E.

Our plan is to examine each of the indecomposable non-free E-modules

and then use Corollary 12.712.7 to determine exactly which MCM E-modules

are extended from R. As we saw in Example 13.2513.25, those indecompos-

able MCM modules are the cokernels of the following matrices over T =
k[[x, y]]/(x2 y):

[y]; [xy]; [x]; [y2];

α=
y xk

0 −y

 ; β=
xy xk+1

0 −xy

 ; γ=
xy xk

0 −y

 ; δ=
y xk+1

0 −xy

 .

Let P = (x) and Q = (y) be the two minimal prime ideals of T. Note that

TP
∼= k((y))[x]/(x2) and TQ

∼= k((x)). With the exception of U := cok[x] and

V := cok[xy], each of the E-modules listed above is generically free. The

ranks are given in the following table.
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ϕ rankP cokϕ rankQ cokϕ

[x2] 1 0

[y] 0 1

α 1 0

β 1 2

γ 1 1

δ 1 1

Let M be a MCM R̂-module, and write

(15.11.1) M ∼=
(

a⊕
i=1

A i

)
⊕

(
b⊕

j=1
B j

)
⊕

(
c⊕

k=1
Ck

)
⊕

(
d⊕

l=1
Dl

)
⊕U (e) ⊕V ( f ) ,

where the A i, B j, Ck, Dl are indecomposable generically free modules, of

ranks (1,0), (0,1), (1,1), (1,2) respectively, and again U = cok[x] and V =
cok[xy].

Suppose first that R is a domain. Then M is extended if and only if

a = b + d and e = f = 0. Now the indecomposable MCM R-modules are

those whose completions have (a,b, c,d, e, f ) minimal and non-trivial with

respect to these relations. (We are implicitly using Corollary 1.141.14 here.)

The only possibilities are (0,0,1,0,0,0), (1,1,0,0,0,0), and (1,0,0,1,0,0),

and we conclude that the indecomposable MCM R-modules have rank 1

or 2.

Next suppose that R is reduced but not a domain. Then R has exactly

two minimal prime ideals, and we see from Corollary 12.712.7 that every gener-

ically free R̂-module is extended from R; however, neither U nor V can be

a direct summand of an extended module. In this case, the indecomposable



§3. Descent in dimension one 395

MCM R-modules are generically free, with ranks (1,0), (0,1), (1,1) and (1,2)

at the minimal prime ideals.

Finally, we assume that R is not reduced. We must now consider the

two modules U and V that are not generically free. We will see that U =
cok[x] is always extended and that V = cok[xy] is extended if and only if R

has two minimal prime ideals. Note that U ∼= Txy = Exy (the nilradical of

E = R̂), while V ∼= Tx = Ex.

The nilradical N of R is of course contained in the nilradical Exy of

R̂. Moreover, since Exy ∼= E/(x, z) is a faithful module over E/(x, z) ∼= k[[y]],

every non-zero submodule of Exy is isomorphic to Exy. In particular, NR̂ ∼=
Exy. This shows that U is extended.

Next we deal with V . The kernel of the surjective map Ex −→ Exy,

given by multiplication by y, is Ex2. Thus we have a short exact sequence

(15.11.2) 0−→ Ex2 −→V
y−−→U −→ 0 .

Observe that Ex2 = Tx2 ∼= cok[y] is generically free of rank (0,1). Let K be

the common total quotient ring of T and R̂. Then K ⊗E Ex2 is a projective

K-module, and as K is Gorenstein, (15.11.215.11.2) splits when tensored up to K .

In particular, this gives

K ⊗E V ∼= (
K ⊗E Ex2)⊕ (K ⊗E U) .

If, now, R has two minimal primes, then every generically free R̂-module

is extended, by Corollary 12.712.7. In particular Ex2 is extended, and by

Lemma 12.612.6 so is V . Thus every indecomposable MCM R̂-module is ex-

tended, and R has bounded CM type.
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If, on the other hand, R has just one minimal prime ideal, then the

module M in (15.11.115.11.1) is extended if and only if a = b+d+ f . The R̂-modules

corresponding to indecomposable MCM R-modules are therefore U , V ⊕W ,

where W is some generically free module of rank (0,1), and the modules of

constant rank 1 and 2 described above.

Proving descent of bounded CM type in general seems quite difficult.

Part of the difficulty lies in the fact that, in general, there is no bound on

the number of indecomposable MCM R̂-modules required to decompose the

completion of an indecomposable MCM R-module. Thus the argument of

Theorem 11.111.1, while sufficient for showing descent of finite CM type, is not

enough for bounded CM type.

Here is an example to illustrate. Recall that for a two-dimensional nor-

mal domain, the divisor class group essentially controls which modules are

extended to the completion. Precisely (Proposition 12.1412.14), if R and R̂ are

both normal domains, then a torsion-free R̂-module N is extended from R if

and only if cl(N) is in the image of the natural map on divisor class groups

Cl(R)−→Cl(R̂).

15.12 Example. Let R be a complete local two-dimensional normal do-

main containing a field, and assume that the divisor class group Cl(R) has

an element α of infinite order. For example, one might take the ring of

Lemma 12.1512.15.

By Heitmann’s theorem [Hei93Hei93], there is a unique factorization domain

A contained in R such that Â = R. Choose, for each integer n, a divisorial

ideal In corresponding to nα ∈ Cl(Â). For each n > 1, let Mn = In ⊕ Nn,

where Nn is the direct sum of n copies of I−1. Then Mn has trivial divisor
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class and therefore is extended from A by Proposition 12.1412.14. However,

no non-trivial proper direct summand of Mn has trivial divisor class, and

it follows that Mn (a direct sum of n + 1 indecomposable Â-modules) is

extended from an indecomposable MCM A-module.

It is important to note that the example above does not give a counterex-

ample to descent of bounded CM type, but merely points out one difficulty

in studying descent.

§4 Exercises

15.13 Exercise. Let A be a local ring. Prove that there is an upper bound

on the multiplicities of the indecomposable MCM A-modules if and only if

there is a bound on their minimal numbers of generators.

15.14 Exercise. Complete the proof of Theorem 15.715.7.

15.15 Exercise. Show that the argument of Theorem 15.715.7 does not apply

to R = k[[u,v]]/(u2v− v3), since mS/m is a cyclic R-module for every finite

birational extension S of R.

15.16 Exercise. Prove the inequality (15.9.115.9.1): µR(J)6 e(R)−e(R/J) for an

ideal J of height zero in a one-dimensional CM local ring R.

15.17 Exercise. Finish the proof of Lemma 15.915.9.



16
Tame and Wild Representation Type
In the representation theory of Artin algebras, including modular group

representations, the representation types we have considered thus far are

a bit unnatural. The more natural representation types are tame and wild.

There are many minor variations on the definitions, but the intent is al-

ways the same: the representations of a tame algebra might conceivably

be classified, while those of a wild algebra are utterly out of reach. In

practice, the latter is taken to mean that classifying the representations of

a wild algebra would entail classifying the representations of every Artin

algebra simultaneously.

§1 Tameness and Wildness

There are several minor variations on the notions of tame and wild rep-

resentation type, but the intent is always the same: tame representation

type allows the possibility of a classification theorem in the style of Jor-

dan canonical form, while for wild type any classification theorem at all

is utterly out of reach. The definitions we will use are essentially those

of Drozd [Dro77Dro77]; they seem to have appeared implicitly first in [DF73DF73].

They make precise the intent mentioned above by invoking the classical

unsolved problem of canonical forms for n-tuples of matrices up to simul-

taneous similarity [GP69GP69] (see Example 16.316.3 below).

Throughout, we work over a fixed infinite field k.

398
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16.1 Definition. Let R be a local k-algebra and let C be a full subcategory

of the finitely-generated R-modules.

(i) We say that C is tame, or of tame representation type, if there is one

discrete parameter r (such as k-dimension or R-rank) parametriz-

ing the modules in C , such that, for each r, the indecomposables in

C form finitely many one-parameter families and finitely many ex-

ceptions. Here a one-parameter family is a set of R-modules {E/(t−
λ)E}λ∈k, where E is a fixed k[t]-R-bimodule which is finitely gener-

ated and free over k[t].

(ii) We say that C is wild, or of wild representation type, if for ev-

ery finite-dimensional k-algebra Λ (not necessarily commutative!),

there exists a representation embedding E : modΛ−→C , that is, E

is an exact functor preserving non-isomorphism and indecompos-

ability.

Equivalently ([Kra00Kra00]), the algebra R is tame if and only if there is for

every n a finite product S = k[T1]× ·· · × k[Tr] of polynomial rings and a

k-linear, exact, coherent functor F : ModS −→ ModR such that each inde-

composable in of multiplicity e in R is the image of some indecomposable S-

module. On the other side, C is wild if and only if there exist n-parameter

families of indecomposable modules in C for all n À 0.

The definitions seem unwieldy at first sight, so we include a couple of

simple examples. See [Erd90Erd90] for more.

16.2 Example. The “Kronecker algebra” is finite-length tame. Assume

k is algebraically closed. Let R = k[x, y]/(x2, y2) and m its maximal ideal.



400 Tame and Wild Representation Type

Then R is the path algebra of the quiver with two vertices and two parallel

arrows x, y from one vertex to the other. Suppose M is a finitely generated

R-module with no free summands. Then the socle of R, which is m2 = (xy),

annihilates M and mM ⊆ socle M. Consider M as a finite-dimensional k-

vector space with two linear operators X and Y giving the actions of x and

y on M. Choosing a k-basis of M which contains a basis of socle M, we find

matrix representations of X and Y as0 A

0 0

 and

0 B

0 0

 .

Finding a canonical form for M is thus equivalent to the problem of clas-

sifying pairs of matrices (A,B) up to simultaneous equivalence: (A,B) ∼=
(P AQ,PBQ). This problem was solved by Kronecker [Kro90Kro90]. For k alge-

braically closed, the complete list of indecomposable M is as follows.

(i) The standard module R and the residue field k;

(ii) For e = 2n+1 odd, there are exactly two indecomposable modules of

k-dimension e, given by

A =



1 0 0 · · ·
1 0 0 · · ·

. . .

1 0

 and B =



0 1 0 · · ·
0 1 0 · · ·

. . .

0 1


and by the transposes of these two matrices;

(iii) For each λ ∈ k and each positive n, there is an indecomposable R-

module Cn(λ) of k-dimension e = 2n on which A = 1n and B = J(n,λ)
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is the indecomposable Jordan block of size n with eigenvalue λ

when λ ∈ k. Additionally, there is an indecomposable module Cn(∞)

of k-dimension 2n for which A = J(n,0) is the indecomposable Jor-

dan block of size n with eigenvalue 0 and B = 1n.

To show that R is finite-length tame, first notice that we may ignore odd

k-dimension. For e = 2n even, take M = k[T]e and define a right R-action

on M by setting

X =
0 1n

0 0

 and Y =
0 J(n,T)

0 0

 .

For each λ ∈ k, k[T]/(t−λ)⊗k[T] M is isomorphic to Cn(λ), so we have a

parametrization of the modules of k-dimension 2n, with one exception.

This example actually gives another proof of Theorem 2.22.2: Let R be a

local k-algebra of finite representation type (with respect to all finitely gen-

erated modules). Then R ∼= k[x]/(xn) for some n> 0. Indeed, if the Jacobson

radical of R needs two or more generators, then R has k[x, y]/(x2, xy, y2)

as a homomorphic image. Every finitely generated non-free module over

k[x, y]/(x2, y2) is also annihilated by xy, so is an R-module of finite length.

Thus R is a principal ideal ring k[x]/I, and must be Artinian or R/(xk) is an

indecomposable module for every k> 0.

Of course, as soon as one knows a single example of a finite-length tame

ring, one knows that any homomorphic image is tame as well. On the other

side, as soon as one knows a single example of a wild module subcategory

C 0, it is sufficient to find an embedding C 0 −→ C preserving indecompos-

ability and non-isomorphism to know that C is wild as well. Here is a seed

to get us started.
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(This eg. needs rewriting, see wildhyps)

16.3 Example ([GP69GP69]). Let k be an infinite field. The non-commutative

polynomial ring k〈a,b〉 in two variables over k is finite-length wild. To

see this, Let Λ = k〈x1, . . . , xn〉 be a finite-dimensional k-algebra (so the xi

are not necessarily algebraically independent) and let V be an Λ-module

of finite length. Represent the actions of x1, . . . , xn on V by linear operators

X1, . . . , Xn. For any n distinct scalars c1, . . . , cn ∈ k, define a finite-length

k〈a,b〉-module M as follows: the underlying vector space is V (n), and we

let a and b act by the block-matrices

c1 1V

c2 1V

. . .

cn 1V

 and



X1

1V X2

. . . . . .

1V Xn

 ,

respectively.

It suffices to prove that this functor is surjective on Hom-sets. A ho-

momorphism (V , X1, . . . , Xn) −→ (V ′, X ′
1, . . . , X ′

n) is a linear map ϕ : V −→ V ′

such that ϕX i = X ′
iϕ for all i.1

Let Φ : M −→ M′ be a homomorphism between k〈a,b〉-modules as de-

fined above. Then Φ = (ϕi j), with each ϕi j : V −→ V ; we must show that

Φ= diag(ϕ, . . . ,ϕ) for some ϕ satisfying ϕX i = X ′
iϕ.

Observe that k〈a,b〉 contains the (commutative) polynomial ring k[a].

Forgetting the action of b momentarily, we see that M is a semisimple k[a]-

module, which immediately implies that ϕi j = 0 for i 6= j.

1maybe a quick primer on such things?
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Now the equation

X1

1V X2

. . . . . .

1V Xn

Φ=Φ



X1

1V X2

. . . . . .

1V Xn


becomes



X1ϕ11

ϕ11 X2ϕ22

ϕ22
. . .
. . . Xn−1ϕn−1,n−1

ϕn−1,n−1 Xnϕnn


=



ϕ11X ′
1

ϕ22 ϕ22X ′
2

ϕ33
. . .
. . . ϕn−1,n−1X ′

n−1

ϕnn ϕnn X ′
nϕnn


,

which implies that ϕii = ϕ11 for each i. Denote the common value by ϕ;

then the diagonal entries show that ϕX i = X ′
iϕ.

It’s amusing to compare the example to the standard group-theoretic

fact that the free non-Abelian group F2 on two symbols contains as a sub-

group every free group Fn. This fact is of course the algebraic basis for the

Banach–Tarski paradox [Wag93Wag93], together with the identification of our old

acquaintance SO(3) (see Chapter 55) as a subgroup of F2.

The ring R = k[a,b]/(a2,ab2,b3) in the next example is sometimes called

the “Drozd algebra.” The example follows from the complete characteri-

zation of finite-length wild rings due to Klingler and Levy [KL06KL06] (about

which more later), but we give a direct proof here.

16.4 Example ([Dro72Dro72]). Let k be an infinite field, and set R = k[a,b]/(a2,ab2,b3).

Then R is finite-length wild. Consequently, the commutative polynomial
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ring k[a1, . . . ,an] and the commutative power series ring k[[a1, . . . ,an]] are

both finite-length wild as soon as n> 2.

The last sentence follows from the ones before, since any R-module

of finite length is also a module of finite length over k[a,b] and k[[a,b]],

whence also over k[a1, . . . ,an] and k[[a1, . . . ,an]]. Thus by Example 16.316.3

above, it suffices to construct a representation embedding of the finite-

length Λ= k〈x, y〉-modules into modR.

Let V be a Λ-module of k-dimension n, with linear operators X and

Y representing the Λ-module structure. We define (32n×32n)-matrices A

and B yielding an action on M =V (32). To wit, let

A =


0 0 1V (15)

0 0 0

0 0 0

 and B =


B1 0 B2

0 0 B3

0 0 B1

 ,

where

B1 =


0 0 1V (5)

0 0 0

0 0 0

 , B2 =


0 0 0

1V (5) 0 0

0 C 0

 , and B3 =
[
0 D 0

]
,

and finally

C =



c1 1V

c2 1V

. . .

c5 1V

 and D =
1V 0 1V 1V 1V

0 1V 1V X Y

 .

Observe that, while all the blocks in B1, B2, and B3 are (5n×5n), the blocks

in A and B are not of uniform size; their four corner blocks are (15n×15n),

while the center block is (2n×2n).
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One verifies easily that XY = Y X and X2 = XY 2 = Y 3, so X and Y do

indeed define an R-module structure on M.

Let V1 and V2 be two n-dimensional Λ-modules, with linear operators

A i, Bi for i = 1,2 inducing the actions of a and b, and let Mi be the cor-

responding R-modules with their endomorphisms X i, Yi. Then M1 and

M2 are R-isomorphic if and only if there is a vector space isomorphism

S : V (32n)
1 −→V (32n)

2 such that

SX1 = X2S and SY1 =Y2S .

Relatively straightforward matrix calculations like those in the previous

example yield that S is a block-diagonal matrix with constant diagonal

block σ : V1 −→ V2. Thus S is an isomorphism if and only if σ is so, and

furthermore S is a split surjection if and only if σ is so. Thus the functor

V M is a representation embedding (even a representation equivalence),

and R is finite-length wild.

We restate one part of this example separately for later use.

16.5 Proposition. Let Q = k[a1, . . . ,an] or k[[a1, . . . ,an]], with n > 2. If

there is a representation embedding of the finite-length Q-modules into a

module category C , then C is wild.

§2 Artinian algebras and pairs

The slight awkwardness of Definition 16.116.1 is more than repaid by the Tri-

chotomy Theorem of Drozd, which confirmed a 1973 conjecture of Donovan

and Frieslich.
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16.6 Theorem ([Dro77Dro77, Dro79Dro79, CB88CB88]). Let Λ be a finite-dimensional alge-

bra over an algebraically closed field k. Then Λ has exactly one of: finite

representation type, tame representation type, or wild representation type.

We omit the proof.

[Talk about Klingler-Levy here.]

For Artinian pairs, we do not know whether a trichotomy result holds.

We can at least show that almot all Artinian pairs have wild type.

16.7 Proposition. Let A,→B be an Artinian pair of k-algebras, with k

an algebraically closed field. Suppose that µA(B) > 5. Then the (A,→B)-

modules are wild.

Proof. I can jazz up Dade’s proof to get it for > 6; surely there’s a smarter

way.

§3 Curves

The only trichotomy theorem for MCM modules over a complete local ring,

as far as we are aware, is in the case of dimension one.

§4 Hypersurfaces

Here’s where GL’s joint stuff with Andrew will go. Also maybe some chatter

about Popescu et. al.’s theorems.
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§5 The generic determinant

key words: indirect proof of wildness

outline:

• define setup

• Bruns’ classification of rank-ones

• compute Ext of rank-ones

• extensions give factorizations

• alternating matrices

• proof of wildness

16.8 Notation. Let K be a field, n a positive integer, and X = (xi j) the

generic n×n matrix over K . The entries of X thus form a family of n2 in-

determinates; set S = K[xi j], the polynomial ring over S in those variables.

The determinant det X of X is a homogeneous squarefree polynomial of

degree n with coefficients ±1, and the hypersurface ring R = S/(det X ) is a

domain of dimension n2 −1.

The classical adjoint adj(X ) is defined by either of the equalities

(16.8.1) X adj(X )= (det X )In and adj(X )X = (det X )In .

In other terms, the pairs (X ,adj(X )) and (adj(X ), X ) form matrix factoriza-

tions of the hypersurface det X . We thus are given four MCM R-modules

for free, as follows.
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Put F = S(n), the free module of rank n with canonical ordered basis

( f1, . . . , fn), and G = S(n) the free S-module of the same rank but with or-

dered basis (g1, . . . , gn). We define R-modules L = cok(X ,adj(X )) and M =
cok(adj(X ), X ), or equivalently through the exact sequences of R-modules

(16.8.2) 0 // G X // F // L // 0

0 // F
adj(X )// G // M // 0 .

Here we interpret, for example, the matrix X as the homomorphism G −→
F taking the jth basis vector g j to

∑
i xi j f i.

For a CM S-module N of codepth t, let’s write N∨ = Extt
S(N,S). If in

particular N is a MCM (so free) S-module, then N∨ ∼= HomS(N,S), while

if N is a MCM R-module, we have N∨ = Ext1
S(N,S) ∼= HomR(N,R). We

obtain two more MCM R-modules from this process, defined by the exact

sequences of S-modules

(16.8.3) 0 // F∨ X T
// G∨ // L∨ // 0

0 // G∨adj(X )T
// F∨ // M∨ // 0 .

Write N = N ⊗S R for the reduction of an S-module N modulo the deter-

minant; then the short exact sequences of S-modules above induce short
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exact sequences of R-modules

(16.8.4) 0 // M // F // L // 0

0 // L // G // M // 0

0 // M∨ // G
∨ // L∨ // 0

0 // L∨ // F
∨ // M∨ // 0 .

By 7.87.8, the modules L and L∨ have rank one over R, while M and M∨ have

rank n−1. In particular, L and L∨ are indecomposable, and their syzygies

M and M∨ are indecomposable as well by ?? (applied to the localization of

R at the obvious maximal ideal).

Observe here that R is a normal domain: its singular locus is defined (in

any characteristic) by the partial derivatives ∂i j(det X ) of the determinant,

where ∂i j = ∂
∂xi j

. These are easily seen to be equal to the entries of the

adjoint:

adj(X )i j = ∂ ji(det X ) .

The entries of adj(X ) can also be identified as the (n−1)× (n−1) minors of

X , up to sign. The ideal they generate, In−1(X ), is known to be prime of

height 4 in S [BV88BV88, 2.5], so the singular locus of R has codimension three.

In particular, R is regular in codimension one, and so is a normal domain.

The MCM modules L and L∨, having rank one, are isomorphic to ideals

of R: if we fix any n−1 columns of X , then L is isomorphic to the ideal

generated by the (n−1)× (n−1) minors of those columns [Eis95Eis95, Theorem

A2.14]. Similarly, L∨ is obtained by fixing any n−1 rows.
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More generally, any MCM R-module is reflexive, so the MCM modules

of rank one are all isomorphic to divisorial ideals, thus naturally live in the

divisor class group Cl(R). The divisor class group of a generic determinan-

tal ring was computed by Bruns [Bru85Bru85] (see also [BH93BH93, 7.3.5]).

16.9 Proposition (Bruns). The divisor class group of R = S/(det X ) is cyclic,

generated by the class of [L] = −[L∨]. Furthermore, the symbolic powers

L(m) representing elements m[L] ∈ Cl(R) are equal to the usual powers Lm.

Among these, only R, L, and L∨ are MCM modules.

16.10 Corollary. The generic determinantal hypersurface R = S/(det X )

has “finite CM type in rank one,” that is, only finitely many non-isomorphic

MCM modules of rank one.

We turn accordingly to MCM modules of rank two, where the situation

is quite different if n> 3. (Observe that for n = 2, R is an (A1) singularity,

so has finite CM type.) Specifically, we look for rank-two MCM modules Q

which are extensions of the rank-one modules L, L∨. Even more specifically,

we will classify such Q that appear as the middle module in an element of

either Ext1
R(L,L) or Ext1

R(L,L∨). The other two combinations of rank-one

modules can be recovered from these by applying the K-algebra involution

τ of S defined by τ(xi j) = x ji. This τ induces an autoequivalence on R-

modules, which we denote τ∗, satisfying τ∗L ∼= L∨.

Our next task therefore is to compute Ext1
R(L,L). This was first done by

R. Ile [Ile04Ile04]; we give Ile’s argument below. In the interest of broader ap-

plicability, we will state the result in terms of general matrix factorizations

(ϕ,ψ) over Noetherian rings S, as Ile does, indicating where “specialization
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to the generic case” simplifies the arguments still further. The proof uses

the Scandinavian complex S c(ϕ) attached to a matrix factorization (ϕ,ψ)

by T. Gulliksen and O. Negård [GN72GN72], which we shall have reason to use

again in computing Ext1
R(L,L∨).

16.11 Definition. Let ϕ : G −→ F be a homomorphism of free modules

of the same (finite) rank n over a Noetherian ring S. Assume that f =
detϕ is an irreducible nonzerodivisor of S and that AnnS cokϕ= ( f ), so that

(ϕ,adj(ϕ),F,G) is a matrix factorization of f . The Scandinavian complex

S c(ϕ) is

0 // S
?adj(ϕ)// HomS(F,G)

(ϕ?,?ϕ)// H
?ϕ−ϕ?// HomS(G,F)

tr(?adj(ϕ))// S // 0 ,

where H is the homology in the middle of the short complex

S ∆ // EndS(F)⊕EndS(G) tr(?)−tr(?) // S ,

tr(?) denotes the trace function, and ∆ is the diagonal map.

The complex S c(ϕ) is functorial with respect to homomorphisms of ma-

trix factorizations. Here is the main theorem of [GN72GN72].

16.12 Proposition ([GN72GN72]; see also [BV88BV88]). For ϕ as above, we have

H0(S c(ϕ))∼= S/I1(adj(ϕ))= S/In−1(ϕ) ,

and

max{ q | Hq(S c(ϕ)) 6= 0} = 4−grade In−1(ϕ) .

In particular, if the grade of In−1(ϕ) on S is 4, the maximum possible value,

then S c(ϕ) is a (minimal, in case S is local or graded and no entry of ϕ is

a unit) S-free resolution of S/In−1(ϕ).
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16.13 Remark. It’s well-known (see, for example, [HE71HE71] or [BH93BH93, 7.3.1])

that for ϕ = X a generic square matrix of indeterminates, the maximum

value, grade In−1(X )= 4, is achieved.

16.14 Theorem ([Ile04Ile04]). Let S be a Noetherian ring and ϕ : G −→ F a

homomorphism between free S-modules of the same rank n, such that f =
detϕ is an irreducible nonzerodivisor of S. Set R := S/( f ) and L := cokϕ,

and assume that AnnS L = ( f ). Then

H1(S c(ϕ))∼=Ext1
R(L,L) .

In particular, if grade In−1(ϕ)= 4, then Ext1
R(L,L)= 0.

Proof. To compute the homology of S c(ϕ) at HomS(G,F), consider the dia-

gram

(16.14.1) H
?ϕ−ϕ? // HomS(G,F)

tr(?adj(ϕ)) //

π
��

S

·1L
��

Ext1
S(L,L) ε

// EndR(M) .

Here π is the natural surjection and ε is defined by pulling back cocy-

cles along adj(ϕ). That is, for χ ∈ Ext1
S(L,L), we choose a preimage U ∈

HomS(G,F) and observe that (U adj(ϕ),adj(ϕ)U) is a homomorphism of ma-

trix factorizations

(U adj(ϕ),adj(ϕ) U) : (ϕ,adj(ϕ))−→ (ϕ,adj(ϕ)) ;

put ε(χ)= cok(U adj(ϕ),adj(ϕ) U) ∈EndR(M).

We claim first that the square commutes. The following lemma is the

crux of the argument.
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16.15 Lemma. For each U ∈HomS(G,F), there exists V ∈HomS(F,G) such

that

U adj(ϕ)−ϕV = tr(U adj(ϕ)) ·1F .

Proof. For the purposes of this proof, we may revert to the generic situ-

ation, where ϕ = X is a square matrix of indeterminates. As above, let

∂i j = ∂
∂xi j

be the partial derivative with respect to the variable xi j; then

∂i j[(det X ) ·1F ]= ∂i j[X adj(X )]

= ∂i j(X )adj(X )+ X∂i j(adj(X )) ,

where we apply ∂i j to a matrix entry-by-entry. By the identification of the

entries of adj(X ), this can be rewritten as

(16.15.1) E i j adj(X )+ X∂i j(adj(X ))= adj(X ) ji ·1F .

Write U = (ui j); multiplying (16.15.116.15.1) by ui j and taking the sum over all

(i, j) gives

U adj(X )− XV =
(∑

i, j
ui j adj(X ) ji

)
·1F ,

with V = −∑
i, j ui j∂i j(adj(X )). The right-hand side of this last equation is

equal to tr(U adj(X )) ·1F .

Returning to the proof of Theorem 16.1416.14, we must show that

tr(U adj(ϕ)) ·1L = cok(U adj(ϕ),adj(ϕ) U) ,

as endomorphisms of L, for each U ∈ HomS(G,F). By the Lemma, there

exists V ∈HomS(F,G) so that

U adj(ϕ)−ϕV = tr(U adj(ϕ)) ·1F .
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In particular, the two sides induce the same endomorphism of L. The term

ϕV factors through F, so gives the zero map on L = cokϕ; thus U adj(ϕ)

induces tr(U adj(ϕ)) ·1L.

Next we shall show that kerε∼=Ext1
R(L,L). Indeed, an S-module exten-

sion χ, represented by U ∈HomS(G,F), is an extension of R-modules if and

only if U is part of a homomorphism of matrix factorizations, i.e., there ex-

ists V ∈HomS(F,G) so that U adj(ϕ)=ϕV . This is the case precisely when

U adj(ϕ) factors through G, that is, induces the zero endomorphism of L.

Finally, we claim that π induces an isomorphism H1(S c(ϕ))−→ kerε. To

see this, first let [U] be a homology class. Then the image of U in EndR(L)

is zero, so that π(U) ∈ kerε. Next, take U ∈ HomS(G,F) to be a boundary,

so that U = Aϕ−ϕB for some (A,B) ∈H. Then the homomorphism of ma-

trix factorizations induced by π(U) is equivalent to (ϕBadj(ϕ),adj(ϕ)Aϕ).

Since ϕBadj(ϕ) factors through G, this is zero in EndR(L). Lastly, any

χ ∈ Ext1
R(L,L) lifts to U ∈ HomS(G,F), which must then be a cycle by the

commutativity of the square. This finishes the proof.

Specializing to the case of a generic matrix, we obtain the following

calculations.

16.16 Corollary. Let K be a commutative Noetherian normal domain, X =
(xi j) the generic (n× n)–matrix over K , S = K[xi j], and R = S/(det X ). Set

L := cok X . Then

(i) EndR(L)∼= R ;

(ii) Ext1
R(L,L)= 0 ;
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(iii) Ext1
S(L,L) is isomorphic to the ideal In−1(X )/(det X ) of R ; and

(iv) Ext2
R(L,L)∼= S/In−1(X ) .

Proof. We have already observed that R is a normal domain. Since L has

rank one, the ring EndR(L) is a finite extension of R contained in its quo-

tient field, so equal to R by normality. Claims (iiii), (iiiiii), and (iviv) follow from

Theorem 16.1416.14 and the diagram (16.14.116.14.1): Since grade In−1(X )= 4, we have

Ext1
R(L,L)= 0, and the image of ε is equal to the image of tr(?adj(X )), that

is, In−1(X ).
Everything from

here on needs

jabber

surrounding it.

The other Ext-group between rank-one MCM modules, Ext1
R(L,L∨), does

not vanish. To see this, we consider HomR(M,L∨), which has Ext1
R(L,L∨)

as a homomorphic image. Computing HomR(M,L∨) amounts to factoring

the adjoint in a particular way.

16.17 Proposition. Let A be an (n×n) alternating matrix over K . There

exists then a unique alternating (n×n) matrix BA satisfying

A adj(X )= X TBA .

We refer to BA as the companion matrix for A.

When n is even, there exist invertible alternating matrices A, so that

Y = A−1X T , Z = BA gives an honest factorization of adj(X ).

We omit the proof of Proposition 16.1716.17; the matrix BA is defined by

brs =
∑
k<l

akl(−1)r+s+k+l[rs |̂ kl](X ) ,

where A = (akl)kl and [rs |̂ kl](X ) denotes the (unsigned) determinant of

the (n−2)× (n−2) submatrix of X obtained by deleting rows r and s and
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columns k and l. We use the convention that [rs |̂ kl] is alternating in both

arguments, so in particular vanishes if there is a repetition of indices on

either side of the vertical bar.

The equation A adj(X ) = X TBA defines a commutative diagram of free

S-modules

G X //

A
��

F
adj(X ) //

BA
��

G

F
adj(X )T

// G
X T
// F ,

that is, a homomorphism of matrix factorizations

(A,BA) : (adj(X ), X )−→ (X T ,adj(X )T)

and thus a homomorphism of MCM R-modules

cok(A,BA) : M −→ L∨.

In other words, we have a homomorphism Altn(S)
A 7→cok(A,BA)−−−−−−−−−→HomR(M,L∨).

Our next result is that this homomorphism is surjective, so that HomR(M,L∨)

is generated by the alternating matrices, and moreover that HomR(M,L∨)

is itself a MCM R-module.

16.18 Theorem. The R-module HomR(M,L∨) is MCM of rank n−1, min-

imally generated by
(n

2

)
elements. More precisely, it has the following free

presentation as an S-module

0 // Altn(S) U 7→X TU X // Altn(S)
A 7→cok(A,BA)// HomR(M,L∨) // 0;

alternatively, in terms of exterior powers, this exact sequence can be written

as

0 // ∧2 F∨
∧2 X T

// ∧2 G∨ // HomR(M,L∨) // 0 .
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Proof. For U an alternating (n×n)–matrix over S, we have

X TBX TU X = (X TU X )adj(X )

= X TU · (det X ) ,

so that BX TU X =U · (det X ). Thus the homomorphism cok(X TU X ,BX TU X )

is zero on the R-module M, and the alleged resolution of HomR(M,L∨) is

at least a complex.

Put D := cok(U 7→ X TU X ). Then D maps to HomR(M,L∨) and we must

show that this map is an isomorphism. Note first that D is a MCM R-

module, with matrix factorization

(U 7→ X TU X , A 7→ BA) .

Indeed, we have seen that BX TU X =U ·(det X ), and also X TBA X = A adj(X )X =
A · (det X ). Thus in particular D is a reflexive R-module, and U 7→ X TU X

is an injective endomorphism of the module of alternating matrices.

The free module Altn(S) has rank
(n

2

)
, so the determinant of the endo-

morphism U 7→ X TU X is homogeneous of degree n(n−1) in the variables

xi j. Since it must also be a unit times (det X )rankD , we see that D has rank

n−1 as an R-module, equal to that of HomR(M,L∨).

Outside the singular locus V (In−1(X )) of R, at least one maximal mi-

nor of X T is a unit. Thus after elementary transformations and linear

changes of variables, X T = diag(0,1, . . . ,1) and so adj(X )T = E11, the ele-

mentary matrix with 1 at position (1,1) and zeros elsewhere. Now any ho-

momorphism α from the cokernel of E11 to the cokernel of diag(0,1, . . . ,1) is

induced by an alternating (n× n)–matrix, namely any alternating matrix

with first row α. That is, outside the singular locus of R, HomR(M,L∨)
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is indeed generated by homomorphisms cok(A,BA) for alternating A. The

map D −→ HomR(M,L∨) is thus surjective, and since D and HomR(M,L∨)

have the same rank, is even an isomorphism, outside V (In−1(X )).

Recall that R is normal and In−1(X ) has codimension 3 in SpecR. The

homomorphism D −→ HomR(M,L∨) is thus a homomorphism between re-

flexive modules over a normal domain, which is an isomorphism in codi-

mension one. It follows that in fact D −→ HomR(M,L∨) is an isomor-

phism.

To use this description of HomR(M,L∨) to understand Ext1
R(L,L∨), we

need one more fact about matrix factorizations. It is straighforward to

verify, but key in what follows.

16.19 Proposition. Let (α,β) : (ϕ1,ψ1,F1,G1) −→ (ϕ2,ψ2,F2,G2) be a ho-

momorphism of matrix factorizations of f ∈ S, set R = S/( f ), and put Mi =
cok(ϕi,ψi), Ni = cok(ψi,ϕi) for i = 1,2. Then the bottom row of the pushout

diagram of R-modules

(16.19.1) 0 // M1 //

cok(α,β)
��

G1 //

��

N1 // 0

0 // M2 // Q // N1 // 0

defines an element of Ext1
R(N1, M2), which is the image of cok(α,β) under

the natural surjection HomR(M1, M2) −→ Ext1
R(N1, M2). The module Q is

again given by a matrix factorization, namely

Q ∼= cok

ϕ2 α

0 ψ1

 ,

ψ2 −β
0 ϕ1

 .
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Note also that if, in the notation of Proposition 16.1916.19, cok(α,β) factors

through a projective R-module, then the bottom row of (16.19.116.19.1) splits, and

vice versa. In this case, cok(α,β) factors through G1, and we have Q ∼=
M2 ⊕N1.

Applied to Theorem 16.1816.18, this fact implies the following structure for

Ext1
R(L,L∨).

16.20 Proposition. For each alternating (n× n)–matrix A over S, there

exists an extension

(16.20.1) 0 // L∨ // Q // L // 0 ,

which is the image of cok(A,BA) under the natural epimorphism HomR(M,L∨)−→
Ext1

R(L,L∨). In particular, the module Q is a MCM R-module of rank 2

given by the matrix factorization

Q = cok

X T A

0 X

 ,

adj(X )T −BA

0 adj(X )

 .

Furthermore, Q is orientable.

The matrix factorization given for Q in Proposition 16.2016.20 may not be of

minimal size. Indeed, if A is invertible then one can see that Q requires

only n generators. In this case, we have In 0

−X A−1 In

X T A

0 X

 In 0

−A−1X T In

=
 0 A

−X A−1X T 0

 ,

so that the given matrix factorization for Q can be reduced to

Q ∼= cok(X A−1X T ,BA) .
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More generally, if a (k× k)–minor of A is invertible, then the given matrix

factorization of Q can be reduced to one of size 2n−k.

For any n, the graded, orientable rank two MCM R-modules are min-

imally evenly generated [HK87HK87, 3.1]. In fact, they are presented by yet

another alternating matrix over S, as in [BEPP05BEPP05].

The orientable MCM module Q of Proposition 16.2016.20 is decomposable if

and only if Q ∼= L⊕L∨, equivalently, the sequence (16.20.116.20.1) is split exact.

To see this, recall that L and L∨ are up to isomorphism the only MCM

R-modules of rank one. As Q is orientable, the only possible direct-sum

decomposition for Q is L⊕L∨, and by Miyata’s theorem, if (16.20.116.20.1) is ap-

parently split then it is split.

We state without proof some further facts about Ext1
R(L,L∨). (Are they

used below?)

16.21 Proposition. As an S-module, E is perfect of grade 4, with support
the singular locus V (In−1(X )) of R. More precisely, the annihilator of E is
equal to In−1(X ). Its minimal graded free resolution over S is

Sym2 G∨

−adj(X )

&&
0 // ∧2 F∨ ?X // F∨⊗K G∨

X T ?+?T X
88

?adj(X )+adj(X )T ?T
&&

G∨⊗K F∨?X−X T ?T
// E // 0

D2F∨
X T ?

88

where D is the kernel of the canonical projection F ⊗S F −→ ∧2 F sending

A 7→ A− AT

As an S/In−1(X )-module, E =Ext1
R(L,L∨) is a MCM module of rank one,

isomorphic to the ideal generated by the maximal minors of n−2 fixed rows

of X .
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The extensions of Proposition 16.2016.20 define rank-two MCM modules Q,

and those extensions are classified by the explicit minimal graded free re-

solution given in Proposition 16.2116.21. Of course inequivalent extensions may

have isomorphic middle modules. To describe the MCM modules that ap-

pear as middle terms Q, we consider a more general problem.

Let A and B be finitely generated modules over a (commutative, Noethe-

rian) ring R. Fix free resolutions

· · · // P2
X2 // P1

X1 // P0 // A // 0

· · · // Q2
Y2 // Q1

Y1 // Q0 // B // 0

of A and B. An element χ ∈Ext1
R(A,B) is an equivalence class of extensions

0 −→ B −→ E −→ A −→ 0 and the isomorphism class of E is determined by

χ. The Horseshoe Lemma provides a free resolution of E

· · · // Q2 ⊕P2

[Y2 Z2
0 X2

]
// Q1 ⊕P1

[Y1 Z1
0 X1

]
// Q0 ⊕P0 // E // 0 .

Here the Zi are homomorphisms in HomR(Pi,Q i−1) satisfying YiZi+1 +
Zi X i+1 = 0 for all i> 1.

16.22 Definition. In the situation above, define a sequence of rings

Ri := R/(I1(X i)+ I1(Yi))

for i = 1,2, . . . , where as usual I1(U) is the ideal of R generated by the

entries of U . For each i set

Ji(χ)= I1(Zi)+ I1(X i)+ I1(Yi)
I1(X i)+ I1(Yi)

,

an ideal of Ri.
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It is straightforward to check that the ideals Ji(χ)⊆ Ri are well-defined.

In fact, the Ji(χ) are invariants of the isomorphism class of the middle

term of χ:

16.23 Proposition. Let χ,χ′ ∈ Ext1
R(A,B) have middle terms E,E′. If E ∼=

E′, then Ji(χ)=Ji(χ′) for all i.

The function Ji(?) thus defines a map from isomorphism classes of mod-

ules E appearing as extensions of B by A to ideals of Ri. We can identify

which ideals are in the image of J1.

16.24 Proposition. Let Z1 : P1 −→ Q0 and Z2 : P2 −→ Q1 be homomor-

phisms of free modules such that Y1Z2 + Z1X2 = 0. Then there exists χ ∈
Ext1

R(A,B) such that J1(χ)= I1(Z1)R1.

Proof. Set E = cok
[

Y1 Z1
0 X1

]
, so that we have a commutative diagram

0 0 0

B //

OO

E //

OO

A

OO

0 // Q0 //

OO

Q0 ⊕P0 //

OO

P0 //

OO

0

0 // Q0 //

Y1

OO

Q0 ⊕P0 //

[Y1 Z1
0 X1

] OO
P0 //

X1

OO

0

0 // Q0 //

Y2

OO

Q0 ⊕P0 //

[Y2 Z2
0 X2

] OO
P0 //

X2

OO

0

with exact rows and columns. The map E −→ A is surjective by commuta-

tivity. To see that B −→ E is injective, it is equivalent by the Snake Lemma
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to see that the kernel of
[

Y1 Z1
0 X1

]
maps onto the kernel of X1. This is a

straightforward calculation using Y1Z2 +Z1X2 = 0.

Assume now that R = S/( f ) is a hypersurface ring and A, B are MCM

modules over R. The free resolutions of A and B are periodic of period 2,

given by matrix factorizations of f . Write A = cok(ϕ,ψ) and B = cok(ϕ′,ψ′).

Then the sequence of rings Ri is periodic: we have

Ri =


S/(I1(ϕ)+ I1(ϕ′)) for i odd, and

S/(I1(ψ)+ I1(ψ′)) for i even.

For χ ∈ Ext1
R(A,B), the ideals J1(χ) ⊆ R1 and J2(χ) ⊆ R2 are again invari-

ants of the middle term of χ.

Return now to the generic determinant, with notation as earlier in the

section. Consider Ext1
R(L,L∨). Since L = cok(X ,adj(X )) and L∨ = cok(X T ,adj(X )T),

we have

Ri =


S/I1(X )∼= K for i odd, and

S/I1(adj(X )= S/In−1(X ) for i even.

By Proposition 16.2116.21 and Proposition 16.2016.20, every element χ ∈ Ext1
R(L,L∨)

is of the form

χ : 0 // L∨ // Q // L // 0

with

Q ∼= cok

X A

0 X T

 ,

adj(X ) −BA

0 adj(X )T


for some alternating matrix A over S and its companion matrix BA. We

therefore have J1(χ)= I1(A)K and J2(χ)= I1(BA)S/In−1(X ). In particular,
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for each ideal of S/In−1(X ) of the form I1(BA), where BA is the companion

matrix for some alternating matrix A, there exists an orientable MCM R-

module Q of rank 2, and distinct ideals yield nonisomorphic modules Q.

More precisely, we have the following result.

16.25 Proposition. There is a surjective function from the isomorphism

classes of rank-two MCM R-modules appearing as the middle terms of ex-

tensions of L by L∨ to the set of principal ideals of the polynomial ring in

(n−2)2 variables.

Proof. Let X ′ be the generic square matrix of size n−2, with entries x′i j,

1 6 i, j 6 n− 2. Let S′ = K[x′i j] be the polynomial ring over K in those

indeterminates x′i j, and define π : S −→ S′ by π(xi j) = x′i j if i, j 6 n−2 and

π(xi j) = 0 otherwise. The (n−1)-minors of X vanish under π, so we obtain

an induced epimorphism π : S/In−1(X ) −→ S′. Note that all (n−2)-minors

of X vanish under π as well, save [n−1,n |̂ n−1,n], which maps to det X ′.

Let χ ∈Ext1
R(L,L∨). Then χ is the image of an alternating matrix A, and

the ideal J2(χ) ⊆ S/In−1(X ) is generated by the entries of the companion

matrix BA. Again, J2(χ) depends only on the isomorphism class of the

middle term of χ. Recall (Proposition 16.1716.17) that

brs =
∑
k<l

akl(−1)r+s+k+l[rs |̂ kl] .

The image of J2(χ) in S′, then, is generated by the single element π(an−1,n)·
det X ′.

Define p : Ext1
R(L,L∨)−→ {ideals of S′} by p(χ)= (π(an−1,n)). Since det X ′

is a nonzerodivisor in S′, p(χ) is a well-defined ideal of S′. Letting A vary
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over all alternating matrices, we see that p is surjective, and by construc-

tion p(χ) depends only on the isomorphism class of the middle term of χ.

16.26 Corollary. Let X = (xi j) be the generic (n×n)–matrix over the field K ,

n> 3. Let R = K[xi j]/(det X ) be the generic determinantal hypersurface ring.

Then the rank-two orientable MCM R-modules cannot be parametrized by

the points of any finite-dimensional algebraic variety over K .



A
Appendix: Basics
Here we collect some basic definitions and results that are necessary but

somewhat peripheral to the main themes of the book. Some of the results

are stated without proof; for these, one can find proofs in [Mat86Mat86]. We refer

to [Mat86Mat86] also for any unexplained terminology.

§1 Depth, Serre’s conditions and syzygies

Throughout this section we let (R,m,k) be a local ring.

A.1 Definition. Let M be a finitely generated R-module. The depth of M

is given by

depthR(M)= inf
{
n

∣∣Extn
R(k, M) 6= 0

}
.

Note that depthR(0) = inf(;) =∞. Conversely, non-zero modules have

finite depth:

A.2 Proposition. Let M be a non-zero finitely generated R-module.

(i) depthR(M)<∞.

(ii) depthR(M)= sup {n | there is an M-regular sequence (x1, . . . , xn) in m}.

(iii) Every maximal M-regular sequence in m has length n.

(iv) depthR(M)6 dim(R/p) for every p ∈Ass(M). In particular, depth(M)6

dim(M)6 dim(R).

426
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(v) If (S,n) −→ (R,m) is a local homomorphism and R is finitely gener-

ated as an S-module, then depthS(M)= depthR(M).

(vi) If p ∈Spec(R), then depthRp
(Mp)= 0 ⇐⇒ p ∈Ass(M).

When the base ring R is clear, or when, e.g. as in item (vv) it is irrelevant,

we often omit the subscript and write “depth(M)”.

The next result is called the Depth Lemma. It follows easily from the

long exact sequence of Ext.

A.3 Lemma. Let 0 −→ U −→ V −→ W −→ 0 be a short exact sequence of

finitely generated R-modules.

(i) If depth(W)< depth(V ), then depth(U)= depth(W)+1.

(ii) depth(U)>min{depth(V ),depth(W)}.

(iii) depth(V )>min{depth(U),depth(W)}.

See [Mat86Mat86, Theorem 19.1] for a proof of the next result, the Auslander-

Buchsbaum Formula. We write pdR(M) for the projective dimension of an

R-module M.

A.4 Theorem (Auslander-Buchsbaum Formula). Let M be an R-module of

finite projective dimension. Then depth(M)+pdR(M)= depth(R).

A.5 Definition. Let M be a finitely generated module over a local ring

(R,m), and let n be a non-negative integer. Then M satisfies Serre’s condi-

tion (Sn) provided

depthRp
(Mp)>min

{
n,dim(Rp)

}
for every p ∈Spec(R).
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(Warning: Our terminology differs from that of EGA [GD65GD65, Definition

5.7.2] and Bruns-Herzog [BH93BH93, Section 2.1], where “dim(Rp)” is replaced

by “dim(Mp)”. Notice, for example, that by the EGA definition every finite-

length module would satisfy (Sn) for all n, while this is certainly not the

case with the definition we use. Of course, the two conditions agree for the

ring itself.)

A.6 Proposition. These are equivalent for a local ring (R,m).

(i) R is reduced.

(ii) R satisfies (S2), and Rp is a field for every minimal prime ideal p.

The next result is called Serre’s criterion for normality:

A.7 Proposition. These are equivalent for a local ring (R,m).

(i) R is a normal domain.

(ii) R satisfies (S2), and Rp is a regular local ring for each prime ideal p

of height at most one.

We will say that a finitely generated module M over a ring R is an rth

syzygy (of N), provided there is an exact sequence

(A.7.1) 0−→ M −→ Fr−1 −→ . . .−→ F0 −→ N −→ 0,

where N is a finitely generated module and each Fi is a finitely generated

projective module.

Syzygies are unique up to projective summands, by Schanuel’s Lemma:
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A.8 Lemma (Schanuel’s Lemma). Let M1 and M2 be rth syzygies of N.

Then there are finitely generated projective R-modules G1 and G2 such that

M1 ⊕G2
∼= M2 ⊕G1.

Proof. By an easy induction argument, it suffices to do the case r = 1. Thus

we have exact sequences

(A.8.1)
0−→ M1 −→G1 −→ N −→ 0

0−→ M2 −→G2 −→ N −→ 0

Form the pullback of the two sequences in (A.8.1A.8.1), getting an exact, comm-

utative diagram.

0

��

0

��
M2

��

M2

��
0 // M1 // X

��

// G2

��

// 0

0 // M1 // G1

��

// N

��

// 0

0 0

Since G1 and G2 are projective, the top horizontal and left vertical short

exact sequences split, and the result follows.

If R is local and each Fi is chosen minimally, then (reduced) syzygies are

unique up to isomorphism, and we let syzR
r (N) denote the rth syzygy with

respect to a minimal resolution. We define redsyzR
r (N) to be the reduced
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rth syzygy, obtained from syzR
r (N) by deleting all non-zero free direct sum-

mands. The uniqueness is an immediate consequence of the next proposi-

tion, which says that minimal resolutions over a local ring are essentially

unique.

A.9 Proposition. Let (F•,d) and (G•, e) be minimal free resolutions of a

finitely generated module M over a local ring (R,m). Then the matrices di

and e i are equivalent for each i.

Proof. Using projectivity of the Fi, we can fill in vertical arrows, starting

with F0 −→ G0 and working to the left, in such a way that the following

diagram commutes.

· · · // Fn
dn //

��

Fn−1 //

��

· · · // F1
d1 //

��

F0
d0 //

��

M // 0

· · · // Gn en
// Gn−1 // · · · // G1 e1

// G0 e0
// M // 0

By minimality, F0
∼= G0, and Nakayama’s Lemma implies that the map

F0 −→G0 is surjective, hence an isomorphism. Proceed inductively to show

that Fi ∼=G i for each i and that each vertical arrow is an isomorphism.

A.10 Definition. Let R be a Noetherian ring and M a finitely generated

R-module. Say that M is torsion-free if every non-zerodivisor in R is a non-

zerodivisor on M. Equivalently, the natural map M −→ K ⊗R M, where K

is the total quotient ring, is injective.

A.11 Definition. Let R be a Noetherian ring and M a finitely generated

R-module. Set M∗ =HomR(M,R), the dual of M, and M∗∗ =HomR(M∗,R),

the bidual. Define

σM : M −→ M∗∗
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by σM(x)( f )= f (x) for x ∈ M and f ∈ M∗. Say that

(i) M is torsionless if σM is injective, and

(ii) M is reflexive if σM is bijective.

There are some implications among torsionlessness, torsion-freeness,

and reflexivity.

A.12 Proposition. Let R be a Noetherian ring and M a finitely generated

R-module.

(i) If M is torsionless, then M is torsion-free.

(ii) M is torsionless if and only if M is a first syzygy.

(iii) If M is reflexive then M is a second syzygy.

See Proposition A.15A.15 below for a converse to (iiiiii).

The properties of torsionlessness and reflexivity are detected by a weak-

ened form of the (Sn) conditions.

A.13 Proposition. Let R be a Noetherian ring and M a finitely generated

R-module.

(i) M is torsionless if and only if Mp is torsionless over Rp for all p ∈
AssR and

depthRp
Mp>min

{
1,depthRp

}
for every p ∈SpecR.
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(ii) M is reflexive if and only if Mp is reflexive over Rp for all primes p of

height at most one and

depthRp
Mp>

{
2,depthRp

}
for every p ∈SpecR.

A.14 Corollary. Let R be a normal domain and M a finitely generated R-

module. If M is MCM, then M is reflexive. The converse holds if R has

dimension two.

(This material needs to be combined with what comes next.)

Recall that a local ring (R,m) is Gorenstein provided R has finite in-

jective dimension as an R-module. In this case, injdimR(R) = dim(R), by

Lemma 9.19.1. Maximal Cohen-Macaulay modules are reflexive over a Goren-

stein ring. (Of course, this is included in the much more general Theo-

rem 9.79.7.) In fact, it suffices to prove reflexivity of MCM modules for Goren-

stein rings of dimension 0 (where it is easy) and 1 (where the result can

be found already in Bass’ ubiquity paper [Bas63Bas63]). We quote the following

result from Evans’ and Griffith’s book [EG85EG85, Theorem 3.6]:

A.15 Proposition. Let R be a local ring satisfying (S2), and assume Rp is

Gorenstein for each prime of height 6 1. These conditions are equivalent,

for a finitely generated R-module M:

(i) M is a second syzygy of some finitely generated R-module.

(ii) M is reflexive.

(iii) M satisfies (S2).
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The following result is proved, but not quite stated correctly, in [EG85EG85].

A.16 Theorem. Let (R,m) be a local ring and M a finitely generated R-

module satisfying Serre’s condition (Sn), where n> 1. Assume

(i) R satisfies (Sn−1), and

(ii) Rp is Gorenstein for every prime p with dim(Rp)6 n−1.

Then there is an exact sequence

(A.16.1) 0−→ M α−−→ F −→ N −→ 0,

in which F is a finitely generated free module and N satisfies (Sn−1).

Proof. We start with an exact sequence

(A.16.2) 0−→ K −→G −→ M∗ −→ 0,

where G is a finitely generated free module and M∗ = HomR(M,R). Put

F =G∗, and dualize (A.16.2A.16.2), getting an exact sequence

(A.16.3) 0−→ M∗∗ β−−→ F −→ K∗ −→Ext1
R(M∗,R)−→ 0.

Let σ : M −→ M∗∗ be the canonical map, let α=βσ, and put N = cokα.

To verify exactness of (A.16.1A.16.1), we just have to show that σ is one-to-one.

Supposing, by way of contradiction, that L = ker(σ) is non-zero, we choose

p ∈ Ass(L). Given any minimal prime q, we know Rq is Gorenstein (since

n> 1), and hence σq is an isomorphism by Proposition A.15A.15. Thus Lq = 0

for each minimal prime q. In particular, dim(Rp) > 1, so depth(Mp) > 1.

But this contradicts the fact that depth(Lp)= 0.
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Let p be a prime of height h. If h6 n−1, we need to show that Np is

MCM. Since Rp is Gorenstein and Mp is MCM, the canonical map σp is an

isomorphism. Also, M∗
p is MCM, so Ext1

Rp
(M∗

p ,Rp)= 0. The upshot of all of

this is that Np
∼= K∗

p . Now (A.16.2A.16.2) shows that Kp is MCM, and therefore so

is its dual K∗
p .

To complete the proof that N satisfies (Sn−1), we assume now that h> n.

We need to show that depthRp
(Np)> n−1. Suppose depthRp

(Np) < n−1.

Since depthRp
(Fp)> n−1, the Depth Lemma A.3A.3, applied to (A.16.1A.16.1), shows

that depthRp
(Mp)= 1+depthRp

(Np)< n, a contradiction.

A.17 Corollary. Let (R,m) be a local ring, M a finitely generated R-module

and n a positive integer. Assume R satisfies Serre’s condition (Sn) and Rp is

Gorenstein for each prime p of height at most n−1. These are equivalent.

(i) M is an nth syzygy.

(ii) M satisfies (Sn).

Proof. (ii) =⇒ (iiii) by the Depth Lemma, and (iiii) =⇒ (ii) by Theorem A.16A.16.

A.18 Corollary. Let (R,m) be a CM local ring of dimension d, and assume

that Rp is Gorenstein for every prime ideal p 6=m. These are equivalent, for

a finitely generated R-module M.

(i) M is MCM.

(ii) M is a dth syzygy.

The following special case of Theorem 9.39.3 follows easily:
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A.19 Corollary. Let M be a MCM module over a CM local ring (R,m). As-

sume that Rp is Gorenstein for every prime ideal p 6=m. Then Exti
R(M,R)= 0

for all i > 0.

Proof. Since M is a dth syzygy of some R-module N, and since injdimR(R)=
d, we have Exti

R(M,R)=Exti+d
R (N,R)= 0.

A.20 Remark. The hypothesis that R be Gorenstein on the punctured

spectrum cannot be weakened, at least when R has a canonical module

or, more generally, a Gorenstein module [Sha70Sha70], that is, a finitely gener-

ated module whose completion is a direct sum of copies of the canonical

module ωR̂ . Let (R,m) be a d-dimensional CM local ring having a Goren-

stein module G. If G is a dth syzygy, then R is Gorenstein on the punctured

spectrum. To see this, we build an exact sequence

(A.20.1) 0−→G −→ F −→ M −→ 0,

where F is free and M is a (d−1)st syzygy. Now let p be any non-maximal

prime ideal. Since Mp is MCM and Gp is Gorenstein, (A.20.1A.20.1) splits when

localized at p (apply Proposition 9.49.4). But then Gp is free, and it follows that

Rp is Gorenstein. (We thank Bernd Ulrich for showing us this argument

(cf. also [LW00LW00, Lemma 1.4]).)

§2 Rank and multiplicity

In this section we recall the definition and basic properties of the multiplic-

ity.
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A.21 Definition. Let M be a finitely generated module over a local ring

(R,m) of dimension d. The multiplicity of M is defined by

e(M)= lim
n−→∞

d!
nd `R(M/mnM),

where `R(−) denotes length as an R-module.

A.22 Theorem. Let (R,m) be a local ring of dimension d.

(i) Let M be a finitely generated R-module. The multiplicity e(M) is a

non-negative integer, and e(M)> 0 if and only if dim(M)= d.

(ii) Multiplicity is additive on exact sequences of finitely generated mod-

ules.

A.23 Theorem. Let (R,m) be a one-dimensional local ring of dimension

one.

(i) The multiplicity e(R) of R is the number of generators required for

high powers of m.

(ii) If R is reduced, and M is a finitely generated R-module with con-

stant rank r, then e(M)= re(R).

(iii) If R is Cohen-Macaulay, then e(R) is the sharp bound on the mini-

mal number of generators of ideals of R. It is also the sharp bound

on the minimal number of generators for finite birational extensions

of R.

(iv) If R is reduced and the integral closure R is finitely generated over

R, then e(R) is the number of generators required for R as an R-

module.
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Proof. The first item follows from the definition of multiplicity and `R(R/mn+1)=
`R(R/mn)+µR(mn). The second follows from the “associativity formula” [Mat86Mat86].

We refer to Sally’s book [Sal78Sal78, Chapter 3, Theorem 1.1] or Greither [Gre82Gre82]

for the fact the every ideal is generated by at most e(R) elements. The

bound is sharp because high powers of m need exactly e(R) generators by

(ii). Every finite birational extension of R is isomorphic, as an R-module,

to an ideal of R (clear denominators) and therefore is generated by at most

e(R) elements. Proposition 3.43.4 shows that the bound is sharp.

For (iviv) we refer to Greither’s paper [Gre82Gre82, Theorem 2.1].

A.24 Definition. A finitely generated module M over a Noetherian ring

R has constant rank provided K ⊗R M is a free K-module, where K is the

total quotient ring of R. If K ⊗R M ∼= K (n) (equivalently, Mp
∼= R(n)

p for every

p ∈Ass(R)), we say that M has constant rank n.

We need the following additional facts about multiplicity from [Mat86Mat86]

for Chapter 1414:

14.4 I ⊆ J =⇒ e(I, M)> e(J, M)

14.6 additivity on short exact sequences

14.9 if x⊆mt then `(M/xM)> td e(M)

14.11 x regular = `(M/xM)= e(x, M).

We also need the fact that rank(M)6 µR(M), and the existence of minimal

reductions if the residue field is infinite.
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§3 Henselian rings

Recall the classical criterion for a local ring to be Henselian:

A.25 Definition. Let (R,m,k) be a local ring. Then R is Henselian pro-

vided, for every monic polynomial f in R[x] and every factorization f +
m[x]= g1 g2, where g and h are relatively prime monic polynomials in k[x],

there are monic polynomials g i ∈ R[x] such that g̃ i+m[x]= g i and f = g̃1 g̃2.

A.26 Theorem. Let (R,m,k) be a local ring. These are equivalent:

(i) R is Henselian.

(ii) Every integral domain which is a module-finite R-algebra is local.

(iii) Every module-finite commutative R-algebra is a direct product of

local rings.

(iv) For every module-finite R-algebra Λ (not necessarily commutative),

each idempotent of Λ/J (Λ) lifts to an idempotent of Λ.

Proof. (ii) =⇒ (iiii): Let D be a domain that is module-finite over R, and sup-

pose D is not local. Write α+β= 1, where α and β are non-units of D, and

therefore non-units of S := R[α] too. Let f ∈ R[x] be a monic equation of

least degree with f (α)= 0. By Lemma 1.61.6, the finite-dimensional k-algebra

S/mS = k[α] is not local, and it follows that the minimal polynomial g for α

over k is not just a power of a single irreducible polynomial. Since g | f , the

factorization of f involves at least two distinct monic irreducible factors.

Therefore we can write f = g1 g2, where g1 and g2 are monic polynomials

of positive degree. Lifting this factorization to R[x], we have f = g̃1 g̃2. By
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minimality of deg f , we have g̃ i(α) 6= 0, but g1(α)g2(α) = f (α) = 0, contra-

diction.

(iiii) =⇒ (iiiiii): Let Λ be a commutative, module-finite R-algebra, with

maximal ideals m1, . . . ,mt. By applying (iiii) to the domains R/p, p ∈Spec(R),

we see that Spec(R) is the disjoint union of the sets X i = {p ∈ Spec(R) |
p ⊆ mi}. Moreover, letting pi j, j = 1, . . . , si, be the minimal prime ideals

contained in mi, we see that X i = V(p1)∪ ·· · ∪V(psi ), a closed set. Thus

we have represented Spec(R) as a disjoint union of open-and-closed sets,

and (iiiiii) follows.

(iiiiii) =⇒ (iviv): Let e = e2 ∈ Λ/J (Λ), and let ` be any lifting of e to Λ.

Setting A = R[`], one checks that J (A) = A ∩J (Λ). Let ` be the image

of ` in A/J (A). We have an injection ι : A/J (A) ,→ Λ/J (Λ), and ι(`) = e.

Therefore `2 −` ∈J (A); since A is a direct product of local rings, ` clearly

lifts to an idempotent of A.

(iviv) =⇒ (ii):. . .

A.27 Corollary. Let R be a Henselian local ring, let α ∈ R×, and let n be a

positive integer prime to char(k). If α has an nth root in k×, then α has an

nth root in R×.

Proof. Let f = xn −α ∈ R[x], and let β be a root of xn −α ∈ k[x]. Write

xn −α= (x−β)h(x). The hypotheses imply that xn −α has n distinct roots,

so x−β and h(x) are relatively prime. Since R is Henselian, we get β̃ ∈ R×

and h̃ ∈ R[x] such that xn −α= (x− β̃)h̃. Then β̃n =α.
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Ramification Theory
This appendix contains the basic results we need in the body of the text

on unramified and étale ring homomorphisms, as well as the ramification

behavior of prime ideals in integral extensions. We also include proofs of

the theorem on the purity of the branch locus (Theorem B.12B.12) and results

relating ramification to pseudo-reflections in finite groups of linear ring

automorphisms.

§1 Unramified homomorphisms

Recall that a ring homomorphism A −→ B is said to be of finite type if B

is a finitely generated A-algebra, that is, B ∼= A[x1, . . . , xn]/I for some poly-

nomial variables x1, . . . , xn and an ideal I. We say A −→ B is essentially of

finite type if B is a localization (at an arbitrary multiplicatively closed set)

of an A-algebra of finite type.

B.1 Definition. Let (A,m,k) −→ (B,n,`) be a local homomorphism of local

rings. We say that A −→ B is an unramified local homomorphism provided

(i) mB = n,

(ii) B/mB is a finite separable field extension of A/m, and

(iii) B is essentially of finite type over A.

If in addition A −→ B is flat, we say it is étale.

440
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B.2 Remarks. Let A −→ B be a local homomorphism of local rings as in

the definition. Let Â and B̂ be the m-adic and n-adic completions of A and

B, respectively. It is straightforward to check that A −→ B is unramified or

étale if and only if Â −→ B̂ is so.

If A −→ B is an unramified local homomorphism, then B̂ is a finitely

generated Â-module. Indeed, it follows from the complete version of NAK

([Mat86Mat86, Theorem 8.4] or [Eis95Eis95, Exercises 7.2 and 7.4]) that any k = Â/m̂-

vector space basis for `= B̂/n̂ lifts to a set of Â-module generators for B̂. If,

in particular, there is no residue field growth (for instance, if k is separably

or algebraically closed), then Â −→ B̂ is surjective.

If A −→ B is étale, then B̂ is a finitely generated flat Â-module, whence

B̂ ∼= Â(n) for some n. If in this case k = `, then B̂ = Â.

It’s easy to check that if A −→ B is étale, then A and B share the same

Krull dimension and the same depth. Furthermore, A is regular if and only

if B is regular. For further permanence results along these lines, we need

to globalize the definition.

B.3 Definition. Let A and B be Noetherian rings, and A −→ B a homo-

morphism essentially of finite type. Let q ∈ SpecB and set p = A ∩q. We

say that A −→ B is unramified at q (or also q is unramified over A) if and

only if the induced map Ap −→ Bq is an unramified local homomorphism

of local rings. Similarly, A −→ B is étale at q if and only if Ap −→ Bq is an

étale local homomorphism. Finally, A −→ B is unramified, resp. étale, if it

is unramified, respectively étale, at every prime ideal q ∈SpecB.

Here is an easy transitivity property of unramified primes.
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B.4 Lemma. Let A −→ B −→ C be homomorphisms, essentially of finite

type, of Noetherian rings. Let r ∈SpecC and set q= B∩ r.

(i) If r is unramified over B and q is unramified over A, then r is un-

ramified over A.

(ii) If r is unramified over A, then r is unramified over B.

It is clear that a local homomorphism (A,m) −→ (B,n) essentially of fi-

nite type is an unramified local homomorphism if and only if n is unram-

ified over A. However, it’s not at all clear that an unramified local homo-

morphism is unramified in the sense of Definition B.3B.3. To reconcile these

definitions, we must show that being unramified is preserved under local-

ization. The easiest way to do this is to give an alternative description,

following [AB59AB59].

B.5 Definition. Let A −→ B be a homomorphism of Noetherian rings. De-

fine the diagonal map µ : B⊗A B −→ B by µ(b⊗b′)= bb′ for all b,b′ ∈ B, and

set J = kerµ. Thus we have a short exact sequence of B⊗A B-modules

(B.5.1) 0 //J //B⊗A B
µ //B //0 .

B.6 Remarks.

(i) The ideal J is generated by all elements of the form b⊗1−1⊗ b,

where b ∈ B. Indeed, if µ
(∑

j b j ⊗b′
j

)
= 0, then

∑
j b jb′

j = 0, so that

∑
j

b j ⊗b′
j =

∑
j

(1⊗b′
j)(b j ⊗1−1⊗b j) .
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(ii) The ring B⊗A B, also called the enveloping algebra of the A-algebra

B, has two A-module structures, one on each side. Thus J also has

two different B-structures. However, these two module structures

coincide modulo J 2. The reason is that

J /J 2 = (
(B⊗A B) /J

)⊗B⊗AB J

is a (B⊗A B) /J -module, and (B⊗A B) /J = B. In particular, J /J 2

has an unambiguous B-module structure.

(iii) The B-module J /J 2 is also known as the module of (relative) Käh-

ler differentials of B over A, denoted ΩB/A [Eis95Eis95, Chapter 16]. It

is the universal module of A-linear derivations on B, in the sense

that the map δ : B −→ J /J 2 sending b to b ⊗ 1− 1⊗ b is an A-

linear derivation (satisfies the Leibniz rule), and given any A-linear

derivation ε : B −→ M, there exists a unique B-linear homomor-

phism J /J 2 −→ M making the obvious diagram commute. In par-

ticular we have DerA(B, M) ∼= HomB(J /J 2, M) for every B-module

M. Though it is very important for a deeper study of unramified

maps, will not need this interpretation in this book.

(iv) If A −→ B is assumed to be essentially of finite type, J is a finitely

generated B⊗AB-module. To see this, first observe that the question

reduces at once to the case where B is of finite type over A. In that

case, if x1, . . . , xn are A-algebra generators for B, one checks that

the elements xi ⊗1−1⊗ xi, for i = 1, . . . ,n, generate J . It follows

that if A −→ B is essentially of finite type then J /J 2 is a finitely

generated B-module.
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(v) The term “diagonal map” comes from the geometry. If f : A,→B is

an extension of integral domains which are finitely generated al-

gebras over a field k, then there is a corresponding surjective map

of irreducible varieties f # : Y −→ X , where X is the maximal ideal

spectrum of A and Y is that of B. In this case, the maximal ideal

spectrum of B⊗A B is the fiber product

Y ×X Y = {
(y1, y2) ∈Y ×Y

∣∣ f #(y1)= f #(y2)
}

.

The map µ : B⊗AB −→ B corresponds to the inclusion of the diagonal

∆Y /X as an irreducible component, µ# : Y −→Y×X Y . In these terms,

J is the ideal of functions on Y ×X Y vanishing on the diagonal.

B.7 Lemma. Let A −→ B be a homomorphism of Noetherian rings. Then

the following conditions are equivalent.

(i) B is a projective B⊗A B-module.

(ii) The exact sequence 0 −→ J −→ B⊗A B
µ−→ B −→ 0 splits as B⊗A B-

modules.

(iii) µ
(
AnnB⊗AB

(
J

))= B.

If J /J 2 is a finitely generated B-module (for example, if A −→ B is essen-

tially of finite type), then these are equivalent to

(iv) J is generated by an idempotent.

(v) J /J 2 = 0.
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Proof. (ii) ⇐⇒ (iiii) is clear.

(iiii) ⇐⇒ (iiiiii): The map µ : B⊗A B −→ B splits over B⊗A B if and only if

the induced homomorphism

HomB⊗AB(B,µ) : HomB⊗AB(B,B⊗A B)−→HomB⊗AB(B,B)

is surjective. However, the isomorphism B ∼= (B⊗A B) /J shows that HomB⊗AB(B,B⊗A

B)∼=AnnB⊗AB(J ), so that µ splits if and only if HomB⊗AB(B,µ) is surjective,

if and only if µ
(
AnnB⊗AB

(
J

))= B.

The final two statements are always equivalent for a finitely generated

ideal. Assume (iviv), so that there exists z ∈ J with xz = x for every x ∈ J .

Define q : B⊗A B −→ J by q(x) = xz. Then for x ∈ J , we have q(x) = x,

so that the sequence splits. Conversely, any splitting q of the map J −→
B⊗A B yields an idempotent z = q(1), so (iiii) and (iviv) are equivalent.

The proof of the next result is too long for us to include here, even

though it is the foundation for the theory. See [Eis95Eis95, Corollary 16.16].1

B.8 Proposition. Suppose that A is a field and B is an A-algebra essen-

tially of finite type. Then the equivalent conditions of Lemma B.7B.7 hold if

and only if B is a direct product of a finite number of fields, each finite and

separable over A.

The condition in the Proposition that B be a direct product of a finite

number of fields, each finite and separable over A, is sometimes called a

1Sketch: In the special case where A and B are both fields, one can show that if B
is projective over B⊗A B then A −→ B is necessarily module-finite. Then a separability
idempotent z ∈ J is given as follows: let α ∈ B be a primitive element, with minimal
polynomial f (x)= (x−α)

∑n−1
i=0 bixi. Then z =

(
1⊗ 1

f ′(α)

)∑n−1
i=0 ai ⊗bi is idempotent.
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“(classically) separable algebra” in the literature. Equivalently, K ⊗A B is a

reduced ring for every field extension K of A.

We now relate the equivalent conditions of Lemma B.7B.7 to the definitions

at the beginning of the Appendix.

B.9 Proposition. Let A −→ B be a homomorphism, essentially of finite

type, of Noetherian rings. The following statements are equivalent.

(i) The exact sequence 0 −→ J −→ B⊗A B
µ−→ B −→ 0 splits as B⊗A B-

modules.

(ii) B is unramified over A.

(iii) Every maximal ideal of B is unramified over A.

Proof. (ii) =⇒ (iiii): Let q ∈SpecB, and let p= A∩q be its contraction to A. It

is enough to show that Bp/pBp is unramified over the field Ap/pAp, i.e. is a

finite direct product of finite separable field extensions. By Proposition B.8B.8,

it suffices to show that Bp/pBp is a projective module over Bp/pBp⊗Ap/pAp

Bp/pBp. Let p : B −→ B ⊗A B be a splitting for µ, so that µp = 1B. Set

y = p(1). Then µ(y) = 1 and ykerµ = 0; in fact, the existence of an ele-

ment y satisfying these two conditions is easily seen to be equivalent to the

existence of a splitting of µ. Consider the diagram

B⊗A B
f //

µ

��

Bp⊗Ap Bp
g //

µ′
��

Bp/pBp⊗Ap Bp/pBp

µ′′
��

B // Bp
// Bp/pBp

in which the horizontal arrows are the natural ones and the vertical ar-

rows are the respective diagonal maps. Put y′′ = gf (y). Then µ′′(y′′) =
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1 and yker(µ′′) = 0, so that µ′′ splits. Since the top-right ring is also

Bp/pBp⊗Ap/pAp Bp/pBp, this shows that Ap/pAp −→ Bp/pBp is unramified.

(iiii) =⇒ (iiiiii) is obvious.

(iiiiii) =⇒ (ii): Since J is a finitely generated B-module, it suffices to

assume that A −→ B is an unramified local homomorphism of local rings

and show that J =J 2. Once again we reduce to the case where A is a field

and B is a separable A-algebra. In this case Proposition B.8B.8 implies that

J =J 2.

B.10 Remarks. This proposition reconciles the two definitions of unram-

ifiedness given at the beginning of the Appendix, since it implies that un-

ramifiedness is preserved by localization. This has some very satisfactory

consequences. One can now use the characterizations of reducedness and

normality in terms of the conditions (Rn) and (Sn) to see that if A −→ B

is étale, then A is reduced, resp. normal, if and only if B is so. Note that

this fact would be false without the hypothesis that A −→ B is essentially

of finite type. Indeed, the natural completion homomorphism A −→ Â sat-

isfies (ii) and (iiii) of Definition B.1B.1, and is of course flat, but there are many

examples of completion not preserving reducedness or normality.

Proposition B.9B.9 also allows us to expand our use of language, saying

that a prime ideal p ∈Spec A is unramified in B if the localization Ap −→ Bp

is unramified, that is, every prime ideal of B lying over p is unramified.

We now define the homological different of the A-algebra B, which will

be used several times in the text. It is the ideal of B

HA(B)=µ(
AnnB⊗AB

(
J

))
,
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where µ : B⊗A B −→ B is the diagonal. The homological different defines

the branch locus of A −→ B, that is, the primes of B which are ramified over

A, as we now show.

B.11 Theorem. Let A −→ B be a homomorphism, essentially of finite type,

of Noetherian rings. A prime ideal q ∈ SpecB is unramified over A if and

only if q does not contain HA(B).

Proof. This follows from Proposition B.9B.9 and condition (iiiiii) of Lemma B.7B.7,

together with the observation that formation of J commutes with localiza-

tion at q and A ∩ q. Precisely, let q ∈ SpecB and set p = A ∩ q. Let S be

the multiplicatively closed set of simple tensors u⊗v, where u and v range

over B\q. Then (B⊗A B)S
∼= Bq⊗A Bq

∼= Bq⊗Ap Bq and the kernel of the map

µ̃ : Bq⊗Ap Bq −→ Bq coincides with
(
kerµ

)
S.

§2 Purity of the branch locus

Turn now to the theorem on the purity of the branch locus. The proof we

give, following Auslander–Buchsbaum [AB59AB59] and Auslander [Aus62Aus62], is

somewhat lengthy.

For the rest of this Appendix, we will be mainly concerned with finite

integral extensions A −→ B of Noetherian domains. In particular they will

be of finite type. Recall that for a finite integral extension, we have the

“lying over” and “going up” properties; if in addition A is normal, then we

also have “going down” [Mat86Mat86, Theorems 9.3 and 9.4]. In particular, in

this case we have heightq= height(A∩q) for q ∈SpecB ([Mat86Mat86, 9.8, 9.9]).
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Recall also that since a normal domain satisfies Serre’s condition (S2),

the associated primes of a principal ideal all have height one (see [Eis95Eis95,

Theorem 11.5]). In other words, principal ideals have pure height one.

B.12 Theorem. Let A be a regular ring and A,→B a module-finite ring

extension with B normal. Then HA(B) is an ideal of pure codimension one in

B. In particular, if A −→ B is unramified in codimension one, then A −→ B

is unramified.

First we observe that the condition “unramified in codimension one” can

be interpreted in terms of the sequence (B.5.1B.5.1).

Assume A −→ B is a module-finite extension of Noetherian normal do-

mains. We write B ·B for (B⊗A B)∗∗, where −∗ = HomB(−,B) (see Chap-

ter 55). Since the B-module B is reflexive, and any homomorphism from

B⊗A B to a reflexive module factors through B ·B, we see that µ : B⊗A B −→
B factors as B⊗A B −→ B ·B µ∗∗−−→ B.

B.13 Proposition. A module-finite extension of Noetherian normal do-

mains A −→ B is unramified in codimension one if and only if µ∗∗ is a

split surjection of B⊗A B-modules.

Proof. If µ∗∗ is a split surjection, then µ∗∗
p is a split surjection for all primes

q of height one in B. For these primes, however, µ∗∗
q = µq since Bq⊗Ap Bq =

(B⊗A B)q is a reflexive module over the DVR Bq, where p = A∩q. Thus µ

splits locally at every height-one prime of B, so A −→ B is unramified in

codimension one.

Now assume A −→ B is unramified in codimension one. Let K be the

quotient field of A and L the quotient field of B. Since A −→ B is unramified
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at the zero ideal, K −→ L is unramified, equivalently, a finite separable

field extension. In particular, the diagonal map η : L⊗K L −→ L is a split

epimorphism of L⊗K L-modules.

Since B ·B is B-reflexive, it is in particular torsion-free, and so B ·B is

a submodule of L⊗K L. We therefore have a commutative diagram of short

exact sequences

0 //L // L⊗K L
η // L // 0

0 // J ′ //

OO

B ·B µ∗∗ //
� ?

OO

B //
� ?

OO

0

0 // J //

OO

B⊗A B µ
//

OO

B // 0

in which the left-hand modules are by definition the kernels, and in which

the top row splits over L⊗K L since L/K is separable. Let ε : L −→ L⊗K L

be a splitting, and let ζ be the restriction of ε to B. It will suffice to show

that ζ(B) ⊆ B ·B, for then ζ will be the splitting of µ∗∗ we need. For a

height-one prime ideal q of B, with p = A∩q, we do have ζq(Bq) ⊆ (Bq⊗Ap

Bq)∗∗ = (B ⊗A B)q, since A −→ B is unramified in codimension one. But

im(ζ) =⋂
heightq=1 im(ζq) and B =⋂

heightq=1 Bq as B is normal, so the image

of ζ is contained in B ·B and ζ is a splitting for µ∗∗.

Following Auslander and Buchsbaum, we shall first prove Theorem B.12B.12

in the special case where B is a finitely generated projective A-module. In

this case the homological different coincides with the Dedekind different

from number theory, which we describe now.

Let A −→ B be a module-finite extension of normal domains. Let K and

L be the quotient fields of A and B, respectively. We assume that K −→ L
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is a separable extension. (In the situation of Theorem B.12B.12, this follows

from the hypothesis.) In this case the trace form (x, y) 7→ TrL/K (xy) is non-

degenerate L⊗K L −→ L, and since A −→ B is integral and A is integrally

closed in K we have TrL/K (B)⊆ A. Set

CA(B)= {x ∈ L |TrL/K (xB)⊆ A } ,

and call it the Dedekind complementary module for B/A. The map CA(B)−→
B∗ =HomA(B, A) defined by sending x ∈CA(B) to the map y 7→TrL/K (xy) is

an isomorphism of B-modules. Thus CA(B) is a finitely generated reflexive

B-submodule of L, i.e. a divisorial fractional ideal.

We set DA(B) = (CA(B))−1, the inverse of the fractional ideal CA(B).

This is the Dedekind different of B/A. The map HomB(HomA(B, A),B) −→
DA(B) sending f to f (TrL/K ) is an isomorphism of B-modules. Since B ⊆
CA(B), we have DA(B)⊆ B and DA(B) is a reflexive ideal of B.

The following theorem is attributed to Noether ([Noe50Noe50], posthumous)

and Auslander and Buchsbaum.

B.14 Theorem. Let A −→ B be a module-finite extension of Noetherian nor-

mal domains which induces a separable extension of quotient fields. We

have HA(B) ⊆DA(B), and if B is projective as an A-module then HA(B) =
DA(B).

Proof. Let K and L be the respective quotient fields of A and B as in the

discussion above. Set L∗ =HomK (L,K) and B∗ =HomA(B, A). Define

σL : L⊗K L −→HomL(L∗,L)

by σL(x⊗ y)( f ) = xf (y). Then σL restricts to σB : B⊗A B −→ HomB(B∗,B),

defined similarly. It’s straightforward to show that σB is an isomorphism
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if B is projective over A; in particular, σL is an isomorphism. Its inverse is

defined by (σL)−1 ( f )=∑
j f (x∗j )⊗ x j, where

{
x j

}
and

{
x∗j

}
are dual bases for

L and L∗ over K .

Consider the diagram

HomB(B∗,B)
iB //

��

HomA(B∗,B)

��

B⊗A B
σBoo µB //

��

B

��
HomL(L∗,L)

iL
// HomK (L∗,L) L⊗K L

σL
∼=
oo

µL
// L

in which µB and µL are the respective diagonal maps, iB and iL are in-

clusions, and the vertical arrows are all induced from the inclusion of B

into L. Now TrL/K (x) = ∑
j x∗j (xx j), so if f ∈ HomL(L∗,L) then we have

f (TrL/K ) = ∑
j x j f (x∗j ). Thus the composition of the entire bottom row, left

to right, is given by

µL (σL)−1 iL( f )=µL

(∑
j

f (x∗j )⊗ x

)
=∑

j
f (x∗j )x j = f (TrL/K ) .

It follows that the image of HomB(B∗,B) in L is DA(B).

The module HomA(B∗,B) is naturally a B⊗AB-module via
((

b⊗b′) ( f )
)
(g)=

bf (g◦b′), where the b′ on the right represents the map on B given by multi-

plication by that element. Thus σB is a B⊗A B-module homomorphism. An

element HomA(B∗,B) is in the image of iB if and only if it is a B-module ho-

momorphism, i.e. (b⊗1)( f ) = (1⊗b) ( f ) for every b ∈ B. This is exactly say-

ing that f annihilates J = kerµB. Thus implies that σB
(
AnnB⊗AB

(
J

)) ⊆
im iB. It follows that HA(B)=µB

(
AnnB⊗AB

(
J

))⊆DA(B).

Finally, if B is projective as an A-module then σB is an isomorphism and

σB
(
AnnB⊗AB

(
J

))
is equal to the image of iB. Thus HA(B)=DA(B).
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Next we show that DA(B) has pure height one, so in case they are equal

HA(B) does as well. We need a general fact about modules over normal

domains.

B.15 Proposition. Let A be a Noetherian normal domain. Let

0−→ M −→ N −→ T −→ 0

be a short exact sequence of non-zero finitely generated A-modules wherein

M is reflexive and T is torsion. Then AnnA(T) is an ideal of pure height one

in A.

Proof. This is similar to Lemma 4.124.12. Let p be a prime ideal minimal over

the annihilator of T. Then in particular p is an associated prime of T, so

that depthTp = 0. Since M is reflexive, it satisfies (S2), so that if p has

height two or more then Mp has depth at least two. This contradicts the

Depth Lemma.

B.16 Corollary. Let A −→ B be a module-finite extension of normal do-

mains. Assume that the induced extension of quotient fields is separable. If

DA(B) 6= B, then DA(B) is an ideal of pure height one in B. Consequently,

DA(B)= B if and only if A −→ B is unramified in codimension one.

Proof. For the first statement, take M = A and N = CA(B) in Proposi-

tion B.15B.15. In the second statement, necessity follows from HA(B) ⊆DA(B)

and Theorem B.11B.11. Conversely, suppose DA(B) = B. Let q be a height-

one prime of B and set p = A ∩ q. Then Ap is a DVR and Bp is a finitely

generated torsion-free Ap-module, whence free. Thus HAp(Bp)=DAp(Bp)=
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(DA(B))p = Bp. By Theorem B.11B.11 Bp is unramified over Ap, so in particular

q is unramified over p.

B.17 Corollary. If, in the setup of Corollary B.16B.16, B is projective as an

A-module, then A −→ B is unramified if and only if it is unramified in

codimension one.

Now we turn to Auslander’s proof of the theorem on the purity of the

branch locus. The strategy is to reduce the general case to the situation of

Corollary B.17B.17 by proving a purely module-theoretic statement.

B.18 Proposition. Let A −→ B be a module-finite extension of Noetherian

normal domains which is unramified in codimension one. Assume that A

has the following property: If M is a finitely generated reflexive A-module

such that HomA(M, M) is isomorphic to a direct sum of copies of M, then M

is free. Then A −→ B is unramified.

Proof. Let K −→ L be the extension of quotient fields induced by A −→ B.

Then L is a finite separable extension of K . By [Aus62Aus62, Prop. 1.1], we may

assume in fact that K −→ L is a Galois extension. (The proof of this result

is somewhat technical, so we omit it.)

We are therefore in the situation of Theorem 4.134.13! Thus HomA(B,B) is

isomorphic as a ring to the twisted group ring B#G, where G = Gal(L/K).

As a B-module, and hence as an A-module, B#G is isomorphic to a direct

sum of copies of B. By hypothesis, then, B is a free A-module. Corol-

lary B.17B.17 now says that A −→ B is unramified.
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Auslander’s argument that regular local rings satisfy the condition of

Proposition B.18B.18 seems to be unique in the field; we know of nothing else

quite like it. We being with three preliminary results.

B.19 Lemma. Let A be a Noetherian normal domain and M a finitely gen-

erated torsion-free A-module. Then HomA(M, M)∗ ∼=HomA(M∗, M∗).

Proof. We have the natural map ρ : M∗⊗A M −→ HomA(M, M) defined by

ρ( f ⊗y)(x)= f (x)y, which is an isomorphism if and only if M is free, cf. Exer-

cise 10.4610.46. Dualizing yields ρ∗ : HomA(M, M)∗ −→ (M∗⊗AM)∗ ∼=HomA(M∗, M∗)

by Hom-tensor adjointness. Now ρ∗ is a homomorphism between reflexive

A-modules, which is an isomorphism in codimension one since A is normal

and M is torsion-free. By Lemma 4.124.12, ρ∗ is an isomorphism.

B.20 Lemma. Let (A,m) be a local ring and f : M −→ N a homomorphism

of finitely generated A-modules. Assume that fp : Mp −→ Np is an isomor-

phism for every non-maximal prime p of A. Then Exti
A( f , A) : Exti

A(N, A)−→
Exti

A(M, A) is an isomorphism for i = 0, . . . ,depth A−2.

Proof. The kernel and cokernel of f both have finite length, so Exti
A(ker f , A)=

Exti
A(cok f , A)= 0 for i = 0, . . . ,depth A−1 [Mat86Mat86, Theorem 16.6]. The long

exact sequence of Ext now gives the conclusion.

B.21 Proposition. Let (A,m) be a local ring of depth at least 3 and let M

be a reflexive A-module such that

(i) M is locally free on the punctured spectrum of A; and

(ii) pdA M6 1.
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If M is not free, then

`
(
Ext1

A(HomA(M, M), A)
)> (rankA M) `

(
Ext1

A(M, A)
)

.

Proof. Assume that M is not free. We have the natural homomorphism

ρM : M∗⊗A M −→HomA(M, M), defined by ρM( f ⊗x)(y)= f (y)x, which is an

isomorphism if and only if M is free, cf. Remark 10.510.5. In particular, ρM is

locally an isomorphism on the punctured spectrum of A, so by Lemma B.20B.20,

we have

Ext1
A(M∗⊗A M, A)∼=Ext1

A(HomA(M, M), A) .

Next we claim that there is an injection Ext1
A(M, M),→Ext1

A(M∗⊗AM, A).

Let

(B.21.1) 0−→ F1 −→ F0 −→ M −→ 0

be a free resolution. Dualizing gives an exact sequence

(B.21.2) 0−→ M∗ −→ F∗
0 −→ F∗

1 −→Ext1
A(M, A)−→ 0 ,

so that TorA
i−2(M∗, M)=TorA

i (Ext1
A(M, A), M)= 0 for all i> 3. In particular,

applying M∗⊗A − to (B.21.1B.21.1) results in an exact sequence

0−→ M∗⊗A F1 −→ M∗⊗A F0 −→ M∗⊗A M −→ 0 .

Dualizing this yields an exact sequence

HomA(M∗⊗A F0, A)
η−→HomA(M∗⊗A F1, A)−→Ext1

A(M∗⊗A M, A) .

But the homomorphism η is naturally isomorphic to the homomorphism

HomA(F0, M∗∗) −→ HomA(F1, M∗∗). Since M is reflexive, this implies that
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the cokernel of η is isomorphic to Ext1
A(M, M), whence Ext1

A(M, M),→Ext1
A(M∗⊗A

M, A), as claimed.

Next we claim that Ext1
A(M, M)∼=Ext1

A(M, A)⊗A M. This follows imme-

diately from the commutative exact diagram

F∗
0 ⊗A M //

ρM
F0
��

F∗
1 ⊗A M //

ρM
F1
��

Ext1
A(M, A)⊗A M //

��

0

HomA(F0, M) // HomA(F1, M) // Ext1
A(M, M) // 0

in which the rows are the result of applying −⊗AM to (B.21.2B.21.2) and HomA(−, M)

to (B.21.1B.21.1), respectively, the two vertical arrows ρM
Fi

are isomorphisms since

each Fi is free, and the third vertical arrow is induced by the other two.

Putting the pieces together so far, we have

`
(
HomA(Ext1

A(M, M), A)
)= `(

Ext1
A(M∗⊗A M, A)

)
> `

(
Ext1

A(M, M)
)

= `(
Ext1

A(M, A)⊗A M
)

Set T = Ext1
A(M, A). Then T 6= 0, since T = 0 implies that M∗ is free

by (B.21.2B.21.2), whence M is free as well, a contradiction. Then we have an

exact sequence

0−→TorA
1 (T, M)−→ T ⊗A F1 −→ T ⊗A F0 −→ T ⊗A M −→ 0 .

The rank of M is equal to rankA F0 − rankA F1 by (B.21.1B.21.1), so counting

lengths shows that

` (T ⊗A M)= (rankA M) `(T)+`
(
TorA

1 (T, M)
)

.

But T is a non-zero module of finite length, so TorA
1 (T, M) 6= 0, which fin-

ishes the proof.
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The next proposition serves as a template for Auslander’s proof of the

theorem on the purity of the branch locus.

B.22 Proposition. Let C be a set of pairs (A, M) where A is a local ring

and M is a finitely generated reflexive A-module. Assume that

(i) (A, M) ∈C implies (Ap, Mp) ∈C for every p ∈Spec A;

(ii) (A, M) ∈C and depth A6 3 imply that M is free; and

(iii) (A, M) ∈ C , depth A > 3, and M locally free on the punctured spec-

trum imply that there exists a non-zerodivisor x in the maximal ideal

of A such that (A/(x), (M/xM)∗∗) ∈C .

Then M is free over A for every (A, M) in C .

Proof. If the statement fails, choose a witness (A, M) ∈ C with M not A-

free and dim A minimal. By (iiii), depth A > 3, so that by (iiiiii) we can find a

non-zerodivisor x in the maximal ideal of A such that (A, M
∗∗

) ∈C , where

overlines denote passage modulo x and the duals are taken over A. Since

both dim A and dim Ap, for p a non-maximal prime, are less than dim A,

minimality implies that M
∗∗

is A-free and Mp is Ap-free for every non-

maximal p. In particular, Mp is Ap-free for every non-maximal prime p of

A. Thus the natural homomorphism of A-modules M −→ M
∗∗

is locally an

isomorphism on the punctured spectrum of A. Lemma B.20B.20 then implies

(B.22.1) Exti
A

(M
∗∗

, A)∼=Exti
A

(M, A)

for i = 0, . . . ,depth A−2. In particular, (B.22.1B.22.1) holds for i = 0 and i = 1 since

depth A−2= depth A−3> 0. In particular the case i = 1 says Ext1
A

(M, A)=
0 since M

∗∗
is free.
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Now, since M is reflexive, the non-zerodivisor x is also a non-zerodivisor

on M, so standard index-shifting ([Mat86Mat86, p. 140]) gives Ext1
A(M, A)=Ext1

A
(M, A)=

0. The short exact sequence 0−→ A x−→ A −→ A −→ 0 induces the long exact

sequence containing

Ext1
A(M, A) x−→Ext1

A(M, A)−→Ext1
A(M, A)= 0

so that Ext1
A(M, A) = 0 by NAK. In particular HomA(M, A) ∼= M∗ from the

rest of the long exact sequence. But HomA(M, A)=HomA(M, A) as well, so

M∗ ∼= (M)∗. Since M is A-free, this shows that M∗ is free over A, and since

x is a non-zerodivisor on M∗ it follows that M∗ is A-free. Thus M is A-free,

which contradicts the choice of (A, M) and finishes the proof.

B.23 Proposition. Let C be the set of pairs (A, M) where (A,mA) is a regu-

lar local ring and M is a reflexive A-module satisfying EndA(M) ∼= M(n) for

some n. Then C satisfies the conditions of Proposition B.22B.22. Thus M is free

over A for every such (A, M).

Proof. The fact that C satisfies (ii) follows from EndRp(Mp)∼=EndR(M)p and

the fact that regularity localizes.

For (iiii), we note that reflexive modules over a regular local ring of di-

mension 6 2 are automatically free. Therefore M is locally free on the

punctured spectrum; also, we may assume that dim A = 3. Finally, the

Auslander-Buchsbaum formula gives pdA M6 1; we want to show pdA M =
0. Observe that n = rankA(M) (by passing to the quotient field of A), so

Ext1
A(HomA(M, M), A)∼=Ext1

A(M(rankA M), A)∼=Ext1
A(M, A)(rankA M). Thus by

Proposition B.21B.21 M is free.
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As for (iiiiii), let (A, M) ∈ C with dim A > 3 and M locally free on the

punctured spectrum. Let x ∈mA \m2
A be a non-zerodivisor on A, hence on

M as well since M is reflexive. Applying HomA(M,−) to the short exact

sequence 0−→ M x−→ M −→ M −→ 0 gives

0−→HomA(M, M) x−→HomA(M, M)−→HomA(M, M)−→Ext1
A(M, M) .

As HomA(M, M)∼= M(n), the cokernel of the map HomA(M, M) x−→HomA(M, M)

is M
(n)

. This gives an exact sequence

0−→ M
(n) −→HomA(M, M)−→Ext1

A(M, M) .

The middle term of this sequence is isomorphic to HomA(M, M), and the

rightmost term has finite length as M is locally free. Apply Lemma B.20B.20,

with i = 0, to the A-homomorphism M
(n) −→HomA(M, M) to find that

HomA(M, M)∗ ∼=
(
M

∗)(rankA M)
,

whence

HomA(M, M)∗∗ ∼=
(
M

∗∗)(rankA M)
.

Since A is regular and x ∉ m2
A, A is regular as well. In particular, A is

a normal domain, so HomA(M, M)∗∗ = HomA(M
∗∗

, M
∗∗

). Thus (A, M
∗∗

) ∈
C .

B.24 Remark. As Auslander observes, one can use the same strategy to

prove that if A is a regular local ring and M is a reflexive A-module such

that EndA(M) is a free A-module, then M is free. This is proved by other

methods in [AG60AG60], and has been extended to reflexive modules of finite

projective dimension over arbitrary local rings [Bra04Bra04].
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§3 Galois extensions

Let us now investigate ramification in Galois ring extensions. We will

see that ramification in codimension one is attributable to the existence of

pseudo-reflections in the Galois group, and prove the Chevalley-Shephard-

Todd Theorem that finite groups generated by pseudo-reflections have poly-

nomial rings of invariants. We also prove a result due to Prill, which

roughly says that for the purposes of this book we may ignore the existence

of pseudo-reflections.

B.25 Definition. Let G be a group and V a finite-dimensional faithful rep-

resentation of G over a field k. Say that σ ∈G is a pseudo-reflection if σ has

finite order and the fixed subspace Vσ = {v ∈V |σv = v} has codimension

one in V . This subspace is called the reflecting hyperplane of σ.

A reflection is a pseudo-reflection of order 2.

If the V -action of σ ∈ G is diagonalizable, then to say it is a pseudo-

reflection is the same as saying σ ∼ diag(1, . . . ,1,λ) where λ 6= 1 is a root

of unity. In any case, the characteristic polynomial of a pseudo-reflection

has a root at 1 of multiplicity at least dimV −1, hence splits into a product

of linear factors (t− 1)n−1(t−λ). If λ = 1, then the characteristic of k is

necessarily p > 0; furthermore σ has order p, and is called a transvection.

B.26 Notation. Here is the notation we will use for the rest of the Ap-

pendix. In contrast to Chapter 44, where we consider the power series

case, we will work in the graded polynomial situation, since it clarifies

some of the arguments. We leave the translation between the two to the

reader. Let k be a field and V an n-dimensional faithful k-representation
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of a finite group G, so that we may assume G ⊆ GL(V ) ∼= GL(n,k). Set

S = k[V ] ∼= k[x1, . . . , xn], viewed as the ring of polynomial functions on V .

Then G acts on S by the rule (σ f )(v) = f (σ−1v), and we set R = SG , the

subring of polynomials fixed by this action. Then R −→ S is a module-finite

integral extension of Noetherian normal domains. Let K and L be the quo-

tient fields of R and S, resp.; then L/K is a Galois extension with Galois

group G, and S is the integral closure of R in L. Finally, let m and n denote

the obvious homogeneous maximal ideals of R and S.

B.27 Remark. We may identify the spectrum of S with V . Once we do

so, the branch locus of R −→ S is the union of the fixed point subspaces

Vσ over all σ 6= 1 in G. Indeed, set X = SpecR, so that q : V −→ X = V /G

is the quotient map. As in Remark B.6B.6(vv) and the discussion before The-

orem B.11B.11, the branch locus is the intersection of the diagonal ∆V /X with

the non-diagonal components of the fiber product V ×X V . In this case, the

fiber product can be written

V ×X V = {(v1,v2) ∈V ×V | there exists σ ∈G with σv1 = v2 } .

This is the union of |G| diagonals {(v,σv) | v ∈V }. The branch locus is pre-

cisely the set of points v ∈V fixed by a non-trivial element of G.

B.28 Theorem (Chevalley-Shephard-Todd). With notation as in B.26B.26, con-

sider the following conditions.

(i) R = SG is a polynomial ring.

(ii) S is free as an R-module.

(iii) TorR
1 (S,k)= 0.
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(iv) G is generated by pseudo-reflections.

We have (ii) ⇐⇒ (iiii) ⇐⇒ (iiiiii) =⇒ (iviv), and all four conditions are equiva-

lent if |G| is invertible in k.

Proof. (ii) =⇒ (iiii): Note that S is always a MCM R-module, so if R is a

polynomial ring then S is R-free by the Auslander-Buchsbaum formula.

(iiii) =⇒ (ii): If S is free over R, then in particular it is flat. For any

finitely generated R-module, then, we have TorR
i (M,k)⊗R S = TorS

i (S ⊗R

M,S/mS). Since S is regular of dimension n and S/mS has finite length,

the latter Tor vanishes for i > n, whence the former does as well. It follows

that R is regular, hence a polynomial ring.

(iiii) ⇐⇒ (iiiiii): This is standard.

(ii) =⇒ (iviv): Let H ⊆ G be the subgroup of G generated by the pseudo-

reflections. Then H is automatically normal. Localize the problem, setting

A = Rm, a regular local ring by hypothesis, and B = (
k[V ]H)

k[V ]H∩n. Then

A −→ B is a module-finite extension of local normal domains, and A = BG/H .

Consider as in Chapter 44 the twisted group ring B#(G/H). There is, as

in that chapter, a natural ring homomorphism δ : B#(G/H)−→HomA(B,B),

which considers an element bσ ∈ B#(G/H) as the A-linear endomorphism

b′ 7→ bσ(b′) of B. We claim that δ is an isomorphism. Since source and

target are reflexive over B, it suffices to check in codimension one. Let q

and p = A ∩q be height-one primes of B and A respectively; then Bq is a

finitely generated free Ap-module and so δq : Bq#(G/H) −→ HomAp(Bq,Bq)

is an isomorphism. This shows that δ is an isomorphism, and in particular

HomA(B,B) is isomorphic as an A-module to a direct sum of copies of B.

By Proposition B.23B.23, B is free over A.
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Since B is A-free, we have HA(B)=DA(B) by Theorem B.14B.14. But DA(B)=
B since no non-identity element of G/H fixes a codimension-one subspace of

V , i.e. a height-one prime of B. This implies HA(B) = B so that the branch

locus is empty. However, if G/H is non-trivial then A −→ B is ramified at

the maximal ideal of B. Thus G/H = 1.

Finally, we prove (iviv) =⇒ (iiiiii) under the assumption that |G| is in-

vertible in k. For an arbitrary finitely generated R-module M, set T(M) =
TorR

1 (M,k). We wish to show T(S)= 0. Note that G acts naturally on T(S),

which is a finitely generated graded S-module.

Let σ ∈ G be a pseudo-reflection and set W = Vσ, a linear subspace of

codimension one. Let f ∈ S be a linear form vanishing on W . Then ( f ) is a

prime ideal of S of height one, and σ acts trivially on the quotient S/( f ) ∼=
k[W]. For each g ∈ S, then, there exists a unique element h(g) ∈ S such

that σ(g)− g = h(g) f . The function g 7→ h(g) is an R-linear endomorphism

of S of degree −1, with σ−1S = hf as functions on S. Applying the functor

T(−) gives T(σ)− 1T(S) = T(h) fT(S) as functions on T(S). It follows that

σ(s) ≡ xmodnT(S) for every x ∈ T(S). Since G is generated by pseudo-

reflections, we conclude that σ(x) ≡ xmodnT(S) for every σ ∈ G and every

x ∈ T(S).

Next we claim that T(S)G = 0. Define Q : S −→ S by

Q( f )= 1
|G|

∑
σ∈G

σ( f ) ,

so that in particular Q(S) = R. Factor Q as Q = iQ′ : S −→ R −→ S, so that

T(Q)= T(i)T(Q′). Since T(R)= 0, T(i) is the zero map, so T(Q)= 0 as well.
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Hence

0= T(Q)= 1
|G|

∑
σ∈G

T(σ) ,

as R-linear maps T(S) −→ T(S). But that element fixes the G-invariant

elements of T(S), so that T(S)G = 0.

Finally, suppose T(S) 6= 0. Then there exists a homogeneous element

x ∈ T(S) of minimal positive degree. Since σ(x) ≡ xmodnT(S) for every

σ ∈G, x is an invariant of T(S). But then x = 0 as T(S)G = 0. This completes

the proof.

It is implicit in the proof of Theorem B.28B.28 that pseudo-reflections are re-

sponsible for ramification. Let us now bring that out into the open. Briefly,

the situation is this: let W be a codimension-one subspace of V , and f ∈ S

a linear form vanishing on W . Then ( f ) is a height-one prime of S, and

( f ) is ramified over R if and only if W is the fixed hyperplane of a pseudo-

reflection.

Keep the notation in B.26B.26, so that R = k[V ]G ⊆ S = k[V ] is a module-

finite extension of normal domains inducing a Galois extension of quotient

fields K −→ L. Since R −→ S is integral, it follows from “going up” and

“going down” that a prime ideal q of S has height equal to the height of

R∩q. Furthermore, for a fixed p ∈ SpecR, the primes q lying over p are all

conjugate under the action of G. (If q and q′ lying over p are not conjugate,

then by “lying over” no conjugate of q contains q′. Use prime avoidance to

find an element s ∈ q′ so that s avoids all conjugates of q. Then
∏
σ∈Gσ(s) is

fixed by G, so in R∩q= p, but not in q′.)

Assume now that p is a fixed prime of R of height one, and let q ⊆ S

lie over p. Then Rp −→ Sq is an extension of DVRs, so pSq = qeSq for some
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integer e = e(p), the ramification index of q over p, which is independent of

q by the previous paragraph. Let f = f (p,q) be the inertial degree of q over

p, i.e. the degree of the field extension Rp/pRp −→ Sq/qSq. Then Sq/pSq is a

free Rp/pRp-module of rank e f , so Sq is a free Rp-module of rank e f .

Let q1, . . . ,qr be the distinct primes of S lying over p, and set q= q1. Let

D(q) be the decomposition group of q over p,

D(q)= {σ ∈G |σ(q)= q } .

By the orbit-stabilizer theorem, D(q) has index r in G. Furthermore, Sq is

an extension of Rp of rank equal to D(q), which implies |D(q)| = e f .

Notice that an element of D(q) induces an automorphism of S/q. We let

T(q), the inertia group of q over p, be the subgroup inducing the identity on

Sq:

T(q)= {σ ∈G |σ( f )− f ∈ q for all f ∈ S } .

Then the quotient D(q)/T(q) acts as Galois automorphisms of Sq/qSq fixing

Rp/pRp. It follows that |D(q)/T(q)| divides the degree f of this field exten-

sion. Combining this with |D(q)| = e f , we see that e divides |T(q)|. In fact

e = |T(q)| as long as |G| is invertible in k:

B.29 Proposition. Let q be a height one prime of S, set p = R ∩ q, and

suppose that T(q) 6= 1. Then q= ( f ) for some linear form f ∈ S. If W ⊆ V is

the hyperplane on which f vanishes, then T(q) is the pointwise stabilizer of

W , so every non-identity element of T(q) is a pseudo-reflection. Furthermore

if |G| is invertible in k then e(p)= |T(q)|.

Proof. Since q is a prime of height one in the UFD S, q = ( f ) for some

homogeneous element f ∈ S. If f has degree 2 or more, then every linear
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form of S survives in Sq/qSq, so is acted upon trivially by T(q). Since T(q)

is non-trivial, we must have deg f = 1, so f is linear. The zero-set of f ,

W =SpecS/q, is the subspace fixed pointwise by T(q).

For any σ ∈ T(q), σ( f ) vanishes on W , so σ( f ) = aσ f for some scalar

aσ ∈ k. Define a linear character χ : T(q) −→ k× by χ(σ) = aσ. The image

of χ is finite, so is cyclic of order prime to the characteristic of k. The

kernel of χ consists of the transvections in T(q) (see the discussion following

Definition B.25B.25). Since |G| is not divisible by p, the kernel of χ is trivial, so

that T(q) is cyclic.

Let σ ∈ T(q) be a generator, and let λ be the unique eigenvalue of σ

different from 1. Then λ is an sth root of unity for some s > 1. We can find

a basis v1, . . . ,vn for V such that v1, . . . ,vn−1 span W , so are fixed by σ, and

σvn = λvn. It follows that k[V ]T(q) ∼= k[x1, . . . , xn−1, xs
n], and so p = (xs

n) and

e(p)= s = |T(q)|.

Recall that we say the group G is small if it contains no pseudo-reflections.

B.30 Theorem. Let G ⊆GL(V ) be a finite group of linear automorphisms of

a finite-dimensional vector space V over a field k. Set S = k[V ] and R = SG .

Assume that |G| is invertible in k. Then a prime ideal q of height one in S is

ramified over R if and only if T(q)= 1. In particular, R −→ S is unramified

in codimension one if and only if G is small.

Proof. Let e = e(p) be the ramification degree of p= R∩q, and f = f (p,q) the

degree of the field extension Rp/pRp −→ Sq/qSq. By the discussion before

the Proposition, e f = |D(q)|, where D(q) is the decomposition group of q

over p. Since the order of G is prime to the characteristic, we see that f is
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as well, so the field extension is separable. Therefore q is ramified over R

if and only if e > 1, which occurs if and only if T(q) 6= 1.

To close the Appendix, we record a result due to Prill [Pri67Pri67].

B.31 Proposition. Let G be a finite subgroup of GL(V ), where V is an n-

dimensional vector space over a field k. Set S = k[V ] and R = SG . Then

there is an n-dimensional vector space V ′ and a small finite subgroup G′ ⊆
GL(V ′) such that R ∼= k[V ′]G

′
.

Proof. Let H be the normal subgroup of G generated by pseudo-reflections.

By the Chevalley-Shephard-Todd theorem B.28B.28, SH is a polynomial ring on

algebraically independent elements, SH ∼= k[ f1, . . . , fn]. The quotient G/H

acts naturally on SH , with (SH)G/H = SG , so it suffices to show that G/H

acts on V ′ = span( f1, . . . , fn) without pseudo-reflections. Fix σ ∈ G \ H and

let τ ∈ H. Since στ ∉ H, the subspace Vστ fixed by στ has codimension at

least two. The fixed locus of the action of the coset σH on V ′ is then the

intersection of Vστ as τ runs over H, so also has codimension at least two.

Therefore σH is not a pseudo-reflection.

In fact the small subgroup G′ of the Proposition is unique up to con-

jugacy in GL(n,k). We do not prove this; see [Pri67Pri67] for a proof in the

complex-analytic situation, and [DR69DR69] for a proof in our context.
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