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Proceedings of Symposia in Pure Mathematics 
Volume 37, 1980 

GRAPHS, SINGULARITIES, 
AND FINITE GROUPS 

JOHN McKAY! 

Introduction. We have seen during the past few years a major assault on the 
problem of determining all the finite simple groups. We are told that this assault 
is nearly complete; even if this is so, the story is not an easy one to tell since it is 
spread over thousands of pages and, apart from being long, it is a story in which 
almost all the characters play roles only within the theory of finite groups—the 
impact of developments in other areas of mathematics on the classification 
problem has been minimal. I want to suggest that there is an immense wealth of 
connections with other areas which lies ready to be discovered. If I am right, I 
foresee new proofs of the classification which will owe little or nothing to the 
current proofs. They will be much shorter and will help us to understand the 
finite simple groups in a context much wider than finite group theory. 

Representation graphs. Let R be a representation of a group G, having 
irreducible representations { R,}, such that 

RORAOmR, jk =1,2,...,6. 

The representation graph Tz = I',(G) is the graph with vertex set {R;} and m, 
(directed) edges from R, to R,. We convene that a pair of opposing directed 
edges be represented by a single undirected edge. 

PROPOSITION 1. 'p(G) is connected if and only if R is faithful on G. 

PROPOSITION 2. I',(G) is self-dual (invariant under reversal of edge orientation) 
if and only if R affords a real-valued character. T r(G) is undirected if it is 
self-dual and has no directed loops. 

An example illuminating both propositions is G = D,, the symmetric group of 
degree 4, and R, the unique two-dimensional irreducible representation. 
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184 JOHN MCKAY 

Finite groups of quaternions. The finite subgroups of real quaternions are 

abstractly the binary polyhedral groups defined by the relations: 

<a, b,c): At = B° = C° = ABC. 

These are finite for the binary dihedral group <2, 2, n>, of order 4n, the binary 

tetrahedral group <2, 3, 3), of order 24, the binary octahedral group <2, 3, 4), of 

order 48, the binary icosahedral group <2, 3,5, of order 120 and finally the 

degenerate case of the cyclic group. These groups are described in Coxeter and 

Moser [5, Preface and §6.5] and in Du Val [7]. Each of these groups with the sole 

exception of the cyclic group of odd order contains a centre of order two, 

namely {ABC}. The classification of finite subgroups of division rings is found 

in Amitsur [1]. There is a natural embedding of the binary polyhedral groups in 

SL,(O), or its compact version SU,(C), a double cover of SO,(R), important for 

the sequel. 

Generalized Coxeter graphs. A graph with vertex set V and a weight function 

w: V>R°®° is a C,-graph if 

> wu) = k.w(v) 
u€E S(v) 

where S(v) is the multiset of successors of v © V. Because of their importance, 

we shall drop the suffix and use ‘C-graph’ to mean C,-graph. 

In passing it should be remarked that the defining property of a C,-graph 

implies that its adjacency matrix (the matrix whose (i,j) entry counts the 

number of edges from vertex i to adjacent vertex /) has maximum eigenvalue k, 

see Seneta [11]. 

PROPOSITION 3. I'p(G) is a C,-graph for k = dim(R), w: R; > dim R;. 

Lie algebras. The connection between C-graphs and Lie algebras is given by 

PROPOSITION 4. The finite, undirected, connected C-graphs are precisely the 

Coxeter graphs (Dynkin graphs) for the affine Lie algebras of type A, (r > 0), D, 

(r > 4), E,, E,, and E,. We shall call these the standard types. 

The affine graphs are described (as ‘graphes de Dynkin completes’) in 

Bourbaki [4]. They are constructed by adjoining to the usual graph an extra root, 

being the negative of the highest root. 

PROPOSITION 5. All circuit-free C-graphs satisfying a ‘symmetrisability’ condi- 

tion-if vertices are joined by a directed edge, then they are also joined by an 

undirected edge—(see Berman, Moody, and Wonenburger [3}) are obtained from the 

undirected C-graphs by ‘folding’ them. Folding is a weight- and incidence-preserv- 

ing operation on graphs which maps I to the quotient graph I'/H, by replacing 

v € V by its orbit {v"} under a subgroup H of the symmetry group of the graph. 

The graphs of this proposition are found in [3], Dlab and Ringel [6], and Kac 

[8]. They include the affine graphs for the algebras of type B,, C,, G2, and F,. 

Finite groups and spectral structure. For each finite group of quaternions, G, 

there is a faithful representation Ro such that PRG) is a graph of standard 

type. This representation is the two-dimensional one mentioned above and is 

»~ 
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irreducible except for the cyclic case where it is the direct sum of a faithful 
irreducible representation and its dual. 

PROPOSITION 6. The eigenvalues of the adjacency matrix of an undirected 
C-graph are the values of the character afforded by Ro. The eigenvectors can be 
taken to be the columns of the character table of the appropriate finite group of 
quaternions. 

Eigenspaces are all one-dimensional only for ae A, » and Ee Any linear 
operator for which the columns of the character table are eigenvectors com- 
mutes with the regular representation of the representation algebra mentioned 
above. 

The Cartan matrix of standard type is symmetric and satisfies C = 27 — A 
where A is the adjacency matrix of the graph. It follows, since Ro is faithful, that 
C is positive semidefinite with a one-dimensional kernel spanned by the eigen- 
vector whose components are the dimensions of the irreducible representations 
of G. 

A Cartan matrix of type A, D, or E is the presentation matrix (that is, the 
entry c; gives the exponent of generator x; in the ith relator) of the finite 
polyhedral group whose character table is obtained from the eigenvectors of the 
corresponding Cartan matrix of affine type. 

The Fischer-Griess simple sporadic group M is generated by a conjugacy class 
of involutions such that the product of any pair lies in one of 9 conjugacy classes 
whose periods are given by the weights of the E, graph. The group M contains a 
subgroup 2.B (a central extension of the Baby Monster) which centralizes an 
involution, and a subgroup 3.F3, which centralizes an element of period 3; each 
of the groups 2.B and 3.Fj, contains elements. bearing a similar relation as 
above to the graphs E, and Eg respectively provided the periods are read 
modulo the centre. 

The singularities. We have seen that each C-graph may be interpreted in two 
ways: firstly as a representation graph of a finite group, and secondly as a 
Coxeter graph in the classical sense (as a description of a Lie algebra). A 
connection between these two interpretations has been given by Steinberg in his 
article in these PROCEEDINGS. This connection is described by Orlik [10] in his 
recent survey article and by Slodowy [12]. 

Very briefly, starting with the polynomial invariants of the finite subgroup of 
SL,(©), a surface is defined from the single syzygy which relates the three 
polynomials in two variables. This surface has a singularity (partial derivatives 
vanish) at the origin; the singularity can be resolved by constructing a smooth 
surface which is isomorphic to the original one except for a set of component 
curves which form the pre-image of the origin. The components form a Dynkin 
curve and the matrix of their intersections (the matrix, indexed by the curves, 
with (0, 1)-entries indicating intersections of distinct curves and diagonal ‘self- 
intersection numbers’ of —2) is the negative of the Cartan matrix for the 
appropriate Lie algebra. The Dynkin curve is the dual of the Dynkin graph. 

There are references to the affine curves in Tate [14] and several other 
references to them in [2]. 
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The universal property. One C-graph we have excluded throughout by our 

finiteness condition is the important universal C-graph which is the representa- 

tion graph for SL,(C) with R = R,, the natural representation. This group 

occurs in both guises as 

Ao: DO 

and as 

2° | 2 3 4 

The representation theory of SL,(C) is much studied (see, for example, 

Kirillov [9]) and all we need here is the tensor product formula 

R,@ R, = R,-1 @ Rati 

where R, is the irreducible representation of dimension 7. All the undirected 

C-graphs can be embedded in A,, by restricting R, to the appropriate subgroup. 

By restriction and folding we obtain the Dynkin graphs of all finite rank 

simple Lie algebras. 

The Cartan matrix is again positive semidefinite but now infinite with 2’s on 

its diagonal and —1’s on both adjacent diagonals, all other entries being zero. 

A 

Conclusion. A paper will appear amplifying this note and containing proofs. I 

hope that I have been able to indicate that there is much more to be discovered 

about finite groups and their relation with other areas of mathematics. If this 

approach is to be successful, its merit will lie in its unifying power and its 

elegance. Would not the Greeks appreciate the result that the simple Lie 

algebras may be derived from the Platonic solids? 
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