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Summary

We consider the Coxeter transformation in the context of the McKay corre-
spondence, representations of quivers, and Poincaré series.

We study in detail the Jordan forms of the Coxeter transformations and
prove splitting formulas due to Subbotin and Sumin for the characteristic
polynomials of the Coxeter transformations. Using splitting formulas we calcu-
late characteristic polynomials of the Coxeter transformation for the diagrams
T2,3,r, T3,3,r, T2,4,r, prove J. S. Frame’s formulas, and generalize R. Steinberg’s
theorem on the spectrum of the affine Coxeter transformation for the multiply-
laced diagrams. This theorem is the key statement in R. Steinberg’s proof of
the McKay correspondence. For every extended Dynkin diagram, the spec-
trum of the Coxeter transformation is easily obtained from R. Steinberg’s
theorem.

In the study of representations πn of SU(2), we extend B. Kostant’s con-
struction of a vector-valued generating function PG(t). B. Kostant’s construc-
tion appears in the context of the McKay correspondence and gives a way to
obtain multiplicities of irreducible representations ρi of the binary polyhedral
group G in the decomposition of πn|G. In the case of multiply-laced graphs,
instead of irreducible representations ρi we use restricted representations and
induced representations of G introduced by P. Slodowy. Using B. Kostant’s
construction we generalize to the case of multiply-laced graphs W. Ebeling’s
theorem which connects the Poincaré series [PG(t)]0 and the Coxeter trans-
formations. According to W. Ebeling’s theorem

[PG(t)]0 =
X (t2)
X̃ (t2)

,

where X is the characteristic polynomial of the Coxeter transformation and
X̃ is the characteristic polynomial of the corresponding affine Coxeter trans-
formation.

Using the Jordan form of the Coxeter transformation we prove a criterion
of V. Dlab and C. M. Ringel of the regularity of quiver representations, con-
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sider necessary and sufficient conditions of this criterion for extended Dynkin
diagrams and for diagrams with indefinite Tits form.

We prove one more observation of McKay concerning the Kostant gener-
ating functions [PG(t)]i:

(t + t−1)[PG(t)]i =
∑

j←i

[PG(t)]j ,

where j runs over all successor vertices to i.
A connection between fixed and anti-fixed points of the powers of the

Coxeter transformations and Chebyshev polynomials of the first and second
kind is established.



In memory of V. F. Subbotin
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5.3 The orbit of the Coxeter transformation on the highest root . . 119
5.4 The assembling vectors zn = τ (n−1)β − τ (n)β . . . . . . . . . . . . . . . 119

6.1 The orbit of the highest root for F4 . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 The orbit of the highest root for C4 . . . . . . . . . . . . . . . . . . . . . . . 146

A.1 The polyhedral groups in R
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2 The finite subgroups of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.3 The relations R(x, y, z) describing the algebra of invariants

C[z1, z2]G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.4 The pairs H � G of binary polyhedral groups . . . . . . . . . . . . . . . 162



XVIII List of Tables

A.5 The pairs H � G and folded extended Dynkin diagrams . . . . . . 163
A.6 The elements of the binary octahedral group . . . . . . . . . . . . . . . 165
A.7 The conjugacy classes in the binary octahedral group . . . . . . . 166
A.8 The conjugacy classes in the binary tetrahedral group . . . . . . . 168
A.9 The characters of the binary octahedral group . . . . . . . . . . . . . . 169
A.10 The 3-dimensional characters of S4 . . . . . . . . . . . . . . . . . . . . . . . 170
A.11 The character of the 4-dimensional representation ρ7 . . . . . . . . 171
A.12 The characters of the binary tetrahedral group . . . . . . . . . . . . . 172
A.13 The 3-dimensional character of A4 . . . . . . . . . . . . . . . . . . . . . . . . 173
A.14 The restricted characters of the binary octahedral group . . . . . 175
A.15 The inner products 〈ψ↓, χ〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.16 The characters of the cyclic group . . . . . . . . . . . . . . . . . . . . . . . . 179
A.17 The characters of the binary dihedral group, n even . . . . . . . . . 180
A.18 The characters of the binary dihedral group, n odd . . . . . . . . . 180
A.19 The characters of the binary icosahedral group . . . . . . . . . . . . . 181



List of Notions

algebra of invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 2.3.1 . . . . . . 46
affine Coxeter number . . . . . . . . . . . . . . . . . . . . . . . . . Section 6.1.4 . . . . . . 136
affine Coxeter transformation . . . . . . . . . . . . . . . . . . Section 4.1 . . . . . . 67
affine Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 6.1.2 . . . . . . 130
bicolored Coxeter transformation . . . . . . . . . . . . . . Section 3.1.2 . . . . . . 52
bicolored orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 3.1.1 . . . . . . 51
bicolored partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 3.1.1 . . . . . . 51
bipartite graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 3.1.1 . . . . . . 51
binary polyhedral group . . . . . . . . . . . . . . . . . . . . . . . Section A.1 . . . . . . 155
branch point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5.3.1 . . . . . . 102
dominant eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 1.3.4 . . . . . . 8
McKay correspondence . . . . . . . . . . . . . . . . . . . . . . . . Section A.4 . . . . . . 160
Cartan matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 2.1.1 . . . . . . 23
central orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section B.4 . . . . . . 197
Coxeter functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section B.1 . . . . . . 183
Coxeter number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 4.1 . . . . . . 67
Coxeter transformation (or Coxeter element) . . . Section 2.2.6 . . . . . . 45
diagram (or valued graph) . . . . . . . . . . . . . . . . . . . . . Section 2.1.1 . . . . . . 23
dimension of the representation . . . . . . . . . . . . . . . . Section 2.2.2 . . . . . . 41
Dynkin diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 2.1.3 . . . . . . 27
extended Dynkin diagrams . . . . . . . . . . . . . . . . . . . . Section 2.1.6 . . . . . . 36
exponents of the Weyl group . . . . . . . . . . . . . . . . . . Section 2.3.2 . . . . . . 49
folded Dynkin diagrams . . . . . . . . . . . . . . . . . . . . . . . Section 5.3.1 . . . . . . 102
generalized Cartan matrix . . . . . . . . . . . . . . . . . . . . . Section 2.1.1 . . . . . . 23
hyperbolic Dynkin diagrams . . . . . . . . . . . . . . . . . . . Section 2.1.8 . . . . . . 38
imaginary roots in the root system . . . . . . . . . . . . Section 2.2.1 . . . . . . 38
indecomposable representation . . . . . . . . . . . . . . . . . Section 2.2.2 . . . . . . 41
Kostant generating function . . . . . . . . . . . . . . . . . . . Section 5.4.1 . . . . . . 105
Kostant numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5.4.1 . . . . . . 105
multiply-laced diagram . . . . . . . . . . . . . . . . . . . . . . . . Section 2.1.1 . . . . . . 23



XX List of Notions

real roots in the root system . . . . . . . . . . . . . . . . . . . Section 2.2.1 . . . . . . 38
regular representation of the quiver . . . . . . . . . . . . Section 6.3.1 . . . . . . 148
representation of the quiver . . . . . . . . . . . . . . . . . . . . Section 2.2.2 . . . . . . 41
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Introduction

...A second empirical procedure for finding the
exponents was discovered by H. S. M. Coxeter.
He recognized that the exponents can be
obtained from a particular transformation γ in
the Weyl group, which he had been studying,
and which we take the liberty of calling a
Coxeter-Killing transformation...

B. Kostant, [Kos59, p.974], 1959.

1.1 The three historical aspects of the Coxeter
transformation

The three areas, where the Coxeter transformation plays a dramatic role, are:
• the theory of Lie algebras of the compact simple Lie groups;
• the representation theory of algebras and quivers;
• the McKay correspondence.
A Coxeter transformation or a Coxeter element is defined as the product

of all the reflections in the simple roots. Neither the choice of simple roots nor
the ordering of reflections in the product affects its conjugacy class, see [Bo,
Ch.5, §6], see also Remark B.6. H. S. M. Coxeter studied these elements and
their eigenvalues in [Cox51].

Let h be the order of the Coxeter transformation (called the Coxeter num-
ber), |Δ| the number of roots in the corresponding root system Δ, and l the
number of eigenvalues of the Coxeter transformation, i.e., the rank of the
Cartan subalgebra. Then

hl = |Δ|. (1.1)

This fact was observed by H. S. M. Coxeter in [Cox51] and proved by
B. Kostant in [Kos59, p.1021].
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H. S. M. Coxeter also observed that the order of the Weyl group is equal
to

(m1 + 1)(m2 + 1)...(ml + 1),

where the mi are the exponents of the eigenvalues of the Coxeter transforma-
tion, and the factors mi +1 are the degrees of l basic polynomial invariants of
the Weyl group. Proofs of these facts were obtained by C. Chevalley [Ch55]
and other authors; for historical notes, see [Bo], [Kos59]; for details, see §2.3.2.

Let Δ+ ⊂ Δ be the subset of simple positive roots, let

β = n1α1 + · · ·+ nlαl,

where αi ∈ Δ+, be the highest root in the root system Δ. The Coxeter number
h from (1.1) and coordinates ni of β are related as follows:

h = n1 + n2 + · · ·+ nl + 1. (1.2)

Observation (1.2) is due to H. S. M. Coxeter [Cox49, p.234], see also [Stb59,
Th.1.4.], [Bo, Ch.6, 1, §11,Prop.31].

The Coxeter transformation is important in the study of representations
of algebras, quivers, partially ordered sets (posets) and lattices. The distin-
guished role of the Coxeter transformation in these areas is related to the
construction of the Coxeter functors given by I. N. Bernstein, I. M. Gelfand,
V. A. Ponomarev in [BGP73]. Further revelation of the role of Coxeter func-
tors for representations of algebras is due to V. Dlab and C. M. Ringel [DR76];
for a construction of the functor DTr — an analog of the Coxeter functor for
hereditary Artin algebras, see M. Auslander, M. I. Platzeck and I. Reiten
[AuPR79], [AuRS95, Ch.8,§2]. For an application of the Coxeter functors in
the representations of posets, see [Drz74]; for their applications in the repre-
sentations of the modular lattices, see [GP74], [GP76], [St07].

Another area where the affine Coxeter transformations appeared is the
McKay correspondence — a one-to-one correspondence between finite sub-
groups of SU(2) and simply-laced extended Dynkin diagrams. Affine Cox-
eter transformations play the principal role in R. Steinberg’s work [Stb85]
on the proof of the McKay correspondence, see §6.2. B. Kostant ([Kos84])
obtains multiplicities of the representations related to the concrete nodes of
the extended Dynkin diagram from the orbit structure of the affine Coxeter
transformation, see §A.4, §5.5.

We only consider two areas of application of the Coxeter transformation:
representations of quivers and the McKay correspondence. We do not con-
sider other areas where the Coxeter transformation plays an important role,
such as the theory of singularities of differentiable maps (the monodromy op-
erator coincides with a Coxeter transformation, see, e.g., [A’C75], [Gu76],
[ArGV86], [Il87], [Il95], [EbGu99]), Alexander polynomials, pretzel knots,
Lehmer’s problem, growth series of Coxeter groups (see, e.g., [Lev66], [Hir02],
[GH01], [McM02]).
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1.2 A brief review of this work

In Ch.2, we recall some common definitions and notions.
In Ch.3, we establish general results about the Jordan form and the spec-

trum of the Coxeter transformation.
In Ch.4, we give the eigenvalues of the affine Coxeter transformation. After

that we prove some splitting formulas concerning the characteristic polynomi-
als of the Coxeter transformation. The main splitting formula is the Subbotin-
Sumin splitting along the edge formula which is extended in this chapter to the
multiply-laced case. One of applications of splitting formulas is a construction
of characteristic polynomials of the Coxeter transformation for the hyperbolic
Dynkin diagrams T2,3,r, T3,3,r and T2,4,r. Two Frame formulas from [Fr51]
(see Remark 4.14 and Proposition 5.2) are easily obtained from the splitting
formulas.

In Ch.5, we generalize a number of results appearing in a context of
the McKay correspondence to multiply-laced diagrams. First, we consider
R. Steinberg’s theorem playing the key role in his proof of the McKay corre-
spondence. Essentially, R. Steinberg observed that the orders of eigenvalues
of the affine Coxeter transformation corresponding to the extended Dynkin
diagram Γ̃ coincide with the lengths of branches of the corresponding Dynkin
diagram Γ, [Stb85, p.591,(∗)].

Further, in Ch.5, we move on to B. Kostant’s construction of a vector-
valued generating function PG(t) [Kos84]. Let G be a binary polyhedral group,
let ρi, where i = 0, . . . , r, be irreducible representations of G corresponding
by the McKay correspondence to simple roots αi of the extended Dynkin
diagram, let πn, where n = 0, 1, . . . , be irreducible representations of SU(2) in
the symmetric algebra Symn(C2), where Symn(V ) is the nth symmetric power
of V . Representations {πn | n = 0, 1, . . . } constitute the set of all irreducible
representations of SU(2), [Sp77, Ch. 3.2]. Let mi(n) be multiplicities in the
decomposition

πn|G =
r∑

i=0

mi(n)ρi;

set

vn =
r∑

i=0

mi(n)αi.

Then the Kostant generating function is defined as the following vector-valued
function:

PG(t) =

⎛

⎜⎜⎜⎜⎜⎝

[PG(t)]0

[PG(t)]1

. . .

[PG(t)]r

⎞

⎟⎟⎟⎟⎟⎠
:=

∞∑

n=0

vntn. (1.3)
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In particular, [PG(t)]0 is the Poincaré series of the algebra of invariants
Sym(C2)G, i.e.,

[PG(t)]0 = P (Sym(C2)G, t). (1.4)

B. Kostant obtained an explicit expression for the series [PG(t)]i, and the
multiplicities mi(n), see [Kos84, Ch. 6.1.]. In Ch.5, we extend B. Kostant’s
construction to the case of multiply-laced graphs. For this purpose, we use
P. Slodowy’s generalization [Sl80, App.III] of the McKay correspondence to
the multiply-laced case. The main idea of P. Slodowy is to consider the pair
of binary polyhedral groups H � G and their restricted representations ρ ↓G

H

and induced representations τ ↑G
H instead of the representations ρi.

In Appendix A, we study in detail P. Slodowy’s generalization for the case
of the binary octahedral group O and the binary tetrahedral group T , where
T �O. The generalization of the McKay correspondence to the multiply-laced
case is said to be the Slodowy correspondence.

Generally, one can speak about the McKay-Slodowy correspondence.
In Ch.5 we generalize W. Ebeling’s theorem [Ebl02] to the multiply-laced

case: it relates the Poincaré series [PG(t)]0 and the Coxeter transformations.
According to W. Ebeling’s theorem,

[PG(t)]0 =
X (t2)
X̃ (t2)

,

where X is the characteristic polynomial of the Coxeter transformation C
and X̃ is the characteristic polynomial of the corresponding affine Coxeter
transformation Ca, see Theorem 5.12.

In §5.5 we prove one more observation of McKay concerning the Kostant
generating functions [PG(t)]i, see (1.3):

(t + t−1)[PG(t)]i =
∑

j←i

[PG(t)]j ,

where j runs over all successor1 vertices to i, and [PG(t)]0 related to the affine
vertex α0 occurs in the right side only: i = 1, 2, . . . , r.

The results of Ch.4 and Ch.5 are published for the first time.
In Ch.6, we study the affine Coxeter transformation Ca. We discuss details

of the original proof of R. Steinberg’s theorem and its generalization. In §6.3
we consider the important linear form concerning the affine Coxeter transfor-
mation: the defect δ(z). It was introduced by Dlab and Ringel in [DR76] for
the classification of tame type quivers in the representation theory of quivers.
The following remarkable formula is due to V. Dlab and C. M. Ringel, see
[DR76]:

Ch
az = z + hδ(z)z1,

1 For a definition of the successor vertex, see Remark 5.16.
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where h is the Coxeter number, z1 is the eigenvector corresponding to eigen-
value 1 of the affine Coxeter transformation Ca. This formula is proved in
§6.3.

In Ch.B, using results on the Jordan form of the Coxeter transformation
we prove a criterion of V. Dlab and C.M. Ringel of the regularity of quiver rep-
resentations, we consider necessary and sufficient conditions of this criterion
for extended Dynkin diagrams and for diagrams with indefinite Tits form.

In §C.7 we establish a connection between fixed and anti-fixed points of
the powers of the Coxeter transformations and Chebyshev polynomials of the
first and second kind.

Acknowledgements. I am most grateful to John McKay for helpful com-
ments.

I am extremely thankful to Dimitry Leites for careful editing, encourage-
ment and advice that helped to improve the text, and MPIMiS, Leipzig, for
the most creative environment which enabled him to do this job.

Many thanks to Curt McMullen, Chris Smyth, Vlad Kolmykov, Alexei
Lebedev for notes they kindly sent to me during preparation of this text.

About V. F. Subbotin.
V. F. Subbotin was the head of an algebraic seminar of the department

of Algebra and Topological Methods of Analysis of Voronezh University. At
that time, the chairman of department was Professor Y. G. Borisovich, who,
together with Subbotin, was my scientific advisor and to whom I am also
grateful.

In 1973, Subbotin brought to me the then just published and now well-
known paper Coxeter functors and Gabriel’s theorem [BGP73]. It was the
remarkable concurrence from all points of view and it was an illustration of
his pedagogical talent. My research and our joint work with Subbotin began
with it.

Subbotin tragically died in May 1998.
On bibliography. The results published in difficult to access VINITI

depositions (useless to the Western reader) are listed, separately, to give due
credit to the priority of the results.

The results of Ch.3 about the Jordan normal form of the Coxeter trans-
formation are obtained by V. F. Subbotin and the author, [SuSt75], [SuSt78],
[St82a], [St85].

The results of Ch.4 on the “splitting along the edge”obtained by V. F. Sub-
botin and M. V. Sumin, [SuSum82]. The formula of splitting along the
weighted edge is obtained by the author in [St05]. An explicit calculation
of eigenvalues for extended Dynkin diagrams is carried out by V. F. Sub-
botin and the author [SuSt75], [St82a], [St81]. Formulas of the characteris-
tic polynomials for some diagrams Tp,q,r are obtained by the author [St05].
R. Steinberg’s theorem [Stb85] and W. Ebeling’s theorem [Ebl02] from Ch.5
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were generalized by the author for the multiply-laced case in [St05]. The proof
of the observation of McKay [McK99] was obtained by the author [St06].

Necessary regularity conditions for the extended Dynkin diagrams from
Ch.6 were obtained by V. Dlab and C. M. Ringel, [DR76]. Necessary and suf-
ficient regularity conditions for the extended Dynkin diagrams for an arbitrary
orientation were obtained by V. F. Subbotin and the author [SuSt79], [St82].
These conditions are obtained by means of a careful study of conjugations in
the Weyl group which connect Coxeter transformations related to different
orientations [St82], [St85].

1.3 The spectrum and the Jordan form

1.3.1 The Jordan form and reduction to the golden pair of
matrices

In this work we review the research started more than 30 years ago in the
teamwork with V.F. Subbotin and discuss the Jordan form and the spectrum
of the Coxeter transformation. We show that the study of eigenvalues of the
Coxeter transformation reduces to the study of the golden pair of matrices
satisfying conditions of the Perron-Frobenius theorem [MM64], [Ga90] and
having other nice properties.

In §3.1.3 we recall (see (3.2), (3.4), (3.5)) that any Cartan matrix K asso-
ciated with a tree graph can be represented in the form

K =

{
2B for K symmetric, see (3.2)
UB for K symmetrizable, see (3.4),

where U is a diagonal matrix, B is a symmetric matrix. For simply-laced
(resp. multiply-laced) diagrams1, the golden pair of matrices is

DDt and DtD (resp. DF and FD),

where the matrices D and Dt are found from the expressions

B =
(

Im D
Dt Ik

)
(1.5)

in the simply-laced case, and D and F are found from the expressions

K =
(

2Im 2D
2F 2Ik

)
(1.6)

for the multiply-laced case; for details, see §2.1.1 and §3.1.3.
The above reduction method works only for trees (they have symmetriz-

able Cartan matrices) and for graphs with even cycles. In §4.2 we give some
bibliographical remarks regarding generalized Cartan matrices.
1 For a definition of simply-laced and multiply-laced diagrams, see §2.1.1.
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Remark 1.1. We associate the Cartan matrix K with every tree graph Γ,
§2.1.1. Given a Cartan matrix K, we construct the Weyl group W , §2.2.1.
From every orientation Ω of the graph Γ we construct the Coxeter transfor-
mation CΩ in the Weyl group W , §2.2.6.

Let the ϕi be the eigenvalues of DDt and DtD. The corresponding eigen-
values λϕi

1,2 of the Coxeter transformations are (according to Proposition 3.4,
relation (3.13))

λϕi

1,2 = 2ϕi − 1± 2
√

ϕi(ϕi − 1).

Let B be the quadratic form corresponding to the matrix B. This quadratic
form is called the Tits quadratic form. For details, see §2.1.1.

One of the central results of this work is Theorem 3.15 (§3, Fig. 3.3) on
Jordan form [SuSt75, SuSt78, St85]:

1) The Jordan form of the Coxeter transformation is diagonal if and only
if the Tits form is non-degenerate.

2) If B is non-negative definite (i.e., Γ is an extended Dynkin diagram),
then the Jordan form of the Coxeter transformation contains one 2×2 Jordan
block. All other Jordan blocks are of size 1 × 1. All eigenvalues λi lie on the
unit circle centered at the origin.

3) If B is indefinite and degenerate, then the number of 2 × 2 Jordan
blocks coincides with dim kerB. All other Jordan blocks are of size 1× 1. The
maximal λϕ1

1 and the minimal λϕ1
2 eigenvalues such that

λϕ1
1 > 1, λϕ1

2 < 1

are simple.

C. M. Ringel [Rin94] generalized the result of Theorem 3.15 for non-
symmetrizable Cartan matrices, see §4.2.

1.3.2 An explicit construction of eigenvectors. The eigenvalues are
roots of unity

An important point of this work is an explicit construction of eigenvectors
and adjoint vectors of the Coxeter transformation — the vectors that form a
Jordan basis, see Proposition 3.10, [SuSt75, SuSt78]. This construction is used
to obtain the necessary and sufficient regularity conditions of representations
[SuSt75, SuSt78]. This condition was also found by V. Dlab and C.M. Ringel,
[DR76], see §6.3.1.

The eigenvalues for all cases of extended Dynkin diagrams are easily cal-
culated using a generalized R. Steinberg theorem (Theorem 5.5) and Table
1.2.

Theorem 4.1 and Table 4.1 summarize this calculation as follows ([SuSt79,
St81, St82a, St85]):
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the eigenvalues of the Coxeter transformation for any extended Dynkin
diagram are roots of unity.

The case of Ãn is considered1 in the §4.2. According to eq. (4.3), the
characteristic polynomial of the Coxeter transformation for Ãn is as follows:

(λn−k+1 − 1)(λk − 1),

where k is the number characterizing the conjugacy class of the Coxeter trans-
formation, see [MeSu82], [Men85], [Col89], [Shi00], [BT97]. For Ãn, there are
[n/2] characteristic polynomials [Col89], (see §4.2), but, in all these cases, the
eigenvalues of the Coxeter transformation are roots of unity.

1.3.3 Study of the Coxeter transformation and the Cartan matrix

To study of the Coxeter transformation is almost the same as to study of the
Cartan matrix. The Cartan matrix and the matrix of the Coxeter transfor-
mation (more precisely, the bicolored representative2 of the conjugacy class
of the Coxeter transformation, §3.1.3) are constructed from the same blocks,
see relations (3.2), (3.4).

By Proposition 3.2, the eigenvalues λ of the Coxeter transformation and
the eigenvalues γ of the matrix B of the quadratic Tits form3 are related as
follows:

(λ + 1)2

4λ
= (γ − 1)2.

By Corollary 3.11, the Jordan form of the Coxeter transformation is diagonal
if and only if the Tits form is nondegenerate.

The Coxeter transformation contains more information than the Cartan
matrix, namely, the Coxeter transformation contains additional information
about orientation, see §2.2.6 and considerations on the graphs containing cy-
cles in §4.2.

The Coxeter transformation and the Cartan matrix are also related to the
fixed points and anti-fixed points of the powers of the Coxeter transformation.
This connection is given by means of the Chebyshev polynomials in Theorem
C.19 ([SuSt82]).

1.3.4 Monotonicity of the dominant eigenvalue of the golden pair

According to §2.1.1 we associate the Cartan matrix K to every tree graph
Γ, and by (1.6) we can associate the matrices DDt and DtD to the graph Γ.
According to Corollary 3.8, the matrices DDt and DtD have a common simple
1 For notation of the extended Dynkin diagrams, see §2.1.6.
2 For a definition of the bicolored representative of the conjugacy class of the Cox-

eter transformation, i.e., the bicolored Coxeter transformation, see §3.1.2.
3 For a definition of the Tits form, see §1.3.1 or §2.1.1.



1.4 Splitting formulas and the diagrams Tp,q,r 9

positive eigenvalue ϕ1, the maximal eigenvalue. This eigenvalue is said to be
the dominant eigenvalue. Thus, the dominant eigenvalue ϕ1 of the matrices
DDt and DtD is a certain characteristic of the graph Γ. In Proposition 3.12,
we show that if any edge is added to Γ, then this characteristic only grows.
The same is true for the maximal eigenvalue λϕ1

1 , see Proposition 3.4, relation
(3.13).

Problem. Is the dominant eigenvalue ϕ1 an invariant of the graph Γ in
the class of trees, T? I.e., is there a one-to-one correspondence between the
dominant eigenvalue and the graph provided the Tits form of the graph is
indefinite?

If there exist two graphs Γ1 and Γ2 with the same dominant eigenvalue
ϕ1, and θ is the assignment of the dominant eigenvalue to a graph, then what
class of graphs T/θ do we obtain modulo the relation given by θ?

This problem is solved in this work for the diagrams T2,3,r, T3,3,r, T2,4,r,
see Propositions 4.16, 4.17, 4.19 and Tables 4.4, 4.5, 4.6 in §4.4.

For a definition of the diagrams Tp,q,r, see §2.1.8 and Fig. 2.1. Some of
the Dynkin diagrams (as well as the extended Dynkin diagrams1, §2.1.6, and
the hyperbolic Dynkin diagrams, §2.1.8) are subclasses of the diagrams of the
form Tp,q,r.

1.4 Splitting formulas and the diagrams Tp,q,r

1.4.1 Splitting formulas for the characteristic polynomial

There is a number of recurrence formulas used to calculate the characteris-
tic polynomial of the Coxeter transformation of a given graph in terms of
characteristic polynomials of the Coxeter transformation of components of
the graph. Subbotin and Sumin proved the formula of splitting along the edge
[SuSum82]:

X (Γ, λ) = X (Γ1, λ)X (Γ2, λ)− λX (Γ1\α, λ)X (Γ2\β, λ). (1.7)

The proof of the Subbotin-Sumin formula is given in Proposition 4.8.
Another formula ([KMSS83]) is given in Proposition 4.11.
V. Kolmykov kindly informed me that the following statement holds:

1 For notation of extended Dynkin diagrams, see §2.1.6. There we give two different
notation: one used in the context of representations of quivers, and another one
used in the context of affine Lie algebras, see Table 2.1, Table 2.2. For example,
we have:

Ãn vs. A(1)
n .
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Proposition 1.2. If λ is the eigenvalue of Coxeter transformations for graphs
Γ1 and Γ2, then λ is also the eigenvalue of the Coxeter transformation for the
graph Γ obtained by gluing Γ1 and Γ2.

For details, see Proposition 4.12.
In Proposition 4.9 we generalize eq. (1.7) to the multiply-laced case. The

formula of splitting along the weighted edge1 holds:

X (Γ, λ) = X (Γ1, λ)X (Γ2, λ)− ρλX (Γ1\α, λ)X (Γ2\β, λ), (1.8)

where the factor ρ is as follows:

ρ = kαβkβα,

and kij are elements of the Cartan matrix. Corollary 4.10 deals with the case
where Γ2 contains a single point. In this case, we have

X (Γ, λ) = −(λ + 1)X (Γ1, λ)− ρλX (Γ1\α, λ). (1.9)

A formula similar to (1.8) can be proved not only for the Coxeter trans-
formation, but, for example, for the Cartan matrix, see È. B. Vinberg’s paper
[Vin85, Lemma 5.1]. See also Remark 4.14 concerning the works of J. S. Frame
and S. M. Gussein-Zade.

1.4.2 An explicit calculation of characteristic polynomials

We use recurrence formulas (1.7), (1.8) and (1.9) to calculate the character-
istic polynomials of the Coxeter transformation for the Dynkin diagrams and
extended Dynkin diagrams.

The characteristic polynomials of the Coxeter transformations for the
Dynkin diagrams are presented in Table 1.1. For calculations, see §5.2.

The characteristic polynomials of the Coxeter transformations for the ex-
tended Dynkin diagrams are presented in Table 1.2. The polynomials Xn from
Table 1.2 are, up to a sign, equal to the characteristic polynomials of the Cox-
eter transformation for the Dynkin diagram An:

Xn = (−1)nX (An),

defined (see §4.3 and Remark 4.13) to be

Xn =
λn+1 − 1

λ− 1
= λn + λn−1 + ... + λ2 + λ + 1.

For calculations of characteristic polynomials for the extended Dynkin dia-
grams, see §5.1 and §5.3.2.
1 For a definition of the weighted edge, simply-laced and multiply-laced diagrams,

see §2.1.1.
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Table 1.1. The characteristic polynomials, the Dynkin diagrams

Dynkin Characteristic Form with

diagram polynomial denominator

An λn + λn−1 + · · · + λ + 1
λn+1 − 1

λ − 1

Bn, Cn λn + 1

Dn λn + λn−1 + λ + 1 (λ + 1)(λn−1 + 1)

E6 λ6 + λ5 − λ3 + λ + 1
(λ6 + 1)

(λ2 + 1)

(λ3 − 1)

(λ − 1)

E7 λ7 + λ6 − λ4 − λ3 + λ + 1
(λ + 1)(λ9 + 1)

(λ3 + 1)

E8 λ8 + λ7 − λ5 − λ4 − λ3 + λ + 1
(λ15 + 1)(λ + 1)

(λ5 + 1)(λ3 + 1)

F4 λ4 − λ2 + 1
λ6 + 1

λ2 + 1

G2 λ2 − λ + 1
λ3 + 1

λ + 1
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Table 1.2. The characteristic polynomials, the extended Dynkin diagrams

Extended Characteristic Form with Class

Dynkin polynomial Xi g

diagram

D̃4 (λ − 1)2(λ + 1)3 (λ − 1)2X 3
1 0

D̃n (λn−2 − 1)(λ − 1)(λ + 1)2 (λ − 1)2Xn−3X 2
1 0

Ẽ6 (λ3 − 1)2(λ + 1) (λ − 1)2X 2
2 X1 0

Ẽ7 (λ4 − 1)(λ3 − 1)(λ + 1) (λ − 1)2X3X2X1 0

Ẽ8 (λ5 − 1)(λ3 − 1)(λ + 1) (λ − 1)2X4X2X1 0

C̃Dn, D̃Dn (λn−1 − 1)(λ2 − 1) (λ − 1)2Xn−2X1 1

F̃41, F̃42 (λ2 − 1)(λ3 − 1) (λ − 1)2X2X1 1

B̃n, C̃n, B̃Cn (λn − 1)(λ − 1) (λ − 1)2Xn−1 2

G̃21, G̃22 (λ − 1)2(λ + 1) (λ − 1)2X1 2

A11, A12 (λ − 1)2 (λ − 1)2 3

1.4.3 Formulas for the diagrams T2,3,r, T3,3,r, T2,4,r

For the three classes of diagrams — T2,3,r, T3,3,r, T2,4,r — explicit formulas
of characteristic polynomials of the Coxeter transformations are obtained, see
§2.1.8, Fig. 2.1.

The case of T2,3,r, where r ≥ 2, contains diagrams D5, E6, E7, E8, Ẽ8, E10,
and so we call these diagrams the En-series, where n = r + 3. The diagram
T2,3,7 is hyperbolic, (see §2.1.8) and, for all r ≥ 3, we have

X (T2,3,r) = λr+3 + λr+2 −
r∑

i=3

λi + λ + 1,

see (4.15) and Table 4.4.
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The spectral radius of X (T2,3,r) converges to the smallest Pisot number1.

3

√
1
2

+

√
23
108

+
3

√
1
2
−

√
23
108

≈ 1.324717...,

as r →∞, see Proposition 4.16.
The case of T3,3,r, where r ≥ 2, contains diagrams E6, Ẽ6, and so we

call these diagrams the E6,n-series, where n = r − 2. The diagram T3,3,4 is
hyperbolic, (see §2.1.8) and, for all r ≥ 3, we have

X (T3,3,r) = λr+4 + λr+3 − 2λr+1 − 3
r∑

i=4

λi − 2λ3 + λ + 1,

see (4.19) and Table 4.5. The spectral radius of X (T3,3,r) converges to the
golden ratio2

√
5 + 1
2

≈ 1.618034...,

as r →∞, see Proposition 4.17.
The case of T2,4,r, where r ≥ 2, contains diagrams D6, E7, Ẽ7, and so we

call these diagrams the E7,n-series, where n = r − 3. The diagram T2,4,5 is
hyperbolic, (see §2.1.8) and, for all r ≥ 4, we have

X (T2,4,r) = λr+4 + λr+3 − λr+1 − 2
r∑

i=4

λi − λ3 + λ + 1,

see (4.22) and Table 4.6. The spectral radius of X (T2,4,r) converges to

1
3

+
3

√
58
108

+

√
31
108

+
3

√
58
108

−
√

31
108

≈ 1.465571...

as r →∞, see Proposition 4.19.

1.5 Coxeter transformations and the McKay
correspondence

1.5.1 The generalized R. Steinberg theorem

Here we generalize R. Steinberg’s theorem concerning the mysterious con-
nection between lengths of branches of any Dynkin diagram and orders of
1 Hereafter we give all such numbers with six decimal points. About Pisot numbers

see §C.2, about the smallest Pisot number 1.324717... see Remark C.4.
2 The golden ratio is a well-known mathematical constant ϕ , expressed as follows:

ϕ =
a + b

a
=

a

b
.
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eigenvalues of the affine Coxeter transformation. R. Steinberg proved this
theorem for the simply-laced case in [Stb85, p.591,(∗)]; it was a key statement
in his explanation of the phenomena of the McKay correspondence. We prove
the R. Steinberg theorem for the simply-laced case in §5.1, Theorem 5.1. The
multiply-laced case (generalized R. Steinberg’s theorem) is proved in §5.3.2,
Theorem 5.5. Essentially, the generalized R. Steinberg theorem immediately
follows from Table 1.2.

We introduce the class number g for the extended Dynkin diagram Γ̃, see
§5.3. The class number g is defined by the number of weighted edges of the
diagram, see (5.14), and g may take values 0, 1, 2, 3. Let p, q, r be the lengths
of branches of the diagram.

Theorem 1.3 (The generalized R. Steinberg theorem). The affine Cox-
eter transformation with the extended Dynkin diagram Γ̃ has the same eigen-
values as the product of 3 − g factors, each of which is the Coxeter transfor-
mation of type Ai, where i ∈ {p− 1, q − 1, r − 1}. In other words,

For g = 0, the product Xp−1Xq−1Xr−1 is taken.

For g = 1, the product Xp−1Xq−1 is taken.

For g = 2, the product consists only of Xp−1.

For g = 3, the product is trivial (= 1).

For details, see Theorem 5.5.

1.5.2 The Kostant generating functions and W. Ebeling’s theorem

Now we consider B. Kostant’s construction of the vector-valued generating
function PG(t) [Kos84]. Let G be a binary polyhedral group, and ρi, where
i = 0, . . . , r, irreducible representations of G corresponding (by the McKay
correspondence) to simple roots αi of the extended Dynkin diagram; let πn,
where n = 0, 1, . . . , be irreducible representations1 of SU(2) in Symn(C2). Let
mi(n) be multiplicities in the decomposition

πn|G =
r∑

i=0

mi(n)ρi,

and so mi(n) = 〈πn|G, ρi〉, where 〈·, ·〉 is the inner product of the characters
corresponding to the representations, see §5.4.2; set

vn =
r∑

i=0

mi(n)αi =

⎛

⎝
m0(n)

. . .
mr(n).

⎞

⎠

1 Representations {πn | n = 0, 1, . . . } constitute the set of all irreducible represen-
tations of SU(2), [Sp77, Ch. 3.2].
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Then

PG(t) =

⎛

⎜⎜⎜⎝

[PG(t)]0

. . .

[PG(t)]r

⎞

⎟⎟⎟⎠ :=
∞∑

n=0

vntn =

⎛

⎜⎜⎜⎝

∞∑
n=0

m0(n)tn

. . .
∞∑

n=0
mr(n)tn

⎞

⎟⎟⎟⎠ (1.10)

is a vector-valued series. In particular, [PG(t)]0 is the Poincaré series of the
algebra of invariants Sym(C2)G, i.e.,

[PG(t)]0 = P (Sym(C2)G, t).

B. Kostant obtained an explicit formulas for the series [PG(t)]i, i =
0, 1, . . . , r, the multiplicities mi(n), see [Kos84]. B. Kostant’s construction
is generalized in Ch. 5 to the multiply-laced case. For this purpose, we use the
P. Slodowy generalization [Sl80, App.III] of the McKay correspondence to the
multiply-laced case.

The main idea of P. Slodowy is to consider a pair of binary polyhedral
groups H � G and their restricted representations ρ ↓G

H and induced repre-
sentations τ ↑G

H instead of representations ρi. In Appendix A, we study in
detail P. Slodowy’s generalization for the pair T � O, where O is the binary
octahedral group and T is the binary tetrahedral group. We call the general-
ization of the McKay correspondence to the multiply-laced case the Slodowy
correspondence. Finally, in Ch. 5, we generalize W. Ebeling’s theorem [Ebl02]
which relates the Poincaré series [PG(t)]0 and the Coxeter transformations to
the multiply-laced case.

First, we prove the following proposition due to B. Kostant [Kos84]. It
holds for the McKay operator and also for the Slodowy operator.

Proposition 1.4 (B. Kostant [Kos84]). If B is either the McKay operator
A or the Slodowy operator Ã or Ã∨, then

Bvn = vn−1 + vn+1.

For details, see Proposition 5.10 in §5.4.2.

Theorem 1.5 (The generalized W. Ebeling theorem, [Ebl02]). Let G
be a binary polyhedral group and [PG(t)]0 the Poincaré series (5.29) of the
algebra of invariants Sym(C2)G. Then

[PG(t)]0 =
det M0(t)
det M(t)

,

where
det M(t) = det |t2I −Ca|, det M0(t) = det |t2I −C|,

and where C is the Coxeter transformation and Ca is the corresponding affine
Coxeter transformation.
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In Theorem 1.5 the Coxeter transformation C and the affine Coxeter trans-
formation Ca are related to the binary polyhedral group G. In the multiply-
laced case, we consider a pair of binary polyhedral groups H �G and again the
operators C and Ca are related to the group G. We generalize W. Ebeling’s
theorem for the multiply-laced case, see Theorem 5.12. For a definition of the
Poincaré series for the multiply-laced case, see (5.30) from §5.4.1.

1.6 The affine Coxeter transformation

1.6.1 The R. Steinberg trick

We consider the original proof of R. Steinberg’s theorem based on the careful
study of the affine Coxeter transformation1. Let C be a Coxeter transforma-
tion represented in the form

C = w2w1,

corresponding to a bicolored partition2 of a given Dynkin diagram, see §3.1.2.
Let α0 be the additional (“affine”) vertex, the one that extends the Dynkin
diagram to the extended Dynkin diagram, see §6.1.3. Then

Ca = sα0w2w1

is the affine Coxeter transformation. Let β be a root such that

β = ω − α0,

where ω is the nil-root3, i.e., the vector from the one-dimensional kernel of
the Tits form B, see (2.26). The root β is the highest root in the root system
Δ corresponding to the given Dynkin diagram. For any vector z ∈ V , let tλ
be the translation connected to λ ∈ V :

tλ(z) = z − 2
(λ, z)
(λ, λ)

ω,

see (6.7). We have

tβ = sα0sβ , sα0 = tβsβ , t−β = tα0

where sα0 and sβ are reflections corresponding to the roots α0 and β, see
Proposition 6.8. The R. Steinberg trick is to take, instead of the affine Coxeter
transformation, the so-called linear part of the affine Coxeter transformation

C′ = sβw2w1

1 For a definition of the affine Coxeter transformations, see §6.1.4.
2 For a definition of the bicolored partitions, see §3.1.1.
3 The nil-root ω coincides (up to a factor) with fixed point z1 of the Coxeter

transformation, see §2.2.1.
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having the same spectrum:
Proposition (see Proposition 6.11) 1) The affine Coxeter transforma-

tion Ca and the linear part of the affine Coxeter transformation C′ are related
by a translation tα0 as follows:

C′ = tα0Ca.

2) Let Wa be the affine Weyl group that acts on the linear space V , and let
V ′ ⊂ V be the hyperplane of vectors orthogonal to ω. The spectrum of Ca with
deleted eigenvalue 1 coincides with the spectrum of the operator C′ restricted
onto V ′.

Let τ (n) be alternating products given as follows:

τ (1) = w1,

τ (2) = w2w1,

τ (3) = w1w2w1,

. . .

τ (2n) = (w2w1)n,

τ (2n+1) = w1(w2w1)n,

. . .

see (5.60). The highest root β and the branch root b (corresponding to the
branch point) are conjugate by means of the alternating product τ (g−1):

b = τ (g−1)β,

where h = 2g is the Coxeter number, see Remark 6.13 and Proposition 6.21.
Then corresponding reflections sβ and sb are conjugate as follows:

sb = wsβw−1, where w = τ (g−1),

see Corollary 6.26.
Proposition (see Proposition 6.27) The linear part C′ is conjugate to

w2w1 (and also w1w2) with canceled reflection sb corresponding to the branch
point b.

From this proposition R. Steinberg’s theorem (Theorem 5.1) immediately
follows:

The affine Coxeter transformation for the extended Dynkin diagram Γ̃ has
the same eigenvalues as the product of three Coxeter transformations of types
An, where n = p − 1, q − 1, and r − 1, corresponding to the branches of the
Dynkin diagram Γ.

The generalized R. Steinberg theorem (Theorem 1.3) is also proved in this
way, see §6.2.5.
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1.6.2 The defect and the Dlab-Ringel formula

There is the important characteristic connected with the affine Coxeter trans-
formation. It is a linear form called defect. For the extended Dynkin diagram,
it defines the hyperplane of regular representations.

In [DR76], V. Dlab and C. M. Ringel introduced the defect δΩ obtained as
the solution to the following equation, see (6.36):

C∗
ΩδΩ = δΩ,

where C∗
Ω means the dual operator to the Coxeter transformation CΩ, see

(6.37). Dlab and Ringel in [DR76] used the defect for the classification of
tame type quivers in the representation theory of quivers. For the case of
the extended Dynkin diagram D̃4, the defect δ was applied by Gelfand and
Ponomarev in [GP72] in the study of quadruples of subspaces.

In [St75], [SuSt75], [SuSt78], the linear form ρΩ(z) was considered, see
Definition 6.29. For the simply-laced case, it is defined as

ρΩ(z) = 〈Tz, z̃1〉,

and, for the multiply-laced case, as

ρΩ(z) = 〈Tz, z̃1∨〉.

Here z1 is the eigenvector of the Coxeter transformation corresponding to
eigenvalue 1, and z1∨ is the eigenvector corresponding to eigenvalue 1 of the
Coxeter transformation for the dual diagram Γ∨;

ṽ denotes the dual vector to v obtained from v by changing the sign of the
Y-component (for a definition of X- and Y-components, see Remark 3.1, see
also Definition 6.31);

T is one of the elements interrelating Coxeter transformations for different
orientations:

CΩ = T−1CΛT,

where Λ is the bicolored orientation, see §3.1.1 and (6.38).
The linear form ρΩ(z) is said to be the Ω-defect of the vector z, or the

defect of the vector z in the orientation Ω.
In Proposition 6.35, [St85], we show that the Dlab-Ringel defect δΩ coin-

cides with the Ω-defect ρΩ.
The following formula is due to V. Dlab and C. M. Ringel, see [DR76]:

Ch
Ωz = z + hδΩ(z)z1,

where h is the Coxeter number, see (6.40). This formula is proved in Propo-
sition 6.34.

For some applications of the defect not directly connected to representation
theory of quivers, see [Rin80], [St84], [SW00].
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1.7 The regular representations of quivers

In the category of all representation of a given quiver, the regular representa-
tions are the most complicated ones, see §6.3.2. Essentially, the regularity of
quiver representations is defined by means of the Coxeter transformation and
depends on the orientation of the quiver, see §6.3.2, Definition 6.30. For every
Dynkin diagram, there are only finite number representations, and they all
are non-regular (P. Gabriel’s theorem, Th. 2.14). The regular representations
are completely described only for the extended Dynkin diagrams, ([Naz73],
[DR76]), see §2.2.3.

1.7.1 The regular and non-regular representations of quivers

A given representation V is said to be regular if

(Φ+)kV �= 0 and (Φ−)kV �= 0 for every k ∈ Z,

where Φ+, Φ− are Coxeter functors1.
Thanks to Lemma B.2, we can use another regularity condition. Namely,

the representation V is regular if and only if

Ck(dim V ) > 0 for all k ∈ Z, (1.11)

where C is the Coxeter transformation (2.27) associated with a given orienta-
tion, see [DR76], [St75], [SuSt75], [SuSt78]. The representations, which does
not satisfy (1.11), are non-regular representation, i.e.,

Ck(dim V ) ≯ 0 for some k ∈ Z,

see §6.3.1. Of course, the definition of regular and non-regular representation
must include dependence on the orientation, see (6.41), (6.42).

Essentially, the non-regular representations constitute the simple part of
representations of quivers of any representation type – finite-type, tame or
wild. The non-regular representations can be constructed by means of repeated
applications of the Coxeter functor to simple representations corresponding
to simple roots in the root system.

Though, according to Kac’s theorem, §2.2.4, the set of dimensions of in-
decomposable representations is independent of the orientation and coincides
with the set of positive roots of the corresponding quiver, the partition “regu-
lar – non-regular” depends on the orientation. The vector-dimension of a reg-
ular representation in one orientation can be the dimension of a non-regular
representation in another orientation and vice versa.

Consider, for example, regular representations of D̃4 in the bicolored ori-
entation2 Λ and in the orientation Λ′′ depicted in Fig. B.1. The regular rep-
resentations in these orientations satisfy the following relations:
1 For a definition of Coxeter functors, see §B.1.
2 For a definition of the bicolored partition and the bicolored orientation, see §3.1.1.



20 1 Introduction

y1 + y2 + y3 + y4 − 2x0 for the orientation Λ,

y1 + y2 = y3 + y4 for the orientation Λ′′,

see (B.45) and (B.46).
The vector-dimension v1 (resp. v2) from (1.12) is regular in Λ (resp. in Λ

′′
)

and is non-regular in Λ
′′

(resp. in Λ).

v1 =

⎛

⎜⎜⎜⎜⎝

2n + 3
n + 2
n + 2
n + 1
n + 1

⎞

⎟⎟⎟⎟⎠

x0

y1

y2

y3

y4

, v2 =

⎛

⎜⎜⎜⎜⎝

2n + 3
n + 1
n + 1
n + 1
n + 1

⎞

⎟⎟⎟⎟⎠

x0

y1

y2

y3

y4

. (1.12)

1.7.2 The necessary and sufficient regularity conditions

In Theorem 6.33 proved by Dlab-Ringel [DR76] and by Subbotin-Stekolshchik
[SuSt75], [SuSt78], we show the necessary condition of the regularity of the
representation V :

If dim V is a regular vector for an extended Dynkin diagram Γ
in an orientation Ω, then

ρΩ(dim V ) = 0. (1.13)

In Proposition B.4 (for the bicolored orientation) and in Proposition B.9
(for an arbitrary orientation Ω) we show that (see [St82])

the condition (1.13) is also sufficient if dimV is a positive root in the root
system associated with the extended Dynkin diagram Γ.

To prove the sufficient regularity condition, we study the transforming
elements interrelating Coxeter transformations for different orientations. Here,
Theorem B.7, [St82], plays a key role. Proposition B.5 and Theorem B.7 yield
the following:

1) Let Ω′, Ω′′ be two arbitrary orientations of the graph Γ that differ by
the direction of k edges. Consider a chain of orientations, in which every two
adjacent orientations differ by the direction of one edge:

Ω′ = Λ0, Λ1, Λ2, . . . ,Λk−1, Λk = Ω′′.

Then, in the Weyl group, there exist elements Pi and Si, where i = 1, 2, ..., k,
such that

CΛ0 = P1S1,

CΛ1 = S1P1 = P2S2,

. . .

CΛk−1 = Sk−1Pk−1 = PkSk,

CΛk
= SkPk.
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2) T−1CΩ′T = CΩ′′ for the following k+1 transforming elements T := Ti:

T1 = P1P2P3...Pk−2Pk−1Pk,

T2 = P1P2P3...Pk−2Pk−1S
−1
k ,

T3 = P1P2P3...Pk−2S
−1
k−1S

−1
k ,

. . .

Tk−1 = P1P2S
−1
3 ...S−1

k−2S
−1
k−1S

−1
k ,

Tk = P1S
−1
2 S−1

3 ...S−1
k−2S

−1
k−1S

−1
k ,

Tk+1 = S−1
1 S−1

2 S−1
3 ...S−1

k−2S
−1
k−1S

−1
k .

In addition, for each reflection σα, there exists a Ti whose decomposition does
not contain this reflection.

3) The following relation holds:

TpT
−1
q = Cq−p

Ω′ .

For each graph Γ with indefinite Tits form B, we prove the following nec-
essary regularity condition, see Theorem B.3 [SuSt75], [SuSt78]:

If z is the regular vector in the orientation Ω, then

〈Tz, z̃m
1 〉 ≤ 0, 〈Tz, z̃m

2 〉 ≥ 0,

where z̃m
1 and z̃m

2 are the dual vectors (Definition 6.31) to the vectors zm
1

and zm
2 correspond to the maximal eigenvalue ϕm = ϕmax of DDt and DtD,

respectively, see §B.2.
Similar results were obtained by Y. Zhang in [Zh89, Prop.1.5], and by

J.A. de la Peña and M. Takane in [PT90, Th.2.3].
For an application of this necessary condition to the star graph, see §B.4.4.
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Preliminaries

...Having computed the m’s several years
earlier ..., I recognized them1 in the Poincaré
polynomials while listening to Chevalley’s
address at the International Congress in 1950.
I am grateful to A. J. Coleman for drawing my
attention to the relevant work of Racah, which
helps to explain the “coincidence”; also, to
J. S. Frame for many helpful suggestions...

H. S. M. Coxeter, [Cox51, p.765], 1951

2.1 The Cartan matrix and the Tits form

2.1.1 The generalized and symmetrizable Cartan matrix

Let K be an n× n matrix with the following properties: [Mo68], [Kac80]

(C1) kii = 2 for i = 1, .., n,

(C2) − kij ∈ Z+ = {0, 1, 2, ...} for i �= j,

(C3) kij = 0 implies kji = 0 for i, j = 1, ..., n.

(2.1)

Such a matrix is called a generalized Cartan matrix. A generalized Cartan
matrix M is said to be symmetrizable if there exists an invertible diagonal
matrix U with positive integer coefficients and a symmetric matrix B such
that M = UB.
1 The numbers mi mentioned by H. S. M. Coxeter in the epigraph are the exponents

of the eigenvalues of the Coxeter transformation, they are called the exponents of
the Weyl group, see §2.3.2.
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Remark 2.1. According to the classical Bourbaki definition a Cartan matrix is
the matrix satisfying the condition (2.1), such that the non-diagonal entries
constitute a certain subset of the set {−1,−2,−3,−4}, see ([Bo, Ch.6.1.5, Def.
3]). The following inclusions hold between three classes of Cartan matrices:

{M |M is a Cartan matrix by Bourbaki} ⊂
{M |M is a symmetrizable matrix satisfying (2.1)} ⊂

{M |M is a generalized Cartan matrix}.
(2.2)

According to V. Kac [Kac80], [Kac82], a matrix (2.1) is referred to a Cartan
matrix, but in the first edition of Kac’s book [Kac93] the matrix satisfying
(2.1) is already called a generalized Cartan matrix. We are interested in the
case of symmetrizable generalized Cartan matrices, so when no confusion is
possible, “the Cartan matrix” means “the symmetrizable generalized Cartan
matrix”. ��

Let Γ0 (resp. Γ1) be the set of vertices (resp. edges) of a given graph Γ. A
valued graph or diagram (Γ, d) ([DR76], [AuRS95, p. 241]) is a finite set Γ1 (of
edges) rigged with numbers dij for all pairs i, j ∈ ∂Γ1 ⊂ Γ0 of the endpoints
of the edges in such a way that

(D1) dii = 2 for i = 1, .., n,

(D2) dij ∈ Z+ = {0, 1, 2, ...} for i �= j,

(D3) dij = 0 implies dji = 0 for i, j = 1, ..., n.

The rigging of the edges of Γ1 is depicted by symbols

i (dij ,dji) j

If dij = dji = 1, we simply write

i j

There is, clearly, a one-to-one correspondence between valued graphs and
generalized Cartan matrices, see [AuRS95]. The following relation holds:

dij = |kij | for i �= j,

where kij are elements of the Cartan matrix (2.1), see [AuRS95, p. 241]. The
integers dij of the valued graph are called weights, and the corresponding
edges are called weighted edges. If

dij = dji = 1, (2.3)

we say that the corresponding edge is not weighted. A diagram is called simply-
laced (resp. multiply-laced) if it does not contain (resp. contains) weighted
edges.
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Remark 2.2. Any generalized Cartan matrix K whose diagram contains no
cycles is symmetrizable ([Mo68, §3]). Any generalized Cartan matrix whose
diagram is a simply-laced diagram (even with cycles) is symmetrizable because
it is symmetric. In particular, Ãn has a symmetrizable Cartan matrix. In this
work we consider only diagrams without cycles, so the diagrams we consider
correspond to symmetrizable Cartan matrices.

For notation of diagrams with the non-negative Tits form, i.e., extended
Dynkin diagrams, see §2.1.6. The notation of Ãn in the context of affine Lie
algebras is A

(1)
n , see Table 2.1, Table 2.2. ��

Let B be the quadratic form associated with matrix B, and let (·, ·) be the
corresponding symmetric bilinear form. The quadratic form B is called the
quadratic Tits form. We have

B(α) = (α, α).

In the simply-laced case,
K = 2B

with the symmetric Cartan matrix K. So, in the simply-laced case, the Tits
form is the Cartan-Tits form. In the multiply-laced case, the symmetrizable
matrix K factorizes

K = UB, (2.4)

where U is a diagonal matrix with positive integers on the diagonal, and B
is a symmetric matrix. It is easy to see that the matrix U is unique up to a
factor.

2.1.2 The Tits form and diagrams Tp,q,r

Consider the diagram Tp,q,r depicted in Fig. 2.1. The diagram Tp,q,r is defined
as the tree graph with three arms of lengths p, q, r having one common vertex.
On Fig. 2.1 this common vertex is

xp = yq = zr.

Proposition 2.3. Let B be the quadratic Tits form connected to the diagram
Tp,q,r. Then

2B = U + (μ− 1)u2
0, (2.5)

where U is a non-negative quadratic form, and

μ =
1
p

+
1
q

+
1
r
. (2.6)

Proof. By eq.(3.3) the quadratic Tits form B can be expressed in the
following form
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Fig. 2.1. The diagram Tp,q,r

B(z) =x2
1 + x2

2 + · · ·+ x2
p−1 − x1x2 − · · · − xp−2xp−1 − xp−1u0+

y2
1 + y2

2 + · · ·+ y2
q−1 − y1y2 − · · · − yq−2yq−1 − yq−1u0+

z2
1 + z2

2 + · · ·+ z2
r−1 − z1z2 − · · · − zr−2zr−1 − zr−1u0 + u2

0,

(2.7)

where u0 is the coordinate of the vector z corresponding to the branch point
of the diagram. Let

V (x1, ...,xp−1, u0) =

x2
1 + x2

2 + · · ·+ x2
p−1 − x1x2 − · · · − xp−2xp−1 − xp−1u0,

V (y1, ...,yq−1, u0) =

y2
1 + y2

2 + · · ·+ y2
q−1 − y1y2 − · · · − yq−2yq−1 − yq−1u0,

V (z1, ...,zr−1, u0) =

z2
1 + z2

2 + · · ·+ z2
r−1 − z1z2 − · · · − zr−2zr−1 − zr−1u0.

Then

B(z) = V (x1, ..., xp−1) + V (y1, ....yq−1) + V (z1, ....zr−1) + u2
0.

It is easy to check that

2V (x1, ..., xp−1, u0) =
p−1∑

i=1

i + 1
i

(xi −
i

i + 1
xi+1)2 −

p− 1
p

u2
0,

2V (y1, ..., yq−1, u0) =
q−1∑

i=1

i + 1
i

(yi −
i

i + 1
yi+1)2 −

q − 1
q

u2
0,

2V (z1, ..., zr−1, u0) =
r−1∑

i=1

i + 1
i

(zi −
i

i + 1
zi+1)2 −

r − 1
r

u2
0.

(2.8)

Denote by U(x), U(y), U(z) the corresponding sums in (2.8):
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2V (x1, ..., xp−1, u0) = U(x)− p− 1
p

u2
0,

2V (y1, ..., yq−1, u0) = U(y)− q − 1
q

u2
0,

2V (z1, ..., zr−1, u0) = U(z)− r − 1
r

u2
0.

Thus,

2B(z) = U(x) + U(y) + U(z)− p− 1
p

u2
0 −

q − 1
q

u2
0 −

r − 1
r

u2
0 + 2u2

0,

or

2B(z) = U(x) + U(y) + U(z) +
(

1
p

+
1
q

+
1
r
− 1

)
u2

0.

Set
μ =

1
p

+
1
q

+
1
r
;

then we have

2B(z) = U(x) + U(y) + U(z) + (μ− 1)u2
0. �� (2.9)

2.1.3 The simply-laced Dynkin diagrams

The diagram with the positive definite Tits form is said to be the Dynkin
diagram. In §2.1.3, §2.1.4, §2.1.5 we find full list of Dynkin diagrams. In the
other words, we prove the following theorem:

Theorem 2.4. The Tits form B of the diagram Γ is positive definite if and
only if Γ is one of diagrams in Fig. 2.3.

Remark 2.5. 1) Let K be the Cartan matrix associated with the tree Γ. If dij

and dji are distinct non-zero elements of K, let us multiply the ith row by
dji

dij
, so the new element d′ij is equal to dji.

Let k be a certain index, k �= i, j. If dik �= 0, i.e., there exists an edge
{i, k}, then djk = 0, otherwise {i, k, j} is a loop. In the next step, if dik and

dki are distinct, then we multiply the kth row by
dik

dki
. Then d′ki is equal to

dik, whereas the ith and jth rows did not change. We continue the process
in this way until the Cartan matrix K becomes symmetric. Since Γ is a tree,
this process terminates.

2) Let the Tits form be positive definite. Since this property is true for
all values of vectors z ∈ EΓ, we can select some coordinates of z to be zero.
In this case, it suffices to consider only the submatrix of the Cartan matrix
corresponding to non-zero coordinates.
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Fig. 2.2. The Tits form is not positive definite. The simply-laced case

Proposition 2.6. If diagram Γ contains one of subdiagrams of Fig. 2.2 then
the corresponding Tits form is not positive definite.

Proof. Let ΓS be one of subdiagrams of Fig. 2.2, and let Γ\ΓS be the
part complementary to ΓS . The numbers depicted in Fig. 2.2 are the coordi-
nates of the vector corresponding to ΓS . Complete the coordinates of z ∈ EΓ
corresponding to the vertices of Γ\ΓS by zeros. Then B(z) ≤ 0. ��

Proposition 2.7. The simply-laced Dynkin diagrams are diagrams An, Dn,
and En, where n = 6, 7, 8, see Fig. 2.3.

Proof. From Proposition 2.6 we see that the simply-laced Dynkin diagrams
are only the diagrams Tp,q,r. The chains constitute a particular case of Tp,q,r

with p = 1.
From Proposition 2.3, (2.6), we see that B is positive definite for

μ =
1
p

+
1
q

+
1
r

> 1,

i.e., the triples p, q, r can only be as follows:
1) (1, q, r) for any q, r ∈ N, i.e., the diagrams An,
2) (2, 2, r), i.e., the diagrams Dn,
3) (2, 3, r), where r = 3, 4, 5, i.e., the diagrams E6, E7, E8.
In all cases p + q + r = n + 2, where n is the number or vertices of the

diagram. ��

2.1.4 The multiply-laced Dynkin diagrams. Possible weighted
edges

In order to prove Proposition 2.8, Proposition 2.10 and Proposition 2.11 we
use the common arguments of Remark 2.5.



2.1 The Cartan matrix and the Tits form 29

Proposition 2.8. Let Γ be a tree.
1) Consider a weighted edge (dij , dji), i.e., one of dij , dji differs from 1.

If B is positive definite, then

dijdji < 4, (2.10)

i.e., only the following pairs (dij , dji) are possible:

(1, 2), (2, 1), (1, 3), (3, 1). (2.11)

2) If the weighted edge is (2, 2), then the form B is not positive definite.
3) If the weighted edge is (1, 3), then the diagram consists of only one edge,

and we have the diagram G2, see Fig. 2.3.

Proof. 1) According to Remark 2.5 factorize the Cartan matrix as follows:

K =
(

2 −dij

−dji 2

)
=

(
dij 0
0 dji

)
⎛

⎜⎝

2
dij

−1

−1
2

dji

⎞

⎟⎠ (2.12)

and, for all k �= i, j, set xk = 0. Then

B(z) =
2

dij
x2

i − 2xixj +
2

dji
x2

j ,

or, up to a non-zero factor

B(z) = djix
2
i − djidijxixj + dijx

2
j , (2.13)

The discriminant (djidij)2 − 4djidij should be negative, i.e., dijdji < 4.
2) Let dij = dji = 2. For all k �= i, j, in (2.13) set xk = 0. Then

B(z) = 2x2
i + 2x2

j − 4xixj = (xi − xj)2 (2.14)

For xi = xj , we have B(z) = 0.
3) Let the diagram Γ have two edges {l, k} and {k, j}, and

dlkdkl = 3. (2.15)

a) Let {l, k} be the weighted edge (3, 1) and {k, j} be the weight edge
(dkj , djk). Let us factorize the component of the Cartan matrix corresponding
to the two edges {l, k} and {k, j} as follows:

K =

⎛

⎝
2 −dkj −3
−djk 2 0
−1 0 2

⎞

⎠ =

⎛

⎜⎜⎝

3 0 0

0
3djk

dkj
0

0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎝

2
3

−dkj

3
−1

−dkj

3
2dkj

3djk
0

−1 0 2

⎞

⎟⎟⎟⎠

k
j
l
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and, for all i �= l, k, j, set xi = 0. Then

B(z) = djkx2
k + dkjx

2
j + 3djkx2

l − dkjdjkxjxk − 3djkxkxl.

Set xl = 1, xk = 2, xj = 1. Then

B(z) =4djk + dkj + 3djk − 2dkjdjk − 6djk =
dkj + djk − 2dkjdjk < 0.

b) Let {l, k} be the weighted edge (1, 3) and let {k, j} be the weighted
edge (dkj , djk). As above, we factorize the component of the Cartan matrix
corresponding to the two edges {l, k} and {k, j} as follows:

K =

⎛

⎝
2 −dkj −1
−djk 2 0
−3 0 2

⎞

⎠ =

⎛

⎜⎜⎝

1 0 0

0
djk

dkj
0

0 0 3

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎝

2 −dkj −1

−dkj
2dkj

djk
0

−1 0
2
3

⎞

⎟⎟⎟⎠

k
j
l

and, for all i �= l, k, j, set xi = 0. Then

B(z) = 3djkx2
k + 3dkjx

2
j + djkx2

l − 3dkjdjkxjxk − 3djkxkxl.

Set xl = 3, xk = 2, xj = 1. Then

B(z) =12djk + 3dkj + 9djk − 6dkjdjk − 18djk =
3dkj + 3djk − 6dkjdjk < 0.

c) The diagram consisting of only on weighted edge (1, 3) has the positive
definite Tits form

B(z) = x2
l − 3xlxk + 3x2

k.

This is the diagram G2. ��

Corollary 2.9. If B is the positive definite Tits form associated with the dia-
gram Γ having more than one edge, then the only possible weighted edges are
(1, 2) and (2, 1).
��
In what follows, the only weighted edges we consider are (1, 2) and (2, 1).

2.1.5 The multiply-laced Dynkin diagrams. A branch point

Proposition 2.10. If the diagram Γ has two adjacent weighted edges, then
the corresponding Tits form is not positive definite.

Proof. Let {l, k} be the weighted edge (1, 2) and {k, j} be the weighted edge
(djk, dkj). As in Proposition 2.8, b) above, we have
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Fig. 2.3. The Dynkin diagrams

B(z) = djkx2
k + dkjx

2
j + 2djkx2

l − dkjdjkxjxk − 2djkxkxl.

For (djk, dkj) = (2,1), we have

B(z) = 2x2
k + x2

j + 4x2
l − 2xjxk − 4xkxl = (xk − xj)2 + (xk − 2xl)2,

and B(z) is not positive definite. For (djk, dkj) = (1, 2), we have

B(z) = x2
k + 2x2

j + 2x2
l − 2xjxk − 2xkxl =

1
2
(xk − 2xj)2 +

1
2
(xk − 2xl)2,

and B(z) is also not positive definite.
Now, let {l, k} be the weighted edge (2, 1) and {k, j} be the weighted edge

(djk, dkj). Here,

B(z) = 2djkx2
k + 2dkjx

2
j + djkx2

l − 2dkjdjkxjxk − 2djkxkxl.

For (djk, dkj) = (2, 1), we have

B(z) = 4x2
k + 2x2

j + 2x2
l − 4xjxk − 4xkxl = 2(xk − xj)2 + 2(xk − 2xl)2,

and B(z) is not positive definite. For (djk, dkj) = (1, 2), we have

B(z) = 2x2
k + 4x2

j + x2
l − 4xjxk − 2xkxl = (xk − 2xj)2 + (xk − xl)2,

and B(z) is also not positive definite. ��
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Proposition 2.11. Let the diagram Γ have only one branch point.
1) If one of edges ending in the branch point is a weighted edge, then the

corresponding Tits form is not positive definite, see Fig. 2.4, a), b).
2) If the diagram Γ has a weighted edge, then the corresponding Tits form

is not positive definite, see Fig. 2.4, c), d).

Fig. 2.4. The Tits form is not positive definite. Cases with a branch point

Proof. 1) Case a) in Fig. 2.4. The Tits form is

B(z) = x2
0 + y2

1 + y2
2 + 2y2

3 − x0y1 − x0y2 − 2x0y3.

Set x0 = 2, y1 = 1, y2 = 1, y3 = 1. We have

B(z) = 4 + 1 + 1 + 2− 2− 2− 4 = 0.

Case b) in Fig. 2.4. The Tits form is

B(z) = 2x2
0 + 2y2

1 + 2y2
2 + y2

3 − 2x0y1 − 2x0y2 − 2x0y3.

Set x0 = 2, y1 = 1, y2 = 1, y3 = 2. We have

B(z) = 8 + 2 + 2 + 4− 4− 4− 8 = 0.

Remark 2.12. If the weighted edge (1, 2) (resp. (2, 1)) in cases a) c), (resp.
b), d)) is not a terminal edge from the right side, see Fig. 2.4, complete all
remaining coordinates corresponding to vertices till the terminal edge by zeros,
see Remark 2.5, 2).
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2) Case c) in Fig. 2.4. The Cartan matrix is

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 −1
−1 2
−1 2
−1 2 −1

−1 2 −1
−1 2

. . . . . .
2 −1
−1 2 −2
−1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.16)

the matrix U from the factorization (2.4) and the matrix of the Tits form are
as follows:

U = diag

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
. . .
1
1
1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 −1
−1 2
−1 2
−1 2 −1

−1 2 −1
−1 2

. . . . . .
2 −1
−1 2 −2
−2 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.17)

Up to a factor 2, the Tits form is

B(z) = x2
0 +

n−1∑

i=1

y2
i + 2y2

n − x0(y1 + y2 + y3)−
n−2∑

i=3

yiyi+1 − 2yn−1yn.

Set x0 = 2, y1 = 1, y2 = 1, y3 = · · · = yn−1 = 2, yn = 1. Then

B(z) = 4 + 1 + 1 + 4(n− 3) + 2− 2(1 + 1 + 2)− 4(n− 4)− 4 = 0.

Case d) in Fig. 2.4. The Cartan matrix is

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 −1
−1 2
−1 2
−1 2 −1

−1 2 −1
−1 2

. . . . . .
2 −1
−1 2 −1
−2 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.18)
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the matrix U from the factorization (2.4) and the matrix of the Tits form are
as follows:

U = diag

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
. . .
1
1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 −1
−1 2
−1 2
−1 2 −1

−1 2 −1
−1 2

. . . . . .
2 −1
−1 2 −1
−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.19)

The Tits form is

B(z) = 2x2
0 + 2

n−1∑

i=1

y2
i + y2

n − 2x0(y1 + y2 + y3)− 2
n−1∑

i=3

yiyi+1.

Set x0 = 2, y1 = 1, y2 = 1, y3 = · · · = yn−1 = yn = 2. Then

B(z) = 8 + 2 + 2 + 8(n− 3) + 4− 4(1 + 1 + 2)− 8(n− 3) = 0. ��

Corollary 2.13. If the diagram Γ has a weighted edge, and the corresponding
Tits form is positive definite, then the diagram Γ is a chain.

To finish the proof of Theorem 2.4 it remains to show that the diagram Γ
is a chain with a weighted edge only if Γ is Bn or Cn or F4, see Fig. 2.3. In
order to prove this fact, it suffices to prove, that diagrams B̃n, C̃n, B̃Cn, F̃41,
F̃42 have the non-negative Tits form1.

As above in Proposition 2.11, 2), we write down the corresponding Tits
form B. For every mentioned diagram from Fig. 2.6, we insert the vector z
with coordinates depicted in the figure, into the form B. In all these cases, we
have B(z) = 0. Consider, for example, the diagrams F̃41 and F̃42, see Fig. 2.5.

a) Diagram F̃41. Here, the Cartan matrix is

K =

⎛

⎜⎜⎜⎜⎝

2 −1 −2
−1 2 −1
−1 2 −1
−1 2
−1 2

⎞

⎟⎟⎟⎟⎠

x0

y1

y2

y3

y4

(2.20)

1 For notation of diagrams with the non-negative Tits form, i.e., extended Dynkin
diagrams, see §2.1.6. There we give two different notation: one used in the context
of representations of quivers, and another one used in the context of affine Lie
algebras, see Table 2.1, Table 2.2. For example, two notations:

F̃41 vs. F
(1)
4 , F̃42 vs. E

(2)
6 , B̃n+1 vs. D

(2)
n+1.
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Fig. 2.5. The diagrams F̃41 and F̃42

the matrix U from (2.4) and the matrix of the Tits form are as follows:

U = diag

⎛

⎜⎜⎜⎜⎝

1
1

1/2
1

1/2

⎞

⎟⎟⎟⎟⎠
, B =

⎛

⎜⎜⎜⎜⎝

2 −1 −2
−1 2 −1
−2 4 −2
−1 2
−2 4

⎞

⎟⎟⎟⎟⎠
. (2.21)

Up to a factor 2, the Tits form is

B(z) = x2
0 + y2

1 + 2y2
2 + y2

3 + 2y4
2 − y1x0 − 2y2x0 − 2y2y4 − y3y1.

Set y3 = 1, y1 = 2, x0 = 3, y2 = 2, y4 = 1. Then

B(z) = 9 + 4 + 8 + 1 + 2− 6− 12− 4− 2 = 0.

a) Diagram F̃42. The Cartan matrix is

K =

⎛

⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1
−2 2 −1
−1 2
−1 2

⎞

⎟⎟⎟⎟⎠

x0

y1

y2

y3

y4

, (2.22)

the matrix U from (2.4) and the matrix of the Tits form are as follows:

U = diag

⎛

⎜⎜⎜⎜⎝

1
1
2
1
2

⎞

⎟⎟⎟⎟⎠
, B =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1 1 −1
2

−1 2

−1
2

1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.23)
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The Tits form is

B(z) = 2x2
0 + 2y2

1 + y2
2 + 2y2

3 + y4
2 − 2y1x0 − 2y2x0 − y2y4 − 2y3y1.

Set y3 = 1, y1 = 2, x0 = 3, y2 = 4, y4 = 2. Then

B(z) = 18 + 8 + 16 + 2 + 4− 12− 24− 8− 4 = 0. ��

2.1.6 The extended Dynkin diagrams. Two different notation

Any diagram Γ with a non-negative definite Tits form B is said to be an
extended Dynkin diagram. All extended Dynkin diagrams are listed in Fig. 2.6,
see [Bo], [DR76], [Kac80], [Kac83].

There are two different notation systems of the extended Dynkin diagrams:
one used in the context of representations of quivers, and another one used
in the context of twisted affine Lie algebras, see Table 2.1, Table 2.2, Remark
4.4, Remark 6.5 and Table 4.2.

Table 2.1. Notation of extended Dyknin diagrams.

In the context In the context In the context In the context

of representations of twisted of representations of twisted

of quivers affine Lie algebras of quivers affine Lie algebras

Ẽ6 E
(1)
6 G̃22 G

(1)
2

Ẽ7 E
(1)
7 G̃21 D

(3)
4

Ẽ8 E
(1)
8 F̃42 F

(1)
4

D̃n D
(1)
n (n ≥ 4) F̃41 E

(2)
6

Ã11 A
(2)
2 C̃n C

(1)
n (n ≥ 2)

Ã12 A
(1)
1 B̃n D

(2)
n+1 (n ≥ 2)

B̃Cn A
(2)
2n (n ≥ 2) Ãn A

(1)
n (n ≥ 2)

C̃Dn B
(1)
n (n ≥ 3) D̃Dn A

(2)
2n−1 (n ≥ 3)

According to Proposition 2.3, we see that the simply-laced diagrams with
only one branch point and with the non-negative definite Tits form are char-
acterized as follows:

μ =
1
p

+
1
q

+
1
r

= 1,

i.e., the following triples p, q, r are possible:
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Table 2.2. Notation of affine Lie algebras. The upper index r in the notation
of twisted affine Lie algebras has an invariant sense: it is the order of the diagram
automorphism μ of g. In this table, if g is a complex simple finite dimensional Lie
algebra of type Xn, then the corresponding affine Lie algebra is of type X

(r)
n , see

Remark 4.4.

Rang Affine Lie algebra of type X
(r)
n Note

Aff1 A
(1)
1 , A

(1)
n , B

(1)
n , C

(1)
n , D

(1)
n , Non-twisted,

G
(1)
2 , F

(1)
4 , E

(1)
6 , E

(1)
7 E

(1)
8 r = 1

Aff2 A
(2)
2 A

(2)
2n A

(2)
2n−1 D

(2)
n+1 E

(2)
6 Twisted,

r = 2

Aff3 D
(3)
4 Twisted,

r = 3

1) (3, 3, 3), i.e., the diagram Ẽ6,
2) (2, 4, 4), i.e., the diagram Ẽ7,
3) (2, 3, 6), i.e., the diagram Ẽ8,

see Fig. 2.6.
The multiply-laced extended Dynkin diagrams are: Ã12, Ã11, B̃Cn, B̃n,

C̃n, C̃Dn, D̃Dn, F̃41, F̃42, G̃21, G̃22, see Fig. 2.6.

2.1.7 Three sets of Tits forms

1) All Tits forms B fall into 3 non-intersecting sets:
a) {B | B is positive definite, i.e., Γ is the Dynkin diagram},
b) {B | B is non-negative definite, i.e., Γ is the extended Dynkin diagram},
c) {B | B is indefinite}.
Consider two operations:
∧ : Add a vertex and connect it with Γ by only one edge. We denote the

new graph
∧
Γ.

∨ : Remove a vertex and all incident edges (the new graph may contain

more than one component). We denote the new graph
∨
Γ.

2) It is easy to see that
a) The set {B | B is positive definite} is stable under ∨ (Remove) and is

not stable under ∧ (Add) ,

∧ : {B | B is positive definite} =⇒
{

{B | B is non-negative definite}
∐

{B | B is indefinite},
∨ : {B | B is positive definite} =⇒ {B | B is positive definite}.
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b) The set {B | B is non-negative definite} is not stable under ∨ (Remove)
and ∧ (Add),

∧ : {B | B is non-negative definite} =⇒ {B | B is indefinite},
∨ : {B | B is non-negative definite} =⇒ {B | B is positive definite}.

c) The set {B | B is indefinite} is stable under ∧ (Add) but not stable
under ∨ (Remove):

∧ : {B | B is indefinite} =⇒ {B | B is indefinite},

∨ : {B | B is indefinite} =⇒

⎧
⎪⎨

⎪⎩

{B | B is positive definite}
∐

{B | B is non-negative definite}
∐

{B | B is indefinite}.

3) If the graph Γ with indefinite form B is obtained from any Dynkin
diagram by adding an edge, then the same graph Γ can be obtained by adding
an edge (or maybe several edges) to an extended Dynkin diagram.

2.1.8 The hyperbolic Dynkin diagrams and hyperbolic Cartan
matrices

A connected graph Γ with indefinite Tits form is said to be a hyperbolic Dynkin
diagram (resp. strictly hyperbolic Dynkin diagram) if every subgraph Γ′ ⊂ Γ is
a Dynkin diagram or an extended Dynkin diagram (resp. Dynkin diagram).
The corresponding Cartan matrix K is said to be hyperbolic (resp. strictly
hyperbolic), see [Kac93, exs. of §4.10]. The corresponding Weyl group is said
to be a hyperbolic Weyl group (resp. compact hyperbolic Weyl group), see [Bo,
Ch.5, exs. of §4].

The Tits form B is indefinite for μ < 1. Since U(x), U(y), U(z) in (2.9)
are non-negative definite, we see that, in this case, the signature of B is equal
to (n − 1, 1), see [Kac93, exs.4.2]. It is easy to check that the triples p, q, r
corresponding to hyperbolic graphs Tp,q,r are only the following ones:

1) (2, 3, 7), i.e., the diagram E10, and 1− μ =
1
42

,

2) (2, 4, 5), and 1− μ =
1
20

,

3) (3, 3, 4), and 1− μ =
1
12

.

2.2 Representations of quivers

2.2.1 The real and imaginary roots

Recall now the definitions of imaginary and real roots in the infinite root sys-
tem associated with infinite dimensional Kac-Moody Lie algebras. We mostly
follow V. Kac’s definitions [Kac80], [Kac82], [Kac93].
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Fig. 2.6. The extended Dynkin diagrams. The numerical labels at the vertices
are the coefficients of the imaginary root which coincides with the fixed point z1 of
the Coxeter transformation, see §3.3.1, (3.23).

We consider the vector space EΓ over Q; set

dim EΓ = |Γ0|.

Let
αi = {0, 0, ...0,

i
1, 0, ...0, 0} ∈ EΓ

be the basis vector corresponding to the vertex vi ∈ Γ0. The space EΓ is
spanned by the vectors {αi | i ∈ Γ0}; the vectors α1, ..., αn form a basis in EΓ.
Let
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E+ = {α =
∑

kiαi ∈ EΓ | ki ∈ Z+,
∑

ki > 0}

be the set of all non-zero elements in EΓ with non-negative integer coordinates
in the basis {α1, ..., αn}.

Define the linear functions φ1, . . . , φn on EΓ by means of the elements of
the Cartan matrix (2.4):

φi(αj) = kij .

The positive root system Δ+ associated to the Cartan matrix K is a subset
in E+ defined by the following properties (R1)–(R3):

(R1) αi ∈ Δ+ and 2αi /∈ Δ+ for i = 1, ..., n.
(R2) If α ∈ Δ+ and α �= αi, then α + kαi ∈ Δ+ for k ∈ Z if and only if

−p ≤ k ≤ q for some non-negative integers p and q such that p− q = φi(α).
(R3) Any α ∈ Δ+ has a connected support.

We define endomorphisms σ1, ..., σn of EΓ by the formula

σi(x) = x− φi(x)αi. (2.24)

Each endomorphism σi is the reflection in the hyperplane φi = 0 such that
σi(αi) = −αi. These reflections satisfy the following relations1:

σ2
i = 1, (σiσj)nij = 1,

where the exponents nij , corresponding to kijkji, are given in the Table 2.3,
taken from [Kac80, p.63].

Table 2.3. The exponents nij

kijkji 0 1 2 3 ≥ 4

nij 2 3 4 6 ∞

The group W generated by the reflections σ1, ..., σn is called the Weyl
group. The vectors α1, ..., αn are called simple roots; we denote by Π the set
of all simple roots. Let W (Π) be the orbit of Π under the W -action.

Following V. Kac [Kac80, p.64], set

M = {α ∈ E+ | φi(α) ≤ 0 for i = 1, ..., n, and α has a connected support }.

The set M is called the fundamental set. Let W (M) be the orbit of M under
the W -action. We set
1 σ∞ = 1 means that no power of σ is equal to 1, i.e., σ is free.
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Δre
+ =

⋃

w∈W

(w(Π) ∩ E+), Δim
+ =

⋃

w∈W

(w(M)). (2.25)

The elements of the set Δre
+ are called real roots and the elements of the set

Δim
+ are called imaginary roots. By [Kac80], the system of positive roots Δ+

is the disjoint union of the sets Δre
+ and Δim

+ :

Δ+ = Δre
+

∐
Δim

+ .

We denote by Δ the set of all roots. It consists of the set of positive roots Δ+

and the set of negative root Δ− obtained from Δ+ by multiplying by −1:

Δ = Δ+

∐
Δ−.

If the Tits form B (associated with the Cartan matrix K) is positive defi-
nite, then the root system is finite, it corresponds to a simple finite dimensional
Lie algebra. In this case, the root system consists of real roots.

If the Tits form B is non-negative definite, we have an infinite root system
whose imaginary root system is one-dimensional:

Δim
+ = {ω, 2ω, 3ω, ...}, where ω =

∑

i

kiαi, (2.26)

the coefficients ki being the labels of the vertices from Fig. 2.6.
The elements kω (k ∈ N) are called nil-roots. Every nil-root is a fixed point

for the Weyl group.

2.2.2 A category of representations of quivers and the P. Gabriel
theorem

A quiver (Γ, Ω) is a connected graph Γ with an orientation Ω. Let Γ0 be the
set of all vertices of Γ. Any orientation Ω is given by a set of arrows Γ1 that
constitute Γ1. Every arrow α ∈ Γ1 is given by its source point s(α) ∈ Γ0

and its target point t(α) ∈ Γ0. In [Gab72], P. Gabriel introduced the notion
of representations of quivers in order to formulate a number of problems of
linear algebra in a general way. P. Gabriel consider graphs without weighted
edges.

Let k be a field. A representation of the quiver (Γ, Ω) over k is a set of
spaces and linear maps between them (Vi, φα), where to any vertex i ∈ Γ0 a
finite-dimensional space Vi over k is assigned, and to any arrow

i
α−→ j

a linear operator φα : Vi → Vj corresponds. All representations (Vi, φα) of the
quiver (Γ, Ω) constitute the category L(Γ, Ω). In this category, a morphism

η : (Vi, φα)→ (V ′
i , φ′

α)
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is a collection of linear maps ηi : Vi → V ′
i for i ∈ Γ0 such that for each arrow

α : s(α)→ t(α), we have
ηt(α)φα = φ′

αηs(α),

or, equivalently, the following square is commutative

Vs(α)
φα−−−−→ Vt(α)⏐⏐�ηs(α)

⏐⏐�ηt(α)

V ′
s(α)

φ′
α−−−−→ V ′

t(α)

A morphism η : (Vi, φα)→ (V ′
i , φ′

α) is an isomorphism in the category L(ΓΩ)
if there exists a morphism η′ : (V ′

i , φ′
α) → (Vi, φα) such that ηη′ = Id(V ′

i
,φ′

α)

and η′η = Id(Vi,φα).
Objects of the category L(Γ, Ω) are said to be representations of the quiver

(Γ, Ω) considered up to an isomorphism. The dimension dim V of the repre-
sentation (Vi, φα) (or, which is the same, the vector-dimension) is an element
of EΓ, with (dim V )i = dim Vi for all i ∈ Γ0.

The direct sum of objects (V, f) and (U, g) in the category L(Γ, Ω) is the
object

(W, h) = (V, f)⊕ (U, g),

where Wi = Vi ⊕Ui and hα = fα ⊕ gα for all i ∈ Γ0 and α ∈ Γ1. The nonzero
object (V, f) is said to be indecomposable, if it can not be represented as a
direct sum of two nonzero objects, see [Gab72], [BGP73]. As usual in the rep-
resentation theory, the main question is the description of all indecomposable
representations in the category L(Γ, Ω).

Theorem 2.14. (P. Gabriel, [Gab72]) 1) A given quiver has only a finite
number of indecomposable representations if and only if it is a simply-laced
Dynkin diagram with arbitrary orientations of the edges.

2) Vector-dimensions of indecomposable representations coincide with pos-
itive roots in the root system of the corresponding Dynkin diagram.

V. Dlab and C. M. Ringel [DR76] and L. A. Nazarova, S. A. Ovsienko and
A. V. Roiter [NaOR77], [NaOR78] extended the P. Gabriel theorem to the
multiply-laced case.

2.2.3 Finite-type, tame and wild quivers

In [BGP73], Bernstein, Gelfand and Ponomarev introduced the Coxeter func-
tors Φ+, Φ− leading to a new proof and new understanding of the P. Gabriel
theorem. They also introduced regular representations of quivers, i.e., repre-
sentations that never vanish under the Coxeter functors.

The Dynkin diagrams do not have regular representations; in the category
of quiver representations1, only a finite set of indecomposable representations
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is associated to any Dynkin diagram. Quivers with such property are called
finite-type quivers. According to P. Gabriel’s theorem [Gab72], a quiver is of
finite-type if and only if it is a (simply-laced) Dynkin diagram.

In the category of all representations of a given quiver, the regular repre-
sentations are the most complicated ones; they have been completely described
only for the extended Dynkin diagrams which for this reason, in the repre-
sentation theory of quivers, were called tame quivers. The following theorem
is an extension of the P. Gabriel theorem to extended Dynkin diagrams and
is due to L. A. Nazarova [Naz73], P. Donovan, and M. R. Freislich [DF73],
V. Dlab and C. M. Ringel [DR74], [DR74a], [DR76].

Theorem 2.15. (Nazarova, Donovan-Freislich, Dlab-Ringel) 1) A quiver Γ is
of tame type if and only if it is a simply-laced extended Dynkin diagram with
arbitrary orientations of the edges.

2) Dimensions of indecomposable representations coincide with positive
roots in the root system of the corresponding diagram. For each positive real
root αre of Γ, there exists a unique indecomposable V (up to isomorphism) with
dimV = αre. For each positive imaginary root αim, the isomorphism classes
of indecomposable representations V with dimV = αim are parameterized by
an infinite subset of kP

1.

Every quiver with indefinite Tits form B is wild, i.e., the description of
its representations contains the problem of classifying pairs of matrices up to
simultaneous similarity; this classification is hopeless in a certain sense, see
[GP69], [Naz73], [Drz80], [Kac83].

2.2.4 The V. Kac theorem on the possible dimension vectors

According to the P. Gabriel theorem (Th.2.14) and the Nazarova, Donovan-
Freislich, Dlab-Ringel theorem (Th.2.15) all quivers, which are neither Dynkin
diagram nor extended Dynkin diagram are wild. H. Kraft and Ch. Riedtmann
write in [KR86, p.109] : “Since all remaining quivers are wild, there was little
hope to get any further, except maybe in some special case. Therefore Kac’s
spectacular paper [Kac80], where he describes the dimension types of all in-
decomposables of arbitrary quivers, came as a big surprise. In [Kac82] and
[Kac83] Kac improved and completed his first results”. Note, that the work
[KR86] of H. Kraft and Ch. Riedtmann is a nice guide to the Kac theorem.

Following V. Kac [Kac82, p.146] (see also [Kac83, p.84], [KR86, p.125])
the integers μα an rα are introduced as follows:

μα is the maximal dimension of an irreducible component in the set of
isomorphism classes of indecomposable representations of dimension α and
rα is the number of such components.

The following theorem was first proved in [Kac80]. It is given here in a
more consolidated version [Kac83, §1.10].
1 Sometimes, one says about graph representations meaning quiver representations.
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Theorem 2.16 (V. Kac). Let the base field k be algebraically closed. Let
(Γ, Ω) be a quiver. Then

a) There exists an indecomposable representation of dimension α ∈ EΓ\0
if and only if α ∈ Δ+(Γ).

b) There exists a unique indecomposable representation of dimension α if
and only if α ∈ Δre

+ (Γ).
c) If α ∈ Δim

+ (Γ), then

μα(Γ, Ω) = 1− (α, α) > 0, ra = 1,

where (·, ·) is the quadratic Tits form, see §2.1.1.

The integer μα is called the number of parameters, [KR86]. For example,
let V be an indecomposable representation of a tame quiver and dimV an
imaginary root, i.e., (dimV, dim V ) = 0. Then μα = 1 and the irreducible
component of indecomposable representations is one-parametric as in Theo-
rem 2.15. Let V be an indecomposable representation of a wild quiver and
(dim V, dimV ) < 0. Then μα > 1, and the irreducible component containing
V is at least two-parametric.

For a wild quiver with the indefinite Tits form, we have
The following lemma [Kac83, §1.10] is one of the crucial moments in the

proof of Kac’s theorem.

Lemma 2.17 (V. Kac). The number of indecomposable representations of
dimension α (if it is finite) and μα(Γ, Ω) are independent of the orientation
Ω.

The proof of this lemma and further details of Kac’s theorem can be also
found in the work [KR86, §5] of H. Kraft and Ch. Riedtmann and in works
[CrW93, p.32], [CrW99], [CrW01, p.40] of W. Crawley-Boevey.

The main part in the proof of this lemma is counting points of certain
varieties for the case of algebraic closure Fp of the finite field Fp, for any
prime p, see [KR86, §5.6], with subsequent transfer of the result to fields of
characteristic zero [KR86, §5.6]. “So this is one of the examples where the only
proof known for a result about fields of characteristic zero passes via fields of
positive characteristic.” [KR86, §5.1]

2.2.5 The quadratic Tits form and vector-dimensions of
representations

In the simply-laced case, by (1.5), (3.3), the quadratic Tits form on the space
of vectors {xv}v∈Γ0 associated with quiver (Γ, Ω) can be expressed as follows:

B(x) =
∑

v∈Γ0

x2
v −

∑

l∈Γ1

xv(l)xu(l),
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where v(l) and u(l) are the endpoints of the edge l ∈ Γ1, see, e.g., (2.7). By
Kac’s theorem (Theorem 2.16, b)), the representation V of (Γ, Ω) is a unique
indecomposable representation of the given dimension if and only if

B(dimV ) = 1.

It is so because such dimensions are real vectors lying by eq. (2.25) on the orbit
of simple positive roots under the action of the Weyl group, which preserves
the quadratic form B, see, e.g., [BGP73].

An analogous proposition takes place for representations of posets. Let
(D,≥) be a finite partially ordered set (poset). Let D = {1, 2, . . . , n} (not
necessary with the natural order) and denote:

D̂ = D
∐
{0}.

A poset is called primitive if it is a disjoint unit of several ordered chains
such that the elements of different chains are non-comparable. We denote
such a poset by (n1, n2, . . . , ns), where ni are the lengths of the chains. A
representation V of D over a field k is an order-preserving map D into the
set of subspaces of a finite dimensional vector space V (0) over k, see [DrK04].
The category of representations of D and indecomposable representations are
defined in the natural way [NR72]. The dimension dim(u) of an element u ∈ D

is the vector whose components are

dim(0) = dimV (0), dim(a) = dim(V (a)/
∑

b≤a

V (b)), a ∈ D.

The quadratic form BD associated to a poset D is the quadratic form

BD(x0, x1, . . . , xn) =
∑

a∈D̂

x2
a +

∑

a,b∈D

a≤b

xaxb −
∑

a∈D

x0xa.

In [DrK04], Yu. A. Drozd and E. Kubichka consider the dimensions of
finite type of representations of a partially ordered set, i.e., such that there are
only finitely many isomorphism classes of representations of this dimension.
In particular, they show that an element u ∈ D is indecomposable if and
only if BD(dim(u)) = 1. For primitive posets, this theorem was deduced by
P. Magyar, J. Weyman, A. Zelevinsky in [MWZ99] from the results of Kac
[Kac80]. This approach cannot be applied in general case, see [DrK04, p.5], so
Yu. A. Drozd and E. Kubichka used the original technique of derivations (or
differentiations), which is due to L. A. Nazarova and A. V. Roiter, [NR72].

2.2.6 Orientations and the associated Coxeter transformations

Here, we follow the definitions of Bernstein-Gelfand-Ponomarev [BGP73]. Let
us consider the graph Γ endowed with an orientation Ω.
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The vertex vi is called sink-admissible (resp. source-admissible) in the ori-
entation Ω if every arrow containing vi ends in (resp. starts from) this vertex.
The reflection σi is applied to the vector-dimensions by (2.24) and can be
applied only to vertex which is either sink-admissible or source-admissible.
The reflection σi acts on the orientation Ω by reversing all arrows containing
the vertex vi.

Consider now a sequence of vertices and the corresponding reflections. A
sequence of vertices

{vin , vin−1 , ..., vi3 , vi2 , vi1}

is called sink-admissible, if the vertex vi1 is sink-admissible in the orientation
Ω, the vertex vi2 is sink-admissible in the orientation σi1(Ω), the vertex vi3

is sink-admissible in the orientation σi2σi1(Ω), and so on. Source-admissible
sequences are similarly defined.

A sink-admissible (resp. source-admissible) sequence

S = {vin , vin−1 , ..., vi3 , vi2 , vi1}

is called fully sink-admissible (resp. fully source-admissible) if S contains every
vertex v ∈ Γ0 exactly once. Evidently, the inverse sequence S−1 of a fully sink-
admissible sequence S is fully source-admissible and vice versa.

Every tree has a fully sink-admissible sequence S. To every sink-admissible
sequence S, we assign the Coxeter transformation depending on the order of
vertices in S:

C = σinσin−1 ...σi2σi1 . (2.27)

For every orientation Ω of the tree, every fully sink-admissible sequence
gives rise to the same Coxeter transformation CΩ, and every fully source-
admissible sequence gives rise to C−1

Ω . Thus, to every orientation Ω of the
tree, we assign two Coxeter transformations: CΩ and C−1

Ω .
Obviously, CΩ acts trivially on the orientation Ω because every edge of

the tree is twice reversed. However, the Coxeter transformation does not act
trivially on the space of vector-dimensions, see (2.24).

2.3 The Poincaré series

2.3.1 The graded algebras, symmetric algebras, algebras of
invariants

Let k be a field. We define a graded k-algebra to be a finitely generated k-
algebra A (associative, commutative, and with unit), together with a direct
sum decomposition (as vector space)

A = A0 ⊕A1 ⊕A2 ⊕ . . . ,
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such that A0 = k and AiAj ⊂ Ai+j . The component An is called the nth
homogeneous part of A and any element x ∈ An is said to be homogeneous of
degree n, notation: deg x = n.

We define a graded A-module to be a finitely generated A-module, together
with a direct sum decomposition

M = M0 ⊕M1 ⊕M2 ⊕ . . . ,

such that AiMj ⊂Mi+j .

The Poincaré series of a graded algebra A =
∞
⊕

n=0
Ai is the formal series

P (A, t) =
∞∑

n=0

(dim An)tn.

The Poincaré series of a graded A-module M =
∞
⊕

n=0
Mi is the formal series

P (M, t) =
∞∑

n=0

(dim Mn)tn,

see [Sp77], [PV94].

Theorem 2.18. (Hilbert, Serre, see [AtMa69, p.117, Th.11.1]) The Poincaré
series P (M, t) of a finitely generated graded A-module is a rational function
in t of the form

P (M, t) =
f(t)

s∏
i=1

(1− tki)
, where f(t) ∈ Z[t].

In what follows in this section, any algebraically closed field k can be
considered instead of C. Set

R = C[x1, . . . , xn]. (2.28)

The set Rd of homogeneous polynomials of degree d is a finite dimensional
subspace of R, and R0 = C. Moreover, RdRe ⊂ Rd+e, and R is a graded
C-algebra with a direct sum decomposition (as a vector space)

R = R0 ⊕R1 ⊕R2 ⊕ . . . (2.29)

Let V = Span(x1, . . . , xn). Let f1, . . . , fn ∈ V ∗ = HomC(V, C) be the
linear forms defined by fi(xj) = δij , i.e.,

fi(λ1x1 + . . . λnxn) = λi, where λi ∈ C.
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Then the fi, where i = 1, . . . , n, generate a symmetric algebra1 Sym(V ∗)
isomorphic to R.

Define an isomorphism Φ : Sym(V ∗)→ R by setting

Φfi = xi for all i.

Let Symm(V ∗) denote the mth symmetric power of V ∗, which consists of the
homogeneous polynomials of degree m in x1, . . . , xn. Thus,

Sym0(V ∗) = C,

Sym1(V ∗) = V ∗,

Sym2(V ∗) = {xixj | 1 ≤ i ≤ j ≤ n}, dimSym2(V ∗) =
(

n + 1
2

)
,

Sym3(V ∗) = {xixjxk | 1 ≤ i ≤ j ≤ k ≤ n}, dim Sym3(V ∗) =
(

n + 2
3

)
,

. . .

Symm(V ∗) = {xi1 . . . xim | 1 ≤ i1 ≤ · · · ≤ im ≤ n},

dim Symm(V ∗) =
(

n + m− 1
m

)
,

see [Sp77], [Ben93].
For n = 2, m ≥ 1, we have

Symm(V ∗) = {xm, xm−1y, . . . , xym−1, ym}

is the space of homogeneous polynomials of degree m in two variables x, y,
and

dim Symm(V ∗) =
(

m + 1
m

)
= m.

For any a ∈ GL(V ) and f ∈ R, define af ∈ R by the rule

(af)(v) = f(a−1v) for any v ∈ V .

Then, for any a, b ∈ G and f ∈ R, we have

a(bf) = bf(a−1v) = f(b−1a−1v) = f((ab)−1v) = ((ab)f)(v),

and aRd = Rd.
Let G be a subgroup in GL(V ). We say that f ∈ R is G-invariant if af = f

for all a ∈ G. The G-invariant polynomial functions form a subalgebra RG of
R, which is a graded, or, better say, homogeneous, subalgebra, i.e.,

RG =
⊕

RG ∩Ri.

1 The symmetric algebra Sym(V ) is the quotient ring of the tensor algebra T (V )
by the ideal generated by elements vw−wv for v and w in V , where vw := v⊗w.
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The algebra RG is said to be the algebra of invariants of the group G. If G is
finite, then

P (RG, t) =
1
|G|

1∑
g∈G

det(1− tg)
. (2.30)

Eq. (2.30) is a classical theorem of Molien (1897), see [PV94, §3.11], or [Bo,
Ch.5, §5.3].

2.3.2 The invariants of finite groups generated by reflections

Let G be a finite subgroup of GL(V ) and g ∈ G. Then g is called a pseudo-
reflection if precisely one eigenvalue of g is not equal to 1. Any pseudo-
reflection with determinant −1 is called a reflection. For example, the element

g =

⎛

⎝
−1 0 0
0 1 1
0 0 1

⎞

⎠

has infinite order and does not belong to any finite group G, i.e., g is not
reflection.

Theorem 2.19 (Shephard-Todd, Chevalley, Serre). Let G be a finite
subgroup of GL(V ). There exist n = dimV algebraically independent homo-
geneous invariants θ1, . . . , θn such that

RG = C[θ1, . . . , θn]

if and only if G is generated by pseudo-reflections.

For references, see [Stn79, Th.4.1], [Ch55, Th.A, p.778].
Shephard and Todd [ShT54] explicitly determined all finite subgroups of

GL(V ) generated by pseudo-reflections and verified the sufficient condition
of Theorem 2.19. Chevalley [Ch55] found the classification-free proof of this
sufficient condition for a particular case where G is generated by reflections.
Serre observed that Chevalley’s proof is also valid for groups generated by
pseudo-reflections. Shephard and Todd ([ShT54]) proved the necessary condi-
tion of the theorem by a strong combinatorial method; see also Stanley [Stn79,
p.487].

The coefficients of the Poincaré series are called the Betti numbers, see
[Ch50], [Col58]. The Poincaré polynomial of the algebra RG is

(1 + t2p1+1)(1 + t2p2+1) . . . (1 + t2pn+1), (2.31)

where pi+1 are the degrees of homogeneous basis elements of RG, see [Cox51],
and [Ch50]. See Table 2.4 taken from [Cox51, p.781,Tab.4].

Let λ1, ..., λn be the eigenvalues of a Coxeter transformation in a finite
Weyl group. These eigenvalues can be given in the form
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Table 2.4. The Poincaré polynomials for the simple compact Lie groups

Dynkin Poincaré polynomial

diagram

An (1 + t3)(1 + t5) . . . (1 + t2n+1)

Bn or Cn (1 + t3)(1 + t7) . . . (1 + t4n−1)

Dn (1 + t3)(1 + t7) . . . (1 + t4n−5)(1 + t2n−1)

E6 (1 + t3)(1 + t9)(1 + t11)(1 + t15)(1 + t17)(1 + t23)

E7 (1 + t3)(1 + t11)(1 + t15)(1 + t19)(1 + t23)(1 + t27)(1 + t35)

E8 (1 + t3)(1 + t15)(1 + t23)(1 + t27)(1 + t35)(1 + t39)(1 + t47)(1 + t59)

F4 (1 + t3)(1 + t11)(1 + t15)(1 + t23)

G2 (1 + t3)(1 + t11)

ωm1 , ..., ωmn ,

where ω = exp2πi/h is a primitive root of unity. The numbers m1, ..., mn are
called the exponents of the Weyl group. H. S. M. Coxeter observed that the
exponents mi and numbers pi in (2.31) coincide (see the epigraph to this
chapter).

Theorem 2.20 (Coxeter, Chevalley, Coleman, Steinberg). Let

u1, . . . , un

be homogeneous elements generating the algebra of invariants RG, where G is
the Weyl group corresponding to a simple compact Lie group. Let mi + 1 =
deg ui, where i = 1, 2, ...n. Then the exponents of the group G are

m1, . . . , mn.

For more details, see [Bo, Ch.5, §6.2, Prop.3] and historical notes in [Bo],
and [Ch50], [Cox51], [Col58], [Stb85].
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The Jordan normal form of the Coxeter
transformation

It turned out that most of the classical concepts of
the Killing-Cartan-Weyl theory can be carried over
to the entire class of Kac-Moody algebras, such as
the Cartan subalgebra, the root system, the Weyl
group, etc. ... I shall only point out that g

′(K) 1

does not always possess a nonzero invariant bilinear
form. This is the case if and only if the matrix K is
symmetrizable ...

V. Kac, [Kac93, p.XI], 1993

3.1 The Cartan matrix and the Coxeter transformation

In this subsection a graph Γ and a partition S = S1

∐
S2 of its vertices are

fixed.

3.1.1 A bicolored partition and a bipartite graph

A partition S = S1

∐
S2 of the vertices of the graph Γ is said to be bicolored if

all edges of Γ lead from S1 to S2. A bicolored partition exists if and only if all
cycles in Γ are of even length. The graph Γ admitting a bicolored partition is
said to be bipartite [McM02]. An orientation Λ is said to be bicolored, if there
is the corresponding sink-admissible sequence
1 Here, g

′(K) is the subalgebra [g(K), g(K)] of the Kac-Moody algebra g(K) asso-
ciated with the generalized Cartan matrix K. One has

g(K) = g
′(K) + h,

where h is the Cartan subalgebra, g(K) = g
′(K) if and only if det K �= 0, [Kac93,

§1.3 and Th.2.2].
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{v1, v2, ..., vm, vm+1, vm+2, ... vm+k}

of vertices in this orientation Λ, such that subsequences

S1 = {v1, v2, ..., vm} and S2 = {vm+1, vm+2, ..., vm+k}

form a bicolored partition, the set S1 (resp. S2) contains all sources (resp.
sinks) of S. In other words, all arrows go from S1 to S2.

Let W (S) (resp. W (S1), resp. W (S2)) be the Coxeter group generated
by all reflections corresponding to vertices of S (resp. S1, resp. S2). Any
two generators g′ and g′′ of the Coxeter group W (S) (contained in the same
subpartition) commute and the subgroups W (S1) and W (S2) are abelian. So,
the products wi ∈ W (Si) for i = 1, 2 of generators of W (Si) are involutions,
i.e.,

w2
1 = 1, w2

2 = 1 .

For the first time (as far as I know), the technique of bipartite graphs was
used by R. Steinberg in [Stb59], where he gave classification-free proofs for
some results of H. S. M. Coxeter [Cox34] concerning properties of the order
of the Coxeter transformation; see also R. Carter’s paper [Car70].

3.1.2 Conjugacy of Coxeter transformations

All Coxeter transformations are conjugate for any tree or forest Γ [Bo, Ch.5,
§6]; see also Proposition B.5 and Remark B.6. The Coxeter transformations
for the graphs with cycles are studied in [Col89], [Rin94], [Shi00], [BT97],
and in the works by Menshikh and Subbotin of 1982–1985, see §4.2. Here, we
consider only trees.

As it is mentioned in §2.2.6, there are two Coxeter transformations corre-
sponding to every orientation of the tree. Two Coxeter transformations corre-
sponding to the bicolored orientation are called bicolored Coxeter transforma-
tions. We choose one of two bicolored Coxeter transformations as very simple
to study. Here,

C = w1w2 or C−1 = w2w1. (3.1)

From now on we assume that S1 contains m elements and S2 contains k ele-
ments, we denote by a1, ..., am (resp. b1, ..., bk) basis vectors corresponding
to vertices v1, ..., vm of S1 (resp. vertices vm+1..., vm+k of S2). We denote by
EΓa (resp. EΓb

) the vector space generated by the ai, where i = 1, ..., m (resp.
by the bi, where i = 1, ..., k). So,

dim EΓa = m, dim EΓb
= k .

3.1.3 The Cartan matrix and the bicolored Coxeter transformation

The Cartan matrix and the bicolored Coxeter transformation are constructed
from the same blocks. More exactly, the matrix B and involutions wi, where
i = 1, 2, are constructed from the same blocks.
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In the simply-laced case (i.e., for the symmetric Cartan matrix), we have

K = 2B, where B =
(

Im D
Dt Ik

)
,

w1 =
(
−Im −2D

0 Ik

)
, w2 =

(
Im 0
−2Dt −Ik

)
,

(3.2)

where the elements dij that constitute matrix D are given by the formula

dij = (ai, bj) =

⎧
⎨

⎩
−1

2
if |v(ai)− v(bj)| = 1 ,

0 if |v(ai)− v(bj)| > 1 ,

(3.3)

where v(ai) and v(bj) are vertices lying in the different sets of the bicolored
partition, see §3.1.2.

In the multiply-laced case (i.e., for the symmetrizable and non-symmetric
Cartan matrix K), we have

K = UB, where K =
(

2Im 2D
2F 2Ik

)
,

w1 =
(
−Im −2D

0 Ik

)
, w2 =

(
Im 0
−2F −Ik

) (3.4)

with

dij =
(ai, bj)
(ai, ai)

, fpq =
(bp, aq)
(bp, bp)

,

where the ai and bj are simple roots in the root systems of the corresponding
to S1 and S2 Kac-Moody Lie algebras [Kac80]. Let U = (uij) be the diagonal
matrix (2.4). Then

uii =
2

(ai, ai)
=

2
B(ai)

.

We have

B =

⎛

⎝
(ai, ai) . . . (ai, bj)

. . .
(ai, bj) . . . (bj , bj)

⎞

⎠ ,

and

K = UB =

⎛

⎜⎜⎜⎜⎝

2 . . .
2(ai, bj)
(ai, ai)

. . .
2(ai, bj)
(bj , bj)

. . . 2

⎞

⎟⎟⎟⎟⎠
.

Dividing U and B into blocks of size m×m and k × k, we see that

U =
(

2U1 0
0 2U2

)
, B =

(
U−1

1 A
At U−1

2

)
, U1A = D, U2A

t = F . (3.5)



54 3 The Jordan normal form of the Coxeter transformation

Remark 3.1. According to bicolored partition S = S1

∐
S2 of the graph Γ

§3.1.1, and the corresponding partition of matrices (3.2), (3.4) into four blocks,
we have also partition of any vector v into two blocks:

v =
(

vx

vy

)
.

The component vx (resp. vy) of the vector v is said to be X-component (resp.
Y-component), see §3.3.1.

3.1.4 The dual graphs and dual forms

Every valued graph Γ has a dual graph denoted by Γ∨. The dual graph is
obtained by means of transposition dij ↔ dji. In other words, if K is the
Cartan matrix for Γ, then the Cartan matrix for Γ∨ is

K∨ = Kt,

i.e.,
F∨ = Dt, D∨ = F t . (3.6)

Therefore,
F∨D∨ = (FD)t, D∨F∨ = (DF )t . (3.7)

For any simply-laced graph, the Cartan matrix is symmetric and F = Dt =
F∨. In this case the graph Γ is dual to itself. Among extended Dynkin dia-
grams the following pairs of diagram are dual:

(B̃n, C̃n), (C̃Dn, D̃Dn), (G̃21, G̃22), (F̃41, F̃42) .

Let dual Cartan matrices be factorized by means of the diagonal matrices
U and U∨:

K = UB, K∨ = U∨B∨.

Then according to [Kac93, Ch.3, exs.3.1], we have

U∨ = U−1 ,

see, e.g., matrices U for dual diagrams F̃41, F̃42, eqs. (2.21), (2.23). Since
K∨ = Kt = BU = U−1B∨, we see that dual Tits forms are related as follows:

B∨ = UBU.

3.1.5 The eigenvalues of the Cartan matrix and the Coxeter
transformation

There is a simple relation between eigenvalues of the Cartan matrix and the
Coxeter transformation. Let vector z ∈ EΓ be given in two-component form
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z =
(

x
y

)
, (3.8)

where dim EΓ = k + m = n, x ∈ EΓa and y ∈ EΓb
. Consider the relation

Cz = λz or w2z = λw1z.

In the simply-laced case we deduce from (3.2) that

Cz = λz ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

λ + 1
2λ

x = −Dy

λ + 1
2

y = −Dtx

⇐⇒ Bz =
λ− 1

2

⎛

⎜⎝
1
λ

x

−y

⎞

⎟⎠ . (3.9)

In the multiply-laced case we deduce that

Cz = λz ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

λ + 1
2λ

x = −Dy

λ + 1
2

y = −Fx

⇐⇒ Bz =
λ− 1

2

⎛

⎜⎝
1
λ

x

−y

⎞

⎟⎠ . (3.10)

From (3.9) and (3.10) we have in the simply-laced and multiply-laced cases,
respectively:

⎧
⎪⎪⎨

⎪⎪⎩

DDtx =
(λ + 1)2

4λ
x

DtDy =
(λ + 1)2

4λ
y

⎧
⎪⎪⎨

⎪⎪⎩

DFx =
(λ + 1)2

4λ
x

FDy =
(λ + 1)2

4λ
y

(3.11)

Similarly,

Bz = γz ⇐⇒
{

(γ − 1)x = Dy

(γ − 1)y = Dtx
resp.

{
(γ − 1)x = Dy

(γ − 1)y = Fx;
(3.12)

and from (3.12) we have
{

DDtx = (γ − 1)2x
DtDy = (γ − 1)2y resp.

{
DFx = (γ − 1)2x
FDy = (γ − 1)2y.

By (2.4) we have

Proposition 3.2 (On fixed and anti-fixed points). 1) The eigenvalues λ
of the Coxeter transformation and the eigenvalues γ of the matrix B of the
Tits form are related as follows

(λ + 1)2

4λ
= (γ − 1)2.
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2) The kernel of the matrix B coincides with the kernel of the Cartan
matrix K and coincides with the space of fixed points of the Coxeter transfor-
mation

kerK = kerB = {z | Cz = z}.

3) The space of fixed points of the matrix B coincides with the space of
anti-fixed points of the Coxeter transformation

{z | Bz = z} = {z | Cz = −z}.

For more information about fixed and anti-fixed points of the powers of
the Coxeter transformation, see Appendix C.7.1.

3.2 An application of the Perron-Frobenius theorem

3.2.1 The pair of matrices DDt and DtD (resp. DF and FD)

Remark 3.3. The matrices DDt and DtD have certain nice properties.
1) They give us complete information about the eigenvalues of Coxeter

transformations and Cartan matrices. Our results hold for an arbitrary tree
Γ.

2) The eigenvectors of Coxeter transformations are combinations of eigen-
vectors of the matrix DDt and eigenvectors of the matrix DtD, see §3.3.1,
relations (3.22), (3.23), (3.24).

3) They satisfy the Perron-Frobenius theorem.

More exactly, properties 1)–3) will be considered below in Proposition 3.4,
Proposition 3.6, and in §3.2.2, §3.3.1.

Proposition 3.4. 1) The matrices DDt and DtD (resp. DF and FD) have
the same non-zero eigenvalues with equal multiplicities.

2) The eigenvalues ϕi of the matrices DDt and DtD (resp. DF and FD)
are non-negative:

ϕi ≥ 0.

3) The corresponding eigenvalues λϕi

1,2 of the Coxeter transformations are

λϕi

1,2 = 2ϕi − 1± 2
√

ϕi(ϕi − 1). (3.13)

The eigenvalues λϕi

1,2 either lie on the unit circle or are real positive numbers.
It the latter case λϕi

1 and λϕi

2 are mutually inverse:

λϕi

1 λϕi

2 = 1.
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Proof. 1) If DDtz = μz, where μ �= 0, then Dtz �= 0 and DtD(Dtz) =
μ(Dtz). We argue similarly for DtD, DF , FD. The multiplicities of non-zero
eigenvalues coincide since

x �= 0, DDtx = μx =⇒ DtD(Dtx) = μ(Dtx), and Dtx �= 0,

and

y �= 0, DtDy = μy =⇒ DDt(Dy) = μ(Dy), and Dy �= 0.

Remark 3.5. The multiplicities of the zero eigenvalue are not equal. If DDtx =
0 and x is the eigenvector, x �= 0, then it is possible that Dtx = 0 and Dtx is
not an eigenvector of DtD, see Remark 3.7, 4) below.

2) The matrices DDt and DtD are symmetric and non-negative definite.
For example,

〈DDtx, x〉 = 〈Dtx, Dtx〉 ≥ 0.

So, if DDtx = ϕix, then

〈DDtx, x〉 = ϕi〈x, x〉

and

ϕi =
〈Dtx, Dtx〉
〈x, x〉 ≥ 0.

In the multiply-laced case, we deduce from (3.5) that the matrix DF is

DF = U1AU2A
t. (3.14)

Let ϕ be a non-zero eigenvalue for DF = U1AU2A
t with eigenvector x:

U1AU2A
tx = ϕx.

Since U is a positive diagonal matrix, see §2.1.1, we have

(
√

U1AU2A
t
√

U1)((
√

U1)−1x) = ϕ(
√

U1)−1x, (3.15)

and ϕ is also a non-zero eigenvalue with eigenvector (
√

U1)−1x for the matrix√
U1AU2A

t
√

U1 which already is symmetric, so ϕ ≥ 0.
3) From (3.13) if 0 ≤ ϕ ≤ 1 we deduce that

|λϕi

1,2|
2 = (2ϕi − 1)2 + 4ϕi(1− ϕi) = 1 .

If ϕi > 1, then
2ϕi − 1 > 2

√
ϕi(ϕi − 1) =⇒ λϕi

1,2 ≥ 0 .

Thus,

λϕi

1 = 2ϕi − 1 + 2
√

ϕi(ϕi − 1) > 1,

λϕi

2 = 2ϕi − 1− 2
√

ϕi(ϕi − 1) < 1. ��
(3.16)
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The pair of matrices (A, B) is said to be a PF-pair if both matrices A and
B satisfy conditions of the Perron-Frobenius theorem1.

Proposition 3.6. The matrix pair (DDt, DtD) (resp. (DF, FD)) is a PF-
pair, i.e.,

1) DDt and DtD (resp. DF and FD) are non-negative;
2) DDt and DtD (resp. DF and FD) are indecomposable.

Proof. 1) Indeed, in the simply-laced case, the following relation holds

4(DDt)ij = 4
k∑

p=1

(ai, bp)(bp, aj) =

⎧
⎪⎨

⎪⎩

si the number of edges with a vertex vi if i = j,

1 if |vi − vj | = 2,

0 if |vi − vj | > 2.

(3.17)

In the multiply-laced case, we have

4(DF )ij = 4
k∑

p=1

(ai, bp)(bp, aj)
(ai, ai)(bp, bp)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

4
k∑

p=1

(ai, bp)2

(ai, ai)(bp, bp)
= 4

k∑
p=1

cos2{ai, bp} if i = j,

4
(ai, bp)(bp, aj)
(ai, ai)(bp, bp)

if |vi − vj | = 2,

0 if |vi − vj | > 2.

(3.18)

2) Define the distance between two sets of vertices A = {ai}i∈I and B =
{bj}j∈J to be

min
i,j
|ai − bj |.

If the matrix DDt is decomposable, then the set of vertices {v1, . . . , vn} can
be partitioned into two subsets such that distance between these two subsets
is > 2. This contradicts the assumption that Γ is connected. ��

Remark 3.7. 1) Eq. (3.17) is a particular case of eq. (3.18), since the angle

between the adjacent simple roots ai and bj is
2π

3
, so cos{ai, bj} = −1

2
. Of

course, the angles and the lengths of vectors are considered in the sense of the
bilinear form (·, ·) from §2.1.1.

2) The case |vi − vj | = 2 from eq. (3.18) can be expressed in the following
form:
1 The Perron-Frobenius theorem is well known in the matrix theory, see §C.3 and

[MM64], [Ga90].
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4
(ai, bp)(bp, aj)
(ai, ai)(bp, bp)

= 4
(ai, bp)(bp, aj)
|ai|2|bp|2

=

4
(ai, bp)
|ai||bp|

(bp, aj)
|aj ||bp|

|aj |
|ai|

= 4
|aj |
|ai|

cos{ai, bp} cos{aj , bp}.

Fig. 3.1. The star ∗k+1 with k rays

3) One can easily calculate the matrices DDt, DtD, DF, FD by means of
eq. (3.17) and eq. (3.18).

4) Consider a simple star ∗k+1, Fig. 3.1. It is bipartite with respect to the
following bicolored partition. One part of the graph consists of only one vertex
a1, i.e., m = 1, the other one consists of k vertices {b1, . . . , bk}, n = k + 1.
According to (3.17) the 1× 1 matrix DDt is

DDt = k = n− 1,

and the k × k matrix DtD is

DtD =

⎛

⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1

. . .
1 1 1 . . . 1

⎞

⎟⎟⎟⎟⎠
.

By Proposition 3.4, heading 2) the matrices DDt and DtD have only one
non-zero eigenvalue ϕ1 = n − 1. All the other eigenvalues of DtD are zeros
and the characteristic polynomial of the DtD is

ϕn−1(ϕ− (n− 1)).

3.2.2 The Perron-Frobenius theorem applied to DDt and DtD
(resp. DF and FD)

By Proposition 3.6 the pairs (DDt, DtD) (resp. (DF, FD)) are PF-pairs, so
we can apply the Perron-Frobenius theorem, see §C.3.
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Corollary 3.8. The matrices DDt and DtD (resp. DF and FD) have a com-
mon simple (i.e., with multiplicity one) positive eigenvalue ϕ1. This eigenvalue
is the largest (called dominant eigenvalue):

0 ≤ ϕi ≤ϕ1,

ϕ1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x≥0

min
1≤i≤m

(DDtx)i

xi
in the simply-laced case,

max
x≥0

min
1≤i≤m

(DFx)i

xi
in the multiply-laced case.

There are positive eigenvectors X
ϕ1 , Y

ϕ1 (i.e., non-zero vectors with non-
negative coordinates) corresponding to the eigenvalue ϕ1:

DDt
X

ϕ1 = ϕ1X
ϕ1 , DtDY

ϕ1 = ϕ1Y
ϕ1 ,

DFX
ϕ1 = ϕ1X

ϕ1 , FDY
ϕ1 = ϕ1Y

ϕ1 .
(3.19)

The matrices DDt (resp. DtD) are symmetric and can be diagonalized in
the some orthonormal basis of the eigenvectors from EΓa = R

h (resp. EΓb
=

R
k). The Jordan normal forms of these matrices are shown in Fig. 3.2. The

Fig. 3.2. The Jordan normal forms of DDt and DtD

normal forms of DF and FD are the same, since by (3.14), (3.15) the non-zero
eigenvalues of the matrix DF and symmetric matrix

√
U1AU2A

t
√

U1 coincide.
However, the normal bases (i.e., bases which consist of eigenvectors) for DF
and FD are not necessarily orthonormal, since the eigenvectors of DF are
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obtained from eigenvectors of
√

U1AU2A
t
√

U1 by means of the matrix
√

U1

which does not preserve orthogonality.

3.3 The basis of eigenvectors and a theorem on the
Jordan form

3.3.1 An explicit construction of the eigenvectors

Proposition 3.9. Let

X
ϕ1
1 , Xϕ2

1 , ..., Xϕ2
t2 , ..., Xϕs

1 , ..., Xϕs

ts
, X0

1, ..., X
0
m−p (3.20)

be all the orthonormal eigenvectors for DDt and

Y
0
1, ..., Y

0
k−p

be all the orthonormal eigenvectors for DtD corresponding to the zero eigen-
value. Then

Dt
X

ϕ1
1 , Dt

X
ϕ2
1 , ..., Dt

X
ϕ2
t2 , ..., Dt

X
ϕs

1 , ..., Dt
X

ϕs

ts
, Y0

1, ..., Y
0
k−p (3.21)

is the set of all orthonormal eigenvectors for DDt.
Bases for DF, FD (not orthonormal) are similarly constructed.

Proof. Indeed, if X
ϕi and X

ϕj are the eigenvectors corresponding to the
ϕi and ϕj , then the vectors Y

ϕi = Dt
X

ϕi and Y
ϕj = Dt

X
ϕj are eigenvectors

of DtD and

〈Yϕi , Yϕj 〉 = 〈Xϕi , DDt
X

ϕj 〉 = ϕj〈Xϕi , Xϕj 〉 = 0 .��

Let us construct the eigenvectors for the Coxeter transformation. We set:
Case ϕi �= 0, 1:

zϕi
r,ν =

⎛

⎜⎝
X

ϕi
r

− 2
λϕi

ν + 1
Dt

X
ϕi
r

⎞

⎟⎠ , 1 ≤ i ≤ s, 1 ≤ r ≤ ti, ν = 1, 2 . (3.22)

Here λϕi

1,2 is obtained by eq. (3.13).
Case ϕi = 1:

z1
r =

(
X

1
r

−Dt
X

1
r

)
, z̃1

r =
1
4

(
X

1
r

Dt
X

1
r

)
, 1 ≤ r ≤ ti. (3.23)

Case ϕi = 0:

z0
xη

=

(
X

0
η

0

)
, 1 ≤ η ≤ m− p, z0

yξ
=

(
0

Y
0
ξ

)
, 1 ≤ ξ ≤ k − p. (3.24)
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Proposition 3.10 ([SuSt75, SuSt78]).
1) The vectors (3.22), (3.23), (3.24) constitute a basis in EΓ over C.
2) The vectors (3.22) are eigenvectors of the Coxeter transformation cor-

responding to the eigenvalue λϕi :

Czϕi
r,ν = λzϕi

r,ν . (3.25)

The vectors (3.23) are eigenvectors and adjoint vectors of the Coxeter
transformation corresponding to the eigenvalue 1:

Cz1
r = z1

r , Cz̃1
r = z1

r + z̃1
r . (3.26)

The vectors (3.24) are eigenvectors of the Coxeter transformation corre-
sponding to the eigenvalue −1:

Cz0
xη

= −z0
xη

, Cz0
yξ

= −z0
yξ

. (3.27)

In other words, vectors (3.22), (3.23), (3.24) constitute an orthogonal basis
which consists of eigenvectors and adjoint vectors of the Coxeter transfor-
mation. The number of the adjoint vectors z̃1

r is equal to the multiplicity of
eigenvalue ϕ = 1.

Proof. 1) The number of vectors (3.22), (3.23), (3.24) is 2p+(m−p)+(k−p) =
n and it suffices to prove that these vectors are linearly independent. Let us
write down the condition of linear dependence. It splits into two conditions:
for the X-component and for the Y-component. The linear independence of
vectors (3.22), (3.23), (3.24) follows from the linear independence of vectors
(3.20), (3.21). ��

2) To prove relation (3.25), the first relation from (3.26) and relation (3.27),
it suffices to check (3.9). Let us check that

Cz̃1
r = z1

r + z̃1
r .

We consider the multiply-laced case. Making use of (3.4) we see that

C =
(

4DF − Im 2D
−2F −Ik

)
.

Then

Cz̃1
r =

1
4

(
4DFX

1
r − X

1
r + 2DFX

1
r

−2FX
1
r − FX

1
r

)
=

1
4

(
5X

1
r

−3FX
1
r

)
= z1

r + z̃1
r .

See Corollary 3.8, eq. (3.19). ��
By heading 2) of Proposition 3.2 and eq. (3.23) from Proposition 3.9 we

have

Corollary 3.11. The Jordan normal form of the Coxeter transformation is
diagonal if and only if the Tits form is nondegenerate1. ��
1 For the Jordan canonical (normal) form, see, for example, [Ga90, Ch.VI] or [Pr94,

Ch.III].
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3.3.2 Monotonicity of the dominant eigenvalue

The following proposition is important for calculation of the number of 2× 2
Jordan blocks in the Jordan normal form of the Coxeter transformation.

Proposition 3.12 ([SuSt75, SuSt78]). Let us add an edge to some tree Γ

and let
∧
Γ be the new graph (§2.1.7). Then:

1) The dominant eigenvalue ϕ1 may only grow:

ϕ1(
∧
Γ) ≥ ϕ1(Γ) .

2) Let Γ be an extended Dynkin diagram, i.e., B is non-negative definite.

Then the spectra of DDt(
∧
Γ) and DtD(

∧
Γ) (resp. DF (

∧
Γ) and FD(

∧
Γ)) do not

contain 1, i.e.,

ϕi(
∧
Γ) �= 1

for all ϕi are eigenvalues of DDt(
∧
Γ).

3) Let B be indefinite. Then

ϕ1(
∧
Γ) > 1 .

Proof. 1) Adding an edge to the vertex ai we see, according to (3.17), that

only one element of DDt changes: namely, (DDt)ii changes from
si

4
to

si + 1
4

.

In the multiply-laced case, (DF )ii changes by cos2(ai, bs), where bs is the new
vertex incident with the vertex ai. By Corollary 3.8 we have

ϕ1(
∧
Γ) = max

x≥0
min

1≤i≤m

(DF (
∧
Γ)x)i

xi
≥

min
1≤i≤m

(DF (
∧
Γ)Xϕ1

i )i

X
ϕ1
i

≥ min
1≤i≤m

(DFX
ϕ1
i )i

X
ϕ1
i

= ϕ1 .

2) The characteristic polynomial of DF (
∧
Γ) is

det |DF (
∧
Γ)− μI| = det |DF − μI|+ cos2{ai, bs} det |Ai(μ)| , (3.28)

where Ai(μ) is obtained by deleting the ith row and ith column from the
matrix DF − μI. It corresponds to the operation “Remove” from the graph

Γ (§2.1.7), the graph obtained by removing vertex is
∨
Γ, i.e.,

det |DF (
∧
Γ)− μI| = det |DF − μI|+ cos2{ai, bs} det |DF (

∨
Γ)− μI| . (3.29)

According to §2.1.7 the quadratic form B(
∨
Γ) is positive,

∨
Γ is the Dynkin

diagram, i.e., kerB = 0. By Proposition 3.2 the Coxeter transformation for
∨
Γ
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does not have eigenvalue 1. Then by (3.13) the corresponding matrix DF (
∨
Γ)

does not have eigenvalue 1. Thus, in (3.29), μ = 1 is a root of det |DF − μI|
and is not a root of det |DF (

∨
Γ) − μI|, and therefore μ = 1 is not a root

of det |DF (
∧
Γ) − μI|. The case cos2{ai, bs} = 0 is not possible since

∧
Γ is

connected.
3) By 1) adding only one edge to an extended Dynkin diagram we get

ϕ1(
∧
Γ) ≥ ϕ1. By 2) ϕ1(

∧
Γ) > ϕ1. The form B becomes indefinite after we add

some edges to the extended Dynkin diagram see §2.1.7, 3). So, ϕ1 grows, and
ϕ1 > 1. ��

Proposition 3.13. The common dominant eigenvalue of DDt and DtD
(resp. DF and FD) is equal to 1 if and only if Γ is an extended Dynkin
diagram.

Proof. 1) Let Γ be an extended Dynkin diagram, then B is non-negative defi-
nite. Since kerB �= 0, we see by Proposition 3.2 that the eigenvalue ϕ1 is the
eigenvalue of the matrices DF and FD. By (3.16) we have λϕ1

1 ≥ 1. Further,
since the Weyl group preserves the quadratic form B, we have

B(zϕ1) = B(Czϕ1) = (λϕ1
1 )2B(Czϕ1).

Therefore, either λϕ1
1 = 1, i.e., ϕ1 = 1, or B(zϕ1) = 0. We will show that in

the latter case ϕ1 = 1, too. By Proposition 3.9 the vectors X
ϕ1 and FX

ϕ1 have
real coordinates. By (3.16) the eigenvalue λϕ1

1 is also real because ϕ1 ≥ 1. So,
the vector zϕ1 from (3.23) is real. Then from B(zϕ1) = 0 we have zϕ1 ∈ kerB
and again, λϕ1

1 = 1.
2) Conversely, let λϕ1

1 = 1. Then, by Proposition 3.2, kerB �= 0, i.e.,
the form B is degenerate. Let us find whether B is non-negative definite or
indefinite. By heading 3) of Proposition 3.12 if B is indefinite, then λϕ1

1 > 1.
Thus, B is non-negative definite and Γ is an extended Dynkin diagram. ��

Corollary 3.14. Let B be non-negative definite, i.e., let Γ be an extended
Dynkin diagram. Then

1) The kernel of the quadratic form B is one-dimensional.
2) The vector zϕ1 ∈ kerB can be chosen so that all its coordinates are

positive.

Proof. 1) ϕ1 is a simple eigenvalue of DDt and DtD (see Corollary 3.8).
2) X

ϕ1 is a positive vector (Corollary 3.8), Dt
X

ϕ1 is a negative vector since
Dt is a nonpositive matrix (3.3). So, the vector zϕ1 from (3.23) is positive.
��

The monotonicity of the dominant value ϕ1 and the corresponding maxi-
mal eigenvalue λϕ1 of the Coxeter transformation is clearly demonstrated for
the diagrams T2,3,r, T3,3,r, T2,4,r, see Propositions 4.16, 4.17, 4.19 and Tables
4.4, 4.5, 4.6 in §4.4.
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3.3.3 A theorem on the Jordan form

Now we can summarize.

Theorem 3.15 ([SuSt75, SuSt78, St85]). 1) The Jordan form of the Cox-
eter transformation is diagonal if and only if the Tits form is non-degenerate.

2) If B is non-negative definite (Γ is an extended Dynkin diagram), then
the Jordan form of the Coxeter transformation contains one 2 × 2 Jordan
block. The remaining Jordan blocks are 1 × 1. All eigenvalues λi lie on the
unit circle.

3) If B is indefinite and degenerate, then the number of 2×2 Jordan blocks
coincides with dim kerB. The remaining Jordan blocks are 1 × 1. There is a
simple maximal eigenvalue λϕ1

1 and a simple minimal eigenvalue λϕ1
2 , and

λϕ1
1 > 1, λϕ1

2 < 1.

Fig. 3.3. The Jordan normal form of the Coxeter transformation

Example 3.16 (V. Kolmykov). The example shows that there is a graph Γ with
indefinite and degenerate quadratic form B such that dim kerB is an arbitrar-
ily number (see Fig. 3.4) and the Coxeter transformation has an arbitrarily
number of 2 × 2 Jordan blocks. Consider n copies of the extended Dynkin
diagram D̃4 with centers b1, ..., bn and marked vertices a1, ..., an. We add new
vertex bn+1 and connect it with marked vertices ai for i = 1, 2..., n. The new
graph is bipartite: one part consists of the vertices b1, ..., bn, bn+1; the matrix
DtD is of size (n + 1)× (n + 1) and has the form
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Fig. 3.4. A graph Γ such that dim kerB is an arbitrarily number

4DtD =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

n 1 1 1 . . . 1 1
1 4 0 0 . . . 0 0
1 0 4 0 . . . 0 0
1 0 0 4 . . . 0 0

. . .
1 0 0 0 . . . 4 0
1 0 0 0 . . . 0 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to show that

|4DtD − μI| = (n− μ)(4− μ)n − n(4− μ)n−1 .

Thus, ϕi =
μi

4
= 1 is of multiplicity n− 1.

In Proposition 4.11 of §4.3 we will see more examples of graphs Γ(n) ob-
tained by gluing n copies of some graph Γ. By this proposition every eigenvalue
λ of Γ is also an eigenvalue of Γ(n) and the multiplicity of this eigenvalue for
the graph Γ(n) is (n− 1)×m, where m is the multiplicity of this eigenvalue
in Γ.
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Eigenvalues, splitting formulas and diagrams
Tp,q,r

. . . most of the fundamental results about simple
Lie algebras, which were discovered by Killing are
usually attributed to É. Cartan. This, despite the
meticulousness with which Cartan noted his
indebtedness to Killing. In Cartan’s thesis there
are 28 references to Lie and 60 to Killing!

A. J. Coleman, [Col89, p.447], 1989.

4.1 The eigenvalues of the affine Coxeter transformation
are roots of unity

The Coxeter transformation corresponding to the extended Dynkin di-
agram, i.e., corresponding to affine Kac-Moody algebra is called the affine
Coxeter transformation1.

Theorem 4.1 ([SuSt79], [St82a], [St85]). The eigenvalues of the affine
Coxeter transformation are roots of unity. The proper eigenvalues are collected
in Table 4.1.

Proof. The eigenvalues for all cases of extended Dynkin diagrams are easily
calculated by means of the generalized R. Steinberg theorem (Theorem 5.5)
and Table 1.2. See Remark 4.2. ��

Remark 4.2. According to generalized R. Steinberg’s theorem (Theorem 5.5)
orders (not always different) of eigenvalues (Table 4.1, col. 3) coincide with
lengths of branches of the corresponding Dynkin diagram. If g is the class
1 For more details on the affine Weyl group and the affine Coxeter transformation,

see Ch.6.
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number (5.14) of the extended Dynkin diagram, the number of branches of
the corresponding Dynkin diagram is 3 − g. For g = 0, we have a simply-
laced case of the extended Dynkin diagrams, i.e., Ẽ6, Ẽ7, Ẽ8, D̃n(n ≥ 4). In
this case the number of branches is 3 . For g = 1, we have extended Dynkin
diagrams F̃41, F̃42, C̃Dn, C̃Dn, there exists two groups of eigenvalues, see
(5.15). For g = 2, we have extended Dynkin diagrams G̃21, G̃22, B̃n, C̃n, B̃Cn

and there exists only one group of eigenvalues. For g = 3, we have extended
Dynkin diagrams Ã11, Ã12, in this case there is only one trivial eigenvalues 1.

Remark 4.3. Let H be the hyperplane orthogonal to the adjoint vector z̃1 from
Proposition 3.10. The vector z̃1 is responsible for a 2× 2 block in the Jordan
form of the affine Coxeter transformation. Due to the presence of a 2×2 block,
the affine Coxeter transformation is of infinite order in the Weyl group. The
restriction of the Coxeter transformation to the hyperplane H is, however, of
a finite order ha. We call this number the affine Coxeter number. The affine
Coxeter number ha is the least common multiple of orders of eigenvalues (�= 1)
of the affine Coxeter transformation (Table 4.1). We denote by h the Coxeter
number of a given Dynkin diagram. The value h−1 is the sum of coordinates of
the highest root β of the corresponding root system, see (1.2). The imaginary
vector z1 depicted in Fig. 2.6 coincides with the highest root β extended to
the vector with 1 at the additional vertex, the one that extends the Dynkin
diagram to the extended Dynkin diagram. Thus,

h = n1 + · · ·+ nl, (4.1)

where ni are coordinates of the imaginary vector from Fig. 2.6. Similarly to
(4.1), the dual Coxeter number is defined as

h∨ = n∨
1 + · · ·+ n∨

l , (4.2)

where {n∨
1 , . . . , n∨

l } are coordinates of the imaginary vector h∨ of the dual
Dynkin diagram, see Fig. 2.6. For values of the dual Coxeter numbers, see
Table 4.2.
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Table 4.1. The eigenvalues of affine Coxeter transformations

Diagram Eigenvalues λ Orders of Affine Coxeter

eigenvalues1 number ha
2

Ẽ6

λ1
1,2 = 1,

λ2
1,2 = λ3

1,2 = e±2πi/3,

λ7 = −1

3, 3

2

6

Ẽ7

λ1
1,2 = 1,

λ2
1,2 = e±2πi/3,

λ3
1,2 = e±πi/2,

λ7,8 = −1

3

4

2

12

Ẽ8

λ1
1,2 = 1,

λ2
1,2 = e±2πi/3,

λ3
1,2 = e±2πi/5, λ3

1,2 = e±4πi/5,

λ9 = −1

3

5

2

30

D̃n

λ1
1,2 = 1,

λ2
s = e2sπi/(n−2), s = 1, 2, ..., n − 3,

λn = λn+1 = −1

n − 2

2, 2

n − 2 for n = 2k;

2(n − 2) for n = 2k + 1

G̃21, G̃22

λ1
1,2 = 1,

λ3 = −1 2
2

F̃41, F̃42

λ1
1,2 = 1,

λ2
1,2 = e2πi/3,

λ3 = −1

3

2

6

Ã11, Ã12 λ1
1,2 = 1 1 1

B̃n, C̃n

B̃Cn

λ1
1,2 = 1,

λ2
s = e2sπi/n, s = 1, 2, ..., n − 1 n

n

C̃Dn

D̃Dn

λ1
1,2 = 1,

λ2
s = e2sπi/(n−1), s = 1, 2, ..., n − 2

λn+1 = −1

n − 1

2

n − 1 for n = 2k − 1;

2(n − 1) for n = 2k

1 See Remark 4.2.
2 See Remark 4.3.
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Table 4.2. The Coxeter numbers and affine Coxeter numbers

Extended Notation in Affine Dual 2

Dynkin context of twisted Coxeter Coxeter Coxeter

Diagram affine Lie algebra 1 number ha number h number h∨

Ẽ6 E
(1)
6 6 12 12

Ẽ7 E
(1)
7 12 18 18

Ẽ8 E
(1)
8 30 30 30

D̃n D
(1)
n

n − 2 for n = 2k;

2(n − 2) for n = 2k + 1
2(n − 1) 2(n − 1)

Ã11 A
(2)
2 1 3 3

Ã12 A
(1)
1 1 2 2

B̃Cn A
(2)
2n n 2n + 1 2n + 1

G̃22 = G̃∨
21 G

(1)
2 2 6 4

G̃21 = G̃∨
22 D

(3)
4 2 4 6

F̃42 = F̃∨
41 F

(1)
4 6 12 9

F̃41 = F̃∨
42 E

(2)
6 6 9 12

C̃n = B̃∨
n C

(1)
n n 2n n + 1

B̃n = C̃∨
n D

(2)
n+1 n n + 1 2n

C̃Dn = D̃D
∨
n B

(1)
n

n − 1 for n = 2k − 1;

2(n − 1) for n = 2k
2n 2n − 1

D̃Dn = C̃D
∨
n A

(2)
2n−1

n − 1 for n = 2k − 1;

2(n − 1) for n = 2k
2n − 1 2n

Remark 4.4. For the first time, the notation of twisted affine Lie algebras from
Table 4.2, col. 2 appeared in [Kac69] in the description of finite order automor-
phisms; see also [Kac80], [GorOnVi94, p.123], [OnVi90], [Kac93]. The upper
index r in the notation of twisted affine Lie algebras has an invariant sense: it
is the order of the diagram automorphism μ of g, where g is a complex simple
finite dimensional Lie algebra of type XN = A2l, A2l−1, Dl+1, E6, D4, [Kac93,
Th.8.3].

1 See Remark 4.4.
2 For emphasis and to distinguish h from h∨, we put the value min(h, h∨) in a box

if h �= h∨.
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The affine Lie algebra associated to a generalized Cartan matrix of type
X

(1)
l is called a non-twisted affine Lie algebra, [Kac93, Ch.7].

The affine Lie algebras associated to a generalized Cartan matrix of type
X

(2)
l and X

(3)
l are called twisted affine Lie algebras. [Kac93, Ch.8].

The corresponding Z/rZ-gradings of g = g(XN ) are (here ī ∈ Z/rZ):

g = g0 + g1 for r = 2,
g = g0 + g1 + g2 for r = 3,

see [Kac93, 8.3.1, 8.3.2], [GorOnVi94, Ch.3, §3]

Proposition 4.5. ([Kac93, exs.6.3]) Let A be a Cartan matrix of type X
(r)
N

from Table 4.2, col. 2, let l = rank of A, and let h be the Coxeter number. Let
Δ be the finite root system of type XN . Then

rlh = |Δ|.

Proof. For r = 1, we have H. S. M. Coxeter’s proposition (1.1), §1.1. We
consider only the remaining cases:

A
(2)
2 , A

(2)
2n (l ≥ 2), A

(2)
2n−1(l ≥ 3), D

(2)
n+1(l ≥ 2), E

(2)
6 , D

(3)
4 .

(see Table 4.2, col. 5).
(a) A

(2)
2 , r = 2; rank l = 1; h = 3; XN = A2, |Δ(A2)| = 6, see [Bo, Tab.I].

(b) A
(2)
2n , r = 2; rank l = n; h = 2n+1, XN = A2n, |Δ(A2n)| = 2n(2n+1),

see [Bo, Tab.I].
(c) A

(2)
2n−1, r = 2; rank l = n; h = 2n − 1; XN = A2n−1, |Δ(A2n−1)| =

2n(2n− 1), see [Bo, Tab.I].
(d) D

(2)
n+1, r = 2; rank l = n; h = n + 1, XN = Dn+1, |Δ(Dn+1)| =

2n(n + 1), see [Bo, Tab.IV].
(e) E

(2)
6 , r = 2; rank l = 4; h = 9, XN = E6, |Δ(E6)| = 72, see [Bo,

Tab.V].
(f) D

(3)
4 , r = 3; rank l = 2; h = 4, XN = D4, |Δ(D4)| = 24, see [Bo,

Tab.IV].
Cases (a)-(f) are collected in Table 4.3. ��

4.2 Bibliographical notes on the spectrum of the
Coxeter transformation

The eigenvalues of affine Coxeter transformations were also calculated by
S. Berman, Y.S. Lee and R. Moody in [BLM89]. Theorem 3.15 was also proved
by N. A’Campo [A’C76] and R. Howlett [How82].

Natural difficulties in the study of Cartan matrices and Coxeter transfor-
mations for the graphs containing cycles are connected with the following two
facts:
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Table 4.3. The Kac relation rlh = |Δ| for r = 2, 3, Proposition 4.5.

Extended Index Rank of Coxeter Root |Δ| = |Δ(XN )|

Dynkin r A number System

Diagram h XN

A
(2)
2 2 1 3 A2 6

A
(2)
2n 2 n 2n + 1 A2n 2n(2n + 1)

A
(2)
2n−1 2 n 2n − 1 A2n−1 2n(2n − 1)

D
(2)
n+1 2 n 2n + 1 Dn+1 2n(2n + 1)

E
(2)
6 2 4 9 E6 72

D
(3)
4 3 2 4 D4 24

1) these graphs have non-symmetrizable Cartan matrices,
2) in general, there are several conjugacy classes of the Coxeter transfor-

mation.

We distinguish several works related to the Coxeter transformation for the
graphs with cycles: C. M. Ringel [Rin94], A. J. Coleman [Col89], Shi Jian-yi
[Shi00], Menshikh and Subbotin [MeSu82], [Men85], Boldt and Takane [BT97].

For generalized Cartan matrices (see §2.1.1), i.e., for graphs with cycles,
C. M. Ringel [Rin94] showed that the spectral radius ρ(C) of the Coxeter
transformation lies outside the unit circle, and is an eigenvalue of multiplicity
one. This result generalizes Theorem 3.15, 3), proved in [SuSt75, SuSt78, St85]
only for trees. The spectral radius ρ(C) is used by V. Dlab and C. M. Ringel
to determine the Gelfand-Kirillov dimension of the preprojective algebras,
[DR81].

A. J. Coleman [Col89] computed characteristic polynomials for the Cox-
eter transformation for all extended Dynkin diagrams, including the case with
cycles Ãn. He baptized these polynomials Killing polynomials, (see the epi-
graph to this chapter). Coleman also shows that Ãn has

n

2
spectral conjugacy

classes.
V. Dlab and P. Lakatos [DL03] gave a number of upper bounds of the

spectral radius ρ(C). For an arbitrary tree:

ρ(C) < 4d− 6,

where d is the maximal branching degree. For a wild tree with two branching
vertices which are not neighbors:

ρ(C) < d.
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P. Lakatos [Lak99a] showed that the Coxeter polynomial of a wild star has
exactly two real roots and one irreducible non-cyclotomic factor.

Definition 4.6. The valued trees Γ1 and Γ2 are called quasi-cospectral if they
have the same non-cyclotomic irreducible factor of their Coxeter polynomials.

Example 4.7. The wild star ∗m,...,m (consisting of r arms of length m) and
the wild star ∗m−1,1...,1 (consisting of r arms of length 1 and one arm of the
length m − 1) are quasi-cospectral. For this and similar results concerning
quasi-cospectral trees, see [Lak99b, Prop 2.5].

V. V. Menshikh and V. F. Subbotin in [MeSu82], and V. V. Menshikh
in [Men85] established a connection between an orientation Ω of the graph
Γ and spectral classes of conjugacy of the Coxeter transformation. For any
orientation Ω of a given graph Γ containing several cycles, they consider an
invariant RΩ equal to the number of arrows directed in a clockwise direction.
For any graph Γ containing disjoint cycles, they show that RΩ1 = RΩ2 if and
only if orientations Ω1 and Ω2 can be obtained from each other by applying
a sink-admissible or a source-admissible sequence of reflections σi, see §2.2.6,
i.e.,

RΩ1 = RΩ2 ⇐⇒ Ω1 = σin ...σi2σi1(Ω2)

for any sink-admissible or source-admissible sequence i1, i2, ..., in. Menshikh
and Subbotin also showed that two Coxeter transformations CΩ1 and CΩ2

are conjugate if and only if RΩ1 = RΩ2 . The number RΩ is called the index
of the conjugacy class of the Coxeter transformation. Menshikh and Subbotin
also calculated the characteristic polynomial of the Coxeter transformation
for every class equivalent to Ω for the extended Dynkin diagram Ãn; this
polynomial is

det |C− λI| = λn+1 − λn−k+1 − λk + 1, (4.3)

where k = RΩ is the index of the conjuagacy class of the Coxeter transforma-
tion.

Shi Jian-yi [Shi00] considers conjugacy relation on Coxeter transformations
for the case where Γ is just a cycle. Different equivalence relations on Coxeter
transformations are considered in more difficult cases. In [Shi00], Shi also
obtained an explicit formula (4.3).

A graph Γ is called unicyclic if it contains precisely one cycle of type Ãn.
Boldt and Takane showed in [Bol96], [BT97] how the characteristic polynomial
of the Coxeter transformation for the unicyclic graph Γ can be reduced to the
characteristic polynomial of the cycle. They also arrive at the explicit formula
(4.3).
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4.3 Splitting and gluing formulas for the characteristic
polynomial

The purpose of this section is to prove the Subbotin-Sumin splitting along the
edge formula for the characteristic polynomial of the Coxeter transformation
[SuSum82], to prove its generalization for the multiply-laced case and to get
some of its corollaries that will be used in the following sections.

Let us consider a characteristic polynomial of the Coxeter transformation

X (Γ, λ) = det |Γ− λI|

for the graph Γ with a splitting edge. Recall that an edge l is said to be splitting
if by deleting it we split the graph Γ into two graphs Γ1 and Γ2, see Fig. 4.1.

Fig. 4.1. A split graph Γ

Proposition 4.8 ([SuSum82]). For a given graph Γ with a splitting edge l,
we have

X (Γ, λ) = X (Γ1, λ)X (Γ2, λ)− λX (Γ1\α, λ)X (Γ2\β, λ), (4.4)

where α and β are the endpoints of the deleted edge l.

Proof. We select a basis in EΓ such that

EΓ = EΓ1 ∪ EΓ2 ,

EΓ1 = {a1, ..., am}, am = α, dim EΓ1 = m,

EΓ2 = {b1, ..., bk}, b1 = β, dim EΓ2 = k,
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and a Coxeter transformation C such that

C = wΓ1wΓ2 , wΓ1 = σam ...σa1 , wΓ2 = σb1 ...σbk
.

An ordering of reflections σai (resp. σbj ) in wΓ1 (resp. wΓ2) is selected so that
σam (resp. σb1) is the last to be executed. Then the reflections σai (i �= m)
(resp. σbj (j �= 1)) do not act on the coordinates bj (resp. ai). Only σam acts
on the coordinate b1 and σb1 acts on the coordinate am. We have

wΓ1 = σam ...σa1 =

(
CΓ1 δamb1

0 I

) }m

}k
,

wΓ2 = σb1 ...σbk
=

(
I 0

δb1am CΓ2

) }m

}k
,

(4.5)

where CΓ1 (resp. CΓ2) is the Coxeter transformation for the graph Γ1 (resp.
Γ2) and δamb1 (resp. δb1am) means the matrix with zeros everywhere except 1
in the (amb1)th (resp. (b1am)th) slot.

Then we have

C = wΓ1wΓ2 =

(
CΓ1 + δamam δamb1CΓ2

δb1am CΓ2

)
,

det |C− λI| =

∣∣∣∣∣∣∣

CΓ1 + δamam − λI δamb1CΓ2

δb1am CΓ2 − λI

∣∣∣∣∣∣∣
.

(4.6)

Here, δamb1CΓ2 is the b1st line (the first line in CΓ2 for the selected basis) of
the matrix CΓ2 and we subtract now this line from the line am. Then

det |C− λI| =

∣∣∣∣∣∣∣

CΓ1 − λI λδamb1

δb1am CΓ2 − λI

∣∣∣∣∣∣∣
or

det |C− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

CΓ1 − λI

0 0 . . . 0
0 0 . . . 0

. . .
0 0 . . . 0
λ 0 . . . 0

0 . . . 0 1
0 . . . 0 0

. . .
0 . . . 0 0
0 . . . 0 0

CΓ2 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.7)
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Let us expand the determinant det |C − λI| in eq. (4.7) with respect to the
minors corresponding to the line b1 (the line containing λ in the column b1,
which is the next after am). We see that

det |C− λI| = det |CΓ1 − λI| det |CΓ2 − λI|+ (−1)am+(am+1)λR, (4.8)

where R is the determinant shown on the Fig. 4.2. Expanding the determinant
R we get the Subbotin-Sumin formula (4.4). ��

Fig. 4.2. The asterisks mark the deleted line am and column b1

Now we will extend the Subbotin-Sumin formula to the multiply-laced case
where the endpoints α and β correspond to simple roots of different lengths.
In this case, eq. (4.4) is modified to eq. (4.9).

Proposition 4.9. For a given graph Γ with a splitting weighted edge l corre-
sponding to roots with different lengths, we have

X (Γ, λ) = X (Γ1, λ)X (Γ2, λ)− ρλX (Γ1\α, λ)X (Γ2\β, λ), (4.9)

where α and β are the endpoints of the deleted edge l, and ρ is the following
factor:

ρ = kαβkβα,

where kij is an element of the Cartan matrix (2.4).
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Proof. Eq. (4.5) is modified to the following

wΓ1 =

(
CΓ1 kamb1δamb1

0 I

)
, wΓ2 =

(
I 0

kb1amδb1am CΓ2

)
,

and eq. (4.6) is modified as follows

C =

(
CΓ1 + kamb1kb1amδamam kamb1δamb1CΓ2

kb1amδb1am CΓ2

)
.

Multiply the line b1 by kamb1 and subtract this product from the line am, then
we obtain

det |C−λI| =

∣∣∣∣∣∣∣

CΓ1 + kamb1kb1amδamam − λI kamb1δamb1CΓ2

kb1amδb1am CΓ2 − λI

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

CΓ1 − λI kamb1λδamb1

kb1amδb1am CΓ2 − λI

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

CΓ1 − λI ρλδamb1

δb1am CΓ2 − λI

∣∣∣∣∣∣∣

(4.10)

Further, as in Proposition 4.8, we obtain (4.9). ��

Corollary 4.10. Let Γ2 in Proposition 4.9 be a component containing a single
point. Then, the following formula holds

X (Γ, λ) = −(λ + 1)X (Γ1, λ)− ρλX (Γ1\α, λ), (4.11)

Proof. Relation (4.5) is modified to the following

wΓ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

CΓ1

0
0
. . .
0
ρ

0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

m

}1

,

wΓ2 =

(
I 0

0 0 . . . 1 −1

) }m

}1
,

and (4.10) is modified to
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C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

CΓ1 + ρδamam

0
0
. . .
0
−ρ

0 0 . . . 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

det |C− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

CΓ1 + ρδamam − λI

0
0
. . .
0
−ρ

0 0 . . . 1 −1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

CΓ1 − λI

0
0

. . .
0
ρλ

0 0 . . . 1 −1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Further, as in Proposition 4.8, we obtain (4.11). ��
The next proposition follows from eq. (4.4) and allows one to calculate the

spectrum of the graph Γ(n) obtained by gluing n copies of the graph Γ.

Proposition 4.11 ([SuSum82], [KMSS83], [KMSS83a]). Let ∗n be a
star with n rays coming from a vertex. Let Γ(n) be the graph obtained from
∗n by gluing n copies of the graph Γ to the endpoints of its rays . Then

X (Γ(n), λ) = X (Γ, λ)n−1ϕn−1(λ),

where
ϕn(λ) = X (Γ + β, λ)− nλX (Γ\α, λ).

Proof. By splitting along the edge l (4.4) we get, for n = 2, (Fig. 4.3)

X (Γ(2), λ) =X (Γ, λ)X (Γ + β, λ)− λX (Γ\α, λ)X (Γ, λ) =
X (Γ, λ)(X (Γ + β, λ)− λX (Γ\α, λ)) = X (Γ, λ)ϕ1(λ).

Let the proposition be true for n = r and

X (Γ(r), λ) = X (Γ, λ)r−1ϕr−1(λ).

Then, for n = r + 1, we have

X (Γ(r + 1), λ) = X (Γ, λ)X (Γ(r), λ)− λX (Γ\α, λ)(X (Γ, λ))r =

X (Γ, λ)X (Γ, λ)r−1ϕr−1(λ)− λX (Γ\α, λ)X (Γ, λ)r =
X (Γ, λ)r(ϕr−1(λ)− λX (Γ\α, λ)) = X (Γ, λ)rϕr(λ). ��

The following proposition is due to V. Kolmykov. For the case λ = 1, it is
formulated in [Kac93, Ch.4, exs.4.12].
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Fig. 4.3. Splitting along the edge l of the graph Γ (2).
Here, the graph Γ (2) is obtained by gluing two copies of the graph Γ .

Proposition 4.12. If the spectrum of the Coxeter transformations for graphs
Γ1 and Γ2 contains the eigenvalue λ, then this eigenvalue is also the eigenvalue
of the Coxeter transformation for the graph Γ obtained by gluing as described
in Proposition 4.11.

Proof. By splitting along the edge l (4.4) we get

X (Γ1 + β + Γ2, λ) =
X (Γ1, λ)X (Γ2 + β, λ)− λX (Γ\α, λ)X (Γ2, λ),

see Fig. 4.4. If X (Γ1, λ)|λ=λ0 = 0 and X (Γ2, λ)|λ=λ0 = 0,
then also X (Γ, λ)|λ=λ0 = 0. ��

Fig. 4.4. Splitting along the edge l, Γ1 �= Γ2

Let X (An) be the characteristic polynomial of the Coxeter transformation
for the Dynkin diagram An. Then, from the recurrence formula (4.11), we
have
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X (A1) =− (λ + 1),

X (A2) =λ2 + λ + 1,

X (A3) =− (λ3 + λ2 + λ + 1),

X (A4) =λ4 + λ3 + λ2 + λ + 1,

. . .

X (An) =− (λ + 1)X (An−1)− λX (An−2), n > 2.

(4.12)

Remark 4.13. Since the characteristic polynomial can be chosen up to a factor,
we prefer to consider the polynomial

Xn = (−1)nX (An)

as the characteristic polynomial of the Coxeter transformation of An, thus the
leading coefficient is positive. Pay attention that the sign (−1)n for diagrams
with n vertices should be taken into account only in recurrent calculations
using eq. (4.11) (cf. with calculation for D̃n and D̃4 below).

Remark 4.14. 1) J. S. Frame in [Fr51, p.784] obtained that

X (Am+n) = X (Am)X (An)− λX (Am−1)X (An−1), (4.13)

which easily follows from eq. (4.4). Another Frame formula will be proved in
Proposition 5.2.

2) S. M. Gussein-Zade in [Gu76] obtained the formula

X (An) = −(λ + 1)Xn−1 − λXn−2,

for the characteristic polynomial of the classical monodromy, see (4.12).

From (4.12) for n > 0, we see that Xn is the cyclotomic polynomial whose
roots are the primitive (n + 1)th roots of unity:

Xn =
n∑

i=1

λi =
λn+1 − 1

λ− 1
. (4.14)

4.4 Formulas of the characteristic polynomials for the
diagrams Tp,q,r

We give here explicit formulas of characteristic polynomials of the Coxeter
transformations for the three classes of diagrams: T2,3,r, T3,3,r, and T2,4,r, see
§2.1.8, Fig. 2.1.
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4.4.1 The diagrams T2,3,r

The case T2,3,r, where r ≥ 2, includes diagrams D5, E6, E7, E8, Ẽ8, E10.
Since D5 = T2,3,2 = E5 and Ẽ8 = T2,3,6 = E9, we call these diagrams the En-
series, where n = r + 3. In Table 1.1 and Table 1.2 we see that characteristic
polynomials of E6, E7, E8, Ẽ8 constitute a series, and this series can be
continued, see (4.15) and Table 4.4.

Remark 4.15. C. McMullen observed in [McM02] that the spectral radius ρ(C)
of the Coxeter transformation for all graphs with indefinite Tits form attains
its minimum when the diagram is T2,3,7 = E10, see Fig. 4.5, [Hir02], [McM02],
and §2.1.8 about hyperbolic Dynkin diagrams. McMullen showed that ρ(C) is
the so-called Lehmer’s number,

λLehmer ≈ 1.176281... , see Table 4.4.

For details and definitions, see §C.2.

Lehmer’s number is a root of the polynomial

1 + x− x3 − x4 − x5 − x6 − x7 + x9 + x10,

see [Hir02], [McM02].

Fig. 4.5. The spectral radius attains its minimum on the graph E10

Proposition 4.16. The characteristic polynomials of Coxeter transforma-
tions for the diagrams T2,3,n are as follows:

X (T2,3,n−3) = X (En) = λn + λn−1 −
n−3∑

i=3

λi + λ + 1, (4.15)

where X (En) is given up to sign (−1)n, see Remark 4.13. In other words,

X (T2,3,n−3) = X (En) =
λn−2(λ3 − λ− 1) + (λ3 + λ2 − 1)

λ− 1
. (4.16)

The spectral radius ρ(T2,3,n−3) converges to the maximal root ρmax of the
equation
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λ3 − λ− 1 = 0, (4.17)

and

ρmax =
3

√
1
2

+

√
23
108

+
3

√
1
2
−

√
23
108

≈ 1.324717... . (4.18)

Proof. Use induction and (4.11). We have

(−1)n+2X (En+2) = −(λ + 1)(−1)n+1X (En+1)− λ(−1)nX (En) =

(−1)n+2[(λ + 1)X (En+1)− λX (En)].

Thus,

X (En+2) = (λ + 1)X (En+1)− λX (En) = λ(X (En+1 −X (En)) + X (En+1).

By the induction hypothesis, (4.15) yields

λ(X (En+1 −X (En)) = λn+2 − λn − λn−1,

and

X (En+2) = λn+2 − λn − λn−1 + (λn+1 + λn −
n−2∑

i=3

λi + λ + 1) =

λn+2 + λn+1 −
n−1∑

i=3

λi + λ + 1,

and hence (4.15) is proved. Further,

n−3∑

i=3

λi = λ3
n−6∑

i=0

λi = λ3 λn−5 − 1
λ− 1

=
λn−2 − λ3

λ− 1
,

and

X (En) =λn + λn−1 − λn−2 − λ3

λ− 1
+ λ + 1 =

λn+1 − λn−1 − λn−2 + λ3 + λ2 − 1
λ− 1

=

λn−2(λ3 − λ− 1) + (λ3 + λ2 − 1)
λ− 1

.

This proves (4.16). For λ > 1, the characteristic polynomial X (En) converges
to

λn−2(λ3 − λ− 1)
λ− 1

.

We will prove1 in §4.4.4 that the spectral radius ρmax converges to the max-
imal root of equation (4.17). For the results of calculations related to the
Proposition 4.16, see Table 4.4. ��
1 See Proposition 4.22, Corollary 4.24, Table 4.7.
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Table 4.4. The characteristic polynomials for T2,3,r

T2,3,r Characteristic Maximal

and its polynomial eigenvalue

well-known outside the

name unit circle

(2, 3, 2) λ5 + λ4 + λ + 1 −
D5

(2, 3, 3) λ6 + λ5 − λ3 + λ + 1 −
E6

(2, 3, 4) λ7 + λ6 − λ4 − λ3 + λ + 1 −
E7

(2, 3, 5) λ8 + λ7 − λ5 − λ4 − λ3 + λ + 1 −
E8

(2, 3, 6) λ9 + λ8 − λ6 − λ5 − λ4 − λ3 + λ + 1 −
Ẽ8

(2, 3, 7) λ10 + λ9 − λ7 − λ6 − λ5 − λ4 − λ3 + λ + 1 1.176281...

E10

(2, 3, 8) λ11 + λ10 − λ8 − λ7 − λ6 − λ5 − λ4 − λ3 + λ + 1 1.230391...

E11

(2, 3, 9) λ12 + λ11 − λ9 − λ8 − λ7 − λ6 − λ5 − λ4 − λ3 + λ + 1 1.261231...

E12

(2, 3, 10) λ13 + λ12 − λ10 − λ9 − λ8 − λ7 1.280638...

E13 −λ6 − λ5 − λ4 − λ3 + λ + 1

. . . . . . . . .

1.324717...

(2, 3, n)
λn−2(λ3 − λ − 1) + (λ3 + λ2 − 1)

λ − 1
as

En n → ∞
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4.4.2 The diagrams T3,3,r

The case T3,3,r, where r ≥ 2, includes diagrams E6 and Ẽ6, and so we call
these diagrams the E6,n-series, where n = r−2. Thus, E6 = T3,3,2 = E6,0 and
Ẽ6 = T3,3,3 = E6,1. In Table 1.1 and Table 1.2 we see that the characteristic
polynomials of E6, Ẽ6 constitute a series, and this series can be continued, see
(4.19) and Table 4.5.

Proposition 4.17. The characteristic polynomials of Coxeter transforma-
tions for the diagrams T3,3,n with n ≥ 3 are calculated as follows:

X (T3,3,n) = X (E6,n−2) = λn+4+λn+3−2λn+1−3
n∑

i=4

λi−2λ3+λ+1, (4.19)

where X (E6,n) is given up to sign (−1)n, see Remark 4.13. In other words,

X (T3,3,n) =X (E6,n−2) =

λn+1(λ4 − λ2 − 2λ− 1) + (λ4 + 2λ3 + λ2 − 1)
λ− 1

=

(λ2 + λ + 1)[λn+1(λ2 − λ− 1) + (λ2 + λ− 1)]
λ− 1

.

The spectral radius ρ(T3,3,n) converges to the maximal root ρmax of the
equation

λ2 − λ− 1 = 0, (4.20)

and

ρmax =
√

5 + 1
2

≈ 1.618034... .

Remark 4.18. For n = 3, the sum
n∑

i=4

λi in (4.19) disappears and we have

X (T3,3,3) = X (E6,1) = X (Ẽ6) =

λ7 + λ6 − 2λ4 − 2λ3 + λ + 1 = (λ3 − 1)2(λ + 1).

Proof. As above in (4.15), we use induction and (4.11). So, by (4.11) we
have

X (E6,n+2) = (λ + 1)X (E6,n+1)− λX (E6,n) =
λ(X (E6,n+1)−X (E6,n)) + X (E6,n+1).

(4.21)

By the induction hypothesis and (4.19) we have

λ(X (E6,n+1)−X (E6,n)) = λn+8 − λn+6 − 2λn+5 − λn+4,

and
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Table 4.5. The characteristic polynomials for T3,3,r

T3,3,r Characteristic Maximal

and its polynomial eigenvalue

well-known outside the

name unit circle

(3, 3, 2) λ6 + λ5 − λ3 + λ + 1 −
E6

(3, 3, 3) λ7 + λ6 − 2λ4 − 2λ3 + λ + 1 −
Ẽ6

(3, 3, 4) λ8 + λ7 − 2λ5 − 3λ4 − 2λ3 + λ + 1 1.401268...

E6,2

(3, 3, 5) λ9 + λ8 − 2λ6 − 3λ5 − 3λ4 − 2λ3 + λ + 1 1.506136...

E6,3

(3, 3, 6) λ10 + λ9 − 2λ7 − 3λ6 − 3λ5 − 3λ4 − 2λ3 + λ + 1 1.556030...

E6,4

(3, 3, 7) λ11 + λ10 − 2λ8 − 3λ7 − 3λ6 − 3λ5 − 3λ4 − 2λ3 + λ + 1 1.582347...

E6,5

(3, 3, 8) λ12 + λ11 − 2λ9 − 3λ8 − 3λ7 1.597005...

E6,6 −3λ6 − 3λ5 − 3λ4 − 2λ3 + λ + 1

. . . . . . . . .

1.618034...

(3, 3, n)
(λ2 + λ + 1)[λn+1(λ2 − λ − 1) + (λ2 + λ − 1)]

λ − 1
as

E6,n−2 n → ∞
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X (E6,n+2) =

λn+8 − λn+6 − 2λn+5 − λn+4+

(λn+7 + λn+6 − 2λn+4 − 3
n+3∑

i=4

λi − 2λ3 + λ + 1) =

λn+8 + λn+7 − 2λn+5 − 3
n+4∑

i=4

λi − 2λ3 + λ + 1;

this proves (4.19). Further,

X (T3,3,n) =λn+4 + λn+3 − 2λn+1 − 3
n∑

i=4

λi − 2λ3 + λ + 1 =

λn+4 + λn+3 + λn+1 − 3
n+1∑

i=3

λi + λ3 + λ + 1 =

λn+1(λ3 + λ2 + 1)− 3λ3 λn−1 − 1
λ− 1

+ λ3 + λ + 1,

i.e.,

X (T3,3,n) =
λn+1(λ4 − λ2 + λ− 1)− 3λn+2 + 3λ3 + (λ4 − λ3 + λ2 − 1)

λ− 1
=

λn+1(λ4 − λ2 − 2λ− 1) + (λ4 + 2λ3 + λ2 − 1)
λ− 1

.

For λ > 1, the characteristic polynomial X (T3,3,n) converges to

λn+1(λ4 − λ2 − 2λ− 1)
λ− 1

=
λn+1(λ2 − λ− 1)(λ2 + λ + 1)

λ− 1
.

We will prove1 in §4.4.4 that the spectral radius ρmax converges to the maxi-
mal root of the equation (4.20). For the results of calculations related to the
Proposition 4.17, see Table 4.5. ��

4.4.3 The diagrams T2,4,r

The case T2,4,r, where r ≥ 2, includes diagrams D6, E7, Ẽ7 and we call these
diagrams the E7,n-series, where n = r − 3. Thus, D6 = T2,4,2 = E7,−1,
E7 = T2,4,3 = E7,0, Ẽ7 = T2,4,4 = E7,1. In Table 1.1 and Table 1.2 we see that
characteristic polynomials of E7, Ẽ7 constitute a series, and this series can be
continued, see (4.22) and Table 4.6.
1 See Proposition 4.22, Corollary 4.24, Table 4.7.
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Proposition 4.19. The characteristic polynomials of Coxeter transforma-
tions for diagrams T2,4,n, where n ≥ 3, are calculated as follows:

X (T2,4,n) = X (E7,n−3) = λn+4 + λn+3−λn+1− 2
n∑

i=4

λi−λ3 + λ + 1, (4.22)

where X (E7,n) is given up to sign (−1)n, see Remark 4.13. In other words

X (T2,4,n) = X (E7,n−3) =
λn+1(λ4 − λ2 − λ− 1) + (λ4 + λ3 + λ− 1)

λ− 1
=

(λ + 1)(λn+1(λ3 − λ2 − 1) + (λ3 + λ− 1))
λ− 1

.

The spectral radius ρ(T2,4,n) converges to the maximal root ρmax of the equa-
tion

λ3 − λ2 − 1 = 0, (4.23)

and

ρmax =
1
3

+
3

√
58
108

+

√
31
108

+
3

√
58
108

−
√

31
108

≈ 1.465571... .

Remark 4.20. For n = 3, the sum
n∑

i=4

λi disappears from (4.22) and we have

X (T2,4,3) = X (E7,0) = X (E7) =

λ7 + λ6 − λ4 − λ3 + λ + 1 = (λ4 − 1)(λ3 − 1)(λ + 1).

Proof. Use induction and (4.11). As above in (4.21), we have

X (E7,n+2) =
(λ + 1)X (E7,n+1)− λX (E7,n) =
λ(X (E7,n+1)−X (E7,n)) + X (E7,n+1).

By the induction hypothesis and (4.22) we have

λ(X (E7,n+1)−X (E7,n)) = λn+9 − λn+7 − λn+6 − λn+5,

and we see that

X (E7,n+2) =

λn+9 − λn+7 − λn+6 − λn+5

+ (λn+8 + λn+7 − λn+5 − 2
n+4∑

i=4

λi − λ3 + λ + 1) =

λn+9 + λn+8 − λn+6 − 2
n+5∑

i=4

λi − λ3 + λ + 1.
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this proves (4.22). Further,

X (T2,4,n) =λn+4 + λn+3 − λn+1 − 2
n∑

i=4

λi − λ3 + λ + 1 =

(λn+4 + λn+3 + λn+1)− 2
n+1∑

i=3

λi + (λ3 + λ + 1) =

λn+1(λ3 + λ2 + 1)− 2
λ3(λn−1 − 1)

λ− 1
+ (λ3 + λ + 1) =

λn+1(λ4 − λ2 + λ− 1)− 2λn+2 + 2λ3 + (λ4 − λ3 + λ2 − 1)
λ− 1

=

λn+1(λ4 − λ2 − λ− 1) + (λ4 + λ3 + λ2 − 1)
λ− 1

=

λn+1(λ + 1)(λ3 − λ2 − 1) + (λ + 1)(λ3 + λ− 1)
λ− 1

.

For λ > 1, the characteristic polynomial X (T2,4,n) converges to

λn+1(λ + 1)(λ3 − λ2 − 1)
λ− 1

.

We will prove1 in §4.4.4 that the spectral radius ρmax converges to the maxi-
mal root of the equation (4.23). For the results of calculations related to the
Proposition 4.19, see Table 4.6. ��

Remark 4.21 (Bibliographical references). 1) The maximal eigenvalues (Tables
4.4, 4.5, 4.6) lying outside the unit circle are obtained by means of the online
service “Polynomial Roots Solver” of “EngineersToolbox”2.

2) Some convenient rules for the calculating coefficients of the Coxeter
transformation for trees are obtained in [KMSS03], e.g., the characteristic
polynomial is reciprocal3, the free coefficient and the coefficient of λ are equal
to 1, and the coefficient of λ2 vanishes if and only if the tree is a trefoil (i.e.,
has exactly one node of branching degree 3). These rules are easily checked
by Tables 4.4, 4.5, 4.6.

3) After the first version of this text was put to arXiv I have discovered the
work [Lak99b, Cor. 2.9] of P. Lakatos who obtained results on the convergence
of the spectral radii ρmax similar to Propositions 4.19, 4.17, 4.16.
1 See Proposition 4.22, Corollary 4.24, Table 4.7.
2 See http://www.engineerstoolbox.com.
3 The polynomial P of degree n is said to be reciprocal if P (z) = znP (1/z).
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Table 4.6. The characteristic polynomials for T2,4,r

T2,4,r Characteristic Maximal

and its polynomial eigenvalue

well-known outside the

name unit circle

(2, 4, 2) λ6 + λ5 + λ + 1 −
D6

(2, 4, 3) λ7 + λ6 − λ4 − λ3 + λ + 1 −
E7

(2, 4, 4) λ8 + λ7 − λ5 − 2λ4 − λ3 + λ + 1 −
Ẽ7

(2, 4, 5) λ9 + λ8 − λ6 − 2λ5 − 2λ4 − λ3 + λ + 1 1.280638...

E7,2

(2, 4, 6) λ10 + λ9 − λ7 − 2λ6 − 2λ5 − 2λ4 − λ3 + λ + 1 1.360000...

E7,3

(2, 4, 7) λ11 + λ10 − λ8 − 2λ7 − 2λ6 − 2λ5 − 2λ4 − λ3 + λ + 1 1.401268...

E7,4

(2, 4, 8) λ12 + λ11 − λ9 − 2λ8 − 2λ7 1.425005...

E7,5 −2λ6 − 2λ5 − 2λ4 − λ3 + λ + 1

. . . . . . . . .

1.465571...

(2, 4, n)
λn+1(λ4 − λ2 − λ − 1) + (λ4 + λ3 + λ − 1)

λ − 1
as

En n → ∞
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4) Thanks are due to C. McMullen who kindly informed me about the
work by J. F. McKee, P. Rowlinson, C. J. Smyth [MRS99]. In this work
authors also obtained certain results on the convergence of the spectral radii.
In [MS05] McKee and Smyth introduced notions of a Salem graph and a Pisot
graph. For simplicity, let Γ be a star-like tree. Denote it by Ta1,a2,...,ar , where
a1, a2, . . . , an are the lengths of arms of the star G. This graph is called a
Salem graph if the characteristic polynomial of the corresponding Coxeter
transformation has only one eigenvalue λ > 1 and only −λ lies in (−∞,−1).
It is shown in [MRS99, Cor. 9] that the spectral radius of a Salem graph is a
Salem number1. A Pisot graph is defined as a member of the family of graphs
obtained by letting the number of the edges of one arm tend to infinity. These
Pisot graphs represent, in fact, a sequence of Salem numbers tending to the
Pisot number, [MS05, Th.1]2.

4.4.4 Convergence of the sequence of eigenvalues

In this section we give a substantiation (Proposition 4.22) of the fact that
the maximal eigenvalues (i.e., spectral radii) of the characteristic polynomials
for Tp,q,r converge to a real number which is the maximal value of a known
polynomial (see, Propositions 4.16, 4.17, 4.19). We will give this substantia-
tion in a generic form. Similarly, we have a dual fact (Proposition 4.25): the
minimal eigenvalues of the characteristic polynomials for Tp,q,r converges to
a real number which is the minimal value of a known polynomial.

Proposition 4.22. Let f(λ) and g(λ) be some polynomials in λ, and let

Pn(λ) = λnf(λ) + g(λ)

be a sequence of polynomials in λ. Let zn ∈ R be a root of Pn(λ), lying in the
interval (1, 2):

Pn(zn) = 0, zn ∈ (1, 2), n = 1, 2, . . . (4.24)

Suppose that the sequence {zn}, n = 1, 2, . . . is non-decreasing:

1 < z1 ≤ z2 ≤ · · · ≤ zn ≤ . . . . (4.25)

Then the sequence zn converges to a real number z0 which is a root of f(λ):

f(z0) = 0.

Proof. According to (4.24), the sequence (4.25) is non-decreasing and
bounded from above. Therefore, there exists a real number z0 such that

lim
k→∞

zk = z0. (4.26)

1 For a definition of Salem numbers, see §C.2
2 For a definition of Pisot numbers, see §C.2.
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Let us estimate |f(z0)| as follows:

|f(z0)| < |f(zn)|+ |f(zn)− f(z0)|.

By (4.26) we obtain

|f(z0)| < |f(zn)|+ εn , where εn = |f(zn)− f(z0)| → 0 as n→∞.
(4.27)

By (4.24), we have

f(zn) = −g(zn)
zn
n

.

Let

δn =
∣∣∣∣
g(zn)
zn
n

∣∣∣∣ for each n = 1, 2, . . .

Since the function g(z) is uniformly bounded on the interval (1, 2), it follows
that δn → 0. By (4.27) we have

|f(z0)| < δn + εn → 0 as n→∞.

Thus, f(z0) = 0. ��

Corollary 4.23. Proposition 4.22 holds also for the following non-polynomial
functions Pn:

1) For
Pn(λ) = λn+kf(λ) + g(λ),

where k ∈ Z is independent of n.
2) For

Pn(λ) = D(λ)(λnf(λ) + g(λ)),

where D(λ) is a rational function independent of n and without roots on the
interval (1, 2).

Corollary 4.24. The maximal values of characteristic polynomials of the
Coxeter transformation for diagrams Tp,q,r satisfy the conditions of Propo-
sition 4.22, see Table 4.7.

Proof. Let ϕ1,r = ϕ1(Tp,q,r) be the dominant value of the matrix DDt (see
§3.3.2) for the diagram Tp,q,r. According to Proposition 3.12 the dominant
value ϕ1,r may only grow, i.e.,

ϕ1,r ≤ ϕ1,r+1.

Therefore, the corresponding eigenvalue λmax
1 also only grows. Indeed, by

(3.13) we get
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Table 4.7. The diagrams Tp,q,r and characteristic polynomials λnf(λ) + g(λ)

Diagram f(λ) g(λ) D(λ) Pn(λ)

T (2, 3, r) λ3 − λ − 1 λ3 + λ2 − 1
1

λ − 1
λn−2f(λ) + g(λ)

T (3, 3, r) λ2 − λ − 1 λ2 + λ − 1
λ2 + λ + 1

λ − 1
λn+1f(λ) + g(λ)

T (2, 4, r) λ3 − λ2 − 1 λ3 + λ − 1
λ + 1

λ − 1
λn+1f(λ) + g(λ)

λmax
1,r =2ϕ1,r − 1 + 2

√
ϕ1,r(ϕ1,r − 1) ≤

2ϕ1,r+1 − 1 + 2
√

ϕ1,r+1(ϕ1,r+1 − 1) = λmax
1,r+1.

(4.28)

In addition, from Proposition 3.12 we deduce that ϕ1,r > 1, therefore the
corresponding eigenvalue λ1,r of the Coxeter transformation is also > 1.

It remains to show that every λ1,r < 2. This is clear, because f(λ) > 0
and g(λ) > 0 for every λ > 2, see Table 4.7. ��

Proposition 4.25. Let f(λ) and g(λ) be some polynomials in λ, and let

Pn(λ) = λnf(λ) + g(λ), where n ∈ Z+.

Let zn ∈ R be a root of Pn(λ), lying in the interval
(

1
2
, 1

)
:

Pn(zn) = 0, zn ∈
(

1
2
, 1

)
. (4.29)

Suppose that the sequence {zn}n∈Z+ is non-increasing:

1 > z1 ≥ z2 ≥ · · · ≥ zn ≥ . . . .

Then the sequence zn converges to a real number z0 which is a root of g(λ):

g(z0) = 0.

Proof. As in Proposition 4.22, there is a real number z0 such that zn → z0

as n→∞. Since g(zn)→ g(z0), we obtain
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|g(z0)| < |g(zn)|+ εn , where εn = |g(zn)− g(z0)|.

By (4.29), we have
g(zn) = −zn

nf(zn).

Let
δn = |zn

nf(zn)| for each n = 1, 2, . . .

Since the function f(zn) is uniformly bounded on the interval
(

1
2
, 1

)
, it

follows that δn → 0. Thus, we have

|g(z0)| < δn + εn → 0 as n→∞.

Thus, g(z0) = 0. ��

Corollary 4.26. The minimal values of characteristic polynomials of the
Coxeter transformation for diagrams Tp,q,r satisfy the conditions of Propo-
sition 4.22, see Table 4.7.

Proof. The minimal value λmin
1 and the maximal value λmax

1 are reciprocal:

λmin
1 =

1
λmax

1

.

Therefore, by (4.28), we see that the sequence of eigenvalues λmin
1,r is non-

increasing:
λmin

1,r ≥ λmin
1,r+1.

Since the maximal eigenvalue λmax
1,r > 1, then λmin

1,r < 1.

It remains to show that λmin
1,r >

1
2

for every r ∈ Z. But this is true since

f(λ) < 0 and g(λ) < 0 for every λ <
1
2
, see Table 4.7. ��



5

R. Steinberg’s theorem, B. Kostant’s
construction

5.1 R. Steinberg’s theorem and a (p, q, r) mystery

R. Steinberg in [Stb85, p.591, (∗)] observed a property of affine Coxeter
transformations (i.e., transformations corresponding to extended Dynkin dia-
grams), which plays the main role in his derivation of the McKay correspon-
dence. Let (p, q, r) be the same as in Table A.1, Table A.2 and relations (A.2),
(A.6).

Theorem 5.1 ([Stb85]). The affine Coxeter transformation for the extended
Dynkin diagram Γ̃ has the same eigenvalues as the product of three Coxeter
transformations of types An, where n = p− 1, q− 1, and r− 1, corresponding
to the branches of the Dynkin diagram Γ.

Essentially, R. Steinberg observed that the orders of eigenvalues of the
affine Coxeter transformation corresponding to the extended Dynkin diagram
Γ̃ and given in Table 4.1 coincide with the lengths of branches of the Dynkin
diagram Γ.

Now, we give the proof of R. Steinberg’s theorem for the simply-laced ex-
tended Dynkin diagram by using the Subbotin-Sumin splitting formula (4.4).

In §5.3.2, we generalize this theorem with some modifications to the
multiply-laced case, see Theorem 5.5, Table 1.2.

Let Tp,q,r be a connected graph with three branches of lengths p, q, r. Let
X be the characteristic polynomial of the Coxeter transformation. Split the
graph along the edge {αβ}, Fig. 5.1. Then, by the Subbotin-Sumin formula
(4.4) we have

X =X (Ap+q−1)X (Ar−1)− λX (Ap−1)X (Aq−1)X (Ar−2) =

(−1)p+q+r(Xp+q−1Xr−1 − λXp−1Xq−1Xr−2).
(5.1)

By (4.13), we have, up to a factor (−1)p+q+r,
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Fig. 5.1. Splitting the graph Tp,q,r along the edge {αβ}

X =
(λp+q − 1)(λr − 1)

(λ− 1)2
− (λp − 1)(λq − 1)(λr − λ)

(λ− 1)3
. (5.2)

For p = q (e.g., E6, Ẽ6, Ẽ7, and Dn for n ≥ 4), we have, up to a factor
(−1)2p+r,

X =
(λ2p − 1)(λr − 1)

(λ− 1)2
− (λp − 1)2(λr − λ)

(λ− 1)3
=

(λp − 1)
(λ− 1)3

((λp + 1)(λr − 1)(λ− 1)− (λp − 1)(λr − λ)).
(5.3)

For q = 2p (e.g., E7, Ẽ8), we have, up to a factor (−1)3p+r,

X =
(λ3p − 1)(λr − 1)

(λ− 1)2
− (λ2p − 1)(λp − 1)(λr − λ)

(λ− 1)3
=

(λp − 1)
(λ− 1)3

((λ2p + λp + 1)(λr − 1)(λ− 1)− (λ2p − 1)(λr − λ)).
(5.4)

1) Case p = q = 3, r = 3 (Ẽ6). From eq. (5.3) we have

X =
(λ3 − 1)
(λ− 1)3

[(λ3 + 1)(λ3 − 1)(λ− 1)− (λ3 − 1)(λ3 − λ)] =

(λ3 − 1)2

(λ− 1)3
[(λ3 + 1)(λ− 1)− (λ3 − λ)] =

(λ3 − 1)2

(λ− 1)3
(λ4 − 2λ3 + 2λ− 1) =

(λ3 − 1)2(λ− 1)2(λ2 − 1)
(λ− 1)3

= (λ− 1)2X 2
2X1.

The polynomials X1 and X 2
2 have, respectively, eigenvalues of orders 2, 3, 3

which are equal to the lengths of branches of E6.
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2) Case p = q = 4, r = 2 (Ẽ7). Here, from eq. (5.3) we have

X =
(λ4 − 1)
(λ− 1)3

[(λ4 + 1)(λ2 − 1)(λ− 1)− (λ4 − 1)(λ2 − λ)] =

(λ4 − 1)(λ2 − 1)(λ− 1)
(λ− 1)3

[(λ4 + 1)− λ(λ2 + 1)] =

(λ4 − 1)(λ3 − 1)(λ2 − 1)(λ− 1)2

(λ− 1)3
= (λ− 1)2X3X2X1.

The polynomials X1,X2 and X3 have, respectively, eigenvalues of orders
2, 3, 4 which are equal to the lengths of branches of E7.

3) Case p = 3, q = 6, r = 2 (Ẽ8). From eq. (5.4), we have

X =
(λ3 − 1)
(λ− 1)3

[(λ6 + λ3 + 1)(λ2 − 1)(λ− 1)− (λ6 − 1)(λ2 − λ)] =

(λ3 − 1)(λ2 − 1)(λ− 1)
(λ− 1)3

[(λ6 + λ3 + 1)− λ(λ4 + λ2 + 1)] =

(λ5 − 1)(λ3 − 1)(λ2 − 1)(λ− 1)2

(λ− 1)3
= (λ− 1)2X4X2X1.

The polynomials X1,X2 and X4 have, respectively, eigenvalues of orders
2, 3, 5 which are equal to the lengths of branches of E8.

4) Case p = q = 2, r = 2, 3, ... (Dr+2). From eq. (5.3) we have

(−1)rX (Dr+2) =

(λ2 − 1)
(λ− 1)3

[(λ2 + 1)(λr − 1)(λ− 1)− (λ2 − 1)(λr − λ)] =

(λ2 − 1)(λ− 1)
(λ− 1)3

[(λ2 + 1)(λr − 1)− (λ + 1)(λr − λ)] =

(λ2 − 1)(λ− 1)2(λr+1 + 1)
(λ− 1)3

= (λ + 1)(λr+1 + 1),

(5.5)

and, up to a sign,
X = (λ + 1)(λr+1 + 1).

Pay attention that, as in (5.5), the sign (−1)r should be taken into account
only in recurrent calculations (e.g., for D̃n and D̃4 below), see Remark 4.13.

5) Case D̃r+2 (diagram contains r + 3 points).
Here, from eq. (4.4) we have

X (D̃r+2) = X (Dr)X (A3)− λX (Dr−1)X (A1)2. (5.6)

From eq. (5.6) and eq. (5.5) we have
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Fig. 5.2. The diagrams D̃r+2 and Dr+2

(−1)r−1X (D̃r+2) =

(λ + 1)(λr−1 + 1)(λ3 + λ2 + λ + 1)− λ(λ + 1)(λr−2 + 1)(λ + 1)2 =

(λ + 1)2[(λr−1 + 1)(λ2 + 1)− (λ + 1)(λr−1 + λ)] =

(λ + 1)2[(λr+1 + λ2 + λr−1 + 1)− (λr + λr−1 + λ2 + λ)] =

(λ + 1)2[(λr+1 − λr)− (λ− 1)] = (λ + 1)2(λr − 1)(λ− 1) =

(λ− 1)2X 2
1Xr−1,

and so
X = (λ− 1)2X 2

1Xr−1. (5.7)

The polynomials X 2
1 and Xr−1 have, respectively, eigenvalues of orders

2, 2, r which are equal to the lengths of branches of Dr+2.
6) Case D̃4. Here, by (5.5) we have

X (D̃4) =X (D4)X (A1)− λX (A1)3 = −(λ + 1)2(λ3 + 1) + λ(λ + 1)3 =

− (λ + 1)2(λ3 + 1− λ2 − λ) = −(λ + 1)2(λ2 − 1)(λ− 1) =

− (λ− 1)2(λ + 1)3,

and so
X = (λ− 1)2X 3

1 .

Polynomial X 3
1 have eigenvalues of orders 2, 2, 2 which are equal to the

lengths of branches of D4.
In (4.13), we saw that the simple Frame formula is a particular case of

the Subbotin-Sumin formula (4.4). Now we will show another Frame formula
from [Fr51, p.785] used by H. S. M. Coxeter in [Cox51].

Proposition 5.2 ([Fr51]). Let Tp,q,r be a connected graph with three branches
of lengths p, q, r, where the lengths include the branch point, see Fig. 2.1. Then

X (Tp,q,r) = X (Ap+q+r−2)− λ2X (Ap−2)X (Aq−2)X (Ar−2). (5.8)

Proof. By (4.4) we have

X (Tp,q,r) = X (Ap+q−1)X (Ar−1)− λX (Ap−1)X (Aq−1)X (Ar−2).

This is equivalent to
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X (Tp,q,r) =X (Ap+q−1)X (Ar−1)− λX (Ap+q−2)X (Ar−2)
+ λX (Ap+q−2)X (Ar−2)− λX (Ap−1)X (Aq−1)X (Ar−2).

By the first Frame formula (4.13) we have

X (Ap+q+r−2) = X (Ap+q−1)X (Ar−1)− λX (Ap+q−2)X (Ar−2),

and

X (Tp,q,r) =
X (Ap+q+r−2) + λX (Ap+q−2)X (Ar−2)− λX (Ap−1)X (Aq−1)X (Ar−2) =
X (Ap+q+r−2) + λX (Ar−2)[X (Ap+q−2)−X (Ap−1)X (Aq−1)].

(5.9)

Again, by (4.13) we have

X (Ap+q−2)−X (Ap−1)X (Aq−1) = −λX (Ap−2)X (Aq−2),

and from eq. (5.9) we deduce

X (Tp,q,r) = X (Ap+q+r−2)− λ2X (Ar−2)X (Ap−2)X (Aq−2). ��

5.2 The characteristic polynomials for the Dynkin
diagrams

In order to calculate characteristic polynomials of the Coxeter transformations
for the Dynkin diagrams, we use the Subbotin-Sumin formula (4.4), the gen-
eralized Subbotin-Sumin formula (4.9), its specialization (5.2) for arbitrary
(p, q, r)-trees, and particular cases of (5.2): formula (5.3) for p = q, and (5.4)
for p = 2q.

The results of calculations of this section concerning Dynkin diagrams are
collected in Table 1.1.

1) Case p = q = 3, r = 2 (E6). From eq. (5.3) we have

X =
(λ3 − 1)
(λ− 1)3

[(λ3 + 1)(λ2 − 1)(λ− 1)− (λ3 − 1)(λ2 − λ)] =

(λ3 − 1)
(λ− 1)3

(λ− 1)2[(λ3 + 1)(λ + 1)− λ(λ2 + λ + 1)] =

(λ3 − 1)
(λ− 1)

(λ4 − λ2 + 1) =

(λ2 + λ + 1)(λ4 − λ2 + 1) = λ6 + λ5 − λ3 + λ + 1.

In another form, we have

X =
(λ3 − 1)
(λ− 1)

(λ4 − λ2 + 1) =
(λ6 + 1)
(λ2 + 1)

(λ3 − 1)
(λ− 1)

.
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2) Case p = 2, q = 4, r = 3 (E7). From eq. (5.4) we have, up to a sign,

X =
(λ2 − 1)
(λ− 1)3

[(λ4 + λ2 + 1)(λ3 − 1)(λ− 1)− (λ4 − 1)(λ3 − λ)] =

(λ2 − 1)(λ− 1)2

(λ− 1)3
[(λ4 + λ2 + 1)(λ2 + λ + 1)−

(λ3 + λ2 + λ + 1)λ(λ + 1)] =

(λ + 1)[(λ4 + λ2 + 1)(λ2 + λ + 1)−
(λ3 + λ2 + λ + 1)(λ2 + λ)] =

(λ + 1)(λ6 − λ3 + 1) = λ7 + λ6 − λ4 − λ3 + λ + 1.

In another form, we have

X = −(λ + 1)(λ6 − λ3 + 1) = − (λ + 1)(λ9 + 1)
(λ3 + 1)

.

3) Case p = 3, q = 2, r = 5 (E8). From eq. (5.2) we have

X =
(λ5 − 1)2

(λ− 1)2
− (λ3 − 1)(λ2 − 1)(λ5 − λ)

(λ− 1)3
=

(λ4 + λ3 + λ2 + λ + 1)2−
(λ2 + λ + 1)(λ + 1)λ(λ3 + λ2 + λ + 1) =

λ8 + λ7 − λ5 − λ4 − λ3 + λ + 1.

Since

(λ8 + λ7 − λ5 − λ4 − λ3 + λ + 1)(λ2 − λ + 1) = λ10 − λ5 + 1,

we have

X =
λ10 − λ5 + 1
λ2 − λ + 1

=
(λ15 + 1)(λ + 1)
(λ5 + 1)(λ3 + 1)

.

4) For the case Dn, see (5.5),

X (Dn) =(−1)n(λ + 1)(λn−1 + 1),

X =(λ + 1)(λn−1 + 1).
(5.10)

5) Case F4. We use eq. (4.9), splitting the diagram F4 along the weighted
edge into two diagrams Γ1 = A2 and Γ2 = A2. Here, ρ = 2.

X = X 2
2 − 2λX 2

1 = (λ2 + λ + 1)2 − 2λ(λ + 1)2 = λ4 − λ2 + 1.

In another form, we have

X = λ4 − λ2 + 1 =
λ6 + 1
λ2 + 1

.
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6) Case G2. A direct calculation of the Coxeter transformation gives

C =
(
−1 3
0 1

) (
1 0
1 −1

)
=

(
2 −3
1 −1

)
,

and

X = λ2 − λ + 1 =
λ3 + 1
λ + 1

.

7) The dual cases Bn and Cn = B∨
n . Since the spectra of the Coxeter

transformations of the dual graphs coincide, we need consider only the case
Bn.

a) Consider B2. A direct calculation of the Coxeter transformation gives

C =
(
−1 2
0 1

) (
1 0
1 −1

)
=

(
1 −2
1 −1

)
,

and
X (B2) = λ2 + 1. (5.11)

b) Consider B3. We use eq. (4.9), splitting the diagram B3 along the weighted
edge

X (B3) =X (A2)X (A1)− 2λX (A1) = −(X2X1 − 2λX1) =

−X1(X2 − 2λ) = −(λ + 1)(λ2 + λ + 1− 2λ) =

− (λ + 1)(λ2 − λ + 1) = −(λ3 + 1).

(5.12)

c) Case Bn for n ≥ 4.

X (Bn) =
X (An−3)X (B3)− λX (An−4)X (B2) = Xn−3X (B3)− λXn−4X (B2),

i.e.,

(−1)nX (Bn) =

λn−2 − 1
λ− 1

(λ3 + 1)− λ
λn−3 − 1

λ− 1
(λ2 + 1) =

(λn−2 − 1)(λ3 + 1)− (λn−3 − 1)(λ3 + λ)
λ− 1

=

λn+1 − λn + λ− 1
λ− 1

= λn + 1,

and

X (Bn) =(−1)n(λn + 1). (5.13)

By (5.11), (5.12) and (5.13), we see, for the case Bn, that, up to a sign,

X (Bn) = λn + 1.
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5.3 A generalization of R. Steinberg’s theorem

We will show now that R. Steinberg’s theorem 5.1 can be extended to the
multiply-laced case.

5.3.1 The folded Dynkin diagrams and branch points

Definition 5.3. A vertex is said to be a branch point of the Dynkin diagram
in one of the following cases:

(a) if it is the common endpoint of three edges (E6, E7, E8, Dn);
(b) if it is the common endpoint of two edges, one of which is non-

weighted and one is weighted (Bn, Cn, F4). Such a vertex is said to be a
non-homogeneous point.

(c) By definition let both points of G2 be branch points.

Remark 5.4. Every multiply-laced Dynkin diagram (and also every extended
Dynkin diagram) can be obtained by a so-called folding operation from a
simply-laced diagrams, see Fig. 5.3, such that the branch point is trans-
formed into the non-homogeneous point, see, e.g., I. Satake, [Sat60, p.109],
J. Tits, [Ti66, p.39], P. Slodowy, [Sl80, Appendices I and III], or more re-
cent works [FSS96], [Mohr04]. This fact was our motivation for considering
non-homogeneous points from (b) as branch points.

Fig. 5.3. The folding operation applied to Dynkin diagrams
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Let us divide all extended Dynkin diagrams (trees) into 4 classes and let
g be the number of the class:

Class g = 0 contains all simply-laced diagrams.
Class g = 1 contains multiply-laced diagrams which has only one weighted

edge of type (1,2) or (2,1).
Class g = 2 contains multiply-laced diagrams with either two weighted

edges or one weighted edge of type (1,3) or (3,1).
Class g = 3 contains multiply-laced diagrams with two vertices.
Thus,

g = 0 for Ẽ6, Ẽ7, Ẽ8, D̃n,

g = 1 for F̃41, F̃42, C̃Dn, D̃Dn,

g = 2 for G̃12, G̃22, B̃n, C̃n, B̃Cn,

g = 3 for Ã11, Ã12.

(5.14)

5.3.2 R. Steinberg’s theorem for the multiply-laced case

Now, we can generalize R. Steinberg’s theorem for the multiply-laced case.

Theorem 5.5. The affine Coxeter transformation with the extended Dynkin
diagram Γ̃ of class g (see (5.14)) has the same eigenvalues as the product of
(3 − g) multipliers, every one of which is the Coxeter transformation of type
Ai, where i ∈ {p− 1, q − 1, r − 1}. In other words,

For g = 0, the product Xp−1Xq−1Xr−1 is taken.

For g = 1, the product Xp−1Xq−1 is taken.

For g = 2, the product consists only of Xp−1.

For g = 3, the product is trivial (= 1).

(5.15)

The remaining two eigenvalues of the affine Coxeter transformation are both
equal to 1, see Table 1.2.

Proof. For g = 0, we have a simply-laced case considered in R. Steinberg’s
theorem (Theorem 5.1).

Let g = 1.
1) Cases F̃41, F̃42. Since the spectra of the characteristic polynomials of

the Coxeter transformations of the dual graphs coincide, we consider F̃41. We
use eq. (4.9), splitting the diagram F̃41 along the weighted edge. We have

X (F̃41) =− (X3X2 − 2λX2X1) = −X2(X3 − 2λX1) =

−X2(λ3 + λ2 + λ + 1− 2λ(λ + 1)) =

−X2(λ3 − λ2 − λ + 1) =

−X2(λ2 − 1)(λ− 1) = −(λ− 1)2X2X1,
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and, up to a sign, we have

X = (λ− 1)2X2X1. (5.16)

The polynomials X1 and X2 have, respectively, eigenvalues of orders 2 and 3
which are equal to the lengths of the branches A1 and A2 of F4 without a
non-homogeneous branch point.

2) Cases C̃Dn, D̃Dn. These diagrams are obtained as extensions of Bn, see
[Bo, Tab.II]. By (4.9) and by splitting the diagram C̃Dn along the weighted
edge, we have

X (C̃Dn) = X (Dn)X (A1)− 2λX (Dn−1).

By (5.10)
X (Dn) = (−1)n(λ + 1)(λn−1 + 1).

Thus,

(−1)n−1X (C̃Dn) =(λ + 1)2(λn−1 + 1)− 2λ(λ + 1)(λn−2 + 1) =

(λ + 1)(λn + λ + λn−1 + 1− 2λn−1 − 2λ) =

(λ + 1)(λn − λn−1 − λ + 1) =

(λ + 1)(λ− 1)(λn−1 − 1) = (λ− 1)2X1Xn−2,

and, up to a sign, we have

X = (λ− 1)2X1Xn−2. (5.17)

The polynomials X1 and Xn−2 have, respectively, eigenvalues of orders 2 and
n − 1 which are equal to the lengths of the branches A1 and An−2 of Bn

without a non-homogeneous branch point.
Let g = 2.
3) Cases G̃12, G̃22. Since the spectra of the Coxeter transformations of the

dual graphs coincide, we consider G̃12. By (4.9), splitting the diagram G̃12

along the weighted edge we have

X (G̃12) =− (X2X1 − 3λX1) = −X1(X2 − 3λ) =

− (λ + 1)(λ2 + λ + 1− 3λ) =

− (λ− 1)2(λ + 1) = −(λ− 1)2X1,

and, up to a sign, we have

X = (λ− 1)2X1. (5.18)

Polynomial X1 has the single eigenvalue of order 2, it corresponds to the
length of the single branch A1 of G2 without a non-homogeneous branch
point.
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4) Cases B̃n, C̃n, B̃Cn. The characteristic polynomials of the Coxeter
transformations of these diagrams coincide. Consider B̃n. By (4.9), splitting
the diagram B̃n along the weighted edge we have

X (B̃n) =X (Bn)X (A1)− 2λX (Bn−1), i.e.,

(−1)n−1X (B̃n) =(λn + 1)(λ + 1)− 2λ(λn−1 + 1) =

λn+1 + λn + λ + 1− 2λn−1 − 2λ =

λn+1 − λn − λ + 1 = (λ− 1)(λn − 1),

and, up to a sign, we have

X = (λ− 1)2Xn−1. (5.19)

All eigenvalues of the polynomial Xn−1 are of order n, it corresponds to the

length of the single branch An−1 of Bn without a non-homogeneous branch
point.

Let g = 3.
5) Cases Ã11, Ã12. Direct calculation of the Coxeter transformation gives

for Ã11 : C =
(
−1 4
0 1

) (
1 0
1 −1

)
=

(
3 −4
1 −1

)
,

for Ã12 : C =
(
−1 2
0 1

) (
1 0
2 −1

)
=

(
3 −2
2 −1

)
,

and in both cases we have

X = (λ− 3)(λ + 1) + 4 = (λ− 1)2. ��

5.4 The Kostant generating function and Poincaré series

5.4.1 The generating function

Let Sym(C2) be the symmetric algebra on C
2, in other words, Sym(C2) =

C[x1, x2], see (2.28). The symmetric algebra Sym(C2) is a graded C-algebra,
see (2.29):

Sym(C2) =
∞
⊕

n=0
Symn(C2).

For n ∈ Z+, let πn be1 the representation of SU(2) in Symn(C2) induced
by its action on C

2. The set {πn | n ∈ Z+} is the set of all irreducible
1 We use the following notation: Z+ = {0, 1, 2, . . . }.
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representations of SU(2), see, e.g., [Zhe73, §37]. Let G be any finite subgroup
of SU(2), see §A.1. B. Kostant in [Kos84] considered the question:

How does πn|G decompose for any n ∈ N?

The answer — the decomposition πn|G — is as follows:

πn|G =
r∑

i=0

mi(n)ρi, (5.20)

where ρi are irreducible representations of G, considered in the context of the
McKay correspondence, see §A.4. Thus, the decomposition (5.20) reduces the
question to the following one:

What are the multiplicities mi(n) equal to?

B. Kostant in [Kos84] obtained the multiplicities mi(n) by means the or-
bit structure of the Coxeter transformation on the highest root of the corre-
sponding Lie algebra. For further details concerning this orbit structure and
the multiplicities mi(n), see §5.5.

Note, that multiplicities mi(n) in (5.20) are calculated as follows:

mi(n) = 〈πn|G, ρi〉, (5.21)

(for the definition of the inner product 〈·, ·〉, see (5.33) ).

Remark 5.6. For further considerations, we extend the relation for multiplic-
ity (5.21) to the cases of restricted representations ρ↓i := ρi ↓G

H and induced
representations ρ↑i := ρi ↑G

H , where H is any subgroup of G (see §A.5.1):

m↓
i (n) = 〈πn|H, ρ↓i 〉, m↑

i (n) = 〈πn|G, ρ↑i 〉. (5.22)

We do not have any decomposition like (5.20) for restricted representations
ρ↓i or for induced representations ρ↑i . Nevertheless, we may use multiplicities
m↓

i (n) and m↑
i (n) for the generalization of the Kostant generating functions,

see below (5.27), (5.28).

Remark 5.7. 1) Let GLk(V ) be the group of invertible linear transformations
of the k-vector space V . A representation ρ : G −→ GLk(V ) defines a k-linear
action G on V by the rule

gv = ρ(g)v.

The pair (V, ρ) is called a G-module. The case where ρ(g) = IdV is called the
trivial representation in V . In this case

gv = v for all g ∈ V. (5.23)

In (5.20), the trivial representation ρ0 corresponds to a particular vertex (see
[McK80]), which extends the Dynkin diagram to the extended Dynkin dia-
gram.



5.4 The Kostant generating function and Poincaré series 107

2) Let ρ0(H) (resp. ρ0(G)) be the trivial representation of a subgroup
H ⊂ G (resp. of group G). The trivial representation ρ0(H) : H −→ GLk(V )
coincides with the restricted representation ρ0 ↓G

H : G −→ GLk(V ), and the
trivial representation ρ0(G) : G −→ GLk(V ) coincides with the induced rep-
resentation ρ0 ↑G

H : H −→ GLk(V ).

Since there is a one-to-one correspondence between the ρi and the vertices
of the Dynkin diagram, we can define (see [Kos84, p.211]) the vectors vn,
where n ∈ Z+, as follows:

vn =
r∑

i=0

mi(n)αi, where πn|G =
r∑

i=0

mi(n)ρi, (5.24)

where αi are simple roots of the corresponding extended Dynkin diagram.
Similarly, for the multiply-laced case, we define vectors vn to be:

vn =
r∑

i=0

m↑
i (n)αi or vn =

r∑

i=0

m↓
i (n)αi, (5.25)

where the multiplicities m↑
i (n) and m↓

i (n) are defined by (5.22). The vector vn

belongs to the root lattice generated by simple roots. Following B. Kostant,
we define the generating function PG(t) for cases (5.24) and (5.25) as follows:

PG(t) =

⎛

⎜⎜⎜⎜⎜⎝

[PG(t)]0

[PG(t)]1

. . .

[PG(t)]r

⎞

⎟⎟⎟⎟⎟⎠
:=

∞∑

n=0

vntn, (5.26)

Let us introduce PG↑(t) (resp. PG↓(t)) for the case of induced representa-
tions ρi ↑G

H (resp. restricted representation ρi ↓G
H), playing the same role as

the Kostant generating functions for the representation ρi.

PG↑(t) =

⎛

⎜⎜⎜⎝

[PG↑(t)]0

. . .

[PG↑(t)]r

⎞

⎟⎟⎟⎠ :=
∞∑

n=0

vntn, where vn =
r∑

i=0

m↑
i (n)αi,

PG↓(t) =

⎛

⎜⎜⎜⎝

[PG↓(t)]0

. . .

[PG↓(t)]r

⎞

⎟⎟⎟⎠ :=
∞∑

n=0

vntn, where vn =
r∑

i=0

m↓
i (n)αi,

(5.27)
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The components of vectors PG(t), PG↑(t), PG↓(t) are the following series

[PG(t)]i =
∞∑

n=0

mi(n)tn,

[PG↑(t)]i =
∞∑

n=0

m↑
i (n)tn,

[PG↓(t)]i =
∞∑

n=0

m↓
i (n)tn,

(5.28)

where i = 0, 1, . . . , r. In particular, for i = 0, we have

[PG(t)]0 =
∞∑

n=0

m0(n)tn,

[PG↑(t)]0 =
∞∑

n=0

m↑
0(n)tn,

[PG↓(t)]0 =
∞∑

n=0

m↓
0(n)tn,

where m0(n) is the multiplicity of the trivial representation ρ0 (see Remark
5.7) in Symn(C2). By §2.3 the algebra of invariants RG is a subalgebra of
the symmetric algebra Sym(C2). Thanks to (5.23), we see that RG coincides
with Sym(C2), and [PG(t)]0 is the Poincaré series of the algebra of invariants
Sym(C2)G, i.e.,

[PG(t)]0 = P (Sym(C2)G, t). (5.29)

(see [Kos84, p.221, Rem.3.2]).
The series [PG↑(t)]0 (resp. [PG↓(t)]0) are said to be the generalized Poincaré

series for induced representations (resp. for restricted representations). Let

P̃G(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

PG(t), for vn =
r∑

i=0

mi(n)αi,

PG↑(t), for vn =
r∑

i=0

m↑
i (n)αi,

PG↓(t), for vn =
r∑

i=0

m↓
i (n)αi,

[P̃G(t)]0 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[PG(t)]0, for vn =
r∑

i=0

mi(n)αi,

[PG↑(t)]0, for vn =
r∑

i=0

m↑
i (n)αi,

[PG↓(t)]0, for vn =
r∑

i=0

m↓
i (n)αi,

(5.30)
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The series P̃G(t) are said to be the generalized Kostant generating func-
tions, and the series [P̃G(t)]0 are said to be generalized Poincaré series.

The following theorem gives a remarkable formula for calculating the
Poincaré series for the binary polyhedral groups. The theorem is known in
different forms. B. Kostant in [Kos84] proves it in the context of the Coxeter
number h.

Theorem 5.8 (Kostant, Knörrer, Gonzalez-Sprinberg, Verdier). The
Poincaré series [PG(t)]0 can be calculated as the following rational function:

[PG(t)]0 =
1 + th

(1− ta)(1− tb)
, (5.31)

where
b = h + 2− a, and ab = 2|G|. (5.32)

For a proof, see Theorem 1.4 and Theorem 1.8 from [Kos84], [Kn85, p.185],
[GV83, p.428]. We call the numbers a and b the Kostant numbers. They can
be easily calculated, see Table 5.1, compare also with Table A.2 and Table
A.3. Note, that a = 2d, where d is the maximal coordinate of the nil-root
vector from the kernel of the Tits form, see §2.2.1 and Fig. 2.6.

5.4.2 The characters and the McKay operator

Let χ1, χ2, . . . χr be all irreducible C-characters of a finite group G correspond-
ing to irreducible representations ρ1, ρ2, . . . , ρr, so that χ1 corresponds to the
trivial representation, i.e., χ1(g) = 1 for all g ∈ G. The set of all characters
of G constitute the character algebra C(G) since the set C(G) is also a vector
space over C. An hermitian inner product 〈·, ·〉 on C(G) is defined as follows.
For characters α, β ∈ C(G), let

〈α, β〉 =
1
|G|

∑

g∈G

α(g)β(g). (5.33)

Sometimes, we will write inner product 〈ρi, ρj〉 of the representations mean-
ing the inner product of the corresponding characters 〈χρi , χρj 〉. Let zk

ij =
〈χiχj , χk〉, where χiχj corresponds to the representation ρi ⊗ ρj . It is known
that zk

ij is the multiplicity of the representation ρk in ρi ⊗ ρj and zk
ij = zk

ji.
The numbers zk

ij are integers and are called the structure constants, see, e.g.,
[Kar92, p.765].

For every i ∈ {1, ..., r}, there exists some
∧
i∈ {1, ..., r} such that

χ∧
i
(g) = χi(g) for all g ∈ G.

The character χ∧
i

corresponds to the contragredient representation ρ∧
i

deter-
mined from the relation
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Table 5.1. The binary polyhedral groups (BPG) and the Kostant numbers a, b

Dynkin Order of BPG Coxeter a b

diagram group number

An−1 n Z/nZ n 2 n

Dn+2 4n Dn 2n + 2 4 2n

E6 24 T 12 6 8

E7 48 O 18 8 12

E8 120 J 30 12 20

ρ∧
i
(g) = (ρi(g)t)−1

. (5.34)

We have
〈χiχj , χk〉 = 〈χi, χ∧

j
χk〉 (5.35)

since

〈χiχj , χk〉 =
1
|G|

∑

g∈G

χi(g)χj(g)χk(g) =

1
|G|

∑

g∈G

χi(g)(χj(g)χk(g)) = 〈χi, χ∧
j
χk〉.

Remark 5.9. The group SU(2) is the set of all unitary unimodular 2× 2 ma-
trices u, i.e.,

u∗ = u−1 (unitarity) ,

det(u) = 1 (unimodularity) ,
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where
(u∗)ij = uji,

where the complex conjugate of uij = c+di is c−di. The matrices u ∈ SU(2)
have the following form:

u =
(

a b

−b a

)
, and u∗ =

(
a −b

b a

)
, where aa + bb = 1, (5.36)

see, e.g., [Ha89, Ch.9, §6]. The mutually inverse matrices u and u−1 are

u =
(

a b
c d

)
, and u−1 =

(
d −b
−c a

)
, where ad− bc = 1. (5.37)

Set

s =
(

0 −1
1 0

)
, then s−1 = s3 =

(
0 1
−1 0

)
.

For any u ∈ SU(2), we have

sus−1 = (u−1)
t
= (ut)−1

. (5.38)

The element s is called the Weyl element. ��

According to (5.34) and (5.38) we see that every finite dimensional repre-
sentation of the group of SU(2) is equivalent to its contragredient represen-
tation, see [Zhe73, §37, Rem.3]. Thus by (5.35), for representations ρi of any
finite subgroup G ⊂ SU(2), we have

〈χiχj , χk〉 = 〈χi, χjχk〉. (5.39)

The matrix of multiplicities A := A(G) from eq. (A.13) was introduced by
J. McKay in [McK80]; it plays the central role in the McKay correspondence,
see §A.4. We call this matrix — or the corresponding operator — the McKay
matrix or the McKay operator.

Similarly, let Ã and Ã∨ be matrices of multiplicities (A.14), (A.16). These
matrices were introduced by P. Slodowy [Sl80] by analogy with the McKay
matrix for the multiply-laced case, see §A.5.1. We call these matrices the
Slodowy operators.

The following result of B. Kostant [Kos84], which holds for the McKay
operator holds also for the Slodowy operators.

Proposition 5.10. If B is either the McKay operator A or one of the Slodowy
operator Ã or Ã∨, then

Bvn = vn−1 + vn+1. (5.40)
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Proof. From now on

ρi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρi for B = A,

ρ↓i for B = Ã,

ρ↑i for B = Ã∨,

mi(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mi(n) for B = A,

m↓
i (n) for B = Ã,

m↑
i (n) for B = Ã∨.

By (5.24), (5.25), and by definition of the McKay operator (A.13) and by
definition of the Slodowy operator (A.14) and (A.16), we have

Bvn = B

⎛

⎝
m0(n)

. . .
mr(n)

⎞

⎠ =

⎛

⎝

∑
a0imi(n)

. . .∑
arimi(n)

⎞

⎠ =

⎛

⎝

∑
a0i〈ρi, πn〉

. . .∑
ari〈ρi, πn〉

⎞

⎠ . (5.41)

By (A.13), (A.14) and (A.16) we have

r∑

i=1

a0i〈ρi, πn〉 = 〈
r∑

i=1

a0iρi, πn〉 = 〈ρ⊗ ρi, πn〉,

and from eq. (5.41) we obtain

Bvn =

⎛

⎝
〈ρ⊗ ρ0, πn〉

. . .
〈ρ⊗ ρr, πn〉

⎞

⎠ , (5.42)

where ρ is the irreducible two-dimensional representation which coincides with
the representation π1 in Sym2(C2) from §5.4.1. Thus,

Bvn =

⎛

⎝
〈π1 ⊗ ρ0, πn〉

. . .
〈π1 ⊗ ρr, πn〉

⎞

⎠ . (5.43)

From eq. (5.39) we obtain

Bvn =

⎛

⎝
〈ρ0, π1 ⊗ πn〉

. . .
〈ρr, π1 ⊗ πn〉

⎞

⎠ . (5.44)

By Clebsch-Gordan formula we have

π1 ⊗ πn = πn−1 ⊕ πn+1, (5.45)

where π−1 is the zero representation, see [Sp77, exs.3.2.4] or [Ha89, Ch.5,
§6,§7]. From eq. (5.44) and eq. (5.45) we have (5.40). ��

For the following corollary, see [Kos84, p.222] and also [Sp87, §4.1].
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Corollary 5.11. Let x = P̃G(t) be given by (5.30). Then

tBx = (1 + t2)x− v0, (5.46)

where B is either the McKay operator A or one of the Slodowy operators Ã,
Ã∨.

Proof. From (5.40) we obtain

Bx =
∞∑

n=0

Bvntn =
∞∑

n=0

(vn−1 + vn+1)tn =
∞∑

n=0

vn−1t
n +

∞∑

n=0

vn+1t
n =

t

∞∑

n=1

vn−1t
n−1 + t−1

∞∑

n=0

vn+1t
n+1 = tx + t−1(

∞∑

n=0

vntn − v0) =

tx + t−1x− t−1v0.��

5.4.3 The Poincaré series and W. Ebeling’s theorem

W. Ebeling in [Ebl02] makes use of the Kostant relation (5.40) and deduces
a new remarkable fact about the Poincaré series, a fact that shows that the
Poincaré series of a binary polyhedral group (see (5.31)) is the quotient of two
polynomials: the characteristic polynomial of the Coxeter transformation and
the characteristic polynomial of the corresponding affine Coxeter transforma-
tion, see [Ebl02, Th.2].

We show W. Ebeling’s theorem also for the multiply-laced case, i.e., for
the generalized Poincaré series, see (5.30).

Theorem 5.12 (generalized W.Ebeling’s theorem [Ebl02]). Let G be
a binary polyhedral group and let [P̃G(t)]0 be the generalized Poincaré series
(5.30). Then

[P̃G(t)]0 =
det M0(t)
det M(t)

,

where
det M(t) = det |t2I −Ca|, det M0(t) = det |t2I −C|,

C is the Coxeter transformation and Ca is the corresponding affine Coxeter
transformation.

Proof. By (5.46) we have

[(1 + t2)I − tB]x = v0,

where x is the vector P̃G(t) and by Cramer’s rule the first coordinate P̃G(t) is

[P̃G(t)]0 =
det M0(t)
det M(t)

,
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Table 5.2. The characteristic polynomials X , X̃ and the Poincaré series

Dynkin Coxeter Affine Coxeter Quotient

diagram transformation X transformation X̃ p(λ) =
X
X̃

D4 (λ + 1)(λ3 + 1) (λ − 1)2(λ + 1)3
λ3 + 1

(λ2 − 1)2

Dn+1 (λ + 1)(λn + 1) (λn−1 − 1)(λ − 1)(λ + 1)2
λn + 1

(λn−1 − 1)(λ2 − 1)

E6
(λ6 + 1)

(λ2 + 1)

(λ3 − 1)

(λ − 1)
(λ3 − 1)2(λ + 1)

λ6 + 1

(λ4 − 1)(λ3 − 1)

E7
(λ + 1)(λ9 + 1)

(λ3 + 1)
(λ4 − 1)(λ3 − 1)(λ + 1)

λ9 + 1

(λ4 − 1)(λ6 − 1)

E8
(λ15 + 1)(λ + 1)

(λ5 + 1)(λ3 + 1)
(λ5 − 1)(λ3 − 1)(λ + 1)

λ15 + 1

(λ10 − 1)(λ6 − 1)

Bn λn + 1 (λn−1 − 1)(λ2 − 1)
λn + 1

(λn−1 − 1)(λ2 − 1)

Cn λn + 1 (λn − 1)(λ − 1)
λn + 1

(λn − 1)(λ − 1)

F4
λ6 + 1

λ2 + 1
(λ2 − 1)(λ3 − 1)

λ6 + 1

(λ4 − 1)(λ3 − 1)

G2
λ3 + 1

λ + 1
(λ − 1)2(λ + 1)

λ3 + 1

(λ2 − 1)2

An
λn+1 − 1

λ − 1
(λn−k+1 − 1)(λk − 1)

λn+1 − 1

(λ − 1)(λn−k+1 − 1)(λk − 1)

A2n−1
λ2n − 1

λ − 1
(λn − 1)2 for k = n

λn + 1

(λn − 1)(λ − 1)
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where
det M(t) = det

(
(1 + t2)I − tB

)
, (5.47)

and M0(t) is the matrix obtained by replacing the first column of M(t) by v0 =
(1, 0, ..., 0)t. The vector v0 corresponds to the trivial representation π0, and
by the McKay correspondence, v0 corresponds to the particular vertex which
extends the Dynkin diagram to the extended Dynkin diagram. Therefore, if
det M(t) corresponds to the affine Coxeter transformation, and

det M(t) = det |t2I −Ca|, (5.48)

then det M0(t) corresponds to the Coxeter transformation, and

det M0(t) = det |t2I −C|. (5.49)

So, it suffices to prove (5.48), i.e.,

det[(1 + t2)I − tB] = det |t2I −Ca|. (5.50)

If B is the McKay operator A given by (A.13), then

B = 2I −K =
(

2I 0
0 2I

)
−

(
2I 2D

2Dt 2I

)
=

(
0 −2D

−2Dt 0

)
, (5.51)

where K is a symmetric Cartan matrix (3.2). If B is the Slodowy operator Ã

or Ã∨ given by (A.14), (A.16), then

B = 2I −K =
(

2I 0
0 2I

)
−

(
2I 2D
2F 2I

)
=

(
0 −2D
−2F 0

)
, (5.52)

where K is the symmetrizable Cartan matrix (3.4). Thus, in the generic case

M(t) = (1 + t2)I − tB =
(

1 + t2 2tD
2tF 1 + t2

)
. (5.53)

Assuming t �= 0 we deduce from (5.53) that

M(t)
(

x
y

)
= 0 ⇐⇒

{
(1 + t2)x = −2tDy,
2tFx = −(1 + t2)y.

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

(1 + t2)2

4t2
x = FDy,

(1 + t2)2

4t2
y = DFy.

(5.54)

According to (3.11), Proposition 3.4 and Proposition 3.10 we see that t2 is an
eigenvalue of the affine Coxeter transformation Ca, i.e., (5.50) together with
(5.48) are proved. ��

For the results of calculations using W. Ebeling’s theorem, see Table 5.2.



116 5 R. Steinberg’s theorem, B. Kostant’s construction

Remark 5.13. 1) The characteristic polynomials X for the Coxeter transfor-
mation and X̃ for the affine Coxeter transformation in Table 5.2 are taken
from Tables 1.1 and 1.2. Pay attention to the fact that the affine Dynkin di-
agram for Bn is C̃Dn, ([Bo, Tab.2]), and the affine Dynkin diagram for Cn is
C̃n, ([Bo, Tab.3]), see Fig. 2.6.

2) The characteristic polynomial X for the affine Coxeter transformation
of An depends on the index of the conjugacy class k of the Coxeter trans-
formation, see (4.3). In the case of An (for every k = 1, 2, ..., n) the quotient

p(λ) =
X
X̃

contains three factors in the denominator, and its form is different

from (5.31), see Table 5.2.
For the case A2n−1 and k = n, we have

p(λ) =
λ2n − 1

(λ− 1)(λ2n−k − 1)(λk − 1)
=

λ2n − 1
(λ− 1)(λn − 1)(λn − 1)

=
λn + 1

(λn − 1)(λ− 1)

(5.55)

and p(λ) again is of the form (5.31), see Table 5.2.
3) The quotients p(λ) coincide for the following pairs:

D4 and G2, E6 and F4,
Dn+1 and Bn(n ≥ 4), A2n−1 and Cn.

Note that the second elements of the pairs are obtained by folding operation
from the first ones, see Remark 5.4.

5.5 The orbit structure of the Coxeter transformation

5.5.1 The Kostant generating functions and polynomials z(t)i

Let g be a simple complex Lie algebra of type A, D or E, g̃ be the affine
Kac-Moody Lie algebra associated to g, and h ⊆ h̃ be, respectively, Cartan
subalgebras of g ⊆ g̃. Let h∨ (resp. h̃∨) be the dual space to h (resp. h̃) and
αi ∈ h∨, i = 1, . . . , l be an ordered set of simple positive roots. Here, we
follow B. Kostant’s description [Kos84] of the orbit structure of the Coxeter
transformation C on the highest root in the root system of g. We consider
a bipartite graph and a bicolored Coxeter transformation from §3.1.1, §3.1.2.
Let β be the highest root of (h, g), see §4.1. Then

w2β = β or w1β = β.

In the second case we just swap w1 and w2, i.e., we always have

w2β = β. (5.56)
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Between two bicolored Coxeter transformations (3.1) we select one such that

C = w2w1.

Consider, for example, the Dynkin diagram E6. Here,

w1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1

1
1 1 0 −1
1 0 1 −1
1 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎠

x0

x1

x2

y1

y2

y3

, w2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 1 1 1
−1 1 0 0
−1 0 1 0

1
1

1

⎞

⎟⎟⎟⎟⎟⎟⎠

x0

x1

x2

y1

y2

y3

(5.57)

The vector z ∈ h∨ and the highest root β are:

z = x1 y1 x0 y2 x2

y3
, β = 1 2 3 2 1

2 , or β =

⎛

⎜⎜⎜⎜⎜⎜⎝

3
1
1
2
2
2

⎞

⎟⎟⎟⎟⎟⎟⎠

x0

x1

x2

y1

y2

y3

(5.58)

Here,

w1β =
1 2 3 2 1

1 , and w2β =
1 2 3 2 1

2 = β (5.59)

Further, following B.Kostant [Kos84, Th.1.5] consider the alternating
products τ (n):

τ (1) = w1,

τ (2) = C = w2w1,

τ (3) = w1C = w1w2w1,

. . . ,

τ (n) =

{
Ck = w2w1 . . . w2w1 for n = 2k,

w1Ck = w1w2w1 . . . w2w1 for n = 2k + 1,

(5.60)

and the orbit of the highest root β under the action of τ (n):

βn = τ (n)β, where n = 1, . . . , h− 1

(h is the Coxeter number, see(4.1)).

Theorem 5.14. (B. Kostant, [Kos84, Theorems 1.3, 1.4, 1.5, 1.8])
1) There exist zj ∈ h̃∨, where j = 0, . . . , h, and even integers a and b such

that 2 ≤ a ≤ b ≤ h (see (5.32) and Table 5.1) and so the generating functions
PG(t) (see (1.3), (1.10), or (5.26), (5.28) ) are as follows:
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[PG(t)]i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 + th

(1− ta)(1− tb)
for i = 0,

h∑
j=0

zjt
j

(1− ta)(1− tb)
for i = 1, . . . , r.

(5.61)

For n = 1, . . . , h− 1, one has zn ∈ h∨ ( not just h̃∨). The indices i = 1, . . . , r
enumerate the vertices of the Dynkin diagram and the coordinates of the vec-
tors zn; The index i = 0 corresponds to the additional (affine) vertex, the one
that extends the Dynkin diagram to the extended Dynkin diagram. One has
z0 = zh = α0, where α0 ∈ h̃∨ is the added simple root corresponding to the
affine vertex.

2) The vectors zn (we call these vectors the assembling vectors) are ob-
tained as follows:

zn = τ (n−1)β − τ (n)β. (5.62)

3) We have

zg = 2α∗, where g =
h

2
,

and α∗ is the simple root corresponding to the branch point for diagrams Dn,
En and to the midpoint for the diagram A2m−1. In all these cases h is even,
and g is an integer. The diagram A2m is excluded.

4) The series of assembling vectors zn is symmetric:

zg+k = zg−k for k = 1, . . . , g. (5.63)

In the case of the Dynkin diagram E6, the vectors τ (n)β are given in
Table 5.3, and the assembling vectors zn are given in Table 5.4. The vector z6

coincides with 2αx0 , where αx0 is the simple root corresponding to the vertex
x0, see (5.58). From Table 5.4 we see that

z1 = z11, z2 = z10, z3 = z9, z4 = z8, z5 = z7.

Denote by z(t)i the polynomial
h∑

j=0

zjt
j from (5.61). In the case of E6 we

have:

z(t)x0 = t2 + t4 + 2t6 + t8 + t10,

z(t)x1 = t4 + t8,

z(t)x2 = t4 + t8,

z(t)y1 = t3 + t5 + t7 + t9,

z(t)y2 = t3 + t5 + t7 + t9,

z(t)y3 = t + t5 + t7 + t11.

(5.64)

The Kostant numbers a, b (see Table 5.1) for E6 are a = 6, b = 8. From (5.61)
and (5.64), we have
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Table 5.3. The orbit of the Coxeter transformation on the highest root

β τ (1)β = w1β τ (2)β = Cβ

1 2 3 2 1

2

1 2 3 2 1

1

1 2 2 2 1

1

τ (3)β = w1Cβ τ (4)β = C2β τ (5)β = w1C
2β

1 1 2 1 1

1

0 1 1 1 0

1

0 0 1 0 0

0

τ (6)β = C3β τ (7)β = w1C
3β τ (8)β = C4β

0 0 −1 0 0

0

0 −1 −1 −1 0

−1

−1 −1 −2 −1 −1

−1

τ (9)β = w1C
4β τ (10)β = C5β τ (11)β = w1C

5β

−1 −2 −2 −2 −1

−1

−1 −2 −3 −2 −1

−1

−1 −2 −3 −2 −1

−2

Table 5.4. The assembling vectors zn = τ (n−1)β − τ (n)β

z1 = β − w1β z2 = w1β − Cβ z3 = Cβ − w1Cβ

0 0 0 0 0

1

0 0 1 0 0

0

0 1 0 1 0

0

z4 = w1Cβ − C2β z5 = C2β − w1C
2β z6 = w1C

2β − C3β

1 0 1 0 1

0

0 1 0 1 0

1

0 0 2 0 0

0

z7 = C3β − w1C
3β z8 = w1C

3β − C4β z9 = C4β − w1C
4β

0 1 0 1 0

1

1 0 1 0 1

0

0 1 0 1 0

0

z10 = w1C
4β − C5β z11 = C5β − w1C

5β

0 0 1 0 0

0

0 0 0 0 0

1
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[PG(t)]x0 =
t2 + t4 + 2t6 + t8 + t10

(1− t6)(1− t8)
,

[PG(t)]x1 = [PG(t)]x2 =
t4 + t8

(1− t6)(1− t8)
,

[PG(t)]y1 = [PG(t)]y2 =
t3 + t5 + t7 + t9

(1− t6)(1− t8)
,

[PG(t)]y3 =
t + t5 + t7 + t11

(1− t6)(1− t8)
.

Since
1

1− t6
=

∞∑

n=0

t6n,
1

1− t8
=

∞∑

n=0

t8n,

we have

[PG(t)]x1 = [PG(t)]x2 =
∞∑

i,j=0

(t6i+8j+4 + t6i+8j+8),

[PG(t)]y1 = [PG(t)]y2 =
∞∑

i,j=0

(t6i+8j+3 + t6i+8j+5 + t6i+8j+7 + t6i+8j+9),

[PG(t)]y3 =
∞∑

i,j=0

(t6i+8j+1 + t6i+8j+5 + t6i+8j+7 + t6i+8j+11),

(5.65)

Recall that mα(n), where α = x1, x2, y1, y2, y3, are the multiplicities of the
irreducible representations ρα of G (considered in the context of the McKay
correspondence, §A.4) in the decomposition of πn|G (5.20). These multiplici-
ties are the coefficients of the Poincaré series (5.65), see (5.24), (5.26), (5.28).
For example,

[PG(t)]x1 = [PG(t)]x2 = t4 + t8 + t10 + t12 + t14 + 2t16 + t18 + 2t20 + . . .

mx1 = mx2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for n = 1, 2, 3, 5, 6 and n = 2k + 1, k ≥ 3,

1 for n = 4, 8, 10, 12, 14, 18, . . .

2 for n = 16, 20, . . .

. . .

In particular, the representations ρx1(n) and ρx2(n) do not enter in the de-
composition of πn of SU(2) (see §5.4.1) for any odd n.
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In [Kos04], concerning the importance of the polynomials z(t)i, B. Kostant
points out: “Unrelated to the Coxeter element, the polynomials z(t)i are
also determined in Springer, [Sp87]. They also appear in another context
in Lusztig, [Lus83] and [Lus99]. Recently, in a beautiful result, Rossmann,
[Ros04], relates the character of γi to the polynomial z(t)i.”

5.5.2 One more observation of McKay

In this section we prove one more observation of McKay [McK99] relating the
Molien-Poincaré series. In our context these series are the Kostant generating
functions PG(t) corresponding to the irreducible representations of group G:

[PG(t)]i =
z(t)i

(1− ta)(1− tb)
, (5.66)

see (5.61), (5.64).

Theorem 5.15. (Observation of McKay [McK99, (*)]) For diagrams Γ =
Dn, En and A2m−1, the Kostant generating functions [PG(t)]i are related as
follows:

(t + t−1)[PG(t)]i =
∑

j←i

[PG(t)]j , (5.67)

where j runs over all successor1 vertices to i, and [PG(t)]0 related to the affine
vertex α0 occurs in the right side only: i = 1, 2, . . . , r.

By (5.66), observation of McKay (5.67) is equivalent to the following one:

(t + t−1)z(t)i =
∑

j←i

z(t)j , where i = 1, . . . , r. (5.68)

So, we will prove (5.68).

Remark 5.16. J. McKay introduces in [McK99] so-called semi-affine graph
which is defined in terms of the Dynkin diagram with an additional edge (two
edges for A-type). This edge is directed toward to the affine node. Thus, the
semi-affine graph is an oriented graph, one edge is unidirectional, all other
edges are bidirectional. The sink of the given directed edge is called the suc-
cessor node. ��

The adjacency matrix A for types ADE is the matrix containing non-
diagonal entries aij if and only if the vertices i and j are connected by an
edge, and then aij = 1, and all diagonal entries aii vanish:

A =
(

0 −2D
−2Dt 0

)
, (5.69)

1 See Remark 5.16.
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see (3.3) and also §C.7.1. Let α0 be the affine vertex of the graph Γ, and
u0 be a vertex adjacent to α0. Extend the adjacency matrix A to the semi-
affine adjacency matrix Aγ (in the style to the McKay definition of the semi-
affine graph in [McK99], see Remark 5.16) by adding a row and a column
corresponding to the affine vertex α0 as follows: 0 is set in the (u0, α0)th slot
and 1 is set in the(α0, u0)th slot, all remaining places in the α0th row and the
α0th column are 0, see Fig. 5.4. Note, that for the An case, we set 1 in the
two places: (α0, u0) and (α0, u

′
0) corresponding to vertices u0 and u′

0 adjacent
to α.

Fig. 5.4. The semi-affine adjacent matrix Aγ

Using the semi-affine adjacency matrixAγ we express McKay’s observation
(5.68) in the matrix form:

(t + t−1)z(t)i = (Aγz(t))i, where z(t) = {z(t)0, . . . , z(t)r}
and i = 1, . . . , r.

(5.70)

To prove (5.70), we consider the action of the adjacency matrix A and the
semi-affine adjacency matrix Aγ related to the extended Dynkin diagram of
types ADE on assembling vectors zn (5.62).

Proposition 5.17. 1) For the vectors zi ∈ h∨ from (5.62), we have

(a) Azi = zi−1 + zi+1 for 1 < i < h− 1,

(b) Az1 = z2 and Azh−1 = zh−2,
(5.71)

2) Consider the same vectors zi as vectors from h̃∨, so we just add a zero
coordinate to the affine vertex α0. We have
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(a) Aγzi = zi−1 + zi+1 for 1 < i < h− 1,

(b) Aγz1 = z2 and Aγzh−1 = zh−2,

(c) Aγz0 = z1 and Aγzh = zh−1.

(5.72)

Proof.
1a) Let us prove (5.71 (a)). According to (5.62) we have

z2n = w1Cn−1β −Cnβ = (1− w2)w1Cn−1β,

and
z2n+1 = Cnβ − w1Cnβ = (1− w1)Cnβ.

Thus, for i = 2n, eq. (5.71 (a)) is equivalent to

A(1− w2)w1Cn−1β = (1− w1)Cn−1β + (1− w1)Cnβ, (5.73)

and for i = 2n + 1, eq. (5.71 (a)) is equivalent to

A(1− w1)Cnβ = (1− w2)w1Cn−1β + (1− w2)w1Cnβ. (5.74)

To prove relations (5.73) and (5.74), it suffices to show that

A(1− w2)w1 = (1− w1) + (1− w1)C = (1− w1)(1 + C), (5.75)

and

A(1− w1)C = (1− w2)w1 + (1− w2)w1C = (1− w2)w1(1 + C). (5.76)

In (5.56), (5.57), w1 and w2 are chosen as

w1 =
(

I 0
−2Dt −I

)
, w2 =

(
−I −2D
0 I

)
,

So, by (5.69) we have

1− w1 =
(

0 0
2Dt 2I

)
, 1− w2 =

(
2I 2D
0 0

)
,

(1− w2)w1 =
(

2I − 4DDt −2D
0 0

)
, C =

(
4DDt − I 2D
−2Dt −I

)
,

A(1− w2)w1 =
(

0 0
−4Dt + 8DtDDt 4DtD

)
,

1 + C =
(

4DDt 2D
−2Dt 0

)
.

(5.77)

By (5.77) we have

(1− w1)(1 + C) =
(

0 0
−4Dt + 8DtDDt 4DtD

)
,
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and (5.75) is true. Further, we have

(1− w1)C =
(

0 0
8DtDDt − 6Dt 4DtD − 2I

)
,

A(1− w1)C =
(
−16DDtDDt + 12DDt −8DDtD + 4D

0 0

)
,

(5.78)

By (5.77) we obtain

(1− w2)w1(1 + C) =
(
−16DDtDDt + 12DDt −8DDtD + 4D

0 0

)
,

and (5.74) is also true.
1b) Let us move on to (5.71 (b)). This is equivalent to

A(β − w1β) = w1β −Cβ, or
A(1− w1)β = (1− w2)w1β.

(5.79)

By (5.69), (5.77) eq. (5.79) is equivalent to
(
−4DDt −4D

0 0

)(
x
y

)
=

(
2I − 4DDt −2D

0 0

) (
x
y

)
, (5.80)

where

β =
(

x
y

)
(5.81)

is given in two-component form (3.8) corresponding to a bipartite graph. Eq.
(5.80) is equivalent to

−2Dy = 2x. (5.82)

Since the matrix −2D contains a 1 at the (i, j)th slot if and only if the vertices
i and j are connected, eq. (5.82) follows from the well-known fact formulated
in Remark 5.18(b).

Remark 5.18 (On the highest root and imaginary roots). (a) The highest root
β for types ADE coincides with the minimal positive imaginary root (of the
corresponding extended Dynkin diagram) without affine coordinate α0, see
(2.26) and §2.2.1. The coordinates of the imaginary vector δ are given in Fig.
2.6.

(b) For any vertex xi of the highest root β (except the vertex u0 adjacent
to the affine vertex α0), the sum of coordinates of the adjacent vertices yj

coincides with the doubled coordinate of αxi :
∑

yi→xj

αyj = 2αxi . (5.83)
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(c) For any vertex xi of the imaginary root δ, the sum of coordinates of
the adjacent vertices yj coincides with the doubled coordinate of αxi as above
in (5.83).

Since we can choose partition (5.81) such that α0 belongs to subset y, we
obtain (5.82). The second relation of (5.71 (b)) follows from the symmetry of
assembling vectors, see (5.63) of the Kostant theorem (Theorem 5.14). ��

2) Relations (a), (b) of (5.72) follow from the corresponding relations in
(5.71) since the addition of a “1” to the (α0, u0)th slot of the matrixAγ (5.4) is
neutralized by the affine coordinate 0 of the vectors zi, where i = 1, . . . , h−1.

Let us prove (c) of (5.72). First,

Aγz0 = αu0 , for Dn, En,

Aγz0 = αu0 + αu′
0
, for A2m−1,

where αu0 (resp. αu′
0
) is the simple root with a “1” in the u0th (resp. u′

0th)
position. By (5.62) z1 = (1 − w1)β. Then, by (5.77), we have that eq. (5.72
(c)) is equivalent to

αu0 = (1− w1)β =
(

0
2Dtx + 2y

)
, for Dn, En,

αu0 + αu′
0

= (1− w1)β =
(

0
2Dtx + 2y

)
, for A2m−1,

Again, by Remark 5.18 (b), we have 2Dtx + 2y = 0 for all coordinates
excepting coordinate u0, u

′
0. For coordinate u0 (resp. u′

0), by Remark 5.18 (c),
we have (αu0 − 2Dtx)u0 = 2yu0 (resp. (αu′

0
− 2Dtx)u′

0
= 2yu′

0
for A2m−1). ��

Proof of (5.70) . Since,

z(t) =
h∑

j=0

zjt
j , z(t)i = (

h∑

j=0

zjt
j)i, where i = 1, . . . , r,

by (5.72) we have

Aγz(t) =
h∑

j=0

Aγzjt
j =

z1 + z2t+(z1 + z3)t2 + · · ·+
(zh−3 + zh−1)th−2 + zh−2t

h−1 + zh−1t
h =

(z1 + z2t+z3t
2 + · · ·+ zh−1t

h−2)+

(z1t
2 + · · ·+ zh−2t

h−1 + zh−1t
h) =

t−1(z1t+z2t
2 + z3t

3 + · · ·+ zh−1t
h−1)+

t(z1t + · · ·+ zh−2t
h−2 + zh−1t

h−1) =

(t + t−1)(z1t + z2t
2 + z3t

3 + · · ·+ zh−1t
h−1) =

(t + t−1)(z(t)− z0 − zhth).
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Since z0 = zh we have

Aγz(t) = (t + t−1)z(t)− (t + t−1)(1 + th)z0.

Coordinates (z0)i = (zh)i are zeros for i = 1, . . . , r, and

(Aγz(t))i = (t + t−1)z(t)i, i = 1, . . . , r. (5.84)

For the coordinate i = 0, corresponding to affine vertex α0, by definition of
Aγ , see Fig. 5.4, and by (5.61), we have (Aγz(t))0 = 0, and z(t)0 = (1+ th)z0.
��

Let us check the observation of McKay for the Kostant generating func-
tions for the case of E6. According to (5.64) we should get the following
relations:

1) For x0 : (t + t−1)z(t)x0 = z(t)y1 + z(t)y2 + z(t)y3 ,

2) For y1 : (t + t−1)z(t)y1 = z(t)x0 + z(t)x1 ,

3) For y2 : (t + t−1)z(t)y2 = z(t)x0 + z(t)x2 ,

4) For x1 : (t + t−1)z(t)x1 = z(t)y1 ,

5) For x2 : (t + t−1)z(t)x2 = z(t)y2 ,

6) For y3 : (t + t−1)z(t)y3 = z(t)x0 + z(t)α0 .

1) For x0, we have

(t + t−1)(t2 + t4 + 2t6 + t8 + t10) =

2(t3 + t5 + t7 + t9) + (t + t5 + t7 + t11),
or

(t3 + t5 + 2t7 + t9 + t11) + (t + t3 + 2t5 + t7 + t9) =

t + 2t3 + 3t5 + 3t7 + 2t9 + t11.

2) For y1 and for y2, we have

(t + t−1)(t3 + t5 + t7 + t9) =

(t2 + t4 + 2t6 + t8 + t10) + (t4 + t8),
or

(t4 + t6 + t8 + t10) + (t2 + t4 + t6 + t8) =

(t2 + 2t4 + 2t6 + 2t8 + t10).

3) For x1 and for x2, we have

(t + t−1)(t4 + t8) = t3 + t5 + t7 + t9.

4) For y3, we have
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(t + t−1)(t + t5 + t7 + t11) =

(t2 + t4 + 2t6 + t8 + t10) + (1 + t12),
or

(t2 + t6 + t8 + t12) + (1 + t4 + t6 + t10) =

(t2 + t4 + 2t6 + t8 + t10) + (1 + t12).
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The affine Coxeter transformation

6.1 The Weyl Group and the affine Weyl group

6.1.1 The semidirect product

Let G be a group, N a normal subgroup of G (i.e., N � G) and H a subgroup
of G. We say, that G is the semidirect product of N and H, if

G = NH and N ∩H = e, (6.1)

where e is the unit element of G, [CR62]. The semidirect product is frequently
denoted by

N � H.

Proposition 6.1. The following statements are equivalent:
a) Every element of G can be written in one and only one way as a product

of an element of N and an element of H.
b) Every element of G can be written in one and only one way as a product

of an element of H and an element of N .
c) The natural embedding H → G composed with the natural projection

G→ G/N , yields an isomorphism

H � G/N.
��
The group G is the semidirect product of N and H if and only if one (and

therefore all) of statements of Proposition 6.1 hold.
A group G is isomorphic to a semidirect product of the two groups N and

H if and only if there exists a short exact sequence

0 −→ N
β−→ G

α−→ H −→ 0 (6.2)

and a group homomorphism γ : H −→ G such that α ◦ γ = IdH , the identity
map on H, i.e., the exact sequence (6.2) splits.
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Consider the product of two elements n1h1 and n2h2 in the semidirect
product G = N � H. Here

n1, n2 ∈ N, and h1, h2 ∈ H.

Then we have
(n1h1) ∗ (n2h2) = n1(h1n2h

−1
1 )(h1h2).

Since N � G, then h1n2h
−1
1 ∈ N , and the product of n1h1 and n2h2 is the

element n0h0, where

n0 = n1h1n2h
−1
1 ∈ N, and h0 = h1h2.

According to Proposition 6.1, the element n0h0 is well-defined.

Example 6.2. Let Cn and C2 be cyclic groups with n and 2 elements, respec-
tively. The dihedral group Dn with 2n elements is isomorphic to a semidirect
product of Cn and C2. Here,

Dn � Cn � C2,

and the non-identity element of C2 acts on Cn by inverting elements. The
presentation for this group is:

{a, b | a2 = e, bn = e, aba−1 = b−1}.

6.1.2 Two representations of the affine Weyl group

The Weyl group W corresponds to the Dynkin diagram and it is generated
by orthogonal reflections, i.e., reflections leaving the origin in V fixed. The
affine Weyl group Wa corresponds to the extended Dynkin diagram and it is
also generated by orthogonal reflections, but contains also affine reflections
relative to hyperplanes which do not necessary pass through the origin, see
[Hu90, Ch. 4], [Bo, Ch.6, §2], [Mac72]. Below we consider a relation between
the Weyl group and the affine Weyl group.

Consider the Weyl group W acting in the euclidean space V . In the Dynkin
diagram case, the Weyl group W is generated by orthogonal reflections si, i.e.,
reflections leaving the origin in V fixed:

si(z) = z − 2
(z, αi)
(αi, αi)

αi,

α1, α2, . . . , αn are the simple roots enumerated by vertices of the correspond-
ing Dynkin diagram.

Remark 6.3. For every root system corresponding to some Dynkin diagram,
there are not more than two different lengths of roots. In the case of two
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different lengths of roots one says about short roots and long roots. If all roots
have the same length, then these roots are considered long. The number

m =
max (α, α)
min (α, α)

is equal to the maximal multiplicity of an edge in the Dynkin diagram:

m =

⎧
⎪⎨

⎪⎩

1, for the ADE diagrams,
2, for the BCF diagrams,
3, for the G2 diagrams,

see [Kir04, §8.8]. For the Dynkin diagram with the root system Δ, we denote
the set of the real short (resp. long) roots by Δs (resp. Δl). ��

Proposition 6.4. [Kac93, Prop.6.3] The set of the real roots Δre for dif-
ferent types of the extended Dynkin diagrams is as follows:

Δre =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{α + kω | α ∈ Δ} for r = 1,

{α + kω | α ∈ Δs}
∐
{α + rkω | α ∈ Δl}

for r = 2 or 3, and the diagram is not A
(2)
2l ,

{α + kω | α ∈ Δs}
∐
{α + 2kω | α ∈ Δl}

∐

{ 1
2 (α + (2k − 1)ω | α ∈ Δl}

for the diagram A
(2)
2l ,

(6.3)

where k ∈ Z, ω is the nil-root, and r is the order of the diagram automor-
phism1. ��

Remark 6.5. 1) There are three types of affine Lie algebras: Aff1, Aff2, Aff3
identified by r = 1, 2, 3, see [Kac93, Ch. 4.8]. Diagrams Aff1 are obtained by
adding the vertex α0. Diagrams Aff2 and Aff3 correspond to the so-called
twisted affine Lie algebras, see Remark 4.4.

2) For r = 1 in (6.3), we have the diagrams Aff1:

A
(1)
1 , B(1)

n , C(1)
n D(1)

n , E(1)
n , F

(1)
4 , G

(1)
2 . (6.4)

The cases r = 2, 3 (if the diagram is not A
(2)
2l ) correspond to the diagrams

Aff2, Aff3 as follows:

r = 2 : A
(2)
2n−1, D

(2)
n+1, E

(2)
6 ;

r = 3 : D
(3)
4 ;

(6.5)

1 The order r in the notation of twisted affine Lie algebras has an invariant sense,
see Table 4.2, Remark 4.4 and Proposition 4.5.
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The last case in (6.3) contains only the diagram A
(2)
2l of the class Aff2, see

Table 4.2.
3) For the case Aff1, from eq. (6.4) we have

α ∈ Δ⇐⇒ ω − α ∈ Δ

It is not correct for α ∈ Δl in the cases Aff2 and Aff3. In particular, for the
case Aff1, if β is the highest root, the vector α0 = ω − β also is a root. ��

The affine Weyl group Wa can be represented in two different forms: by
means of the coroot lattice or by means of the root lattice, see [Hu97, §12].
Consider these forms more closely.

(I) The affine Weyl group Wa is the semidirect product of W by the group
of translations relative to the coroot lattice. This is Bourbaki’s approach, see
[Bo, Ch.6, §2.1]. Here, reflections sα,k are given as follows:

sα,k := z − ((z, α)− k)α∨, α ∈ Δ+

where the coroot α∨ is as follows:

α∨ =
2α

(α, α)
.

The reflection sα,k fixes the hyperplane

Hα,k = {z | (z, α) = k}.

According to Bourbaki’s definition [Bo, Ch.6, §2.1], the affine Weyl group Wa

is generated by reflections sα,k, where α ∈ Δ+, k ∈ Z.
(II) The affine Weyl group Wa is also the Coxeter group, and thus is also

represented as the group of linear transformations generated by reflections in
central hyperplanes

Hα = {z | (z, α) = 0},
where α runs over roots given by (6.3). The affine Weyl group Wa is the
semidirect product of W with the group of translations relative to the root
lattice. Here, the reflections sα+kω are given as follows:

sα+kω := z − 2(z, α + kω)
(α + kω, α + kω)

(α + kω),

i.e.,

sα+kω(z) = z − 2(z, α)
(α, α)

(α + kω) = sα(z)− k
2(z, α)
(α, α)

ω.

or

s−α+kω(z) = sα(z) + k
2(z, α)
(α, α)

ω,

where α ∈ Δ+, k ∈ Z. For equivalence of these two forms, see [Wa98, Ch.3,
§8], [Kir05].
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6.1.3 The translation subgroup

In the extended Dynkin diagram case, the Weyl group Wa is generated by
orthogonal reflections si, where i = 0, 1, 2, . . . , n. Let

β = ω − α0, (6.6)

where ω is the nil-root, i.e., the vector from the one-dimensional kernel of the
Tits form B, see (2.26), and α0 is the root corresponding to the additional
(affine) vertex 0, the one that extends the Dynkin diagram to the extended
Dynkin diagram.

Remark 6.6. According to Remark 6.5, heading 3), β and α0 are roots for the
case Aff1. In order to study the spectra of the affine Coxeter transformation, it
suffices to consider only the Aff1 diagrams because extended Dynkin diagrams
from the lists Aff2 and Aff3 are dual to some diagrams from the list Aff1:

D
(2)
n+1 is dual to C

(1)
n ,

D
(3)
4 is dual to G

(1)
2 ,

E
(2)
6 is dual to F

(1)
4 ,

see (6.4), (6.5), Table 4.2, and the spectra of the Coxeter transformations for
dual diagrams coincide, see (3.7), (3.10).

From now on, we consider only the Aff1 diagrams, see (6.4). ��

Note, that the nil-root ω coincides with the fixed point z1 of the Coxeter
transformation, see §2.2.1.

For any vector z ∈ V , let tλ be the translation

tλ(z) = z − 2
(λ, z)
(λ, λ)

ω. (6.7)

Proposition 6.7. The translations tλ generate a group of translations, and
the following properties hold:

1) For roots α and γ such that α + γ = ω, we have

tα = t−γ .

2) The translation tω is the 0-translation:

tω(z) = z. (6.8)

Proof. 1) Indeed,

tα(z) =z − 2
(α, z)
(α, α)

ω = z − 2
(−γ, z)
(γ, γ)

ω = t−γ(z).

2) Eq. (6.8) follows from eq. (6.7) since the nil-root ω is the kernel of the
bilinear form (·, ·), see (2.26) and Proposition 3.2. ��
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Proposition 6.8. 1) In the cases of the Dynkin diagram or the extended
Dynkin diagram, every real root is conjugate under W to a simple root.

2) The reflection sβ given by

sβ(z) = z − 2
(β, z)
(β, β)

β,

belongs to Wa.
3) The element tβ = t−α0 is as follows

tβ = sα0sβ , and sα0 = tβsβ , (6.9)

and the element t−β = tα0 is as follows

t−β = sβsα0 , and sα0 = sβt−β . (6.10)

Proof. 1) It is proved by induction on height ht(α) (the sum of coordinates
of the real root α). We may assume α > 0. If ht(α) = 1, then α is a simple
root and all is done. Since α is the real root, i.e., (α, α) > 0, it follows that
(α, αi) > 0 for some i. Then si(z) = z − (z, αi)αi is another positive root of
strictly smaller height.

2) Since, β = wαi for some simple root αi and some w ∈Wa, we have

swαi(z) =z − 2
(wαi, z)

(wαi, wαi)
wαi = z − 2

(αi, w
−1z)

(αi, αi)
wαi =

w(w−1z − 2
(αi, w

−1z)
(αi, αi)

αi) = wsαi(w
−1z) = wsαiw

−1(z).

So,
sβ = swαi = wsαiw

−1 ∈Wa.

3) We have

sα0(z) = z − 2
(α0, z)
(α0, α0)

α0, and sβ(z) = z − 2
(β, z)
(β, β)

β.

Further,

sα0sβ(z) = z − 2
(β, z)
(β, β)

β − 2
(α0, z)
(α0, α0)

α0 + 4
(β, z)(β, α0)
(α0, α0)(β, β)

α0. (6.11)

Since β = ω − α0 and (β, β) = (α0, α0), it follows from (6.11) that

sα0sβ(z) = z + 2
(α0, z)
(α0, α0)

(ω − α0)− 2
(α0, z)
(α0, α0)

α0 + 4
(α0, z)
(α0, α0)

α0 =

z + 2
(α0, z)
(α0, α0)

ω = t−α0(z) = tβ(z).
(6.12)

Similarly,
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sβsα0(z) = z − 2
(α0, z)
(α0, α0)

α0 − 2
(β, z)
(β, β)

β + 4
(β, α0)(α0, z)

(α0, α0)(α0, α0)
β =

z − 2
(α0, z)
(α0, α0)

α0 + 2
(α0, z)
(α0, α0)

β − 4
(α0, z)
(α0, α0)

β =

z − 2
(α0, z)
(α0, α0)

ω = tα0(z) = t−β(z). ��

Let T be the translations subgroup of Wa generated by the translations tα,
where α runs over all roots.

Proposition 6.9. The subgroup T ⊂Wa is normal:

T � Wa

Proof. We have

wtαw−1(z) =wtα(w−1z) =

w(w−1z − 2
(α, w−1z)

(α, α)
ω) = z − 2

(α, w−1z)
(α, α)

wω =

z − 2
(wα, z)

(wα, wα)
ω = twα,

i.e., for every w ∈W ⊂Wa, we have

wtαw−1 = twα. �� (6.13)

Recall that, according to Remark 6.6, we consider only the Aff1 diagrams,
see (6.4).

Proposition 6.10. The affine Weyl group Wa is the semidirect product of the
Weyl group W and the translation group T .

Proof. 1) First, consider the case where all roots have the same length,
i.e., all roots are long. By (6.9) we have tβ ∈ Wa. By (6.13), tα ∈ Wa for all
roots of the root system corresponding to W , because

α = wβ and tα = twβ = wtβw−1 ∈Wa.

Let R be the Z-span of the root system Δ, i.e.,

R = Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zαn.

Since, in the simply-laced case,

tαtβ = tα+β ,

we see that tα ∈ Wa for every α ∈ R. Thus, T ⊂ Wa. By Proposition 6.9
T is a normal subgroup in Wa. Every generator si �= sα0 belongs to W . By
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(6.9), the element sα0 is expressed in terms of tβ ∈ T and sβ ∈ W , so Wa is
generated by T and W , and T ∩W = {1}. By (6.1) the proposition is proved
for the case without short roots.

2) Let there be long and short roots. For every long root α, we have α = wβ
for some w ∈Wa. As above, tα ∈Wa.

If α is a short root, then by Proposition 6.4 we see that w − α is also a
root for this root system. (Note, that for the long root, this is not so.) Then,
as in (6.11) and (6.12) we have

tα = sαsω−α ∈Wa.

and we finish the proof as in 1). ��

6.1.4 The affine Coxeter transformation

The Coxeter transformation Ca associated with an extended Dynkin dia-
gram is called the affine Coxeter transformation, see §2.2.6. We add the word
“affine” because the affine Coxeter transformation is an element of the affine
Weyl group, see §6.1.2. In the orientation where α0 is source-admissible (or
sink-admissible), see §2.2.6, we have

Ca = sα0sα1 ...sαn = sα0C,

where C is the Coxeter transformation of the corresponding Dynkin diagram.
Let S = S1

∐
S2 be a bicolored partition of the vertices of the Dynkin

diagram Γ and let w1 (resp. w2) be the product of reflections corresponding
to vertices S1 (resp. S2), see §3.1.1. We choose the notation in such a way
that the highest root β is orthogonal to the roots of S2, so

w2β = β, (6.14)

see (5.58), (5.59) for the case E6, §5.5. Let Π = Π1

∐
Π2 be corresponding

partition of simple roots.
Consider the decomposition of the Coxeter transformation

C = w2w1,

corresponding to a bicolored partition of the Dynkin diagram. Then

Ca = sα0w2w1 (6.15)

is the affine Coxeter transformation. Consider also

C′ = sβw2w1 (6.16)

called the linear part of the affine Coxeter transformation1, see [Stb85, p. 595].

1 α0 is the root corresponding to the affine vertex, β is the highest root in the root
system, see (6.6).
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Proposition 6.11. [Stb85, p. 595] 1) The affine Coxeter transformation
Ca and the linear part of the affine Coxeter transformation C′ are connected
by a translation1 tα0 as follows:

C′ = tα0Ca. (6.17)

2) Let Wa be the affine Weyl group that acts on the linear space V , and
let V ′ ⊂ V be the hyperplane of vectors orthogonal to z1. The spectrum of
the affine Coxeter transformation Ca with deleted eigenvalue 1 coincides with
the spectrum of the linear part of the affine Coxeter transformation C′ with
restricted action on the V ′.

Proof. 1) Eq. (6.17) follows from eq. (6.15), (6.16) and (6.10).
2) Let zi be the eigenvector with eigenvalue λi of the affine Coxeter trans-

formation Ca:
Cazi = λizi.

By (6.17) and (6.7) we have

C′zi = tα0Ca(zi) = tα0(λizi) = λizi − 2
(λizi, α0)
(α0, α0)

z1.

On the vector space V ′ the coefficient of z1 vanishes. ��
Thanks to Proposition 6.11, 2), instead of the spectrum of the affine Cox-

eter transformation Ca, the spectrum of the linear part C′ can be calculated.
We will do this in §6.2.

For more details of affine root systems and affine Weyl groups, see [BS06],
[BS06a], [Max98], [Stm04], [Cip00], [Br03].

6.2 R. Steinberg’s theorem again

In this section we restore a remarkable proof of R. Steinberg’s theorem (Th.
5.1), [Stb85]. The R. Steinberg trick is to get, instead of the affine Coxeter
transformation, the product of reflections without the reflection corresponding
to the branch point, see Proposition 6.27. For this purpose, instead of the
affine Coxeter transformation, R. Steinberg considers the linear part of the
affine Coxeter transformation having the same spectrum, Proposition 6.11.
The passage from the highest root to the root corresponding to the branch
point is executed by means of the alternating products τ (n) (Propositions 6.17,
6.21). We use the alternating products τ (n) also for a description of orbits of
the Coxeter transformation, generating functions, and Poincaré series, see
§5.4.1.
1 See (6.7) and Proposition 6.7.
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6.2.1 The element of the maximal length in the Weyl group

The length of an element w ∈W , denoted by l(w), is the minimal k such that
w can be written as a product of k generators.

Proposition 6.12 ([Stb59]). 1) In the Weyl group W , there is only one
element w0 of the maximal length.

2) The element w0 makes all positive roots negative:

w0α < 0 for all α ∈ Δ+, (6.18)

see §2.2.1.
3) The length l(w0) coincides with the number of positive roots |Δ+|.
4) The element w0 is an involution:

w2
0 = 1.

This classical result is due to R. Steinberg, the proof can be found in [Bo,
Ch.6, §1.6 , Corol. 3] or [Stb59]. ��

Remark 6.13. Note that the Coxeter number h is even for every Dynkin di-
agram except forA2n+1, see Table 4.2. Following R. Steinberg [Stb85, §2] we
consider in what follows only the case of even Coxeter number: h = 2g. Then

w0 = Cg.

We use also alternating products τ (n), see (5.60):

τ (1) = w1,

τ (2) = w2w1,

τ (3) = w1w2w1,

. . .

τ (2n) = (w2w1)n,

τ (2n+1) = w1(w2w1)n,

. . .

(6.19)

The following relation between the length function l(w) in the Weyl group
and actions of Weyl group holds:

Proposition 6.14. 1) The lengths of elements w and w−1 coincide:

l(w) = l(w−1). (6.20)

2) Let w ∈W and let α be a simple root. Then

l(wsα) > l(w) if and only if w(α) > 0. (6.21)
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For the proof, see [Hu90, Ch. 5.2 (L1), Th. 5.4 and Prop. 5.7]. ��
From (6.20), (6.21) we have

l(sαw) = l(w−1sα) > l(w−1) = l(w) if and only if w−1(α) > 0. (6.22)

Remark 6.15. We need also the following property of the highest root β. For
any positive root α, we have

(β, α) > 0. (6.23)

Indeed, if αi is a simple positive root with (β, αi) < 0, then

sα(β) = β − 2
(β, αi)
(αi, αi)

α > β.

This contradicts to the maximality of β. Thus, (β, αi) > 0 for every simple
positive root αi. Since α = n1α1 + n2α2 + · · ·+ nlαl with ni ≥ 0, the relation
(6.23) holds.

The following proposition establishes a connection between the partial
ordering in the Weyl group and the partial ordering of the root system.

Proposition 6.16. [Stb85, §2] 1) We have

1 < l(τ (1)) < l(τ (2)) < · · · < l(τ (2g)) = l(w0). (6.24)

2) For the highest root β, we have

β ≥ τ (1)β ≥ τ (2)β ≥ · · · ≥ τ (2g)β. (6.25)

3) For the alternating products τ (i), where 0 ≤ i < g, we have

τ (i)β = −τ (2g−i−1)β. (6.26)

Proof. 1) Let |Π| be the number of simple roots (equal to the rank of the
Cartan subalgebra and to the number of vertices |Γ0| in the Dynkin diagram).
Consider the decomposition of w0 as a product of w1, w2:

w0 = τ (2g) = w2w1 . . . w2w1︸ ︷︷ ︸
g pairs

(6.27)

Calculate the number of reflections entering the decomposition of w0:

l(w0) = l(τ (2g)) = gl(w2w1) = g|Π|.

By (1.1) we have
hl = h|Π| = |Δ|,

and
l(w0) = g|Π| = h

2
|Π| = |Δ+|,
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i.e., the length of w0 coincides with the number of positive simple roots.
Therefore, by Proposition 6.12, 3), the decomposition (6.27) is minimal, and
the decomposition of every segment τ (i), where 1 ≤ i ≤ 2g, is also minimal,
and (6.24) holds.

2) It suffices, by the induction, to prove that

l(sαw) > l(w) =⇒ sαwβ ≤ wβ, (6.28)

where sα is the reflection corresponding to some simple root α. We have

sαwβ = wβ − 2
(wβ, α)
(α, α)

α = wβ − 2
(β, w−1α)

(α, α)
α.

By (6.22) we have w−1α > 0. Then by (6.23), we have (β, w−1α) > 0 and
(6.28) holds.

3) Consider

τ (i)β = wi . . . w2w1β, where wi ∈ {w2, w1},

By (6.27) and (6.19) we have

τ (i)β =(wi+1 . . . w2g)(w2g . . . wi+1)wi . . . w2w1β,

(wi+1 . . . w2g)w0β = −wi+1 . . . w2gβ.

Since w2g = w2, by (6.14) we have

τ (i)β =− wi+1 . . . w2g−1︸ ︷︷ ︸
2g − i − 1 factors

β =

− w2g−i−1 . . . w1β = −τ (2g−i−1)β. ��

6.2.2 The highest root and the branch point

The vertex b of the Dynkin diagram connected to another vertex b̃ by means
of a weighted edge is called a point with a multiple bond. In other words,
if b is the vertex corresponding to short (resp. long) root, then the vertex b̃
corresponds to long (resp. short) root. The corresponding simple root is called
the root with a multiple bond. We say also, that the vertex b is connected to
vertex b̃ by a multiple bond.

In this section we prove that τ (g−1)β is the simple root corresponding to
the branch point of the Dynkin diagram or a multiple bond point.

Proposition 6.17. [Stb85, §2,(5)] The element b = τ (g−1)β is a simple
root, b ∈ Πg.

Proof. First, by (6.26), we have

τ (g)β = −τ (g−1)β,
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and
τ (g−1)β = (τ (g−1)β − τ (g)β)/2.

By (6.25) b = τ (g−1)β > 0, so b is a positive root. Since

τ (g)β = wgτ
(g−1)β = −τ (g−1)β,

we see that τ (g−1)β is a simple root lying in Πg. ��
The hyperplanes

Hα = {x ∈ V | (x, α) = 0}, where α ∈ Π

divide the space V into regions called Weyl chambers, and the chamber

C = {x ∈ V | (x, α) > 0 for all α ∈ Π}

is called the fundamental Weyl chamber.

Proposition 6.18. The Weyl group permutes the Weyl chambers, and this
action is simply transitive1, see

For the proof, see [Hu78, §10.3] or [Bo, Ch.6, §1.5, Th.2] ��

Proposition 6.19. The highest root β is long, i.e.,

(β, β) ≥ (α, α) for all α ∈ Δ.

Proof. Since the length (α, α) is fixed under the action of the Weyl group,
according to Proposition 6.18 the root α can be chosen from the fundamental
Weyl chamber C. The inequality

(β − α, β) ≥ 0 (6.29)

holds because the highest root β ∈ C, see (6.23), and the inequality

(β − α, α) ≥ 0 (6.30)

holds because α ∈ C.
By (6.29) and (6.30) we have

(β, β) ≥ (β, α) ≥ (α, α). ��

Proposition 6.20. [Stb85, §2,(5)] Let α0 = z1−β be the root corresponding
to the affine vertex, let α0 be connected to just one simple root α. Let α be of
the same length as β. Then the following formula holds:

(τ (g)β, τ (g+1)β) = −1
2
|β|2. (6.31)

1 The action of a given group G on a given set X is called simply transitive if for
any two elements x, y ∈ X, there exists precisely one g in G such that gx = y.



142 6 The affine Coxeter transformation

Proof. By (6.19) we have

(τ (g)β, τ (g+1)β) =(wgτ
(g)β, wgτ

(g+1)β) = (τ (g−1)β, τ (g+2)β) =

(wg−1τ
(g−1)β, wg−1τ

(g+2)β) = (τ (g−2)β, τ (g+3)β) = . . .

(β, τ (2g+1)β).

So, by (6.27) and (6.18)

(τ (g)β, τ (g+1)β) = (β, τ (2g+1)β) = (β, w1τ
(2g)β) = −(β, w1β). (6.32)

Since α0 = z1 − β corresponds to the affine vertex, we have

(α0, αi) = 0 for each simple root αi �= α,

(α0, α) �= 0.

The same holds for β:

(β, αi) = 0 for each simple root αi �= α,

(β, α) �= 0.

So, β is not orthogonal only to α, and

w1β = sαβ,

and (6.32) is equivalent to

(τ (g)β, τ (g+1)β) = −(β, sαβ).

Further, α0 and α form an angle of 120◦. Since

(α0, α) = (z1 − β, α) = −(β, α),

the roots β and α form an angle of 60◦, and

(β, α) =
1
2
|β|2 =

1
2
|α|2. (6.33)

By (6.33) we have

(β, sαβ) =(β, β − 2
(α, β)
(α, α)

α) = (β, β)− 2
(α, β)2

(α, α)
=

|β|2 − 2 · 1
4
|β|2 =

1
2
|β|2,

and by (6.32)

(τ (g)β, τ (g+1)β) = −1
2
|β|2. ��
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Proposition 6.21. [Stb85, §2,(5)] The element b = τ (g−1)β is the long
simple root at which there is a branch point or a point with a multiple bond.

Proof. By Proposition 6.17 the element b is the simple root. By Proposition
6.19 the highest root β is long, so is b. Further, since An is excluded, the root
β is connected to just one simple root α. Consider the two cases:

(1) The root α is shorter that β. It means that, in the extended Dynkin
diagram, the affine root α0 = z1 − β is connected to α by a multiple bond
because

(α0, α0) = (β, β) > (α, α).

It happens only in the case C̃n, see [Bo, Table III]. In this case there is only
one simple long root αl, so the simple long root b coincides with αl.

(2) The root α has the same length as β. Then, by (6.31) we have:

|τ (g)β−τ (g+1)β| =
|τ (g)β|2 + |τ (g+1)β)|2 − 2(τ (g)β, τ (g+1)β) = 3|β|2.

On the other hand, since b = τ (g−1)β, we have

τ (g)β−τ (g+1)β =

(1− wg+1)wgβ = (1− wg+1)wgτ
(g−1)β =

(1− wg+1)wg(b) = (1− wg+1)(−b) =

wg+1b− b =
∑

γ∈Δg+1

−2(b, γ)
(γ, γ)

γ,

where the sum runs over the neighbors of b.
(2a) If b has the same length as all its neighbors, then we have

−2(b, γ)
(γ, γ)

= 1,

and
wg+1b− b =

∑

γ∈Δg+1

γ,

and by case (2) b is the branch point.
(2b) Otherwise, b is connected to the short root with a multiple bond. ��

6.2.3 The orbit of the highest root. Examples

We consider three examples of orbits of the highest root: E6, F4, C4. These
cases correspond to cases (2a), (2b), (1) of Proposition 6.21, respectively.
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Example 6.22. Case E6. All roots have the same length. The vectors τ (i)β are
given in Table 5.3, §5.5.1. Then h = 12, g = h

2 = 6, g − 1 = 5.

β =
1 2 3 2 1

2 , τ (5)β =
0 0 1 0 0

0 .

This case corresponds to Proposition 6.21, (2a).

Example 6.23. Case F4. The roots a1 and b1 are of length 2, the roots a2 and
b2 are of length 1, see Fig. 6.1, Table 6.1. This case corresponds to Proposition
6.21, (2b). Here, the long simple root is b = b1 and it is connected to the short
root a2. Then h = 12, and g − 1 = 5.

Fig. 6.1. The highest root for the Dynkin diagram F4

w1 =

⎛

⎜⎜⎝

−1 1 0
−1 2 1

1
1

⎞

⎟⎟⎠

x1

x2

y1

y2

, w2 =

⎛

⎜⎜⎝

1
1

1 1 −1
0 1 −1

⎞

⎟⎟⎠

x1

x2

y1

y2

,

β =

⎛

⎜⎜⎝

2
4
3
2

⎞

⎟⎟⎠

x1

x2

y1

y2

, w1β =

⎛

⎜⎜⎝

1
4
3
2

⎞

⎟⎟⎠

x1

x2

y1

y2

, w2β =

⎛

⎜⎜⎝

2
4
3
2

⎞

⎟⎟⎠

x1

x2

y1

y2

= β.

Example 6.24. Case C4. The roots a1,b1 and a2 are of length 1, the root b2 is
of length 2, see Fig. 6.2, Table 6.2. This case corresponds to Proposition 6.21,
(1). Here, the long simple root b = b2 and it is connected to the short root a2.
Then h = 2 · 4 = 8, g − 1 = 3.
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Table 6.1. The orbit of the highest root for F4

β τ (1)β = w1β τ (2)β = Cβ

2 4 3 2 1 4 3 2 1 4 2 2

τ (3)β = w1Cβ τ (4)β = C2β τ (5)β = w1C
2β

1 2 2 2 1 2 1 0 0 0 1 0

τ (6)β = C3β τ (7)β = w1C
3β τ (8)β = C4β

0 0 −1 0 −1 −2 −1 0 −1 −2 −2 −2

τ (9)β = w1C
4β τ (10)β = C5β τ (11)β = w1C

5β

−1 −4 −2 −2 −1 −4 −3 −2 −2 −4 −3 −2

Fig. 6.2. The highest root for the Dynkin diagram C4

w1 =

⎛

⎜⎜⎝

−1 1 0
−1 1 2

1
1

⎞

⎟⎟⎠

x1

x2

y1

y2

, w2 =

⎛

⎜⎜⎝

1
1

1 1 −1
0 1 −1

⎞

⎟⎟⎠

x1

x2

y1

y2

,

β =

⎛

⎜⎜⎝

2
2
2
1

⎞

⎟⎟⎠

x1

x2

y1

y2

, w1β =

⎛

⎜⎜⎝

0
2
2
1

⎞

⎟⎟⎠

x1

x2

y1

y2

, w2β =

⎛

⎜⎜⎝

2
2
2
1

⎞

⎟⎟⎠

x1

x2

y1

y2

= β.

6.2.4 The linear part of the affine Coxeter transformation

Proposition 6.25. Two roots α and γ of the same length are connected by
means of the some element w ∈ W if and only if reflections sα and sγ are
conjugate in the Weyl group by means of w:
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Table 6.2. The orbit of the highest root for C4

β τ (1)β = w1β τ (2)β = Cβ τ (3)β = w1Cβ

2 2 2 1 0 2 2 1 0 2 0 1 0 0 0 1

τ (4)β = Cβ τ (5)β = w1C
2β τ (6)β = C2β τ (7)β = w1C

2β

0 0 0 −1 0 −2 0 1 0 −2 −2 −1 −2 −2 −2 −1

γ = wα⇐⇒ wsαw−1 = sγ .

Proof. 1) Let γ = wα. Then

wsαw−1(x) = wsα(w−1x) = w(w−1x− 2
(α, w−1x)

(α, α)
α) =

x− 2
(α, w−1x)

(α, α)
wα = x− 2

(wα, x)
(wα, wα)

wα(x) = swα.

2) Conversely, let wsαw−1 = sγ . Then

w(w−1x− 2
(α, w−1x)

(α, α)
α) = x− 2

(α, w−1x)
(α, α)

wα = x− 2
(γ, x)
(γ, γ)

γ,

i.e., wα and γ are proportional: wα = kγ. Since sγ = s−γ , we can consider
k > 0. Since (wα, wα) = (α, α) = (γ, γ), we have k = 1. ��

Corollary 6.26. Let β be the highest root and let b be the root corresponding
to the branch point (or the unique long root b connected to the short root with
a multiple bond). Then corresponding reflections sβ and sb are conjugate as
follows:

sb = wsβw−1, where w = τ (g−1). (6.34)

The corollary follows from Proposition 6.25 and Proposition 6.21. ��

Proposition 6.27. [Stb85, p. 595] 1) The following relation holds

τ (g−1)w2w1τ
(g−1)−1

=

{
w1w2 for g = 2k

w2w1 for g = 2k − 1.
(6.35)

2) The linear part C′ is conjugate to w2w1 (and also w1w2) with canceled
reflection sb corresponding to the branch point b.

Proof. 1) For the case g = 2k:

τ (g−1)w2w1τ
(g−1)−1

=
w1 w2w1 . . . w2w1︸ ︷︷ ︸

k − 1 pairs

(w2w1)w1 w2w1 . . . w2w1︸ ︷︷ ︸
k − 1 pairs

= w1w2,



6.2 R. Steinberg’s theorem again 147

For the case g = 2k − 1:

τ (g−1)w2w1τ
(g−1)−1

=
w2w1 . . . w2w1︸ ︷︷ ︸

k − 1 pairs

(w2w1)w1w2 . . . w1w2︸ ︷︷ ︸
k − 1 pairs

= w2w1.

2) By (6.34)

τ (g−1)C′τ (g−1)−1
= τ (g−1)sβw2w1τ

(g−1)−1
=

τ (g−1)sβτ (g−1)−1
τ (g−1)w2w1τ

(g−1)−1
=

sb(τ (g−1)w2w1τ
(g−1)−1

).

and by (6.35)

τ (g−1)C′τ (g−1)−1
=

{
sbw1w2 for g = 2k,

sbw2w1 for g = 2k − 1.

If the branch point b belongs to the subset of vertices S1, the reflection sb

cancels with sb in w1. If the branch point b belongs to the subset of vertices
S2 instead of sbw1w2, we consider the conjugate element w2sbw1, and the
reflection sb cancels with sb in w2. ��

From Proposition 6.27, 2) we see that the spectrum of Ca can be calculated
as the spectrum of the product of three Coxeter transformations of type An,
where n = p− 1, q − 1, r − 1 are the lengths of branches of the corresponding
Dynkin diagram, see Theorem 5.1.

6.2.5 Two generalizations of the branch point

Back again to the point b from Corollary 6.26 and Proposition 6.21. Let the
point b of the Dynkin diagram be either a branch point or the node corre-
sponding to the unique long root connected to the short root with multiple
bond. We call this point a Steinberg’s generalized branch point, or simply gen-
eralized branch point.

Remark 6.28. Before, in §5.3.1 we used another concept of generalization of
the branch point — non-homogeneous point connected to the folded Dynkin
diagrams, see Remark 5.4. This generalization does not coincide with gener-
alization of the branch point by Steinberg. The generalized branch point by
Steinberg corresponds to the long root of the weighted edge, and the non-
homogeneous branch point from §5.3.1 corresponds to the short root of the
weighted edge. This difference does not, however, affect the end result — the
generalized Steinberg theorem (Theorem 5.5).



148 6 The affine Coxeter transformation

For the cases of Ẽn, D̃n, the corresponding Dynkin diagram satisfy Stein-
berg’s theorem (Theorem 5.1). In these cases the point b is a usual branch
point. Consider the remaining cases1 from the diagrams Aff1:

F
(1)
4 , G

(1)
2 , B(1)

n , C(1)
n .

1) The diagram F
(1)
4 , see Example 6.23. We discard the generalized branch

point b = b1 on the Dynkin diagram F4, see Fig. 6.1. Then the characteristic
polynomial of the affine Coxeter transformation for F

(1)
4 (without eigenvalue

1) is2

X2X1,

see (5.16).
2) The diagram G

(1)
2 , see Table 4.2. Discard the generalized branch point

corresponding to the long root on the Dynkin diagram G2, see Fig. 2.3. The
characteristic polynomial of the affine Coxeter transformation for G

(1)
2 (with-

out eigenvalue 1) is
X1,

see (5.18).
3) The diagram B

(1)
n , another notation: C̃Dn, see Table 4.2. Discard the

generalized branch point corresponding to the long root on the Dynkin di-
agram Bn, see Fig. 2.3. The characteristic polynomial of the affine Coxeter
transformation for B

(1)
n (without eigenvalue 1) is

Xn−2X1,

see (5.17).
4) The diagram C

(1)
n , another notation: C̃n, see Table 4.2. Discard the

generalized branch point corresponding to the long root on the Dynkin di-
agram Cn, see Fig. 2.3. The characteristic polynomial of the affine Coxeter
transformation for C

(1)
n (without eigenvalue 1) is

Xn−1,

see (5.19).

6.3 The defect

6.3.1 The affine Coxeter transformation and defect

There is the important characteristic associated with the affine Coxeter trans-
formation. It is a linear form called defect. For the extended Dynkin diagram
1 By Remark 6.6, in order to study the spectra of affine Coxeter transformations

to consider only the cases of Aff1, see (6.4).
2 Recall, that Xn is the characteristic polynomial corresponding to the Dynkin

diagram An, see Remark 4.13.
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it defines the hyperplane of regular representations. For the Dyknin diagrams,
this characteristic does not exist, and for indefinite Tits form, the defect de-
fines a cone lying between two planes.

The defect was introduced by Dlab and Ringel [DR76] for the classification
of tame type quivers in the representation theory of quivers. For the case of
the extended Dynkin diagram D̃4, the defect δ (for bicolored orientation) was
applied by Gelfand and Ponomarev in [GP72] in the study of quadruples of
subspaces.

Dlab and Ringel introduced in [DR76] the defect δΩ for an arbitrary ori-
entation Ω as a vector from E∗Γ obtained as a solution of the equation

C∗
ΩδΩ = δΩ. (6.36)

Here, E∗Γ is the dual vector space of all linear forms on EΓ, and C∗
Ω means

the dual operator:
〈C∗

Ωz, x〉 = 〈z,CΩx〉, (6.37)

and in the matrix form C∗
Ω is given as the transposed matrix of CΩ.

For an arbitrary orientation Ω, another Ω-defect denoted ρΩ, was intro-
duced in [SuSt75], [SuSt78]. We will prove below in Proposition 6.35 that the
defect δΩ of Dlab-Ringel and the Ω-defect ρΩ coincide (up to a factor).

Let CΩ be the Coxeter operator corresponding to a given orientation Ω
and let CΛ be the Coxeter operator corresponding to a bicolored orientation
Λ. Then CΩ and CΛ are conjugate if the quiver is a tree. Let T be an element
in the Weyl group interrelating CΩ and CΛ:

CΩ = T−1CΛT. (6.38)

Definition 6.29. The linear form ρΩ(z) defined as follows

ρΩ(z) =

{
〈Tz, z̃1〉 in the simply-laced case,
〈Tz, z̃1∨〉 in the multiply-laced case

(6.39)

is said to be the Ω-defect of the vector z. Here, T is any element from (6.38);
z̃1 is the adjoint vector corresponding to the eigenvalue λ = 1 of the Coxeter
transformation, see §3.3.1; z1∨ is the eigenvector corresponding to eigenvalue
1 of the Coxeter transformation for the dual diagram Γ∨. Here ṽ denotes the
conjugate vector1 to v.

The following remarkable formula is due to V. Dlab and C. M. Ringel, see
[DR76]:

Ch
Ωz = z + hδΩ(z)z1, (6.40)

where h is the Coxeter number. This formula is proved below in Proposition
6.34.
1 See Remark 3.1 and Definition 6.31.
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6.3.2 The necessary regularity conditions

The regular representations are the most complicated in the category of all
representations of a given quiver. For every Dynkin diagram, the category
of regular representations is empty, there is only a finite number of non-
regular representations (P. Gabriel’s theorem, Th. 2.14). For this reason, in
the representation theory of quivers, the Dynkin diagrams are called finite
type quivers. The regular representations are completely described only for
the extended Dynkin diagrams, which, for this reason, were dubbed tame
quivers in the representation theory of quivers, ([Naz73], [DR76]), see §2.2.3.

Definition 6.30. 1) The vector z ∈ EΓ is said to be Ω-regular or regular in
the orientation Ω if

Ck
Ωz > 0 for all k ∈ Z. (6.41)

2) The representation V is said to be a regular representation in the ori-
entation Ω of the quiver Γ if its dimension dimV is a Ω-regular vector, i.e.,

Ck
Ω(dim V ) > 0 for all k ∈ Z. (6.42)

For motivation and details of regularity conditions, see Ch.B, §B.1.5.
Let (α1, α̃1, α

ϕ2
1 , αϕ2

2 , ...) be coordinates of the vector Tz in the Jordan
basis of eigenvectors and adjoint vectors (3.22) – (3.24):

Tz = α1z
1 + α̃1z̃

1 + αϕ2
1 zϕ2

1 + αϕ2
2 zϕ2

2 + . . . (6.43)

According to (3.25), (3.26), (3.27), we have

Ck
ΛTz = α1z

1 + α̃1(kz1 + z̃1) + αϕ2
1 (λϕ2

1 )kzϕ2
1 + αϕ2

2 (λϕ2
2 )kzϕ2

2 + . . .

and

Ck
Ωz =T−1Ck

ΛTz = α1z
1 + α̃1(kz1 + T−1z̃1)+

αϕ2
1 (λϕ2

1 )kT−1zϕ2
1 + αϕ2

2 (λϕ2
2 )kT−1zϕ2

2 + . . .
(6.44)

Since z1 > 0, k ∈ Z, and |λϕi

1,2| = 1, we have the following necessary
condition of Ω-regularity:

α̃1 = 0, (6.45)

where α̃1 is the coordinate of the vector Tz corresponding to the adjoint basis
vector z̃1.

a) Simply-laced case. Recall, that

z1 =
(

X

−Dt
X

)
, z̃1 =

1
4

(
X

Dt
X

)
. (6.46)

The adjoint vector z̃1 is orthogonal to vectors z
ϕj

i (i = 1, 2, and ϕj are eigen-
values of DDt) since the corresponding components X and Y are orthogonal,
see Proposition 3.9. Further, z̃1 is also orthogonal to z1. Indeed,
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4〈z1, z̃1〉 = 〈X1, X1〉 − 〈Dt
X

1, Dt
X

1〉 =

〈X1, X1〉 − 〈X1, DDt
X

1〉 = 〈X1, X1〉 − 〈X1, X1〉 = 0.

Thus, from (6.43) we have

〈Tz, z̃1〉 = α̃1〈z̃1, z̃1〉 (6.47)

and (6.45) is equivalent to the following relation:

〈Tz, z̃1〉 = 0. (6.48)

b) Multiply-laced case. The normal basis of DF (resp. FD) is not orthog-
onal; however, the dual graph will help us.

Definition 6.31. Let u be an eigenvector of the Coxeter transformation given
by (3.22), (3.23). The vector ũ is said to be conjugate to u, if it is obtained
from u by changing the sign of the Y-component and replacing the eigenvalue

λ by
1
λ

.

It is easy to see that the vectors z1 and 4z̃1 are conjugate.

Proposition 6.32. 1) Let ϕ be an eigenvalue of DF and ϕ∨ �= ϕ an eigen-
value of D∨F∨. The eigenvectors of DF and D∨F∨ corresponding to these
eigenvalues are orthogonal.

2) Let zϕ be an eigenvector with eigenvalue ϕ �= 0 for the extended Dynkin
diagram Γ and z∨ϕ an eigenvector with eigenvalue ϕ for the dual diagram Γ∨.
Let z̃∨ϕ be conjugate to z∨ϕ . Then zϕ and z̃∨ϕ are orthogonal.

Proof. 1) Let DFx = ϕx and D∨F∨x = ϕ∨x∨. Since ϕ �= ϕ∨, one of these
eigenvalues is �= 0. Let, for example, ϕ �= 0. Then

〈x, x∨〉 =
1
ϕ
〈DFx, x∨〉 =

1
ϕ
〈x, (DF )tx∨〉. (6.49)

From (6.49) and (3.7) we have

〈x, x∨〉 =
1
ϕ
〈x, D∨F∨x∨〉 =

ϕ∨

ϕ
〈x, x∨〉.

Since ϕ �= ϕ∨, we have 〈x, x∨〉 = 0.
2) Let us express vectors zϕ and z̃∨ϕ as follows:

zϕ =

⎛

⎜⎝
x

− 2
λ + 1

Fx

⎞

⎟⎠ , z̃∨ϕ =

⎛

⎜⎝
x∨

2λ

λ + 1
F∨x∨

⎞

⎟⎠ . (6.50)

According to (3.6) and (3.7) we have
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〈zϕ, z̃∨ϕ〉 = 〈x, x∨〉 − 4λ

(λ + 1)2
〈Fx, F∨x∨〉 =

〈x, x∨〉 − 1
ϕ
〈DFx, x∨〉 = 〈x, x∨〉 − 〈x, x∨〉 = 0. ��

Thus, by Proposition 6.32 heading 1), the vector z̃1∨ is orthogonal to the zϕ
i

for i = 1, 2 and by Proposition 6.32 heading 2), the vector z̃1∨ is orthogonal
to z1. Therefore from (6.43) we deduce that

〈Tz, z̃1∨〉 = α̃1〈z̃1∨, z̃1∨〉 (6.51)

and (6.45) is equivalent to the following relation:

〈Tz, z̃1∨〉 = 0. (6.52)

From (6.48) and (6.52) we derive the following theorem:

Theorem 6.33 ([SuSt75],[SuSt78]). If z is a regular vector for the ex-
tended Dynkin diagram Γ in the orientation Ω, then

ρΩ(z) = 0. (6.53)

In Proposition B.9 we will show that the condition (6.53) is also sufficient,
if z is a root in the root system related to the given extended Dynkin diagram.

6.3.3 The Dlab-Ringel formula

Proposition 6.34 ([DR76]). The following formula holds

Ch
Ωz = z + hα̃1(z)z1, (6.54)

where h is the Coxeter number and α̃1 = α̃1(z) is the linear form proportional
to ρΩ(z). By (6.47) in the simply-laced case and by (6.51) in the multiply-laced
case the form α̃1(z) can be calculated as follows:

α̃1(z) =

⎧
⎪⎪⎨

⎪⎪⎩

〈Tz,z̃1〉
〈z̃1,z̃1〉 in the simply-laced case,

〈Tz,z̃1∨〉
〈z̃1∨,z̃1∨〉 in the multiply-laced case.

Proof. The vector z1 from the kernel of the Tits form is the fixed point for
the Weyl group, so T−1z1 = z1, and from (6.43) we deduce

z = α1z
1 + α̃1T

−1z̃1 + αϕ2
1 T−1zϕ2

1 + αϕ2
2 T−1zϕ2

2 + . . . (6.55)

and from (6.44) for k = h (the Coxeter number, i.e., (λϕ2
1,2)

k = 1), we obtain

Ch
Ωz = α1z

1 + α̃1(hz1 + T−1z̃1) + αϕ2
1 T−1zϕ2

1 + αϕ2
2 T−1zϕ2

2 + . . . (6.56)

From (6.55) and (6.56) we get (6.54). ��
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6.3.4 The Dlab-Ringel defect and the Ω-defect coincide

Proposition 6.35 ([St85]). The Dlab-Ringel defect δΩ given by (6.36) coin-
cides (up to a factor) with the Ω-defect ρΩ given by Definition 6.29.

Proof. 1) Let us show that δΩ is obtained from δΛ in the same way as ρΩ is
obtained from ρΛ, so it suffices to prove the proposition only for bicolored
orientations Λ. Indeed,

CΩ = T−1CΛT implies that C∗
Ω = T ∗C∗

ΛT−1∗.

Since C∗
ΩδΩ = δΩ, we obtain

C∗
ΛT−1∗δΩ = T−1∗δΩ,

and
T−1∗δΩ = δΛ, i.e., δΩ = T ∗δΛ.

Further,
〈δΛ, T z〉 = 〈T ∗δΛ, z〉 = 〈δΩ, z〉.

Thus, δΩ is obtained from δΛ in the same way as ρΩ is obtained from ρΛ.
2) Now, let us prove the proposition for the bicolored orientation Λ, i.e.,

let us prove that ρΛ is proportional to δΛ. According to (3.1), (3.2) and (3.4)
the relation

C∗
Λz = z is equivalent to w∗

1z = w∗
2z,

which, in turn, is equivalent to the following:
(
−I 0
−2Dt I

)(
x
y

)
=

(
I −2F t

0 −I

)(
x
y

)
.

By (3.6) we have {
x = F ty = D∨y,
y = Dtx = F∨x.

Thus,

z =
(

x
F∨x

)
=

(
x

Dtx

)
, where x = F tDtx = D∨F∨x,

i.e., x corresponds to λ = 1, an eigenvalue of C, and to ϕ = 1, an eigenvalue
of (DF )∨. By (6.50) we have z = z̃1∨, i.e., δΛ is proportional to ρΛ, see (6.39).
For the simply-laced case, compare with (3.23). ��



A

The McKay correspondence and the Slodowy
correspondence

We have seen during the past few years a major
assault on the problem of determining all the finite
simple groups. ... If I am right, I foresee new proofs
of classification which will owe little or nothing to
the current proofs. They will be much shorter and
will help us to understand the simple groups in a
context much wider than finite group theory.

J. McKay, [McK80, p.183], 1980

A.1 Finite subgroups of SU(2) and SO(3, R)

Let us consider the special unitary group SU(2), the subgroup of unitary
transformations in GL(2, C) with determinant 1 and its quotient group
PSU(2) = SU(2)/{±1} acting on the complex projective line CP

1, see §C.5.
The projective line CP

1 can be identified with the sphere S2 ⊂ R
3, see §C.5

and (C.20).
The transformations of the sphere S2 induced by elements of SO(3, R)

(orientation preserving rotations of R
3) correspond under these identifications

to transformations of CP
1 in the group PSU(2):

PSU(2) ∼= SO(3, R), (A.1)

see [Sp77, Prop.4.4.3], [PV94, §0.13].
It is well known that the finite subgroups of SO(3, R) are precisely the

rotation groups of the following polyhedra: the regular n-angled pyramid, the
n-angled dihedron (a regular plane n-gon with two faces), the tetrahedron, the
cube (its rotation group coincides with the rotation group of the octahedron),
the icosahedron (its rotation group coincides with the rotation group of the
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dodecahedron). By (A.1) we have a classification of the finite subgroups of
PSU(2), see Table A.1.

To get a classification of all finite subgroups of SU(2) we consider the
double covering

π : SU(2) −→ SO(3, R).

If G is a finite subgroup of SO(3, R), we see that the preimage π−1(G) is
a finite subgroup of SU(2) and |π−1(G)| = 2|G|. The finite subgroups of
SO(3, R) are called polyhedral groups, see Table A.1. The finite subgroups of
SU(2) are naturally called binary polyhedral groups, see Table A.2.

Remark A.1. The cyclic group is an exceptional case. The preimage of the
cyclic group G = Z/nZ is the even cyclic group Z/2nZ, which is a binary
cyclic group. The cyclic group Z/(2n− 1)Z is not a preimage with respect to
π, so Z/(2n−1)Z is not a binary polyhedral group. Anyway, the cyclic groups
Z/nZ complete the list of finite subgroups of SU(2).

For every polyhedral group G, the axis of rotations under an element
γ ∈ G passes through either the mid-point of a face, or the mid-point of an
edge, or a vertex. We denote the orders of symmetry of these axes by p, q,
and r, respectively, see [Sl83]. These numbers are listed in Table A.1. The
triples p, q, r listed in Table A.1 are exactly the solutions of the diophantine
inequality

1
p

+
1
q

+
1
r

> 1, (A.2)

see [Sp77].

A.2 The generators and relations in polyhedral groups

The quaternion group introduced by W. R. Hamilton is defined as follows: It
is generated by three generators i, j, and k subject to the relations

i2 = j2 = k2 = ijk = −1; (A.3)

for references, see [Cox40], [CoxM84]. A natural generalization of the quater-
nion group is the group generated by three generators R, S, and T subject to
the relations

Rp = Sq = T r = RST = −1. (A.4)

Denote by 〈p, q, r〉 the group defined by (A.4).
W. Threlfall, (see [CoxM84]) has observed that

〈2, 2, n〉, 〈2, 3, 3〉, 〈2, 3, 4〉, 〈2, 3, 5〉

are the binary polyhedral groups of order
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4
1
p

+
1
q

+
1
r
− 1

.

Table A.1. The polyhedral groups in R
3

Polyhedron Orders of symmetries Rotation group Group order

Pyramid − cyclic n

Dihedron n 2 2 dihedral 2n

Tetrahedron 3 2 3 A4 12

Cube 4 2 3 S4 24

Octahedron 3 2 4 S4 24

Dodecahedron 5 2 3 A5 60

Icosahedron 3 2 5 A5 60

Here, Sm (resp. Am) denotes the symmetric, (resp. alternating)
group of all (resp. of all even) permutations of m letters.

Table A.2. The finite subgroups of SU(2)

〈l, m, n〉 Order Denotation Well-known name

− n Z/nZ cyclic group

〈2, 2, n〉 4n Dn binary dihedral group

〈2, 3, 3〉 24 T binary tetrahedral group

〈2, 3, 4〉 48 O binary octahedral group

〈2, 3, 5〉 120 J binary icosahedral group

H. S. M. Coxeter proved in [Cox40, p.370] that, having added one more
generator Z, one can replace (A.4) by the relations:

Rp = Sq = T r = RST = Z. (A.5)
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For the groups 〈2, 2, n〉 and 〈2, 3, n〉, where n = 3, 4, 5, the relation (A.5)
implies

Z2 = 1.

The polyhedral groups from Table A.1 are described by generations and rela-
tions as follows:

Rp = Sq = T r = RST = 1, (A.6)

see [Cox40], [CCS72], [CoxM84].

A.3 The Kleinian singularities and the Du Val resolution

Consider the quotient variety C
2/G, where G is a binary polyhedral group

G ⊂ SU(2) from Table A.2. According to (§C.6.4 and (C.44)) X = C
2/G is

the orbit space given by the prime spectrum on the algebra of invariants RG:

X := Spec(RG), (A.7)

where R = C[z1, z2] (see eq.(2.28)) which coincides with the symmetric algebra
Sym((C2)∗) (see §2.3.1; for more details, see [Sp77], [PV94], [Sl80].)

F. Klein [Kl1884] observed that the algebra of invariants C[z1, z2]G for
every binary polyhedral group G ⊂ SU(2) from Table A.2 can be considered
uniformly:

Theorem A.2 (F. Klein, [Kl1884]). The algebra of invariants C[z1, z2]G

is generated by 3 variables x, y, z, subject to one essential relation

R(x, y, z) = 0, (A.8)

where R(x, y, z) is defined in Table A.3, col. 2. In other words, the algebra of
invariants C[z1, z2]G coincides with the coordinate algebra (see §C.6.3) of the
curve defined by the eq. (A.8), i.e.,

C[z1, z2]G � C[x, y, z]/(R(x, y, z)). (A.9)

The quotient X from (A.7) has no singularity except at the origin O ∈ C
3.

The quotient variety X is called a Kleinian singularity also known as a Du
Val singularity, a simple surface singularity or a rational double point. The
quotient variety X can be embedded as a surface X ⊂ C

3 with an isolated
singularity at the origin, see [Sl83, §5].

Remark A.3. According to Theorem 2.19 (Shephard-Todd-Chevalley-Serre)
the algebra of invariants k[V ]G is isomorphic to a polynomial algebra in some
number of variables if the image of G in GL(V ) is generated by reflections. Ev-
ery binary polyhedral group G is generated by reflections, see, e.g., [CoxM84],
therefore the algebra of invariants k[V ]G for the binary polyhedral group is a
polynomial algebra.



A.3 The Kleinian singularities and the Du Val resolution 159

Table A.3. The relations R(x, y, z) describing the algebra of invariants C[z1, z2]
G

Finite subgroup of SU(2) Relation R(x, y, z) Dynkin diagram

Z/nZ xn + yz An−1

Dn xn+1 + xy2 + z2 Dn+2

T x4 + y3 + z2 E6

O x3y + y3 + z2 E7

J x5 + y3 + z2 E8

Example A.4. Consider the cyclic group G = Z/rZ of order r. The group G
acts on C[z1, z2] as follows:

(z1, z2) �→ (εz1, ε
r−1z2), (A.10)

where ε = e2πi/r, and the polynomials

x = z1z2, y = −zr
1 , z = zr

2 (A.11)

are invariant polynomials in C[x, y, z] which satisfy the following relation

xr + yz = 0, (A.12)

see Table A.3. We have

k[V ]G = C[z1z2, z
r
1 , zr

2 ] � C[x, y, z]/(xr + yz).

see, e.g., [Sp77, pp.95-97], [PV94, p.143].

Du Val obtained the following description of the minimal resolution

π : X̃ −→ X

of a Kleinian singularity X = C
2/G, see [DuVal34], [Sl80, §6.1, §6.2] [Sl83,

§5]1. The exceptional divisor (the preimage of the singular point O) is a finite
union of complex projective lines:

π−1(O) = L1 ∪ · · · ∪ Ln, Li � CP
1 for i = 1, . . . , n.

The intersection Li ∩ Lj is empty or consists of exactly one point for i �= j.

1 For more details, see also [Gb02], [Rie02], [Hob02], [Cr01].
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To each complex projective line Li (which can be identified with the sphere
S2 ⊂ R

3, see §C.5) we assign a vertex i, and two vertices are connected by
an edge if the corresponding projective lines intersect. The corresponding
diagrams are Dynkin diagrams (this phenomenon was observed by Du Val in
[DuVal34] ), see Table A.3.

In the case of the binary dihedral group D2 the real resolution of the real
variety

C
3/R(x, y, z) ∩ R

3

gives a quite faithful picture of the complex situation, the minimal resolution
π−1 : X̃ −→ X for X = D2 depicted in Fig. A.1. Here π−1(O) consists of four
circles, the corresponding diagram is the Dynkin diagram D4.

Fig. A.1. The minimal resolution π−1 : X̃ −→ X for X = D2

A.4 The McKay correspondence

Let G be a finite subgroup of SU(2). Let {ρ0, ρ1, . . . , ρn} be the set of all
distinct irreducible finite dimensional complex representations of G, of which
ρ0 is the trivial one. Let ρ : G −→ SU(2) be a faithful representation, then,
for each group G, we define a matrix A(G) = (aij), by decomposing the tensor
products:
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ρ⊗ ρj =
r⊕

k=0

ajkρk, j = 0, 1, ..., r, (A.13)

where ajk is the multiplicity of ρk in ρ⊗ ρj . McKay [McK80] observed that

The matrix 2I −A(G) is the Cartan matrix of the extended Dynkin diagram
Γ̃ (G) associated to G. There is a one-to-one correspondence between finite

subgroups of SU(2) and simply-laced extended Dynkin diagrams.

This remarkable observation, called the McKay correspondence, was based
first on an explicit verification [McK80].

For the multiply-laced case, the McKay correspondence was extended by
D. Happel, U. Preiser, and C. M. Ringel in [HPR80], and by P. Slodowy in
[Sl80, App.III]. We consider P. Slodowy’s approach in §A.5.

The systematic proof of the McKay correspondence based on the study of
affine Coxeter transformations was given by R. Steinberg in [Stb85].

Other proofs of the McKay correspondence were given by G. Gonzalez-
Sprinberg and J.-L. Verdier in [GV83], by H. Knörrer in [Kn85]. A nice review
is given by J. van Hoboken in [Hob02].

B. Kostant used the McKay matrix A(G) (or McKay operator) in [Kos84]
and showed that the multiplicities mi(n) in the decomposition

πn|G =
r∑

i=0

mi(n)ρi,

(see §5.4.1) come in an amazing way from the orbit structure of the Coxeter
transformation on the highest root of the corresponding Lie algebra g, see
§5.5. To calculate these multiplicities, Kostant employed generating functions
and Poincaré series. We applied Kostant’s technique in §5.4 in order to show
a relation between Poincaré series and the ratio of characteristic polynomials
of the Coxeter transformations.

A.5 The Slodowy generalization of the McKay
correspondence

We consider here the Slodowy generalization [Sl80] of the McKay correspon-
dence to the multiply-laced case and illustrate Slodowy’s approach with the
diagrams F̃41 and F̃42, see Fig. 2.6.

Slodowy’s approach is based on the consideration of restricted represen-
tations and induced representations instead of an original representation. Let
ρ : G −→ GL(V ) be a representation of a group G. We denote the restricted
representation of ρ to a subgroup H ⊂ G by ρ ↓G

H , or, briefly, ρ↓ for fixed
G and H. Let τ : H −→ GL(V ) be a representation of a subgroup H. We
denote by τ ↑G

H the representation induced by τ to a representation of the
group G containing H; we briefly write τ↑ for fixed G and H. For a detailed
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definition on restricted and induced representations, see, for example, [Kar92]
or [Bak04].

Let us consider pairs of groups H�G, where H and G are binary polyhedral
groups from Tables A.2 and A.3. See, e.g., [Sl80, p.163], [Sp77, p.89], [Hob02,
p.25].

Table A.4. The pairs H � G of binary polyhedral groups

Subgroup Dynkin Group Dynkin Index

H diagram Γ(H) G diagram Γ(G) [G : H]

D2 D4 T E6 3

T E6 O E7 2

Dn−1 Dn+1 D2(n−1) D2n 2

Z/2nZ A2n−1 Dn Dn+2 2

A.5.1 The Slodowy correspondence

Let us fix a pair H � G from Table A.4. We formulate now the essence of the
Slodowy correspondence [Sl80, App.III].

1) Let ρi, where i = 1, . . . , n, be irreducible representations of G; let ρ↓i
be the corresponding restricted representations of the subgroup H. Let ρ be
a faithful representation of H, which may be considered as the restriction of
the fixed faithful representation ρf of G. Then the following decomposition
formula makes sense

ρ⊗ ρ↓i =
⊕

j

ajiρ
↓
j (A.14)

and uniquely determines an n× n matrix Ã = (aij) such that
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K = 2I − Ã (A.15)

(see [Sl80, p.163]), where K is the Cartan matrix of the corresponding folded
extended Dynkin diagram given in Table A.5

2) Let τi, where i = 1, . . . , n, be irreducible representations of the subgroup
H, let τ↑

i be the induced representations of the group G. Then the following
decomposition formula makes sense

ρ⊗ τ↑
i =

⊕
aijτ

↑
j , (A.16)

i.e., the decomposition of the induced representation is described by the matrix
A∨ = At which satisfies the relation

K∨ = 2I − Ã∨ (A.17)

(see [Sl80, p.164]), where K∨ is the Cartan matrix of the dual folded extended
Dynkin diagram given in Table A.5.

We call matrices Ã and Ã∨ the Slodowy matrices, they are analogs of the
McKay matrix. The Slodowy correspondence is an analogue to the McKay cor-
respondence for the multiply-laced case, so one can speak about the McKay-
Slodowy correspondence.

Table A.5. The pairs H � G and folded extended Dynkin diagrams

Groups Dynkin diagram Folded extended

H � G Γ̃(H) and Γ̃(G) Dynkin diagram

D2 � T D4 and E6 G̃21 and G̃22

T � O E6 and E7 F̃41 and F̃42

Dr−1 � D2(r−1) Dn+1 and D2n D̃Dn and C̃Dn

Z/2rZ � Dr An−1 and Dr+2 B̃n and C̃n
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A.5.2 The binary tetrahedral group and the binary octahedral
group

Now we will illustrate the Slodowy correspondence for the binary tetrahedral
and octahedral groups, i.e., H is the binary tetrahedral group T and G is the
binary octahedral group O, T � O. These groups have orders |T | = 24 and
|O| = 48, see Table A.2.

We will use the Springer formula for elements of the group O from [Sp77,
§4.4.11]. Let

a =
(

ε 0
0 ε−1

)
, b =

(
0 i
i 0

)
, c =

1√
2

(
ε−1 ε−1

−ε ε

)
, (A.18)

where ε = eπi/4. Then each of the 48 different elements x ∈ O may be ex-
pressed as follows:

x = ahbjcl, 0 ≤ h < 8, 0 ≤ j < 2, 0 ≤ l < 3. (A.19)

The elements x ∈ O and their traces are collected in Table A.6. Observe
that every element u ∈ SL(2, C) from Table A.6 is of the form

u =
(

α β

−β α

)
, (A.20)

see (5.36). We can now distinguish the elements of O by their traces and by
means of the 1-dimensional representation ρ1 such that

ρ1(a) = −1, ρ1(b) = 1, ρ1(c) = 1. (A.21)

Proposition A.5. There are 8 conjugacy classes in the binary octahedral
group O. Rows of Table A.7 constitute these conjugacy classes.

For the proof, see [St05, Prop. A.5]. ��

Remark A.6. We denote by Cl(g) the conjugacy class containing the element
g ∈ O. The union Cl(b) ∪ {1,−1} constitutes the 8-element subgroup

{1, a2, a4, a6, b, a2b, a4b, a6b} = {1, a2,−1,−a2, b, a2b,−b,−a2b}. (A.22)

Setting i = b, j = a2, k = a2b we see that

i2 = j2 = k2 = −1,

ji = −ij = k, ik = −ki = j, kj = −jk = i,
(A.23)

i.e., group (A.22) is the quaternion group Q8, see (A.3).
It is easy to check that Q8 is a normal subgroup in O:

Q8 �O. (A.24)
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Table A.6. The elements of the binary octahedral group

Elements Matrix Trace

x = apbjcl form tr(x)

0 ≤ p < 8 u

ap

(
εp 0

0 ε−p

)
2 cos

πp

4

apb

(
0 iεp

iε−p 0

)
0

apc
1√
2

(
εp−1 εp−1

−ε−(p−1) ε−(p−1)

)
=

1√
2

(
εp−1 εp−1

ε−p+5 ε−p+1

)
√

2 cos
π(p − 1)

4

apbc
1√
2

(
−iεp+1 iεp+1

iε−(p+1) iε−(p+1)

)
=

1√
2

(
εp−1 εp+3

ε−p+1 ε−p+1

)
√

2 cos
π(p − 1)

4

apc2 1√
2

(
−εp+1 εp−1

−ε−(p−1) −ε−(p+1)

)
=

1√
2

(
εp+5 εp−1

ε−p+5 ε−p+3

)
−
√

2 cos
π(p + 1)

4

apbc2 1√
2

(
−iεp+1 −iεp−1

−iε−(p−1) iε−(p+1)

)
=

1√
2

(
εp−1 εp−3

ε−p−1 ε−p+1

)
√

2 cos
π(p − 1)

4

Now consider conjugacy classes in the binary tetrahedral group T . Accord-
ing to the Springer formula [Sp77, §4.4.10], the elements of the group T are
given by (A.19) with even numbers h. In other words, each of the 24 different
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Table A.7. The conjugacy classes in the binary octahedral group

Trace Representation Conjugacy class Class Representative

tr(x) ρ1 Cl(g) order g

2 1

(
1 0

0 1

)
1 1

−2 1 b2 = c3 = a4 =

(
−1 0

0 −1

)
1 −1

0 −1 ab, a3b, a5b, a7b,

a3bc, a7bc, ac2, a5c2, 12 ab

a3c, a7c, a3bc2, a7bc2

0 1 a2, a6, b, a2b, a4b, a6b 6 b

−1 1 a4c, a6c, a4bc, a6bc,

c2, a6c2, a4bc2, a6bc2 8 c2

1 1 c, a2c, bc, a2bc,

a4c2, a2c2, bc2, a2bc2 8 c

√
2 −1 a, a7, ac, abc, a3c2, abc2 6 a

−
√

2 −1 a3, a5, a5c, a5bc, a7c2, a5bc2 6 a3

elements x ∈ T may be given as follows:

x = a2hbjcl, 0 ≤ h < 4, 0 ≤ j < 2, 0 ≤ l < 3. (A.25)
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There are 24 elements of type (A.25). In the octahedral group O, the elements
(A.25) constitute 5 conjugacy classes:

{1}, {−1}, Cl(b), Cl(c) and Cl(c2),

see Table A.7. We will see now, that in the tetrahedral group T , the elements
(A.25) constitute 7 conjugacy classes:

{1}, {−1}, Cl(b), Cl(c), Cl(a4c) and Cl(a4c2).

The elements x ∈ T and their traces are collected in Table A.8. We can
now distinguish the elements of T by their traces and by means of two 1-
dimensional representations τ1 and τ2 such that

τ1(a) = 1, τ1(b) = 1, τ1(c) = ω3,

τ2(a) = 1, τ2(b) = 1, τ2(c) = ω2
3 ,

(A.26)

where ω3 = e2πi/3.

Proposition A.7. There are 7 conjugacy classes in the binary tetrahedral
group T . The rows of Table A.8 constitute these conjugacy classes.

For the proof, see [St05, Prop. A.7]. ��

A.5.3 Representations of the binary octahedral and tetrahedral
groups

Proposition A.8. The group O has the following 8 irreducible representa-
tions.

1) Two 1-dimensional representations:

ρ0(a) = ρ0(b) = ρ0(c) = 1;
ρ1(a) = −1, ρ1(b) = ρ1(c) = 1,

(A.27)

2) Two faithful 2-dimensional representations:

ρ3(a) = a, ρ3(b) = b, ρ3(c) = c;
ρ4(a) = −a, ρ4(b) = b, ρ4(c) = c.

(A.28)

3) The 2-dimensional representation ρ2 constructed by means of an epi-
morphism to the symmetric group S3

O −→ O/Q8 � S3, (A.29)

where Q8 is the quaternion group.
4) Two 3-dimensional representations ρ5 and ρ6 constructed by means of

an epimorphism to the symmetric group S4
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Table A.8. The conjugacy classes in the binary tetrahedral group

Trace Repr. Repr. Conjugacy class Class Representative

tr(x) τ1 τ2 Cl(g) order g

2 1 1

(
1 0

0 1

)
1 1

−2 1 1

(
−1 0

0 −1

)
1 −1

0 1 1 a2, a6, b, a2b, a4b, a6b 6 b

−1 ω3 ω2
3 a4c, a6c, a4bc, a6bc, 4 a4c = −c

−1 ω2
3 ω3 c2, a6c2, a4bc2, a6bc2 4 c2

1 ω3 ω2
3 c, a2c, bc, a2bc 4 c

1 ω2
3 ω3 a4c2, a2c2, bc2, a2bc2 4 a4c2 = −c2

O −→ O/{1,−1} � S4. (A.30)

The representations ρ5 and ρ6 are related as follows

ρ6(a) = −ρ5(a), ρ6(b) = ρ5(a), ρ6(c) = ρ5(c). (A.31)

5) The 4-dimensional representation ρ7 constructed as the tensor product
ρ2 ⊗ ρ3 (it coincides with ρ2 ⊗ ρ4).
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Table A.9. The characters of the binary octahedral group

Character Conjugacy class Cl(g) and its order |Cl(g)| under it Note on

ψi Cl(1) Cl(−1) Cl(ab) Cl(b) Cl(c2) Cl(c) Cl(a) Cl(a3) represent.

1 1 12 6 8 8 6 6 ρi

ψ0 1 1 1 1 1 1 1 1 trivial

ψ1 1 1 −1 1 1 1 −1 −1 ρ1(a) = −a

ψ2 2 2 0 2 −1 −1 0 0 γ2π2

ψ3 2 −2 0 0 −1 1
√

2 −
√

2 faithful

ψ4 2 −2 0 0 −1 1 −
√

2
√

2 faithful

ψ5 3 3 −1 −1 0 0 1 1 γ5π56

ψ6 3 3 1 −1 0 0 −1 −1 γ6π56

ψ7 4 −4 0 0 1 −1 0 0 ρ2 ⊗ ρ3

The characters of representations ρi for i = 0, . . . , 7 are collected in Table
A.9.

Proof. 1) and 2) are clear from constructions (A.27) and (A.28).
3) We construct the third 2-dimensional representation ρ2 by using the

homomorphism
π2 : O −→ O/Q8, (A.32)

see (A.24). The quotient group O/Q8 is isomorphic to the symmetric group
S3 consisting of 6 elements. The cosets of O/Q8 are

{Q8, cQ8, c
2Q8, abQ8, acQ8, ac2Q8} =

{{1}, {c}, {c2}, {ab}, {ac}, {ac2}}.
(A.33)

For more details about O/Q8, see [St05, Prop. A.8]. Further, we have

O/Q8 � S3,

{ab} � (12), {ac} � (13), {ac2} � (23),

{c} � (123), {c2} � (132).

(A.34)

The symmetric group S3 has a 2-dimensional representation γ2 such that

tr γ2(12) = tr γ2(13) = tr γ2(23) = 0, i.e.,

tr γ2{ab} = tr γ2{ac} = tr γ2{ac2} = 0,

tr γ2(123) = tr γ2(132) = −1, i.e., tr γ2{c} = tr γ2{c2} = −1,

tr γ2(1) = 2,
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see, e.g., [CR62, §32]. We consider now the representation ρ2 as the composi-
tion of epimorphism π2 and the representation γ2, i.e.,

ρ2 = γ2π2. (A.35)

So, for all u ∈ Cl(ab) ∪ Cl(a) ∪ Cl(a3), we see that

π2(u) ∈ {ab} ∪ {ac} ∪ {ac2} and tr ρ2(u) = 0.

For all u ∈ Cl(c) ∪ Cl(c2), we see that

π2(u) ∈ {c} ∪ {c2} and tr ρ2(u) = −1.

Finally, for all u ∈ Cl(1) ∪ Cl(−1) ∪ Cl(b) we see that

π2(u) ∈ {1} and tr ρ2(u) = 2.

Thus we obtain the row of characters ψ2.

Table A.10. The 3-dimensional characters of S4

Character Conjugacy class Ci ⊂ S4 and

its order |Ci| under it

C1 C2 C3 C4 C5

1 6 8 6 3

γ5 3 −1 0 1 −1

γ6 3 1 0 −1 −1

4) We construct representations ρ5 and ρ6 by means of the epimorphism

π56 : O −→ O/{1,−1}. (A.36)

The epimorphism π56 is well-defined because the subgroup {1,−1} is nor-
mal:

{1,−1} �O. (A.37)

The quotient group O/{1,−1} is the 24-element octahedral group coincid-
ing with the symmetric group S4. By [CR62, §32] S4 has two 3-dimensional
representations, γ5 and γ6, with characters as in Table A.10.

In Table A.10 we give the conjugacy classes Ci of the group S4 together
with the number of elements of these classes:



A.5 The Slodowy generalization of the McKay correspondence 171

C1 = {1},
C2 = {ab, a3b, a3c, a3bc, ac2, a3bc2},
C3 = {c, c2, bc, a2c, a2bc, bc2, a2c2, a2bc2},
C4 = {a, a3, ac, abc, a3c2, abc2},
C5 = {a2, b, a2b}.

(A.38)

We have
ρ5 = γ5π56, ρ6 = γ6π56. (A.39)

For any u ∈ Cl(1) ∪ Cl(−1), we see that

π56(u) = 1 and tr ρ5(u) = 3.

For any u ∈ Cl(ab), we see that

π56(u) ∈ C2 and tr ρ5(u) = −1.

For any u ∈ Cl(b), we see that

π56(u) ∈ C5 and tr ρ5(u) = −1.

For any u ∈ Cl(c) ∪ Cl(c2) , we see that

π56(u) ∈ C3 and tr ρ5(u) = 0.

Finally, for any u ∈ Cl(a) ∪ Cl(a2) we see that

π56(u) ∈ C4 and tr ρ5(u) = 1.

Thus we obtain the row of characters ψ5.
Note, that ρ6 can be obtained from ρ5 by the following relations:

ρ6(a) = −ρ5(a), ρ6(b) = ρ5(b), ρ6(c) = ρ5(c). (A.40)

5) Finally, the 4-dimensional representation ρ7 is constructed as either of
the tensor products ρ2⊗ ρ3 or ρ2⊗ ρ4. Observe that ψ2ψ3 and ψ2ψ4 have the
same characters, see Table A.11.

Table A.11. The character of the 4-dimensional representation ρ7

Cl(1) Cl(−1) Cl(ab) Cl(b) Cl(c2) Cl(c) Cl(a) Cl(a3)

ψ7 = ψ2ψ3 = ψ2ψ4 4 -4 0 0 1 -1 0 0

The irreducibility of ρ2 ⊗ ρ3 follows from the fact that

〈ψ2ψ3, ψ2ψ3〉 =
16 + 16 + 8 + 8

48
= 1. ��
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Example A.9 (The McKay correspondence for the binary octahedral group).
Select ρ3 as a faithful representation of O from the McKay correspondence.
All irreducible representations ρi of O (see Proposition A.8 and Table A.9)
can be placed in vertices of the extended Dynkin diagram Ẽ7, see (A.41):

ρ0 ρ3 ρ5 ρ7 ρ6 ρ4 ρ1

ρ2

(A.41)

Then, according to the McKay correspondence we have the following decom-
positions of the tensor products ρ3 ⊗ ρi:

ρ3 ⊗ ρ0 = ρ3,

ρ3 ⊗ ρ1 = ρ4,

ρ3 ⊗ ρ2 = ρ7,

ρ3 ⊗ ρ3 = ρ0 + ρ5,

ρ3 ⊗ ρ4 = ρ1 + ρ6,

ρ3 ⊗ ρ5 = ρ3 + ρ7,

ρ3 ⊗ ρ6 = ρ4 + ρ7,

ρ3 ⊗ ρ7 = ρ2 + ρ5 + ρ6. ��

(A.42)

Table A.12. The characters of the binary tetrahedral group. Here, ω3 = e2πi/3.

Character Conjugacy class Cl(g) and its order |Cl(g)| under it Note on

χi Cl(1) Cl(−1) Cl(b) Cl(c) Cl(c2) Cl(−c) Cl(−c2) τi

1 1 6 4 4 4 4

χ0 1 1 1 1 1 1 1 trivial

χ1 1 1 1 ω3 ω2
3 ω3 ω2

3 τ1(c) = ω3

χ2 1 1 1 ω2
3 ω3 ω2

3 ω3 τ2(c) = ω2
3

χ3 2 −2 0 1 −1 −1 1 faithful

χ4 2 −2 0 ω3 −ω2
3 −ω3 ω2

3 τ3 ⊗ τ1

χ5 2 −2 0 ω2
3 −ω3 −ω2

3 ω3 τ3 ⊗ τ2

χ6 3 3 −1 0 0 0 0 γ6π6

Proposition A.10. The group T has the following 7 irreducible representa-
tions:
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1) Three 1-dimensional representations

τ0(a) = τ0(b) = τ0(c) = 1,

τ1(a) = τ1(b) = 1, τ1(c) = ω3,

τ2(a) = τ2(b) = 1, τ2(c) = ω2
3 ,

(A.43)

Representations τ1 and τ2 can be constructed by using an epimorphism onto
the alternating group A4:

T −→ T /{1,−1} = A4. (A.44)

2) The faithful 2-dimensional representation

τ3(a) = a, τ3(b) = b, τ3(c) = c, (A.45)

3) Two 2-dimensional representation τ4 and τ5 constructed as tensor prod-
ucts

τ4 = τ3 ⊗ τ1, τ5 = τ3 ⊗ τ2. (A.46)

4) The 3-dimensional representation τ6 constructed by using an epimor-
phism (A.44) onto the alternating group A4.

The characters of representations τi for i = 0, . . . , 6 are collected in Table
A.12.

Proof. 1), 2) and 3) are easily checked.
4) Consider the 3-dimensional representation of the alternating group A4

with the character given in Table A.13, see, e.g., [CR62, §32]:

Table A.13. The 3-dimensional character of A4

Character Conjugacy class Ci ⊂ A4 and

its order |Ci| under it

C1 C2 C3 C4

1 3 4 4

γ6 3 −1 0 0

In Table A.13 we have C1 = {1}, C2 contains only elements of order 2,
and C3, C4 contain only elements of order 3, see (A.47).

C1 = {1},
C2 = {a2, b, a2b},
C3 = {c, a2c, bc, a2bc},
C4 = {c2, a2c2, bc2, a2bc2}.

(A.47)
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If π6 is an epimorphism (A.44), then

τ6 = γ6π6, (A.48)

and
τ6 : Cl(1) ∪ Cl(−1) −→ C1, tr τ6(u) = 3,

τ6 : Cl(b) −→ C2, tr τ6(u) = −1,

τ6 : Cl(c) ∪ Cl(−c) −→ C3, tr τ6(u) = 0,

τ6 : Cl(c2) ∪ Cl(−c2) −→ C4, tr τ6(u) = 0.

(A.49)

Thus we get the last row in Table A.12. ��

Example A.11 (The McKay correspondence for the binary tetrahedral group).
Select τ3 as a faithful representation of T from the McKay correspondence.
All irreducible representations τi of T (see Proposition A.10 and Table A.12)
can be placed in vertices of the extended Dynkin diagram Ẽ6, see (A.50):

τ1 τ4 τ6 τ5 τ2

τ3

τ0

(A.50)

Then, according to the McKay correspondence, we have the following decom-
positions of the tensor products τ3 ⊗ τi:

τ3 ⊗ τ0 = τ3,

τ3 ⊗ τ1 = τ4,

τ3 ⊗ τ2 = τ5,

τ3 ⊗ τ3 = τ0 + τ6,

τ3 ⊗ τ4 = τ1 + τ6,

τ3 ⊗ τ5 = τ2 + τ6,

τ3 ⊗ τ6 = τ3 + τ4 + τ5. ��

(A.51)

A.5.4 The induced and restricted representations

Let us denote the characters of induced and restricted representations of T
and O as follows:

the irreducible representations τ of T ⇐⇒ char(τ) := χ,

the irreducible representations ρ of O ⇐⇒ char(ρ) := ψ,

the induced representations τ ↑OT of O ⇐⇒ char(τ ↑OT ) := χ↑,

the restricted representations ρ ↓OT of T ⇐⇒ char(ρ ↓OT ) := ψ↓.

(A.52)
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Table A.14. The restricted characters of the binary octahedral group

Character Conjugacy class Cl(g) and order of class |Cl(g)|

ψ↓
i ClO(1) ClO(−1) ClO(b) ClO(c2) ClO(c)

1 1 6 8 8

ClT (1) ClT (−1) ClT (b) ClT (−c) ClT (c2) ClT (c) ClT (−c2)

1 1 6 4 4 4 4

ψ↓
1 = ψ↓

0 1 1 1 1 1 1 1

ψ↓
2 2 2 2 −1 −1 −1 −1

ψ↓
4 = ψ↓

3 2 −2 0 −1 −1 1 1

ψ↓
6 = ψ↓

5 3 3 −1 0 0 0 0

ψ↓
7 4 −4 0 1 1 −1 −1

Consider the restriction of the binary octahedral group O onto the binary
tetrahedral subgroup T . Then the conjugacy classes Cl(a), Cl(a3) and Cl(ab)
disappear, and the remaining 5 classes split into 7 conjugacy classes, see Table
A.14. We denote the conjugacy classes of O by ClO and conjugacy classes of
T by ClT .

Now consider the restricted representations ψ↓
i from O onto T . By Ta-

ble A.9 ψ0 (resp. ψ3 or ψ5) differs from ψ1 (resp. ψ4 or ψ6) only on Cl(a),
Cl(a3), and Cl(ab), so we have the following coinciding pairs of restricted
representations:

ψ↓
0 = ψ↓

1 , ψ↓
3 = ψ↓

4 , ψ↓
5 = ψ↓

6 . (A.53)

The values of the characters ψ↓
i for i = 0, 2, 3, 5, 7 are easily obtained from

the corresponding characters ψi.
Observe that ρ↓3 = τ3 is a faithful representation of T with character

ψ↓
3 = χ3. All irreducible representations ρ↓i for i = 0, 2, 3, 5, 7 can be placed in

vertices of the extended Dynkin diagram F̃42, see Fig. A.2. From Table A.14
we have
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Fig. A.2. The induced and restricted representations of T � O

τ3 ⊗ ρ↓0 = ρ↓3 ⊗ ρ↓0 = ρ↓3,

τ3 ⊗ ρ↓2 = ρ↓3 ⊗ ρ↓2 = ρ↓7,

τ3 ⊗ ρ↓3 = ρ↓3 ⊗ ρ↓3 = ρ↓0 + ρ↓5,

τ3 ⊗ ρ↓5 = ρ↓3 ⊗ ρ↓5 = ρ↓3 + ρ↓7,

τ3 ⊗ ρ↓7 = ρ↓3 ⊗ ρ↓7 = ρ↓2 + 2ρ↓5.

(A.54)

Thus, the decompositions (A.54) constitute the following matrix

Ã =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0 2 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

ρ↓2

ρ↓7

ρ↓5

ρ↓3

ρ↓0

(A.55)
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where the row associated with ρ↓i for i = 2, 7, 5, 3, 0 consists of the decom-
position coefficients (A.54) of τ3 ⊗ ρ↓i . The matrix Ã satisfies the relation

Ã = 2I −K, (A.56)

where K is the Cartan matrix for the extended Dynkin diagram F̃42, see
(2.22). We call the matrix Ã the Slodowy matrix; it is an analog of the McKay
matrix for the multiply-laced case.

Now we move on to the dual case and consider induced representations. To
obtain induced representations χ ↑OT , we use the Frobenius reciprocity formula
connecting restricted and induced representations, see, e.g., [JL2001, 21.16]

〈ψ, χ ↑G
H〉G = 〈ψ ↓G

H , χ〉H . (A.57)

By (A.57) we have the following expression for the characters of induced
representations

χ ↑G
H =

∑

ψi∈Irr(G)

〈ψi, χ ↑G
H〉Gψi =

∑

ψi∈Irr(G)

〈ψ ↓G
H , χ〉Hψi. (A.58)

Thus, to calculate the characters χ↑ = χ ↑OT , we only need to calculate the
inner products

〈ψ↓, χ〉T = 〈ψ ↓OT , χ〉T . (A.59)

Table A.15. The inner products 〈ψ↓, χ〉

ψ↓
1 = ψ↓

0 ψ↓
2 ψ↓

3 = ψ↓
4 ψ↓

5 = ψ↓
6 ψ↓

7

χ0 1 0 0 0 0

χ1 0 1 0 0 0

χ2 0 1 0 0 0

χ3 0 0 1 0 0

χ4 0 0 0 0 1

χ5 0 0 0 0 1

χ6 0 0 0 1 0

One can obtain the inner products (A.59) from Tables A.12 and A.14.
The results are given in Table A.15. Further, from Table A.15 and (A.58) we
deduce
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χ↑
0 =ψ0 + ψ1,

χ↑
1 = χ↑

2 =ψ2,

χ↑
3 =ψ3 + ψ4,

χ↑
4 = χ↑

5 =ψ7,

χ↑
6 =ψ5 + ψ6,

τ↑
0 =ρ0 + ρ1,

τ↑
1 = τ↑

2 =ρ2,

τ↑
3 =ρ3 + ρ4,

τ↑
4 = τ↑

5 =ρ7,

τ↑
6 =ρ5 + ρ6.

(A.60)

Let us find the tensor products ρf ⊗ τ↑
i = ρ3 ⊗ τ↑

i , where ρf means the
faithful representation of O. By (A.42) and (A.60) we have

ρ3 ⊗ τ↑
0 =ρ3 ⊗ (ρ0 + ρ1) = ρ3 ⊗ ρ0 + ρ3 ⊗ ρ1 = ρ3 + ρ4 = τ↑

3 ,

ρ3 ⊗ τ↑
1 =ρ3 ⊗ τ↑

2 = ρ3 ⊗ ρ2 = ρ7 = τ↑
4 = τ↑

5 ,

ρ3 ⊗ τ↑
3 =ρ3 ⊗ (ρ3 + ρ4) =

ρ3 ⊗ ρ3 + ρ3 ⊗ ρ4 = (ρ0 + ρ5) + (ρ1 + ρ6) = τ↑
0 + τ↑

6 ,

ρ3 ⊗ τ↑
4 =ρ3 ⊗ τ↑

5 = ρ3 ⊗ ρ7 = ρ2 + ρ5 + ρ6 = τ↑
1 + τ↑

6 = τ↑
2 + τ↑

6 ,

ρ3 ⊗ τ↑
6 =ρ3 ⊗ (ρ5 + ρ6) = ρ3 ⊗ ρ5 + ρ3 ⊗ ρ6 =

(ρ3 + ρ7) + (ρ4 + ρ7) = τ↑
3 + 2τ↑

4 = τ↑
3 + 2τ↑

5 .

(A.61)

Here ρ3 is the faithful representation ofO with character ψ3. All irreducible
representations τ↑

i for i = 0, 2, 3, 5, 6 can be placed in vertices of the extended
Dynkin diagram F̃41, see Fig. A.2. For other details, see [Sl80, App.III, p.
164].

The decompositions (A.61) constitute the following matrix

Ã∨ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0 1 0 0

0 2 0 1 0

0 0 1 0 1

0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

τ↑
2

τ↑
5

τ↑
6

τ↑
3

τ↑
0

(A.62)

where the row associated with τ↑
i for i = 2, 5, 6, 3, 0 consists of the decompo-

sition coefficients (A.61) of ρ3 ⊗ τ↑
i . As in (A.56), the matrix Ã∨ satisfies the

relation
Ã∨ = 2I −K∨, (A.63)

where K∨ is the Cartan matrix for the extended Dynkin diagram F̃41, see
(2.20). We see that the matrices Ã and Ã∨ are mutually transposed:

Ãt = Ã∨. (A.64)

As in (A.56), we call the matrix Ã∨ the Slodowy matrix.
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A.6 The characters of the binary polyhedral groups

Representations of the binary octahedral and tetrahedral groups are con-
sidered in §A.5.3. For characters of the binary tetrahedral group, see Table
A.12; for characters of the binary octahedral group, see Table A.9. Below, we
give character tables of remaining three groups: cyclic groups, binary dihe-
dral groups and binary dihedral group, see [Blu06], [Mon07], [Brn01], [IN99],
[Hu75].

A.6.1 The cyclic groups

The irreducible representations are

τj : Z/nZ −→ C
∗, ai −→ (ξj)i = ξji, for i, j = 0, 1, . . . , n− 1,

where ξ is a primitive n-th root of unity.
(A.65)

Table A.16. The characters of the cyclic group

Character Conjugacy class Cl(g) and its order under it Note on

χi Cl(1) Cl(a) Cl(a2) . . . Cl(an−2) Cl(an−1) represent.

1 1 1 . . . 1 1 τi

χ0 1 1 1 . . . 1 1 τ0

χ1 1 ξ ξ2 . . . ξn−2 ξn−1 τ1

χ2 1 ξ2 ξ4 . . . ξ2(n−2) ξ2(n−1) τ2

. . . . . . . . . . . . . . . . . . . . . . . .

χn−2 1 ξ(n−2) ξ2×(n−2) . . . ξ(n−2)×(n−2) ξ(n−2)×(n−1) τn−2

χn−1 1 ξ(n−1) ξ2×(n−1) . . . ξ(n−2)×(n−1) ξ(n−1)×(n−1) τn−1

A.6.2 The binary dihedral groups

The binary dihedral group D is also known as dicyclic group. The group D
has the following presentation:

D = {a, b | an = b2 = (ba)2 = −1}. (A.66)

By setting
R := b, S := a, T := ba,

we deduce that presentation (A.66) is equivalent to
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Table A.17. The characters of the binary dihedral group, n even

Character Conjugacy class Cl(g) and its order under it

χi Cl(1) Cl(−1) Cl(ak) for k = 1, . . . , n − 1 Cl(b) Cl(ba)

1 1 2 n n

χ1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 1 −1 (−1)k i −i

χ4 1 −1 (−1)k −i i

χ′
1 2 −2 ξk + ξ−k 0 0

χ′
2 2 2 ξ2k + ξ−2k 0 0

. . . . . . . . . . . . . . . . . .

χ′
n−1 2 (−2)n−1 ξk(n−1) + ξ−k(n−1) 0 0

Table A.18. The characters of the binary dihedral group, n odd

Character Conjugacy class Cl(g) and its order under it

χi Cl(1) Cl(−1) Cl(ak) for k = 1, . . . , n − 1 Cl(b) Cl(ba)

1 1 2 n n

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 −1 (−1)k 1 −1

χ4 1 −1 (−1)k −1 1

χ′
1 2 −2 ξk + ξ−k 0 0

χ′
2 2 2 ξ2k + ξ−2k 0 0

. . . . . . . . . . . . . . . . . .

χ′
n−1 2 (−2)n−1 ξk(n−1) + ξ−k(n−1) 0 0

R2 = Sn = T 2 = RST = −1, (A.67)

i.e., eq. (A.5) holds for 〈2, 2, n〉.
The characters of the binary dihedral group D are given in Table A.17 (n

is even) and Table A.18 (n is odd). In these tables ξ is a primitive 2n-th root
of unity.



A.6 The characters of the binary polyhedral groups 181

A.6.3 The binary icosahedral group

The binary icosahedral group J has the presentation:

J = {a, b | a5 = b3 = (ba)2 = −1}. (A.68)

Table A.19. The characters of the binary icosahedral group

Character The conjugacy class Cl(g) and its order (under it)

χi Cl(1) Cl(−1) Cl(a) Cl(a2) Cl(a3) Cl(a4) Cl(b) Cl(b2) Cl(ab)

1 1 12 12 12 12 20 20 30

χ1 1 1 1 1 1 1 1 1 1

χ2 2 −2 μ+ −μ− μ− −μ+ 1 −1 0

χ3 2 −2 μ− −μ+ μ+ −μ− 1 −1 0

χ4 3 3 μ+ μ− μ− μ+ 0 0 −1

χ5 3 3 μ− μ+ μ+ μ− 0 0 −1

χ6 4 −4 1 −1 1 −1 −1 1 0

χ7 4 4 −1 −1 −1 −1 1 1 0

χ8 5 5 0 0 0 0 −1 −1 1

χ9 6 −6 −1 1 −1 1 0 0 0

By setting
R := b, S := a, T := ba,

we deduce that presentation (A.68) is equivalent to the following presentation:

R3 = S5 = T 2 = RST = −1, (A.69)

i.e., eq. (A.5) holds for 〈2, 3, 5〉.
Let μ+, μ− be as follows:

μ+ =
1
2
(1 +

√
5), and μ− =

1
2
(1−

√
5).

The characters of the binary icosahedral group J are given in Table A.19.



B

Regularity conditions for representations of
quivers

B.1 The Coxeter functors and regularity conditions

Following Bernstein, Gelfand and Ponomarev [BGP73], given a quiver Q and
a field K, we define reflection functors and Coxeter functors. For details, see
[ASS06], [Pie82] or [Ser05].

A vertex a ∈ Q0 is said to be sink-admissible (resp. source-admissible) if
all arrows containing a have a as a target (resp. as a source). By σaQ we
denote the quiver obtained from Q by inverting all arrows containing a.

For each sink-admissible vertex a, we define the reflection functor

F+
a : repK(Q) −→ repK(σaQ)

between the categories of finite dimensional K-linear representations of the
quivers Q and σaQ, see §B.1.1, and for each source-admissible vertex a, we
define the reflection functor

F−
a : repK(σaQ) −→ repK(Q)

between the categories of finite dimensional K-linear representations of the
quivers σaQ and Q, see §B.1.2. After that, in §B.1.3 we give the definition of
the Coxeter functors Φ+ and Φ−.

The connection between the Coxeter functors and the Coxeter transfor-
mations is as follows: the action of the Coxeter functor on the objects of the
repK(Q) induces the action of the corresponding Coxeter transformation on
dimensions of these objects. An essential difference is that the Coxeter func-
tor is not always invertible, whereas the corresponding Coxeter is invertible.
There are simple objects V , W which are turned into 0 under the action the
Coxeter functors:

Φ+(V ) = 0, Φ−(V ) �= 0.
Φ−(W ) = 0, Φ+(W ) �= 0.

Only on the regular objects the behavior of the Coxeter functor is “more
agreeable”, and the regular representation never vanishes under the action of
the Coxeter functor, see §B.1.4.
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B.1.1 The reflection functor F+
a

Let
V = (Vi, δα)i∈Q0,α∈Q1 (B.1)

be an object of repK(Q). The object

F+
a V = (V ′

i , δ′α)i∈(σaQ)0,α∈(σaQ)1

in repK(σaQ) is defined as follows.
We put V ′

i = Vi for i �= a. For i = a, we put V ′
a = ker∇, where

∇ =
∑

α:s(α)→a

δα :
⊕

α

Vs(α) → Vα,

and s(α) is the source of the arrow α. The K-linear map ∇ acts such that

∇(v1, . . . , vn) =
∑

α:s(α)→a

δα(vs(α)),

for all collections {η1, . . . , ηn | ηi ∈ Vi}, where the indices 1, . . . , n enumerate
all arrows ending with a.

We put δ′α = δα for all arrows α whose sink t(α) differs from a. For
t(α) = a, we define the map

δ′α : V ′
a → V ′

i = Vi

to be the composition of the inclusion V ′
a into

⊕
α:s(α)→a

Vs(α) with the projec-

tion on the direct summand Vi.
Following [ASS06, §VII.5.5], we define the action of the reflection functor

F+
a on the morphisms between representations in the category repK(Q). Let

f = (fi)i∈Q0 : V →W

be a morphism in repK(Q), where V = (Vi, δα) and W = (Wi, μα). We define
the morphism

F+
a f = f ′ = (f ′

i)i∈σQ0 : F+
a V → F+

a W

as follows. For each i �= a, we put f ′
i = fi. For i = a, we give the K-linear

map f ′
a, such that the following diagram is commutative

0 −−−−→ (F+
a V )a −−−−→

⊕
α:s(α)→a

Vs(α)
(δα)α−−−−→ Vα

⏐⏐�f ′
a

⏐⏐�
⊕
α

fs(α)

⏐⏐�fα

0 −−−−→ (F+
a W )a −−−−→

⊕
α:s(α)→a

Ws(α)
(μα)α−−−−→ Wα
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B.1.2 The reflection functor F −
a

Let
V ′ = (V ′

i , δ′α)i∈σaQ0,α∈σaQ1 (B.2)

be an object of repK(σaQ). The object

F−
a V ′ = (Vi, δα)i∈(σaQ)0,α∈(σaQ)1

in repK(Q) is defined as follows.
We put Vi = V ′

i for i �= a. For i = a, we put Va =
⊕

α:a→t(α)

V ′
t(α)/Imδ′α,

where
δ′α : V ′

a →
⊕

α:a→t(α)

V ′
t(α)

and t(α) is the sink of the arrow α.
We put δα = δ′α for all arrows α such that the source s(α) �= a. For

s(α) = a, we define the map

δα : V ′
i = Vi → Va

to be the composition of the inclusion V ′
i into

⊕
α:a→t(α)

V ′
t(α) with the projection

onto Va =
⊕

α:a→t(α)

V ′
t(α)/Imδ′α.

We define the action of the reflection functor F−
a on the morphisms be-

tween representations in the category repK(σaQ). Let

f ′ = (f ′
i)i∈σaQ0 : V ′ →W ′

be a morphism in repK(σaQ), where V ′ = (V ′
i , δ′α) and W = (W ′

i , μ
′
α). We

define the morphism

F−
a f ′ = f = (fi)i∈σQ0 : F−

a V ′ → F−
a W ′

as follows. For each i �= a, we put fi = f ′
i . For i = a, we give the K-linear

map fa, such that the following diagram is commutative

V ′
a −−−−→

⊕
α:a→t(α)

V ′
t(α)

(δα)α−−−−→ (F−
a V ′)α −−−−→ 0

⏐⏐�f ′
a

⏐⏐�
⊕
α

f ′
t(α)

⏐⏐�fα

W ′
a −−−−→

⊕
α:a→t(α)

W ′
t(α)

(μα)α−−−−→ (F−
a W ′)α −−−−→ 0
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B.1.3 The Coxeter functors Φ+, Φ−

The main property of the reflection functors is the fact that the reflection func-
tors preserve the indecomposability of representations, namely, the following
proposition takes place.

Proposition B.1 ([BGP73]). Let Q be a quiver without cycles and (V, δ)
an indecomposable representation. Let i be a sink-admissible (resp. source-
admissible) representation. Then

(i) if (V, δ) ∼= (Pi, 0), where (Pi, 0) is the simple indecomposable represen-
tation, then

F+
i (V, δ) = (0, 0) (resp. F−

i (V, δ) = (0, 0)).

(ii) if (V, δ) � (Pi, 0), then the representation F+
i (V, δ) = (V ′, δ′) (resp.

F−
i (V, δ) = (V ′, δ′)) is indecomposable,

F−
i F+

i (V, δ) ∼= (V, δ) (resp. F+
i F−

i (V, δ) ∼= (V, δ))

and

dimK V ′
i = dimK Vi for i �= a,

dimK V ′
a = −dimK Va +

∑

α:s(α)→a

dimK Ms(α).

For a proof, see, e.g., [Pie82, §8.8.7]. ��
Every tree has a fully sink-admissible sequence S, see §2.2.6, and for every

sink-admissible sequence S, we define the Coxeter functors Φ+ and Φ− as
follows:

Φ+ = F+
in

F+
in−1

...F+
i2

F+
i1

,

Φ− = F−
i1

F−
i2

...F−
in−1

F−
in

.
(B.3)

For every tree-shaped quiver Q, every fully sink-admissible sequence gives
rise to the same Coxeter functor Φ+, and every fully source-admissible se-
quence gives rise to Φ−, thus the definition of the Coxeter functors do not
depend on the order of vertices in S.

The Coxeter functors Φ+, Φ− are endofunctors, i.e.,

Φ+ : repKL −→ repKL, Φ− : repKL −→ repKL,

because every edge of the tree is twice reversed.
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B.1.4 The preprojective and preinjective representations

Let V be an object (representation) of the category repK(Q), see (B.1). A
given representation V for which Φ+V = 0 (resp. Φ−V = 0) is said to be
projective (resp. injective). For every indecomposable representation V , a new
indecomposable representation Φ+V (resp. Φ−V ) can be constructed, except
for the case where V is projective (resp. injective).

By [GP79, Prop. 8,9] the projective indecomposable representations of any
quiver are naturally enumerated by the vertices of the graph and can be recov-
ered from the orientation of the graph.

If V is indecomposable and not projective, i.e., Φ+V �= 0, then V =
Φ−Φ+V .

If V is indecomposable and not injective, i.e., Φ−V �= 0, then V = Φ+Φ−V .
If V is indecomposable and (Φ+)kV �= 0, then V = (Φ−)k(Φ+)kV .
If V is indecomposable and (Φ−)kV �= 0, then V = (Φ+)k(Φ−)kV .
A representation V is called preprojective if, for some projective represen-

tation Ṽ ,
(Φ+)kV = Ṽ , (Φ+)k+1V = Φ+Ṽ = 0.

A representation V is called preinjective if, for some injective representa-
tion Ṽ ,

(Φ−)kV = Ṽ , (Φ−)k+1V = Φ−Ṽ = 0.

A representation V is called regular if

(Φ+)kV �= 0 and (Φ−)kV �= 0 for every k ∈ Z. (B.4)

B.1.5 The regularity condition

The regularity condition given by the relation (B.4) can be reformulated in
terms of dimensions of representations as follows:

Lemma B.2 ([St75]). An indecomposable object V ∈ repK(Q) is regular if
and only if, for each k ∈ Z, we have

CkdimV > 0. (B.5)

Proof. Note that the quiver Q is considered with some orientation Ω, and in
the relation (B.5), we assume that C = CΩ.

1) Let V be indecomposable and regular. Suppose there exists k ∈ Z such
that

CkdimV ≯ 0. (B.6)

Let n be the number of vertices of the quiver Q and {in, . . . , i1} be a
fully sink-admissible sequence corresponding to the orientation Ω as in §B.1.
Consider the sequence

{βnk, . . . , i1} = {ik, . . . , i1, . . . , ik, . . . , i1}.
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Then Ck = sβnk
. . . sβ1 .

Since dim V > 0, there exists i < kn such that

sβi . . . sβ1(dim V ) > 0 and sβi+1 . . . sβ1(dim V ) ≯ 0.

According to [BGP73], Corollary 3.1, we have

F+
βi

...F+
β1

(V ) = Lβi+1 ,

where Lβi+1 is the simplest object corresponding to the vertex βi+1:

Lβi+1 =

{
R

1 for the vertex vβi+1 ,

0 for the other vertices.

Therefore, F+
βi+1

F+
βi

...F+
β1

(V ) = 0, and Φ+V = 0.
2) Conversely, let, for each k ∈ Z, we have

Ckdim V > 0. (B.7)

Suppose there exists k ∈ Z such that Φ+V = 0 or Φ−V = 0. We consider
the case Φ+V = 0; the case Φ−V = 0 is similarly considered. The relation
Φ+V = 0 means that for some i < kn, we have

F+
βi

...F+
β1

(V ) = Lβi+1 ,

and
dim V = sβ1 . . . sβi(βi+1),

where βi+1 is the simple root corresponding to the vertex vβi+1 .
For some r ∈ Z, we have

βi+1 = sβi . . . sβ1(dim V ) = sαt . . . sα1C
r(dim V ), 1 ≤ t ≤ n,

z = sβi+1(βi+1) = sαt+1sαt . . . sα1C
r(dim V ) < 0,

Cr+1(dim V ) = sαn . . . sαt+2sαt+1sαt . . . sα1C
r(dim V ) > 0.

(B.8)

The vector z has only one non-zero coordinate (z)βi+1 < 0, where βi+1 = αt.
Since the reflections sαn , . . . , sαt+1 do not change this coordinate, we get a
contradiction with the last relation in (B.8). ��

B.2 The necessary regularity conditions for diagrams
with indefinite Tits form

Now, consider the case where B is indefinite, i.e., Γ is any tree which is neither
a Dynkin diagram nor an extended Dynkin diagram.

Let (αm
1 , αm

2 , αϕ2
1 , αϕ2

2 , ...) be coordinates of the vector Tz in the Jordan
basis of eigenvectors and adjoint vectors (3.22) – (3.24), where αm

1 and αm
2
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are coordinates corresponding to the eigenvectors zm
1 and zm

2 . The vectors zm
1

and zm
2 correspond to the maximal eigenvalue ϕm = ϕmax of DDt and DtD,

respectively. Let us decompose the vector Tz as follows:

Tz = αm
1 zm

1 + αm
2 zm

2 + αϕ2
1 zϕ2

1 + αϕ2
2 zϕ2

2 + . . . (B.9)

According to (3.25), (3.26), (3.27) we have

Ck
ΛTz =

(λϕm

1 )kαm
1 zm

1 + (λϕm

2 )kαm
2 zm

2 + (λϕ2
1 )kαϕ2

1 zϕ2
1 + (λϕ2

1 )kαϕ2
2 zϕ2

2 + . . .
(B.10)

and

Ck
Ωz = T−1Ck

ΛTz =(λϕm

1 )kαm
1 T−1zm

1 + (λϕm

2 )kαm
2 T−1zm

2 +

(λϕ2
1 )kαϕ2

1 T−1zϕ2
1 + (λϕ2

1 )kαϕ2
2 T−1zϕ2

2 + . . .
(B.11)

It will be shown in Theorem B.7 that the transforming element T can be
modified so that its decomposition does not contain any given reflection σα.
Since the coordinates of the eigenvectors zm

1,2 are all positive, see Corollary
3.8 and (3.25), we see that each vector T−1zm

1,2 has at least one positive
coordinate. Besides,

|λϕm

1 | > |λϕj

1,2| > |λ
ϕm

2 | (B.12)

because

λϕm

1 =
1

λϕm

2

and

λϕm

1 = 2ϕm − 1 + 2
√

ϕm(ϕm − 1) > 2ϕi − 1± 2
√

ϕi(ϕi − 1).

Thus, since T−1zm
1,2 has at least one positive coordinate, we deduce from

(B.11) and (B.12) that

αϕm

1 ≥ 0, αϕm

2 ≥ 0. (B.13)

As in §6.3.2, for the case B is non-negative definite, let us calculate
αϕm

1,2 . The vector z̃m
1 conjugate to the vector zm

1 is orthogonal to the vec-
tors z2

1,2, z
3
1,2, . . . . Let us show that z̃m

1 is also orthogonal to zm
1 . Indeed, the

vectors zm
1 and z̃m

1 can be expressed as follows:

zm
1 =

⎛

⎜⎝

xm

− 2
λm

1 + 1
Dtxm

⎞

⎟⎠ , z̃m
1 =

⎛

⎜⎜⎝

xm

2λm
1

λm
1 + 1

Dtxm

⎞

⎟⎟⎠ , (B.14)

where for brevity we designate λϕmax

1 by λm
1 , zϕmax

1 by zm
1 , and xϕmax by

xm. Then,
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〈zm
1 , z̃m

1 〉 =

〈xm, xm〉 − 4λm
1

(λm
1 + 1)2

〈Dtxm, Dtxm〉 =

〈xm, xm〉 − 1
ϕm
〈xm, DDtxm〉 =

〈xm, xm〉 − 〈xm, xm〉 = 0.

(B.15)

The conjugate vector z̃m
1 is not orthogonal only to zm

2 in decomposition (B.9),
and similarly z̃m

2 is not orthogonal only to zm
1 . From (B.9) we get

〈Tz, z̃m
1 〉 = αm

2 〈zm
2 , z̃m

1 〉, 〈Tz, z̃m
2 〉 = αm

1 〈zm
1 , z̃m

2 〉. (B.16)

Let us find 〈zm
2 , z̃m

1 〉 and 〈zm
1 , z̃m

2 〉. We have:

〈zm
2 , z̃m

1 〉 = 〈xm, xm〉 − 4
(λm

2 + 1)2
〈xm, DDtxm〉 =

〈xm, xm〉(1− 4
(λm

2 + 1)2
(λm

2 + 1)2

4(λm
2 )2

) = 〈xm, xm〉(1− (λm
1 )2).

(B.17)

Similarly,

〈zm
1 , z̃m

2 〉 = 〈xm, xm〉(1− (λm
2 )2). (B.18)

Thus, from (B.16), (B.17) and (B.18) we get

〈Tz, z̃m
1 〉 = αm

2 〈xm, xm〉(1− (λm
1 )2),

〈Tz, z̃m
2 〉 = αm

1 〈xm, xm〉(1− (λm
2 )2).

(B.19)

Theorem B.3 ([SuSt75], [SuSt78]). If z is a regular vector for the graph
Γ with indefinite Tits form B in a given orientation Ω, then

〈Tz, z̃m
1 〉 ≤ 0, 〈Tz, z̃m

2 〉 ≥ 0. (B.20)

Proof. Since λm
1 > 1 and λm

2 < 1, the theorem follows from (B.19) and (B.13).
��

We denote the linear form 〈Tz, z̃m
1 〉 (resp. 〈Tz, z̃m

2 〉) by ρ1
Ω (resp. ρ2

Ω).
Then, conditions (B.20) have the following form:

ρ1
Ω(z) ≤ 0, ρ2

Ω(z) ≥ 0. (B.21)

Similar results were obtained by Y. Zhang in [Zh89, Prop.1.5], and by
J. A. de la Peña, M. Takane in [PT90, Th.2.3].

For an application of (B.20) to the star graph, see §B.4.4.
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B.3 Transforming elements and sufficient regularity
conditions

In this section we consider only extended Dynkin diagrams. We will show in
Theorem B.10 that the necessary regularity condition of the vector z (6.53)
coincides with the sufficient condition (Proposition B.4) only if the vector z is
a positive root in the corresponding root system. For an arbitrary vector z, this
is not true. Since dimension dimV of the indecomposable representation V is
a positive root (Kac’s theorem for any diagrams, Th. 2.16), then for the inde-
composable representation V , the necessary regularity condition of the vector
dimV coincides with the sufficient condition. For an arbitrary decomposable
representation, this is not true.

We start from the bicolored orientation Λ.

B.3.1 The sufficient regularity conditions for the bicolored
orientation

Proposition B.4 ([St82]). Let Γ be an extended Dynkin diagram, i.e., B is
non-negative definite. Let z be a root in the root system associated with Γ. If
the Λ-defect of the vector z is zero:

ρΛ(z) = 0, (B.22)

then z is regular in the bicolored orientation Λ.

Proof. Let
H = {z | z > 0, z is a root, ρΛ(z) = 0}. (B.23)

It suffices to prove that

w1H ⊂ H and w2H ⊂ H. (B.24)

Indeed, if (B.24) holds, then

Ck
ΛH ⊂ H for all k ∈ N,

hence Ck
Λz > 0 if z is a positive root satisfying the condition (B.22).

So, let us prove, for example, that w1H ⊂ H. Note that z and w1z are
roots simultaneously. Thus, either w1z > 0 or w1z < 0. Suppose w1z < 0.
Together with z > 0, by (3.4) we have y = 0. Hence

ρΛ(z) = 〈z, z̃1∨〉 = 〈x, x̃1∨〉.

The coordinates of x̃1∨ are positive, the coordinates of x are non-negative. If
ρΛ(z) = 0, then x = 0; this contradicts to the condition z > 0. Therefore,
w1z > 0. It remains to show that

ρΛ(w1z) = 0.
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Again, by (3.4), (3.6) and (3.23) we have

〈w1z, z̃1∨〉 = 〈
(
−x− 2Dy

y

)
,

(
x1∨

F∨x1∨

)
〉 =

− 〈x, x1∨〉 − 2〈y, Dtx1∨〉+ 〈y, F∨x1∨〉 =

− 〈x, x1∨〉 − 〈y, F∨x1∨〉 = −〈z, z̃1∨〉 = 0.

(B.25)

Thus, w1H ⊂ H. Similarly, w2H ⊂ H. ��
To prove the sufficient regularity condition for arbitrary orientation, we

need some properties of transforming elements T .

B.3.2 A theorem on transforming elements

Proposition B.5 ([St82]). Let Ω′, Ω′′ be two arbitrary orientations of the
graph Γ that differ by the direction of k edges. Consider the chain of orienta-
tions, in which every two adjacent orientations differ by the direction of one
edge:

Ω′ = Λ0, Λ1, Λ2, . . . ,Λk−1, Λk = Ω′′. (B.26)

Then, in the Weyl group, there exist elements Pi and Si, where i = 1, 2, ..., k,
such that

CΛ0 = P1S1,

CΛ1 = S1P1 = P2S2,

. . .

CΛk−1 = Sk−1Pk−1 = PkSk,

CΛk
= SkPk.

(B.27)

In addition, for each reflection and each i = 1, 2, ..., k, this reflection does not
occur in the decomposition of either Pi or S−1

i .

Proof. It suffices to consider the case k = 1. Let us consider the graph

Γ1 ∪ Γ2 = Γ\l.

The graph Γ can be depicted as follows:

Ω′ . . . ←− . . .
Γ1 Γ2

Ω′′ . . . −→ . . .
Γ1 Γ2

(B.28)

The orientations Ω′′ and Ω′ induce the same orientations on the graphs Γ1 and
Γ2, and therefore they induce the same Coxeter transformations on subgraphs
Γ1 and Γ2. Denote the corresponding Coxeter transformations by CΓ1 and
CΓ2 . Then
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CΩ′ = CΓ2CΓ1 , CΩ′′ = CΓ1CΓ2 .

Here,
P1 = CΓ2 , S1 = CΓ1 . ��

Remark B.6. Observe, in particular, that Proposition B.5 gives a simple proof
of the fact that all the Coxeter transformations form one conjugacy class, cf.
[Bo, Ch.5, §6].

Theorem B.7 ([St82]). 1) Under the condition of Proposition B.5,

T−1CΩ′T = CΩ′′

for the following k + 1 transforming elements T := Ti:

T1 = P1P2P3...Pk−2Pk−1Pk,

T2 = P1P2P3...Pk−2Pk−1S
−1
k ,

T3 = P1P2P3...Pk−2S
−1
k−1S

−1
k ,

. . .

Tk−1 = P1P2S
−1
3 ...S−1

k−2S
−1
k−1S

−1
k ,

Tk = P1S
−1
2 S−1

3 ...S−1
k−2S

−1
k−1S

−1
k ,

Tk+1 = S−1
1 S−1

2 S−1
3 ...S−1

k−2S
−1
k−1S

−1
k .

(B.29)

In addition, for each reflection σα, there exists a Ti whose decomposition does
not contain this reflection.

2) The following relation holds:

TpT
−1
q = Cq−p

Ω′ . (B.30)

Proof. 1) There are altogether 2k transforming elements of the form

T = X1X2...Xk−1Xk, where Xi ∈ {Pi, S
−1
i }. (B.31)

By Proposition B.5, for each reflection σα and for each i, we can select Xi =
Pi or Xi = S−1

i such that this reflection does not occur in T . Taking the
product of all these elements Xi we obtain the transforming element T whose
decomposition does not contain this reflection. It remains to show that every
transforming element from the list (B.31) containing 2k elements is of the
form (B.29). By (B.27) we have

S−1
q Pq+1 = PqS

−1
q+1.

Thus, all symbols S−1
i can be shifted to the right and all symbols Pi can be

shifted to the left.
2) It suffices to show (B.30) for p < q. By (B.29) we have
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TpT
−1
q =

(P1P2...Pk−p+1S
−1
k−p+2...S

−1
k )× (Sk...Sk−q+2P1P

−1
k−q+1...P

−1
1 ) =

P1P2...Pk−p+1(Sk−p+1Sk−p...Sk−q+2)P−1
k−q+1...P

−1
1 .

(B.32)

Here, k− p+1 ≥ k− q +2. In order to simplify eq. (B.32), we use eq. (B.27):

Pk−pPk−p+1Sk−p+1Sk−p = Pk−p(Sk−pPk−p)Sk−p = (Pk−pSk−p)2,
. . .

Pk−p−1(Pk−pSk−p)2Sk−p−1 =

Pk−p−1(Sk−p−1Pk−p−1)2Sk−p−1 = (Pk−p−1Sk−p−1)3,
. . .

Pk−q+2Pk−q+3...Pk−p+1Sk−p+1...Sk−q+2Sk−q+2 =

(Pk−q+2Sk−q+2)q−p.

(B.33)

Thus, from (B.32) and (B.33) we deduce:

TpT
−1
q = P1P2...Pk−q+1(Pk−q+2Sk−q+2)q−pP−1

k−q+1...P
−1
1 . (B.34)

Again, by (B.27) we have

Pk−q+1(Pk−q+2Sk−q+2)q−pP−1
k−q+1 =

Pk−q+1(Sk−q+1Pk−q+1)q−pP−1
k−q+1 = (Pk−q+1Sk−q+1)q−p,

. . .

Pk−q(Pk−q+1Sk−q+1)q−pP−1
k−q =

Pk−q(Sk−qPk−q)q−pP−1
k−q = (Pk−qSk−q)q−p,

. . .

P1(P2S2)q−pP−1
1 = P1(S1P1)q−pP−1

1 = (P1S1)q−p.

(B.35)

Therefore,
TpT

−1
q = (P1S1)q−p = Cq−p

Λ0
= Cq−p

Ω′ . �� (B.36)

Remark B.8. Theorem B.7 allows us to select a transforming element T in
such a way that its decomposition does not contain any given refection σi, and
therefore T does not change any given coordinate i. This fact was already used
once in §B.2 for the proof of the necessary regularity conditions for diagrams
with indefinite Tits form. Now, we will use Theorem B.7 to carry the sufficient
regularity condition from a bicolored orientation Λ in Proposition B.4 to an
arbitrary orientation Ω′, see Definition 6.30.

B.3.3 The sufficient regularity conditions for an arbitrary
orientation

Proposition B.9 ([St82]). Let Γ be an extended Dynkin diagram. Let Ω =
Λ0, Ω′ = Λk. If z is a positive root with zero Ω′-defect, then z is the Ω′-regular
vector.
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Proof. If z > 0, then there exists a positive coordinate zα > 0. Take a
transforming element Ti whose decomposition does not contain the reflection
σα. Then (Tiz)α > 0. Since Tiz is the root, we have Tiz > 0. The equality
ρΩ′(z) = 0 means that ρΩ(Tiz) = 0, see Definition 6.29. Since Tiz > 0 and
Tiz is the root, we see by Proposition B.4 that Tiz is Ω-regular and

Cm
Ω Tiz > 0 for all m ∈ N. (B.37)

Suppose that
u = T−1

i Cm
Ω Tiz < 0 for some m = m0.

Then by Theorem B.7 there exists a Tj such that Tju < 0, i.e.,

TjT
−1
i Cm

Ω Tiz < 0 for m = m0. (B.38)

Again by Theorem B.7 we have TjT
−1
i = Ci−j

Ω and by (B.38) the following
relation holds:

Ci−j
Ω Cm

Ω Tiz < 0 for m = m0 (B.39)

that contradicts (B.37). Therefore,

u = Cm
Ω′z = T−1

i Cm
Ω Tiz > 0 for all m ∈ N.

Thus, z is a Ω′-regular vector. ��
From Theorem 6.33 together with Proposition B.9 we get the following

Theorem B.10. The indecomposable representation V of the graph Γ (which
is an extended Dynkin diagram) with orientation Ω is regular in the orienta-
tion Ω if and only if

ρΩ(dim V ) = 0.

Proof. Indeed, the dimensions of the indecomposable representations of the
extended Dynkin diagrams are roots, see [DR76], [Kac80]; however, there are
indecomposable representations whose dimensions are not usual (real) roots
but imaginary roots, see §2.2.1. They are vectors from the kernel of the Tits
form, and are proportional to vectors z1 which are fixed points of the Weyl
group. In particular, Tz1 = z1, so 〈z1, z̃1∨〉 = 0 directly implies 〈Tz1, z̃1∨〉 = 0.
��

B.3.4 The invariance of the defect

We will show that the Ω-defect ρΩ is invariant under the Coxeter transforma-
tion CΩ and ρΩ does not depend on the choice of the transforming element
Ti in the Weyl group, see Definition 6.29 and Theorem B.7. In other words,
the following proposition holds.
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Proposition B.11. 1) The Coxeter transformation CΩ preserves the linear
form ρΩ:

ρΩ(CΩz) = ρΩ(z) for any vector z. (B.40)

2) If Ti and Tj are transforming elements defined by (B.29), i.e.,

T−1
i CΛTi = CΩ and T−1

j CΛTj = CΩ, (B.41)

then we have
〈Tiz, z̃1∨〉 = 〈Tjz, z̃1∨〉 for any vector z. (B.42)

Proof. First, observe that (B.42) does not hold for an arbitrary matrix T ,
since the matrix kT , where k ∈ R, also satisfies (B.41), but does not satisfy
(B.42).

In (B.25) we showed that

〈wiz, z̃1∨〉 = − 〈z, z̃1∨〉. (B.43)

By (B.43) we have

〈z, z̃1∨〉 = 〈CΛz, z̃1∨〉 for any vector z, (B.44)

i.e., (B.40) holds for any bicolored orientation Λ. Since z in (B.44) is an
arbitrary vector, we have

〈Tz, z̃1∨〉 = 〈CΛTz, z̃1∨〉 = 〈TCΩz, z̃1∨〉,

or
ρΩ(z) = ρΩ(CΩz),

i.e., (B.40) holds for an arbitrary orientation Ω.
Further, from (B.44) we have

ρΛ(z) = ρΛ(CΛz) = ρΛ(Ci−j
Λ z).

By (B.30)
ρΛ(z) = ρΛ(TjT

−1
i z).

Substituting Tiz instead of z we have

ρΛ(Tiz) = ρΛ(Tjz),

and (B.42) is proved. ��
For examples of regularity conditions for extended Dynkin diagrams D̃4,

Ẽ6, G̃12, G̃22 and the star ∗n+1, see §B.4.
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B.4 Examples of regularity conditions

Definition B.12. Let Γ be a graph, x0 ∈ Γ be a point of maximal branching
degree and let all arrows of Γ be directed to the point x0. The corresponding
orientation is said to be the central orientation and denoted by Λ0.

We will consider the necessary regularity conditions for some diagrams
in bicolored, central, and other orientations. If an orientation Λ′ is obtained
from another orientation Λ′′ by reversing of all arrows of a graph, then the
corresponding regularity conditions coincide:

ρΛ′ = ρΛ′′ if B is positive definite

and
ρ1
Λ′ = ρ1

Λ′′ , ρ2
Λ′ = ρ2

Λ′′ if B is indefinite.

Let us introduce an equivalence relation R on the set of orientations of
the graph Γ. Two orientations Λ′ and Λ′′ will be called equivalent, if one
orientation can be obtained from the other one by reversing all arrows or by
an automorphism of the diagram; for equivalent orientations, we write:

Λ′ ≡ Λ′′ mod R.

Equivalent orientations have identical regularity conditions.

B.4.1 The three equivalence classes of orientations of D̃4

Fig. B.1. For D̃4, the bicolored and central orientations coincide

In the case of D̃4, the bicolored orientation Λ coincides with the central
orientation Λ0. The orientations Λ, Λ′, and Λ′′ cover all possible equivalence
classes.

a) The bicolored orientation Λ, see Fig. B.1.
Here, T = I and by Theorem 6.33 and Proposition B.4 we have
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z1 =

⎛

⎜⎜⎜⎜⎝

2
1
1
1
1

⎞

⎟⎟⎟⎟⎠

x0

y1

y2

y3

y4

, z̃1 =

⎛

⎜⎜⎜⎜⎝

2
−1
−1
−1
−1

⎞

⎟⎟⎟⎟⎠
, ρΛ(z) = y1+y2+y3+y4−2x0. (B.45)

Originally, the linear form ρΛ(z) in (B.45) was obtained by I. M. Gelfand
and V. A. Ponomarev in the work devoted to classifications of quadruples of
linear subspaces of arbitrary dimension [GP72].

b) The orientation Λ′, see Fig. B.1. Here we have

CΛ = σy4σy3σy2σy1σx0 , CΛ′ = σy4σy3σy1σx0σy2 , T = σy2 .

Then, by Theorem 6.33 and Proposition B.9 we get the following condition of
the Λ′-regularity:

Tz =

⎛

⎜⎜⎜⎜⎝

x0

y1

x0 − y2

y3

y4

⎞

⎟⎟⎟⎟⎠
,

y1 + (x0 − y2) + y3 + y4 − 2x0 = 0, or
y1 + y3 + y4 = y2 + x0.

c) The orientation Λ′′, see Fig. B.1. Here, T = σy2σy3 (or σy1σy4), and we
have the following condition of the Λ′′-regularity:

y1 + (x0 − y2) + (x0 − y3) + y4 − 2x0 = 0, or
y1 + y4 = y2 + y3.

(B.46)

B.4.2 The bicolored and central orientations of Ẽ6

Fig. B.2. For Ẽ6, the bicolored and central orientations

We consider only the bicolored orientation Λ and the central orientation
Λ0 in Fig. B.2. The Coxeter transformations and transforming element T are:
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CΛ = σy3σy2σy1σx3σx2σx1σx0 ,

CΛ0 = σx3σx2σx1σy3σy2σy1σx0 ,

T = σx3σx2σx1 .

We have

z1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
1
1
1
2
2
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

x0

x1

x2

x3

y1

y2

y3

, z̃1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
1
1
1
−2
−2
−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

y1 − x1

y2 − x2

y3 − x3

y1

y2

y3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and by Theorem 6.33 and Proposition B.4 a condition of Λ-regularity is

ρΛ(z) = 3x0 + x1 + x2 + x3 + 3x0 − 2y1 − 2y2 − 2y3.

The choice of element T is ambiguous, but it was shown in Proposition
B.11 that the regularity condition does not depend on this choice.

So, a condition of Λ0-regularity is

ρΛ0(z) =
3x0 + (y1 − x1) + (y2 − x2) + (y3 − x3)− 2(y1 + y2 + y3) = 0,

or
ρΛ0(z) = x1 + x2 + x3 + y1 + y2 + y3 − 3x0.

B.4.3 The multiply-laced case. The two orientations of G̃21 and
G̃22 = G̃∨

21

We have

z1 =

⎛

⎝
2
1
3

⎞

⎠ , z̃1 =

⎛

⎝
2
−1
−3

⎞

⎠
x1

y1

y2

, z1∨ =

⎛

⎝
2
1
1

⎞

⎠ , z̃1∨ =

⎛

⎝
2
−1
−1

⎞

⎠
x1

y1

y2

. (B.47)

Take vectors z̃1 and z̃1∨ from (B.47) and substitute them in (6.52). We
get the following regularity condition ρΛ (resp. ρ∨Λ):

ρΛ(z) = y1 + y2 − 2x1 for G̃21,

ρ∨Λ(z) = y1 + 3y2 − 2x1 for G̃22.

Now consider the orientation Λ′, Fig. B.3. The Coxeter transformations can
be expressed as follows:
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Fig. B.3. The two orientations of G̃21 and G̃22 = G̃∨
21

CΛ = σy2σy1σx1 , C∨
Λ = σ∨

y2
σ∨

y1
σ∨

x1
,

CΛ′ = σy1σx1σy2 , C∨
Λ′ = σ∨

y1
σ∨

x1
σ∨

y2
,

Transforming elements T and T∨ are:

T = σy2 , T∨ = σ∨
y2

.

and

Tz =

⎛

⎝
x1

y1

3x1 − y2

⎞

⎠ , T∨z =

⎛

⎝
x1

y1

x1 − y2

⎞

⎠ .

Finally, we have

ρΛ′(z) = y1 − y2 + x1 for G̃21,

ρ∨Λ′(z) = y1 − 3y2 + x1 for G̃22.

B.4.4 The case of indefinite B. The oriented star ∗n+1

Consider the oriented star ∗n+1 with a bicolored orientation.
According to Remark 3.7 the matrix DDt is a scalar. By (3.17) DDt =

n

4
and the maximal eigenvalue ϕm =

n

4
. By (3.16) we have

λm
1,2 =

n− 2±
√

n(n− 4)
2

. (B.48)

Let xm = 1. Then

−2
λm

1,2 + 1
Dtxm =

−2
λm

1,2 + 1
[1, 1, ..., 1]t.
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Fig. B.4. A bicolored orientation of the star ∗n+1

Thus, we have the following eigenvectors zm
1 , zm

2 , and their conjugate vectors
z̃m
1 , z̃m

2 (see Definition 6.31 and Proposition 6.32):

zm
1 =

⎛

⎜⎜⎜⎜⎝

λm
1 + 1

1
1
...
1

⎞

⎟⎟⎟⎟⎠
, zm

2 =

⎛

⎜⎜⎜⎜⎝

λm
2 + 1

1
1
...
1

⎞

⎟⎟⎟⎟⎠
, z̃m

1 =

⎛

⎜⎜⎜⎜⎝

λm
2 + 1
−1
−1
...
−1

⎞

⎟⎟⎟⎟⎠
, z̃m

2 =

⎛

⎜⎜⎜⎜⎝

λm
1 + 1
−1
−1
...
−1

⎞

⎟⎟⎟⎟⎠
.

According to (B.20) we obtain the following condition of Λ-regularity:

(λm
2 + 1)x0 −

∑
yi ≤ 0, (λm

1 + 1)x0 −
∑

yi ≥ 0. (B.49)

From (B.48) and (B.49) we deduce

n−
√

n(n− 4)
2

x0 ≤
∑

yi ≤
n +

√
n(n− 4)
2

x0 or

n−
√

n(n− 4)
2

∑
yi ≤ x0 ≤

n +
√

n(n− 4)
2

∑
yi , or

|x0 −
1
2

∑
yi| ≤

√
n(n− 4)

2n

∑
yi or

x2
0 − x0

∑
yi +

1
4
(
∑

yi)2 ≤
1
4
(
∑

yi)2 −
1
n

(
∑

yi)2 or

x2
0 − x0

∑
yi ≤ −

1
n

(
∑

yi)2 or

x2
0 − x0

∑
yi +

∑
y2

i ≤
∑

y2
i −

1
n

(
∑

yi)2

Since the left hand side of the latter inequality is the Tits form B, we
obtain the following condition of Λ-regularity:

B(z) ≤ 1
n

∑

0<i<j

(yi − yj)2.
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C.1 The triangle groups and Hurwitz groups

The group generated by X, Y, Z that satisfy the relations (A.6)

Xp = Y q = Zr = XY Z = 1

is said to be a triangle group. As it was mentioned in §A.2, the finite polyhedral
groups from Table A.1 are triangle groups. Set

μ(p, q, r) :=
1
p

+
1
q

+
1
r
.

The triangle group is finite if and only if μ(p, q, r) > 1. There are only three
triangle groups

(2, 4, 4), (2, 3, 6), (3, 3, 3),

for which μ(p, q, r) = 1. These groups are infinite and soluble. For references,
see [Con90], [Mu01]. For all other triangle groups, we have

μ(p, q, r) < 1.

These groups are infinite and insoluble. The value 1 − μ(p, q, r) attains the

minimum value
1
42

at (2, 3, 7). Thus, (2, 3, 7) is, in a sense, the minimal infi-

nite insoluble triangle group. The importance of the triangle group (2, 3, 7) is
revealed by the following theorem due to Hurwitz.

Theorem C.1 (Hurwitz, [Hur1893]). If X is a compact Riemann surface
of genus g > 1, then |AutX| ≤ 84(g − 1), and moreover, the upper bound
of this order is attained if an only if |AutX| is a homomorphic image of the
triangle group (2, 3, 7).

For further references, see [Con90], [Con03].
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A Hurwitz group is any finite nontrivial quotient of the triangle group
(2, 3, 7). In other words, the finite group G is the Hurwitz group if it has
generators X, Y, Z ∈ G such that

X2 = Y 3 = Z7 = XY Z = 1.

M. Conder writes that the significance of the Hurwitz groups “. . . is per-
haps best explained by referring to some aspects of the theory of Fuchsin
groups, hyperbolic geometry, Riemann surfaces...”, see [Con90, p.359] and a
bibliography cited there.

M. Conder [Con80] using the method of coset graphs developed by G. Hig-
man has shown that the alternating group An is a Hurwitz group for all
n ≥ 168.

Recently, A. Lucchini, M. C. Tamburini and J. S. Wilson showed that most
finite simple classical groups of sufficiently large rank are Hurwitz groups, see
[LuT99], [LuTW00]. For example, the groups SLn(q) are Hurwitz, for all
n > 286 [LuTW00], and the groups Sp2n(q), SU2n(q) are Hurwitz, for all
n > 371 [LuT99]. (These mentioned groups act in the n-dimensional vector
space over the field Fq of the prime characteristic q.)

The sporadic groups have been treated in a series of papers by Woldar and
others; for a survey and references, see [Wi01]. R. A. Wilson shows in [Wi01],
that the Monster is also a Hurwitz group.

C.2 The algebraic integers

If λ is a root of the polynomial equation

anxn + anxn−1 + · · ·+ a1x + a0 = 0, (C.1)

where ai for i = 0, 1, . . . , n are integers and λ satisfies no similar equation of
degree < n, then λ is said to be an algebraic number of degree n. If λ is an
algebraic number and an = 1, then λ is called an algebraic integer.

A polynomial p(x) in which the coefficient of the highest order term is
equal to 1 is called the monic polynomial. The polynomial (C.1) with integer
coefficients and an = 1 is the monic integer polynomial.

The algebraic integers of degree 1 are the ordinary integers (elements of
Z). If α is an algebraic number of degree n satisfying the polynomial equation

(x− α)(x− β)(x− γ) · · · = 0,

then there are n− 1 other algebraic numbers β, γ, ... called the conjugates of
α. Furthermore, if α satisfies any other algebraic equation, then its conjugates
also satisfy the same equation.

Definition C.2. An algebraic integer λ > 1 is said to be a Pisot number if
all its conjugates (other then λ itself) satisfy |λ′ | < 1.
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The smallest Pisot number,

λPisot ≈ 1.324717..., (C.2)

is a root of λ3 − λ − 1 = 0 (for details and references, see [McM02]). This
number appears in Proposition 4.16 as a limit of the spectral radius ρ(T2,3,n)
as n→∞.

Definition C.3. Let p(x) be a monic integer polynomial, and define its
Mahler measure to be

‖p(x)‖ =
∏

β

|β|, (C.3)

where β runs over all (complex) roots of p(x) outside the unit circle.

Remark C.4. 1) Thanks are due to C. J. Smyth who kindly informed me about
Siegel’s work [Si44]. It was Siegel who showed that two smallest Pisot number
were the positive zero θ1 of x3−x− 1, and the positive zero θ2 of x4−x3− 1,
where

θ1 = 1.324717..., θ2 = 1.380728....

Siegel also proved that any other Pisot number is larger than
√

2.
2) In his thesis [Sm71], C. J. Smyth proved that among nonreciprocal inte-

ger polynomials, the polynomial x3 − x− 1 has the smallest Mahler measure.
3) The spectral radius ρ(T2,3,n) as n→∞ (4.18) was obtained by Y. Zhang

[Zh89] and used in the study of regular components of an Auslander-Reiten
quiver. The spectral radius (4.18) coincides with the smallest Pisot number
(C.2).

It is well known that ‖p(x)‖ = 1 if and only if all roots of p(x) are roots
of unity. In 1933, Lehmer [Leh33] asks whether, for each ε ≥ 1, there exists
an algebraic integer such that

1 < ‖α‖ < 1 + ε (C.4)

Lehmer found polynomials with smallest Mahler measure for small degrees
and stated in [Leh33, p.18] that the polynomial with minimal root α (in the
sense of C.4) he could find is the polynomial of degree 10:

1 + x− x3 − x4 − x5 − x6 − x7 + x9 + x10, (C.5)

see [Hir02], [McM02]; cf. Remark 4.15. Outside the unit circle, the polynomial
(C.5) has only one root

λLehmer ≈ 1.176281... (C.6)

The number (C.6) is called Lehmer’s number; see Proposition 4.16, Remark
4.15 and Table 4.4.
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Definition C.5. A Salem number is a real algebraic integer λ > 1, whose
other conjugates all have modulus at most 1, with at least one having modulus
exactly 1.

It is known that every Pisot number is a limit of Salem numbers; for details
and references, see [MRS99], [MS05]. Conjecturally, Lehmer’s number (C.6)
is the smallest Salem number, [Leh33], [GH01]. McKee and Smyth [MS05]
introduced notions of a Salem graph and Pisot graph whose spectral radii are
respectively the Salem number and Pisot number, see Remark 4.21, heading
4).

The positive root of the quadratic equation λ2−λ−1 = 0 is a well-known
constant

λGolden ≈ 1.618034..., (C.7)

called the Golden mean or Divine proportion. This number appears in Propo-
sition 4.17 as a limit of the spectral radius ρ(T3,3,n) as n→∞.

The smallest Mahler measure among reciprocal polynomials of degree at
most 6 is

M6 = ||x6 − x4 + x3 − x2 + 1|| ≈ 1.401268..., (C.8)

see [Mos98, p.1700]. This number appears in Proposition 4.17 as a root of

X (T3,3,4) = x8 + x7 − 2x5 − 3x4 − 2x3 + x + 1.

This is the polynomial of minimal degree among polynomials X (T3,3,n), where
n = 4, 5, 6, . . . with indefinite Tits form, see Proposition 4.17 and Table 4.5.

C.3 The Perron-Frobenius Theorem

We say that a matrix is positive (resp. non-negative) if all its entries are
positive (resp. non-negative). We use the notation A > 0 (resp. A ≥ 0) for
positive (resp. non-negative) matrix. A square n×n matrix A is called reducible
if the indices 1, 2, ..., n can be divided into the disjoint union of two nonempty
sets {i1, i2, . . . , ip} and {j1, j2, . . . , jq} (with p + q = n) such that

aiαjβ
= 0, for α = 1, . . . , p and β = 1, . . . , q.

In other words, A is reducible if there exists a permutation matrix P , such
that

PAP t =
(

B 0
C D

)
,

where B and D are square matrices. A square matrix which is not reducible
is said to be irreducible.
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Theorem C.6 (Perron-Frobenius). Let A be an n × n non-negative irre-
ducible matrix. Then the following holds:

1) There exists a positive eigenvalue λ such that

|λi| ≤ λ, where i = 1, 2, . . . , n.

2) There is a positive eigenvector z corresponding to the eigenvalue λ:

Az = λz, where z = (z1, . . . , zn)t and zi > 0 for i = 1, 2, . . . , n.

Such an eigenvalue λ is called the dominant eigenvalue of A.
3) The eigenvalue λ is a simple root of the characteristic equation of A.

The following important corollary from the Perron-Frobenius theorem
holds for the eigenvalue λ:

λ = max
z≥0

min
i

(Az)i

zi
(zi �= 0),

λ = min
z≥0

max
i

(Az)i

zi
(zi �= 0).

For details, see [MM64], [Ga90].

C.4 The Schwartz inequality

Let B be the quadratic Tits form associated with a tree graph (simply or
multiply laced), and let B be the matrix of B. Let B be positive definite or
non-negative definite, and

kerB = {x | Bx = 0}. (C.9)

Since (x, y) = 〈x,By〉 = 〈Bx, y〉, it follows that

kerB = {x | (x, y) = 0 for all y ∈ EΓ} ⊆ {x | B(x) = 0}. (C.10)

Let x, y ∈ R
n, where n is the number of vertices in Γ0. Then the following

Schwartz inequality is true:

(x, y)2 ≤ B(x)B(y). (C.11)

To prove (C.11), it suffices to consider the inequality (x + αy, x + αy) ≥ 0
which is true for all α ∈ R. Then the discriminant of the polynomial

(x, x) + 2α(x, y) + α2(y, y)

should be non-positive, whence (C.11).
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Over C, there exists x �∈ kerB such that B(x) = 0. For example, the
eigenvectors of the Coxeter transformation with eigenvalues λ �= ±1 satisfy
this condition because

B(x) = B(Cx) = λ2B(x).

If B(x) = 0 and x ∈ R
n, then from (C.11) we get (x, y) ≤ 0 and (x,−y) ≤ 0,

i.e., (x, y) = 0 for all y ∈ R
n. In other words, x ∈ kerB. Taking (C.10) into

account we see that if B is non-negative definite then

kerB = {x | B(x) = 0}. (C.12)

C.5 The complex projective line and stereographic
projection

The n-dimensional complex projective space CPn is the set of all complex lines
in C

n+1 passing through the origin. Two points

z1 = (z0
1 , z1

1 , z2
1 , . . . , zn

1 ), z2 = (z0
2 , z1

2 , z2
2 , . . . , zn

2 ) ∈ C
n+1

lie on the same line, if

z2 = wz1 for some complex factor w ∈ C \ {0}, i.e.

zi
2 = wzi

1 for i = 0, 1, . . . , n.
(C.13)

The points (C.13) constitute an equivalence class denoted by [z0 : z1 : · · · : zn].
Clearly, the complex projective line CP 1 is the set of all lines in C

2. By
(C.13), the points of CP 1 are classes of complex pairs z = [z0, z1] up to a
factor w ∈ C.

The correspondence
[z0 : z1] �→ z0/z1 (C.14)

sets the following bijection maps:

CP 1\{[1 : 0]} ⇐⇒ C, and

CP 1 ⇐⇒ C ∪∞.
(C.15)

Let z1, z2 be two vectors from C
2. Define a map

F : C
2 −→ R

3 (C.16)

by setting

F (z1, z2) :=
(

z1z2 + z1z2

z1z1 + z2z2
,

z1z2 − z1z2

i(z1z1 + z2z2)
,
z1z1 − z2z2

z1z1 + z2z2

)
, (C.17)

(see, for example, [Alv02]).
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Let z2 = wz1, then

F (z1, z2) =
(

w + w

1 + |w|2 ,
w − w

i(1 + |w|2) ,
1− |w|2
1 + |w|2

)
. (C.18)

If w = u + iv, then

F (z1, z2) =
(

2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
1− u2 − v2

1 + u2 + v2

)
. (C.19)

It is easily to see that

(2u)2 + (2v)2 + (1− u2 − v2)2 = (1 + u2 + v2)2,

so F (z1, z2) maps every vector [z1, z2] to a point (C.19) on the unit sphere S2

in R
3. Another vector [z3, z4] defines the same line in the CP 1 if and only if

z4

z3
=

z2

z1
= w,

i.e., the map F (C.18) defines a bijection from the complex projective line
CP 1 and the unit sphere in R

3:

F : CP 1 ⇐⇒ S2. (C.20)

Let (x, y, z) be a point on S2 distinct from the north pole N = {0, 0, 1}. The
stereographic projection is the map

S : S2\N −→ C (C.21)

defined by
S(x, y, z) :=

x

1− z
+ i

y

1− z
. (C.22)

see Fig. C.1. For details, see, for example, [Jen94, §2.9].
Consider the composition S(F (z1, z2)). By (C.17), we have

1− z =
2z2z2

z1z1 + z2z2
, (C.23)

and

x

1− z
=

z1z2 + z1z2

2z2z2
=

1
2

(
z1

z2
+

z1

z2

)
,

y

1− z
=

z1z2 − z1z2

2iz2z2
=

1
2i

(
z1

z2
− z1

z2

)
.

(C.24)

Let
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Fig. C.1. The stereographic projection

z1

z2
= w = u + iv.

Then
x

1− z
=

1
2

(w + w) = u,
y

1− z
=

1
2i

(w − w) = v, (C.25)

and
S(F (z1, z2)) = u + iv = w =

z1

z2
. (C.26)

C.6 The prime spectrum, the coordinate ring, the orbit
space

C.6.1 Hilbert’s Nullstellensatz (Theorem of zeros)

From now on, we assume that R is a commutative ring with unit.
A proper ideal m of R is said to be maximal if m is not a proper subset

of any other proper ideal of R. An ideal m ⊂ R is maximal if and only if the
quotient ring R/m is a field. For example, every ideal pZ is maximal in the
ring of integers Z if p is a prime number, and, in this case, the quotient ring
Z/pZ is a field.

A proper ideal p of a commutative ring R is called a prime ideal if the
following condition holds:

for any a, b ∈ R, if a · b ∈ p, then either a ∈ p or b ∈ p. (C.27)

An ideal p ⊂ R is prime if and only if the quotient ring R/p is an integral
domain (i.e., the commutative ring which has no divisors of 0). Examples of
prime ideals (recall that (x1, . . . , xn) is the ideal generated by x1, . . . , xn):

the ideal (5,
√

6) in the ring Z[
√

6],
the ideal (x) in the ring Z[x],
the ideal (y + x + 1) in the ring C[x, y].

(C.28)
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The maximal ideals are prime since the fields are integral domains, but not
conversely:

maximal ideals ⊂ prime ideals . (C.29)

The ideal (x) ∈ Z[x] is prime, but not maximal, since, for example:

(x) ⊂ (2, x) ⊂ Z[x]. (C.30)

Let k be an algebraically closed field (e.g., the complex field C), and let I
be an ideal in k[x1, . . . , xn]. Define Vk(I), the zero set of I , by

Vk(I) = {(a1, . . . , an) ∈ k | f(a1, . . . .an) = 0 for all f ∈ I}. (C.31)

Denote by A
n
k (or just A

n) the n-dimensional affine space over the field
k. The Zariski topology on A

n
k is defined to be the topology whose closed sets

are the zero sets Vk(I).
For any ideal I of the commutative ring R, the radical

√
I of I is the set

{a ∈ R | an ∈ I for some integer n > 0}. (C.32)

The radical of an ideal I is always an ideal of R. If I =
√

I, then I is called
a radical ideal. The prime ideals are radical:

prime ideals ⊂ radical ideals . (C.33)

Theorem C.7. (Hilbert’s Nullstellensatz, [Re88, Ch.2], or [Mum88, pp.9-11])
Let k be an algebraically closed field.
1) The maximal ideals in the ring A = k[x1, . . . , xn] are the ideals

mP = (x1 − a1, . . . , xn − an) (C.34)

for some point P = (a1, . . . , an). The ideal mP coincides with the ideal I(P )
of all functions which vanish at P .

2) If Vk(I) = ∅, then I = k[x1, . . . , xn].
3) For any ideal J ⊂ A, we have

I(Vk(J)) =
√

J, (C.35)

The set X ⊂ A
n
k is called an affine variety if X = Vk(I) for some ideal

I ⊂ A, see (C.31). An affine variety X ⊂ A
n
k is said to be irreducible if there

does not exist a decomposition into the disjoint union

X = X1

∐
X2,

where X1, X2 are two proper subsets of X. For example, the affine variety

X = {(x, y) ⊂ A
2
C | xy = 0}

is decomposed into the sum of

X1 = {(x, y) ⊂ A
2
C | x = 0} and X2 = {(x, y) ⊂ A

2
C | y = 0}.
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Proposition C.8. Let X ⊂ A
n
k be an affine variety and I = I(X) the corre-

sponding ideal, i.e., X = Vk(I), see (C.31). Then

X is irreducible ⇐⇒ I(X) is the prime ideal.

For a proof of this proposition, see, e.g., [Re88, §3.7].
One of the important corollaries of Hilbert’s Nullstellensatz is the following

one-to-one correspondence [Re88, §3.10] between subvarieties X ⊂ A
n
k and

ideals I ⊂ A:

{ radical ideals } ⇐⇒ { affine varieties }
⋃ ⋃

{ prime ideals } ⇐⇒ { irreducible affine varieties }
⋃ ⋃

{ maximal ideals } ⇐⇒ { points }

(C.36)

C.6.2 The prime spectrum

The prime spectrum Spec(R) of a given commutative ring R is defined to be
the set of proper prime ideals of R:

{p ⊂ R | p is a prime ideal of R}. (C.37)

The ring R itself is not counted as a prime ideal, but (0), if prime, is counted.
A topology is imposed on Spec(R) by defining the sets of closed sets. For

any subset J of R, the closed set V (J) is defined to be the set of the prime
ideals containing J :

V (J) := {p | p ⊇ J} ⊂ Spec(R). (C.38)

The closure P of the subset P is the intersection of all closed sets containing
P:

P =
⋂

V (J)⊃P
V (J). (C.39)

Consider the closure of points of the topological space Spec(R). For a point
of Spec(R) which is the prime ideal p, we see that

p =
⋂

V (J)⊃p

V (J) = V (p) (C.40)

which consists of all prime ideals p′ ⊃ p. In particular, the closure p consists of
one point if and only if the ideal p is maximal. Any point which coincides with
its closure is called a closed point. Thus, closed points in Spec(R) correspond
one-to-one to maximal ideals.

In the conditions of Hilbert’s Nullstellensatz every maximal ideal J is
mP (C.34) defined by some point P = (a1, . . . , an) ∈ kn. Thus, in the finitely
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generated ring A = k[x1, . . . , xn] over an algebraically closed field k, the closed
points in Spec(A) correspond to the maximal ideals, hence to the points P =
(a1, . . . , an) ∈ kn.

In the topological space Spec(R) there exist non-closed points . Let R have
no divisors of 0. Then the ideal (0) is prime and is contained in all other prime
ideals. Thus, the closure (0) consists of all prime ideals, i.e., coincides with
the space Spec(R). The point (0) is an everywhere dense point in Spec(R).
Any everywhere dense point is called a generic point.

Definition C.9. Let P be an irreducible closed subset of Spec(R). A point
a ∈ P is said to be a generic point of P if the closure a coincides with P.

Proposition C.10. ([Mum88, p.126]) If x ∈ Spec(R), then the closure {x} of
{x} is irreducible and x is a generic point of {x}. Conversely, every irreducible
closed subset P ⊂ Spec(R) is equal to V (J) for some prime ideal J ⊂ R and
J is its unique generic point.

A distinguished open set of Spec(R) is defined to be an open set of the
form

Spec(R)f := {p ∈ Spec(R) | f /∈ p}. (C.41)

for any element f ∈ R.

Example C.11. 1) If R is a field, then Spec(R) has just one point (0).
2) Let R = k[X] be a polynomial ring in one variable x. Then Spec(R)

is the affine line A
1
k over k. There exist two types of prime ideals: (0) and

(f(X)), where f is an irreducible polynomial. For any algebraically closed k,
the closed points are all of the form (X − a). The point (0) is generic.

3) Spec(Z) consists of closed points for every prime ideal (p), plus the ideal
(0).

C.6.3 The coordinate ring

Let V ⊂ A
n
k be an affine variety and I(V ) an ideal of V . The coordinate ring

of the affine variety V is defined to be:

k[V ] := k[x1, . . . , xn]/I(V ). (C.42)

A regular function on the affine variety V is the restriction to V of a
polynomial in x1, . . . , xn modulo I(V ) (i.e., modulo functions vanishing on
V ). Thus, the regular functions on the affine variety V are elements of the
coordinate ring k[V ].

Example C.12. 1) Let f(x, y) be a complex polynomial function on C
2. The

coordinate ring of a plane curve defined by the polynomial equation f(x, y) =
0 in A

2
C

is
C[x, y]/(f(x, y)). (C.43)
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2) Consider two algebraic curves: y = xr, r ∈ N, and y = 0. The coordinate
rings of these curves are isomorphic:

y = xr corresponds to C[x, y]/(y − xr) � C[x, xr] � C[x],
y = 0 corresponds to C[x, y]/(y) � C[x, x] � C[x].

Thus, in the sense of algebraic geometry, the curves y = xr and y = 0 are
equivalent.

3) On the other hand,

C[x, y]/(y2 − x3) � C[x],

and the curves y2 = x3 and y = 0 are not equivalent (in the sense of algebraic
geometry). Indeed, there exists the isomorphism

x �−→ T 2, y �−→ T 3,

and
C[x, y]/(y2 − x3) � C[T 2, T 3] ⊂ C[T ].

The affine variety X = {(x, y) | y2 = x3} is called Neile’s parabola, or the
semicubical parabola.

Remark C.13. Consider the coordinate ring R = k[V ] of the affine variety V
over an algebraically closed k. Then,

the prime spectrum Spec(R) contains exactly
the same information as the variety V.

Indeed, according to Hilbert’s Nullstellensatz, the maximal ideals of k[V ] cor-
respond one-to-one to points of V :

v ∈ V ⇐⇒ mv ⊂ k[V ].

Besides, according to Proposition C.8 every other prime ideal p ⊂ k[V ] is the
intersection of maximal ideals corresponding to the points of some irreducible
subvariety Y ⊂ V :

pY =
⋂

v∈Y

mv.

C.6.4 The orbit space

Let G be a finite group acting on affine variety V and k[V ] the coordinate ring
of V . The problem here is that the quotient space V/G might not exist, even
for very trivial group actions, see Example C.14. To find how this problem is
resolved in geometric invariant theory (GIT), see [Dol03] or [Kr85].
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Example C.14. Consider the multiplicative group G = k× acting on the affine
line A

1
k. The orbit space for this action consists of two orbits: {0} and A

1
k\{0}.

The second orbit A
1
k\{0} is not a closed subset in the Zariski topology, and

the first orbit {0} is contained in the closure of the orbit A
1
k\{0}. Thus, the

point {0} is the generic point (§C.6.2).

The following two definitions of the categorical quotient and the orbit space
can be found, e.g., in P. E. Newstead’s textbook [Newst78, p.39].

Definition C.15. Let G be an algebraic group acting on a variety V . A cat-
egorical quotient of V by G is a pair (Y, ϕ), where Y is a variety and ϕ is a
morphism ϕ : V −→ Y such that

(i) ϕ is constant on the orbits of the action;
(ii) for any variety Y

′
and morphism ϕ

′
: V −→ Y

′
which is constant on

orbits, there is a unique morphism ψ : Y −→ Y
′
such that ψ ◦ ϕ = ϕ

′
.

Definition C.16. A categorical quotient of V by G is called an orbit space if
ϕ−1(y) consists of a single orbit for all y ∈ Y . The orbit space is denoted by
V/G.

The orbit space X = V/G is an affine variety whose points correspond one-
to-one to orbits of the group action.

Proposition C.17. Let G be a finite group of order n acting on an affine
variety V . Assume that the characteristic of k does not divide n. Set

X := Spec k[V ]G. (C.44)

Then X is an orbit space for the action of G on V .

For a proof of this theorem, see, e.g., [Shaf88, Ch.1 §2, Ex.11] or [Rom00,
Th.1.6].

C.7 Fixed and anti-fixed points of the Coxeter
transformation

C.7.1 The Chebyshev polynomials and the McKay-Slodowy matrix

We continue to use block arithmetic for (m + k) × (m + k) matrices as in
§3.1.3, namely:

K =
(

2I 2D
2F 2I

)
, w1 =

(
−I −2D
0 I

)
, w2 =

(
I 0
−2F −I

)
. (C.45)

Let

Θ =
1
2
K − I =

(
0 D
F 0

)
. (C.46)
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The matrix Θ coincides (up to the factor −1
2
) with the McKay matrix from

§A.4 or with the Slodowy matrix in the multiply-laced case, (A.56), (A.63).
Introduce two recurrent series fp(Θ) and gp(Θ) of polynomials in Θ:

f0(Θ) = 0,
f1(Θ) = K = 2Θ + 2I,

fp+2(Θ) = 2Θfp+1(Θ)− fp(Θ) for p ≥ 0
(C.47)

and
g0(Θ) = 2I,
g1(Θ) = K − 2I = 2Θ,

gp+2(Θ) = 2Θgp+1(Θ)− gp(Θ) for p ≥ 0.

(C.48)

For example,

f2(Θ) = 2Θ(2Θ + 2I) = (K − 2I)K = 4
(

DF D
F FD

)
,

f3(Θ) = (K − 2I)(K − 2I)K −K = 2
(

4DF − I 4DFD −D
4FDF − F 4FD − I

)
,

(C.49)

g2(Θ) = 2(2Θ2 − I) = 2
(

2DF − I 0
0 2FD − I

)
,

g3(Θ) = 4Θ(2Θ2 − I)− 2Θ = 2
(

0 8DFD − 6D
8FDF − 6F 0

)
.

(C.50)

Remark C.18. Let us formally substitute Θ = cos t. Then
1) The polynomials gp(Θ) are Chebyshev polynomials of the first kind (up

to the factor
1
2
):

gp(cos t) = 2 cos pt .

Indeed,

g1(Θ) = 2Θ = 2 cos t, g2(Θ) = 2(2Θ2 − 1) = 2 cos 2t,

and
gp+2(Θ) = 2(2 cos t cos(p + 1)t− cos pt) = 2 cos(p + 2)t.

2) The polynomials fp(Θ) are Chebyshev polynomials of the second kind
(up to the factor 2Θ + 2):

fp(cos t) = 2(cos t + 1)
sin pt

sin t
.

Indeed,
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f1(Θ) = 2Θ + 2I = 2 cos t + 2, f2(Θ) = 2Θ(2Θ + 2I) = 4 cos t(cos t + 1),

and

fp+2(Θ) = 2
cos t + 1

sin t
(2 cos t sin (p + 1)t− sin pt) = 2(cos t + 1)

sin (p + 2)t
sin t

.

C.7.2 A theorem on fixed and anti-fixed points

The purpose of this section is to prove the following

Theorem C.19 ([SuSt82]). 1) The fixed points of the powers of the Coxeter
transformation satisfy the following relations

Cpz = z ⇐⇒ fp(Θ)z = 0.

2) The anti-fixed points of the powers of the Coxeter transformation satisfy
the following relations

Cpz = −z ⇐⇒ gp(Θ)z = 0.

In the proof of Theorem C.19 we will need some properties of block ma-
trices. Define the involution σ by setting

σ : A =
(

P Q
S T

)
�→ A =

(
P Q
−S −T

)
. (C.51)

The map σ is a linear operator because α1A1 + α2A2 = α1 A1 +α2 A2.
The involution σ does not preserve products:

AR �= AR,

but

AR = A R for any R =
(

X Y
U V

)
, (C.52)

and

R A = − RA for any R of the form
(

0 Y
U 0

)
. (C.53)

The following relations are easy to check:

C = w1w2 =
(

4DF − I 2D
−2F −I

)
,

C−1 = w2w1 =
(
−I −2D
2F 4FD − I

)
,

(C.54)
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w2C =
(

4DF − I 2D
−8FDF + 4F −4FD + I

)
,

w1C−1 =
(
−4DF + I 4D − 8DFD

2F 4FD − I

)
,

(C.55)

w1 − w2 = 4
(
−2I −2D
2F 2I

)
= − K, w1 + w2 = −(K − 2I), (C.56)

C−C−1 = 4
(

DF D
−F −FD

)
= 4

(
DF D
F FD

)
,

C + C−1 = 2
(

2DF − I 0
0 2FD − I

)
,

(C.57)

w2C− w1C−1 =2
(

4DF − I 4DFD −D
−(4FDF − F ) −(4FD − I)

)
=

2
(

4DF − I 4DFD −D
4FDF − F 4FD − I

)
,

(C.58)

w2C + w1C−1 =
(

0 −8DFD + 6D
−8FDF + 6F 0

)
, (C.59)

2Θw2 + I = −C, 2Θw1 + I = −C−1. (C.60)

Proposition C.20. The following relations hold

w2 − w1 =f1(Θ), (C.61)

C−C−1 =f2(Θ), (C.62)
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w2C− w1C−1 =f3(Θ), (C.63)

w2 + w1 = −g1(Θ), (C.64)

C + C−1 = g2(Θ), (C.65)

w2C + w1C−1 = −g3(Θ). (C.66)

Proof. The proposition follows from comparing relations (C.47)–(C.48) and
relations (C.57)–(C.59).

(C.61) follows from (C.47) and (C.56).
(C.62) follows from (C.49) and (C.57).
(C.63) follows from (C.49) and (C.58).
(C.64) follows from (C.48) and (C.56).
(C.65) follows from (C.50) and (C.57).
(C.66) follows from (C.50) and (C.59). ��

Proposition C.21. The following relations hold:

f2m(Θ)= Cm −C−m, f2m+1(Θ)= w2Cm − w1C−m, (C.67)

g2m(Θ) = Cm + C−m, g2m+1(Θ) = −(w2Cm + w1C−m). (C.68)

Proof. 1) Relations (C.61)–(C.63) realize the basis of induction.
By (C.53), by the induction hypothesis, and by (C.60) we have

f2m+2(Θ) = 2Θf2m+1(Θ) − f2m(Θ) = − 2Θ f2m+1(Θ) − f2m(Θ)=

− 2Θ(w2Cm − w1C−m)− (Cm −C−m) =

− (2Θw2 + I)Cm + (2Θw1 + I)C−m = Cm+1 −C−(m+1).

In the same way we have

f2m+3(Θ) = − 2Θ f2m+2(Θ) − f2m+1(Θ)=

− 2Θ(Cm+1 −C−(m+1))− w2Cm − w1C−m =

− (2Θw1 + I)w2Cm + (2Θw2 + I)w1C−m =

C−1w2Cm −Cw1C−m = w2Cm+1 − w1C−(m+1).

2) Relations (C.64)–(C.66) realize the basis of induction. By the induction
hypothesis and by (C.60) we have
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g2m+2(Θ) = 2Θg2m+1(Θ)− g2m(Θ) =

− 2Θ(w2Cm + w1C−m)− (Cm + C−m) =

− (2Θw2 + I)Cm − (2Θw1 + I)C−m = Cm+1 + C−(m+1).

By analogy, we have

g2m+3(Θ) = 2Θg2m+2(Θ)− g2m+1(Θ) =

− 2Θ(Cm+1 + C−(m+1))− (w2Cm + w1C−m) =

− (2Θw1 + I)w2Cm − (2Θw2 + I)w1C−m = w2Cm+1 + w1C−(m+1).��

Theorem C.19 now follows from Proposition C.21.
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dered sets. Funkcional. Anal. i Priložen. 8 (1974), no. 3, 34–42. English trans-
lation: Functional Anal. Appl. 8 (1974), 219–225 (1975).

[Drz80] Yu. A. Drozd, Tame and wild matrix problems. Representation theory, II
(Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), pp. 242–
258, Lecture Notes in Math., 832, Springer, Berlin-New York, 1980.



224 References

[DrK04] Yu. A. Drozd, E. Kubichka, Dimensions of finite type for representations
of partially ordered sets. (English. English summary) Algebra Discrete Math.
2004, no. 3, 21–37.

[DuVal34] P. Du Val, On isolated singularities which do not affect the condition of
adjunction. Proc. Cambridge Phil. Soc. 30 (1934), 453–465.
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[Sam41] H. Samelson, Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten. (Ger-
man) Ann. of Math. (2) 42, (1941). 1091–1137.

[Sat60] I. Satake, On representations and compactifications of symmetric Rieman-
nian spaces. Ann. of Math. (2) 71 (1960), 77–110.

[Sc24] I. Schur, Neue Anwendung der Integralrechnung auf Probleme der Invari-
antentheorie. Sitzungsber. Preuss. Akad. (1924), 189, 297, 346.

[Ser05] V. Serganova, Reflection functors. Representation Theory, Lecture Notes,
2005, University of California,
http://math.berkeley.edu/˜serganov/math252/notes11.pdf.

[Shaf88] I. Shafarevich, Osnovy algebraicheskoi geometrii. (Russian) [Fundamentals
of algebraic geometry.] Second edition. Nauka, Moscow, (1988) 352 pp.

[ShT54] G. C. Shephard, J. A. Todd, Finite unitary reflection groups. Canad. J.
Math. 6 (1954), 274–304.

[Shi00] Jian-yi Shi, Conjugacy relation on Coxeter elements. Adv. Math. 161 (2001),
no. 1, 1–19.

[Si44] C. L. Siegel, Algebraic integers whose conjugates lie in the unit circle. Duke
Math. J. 11, (1944), 597–602.
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DDt, DtD (golden pair of matrices), 6
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G-invariant, 48

H � G (binary polyhedral groups), 4
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Hα(hyperplane), 132

I (ideal in k[x1, . . . , xn]), 211

K (Cartan matrix), 6

K∨ (Cartan matrix of the dual graph),
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M (fundamental set), 40
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algebra A), 47
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for the binary polyhedral group
G), 14
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R (commutative ring), 210
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RΩ (index of the conjugacy class of the
Coxeter transformation), 73
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∐
S2 (partition of vertices), 51

S(x, y, z) (stereographic projection),
209

S2 (unit sphere in R
3), 209

T (interrelates CΛ and CΩ), 149

Ti (transforming elements), 193

Ta1,...,ar (star-like tree with r arms), 88

Tp,q,r diagram in Fig. 2.1, 25

U (positive diagonal matrix), 23

V ⊂ A
n
k (affine variety), 213

V/G (orbit space), 215

W (Weyl group), 40

W (S) (Coxeter group corresponding to
the set of vertices S), 52

Wa(affine Weyl group), 130

[PG(t)]0 (Poincaré series), 4

[PG(t)]i (coordinates of PG(t)), 15

[PG↓(t)]0 (generalized Poincaré series
for restricted representations), 108

[PG↑(t)]0 (generalized Poincaré series
for induced representations), 108
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[P̃G(t)]0 (generalized Poincaré series),
108

Sym(C2)G (algebra of invariants), 3

α∨(coroot), 132

α0 (the affine vertex), 118

αi (a basis vector of EΓ, or a simple
root), 38

α∗ (the simple root corresponding to a
branch point), 118

β (the highest root in the root system),
68

βn = τ (n)β (the orbit of the highest
root), 117

χ1, . . . χr (irreducible C-characters), 109

χ∧
i

(the character of the contragredient

representation ρ∧
i
), 109

δΩ (Dlab-Ringel defect), 18

dim V (the dimension of the representa-
tion V ), 42

λ ≈ 1.176281... (Lehmer’s number), 81

λ ≈ 1.324717... (the smallest Pisot
number), 205

λ ≈ 1.618034... (Golden mean), 206

λϕi
1,2 (the eigenvalues of Coxeter

transformations) , 7

〈p, q, r〉 (generalization of the quaternion
group), 157

〈·, ·〉 (inner product on C(G)), 109

A
1
k (affine line over k), 214

A
n
k (affine space over k), 211

CP 1 (complex projective line), 208

CP n (complex projective space), 208

C[x, y, z]/(R(x, y, z)) (coordinate
algebra), 158

C
2/G (orbit space), 158

Vk(I) (zero set of I), 211

X-component, 18, 53, 62

X
ϕi
j (eigenvectors of DDt), 61

Y-component, 18, 53, 62, 151

Y
ϕi
j (eigenvectors of DtD), 61

Z/nZ (cyclic group), 156

Z+(set {0, 1, 2, . . . }), 105

A (adjacency matrix), 121

Aγ (semi-affine adjacency matrix), 121

Am (alternating group), 157

B (quadratic Tits form), 7, 8, 21, 25,
43, 207

BD (quadratic form associated to the
poset D), 45

Dn (binary dihedral group), 157
E+ (non-negative vectors of EΓ), 39
EΓ (vector space with dim EΓ =|Γ0|), 38
J (binary icosahedral group), 157
O (binary octahedral group), 157
Sm (symmetric group), 157
T (binary tetrahedral group), 157
X (characteristic polynomial of the

Coxeter transformation C), 4
X (Γ, λ) (characteristic polynomial of

the Coxeter transformation for
graph Γ), 9

Xn (characteristic polynomial of the
Coxeter transformation for An),
10

C (fundamental Weyl chamber), 141
D (partially ordered set(=poset)), 45
L(Γ, Ω) (category of representations of

the quiver (Γ, Ω)), 42
g (simple complex Lie algebra), 116
g
′(K) (subalgebra [g(K), g(K)]), 51

g(K) (Kac-Moody algebra), 51
h (Cartan subalgebra of g), 116
h
∨ (dual space to h), 116

m (maximal ideal), 210
mP (maximal ideal for the point P ), 211
p (prime ideal), 210
μα (number of parameters), 44
ω, 2ω, 3ω, ... (nil-roots), 41
P (closure of the subset P), 212
∂Γ1 (endpoints of the edges), 24
φi (linear functions on EΓ), 40
π−1(O) (preimage of the singular point

O), 159
πn (irreducible representations of

SU(2)), 14
π1 (irreducible 2-dimensional represen-

tation), 112∏
β

|β|(Mahler measure), 205

ψi (characters of the binary octahedral
group O), 167

ψ↓
i (restricted characters of the binary

octahedral group O), 175
ρ (factor kαβkβα), 76
ρ(C) (spectral radius of C), 72
ρ ↓G

H (restricted representation), 4
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ρ ↓OT (restricted representation), 174

ρ1, . . . , ρr (irreducible representations
of G), 109

ρ∧
i

(contragredient representation), 109

ρΩ(z) (Ω-defect of the vector z), 18

�(semidirect product), 129

σi (reflections in the Weyl group W ), 40√
I (radical ideal), 211

∨
Γ (graph Γ with a removed vertex), 37
∧
Γ (graph Γ with an additional edge), 37

τ ↑G
H (induced representation), 4

τ ↑OT (induced representation), 174

τ (n) (alternating products), 117

X̃ (characteristic polynomial of the
affine Coxeter transformation Ca),
4

g̃ (affine Kac-Moody Lie algebra), 116

h̃ (Cartan subalgebra of g̃), 116

Γ̃ (extended Dynkin diagram), 14

z̃1
r (adjoint vectors for λ = 1), 61

Δim
+ (imaginary roots), 40

Δre
+ (real roots in the root system), 40

Δ+ (positive roots in the root system),
1

Γ (graph/diagram), 24

Γ∨ (dual graph of the graph Γ), 54

Γ0 (set of vertices of the graph Γ), 24

Γ1 (set of edges of the graph Γ), 24

Λ (bicolored orientation of Γ), 149

Λ0 (central orientation of Γ), 197

Ω (arbitrary orientation of Γ), 20

Ω-defect, 18

Ω-regular vector, 150

Φ+, Φ− (Coxeter functors), 42

Π (set of all simple roots), 40, 139

ϕ1 (dominant eigenvalue of DDt), 60

ϕi (eigenvalues of DF and FD), 56

Ã and Ã∨ (Slodowy operators), 111

a and b (Kostant numbers), 109

fp(Θ) (Chebyshev polynomials of the
second kind), 216

g (class number of the diagram Γ̃), 14

gp(Θ) (Chebyshev polynomials of the
first kind), 216

h (Coxeter number), 1

ha (affine Coxeter number), 68

ht(α) (height of the real root), 134

k[V ] (coordinate ring of the affine
variety V ), 213

k[X] (polynomial ring in x), 213
kij (elements of the Cartan matrix K),

24
l(w)(length of element), 138
mi (exponents of the Weyl group), 50
mi(n) (multiplicities in the decomposi-

tion πn), 14
sα,k(affine reflection), 132
tλ(translation), 16, 133
tr(x) (trace of the element x), 164
u0 (vertex adjacent to α0), 121
v(ai) (vertex resp. basis vector ai), 53
w0(element of the maximal length), 138
wi ∈ W (Si) (products of generators), 52

z(t)i (polynomial
h∑

j=0

zjt
j), 118

z0
ν (eigenvectors with λ = 0), 61

zk
ij (multiplicity of ρk in ρi ⊗ ρj), 109

z1∨ (eigenvector with λ = 1 for Γ∨), 18
z1 (eigenvector with eigenvalue 1), 18
zϕi

r,ν (eigenvectors with λ = λϕi
1,2), 61

zn (assembling vectors), 118
(dij , dji) (rigging of edge (i, j)), 24
En-series, 12, 81
E6,n-series, 12, 84
E7,n-series, 13, 86
Symn(C2) (symmetric algebra), 3
B (matrix of the quadratic form B), 25
C′(linear part), 136
C (Coxeter transformation), 4, 46
Ca (affine Coxeter transformation), 4,

67
CΛ, CΩ (Coxeter transformations

associated with orientations Λ, Ω),
149

Spec(R) (prime spectrum), 212
Spec(R)f (distinguished open set), 213
h̃
∨ (dual space to h̃), 116

P̃G(t) (generalized Kostant generating
functions), 108

vi (vertex of Γ0), 38
|Δ| (number of roots in Δ), 1
|Γ0|(number of vertices of Γ), 38

adjacency matrix, 121
affine Coxeter number, 68
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affine Coxeter transformation, 14, 16,
67, 68, 103, 136

affine Lie algebra, 36, 70, 131
affine reflections, 130
affine space, 211
affine variety, 211
affine vertex, 117
affine Weyl group, 130
algebra of invariants, 48, 108, 158
algebraic integer, 204
algebraic number, 204
anti-fixed points, 8, 215
assembling vectors, 117, 121

Betti numbers, 49
bicolored Coxeter transformation, 52,

116
bicolored orientation, 19, 20, 51, 149,

153, 191, 194, 197, 200
bicolored partition, 51, 53, 59
binary polyhedral group, 109, 156
bipartite graph, 51
branch point, 19, 25, 98, 102, 104, 105,

118

Cartan matrix
- multiply-laced case, 25, 53
- simply-laced case, 25, 53

Cartan subalgebra, 1, 51, 116, 117
categorical quotient, 215
central orientation, 197
character ring, 109
characteristic polynomial of the Coxeter

transformation
- T2,3,r, 12, 81
- T2,4,r, 13, 86
- T3,3,r, 12, 84
- An, 79
- Dynkin diagrams, 10, 99
- extended Dynkin diagrams, 10, 103

characters, 109
closed points, 212
closed sets of Spec(R), 212
closure, 212
compact hyperbolic Weyl group, 38
complex projective line, 155, 159, 208
conjugate vector, 21, 151, 190
conjugates of an algebraic number, 204
connection by a multiple bond, 140

contragredient representation, 109
coordinate ring, 213
coroot, 132
coroot lattice, 132
Coxeter functor, 183
Coxeter number, 4, 68, 109, 149, 152
Coxeter transformation

- affine, 14, 16, 67, 68, 103, 136
- bicolored, 52, 116
- defined by orientation, 46
- multiply-laced case, 55
- simply-laced case, 55

cyclotomic polynomial, 80

defect, 4
defect of the vector, 18
diagrams

- T2,3,r, 12, 81
- T2,4,r, 13, 86
- T3,3,r, 12, 84
- Tp,q,r, 12, 38, 80, 90, 95, 98
- Dynkin, 38
- extended Dynkin, 38
- hyperbolic, 38

differentiations, 45
dihedron, 155
dimension of the representation, 41
dimensions of finite type, 45
direct sum of objects, 42
distinguished open set of Spec(R), 213
Dlab-Ringel definition of defect, 18, 149
Dlab-Ringel formula, 152
dodecahedron, 155
dominant eigenvalue, 8, 63
Du Val singularity, 158
dual graphs, 54
dual vector, 18, 149
Dynkin diagrams, 38

- extended, 38
- folded, 102
- hyperbolic, 38
- strictly hyperbolic, 38

eigenvalues, 59
element of the maximal length, 138
EngineersToolbox, 88
exceptional divisor, 159
exponents of the Weyl group, 50
extended Dynkin diagrams, 38, 69, 70
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finite-type quivers, 42
finitely generated module, 47
fixed points, 8, 41, 215
folded Dynkin diagrams, 102
folding operation, 102, 116
formula

- Dlab-Ringel, 152
- Frobenius reciprocity, 177
- Springer, 164
- Subbotin-Sumin, multiply-laced

case, 76
- Subbotin-Sumin, simply-laced case,

9, 74
Frame formula, 80, 98
Frobenius reciprocity formula, 177
fully sink-admissible sequence, 46
fully source-admissible sequence, 46
fundamental set, 40
fundamental Weyl chamber, 141

generalized branch point, 147
generalized branch point by Steinberg,

147
generalized Cartan matrix, 23
generalized Kostant generating

functions, 108
generalized Poincaré series, 108
generalized Poincaré series for induced

representations, 108
generalized Poincaré series for restricted

representations, 108
generic point, 212
geometric invariant theory(GIT), 214
golden pair of matrices, 6
golden ratio, 13
graded A-module, 47
graded k-algebra, 46
group

- (2, 3, 7), 203
- (p, q, r), 203
- 〈p, q, r〉, 157
- binary dihedral, 157
- binary icosahedral, 157
- binary octahedral, 157
- binary tetrahedral, 157
- cyclic, 157
- Hurwitz, 203
- insoluble, 203
- Monster, 204

- polyhedral, 157
- soluble, 203
- triangle, 203

height ht(α), 134
hermitian inner product, 109
highest root, 2, 68, 106, 118, 124, 161
hyperbolic Cartan matrix, 38
hyperbolic diagrams, 13
hyperbolic Dynkin diagram, 38
hyperbolic Weyl group, 38
hyperplane, 68, 130, 132

imaginary roots, 124, 195
imaginary roots Δim

+ , 38
indecomposable object, 42
indecomposable representations, 42
index of the conjugacy class, 73, 116
induced representation, 106, 161, 174
induced representation τ ↑G

H , 4
injective representation, 187
inner product, 14, 106, 109
integral domain, 210
irreducible matrix, 206
irreducible non-cyclotomic factor, 72
irreducible representations ρi, 3, 106,

109, 120, 121, 160, 167, 172
irreducible representations of SU(2), 3,

14, 105
isomorphism of representations, 41

Killing polynomials, 72
Kleinian singularity, 158
Kostant generating function, 105
Kostant numbers, 109

Lehmer’s number, 81, 205
length of element w ∈ W , 138
Lie algebra, 38, 69, 70, 106, 116, 161
Lie group, 1, 50
linear part of the affine Coxeter

transformation, 136
long roots, 131
long simple root, 142

Mahler measure, 205
matrix

- irreducible, 206
- non-negative, 206
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- positive, 206
- reducible, 206

maximal ideal, 210
McKay correspondence, 106, 160
McKay matrix, 111
McKay operator, 111, 161
McKay-Slodowy correspondence, 111,

163
monic integer polynomial, 204
monic polynomial, 204
monotonicity of the dominant

eigenvalue, 8, 63, 64
morphism of representations, 41
multiple bond, 142
multiplicities mi(n), 106
multiply-laced case, 3, 6, 10, 14, 15, 18,

24, 42, 55, 76, 102, 103, 106, 111,
113, 149, 160, 163, 177, 199

natural embedding, 129
necessary regularity conditions, B -

indefinite, 188
necessary regularity conditions, B is

non-negative definite, 150
Neile’s parabola, 214
nil-roots, 41, 109
non-cyclotomic factor, 72
non-homogeneous branch point, 104,

105
non-homogeneous point, 102
non-regular representation of the quiver,

19, 150
nonreciprocal polynomial, 205
Nullstellensatz, 211
number of parameters μα, 44

observation of McKay, 121
octahedron, 155
operation “Add”, 37
operation “Remove”, 37, 63
orbit space, 158, 214
orbit structure of the Coxeter

transformation, 2, 105, 116, 161

pendant edge, 88
pendant vertex, 88
PF-pair, 58
Pisot graph, 88, 205
Pisot number, 205

Poincaré series, 105
Poincaré series of a graded algebra, 47
Poincaré series of a graded module, 47
point of maximum branching, 197
point with a multiple bond, 140
polynomial reciprocal, 88
Polynomial Roots Solver, 88
poset, 45
positive root system Δ+, 40
preinjective representation, 187
preprojective representation, 187
prime ideal, 210
prime spectrum Spec(R), 212
primitive poset, 45
projective representation, 187
pseudo-reflection, 49

quadratic Tits form B, 7, 8, 21, 25, 43
quasi-cospectral tree, 73
quaternion group, 156
quiver, 41
quiver of tame type, 43
quotient space, 214

radical, 211
radical ideal, 211
rational double point, 158
real roots Δre

+ , 38
reciprocal polynomial, 88, 206
reflection, 49
reflection functor, 183
regular representation, 187
regular representation of the quiver, 19,

150
regular vector, 20
representation

- injective, 187
- preinjective, 187
- preprojective, 187
- projective, 187
- regular, 187
- faithful, 160, 162, 167
- trivial, 106

representation of poset, 45
representation of the quiver, 41
representation type of the quiver, 19
restricted representation, 161, 174
restricted representation ρ ↓G

H , 4
root lattice, 132
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root system, 1, 38, 40, 68, 191
root with a multiple bond, 140
roots of unity, 7, 8, 67, 80

Salem graph, 88, 205
Schwartz inequality, 207
semi-affine adjacency matrix, 121
semi-affine graph, 121
semicubical parabola, 214
semidirect product, 129
short exact sequence, 129
short roots, 131
simple roots Π, 40
simple surface singularity, 158
simply transitive action, 141
simply-laced case, 2, 6, 9, 14, 18, 24, 25,

44, 52, 54, 58, 67, 95, 102, 103, 160
sink-admissible sequence, 46
sink-admissible vertex, 45
Slodowy correspondence, 163, 177, 178
Slodowy matrix, 163, 177, 178
smallest Pisot number, 13
source-admissible sequence, 46
source-admissible vertex, 45
spectral radius, 13, 72, 81, 82, 88, 90
splitting along the edge, 9
splitting along the weighted edge, 10
strictly hyperbolic Dynkin diagram, 38
structure constants, 109
Subbotin-Sumin formula

- multiply-laced case, 76
- simply-laced case, 9, 74

sufficient regularity conditions, arbitrary
orientation, 194

sufficient regularity conditions,
bicolored orientation, 191

symmetric algebra, 3, 14, 47, 108, 158
symmetric power, 3, 48
symmetrizable matrix, 23

tame quivers, 43, 150
technique of derivations, 45
tetrahedron, 155
theorem

- Conder, 204
- Coxeter-Chevalley-Coleman-

Steinberg, 50
- Ebeling, 113, 115
- Gabriel, 41, 42
- Hilbert’s Nullstellensatz, 211
- Hilbert-Serre, 47

- Hurwitz, 203
- Kac, 43
- Klein, 158
- Kostant-Knörrer-Gonzalez-

Sprinberg-Verdier, 109
- Lucchini-Tamburini-Wilson, 204
- McMullen, 81
- Molien, 49
- Nazarova-Donovan-Freislich-Dlab-

Ringel, 43
- observation of McKay, 121
- on fixed and anti-fixed points, 206
- on regular representations of

quivers, 152, 190, 195
- on the Jordan form, 64
- on transforming elements, 193
- Perron-Frobenius, 59, 206
- Pontrjagin-Brauer-Chevalley, 49
- Shephard-Todd-Chevalley-Serre, 49,

158
- Steinberg, 95
- Steinberg, multiply-laced case, 102,

103
- Wilson on Monster, 204

transforming elements, 192
translation, 133, 135
translation subgroup, 133, 135
trefoil, 72, 88
triangle group, 203
trivial representation, 106
twisted affine Lie algebra, 70, 131

unicyclic graph, 73
unimodularity, 110
unitarity, 110
unitary unimodular matrix, 110

valued graph, 24
vector–dimension, 42

weighted edge, 10, 24, 76, 100, 101, 103
weights, 24
Weyl chamber, 141
Weyl element, 111
Weyl group, 40

- affine, 130
wild quivers, 43
wild star, 72

Zariski’s topology, 211, 214
zero set, 210




