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An eigenvalue mystery...
Some ideas

Mystery solved!

A matrix indexed by permutations
A matrix indexed by a reflection group

Consider the matrix A whose rows and columns
are indexed by permutations σ in Sn,
with (σ, τ)-entry the number of pairs i < j
that appear in σ, τ in the same order.

That is, Aσ,τ counts noninversions of σ ◦ τ−1.
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An eigenvalue mystery...
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A matrix indexed by permutations
A matrix indexed by a reflection group

E.g., for n=3, the matrix A is

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

(1,2,3) 3 2 2 1 1 0

(1,3,2) 2 3 1 0 2 1

(2,1,3) 2 1 3 2 0 1

(2,3,1) 1 0 2 3 1 2

(3,1,2) 1 2 0 1 3 2

(3,2,1) 0 1 1 2 2 3
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A matrix indexed by permutations
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Easy to see that
Aσ,τ = Aτ,σ

and hence A will have eigenvalues in R.

We’ll see in a bit that it can be factored

A = π ◦ πt

so it even has nonnegative eigenvalues.

MYSTERY.
Why does A seem to have all eigenvalues in Z?
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Furthermore, empirically it has only four eigenspaces:

det(tI − A) = (t − 0)n!−1−(n
2)

×

(
t −

n!
(n

2

)
2

)1

×
(

t − (n + 1)!

6

)n−1

×
(

t − n!

6

)(n−1
2 )

Why?
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An eigenvalue mystery...
Some ideas
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A matrix indexed by permutations
A matrix indexed by a reflection group

More to the mystery

The matrix A represents multiplication on the right by

A :=
∑
σ∈Sn

#{ noninversions of σ} · σ

as a linear operator on the group algebra RSn:

RSn
(−)·A−→ RSn.

It commutes with the left-regular action of RSn on itself,
so its eigenspaces are Sn-representations.
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It also happens that A commutes with an extra Z/2Z-action
coming from right-multiplication in RSn by the longest element

w0 =

(
1 2 · · · n − 1 n
n n − 1 · · · 2 1

)
.

So its eigenspaces are actually Sn × Z/2Z-representations.
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In fact, these operators arose at the intersection of
three families that we conjectured had integer spectra.
Two families we understood pretty well.

One family starts with a finite real reflection group W ,
and a choice of positive root normals {+α}
for its collection of reflecting hyperplanes {H}.

−α

+α

H

Say H is a noninversion for w in W if
w sends the positive root +α normal to H
to another positive root +β.

V. Reiner Twisted Gelfand pairs from reflection groups



An eigenvalue mystery...
Some ideas

Mystery solved!

A matrix indexed by permutations
A matrix indexed by a reflection group

In fact, these operators arose at the intersection of
three families that we conjectured had integer spectra.
Two families we understood pretty well.

One family starts with a finite real reflection group W ,
and a choice of positive root normals {+α}
for its collection of reflecting hyperplanes {H}.

−α

+α

H

Say H is a noninversion for w in W if
w sends the positive root +α normal to H
to another positive root +β.

V. Reiner Twisted Gelfand pairs from reflection groups



An eigenvalue mystery...
Some ideas

Mystery solved!

A matrix indexed by permutations
A matrix indexed by a reflection group

In fact, these operators arose at the intersection of
three families that we conjectured had integer spectra.
Two families we understood pretty well.

One family starts with a finite real reflection group W ,
and a choice of positive root normals {+α}
for its collection of reflecting hyperplanes {H}.

−α

+α

H

Say H is a noninversion for w in W if
w sends the positive root +α normal to H
to another positive root +β.

V. Reiner Twisted Gelfand pairs from reflection groups



An eigenvalue mystery...
Some ideas

Mystery solved!

A matrix indexed by permutations
A matrix indexed by a reflection group

Now choose a particular reflecting hyperplane H.
Let O be the W -orbit of hyperplanes containing H.
Define an element A in the group algebra RW by

A :=
∑

w∈W

#

{
H ′ ∈ O which are
noninversions for w

}
· w

Consider the eigenvalues of the linear operator

RW
(−)·A−→ RW .

Its eigenspaces are again W × Z/2Z-representations.
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Then our original mystery for W = Sn seemed to generalize as
follows.

THEOREM.
For Weyl (= crystallographic finite reflection) groups W ,
and any choice of a W -orbit O of hyperplanes, the operator

RW
(−)·A−→ RW .

has all its eigenvalues in Z.
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A recent development

We also made an empirically-based finer conjecture,
independently proven recently (2011) by P. Renteln:

THEOREM.
For W simply-laced, i.e. types A`,D`,E6,E7,E8,
of rank `, with N hyperplanes, and Coxeter number h,
the operator A on RW has

det(tI − A) = (t − 0)|W |−1−N

×
(

t − |W |N
2

)1

×
(

t − |W |(h + 1)

6

)`

×
(

t − |W |
6

)N−`
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Idea 2: Flipping a factorization
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An eigenvalue integrality principle

PROPOSITION:
Think of a matrix A in ZN×N as an operator RN A−→ RN .
If A commutes with the action of a finite group W on RN ,
decomposing RN into W -irreducibles
• all realizable over Q,
• with no multiplicities

then A has all its eigenvalues in Z.

PROOF (sketch): The above assumptions, together with
Schur’s lemma, imply the eigenvalues of A lie in Q.

But the eigenvalues are also roots of the
monic polynomial det(tI − A) in Z[t ].
So they lie in Z.
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Let ΦO be the union of all roots {+α,−α} normal to
hyperplanes in the W -orbit O.

Then it turns out A = πt ◦ π where

RW π−→ RΦO

is defined by

πew ,eα =

{
1 if w(α) is a positive root,
0 otherwise.

.

In fact, the map π is even W × Z/2Z-equivariant if one lets
Z/2Z act on RΦO swapping the basis elements e+α ↔ e−α.
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Rather than considering eigenspaces of

RW A=πt◦π−→ RW

lets consider instead the eigenspaces of

RΦO B=π◦πt
−→ RΦO .

General theory says they have the same nonzero eigenvalues,
with eigenspaces carrying the same W ×Z/2Z-representations.
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Together with the representation theory, this already explains
two of the four eigenspaces that we observed...

Decompose RΦO as Z/2Z-module

RΦO =
(

RΦO
)

+
⊕
(

RΦO
)
−

where (
RΦO

)
+

has basis R{eα + e−α}α∈ΦO∩Φ+(
RΦO

)
−

has basis R{eα − e−α}α∈ΦO∩Φ+
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The summand
(
RΦO

)
+

carries the coset action of W on W/Z ,
where Z is the subgroup of W stabilizing the hyperplane H.

The easy calculation

B(eα + e−α) =
|W |
2

∑
β∈ΦO

eβ

shows that
(
RΦO

)
+

• lies almost entirely in the kernel (0-eigenspace) of B,

• except for containing a 1-dimensional |O||W |2 -eigenspace.
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The other summand
(
RΦO

)
−, as W -representation

carries the twisted coset action IndW
Z χ where

Z
χ−→ {±1}

w 7−→ w |H⊥ .

It would be nice if IndW
Z χ were W -multiplicity-free,

so that we could apply that eigenvalue integrality principle...
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What’s a Gelfand pair?

A Gelfand pair (W ,Z ) is
• a group W
• and subgroup Z

such that the transitive action on the coset space X = W/Z
is multiplicity-free for W .

In other words, IndW
Z 1 has no multiplicity

in its W -irreducible decomposition.
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What’s a twisted Gelfand pair?

More generally, a twisted Gelfand pair (W ,Z , χ) is
• a group W
• and subgroup Z
• and degree-one character χ : Z → C×

such that IndW
Z χ has no multiplicity

in its W -irreducible decomposition.
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Who can resist a juicy Gelfand pair?

Not this guy...
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Need a Gelfand pair review...?

... and want it from the viewpoint of orthogonal polynomials
and hypergeometric functions,
as spherical functions on W , or on X = W/Z?
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An eigenvalue mystery...
Some ideas

Mystery solved!

Idea 1: Representations
Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

The twisted Hecke algebra

How to show IndW
Z χ is W -multiplicity-free?

It’s equivalent to show that its ring of W -endomorphisms,
the (twisted) Hecke algebra inside RW

H := eχ · RW · eχ

is commutative.

Here
eχ :=

1
|Z |

∑
w∈Z

χ(w−1)w .
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The twisted version of Gefland’s trick

How to show H is commutative?

H is spanned by the nonzero elements {eχweχ} obtained
when one runs through the double cosets ZwZ in W .

PROPOSITION(“twisted Gelfand’s trick”).
H is commutative if every double coset ZwZ
with eχweχ 6= 0 contains an involution w = w−1.

Proof.
These elements eχweχ = eχw−1eχ are all fixed by the
anti-automorphism x 7→ x−1 on RW ,
and hence span a commutative subalgebra H.
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An eigenvalue mystery...
Some ideas

Mystery solved!

Idea 1: Representations
Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

The twisted Gelfand trick works for us

The double cosets ZwZ in our case (roughly) correspond to
the dihedral angles ∠{H,H ′} between hyperplanes H,H ′

in the chosen W -orbit O.

The cosets ZwZ giving eχweχ = 0 turn out to be those with
H,H ′ orthogonal.

When the dihedral angle ∠{H,H ′} is not orthgonal
reduction to the dihedral case shows that
the coset ZwZ contains an involution.

This gives the first theorem: the eigenvalues of A lie in Z.
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And for the simply-laced theorem...

... one only needs double cosets ZwZ where ∠{H,H ′} ∈ {0, π3}.

In this case, it turns out (stealing an idea from Renteln) that

IndW
Z χ
∼= R` ⊕ U

where U is a W -irreducible spanned by the vectors

{eα + eβ + eγ − (e−α + e−β + e−γ)}

running over α, β, γ as shown:
α

−α

β

−β

γ

−γ
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One mystery remains: Who was that masked man?
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