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An eigenvalue mystery... A matrix indexed by permutations

A matrix indexed by a reflection group

A mystery haunted our fair city...
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

Consider the matrix A whose rows and columns
are indexed by permutations o in &,
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

Consider the matrix A whose rows and columns
are indexed by permutations o in &,

with (o, 7)-entry the number of pairs i < j

that appear in o, 7 in the same order.
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An eigenvalue mystery...

A matrix indexed by permutations

A matrix indexed by a reflection group

Consider the matrix A whose rows and columns
are indexed by permutations o in &,

with (o, 7)-entry the number of pairs i < j

that appear in o, 7 in the same order.

That is, A, ~ counts noninversions of o o 1.
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

E.g., for n=3, the matrix A is

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

(1,2,3) 3 2 2 1 1 0
1,3,2) 2 3 1 0 2 1
(2,1,3) 2 1 3 2 0 1
(2,3,1) 1 0 2 3 1 2
(3,1,2) 1 2 0 1 3 2
(3,2,1) 0 1 1 2 2 3
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

Easy to see that
Acr,T = AT,U

and hence A will have eigenvalues in R.
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

Easy to see that
Acr,T = AT,U

and hence A will have eigenvalues in R.
WEe'll see in a bit that it can be factored
t

A=mom

so it even has nonnegative eigenvalues.
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

Easy to see that
Acr,T = AT,U

and hence A will have eigenvalues in R.

WEe'll see in a bit that it can be factored

A=ronr!

so it even has nonnegative eigenvalues.

MYSTERY.
Why does A seem to have all eigenvalues in Z?
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An eigenvalue mystery... A matrix indexed by permutations

A matrix indexed by a reflection group

Furthermore, empirically it has only four eigenspaces:

det(tl — A) = (¢t — 0)" - (2)

) (t_n!@

2
X <t (n—g:_)1l)”_1
y (t— rél)( 2 )
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An eigenvalue mystery... A matrix indexed by permutations

A matrix indexed by a reflection group

Furthermore, empirically it has only four eigenspaces:

det(tl — A) = (¢t — 0)" - (2)

) (t_ ()
2
x <t _ (”E:_)1')"_1
(-
Why?
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An eigenvalue m ry...
eigenvalue mystery. A matrix indexed by permutations

A matrix indexed by a reflection group

More to the mystery

The matrix A represents multiplication on the right by

A:= Y #{ noninversions of o} - o

0'66,7
as a linear operator on the group algebra RG;:

Re, 2% Rs,.

It commutes with the left-regular action of RG,, on itself,
S0 its eigenspaces are S,-representations.
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

It also happens that A commutes with an extra Z/2Z-action
coming from right-multiplication in RG,, by the longest element

W_1 2 -« n—1n
°=\n n-1 ... 2 1)
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

It also happens that A commutes with an extra Z/2Z-action
coming from right-multiplication in RG,, by the longest element

W_1 2 -« n—1n
°=\n n-1 ... 2 1)

So its eigenspaces are actually S, x Z/2Z-representations.
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An eigenvalue mystery... A matrix indexed by permutations

A matrix indexed by a reflection group

In fact, these operators arose at the intersection of
three families that we conjectured had integer spectra.

Two families we understood pretty well.

Twisted Gelfand pairs from reflection groups

V. Reiner




An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

In fact, these operators arose at the intersection of
three families that we conjectured had integer spectra.
Two families we understood pretty well.

One family starts with a finite real reflection group W,
and a choice of positive root normals {+a}
for its collection of reflecting hyperplanes {H}.

1__,5
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

In fact, these operators arose at the intersection of
three families that we conjectured had integer spectra.
Two families we understood pretty well.

One family starts with a finite real reflection group W,
and a choice of positive root normals {+a}
for its collection of reflecting hyperplanes {H}.

i
:

¥

-

Say H is a noninversion for w in W if
w sends the positive root +a normal to H
to another positive root +/.
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

Now choose a particular reflecting hyperplane H.
Let O be the W-orbit of hyperplanes containing H.
Define an element A in the group algebra RW by

. H' € O which are
A= ;N#{ noninversions for W} v
w
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An eigenvalue m ry...
eigenvalue mystery. A matrix indexed by permutations

A matrix indexed by a reflection group

Now choose a particular reflecting hyperplane H.
Let O be the W-orbit of hyperplanes containing H.
Define an element A in the group algebra RW by

o H' € O which are
A= Z #{ noninversions for W} v
weW
Consider the eigenvalues of the linear operator

rRw 22 Rw.

Its eigenspaces are again W x Z/2Z-representations.
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An eigenvalue mystery...

A matrix indexed by permutations
A matrix indexed by a reflection group

Then our original mystery for W = &, seemed to generalize as
follows.
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i ry...
An eigenvalue mystery A matrix indexed by permutations

A matrix indexed by a reflection group

Then our original mystery for W = &, seemed to generalize as
follows.

THEOREM.
For Weyl (= crystallographic finite reflection) groups W,
and any choice of a W-orbit O of hyperplanes, the operator

Rw 24 Rw.

has all its eigenvalues in Z.
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i ry...
An eigenvalue mystery A matrix indexed by permutations

A matrix indexed by a reflection group

A recent development

We also made an empirically-based finer conjecture,
independently proven recently (2011) by P. Renteln:

THEOREM.
For W simply-laced, i.e. types Ay, Dy, Eg, E7, Es,
of rank ¢, with N hyperplanes, and Coxeter number h,
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i ry...
An eigenvalue mystery A matrix indexed by permutations

A matrix indexed by a reflection group

A recent development

We also made an empirically-based finer conjecture,
independently proven recently (2011) by P. Renteln:

THEOREM.

For W simply-laced, i.e. types Ay, Dy, Eg, E7, Es,

of rank ¢, with N hyperplanes, and Coxeter number h,
the operator A on RW has

det(t/ — A) = (t — 0)!WI=1=N

W|N
1,||>

<
" (t [W|( h+1 )
)"

X

X
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

An eigenvalue integrality principle

PROPOSITION:

Think of a matrix A in ZV*N as an operator RV -2 RV.
If Acommutes with the action of a finite group W on RV,
decomposing RV into W-irreducibles

e all realizable over Q,
e with no multiplicities
then A has all its eigenvalues in Z.
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An eigenvalue integrality principle

PROPOSITION:

Think of a matrix A in ZV*N as an operator RV -2 RV.
If Acommutes with the action of a finite group W on RV,
decomposing RV into W-irreducibles

e all realizable over Q,
e with no multiplicities
then A has all its eigenvalues in Z.

PROOF (sketch): The above assumptions, together with
Schur’s lemma, imply the eigenvalues of A lie in Q.

But the eigenvalues are also roots of the
monic polynomial det(t/ — A) in Z[{].
So they lie in Z.
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Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

Let ¢ be the union of all roots {+a, —a} normal to
hyperplanes in the W-orbit O.

Then it turns out A = #! o 7 where

RW -5 R®0
is defined by
1 if w(a) is a positive root,
Tew,ea — . .
0 otherwise.
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

Let ¢ be the union of all roots {+a, —a} normal to
hyperplanes in the W-orbit O.

Then it turns out A = «! o 7 where
RW -~ R®e
is defined by

1 if w(a) is a positive root,
0 otherwise. '

Tey,ea =

In fact, the map = is even W x Z/2Z-equivariant if one lets
Z/2Z act on R®© swapping the basis elements e, < e_,.
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

Rather than considering eigenspaces of

A=nlor
RW " "—" RW
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

Rather than considering eigenspaces of
RW A="5™ RW
lets consider instead the eigenspaces of

Rq)o B=mnor! R(DO.
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

Rather than considering eigenspaces of
A=rlor

RW "——"RW

lets consider instead the eigenspaces of

R®o B=mor' geo.

General theory says they have the same nonzero eigenvalues,
with eigenspaces carrying the same W x Z/2Z-representations.
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

Together with the representation theory, this already explains
two of the four eigenspaces that we observed...

Decompose R®? as Z/2Z-module

o (1), ().

where

(R%) has basis R{e, + e_a }acoono.
Jr

(R“’O> has basis R{€, — €_4 }acoono,
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

The summand (R®°) _ carries the coset action of W on W/Z,
where Z is the subgroup of W stabilizing the hyperplane H.

The easy calculation
B(en + €_q Z es
BEPo

shows that (R®°)
e lies almost entirely in the kernel (0-eigenspace) of B,
e except for containing a 1-dimensional wgwl-eigenspace.
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization

Idea 3: A twisted Gelfand pair

The other summand (R"’O)_, as W-representation
carries the twisted coset action Ind¥ x where

Z5  {x1)
W i— W|HJ_.

It would be nice if Ind% x were W-multiplicity-free,
so that we could apply that eigenvalue integrality principle...
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

What’s a Gelfand pair?

A Gelfand pair (W, Z) is

e agroup W

e and subgroup Z
such that the transitive action on the coset space X = W/Z
is multiplicity-free for W.

In other words, Ind?’1 has no multiplicity
in its W-irreducible decomposition.
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

What'’s a twisted Gelfand pair?

More generally, a twisted Gelfand pair (W, Z, x) is
e agroup W
e and subgroup Z
e and degree-one character y : Z — C*

such that Ind¥' y has no multiplicity
in its W-irreducible decomposition.
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

Who can resist a juicy Gelfand pair?

Not this guy...

SOME q-KRAWTCHOUK POLYNOMIALS
ON CHEVALLEY GROUPS

By DENNIS STANTON*

1. Introduction. The Krawtchouk polynomials are the eigen-
matrices of the binary Hamming scheme, which is the set of all N-tuples of
=+1’s. The automorphism group of this set consists of all sign changes and
a permutation group on N entries. This group is the Weyl group of a sim-
ple Lie algebra. We can also describe the Krawtchouk polynomials as the
spherical functions on the Weyl group modulo a maxlmal Weyl subgmup




Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

Need a Gelfand pair review...?

... and want it from the viewpoint of orthogonal polynomials
and hypergeometric functions,
as spherical functions on W, oron X = W/Z?
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

The twisted Hecke algebra

How to show Indg‘/x is W-multiplicity-free?

It's equivalent to show that its ring of W-endomorphisms,
the (twisted) Hecke algebra inside RW

H:=e, - RW-e,

is commutative.

Here
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
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The twisted version of Gefland’s trick

How to show H is commutative?

H is spanned by the nonzero elements {e, we, } obtained
when one runs through the double cosets ZwZ in W.

PROPOSITION(“twisted Gelfand’s trick”).
‘H is commutative if every double coset ZwZ
with e, we, # 0 contains an involution w = w—.
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The twisted version of Gefland’s trick

How to show H is commutative?

H is spanned by the nonzero elements {e, we, } obtained
when one runs through the double cosets ZwZ in W.

PROPOSITION(“twisted Gelfand’s trick”).
‘H is commutative if every double coset ZwZ
with e, we, # 0 contains an involution w = w—.

Proof.

These elements e, we, = e, w~'e, are all fixed by the
anti-automorphism x — x~' on RW,

and hence span a commutative subalgebra H. [
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Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

The twisted Gelfand trick works for us

The double cosets Zw.Z in our case (roughly) correspond to
the dihedral angles Z/{H, H'} between hyperplanes H, H’
in the chosen W-orbit O.
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The twisted Gelfand trick works for us

The double cosets Zw.Z in our case (roughly) correspond to
the dihedral angles Z/{H, H'} between hyperplanes H, H’
in the chosen W-orbit O.

The cosets ZwZ giving e, we, = 0 turn out to be those with
H. H'" orthogonal.

V. Reiner Twisted Gelfand pairs from reflection groups



Idea 1: Representations
Some ideas Idea 2: Flipping a factorization
Idea 3: A twisted Gelfand pair

The twisted Gelfand trick works for us

The double cosets Zw.Z in our case (roughly) correspond to
the dihedral angles Z/{H, H'} between hyperplanes H, H’
in the chosen W-orbit O.

The cosets ZwZ giving e, we, = 0 turn out to be those with
H. H'" orthogonal.

When the dihedral angle Z{H, H'} is not orthgonal
reduction to the dihedral case shows that
the coset ZwZ contains an involution.
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The twisted Gelfand trick works for us

The double cosets Zw.Z in our case (roughly) correspond to
the dihedral angles Z/{H, H'} between hyperplanes H, H’
in the chosen W-orbit O.

The cosets ZwZ giving e, we, = 0 turn out to be those with
H. H'" orthogonal.

When the dihedral angle Z{H, H'} is not orthgonal
reduction to the dihedral case shows that
the coset ZwZ contains an involution.

This gives the first theorem: the eigenvalues of A lie in Z.
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And for the simply-laced theorem...

... one only needs double cosets ZwZ where Z{H,H'} € {0, 3 }.
In this case, it turns out (stealing an idea from Renteln) that
md¥x =R‘a U
where U is a W-irreducible spanned by the vectors
{ea+es+e,—(e_at+epg+e,)}

running over «, 3,y as shown:

a

B P

Y/\B
-
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Mystery solved!

One mystery remains: Who was that masked man?

V. Reiner Twisted Gelfand pairs from reflection groups



Mystery solved!

Mystery solved!

V. Reiner Twisted Gelfand pairs from reflection groups



	An eigenvalue mystery...
	A matrix indexed by permutations
	A matrix indexed by a reflection group

	Some ideas
	Idea 1: Representations
	Idea 2: Flipping a factorization
	Idea 3: A twisted Gelfand pair

	Mystery solved!

