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JAVA applet and Peterson's Masters

thesis available at

www.math.umn.edu/

~

reiner/CHEMOGALE.html

Outline:

I. Geometry (dis
rete)

II. Geology
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A = fa

1

; : : : ; a

n

g is a �nite 
olle
tion of n points

in (d� 1)-dimensional spa
e R

d�1

.

a
1

a

a
aaa

a 23

5
6

4

Here A has n= 6 and d = 3.
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A triangulation � of A is a 
olle
tion of sim-

pli
es,

� 
overing the 
onvex hull of A

� using only verti
es from the set A (but not

ne
essarily using all of them)

� with every pair of simpli
es meeting along

a 
ommon fa
e (possibly empty) of ea
h.

Two examples for the previous A :

1 2
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Say that a triangulation � of A is 
oherent

if it arises from the following geometri
 
on-

stru
tion:

(1) Choose a ve
tor g = (g

1

; : : : ; g

n

) of heights

with whi
h to lift ea
h a

i

in A from R

d�1

to the point (a

i

; g

i

) in R

d

.

(2) Find the fa
es in the lower 
onvex hull of

these lifted points,

(3) Proje
t these fa
es from R

d

down to R

d�1

.

Denote by �(g) the 
oherent triangulation in-

du
ed by the ve
tor of heights g = (g

1

; : : : ; g

n

)

in R

n

.
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Incoherent

?

Coherent

a

(a ,g )

3

3 3
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All triangulations of A are 
oherent

� when d � 2 (easy),

� when n� d � 2 (C. Lee 1991).

Under the hypotheses assumed by the geolo-

gists, only the 
oherent triangulations should

arise in their appli
ations.

Nevertheless, existen
e of in
oherent triangu-

lations is important for the geologists to be

aware of, as this would warn that one of their

hypotheses must fail to hold. Apparently in-


oherent triangulations were not widely known

to them, if at all.
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Is there stru
ture on the set of all triangula-

tions, or all 
oherent triangulations?

They are 
onne
ted by lo
al moves/modi�
ations


alled bistellar operations.

A=
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Why expe
t any su
h stru
ture?

A related question: \When do two lifting ve
-

tors g; g

0

in R

n

give rise to the same triangula-

tions �(g) = �(g

0

)?"

Equivalen
e 
lasses on R

n

ought to be poly-

hedral 
ones, �tting together into a 
omplete

fan that 
overs R

n

; this is 
alled the se
ondary

fan F(A) .

n -dimensional 
ones of F(A) $


oherent triangulations of A

walls between these 
ones $

bistellar operations
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For example, with A as before, one 
an 
om-

pute that F(A) looks like R

3

�F

0

(A) , where

F

0

(A) is the pointed se
ondary fan in R

2

shown

in blue below.
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There is a simple re
ipe for �nding F(A) ,

F

0

(A) , involving the Gale transform of A .

En
ode A as an d�nmatrix A having 
olumn

ve
tors (a

i

;1) for ea
h a

i

in A .

e.g. with A as before

we might have

A=

2

6

4

0 3 2 3 0

0 0 2 3 3

1 1 1 1 1

3

7

5
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Compute any n� d� n matrix A

�

whose rows

form a basis for the nullspa
e ker(A).

e.g.

A

�

=

"

�1 2 �3 0 2

1 0 �3 2 0

#

The 
olumns A

�

= fa

�

1

; : : : ; a

�

n

g are 
alled a

Gale transform of A = fa

�

1

; : : : ; a

�

n

g.

a , a

a

a

a

2 5

4

1

3

*

* *

*

*

(Note it is \a" Gale transform be
ause it is

well-de�ned only up to the a
tion of GL(R

n�d

).)
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PROPOSITION If g; g

0

in R

n

di�er by an ele-

ment in the row spa
e of A , then they indu
e

the same 
oherent triangulation �(g) = �(g

0

).

Consequently, we have

F(A) = RowSpa
e(A) � F

0

(A)

T T

R

n

= RowSpa
e(A) � ColSpa
e(G)

�

=

R

d

�

=

R

n�d

RowSpace(A)
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THEOREM (Billera, Filliman, Sturmfels 1990)

The fan F

0

(A) in the 
olumn spa
e of A

�

is

the 
ommon re�nement of all simpli
ial 
ones

spanned by linearly independent subsets of A

�

.

a , a

a

a

a

2 5

4

1

3

*

* *

*

*
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THEOREM (Gelfand, Kapranov, Zelevinsky

1990)

The fan F

0

(A) is a
tually the normal fan of an

n-d -dimensional 
onvex polytope, 
alled the

se
ondary polytope.

Hen
e the triangulations of A and the bistellar

operations 
onne
ting them form the verti
es

and edges of the se
ondary polytope.
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EXAMPLE: The asso
iahedron

(J. Stashe� 1962, M. Haiman, C. Lee 1985):

A is the vertex set of a 
onvex m-gon

(m = 6 shown below).
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Digression:

The Gale transform is 
losely related to

oriented matroid/ linear programming duality.

There is an oriented matroid represented by

the aÆne point 
on�guration A , and A

�

represents

the dual oriented matroid.

One way to express this:


ir
uits in A

(=sign patterns of 
oeÆ
ients

in minimal aÆne dependen
ies)

=


o
ir
uits in A

�

(=sign patterns of values of linear fun
tionals

vanishing on \almost all" ve
tors)
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For example,

1 2 3 4 5

+ 0 � + 0

is a 
ir
uit of A and a 
o
ir
uit of A

�

, as

shown:

a a

a

aa

1 2

3

45

a a2 5

a1

a3

a4
*

*

*

**
,

A A*
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Some terminology:

Gale transform (hard to visualize)

A

�

=

2

6

4

2 1 �1 �1 1 0

0 1 1 �1 �1 0

1 1 1 1 1 �1

3

7

5

Gale diagram (OK for n� d � 2)

aÆne Gale diagram (better for n� d � 3 )
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Other uses of Gale diagrams:

� \Visualizing", manipulating, and 
lassify-

ing polytopes with few verti
es, that is,

polytopes with n-d small (Gale 1956).

� En
oding matroid pathologies within poly-

topes, e.g.

. 
onstru
tion of non-rational polytopes

(Perles 1967),

. the Lawren
e 
onstru
tion (Lawren
e 1980?)
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II. Geology

A familiar temperature-pressure (p; T) phase-

diagram, involving the three phases of

H

2

O

p

T

Water

Ice

Steam

1 atm

0 C 100 C
o o
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A more useful phase diagram for geologists,

involving the three phases of Aluminum sili
ate

Al

2

SiO

5

Kyanite

Sillimanite

Andalusite

400 Kb

p

T

400 C
o
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They get mu
h 
ompli
ated, parti
ularly if the

phases have more than one 
hemi
al formula,

so rea
tions are possible.

GOAL: Predi
t the possible 
ombinatori
s/topology

of the phase diagram.

p

T
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How to predi
t? If one plots 
hemi
al formulae

of phases as ve
tors in 
hem
ial 
omposition

spa
e,

rea
tions = linear dependen
ies

2H

2

+1O

2

$ 2H

2

O

nu
m

be
r 

of
 H

’s

number of O’s

O

H2

2

H2O
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Res
ale to get an aÆne point 
on�guration A ,

and rea
tions be
ome aÆne dependen
ies.

2

3

H

2

+

1

3

O

2

$ 1

2

3

H

2

O

rescale

nu
m

be
r 

of
 H

’s

number of O’s

O

H 2

2

H 2O

O
2

H
2

H2O
2
−
3

A
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At a parti
ular (p; T), whi
h phases might I

expe
t to �nd stably 
o-existing?

Ea
h phase O

2

; H

2

;

2

3

H

2

O has its own Gibbs

free energy

g

O

2

(p; T); g

H

2

(p; T); g

2

3

H

2

O

(p; T)

and nature wants to minimize the total free

energy.

Two possibilities:

O
2

H 2O
2
−
3

H
2H 2O

2
−
3

H
2O

2

H
2

O
2

H
2

O
2

H
2

H 2O
2
−
3

O
2 H 2O

2
−
3

H 2O
2
−
3

G
ib

b
s 

e
n

e
rg

y 
 g

can co−exist
can co−exist
cannot

can co−exist

G
ib

b
s 

e
n

e
rg

y 
 g

is unstable

,
,

,

,
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From now on, assume we have

� n phases fa

1

; : : : ; a

n

g, and

� their 
hemi
al formulae span a d -dimensional

spa
e.

Let A be the asso
iated point 
on�guration in

R

d�1

.

CONCLUSION 1

At a parti
ular (p; T), Nature 
omputes the


oherent triangulation �(g) of A whi
h is in-

du
ed by the lifting ve
tor

g = (g

a

1

(p; T); : : : ; g

a

n

(p; T)) 2 R

n

;

in the following sense: the possible stably 
o-

existing assemblages of phases are the sim-

pli
es in �(g).
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The 
ombinatori
s/topology of the (p; T) phase

diagram?

Consider the map

R

2




�! R

n

(p; T) 7�! g = (g

a

i

(p; T))

n

i=1

and its image im(
) as a parametrized surfa
e

in R

n

.

Re
all that R

n

is de
omposed into polyhedral


ones by the se
ondary fan. This de
omposi-

tion will then de
ompose the surfa
e im(
) in

R

n

into various regions.

CONCLUSION 2

The (p; T) phase diagram is the pullba
k of this

de
omposition from the surfa
e im(
) to R

2

.
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EXAMPLE: Kyanite (Al

2

SiO

5

), Sillimanite (Al

2

SiO

5

),

Andalusite (Al

2

SiO

5

) has n= 3 and d= 1.

+

Kyanite

Sillimanite

Andalusite

p

T

A = 

F(A) =    Row(A)            F’(A)

=

p

T

+_
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GEOLOGISTS' IMPLICIT ASSUMPTION:

The map

R

2




�! R

n

(p; T) 7�! g = (g

a

i

(p; T))

n

i=1

� has ni
e monotoni
ity properties (e.g. it is

in parti
ular, one-to-one)

� is 
lose to linear, so the surfa
e im(
) looks

roughly like an aÆne 2-dimensional plane

in R

n

.

� this 2-dimensional plane is transverse to

Row(A).
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CONCLUSION 3

When n-d= 2, we have roughly that

(p; T) phase diagram = Gale diagram A

�

.

S
hreinemakers rules 1911:

Gives rules for sket
hing the (p; T) phase dia-

gram (= A

�

) when n-d= 2, given the rea
-

tions possible (=
ir
uits) in A .

His rules basi
ally say


ir
uits in A = 
o
ir
uits in A

�
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CONCLUSION 4

When n-d= 3, we have roughly that

(p; T) phase diagram =

an aÆne Gale diagram for A

�

.

The 
hoi
e of whi
h Gale diagram is deter-

mined by where the aÆne 2-dimensional plane

im(
) lands in the pointed se
ondary fan F

0

(A) .

The di�erent possible 
hoi
es are parametrized

by the verti
es of a zonotope or the regions of

a hyperplane arrangement.
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p

T

A*

an affine Gale diagram
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Where 
an math help?

� Automate the pro
ess of enumerating tri-

angulations of A , pointing out the in
o-

herent ones, utilizing 
ode by J. DeLoera,

J. Rambau, 
onne
tivity results by C.L.

Lawson 1977 (d= 2), Azaola and Santos

2000 (n-d� 3).

� Automate the possible 
hoi
es of aÆne Gale

diagram when n-d= 3, via theory of hyper-

plane arrangements.

The previous two goals were implemented in

S. Peterson's Masters Thesis. See-

www.math.umn.edu/

�

reiner/CHEMOGALE.html.
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Further help from math?

� Prove more 
onne
tivity results.

� Understand better how to parametrize 
hoi
es

of an aÆne 2-dimensional plane inside F

0

(A) for

n-d> 3.

In other words, how does F

0

(A) stratify the

aÆne Grassmannian Gr

affine

(2; R

n�d

)?
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