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A ={aq,...,an} is a finite collection of n points
in (d — 1)-dimensional space R4—1.
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Here A has n = 6 and d = 3.



A triangulation A of A is a collection of sim-
plices,

e covering the convex hull of A

e using only vertices from the set A (but not
necessarily using all of them)

e With every pair of simplices meeting along
a common face (possibly empty) of each.

Two examples for the previous A :




Say that a triangulation A of A is coherent
if it arises from the following geometric con-

struction:

(1) Choose a vector g = (¢1,...,9n) Of heights
with which to lift each a; in A from R—1

to the point (a;,g;) in R%.

(2) Find the faces in the lower convex hull of
these lifted points,

(3) Project these faces from R? down to R4—1.

Denote by A(g) the coherent triangulation in-
duced by the vector of heights ¢ = (¢g1,...,9n)
in R™ .
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All triangulations of A are coherent

e when d < 2 (easy),

e whenn—-—d<2 (C. Lee 1991).

Under the hypotheses assumed by the geolo-
gists, only the coherent triangulations should
arise in their applications.

Nevertheless, existence of incoherent triangu-
lations is important for the geologists to be
aware of, as this would warn that one of their
hypotheses must fail to hold. Apparently in-
coherent triangulations were not widely known
to them, if at all.



Is there structure on the set of all triangula-
tions, or all coherent triangulations?

They are connected by local moves/modifications
called bistellar operations.

A=l



Why expect any such structure?

A related question: “When do two lifting vec-
tors g,q¢’ in R™ give rise to the same triangula-
tions A(g) = A(g)?"

Equivalence classes on R"™ ought to be poly-
hedral cones, fitting together into a complete
fan that covers R™: this is called the secondary
fan F(A) .

n-dimensional cones of F(A) «
coherent triangulations of A

walls between these cones «
bistellar operations



For example, with A as before, one can com-
pute that F(A) looks like R3xF/(A) , where
F'(A) is the pointed secondary fan in R2 shown
in blue below.
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There is a simple recipe for finding F(A) ,
F'(A) , involving the Gale transform of A .

Encode A as an d xn matrix A having column
vectors (a;,1) for each a; in A .

e.g. with A as before

we might have

A=

= O O
= O W
= NN
= W W
= W O
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Compute any n —d x n matrix A*™ whose rows
form a basis for the nullspace ker(A).

e.g.
AF — -1 2 -3 0 2
1 0 -3 20

The columns A* = {a],...,ay} are called a
Gale transform of A = {a3,...,a}}.

Aa{

(Note it is “a” Gale transform because it is
well-defined only up to the action of GL(R"%).)
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PROPOSITION If g,¢’ in R" differ by an ele-
ment in the row space of A , then they induce
the same coherent triangulation A(g) = A(g)).

Consequently, we have
F(A) = RowSpace(A) X F'(A)

N M
R™® = RowSpace(A) x ColSpace(G)
~ Rd o~ Rn—d

IiowSpace(A)
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THEOREM (Billera, Filliman, Sturmfels 1990)

The fan F'(A) in the column space of A* is
the common refinement of all simplicial cones
spanned by linearly independent subsets of A* .
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THEOREM (Gelfand, Kapranov, Zelevinsky
1990)

The fan F/(A) is actually the normal fan of an
n-d -dimensional convex polytope, called the
secondary polytope.

Hence the triangulations of A and the bistellar
operations connecting them form the vertices
and edges of the secondary polytope.
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EXAMPLE: The associahedron

(J. Stasheff 1962, M. Haiman, C. Lee 1985):
A is the vertex set of a convex m-gon

(m = 6 shown below).
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Digression:
The Gale transform is closely related to

oriented matroid/ linear programming duality.
There is an oriented matroid represented by
the affine point configuration A , and A* represents
the dual oriented matroid.
One way to express this:

circuits in A

(=sign patterns of coefficients
in minimal affine dependencies)

cocircuits in A*
(=sign patterns of values of linear functionals
vanishing on “almost all” vectors)
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For example,

1 2 3 4 5

+ 0 — 4+ O
is a circuit of A and a cocircuit of A* , as
shown:
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Some terminology:

Gale transform (hard to visualize)

2 1 -1 -1 1 0]
A*=10 1 1 —-1 -1 O
11 1 1 1 -1

Gale diagram (OK for n —d < 2)

affine Gale diagram (better forn —d > 3 )

A
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Other uses of Gale diagrams:

e “Visualizing”, manipulating, and classify-
ing polytopes with few vertices, that is,
polytopes with n-dsmall (Gale 1956).

e Encoding matroid pathologies within poly-
topes, e.qg.

> construction of non-rational polytopes
(Perles 1967),

> the Lawrence construction (Lawrence 19807)
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II. Geology

A familiar temperature-pressure (p,T7) phase-
diagram, involving the three phases of

H>0

1 atm

0cC 100 C
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A more useful phase diagram for geologists,
involving the three phases of Aluminum silicate

Al»SiOs

Kyanite

Sillimanite
400Kb| ‘

UH

Andalusite

\

400 C

T -
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They get much complicated, particularly if the
phases have more than one chemical formula,
SO reactions are possible.

GOAL: Predict the possible combinatorics/topology
of the phase diagram.

U*»

23



How to predict? If one plots chemical formulae
of phases as vectors in chemcial composition
space,

reactions = linear dependencies

2H> 4+ 105 < 2 Hy0

H.,0O

number of H's
|

H,

| |
number of O’s
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Rescale to get an affine point configuration A ,
and reactions become affine dependencies.

2 1 2
— H — 0> < 1—-H->0O
3 2-|—3 2 3112

O

H,O

number of H's
|

H.

number of O’s
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At a particular (p,T), which phases might I
expect to find stably co-existing?

Each phase Oy, Hp, 2H0 has its own Gibbs
free energy

gOz(pa T)7 gHQ(pa T)7 g%HQO(p’ T)

and nature wants to minimize the total free
energy.

Two possibilities:
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O,,iHO can co—exist O, , H, can co—exist
HO ,H —exi .
’ : €an co-exist sHO s unstable
G, , H, cannot
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From now on, assume we have

e nphases {ay,...,an}, and

e their chemical formulae span a d -dimensional
space.

Let A be the associated point configuration in
R -1

CONCLUSION 1

At a particular (p,T), Nature computes the
coherent triangulation A(g) of A which is in-
duced by the lifting vector

g=(9a;(,T),...,9a,(p, T)) € R",

in the following sense: the possible stably co-
existing assemblages of phases are the sim-
plices in A(g).
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The combinatorics/topology of the (p,T") phase
diagram??

Consider the map

R L R™
(0, T) — g=(9a;(p,T))7_1
and its image im(~) as a parametrized surface
in R™ .

Recall that R"™ is decomposed into polyhedral
cones by the secondary fan. This decomposi-
tion will then decompose the surface im(«) in
R™ into various regions.

CONCLUSION 2

The (p,T) phase diagram is the pullback of this
decomposition from the surface im(y) to R2.
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EXAMPLE: Kyanite (Al»Si0s5), Sillimanite (Al>SiO
Andalusite (Al»SiOg) has n= 3 and d= 1.

A= &

F(A)= Row(A) ¢ F'(A)

/
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GEOLOGISTS’ IMPLICIT ASSUMPTION:
The map

rR2 L R™

(p, T) — g=(9a;(p,T))}—1

e has nice monotonicity properties (e.g. it is
in particular, one-to-one)

e is close to linear, so the surface im(~) looks
roughly like an affine 2-dimensional plane
in R™ .

e this 2-dimensional plane is transverse to
Row(A).
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CONCLUSION 3
When n-d = 2, we have roughly that

(p, T) phase diagram = Gale diagram A* .

Schreinemakers rules 1911

Gives rules for sketching the (p,T") phase dia-
gram (= A* ) when n-d = 2, given the reac-
tions possible (=circuits) in A .

His rules basically say

circuits in A = cocircuits in A*

31



CONCLUSION 4
When n-d = 3, we have roughly that

(p, T) phase diagram =
an affine Gale diagram for A* .

The choice of which Gale diagram is deter-
mined by where the affine 2-dimensional plane
im(~) lands in the pointed secondary fan F/(A) .

The different possible choices are parametrized
by the vertices of a zonotope or the regions of
a hyperplane arrangement.
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Where can math help?

e Automate the process of enumerating tri-
angulations of A, pointing out the inco-
herent ones, utilizing code by J. Del oera,
J. Rambau, connectivity results by C.L.
Lawson 1977 (d= 2), Azaola and Santos
2000 (n-d < 3).

e Automate the possible choices of affine Gale
diagram when n-d = 3, via theory of hyper-
plane arrangements.

The previous two goals were implemented in
S. Peterson’s Masters Thesis. See-
www.math.umn.edu/~reiner/CHEMOGALE.html.
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Further help from math?
e Prove more connectivity results.

e Understand better how to parametrize choices
of an affine 2-dimensional plane inside F/(A) for

n-d > 3.

In other words, how does F/'(A) stratify the
affine Grassmannian Grg e (2, R*74)7?
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