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JAVA applet and Peterson's Masters

thesis available at

www.math.umn.edu/

~

reiner/CHEMOGALE.html

Outline:

I. Geometry (disrete)

II. Geology
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A = fa

1

; : : : ; a

n

g is a �nite olletion of n points

in (d� 1)-dimensional spae R

d�1

.

a
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a
aaa

a 23

5
6
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Here A has n= 6 and d = 3.
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A triangulation � of A is a olletion of sim-

plies,

� overing the onvex hull of A

� using only verties from the set A (but not

neessarily using all of them)

� with every pair of simplies meeting along

a ommon fae (possibly empty) of eah.

Two examples for the previous A :

1 2
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Say that a triangulation � of A is oherent

if it arises from the following geometri on-

strution:

(1) Choose a vetor g = (g

1

; : : : ; g

n

) of heights

with whih to lift eah a

i

in A from R

d�1

to the point (a

i

; g

i

) in R

d

.

(2) Find the faes in the lower onvex hull of

these lifted points,

(3) Projet these faes from R

d

down to R

d�1

.

Denote by �(g) the oherent triangulation in-

dued by the vetor of heights g = (g

1

; : : : ; g

n

)

in R

n

.
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Incoherent

?

Coherent

a

(a ,g )

3

3 3

6



All triangulations of A are oherent

� when d � 2 (easy),

� when n� d � 2 (C. Lee 1991).

Under the hypotheses assumed by the geolo-

gists, only the oherent triangulations should

arise in their appliations.

Nevertheless, existene of inoherent triangu-

lations is important for the geologists to be

aware of, as this would warn that one of their

hypotheses must fail to hold. Apparently in-

oherent triangulations were not widely known

to them, if at all.
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Is there struture on the set of all triangula-

tions, or all oherent triangulations?

They are onneted by loal moves/modi�ations

alled bistellar operations.

A=
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Why expet any suh struture?

A related question: \When do two lifting ve-

tors g; g

0

in R

n

give rise to the same triangula-

tions �(g) = �(g

0

)?"

Equivalene lasses on R

n

ought to be poly-

hedral ones, �tting together into a omplete

fan that overs R

n

; this is alled the seondary

fan F(A) .

n -dimensional ones of F(A) $

oherent triangulations of A

walls between these ones $

bistellar operations
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For example, with A as before, one an om-

pute that F(A) looks like R

3

�F

0

(A) , where

F

0

(A) is the pointed seondary fan in R

2

shown

in blue below.
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There is a simple reipe for �nding F(A) ,

F

0

(A) , involving the Gale transform of A .

Enode A as an d�nmatrix A having olumn

vetors (a

i

;1) for eah a

i

in A .

e.g. with A as before

we might have

A=

2

6

4

0 3 2 3 0

0 0 2 3 3

1 1 1 1 1

3

7

5
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Compute any n� d� n matrix A

�

whose rows

form a basis for the nullspae ker(A).

e.g.

A

�

=

"

�1 2 �3 0 2

1 0 �3 2 0

#

The olumns A

�

= fa

�

1

; : : : ; a

�

n

g are alled a

Gale transform of A = fa

�

1

; : : : ; a

�

n

g.

a , a

a

a

a

2 5

4

1

3

*

* *

*

*

(Note it is \a" Gale transform beause it is

well-de�ned only up to the ation of GL(R

n�d

).)
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PROPOSITION If g; g

0

in R

n

di�er by an ele-

ment in the row spae of A , then they indue

the same oherent triangulation �(g) = �(g

0

).

Consequently, we have

F(A) = RowSpae(A) � F

0

(A)

T T

R

n

= RowSpae(A) � ColSpae(G)

�

=

R

d

�

=

R

n�d

RowSpace(A)
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THEOREM (Billera, Filliman, Sturmfels 1990)

The fan F

0

(A) in the olumn spae of A

�

is

the ommon re�nement of all simpliial ones

spanned by linearly independent subsets of A

�

.

a , a

a

a

a

2 5

4

1

3

*

* *

*

*
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THEOREM (Gelfand, Kapranov, Zelevinsky

1990)

The fan F

0

(A) is atually the normal fan of an

n-d -dimensional onvex polytope, alled the

seondary polytope.

Hene the triangulations of A and the bistellar

operations onneting them form the verties

and edges of the seondary polytope.
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EXAMPLE: The assoiahedron

(J. Stashe� 1962, M. Haiman, C. Lee 1985):

A is the vertex set of a onvex m-gon

(m = 6 shown below).
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Digression:

The Gale transform is losely related to

oriented matroid/ linear programming duality.

There is an oriented matroid represented by

the aÆne point on�guration A , and A

�

represents

the dual oriented matroid.

One way to express this:

iruits in A

(=sign patterns of oeÆients

in minimal aÆne dependenies)

=

oiruits in A

�

(=sign patterns of values of linear funtionals

vanishing on \almost all" vetors)
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For example,

1 2 3 4 5

+ 0 � + 0

is a iruit of A and a oiruit of A

�

, as

shown:

a a

a

aa

1 2

3

45

a a2 5

a1

a3

a4
*

*

*

**
,

A A*
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Some terminology:

Gale transform (hard to visualize)

A

�

=

2

6

4

2 1 �1 �1 1 0

0 1 1 �1 �1 0

1 1 1 1 1 �1

3

7

5

Gale diagram (OK for n� d � 2)

aÆne Gale diagram (better for n� d � 3 )
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Other uses of Gale diagrams:

� \Visualizing", manipulating, and lassify-

ing polytopes with few verties, that is,

polytopes with n-d small (Gale 1956).

� Enoding matroid pathologies within poly-

topes, e.g.

. onstrution of non-rational polytopes

(Perles 1967),

. the Lawrene onstrution (Lawrene 1980?)
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II. Geology

A familiar temperature-pressure (p; T) phase-

diagram, involving the three phases of

H

2

O

p

T

Water

Ice

Steam

1 atm

0 C 100 C
o o
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A more useful phase diagram for geologists,

involving the three phases of Aluminum siliate

Al

2

SiO

5

Kyanite

Sillimanite

Andalusite

400 Kb

p

T

400 C
o
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They get muh ompliated, partiularly if the

phases have more than one hemial formula,

so reations are possible.

GOAL: Predit the possible ombinatoris/topology

of the phase diagram.

p

T
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How to predit? If one plots hemial formulae

of phases as vetors in hemial omposition

spae,

reations = linear dependenies

2H

2

+1O

2

$ 2H

2

O

nu
m

be
r 

of
 H

’s

number of O’s

O

H2

2

H2O
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Resale to get an aÆne point on�guration A ,

and reations beome aÆne dependenies.

2

3

H

2

+

1

3

O

2

$ 1

2

3

H

2

O

rescale

nu
m

be
r 

of
 H

’s

number of O’s

O

H 2

2

H 2O

O
2

H
2

H2O
2
−
3

A
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At a partiular (p; T), whih phases might I

expet to �nd stably o-existing?

Eah phase O

2

; H

2

;

2

3

H

2

O has its own Gibbs

free energy

g

O

2

(p; T); g

H

2

(p; T); g

2

3

H

2

O

(p; T)

and nature wants to minimize the total free

energy.

Two possibilities:

O
2

H 2O
2
−
3

H
2H 2O

2
−
3

H
2O

2

H
2

O
2

H
2

O
2

H
2

H 2O
2
−
3

O
2 H 2O

2
−
3

H 2O
2
−
3

G
ib

b
s 

e
n

e
rg

y 
 g

can co−exist
can co−exist
cannot

can co−exist

G
ib

b
s 

e
n

e
rg

y 
 g

is unstable

,
,

,

,
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From now on, assume we have

� n phases fa

1

; : : : ; a

n

g, and

� their hemial formulae span a d -dimensional

spae.

Let A be the assoiated point on�guration in

R

d�1

.

CONCLUSION 1

At a partiular (p; T), Nature omputes the

oherent triangulation �(g) of A whih is in-

dued by the lifting vetor

g = (g

a

1

(p; T); : : : ; g

a

n

(p; T)) 2 R

n

;

in the following sense: the possible stably o-

existing assemblages of phases are the sim-

plies in �(g).
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The ombinatoris/topology of the (p; T) phase

diagram?

Consider the map

R

2



�! R

n

(p; T) 7�! g = (g

a

i

(p; T))

n

i=1

and its image im() as a parametrized surfae

in R

n

.

Reall that R

n

is deomposed into polyhedral

ones by the seondary fan. This deomposi-

tion will then deompose the surfae im() in

R

n

into various regions.

CONCLUSION 2

The (p; T) phase diagram is the pullbak of this

deomposition from the surfae im() to R

2

.

28



EXAMPLE: Kyanite (Al

2

SiO

5

), Sillimanite (Al

2

SiO

5

),

Andalusite (Al

2

SiO

5

) has n= 3 and d= 1.

+

Kyanite

Sillimanite

Andalusite

p

T

A = 

F(A) =    Row(A)            F’(A)

=

p

T

+_
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GEOLOGISTS' IMPLICIT ASSUMPTION:

The map

R

2



�! R

n

(p; T) 7�! g = (g

a

i

(p; T))

n

i=1

� has nie monotoniity properties (e.g. it is

in partiular, one-to-one)

� is lose to linear, so the surfae im() looks

roughly like an aÆne 2-dimensional plane

in R

n

.

� this 2-dimensional plane is transverse to

Row(A).
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CONCLUSION 3

When n-d= 2, we have roughly that

(p; T) phase diagram = Gale diagram A

�

.

Shreinemakers rules 1911:

Gives rules for skething the (p; T) phase dia-

gram (= A

�

) when n-d= 2, given the rea-

tions possible (=iruits) in A .

His rules basially say

iruits in A = oiruits in A

�
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CONCLUSION 4

When n-d= 3, we have roughly that

(p; T) phase diagram =

an aÆne Gale diagram for A

�

.

The hoie of whih Gale diagram is deter-

mined by where the aÆne 2-dimensional plane

im() lands in the pointed seondary fan F

0

(A) .

The di�erent possible hoies are parametrized

by the verties of a zonotope or the regions of

a hyperplane arrangement.
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p

T

A*

an affine Gale diagram
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Where an math help?

� Automate the proess of enumerating tri-

angulations of A , pointing out the ino-

herent ones, utilizing ode by J. DeLoera,

J. Rambau, onnetivity results by C.L.

Lawson 1977 (d= 2), Azaola and Santos

2000 (n-d� 3).

� Automate the possible hoies of aÆne Gale

diagram when n-d= 3, via theory of hyper-

plane arrangements.

The previous two goals were implemented in

S. Peterson's Masters Thesis. See-

www.math.umn.edu/

�

reiner/CHEMOGALE.html.
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Further help from math?

� Prove more onnetivity results.

� Understand better how to parametrize hoies

of an aÆne 2-dimensional plane inside F

0

(A) for

n-d> 3.

In other words, how does F

0

(A) stratify the

aÆne Grassmannian Gr

affine

(2; R

n�d

)?
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