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A reformulation
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Another reformulation
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Joyal'sproof
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vertebrate endofunction
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Needforevery subset REM abjection
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Fitting's lemma

X a finite dimensional vectorspace

and f X X in End X
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Fitting's lemma
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4 The Fine Herstein Theorem

Recall Cayley's Theorem was
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5 Leinster's proof of Fine HersteinThen

To prove
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GOAL A bijection
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REVISED GOAL A bijection
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REVISED GOAL A bijection
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Considering N acting on
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So far we achieved
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LINEAR ALGEBRA FACT
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So now we can fix
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REMARKS

Leinster's preprint is

only 5 pages
C

beautifully written
has more history
and useful comments

His proof should lend itself

to more geometry maybeof
nilpotent cone
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