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0. Introduction.

The origin of this paper was a question about precisely why the existence of a quadratical Gröbner basis
for an homogeneous ideal in a non-commutative polynomial ring guarantees that the quotient by that ideal
is a Koszul algebra. The ‘conventional’ answer is ‘because there is an associated spectral sequence (whose
existence is guaranteed by some handwaving)’. The demand for somewhat more robust proofs is not unrea-
sonable; in particular, since the involved spectral sequences arise from somewhat unusual filtrations, which
do not always yield conventional spectral sequences.

The koszulness result does hold, and in fact, the present paper contains two proofs thereof (and of a
stronger variant, also involving Veronese subrings). The philosophy behind the first proof is to substantiate
the following fairly ‘wellknown facts’, sufficiently well:

• A spectral sequence essentially arises whenever we have a filtered chain complex.
• A Gröbner basis (in a rather generalised meaning) essentially starts a ‘filt-good’ (free) resolution with
respect to some filtration (i. e., one whose graded associated complex also is exact).
• Hence, Gröbner bases give rise to spectral sequences.

The ‘essentially’ in the first point, however, is not quite obvious; and it also should be modified a little.
The ‘obvious’ and general fact is that the components of the graded associated of the homology of a filtered
complex are subquotients of the corresponding components of the homology of the graded associated of that
complex. Spectral sequences are a means of passing from the latter to the former; and the existence of a
spectral sequence is often employed principally to establish that subquotient property.

However, in my opinion, this is putting the cart before the horse. In order for a spectral sequence to
exist, you first must have a filtered complex; which always is enough to guarantee the subquotient property.
You then also have whole families of ‘intermediate’ subquotients, and of morphisms between some of these
(for different components). Depending on the properties of the filtration, you may or may not be able to
organise some of these intermediates into a sequence of complexes, where the homology of one essentially
is its successor, and such that these intermediates allow you to pass from the homologies of the graded
associated to the graded associates of the homology in a calculable and controled manner. If you may, the
sought spectral sequence does exist; but whether or not it does, the subquoutient property holds.

In particular, the subquotient property is quite sufficient for the aforementioned results about Koszul alge-
bras. Indeed, if an ideal in a non-commutative monomial ring has a Gröbner basis consisting of homogeneous
polynomials of degree two, then the corresponding quotient ring A must be Koszul, since then its graded
associated G(A) is a quadratically related noncommutative monomial algebra, which indeed is Koszul by
[F75], and since moreover a Koszul algebra is characterised by having ‘torsion only on the diagonal’. We
thus directly get the implications

G(A) is Koszul =⇒ TorG(A)(k, k)i = TorG(A)(k, k)i,i =⇒ TorA(k, k)i = TorA(k, k)i,i =⇒ A is Koszul.

As an afterthought, we also may prove the existence of corresponding spectral sequences for quotients
with homogeneous ideals in the noncommutative polynomial ring.
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The second proof for the Koszulness covers less of the general theory, but offers greater possibilities
for calculations. It mainly consists of employing the known minimal free resolutions of the augmentation
field k for non-commutative monomial rings in order to ‘construct’ a filt-good free resolution of k for any
(not necessarily homogeneous) quotient of that polynomial ring, for which a Gröbner basis is ‘sufficiently
wellknown’. A known finite Gröbner basis always should suffice; but recall that the ideal need not possess
one, although it in itself is finitely generated. It should also be enough that we have an algorithm, which
for this ideal and any total degree d allows us to calculate all elements of total degree ≤ d in a finite time.
(Do note, that such algoritms not always exist; if they did, then all Thue systems would have solvable word-
problems; which they do not all have.) For our specific situation, we actually find that the filt-good resolution
is a minimal one, and generated ‘on the diagonal’ (i. e., is such that the i’th constituend is generated in total
degree i); whence we get the implications

G(A) Koszul =⇒ (G(X)i is generated in degree i) =⇒ (Xi is generated in degree i) =⇒ A Koszul.

With both approaches, we actually may get a somewhat sharper result, generalising a classical result
of Mumford almost ‘for free’. If A is a quotient of a twosided non-commutative homogeneous ideal in a
polynomial ring, and that ideal has a finite Gröbner basis D, then it also has a finite highest degree h of
the elements in D. Hence, and by [B78, théorème 1], the graded associated algebra G(A) has a finite rate of
growth of the total degrees of its Tor groups:

rateG(A)
def
= sup

(m,d)

d− 1

m− 1
≤ h− 1

with the supremum taken over the (m, d) ∈ (N− {0, 1})2 such that TorG(A)
m (k, k)d 6= 0.

Now, the same arguments as in either of the proofs of the Koszulness yield that rateA ≤ rateG(A). Thus,
as is shown in [B86], all Veronese subrings A(s) :=

⊕
i∈N

Ais with sufficiently high s are Koszul algebras:

Theorem 1. If k is a field, and A = k〈T1, . . . , Tn〉/a, where a is a twosided ideal with a Gröbner basis D,
then A(s) is Koszul for all s ≥ sup{deg x : x ∈ D} − 1.

The original result is the special case where sup{deg x : x ∈ D} ≤ 2.

The disposition of the rest of this paper is as follows. In sections 1, 2, and the beginning of section 3,
definitions and some basic properties for augmented algebras, complexes, and monoid orders and filtrations
are collected. The rest of section 3 contains proofs of the general subquotient relation between the graded
associates of homologies and homologies of graded associates of monoid filtered complexes, and of torsion
modules. Section 4 treats ‘Gröbner bases’, but in an unusual way, and in much more general situations
than usual; in particular, it concludes the first proof of theorem 1. Section 5 treats the spectral sequences.
Finally, section 6 introduces some concrete resolutions, leading to the the second proof.

In particular, a reader just interested in theorem 1 may choose to forego the entire section 5 and most
of section 4, and either most of section 3 and (the entire) sections 4 and 5, or section 6, without loss of
consistency. However, on the other hand, the reader will be assumed to be acquaintainced with ordinarily
filtered or graded associated modules and complexes. For section 5, but not otherwise, the reader may need
some understanding of spectral sequences. All this yields a somewhat uneven treatment; some aspects which
may be new are treated in detail, while other areas are glossed over.

Thus, a reader with vague ideas about spectral sequences should have little trouble to follow most of the
paper. Likewise, except once, we here are not concerned with any algorithms for calculation of Gröbner
bases, but only with consequences of the existence of one Gröbner basis.

The general theory indeed covers much more than what ordinarily is referred to as Gröbner basis theory.

2



Koszul by Gröbner basis

Example. Let S = k[x1, . . . , x4] be a (commutative) polynomial ring over a field k, and

a = (x3
2 + x2

1x2 − x2
3, x

2
2x4 − x1x4),

the S-ideal generated by these two polynomials. Now, S is graded and filtered by (the natural) total degree,
with Fd(S) = {f ∈ S : deg f ≤ d}; but a is not so graded. Its graded associated ideal is

G(a) = (x3
2 + x2

1x2, x
2
2x4, x2x

2
3x4 − x3

1x4);

indeed, {x3
2+x2

1x2−x2
3, x

2
2x4−x1x4, x2x

2
3x4−x3

1x4−x2
1x4} is a reduced ‘Gröbner basis’ for a (in the general

sense employed in this paper). Thus, with A = S/a and thus (essentially) G(A) = S/G(a), for each i ∈ N,

TorA(k, k)i is a subquotient of TorG(A)(k, k)i (whence in particular the Betti numbers for A are bounded
by those for G(A)). Moreover, S is (inter alia) also graded by the x4-degree of each monomial, and a is

homogeneous with respect to this particular grading. Thus, both the TorA(k, k)i and the TorG(A)(k, k)i
are naturally x4-degree graded, making both Tor bigraded; whence in fact TorA(k, k)i,j is a subquotient of

TorG(A)(k, k)i,j for each pair (i, j).

1. Augmented algebras.

We start by fixing some notation.

Let k be a field, and A a k-algebra, by which we mean a unitary and associative but not necessarily
commutative ring, say with the unit (multiplicative neutral element) 1A, together with a k (vector) space
structure on A, compatible with the arithmetic operations +A and ·A (in the usual manner). In particular,
k may be considered as a subring of A, by the natural identification of any κ ∈ k with κ1A ∈ A; and we also
demand this k copy to be in the centre of A; i. e., that

x ·A κ1A = κx

for any κ ∈ k and x ∈ A.

An augmentation of A is a ring epimorphism

ε : A−→−→ k,

such that ε(κ1A) = κ for all κ ∈ k. Two examples are the equicharacteristic (commutative) local rings, and
various (ordinarily) graded algebras

A =

∞⊕

n=0

An

with A0 = k. The augmentation ideal is Ker ε; for the two examples, this is the unique maximal ideal or the
ideal

⊕
n≥1

An, respectively.

The augmentation forms ‘the right end’ of some (free) resolution

. . .
d3−→ X2

d2−→ X1
d1−→ X0 = A

ε
−→−→ k;

a long exact sequence where all the Xi are free (say left) A-modules.
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2. Monoid orders and filtrations.

Throughout this section, let (M, ·, 1M ) be any monoid,1 i. e., set M equipped with an associative binary
operation ·, and a neutral element (a unit) 1M with respect to this operation (thus satisfying 1M ·a = a·1M = a
for all a ∈ M). A strict monoid order ≤ on M is a (total) order of M (as a set), which respects the monoid
structure in the following sense: For any a, b, c ∈ M such that a < b (i. e., that a ≤ b but a 6= b), we have

a · c < b · c,

c · a < c · b, and

1M ≤ c.

(M, ·, 1M ,≤) then is a strictly ordered monoid, which we in the sequel by the usual slight abuse of notation
just call M .

Remark. There is a somewhat more natural and slightly weaker concept of monoid order, where we only
demand a · c ≤ b · c and c · a ≤ c · b. However, what I here call strictness is needed in order to make
multiplication well-defined in the graded associated ring G(R) (vide infra). It is actually equivalent to M
being a cancellative monoid (so that a 6= b =⇒ a · c 6= b · c ∧ c · a 6= c · b).

Lemma 2.1. If (M,≤) and (M ′,≤′) are strictly ordered monoids, and φ : M −→ M ′ is any monoid
homomorphism, then the order ≤′′ defined on M by the rule

a ≤′′ b
def
⇐⇒

(
φ(a) <′ φ(b)

)
∨ (φ(a) = φ(b) ∧ a ≤ b)

also is a strict monoid order.

Note, that by the assumptions φ maps 1M to 1M ′ and respects multiplication, but in general does not
respect order.

Proof. Say a, b, c ∈ M with a <′′ b. There are two distinct cases: Either φ(a) <′ φ(b), or φ(a) = φ(b) but
a < b. In the first case, by the strictness of ≤′,

φ(ac) = φ(a)φ(c) <′ φ(b)φ(c) = φ(ac);

and in the second case we (similarly and by the strictness of <) have φ(ac) = φ(bc) ∧ ac < bc. Thus, and
analogously, indeed ac <′′ bc and ca <′′ cb.

An M -filtration of a (unitary but not necessarily commutative) ring R is a family
(
Fa(R)

)
a∈M

of additive
subgroups of R, satisfying

1R ∈ F1M (R),

x ∈ Fa(R) ∧ y ∈ Fb(R) =⇒ xy ∈ Fa·b(R), and

a ≤ b =⇒ Fa(R) ⊆ Fb(R)

for all a, b ∈ M .

1 For a reader acquaintained with the usual Gröbner basis theory for ideals in commutative or non-
commutative polynomial rings, the first application would be the monoid of all monomials; i. e., they
could consider M = [x1, . . . , xn] or M = 〈T1, . . . , Tn〉, the free commutative or noncommutative monoid on
n generators, respectively. They then may note that indeed the strict monoidal wellorders on either of these
two M are precisely the usual ‘admissible term-orders’.
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It is an easy consequence of the definitions, that then F1M (R) is a subring (in the unitary sense) of R,
and that each Fa(R) is an F1M (R)-module. Furthermore, in most of our present applications, R will be a
k-algebra for a fixed field k; and it will be natural also to demand that

k ⊆ F1M (R).

As a consequence, each Fa(R) then also is a k (vector) space.

For each a ∈ M , let

F<a(R)
def
= {0R} ∪

⋃

b∈M

b<a

Fb(R).

Then clearly F<a(R) is an additive subgroup of (Fa(R),+) for each a ∈ M ; and actually is a F1M (R)-
submodule (and in the k-algebra case a k-subspace), too. Moreover, by the strictness of <, for any a, b ∈ M ,
we get

(2.1) x ∈ F<a(R) ∧ y ∈ Fb(R) =⇒ xy ∈ F<a·b(R) ∧ yx ∈ F<b·a(R).

Thus, and putting

G(R)a
def
= Fa(R)/F<a(R),

this is a F1M (R) bimodule (and, in our case, a k-space); and moreover (2.1) ensures that the R multiplication
restriction Fa(R)× Fb(R) −→ Fa·b induces a multiplication G(R)a ×G(R)b −→ G(R)a·b. This makes

G(R)
def
=

⊕

a∈M

G(R)a

to a ring, and actually to an F1M (R) ≃ G(R)1M algebra (and here in particular often a k-algebra).

M -filtered R modules, and their graded associated, are defined analogously. An M -filtered (left or right)
module homomorphism f : L −→ N between two such modules should ‘respect filt-degrees’, i. e., have
f
(
Fa(L)

)
⊆ Fa(N) for all a ∈ M . This gives rise to a graded associated morphism G(f) : G(L) −→ G(N)

(of M -graded G(R)-modules). In particular, G is a functor from the category of M -filtered (left, say)
R-modules to the one of M -graded (left) G(R)-modules.

If N is an M -filtered R-module, and L a submodule of N , then L inherits a structure of M -filtered R-

module by the prescription Fa(L)
def
= L ∩ Fa(N) (for any a ∈ M). Likewise, then the quotient module N/L

is M -filtered by Fa(N/L)
def
= Fa(N)+L

L . These filtrations are induced by the one of N .

In the sequel, also assume that < is a wellordering (so that any nonempty subset of M has a minimal
element), and that the considered M -filtrations are exhaustive, so that

⋃
a Fa(R) = R, and correspondingly.

Then, each x ∈ R has a well-defined filt-deg fdeg x
def
= min{a ∈ M : x ∈ Fa(R)}; and there is a well-defined

function lt : R −→ G(R) defined by

lt(x)
def
= x+ F<fdeg x(R) ∈ G(R)fdeg x ⊆ G(R).

In this case, if L = LR and N = RN are an M -filtered right respectively left R-module, then these filtrations
induce one of the tensor product L⊗R N by prescribing that

Fa(L⊗N)
def
= {x ∈ L⊗N : x may be written as

s∑

i=1

li ⊗ ni with fdeg(li) · fdeg(ni) ≤ a for each i}.

Definition. An admissible order on a monoid is a strict monoid order, which also is a wellorder. From now
on, for an admissibly ordered monoid, we only consider exhaustive filtrations with respect to that monoid.
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Remarks. Note, that lt is not an homomorphism. In fact, the restriction of lt to F1M (R) indeed is the
natural isomorphism between F1M (R) and G(R)1M ; but if |M | ≥ 2, then (the entire) f does not even respect
addition.

Moreover, readers familiar with Gröbner bases may recognise ltx as a notation for ‘the leading term’ of x
(if x 6= 0). However, they also may feel a bit surprised by the fact that these ‘leading terms’ do not belong to
R. In fact, most common Gröbner basis theories concern algebras R = ⊕MRa which already are M -graded,
where the filtration is derived from the grading:

Fa(R) :=
⊕

b∈M

b≤a

Rb ,

and where thus R and G(R) are naturally isomorphic, making it somewhat unnecessary to separate them.
(The main exception I can recall is the theory for Gröbner bases in the Weyl algebra An on n variables and
n derivations, where instead G(An) is a commutative polynomial ring in 2n variables.) However, even in
the simplest case, where R = k[x1, . . . , xn] is an ordinary polynomial polynomial ring and M is the set of
(monic) monomials in x1, . . . , xn, the Gröbner basis technique is applied for an ideal a ⊂ R, which in general
is not M -homogeneous. Thus, ‘the associated monomial ideal’ G(a) is very far from naturally isomorphic to
a.

Finally, such readers may note that for M being a free commutative or noncommutative monoid there is
a naturally defined monoid homomorphism deg : M −→ N, taking the total degree of any monomial; and
that thus lemma 2.1 generalises the formation of a new admissible order out of any given one on M by the
prescription ‘first consider the total order’; as when deglex is formed from purelex on M = [x1, . . . , xn].

3. Filt-good exact sequences and resolutions.

Throughout this section, let M be a fixed strictly wellordered monoid. Then any M -filtered complex, i.e.,
any complex of (increasingly) M -filtered abelian groups

. . .
di+2

−→ Ci+1
di+1

−→ Ci
di−→ Ci−1

di−1

−→ . . .

with ‘differentials’ di respecting the M -filtration, give rise to an M -graded associated complex

. . .
G(di+2)
−→ G(Ci+1)

G(di+1)
−→ G(Ci)

G(di)
−→ G(Ci−1)

G(di−1)
−→ . . .

(since G(di+1)G(di) = G(di+1di) = 0).

The complexes may or may not have extra structure, as being graded with respect to some monoid
(different from or equal to M), and/or being complexes of modules over some M -filtered ring R. If so,
both the filtrations and the differentials are assumed to respect that extra structure. For gradings on filtered
complexes, this means that also all Fa(Ci) are graded, and that the di take homogeneous elements to elements
of the same degree. In this case, the graded associalted complex inherits the extra structure, in the form
of an extra (compatible) grading, and/or a G(R)-module structure, respectively; all structures with full
compatibility.

Now, putting
Bi := Im di+1 ⊆ Zi := Ker di ⊆ Ci,

the subgroups Bi and Zi receive inducedM -filtrations; and so do the homology groupsHi = Hi(C.) := Zi/Bi.
For each one of these there is a graded associated object; e. g., (G(Zi)a)a∈M , with G(Zi)a := Fa(Zi)/F<a(Zi).
(Also any extra structure is inherited by these objects.) Thus, we naturally have two doubly indexed families
of graded objects, depending on whether we first take graded associates or first take homology:

(
Hi(G(C.)a)

)
i,a

and
(
G(Hi)a

)
i,a

, respectively.
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Here, clearly, in general, the former objects should be expected to be larger that the latter, index pair by
index pair. The reason is that (up to isomorphisms)1

G(Hi)a = G(Zi/Bi)a =
G(Zi)a
G(Bi)a

=
F<a(Ci) + Fa(Zi)

F<a(Ci) + Fa(Bi)
=

Fa(Zi)

F<a(Zi) + Fa(Bi)
,

while
(
Hi(G(C.)a)

)
i,a

=
Ker di,a
Im di+1,a

=
F<a(Ci) + Fa(Z

<a
i )

F<a(Ci) + Fa(Ba
i )

=
Fa(Z

<a
i )

F<a(Z
<a
i ) + Fa(Ba

i )
,

where the filtered subgroups Z<a
i and Ba

i of Ci are defined by

Z<a
i = {x ∈ Ci : di(x) ∈ F<a(Ci−1)}, and Ba

i = di+1

(
Fa(Ci+1)

)
.

Thus, we have the (often strict) inclusions

(3.1) 0 ⊆ Ba
i ⊆ Fa(Bi) ⊆ Fa(Zi) ⊆ Fa(Z

<a
i ) ⊆ Fa(Ci),

yielding that indeed

(3.2) G(Hi)a (canonically) is a subquotient of Hi(G(C.)a),

which itself is a subquotient of G(Ci)a.

So far, we have employed no spectral sequence theory at all; but we already have derived (3.2), one common
application of that theory. In other words, we already have proved

Theorem 2. Let M be a strictly wellordered monoid, and (C∗, d∗) a complex, which is exhaustively M -
filtered. Then, for every a ∈ M and every integer i such that the i-homology of the complex is defined,
the a-component of the graded associated to the i-homology in a canonical manner is a subquotient of the
a-component of the i-homology of the graded associated to the complex. In other words, Hi(G(C.)a) has a
subgroup (or submodule) Zi.a, which has a subgroup Bi.a, such that

(3.3) G
(
Hi(C.)

)
a
≃

Zi.a

Bi.a

;

and this isomorphism behaves well with respect to morphisms of M -filtered complexes, and to any reasonable
extra structure on the original complex.
In particular, if Hi(G(C.)a) = 0 for any such (a, i), then also G

(
Hi(C.)

)
a
= 0.

The next object is to draw the usual homological algebra kinds of conclusions from theorem 2 applied for
(co)homology of M -filtered modules. Mostly, this goes through with no trouble; but we should ensure that
there are ‘enough sufficiently free/projective/flat’ modules to create the appropriate complexes for which the

theorem is to be applied. Let us focus our attention on the TorR∗ (LR,RN), and on what here ‘sufficiency’
should mean for free resolutions.

Thus, and for convenience, from now on, let R be a fixed exhaustively M -filtered ring, only consider
M -filtered abelian groups where the groups are R-modules and the filtrations are exhaustive R-module
filtrations, and make the corresponding demands for M -filtered complexes.

Call an M -filtered complex an (M)-filt-good exact sequence, if both the complex and its graded associated
complex are exact sequences.

1 We freely employ Noether’s canonical isomorphisms. In general, if L1 ⊂ L2 ⊂ L3 ⊂ L4 ⊆ L is an

inclusion chain of modules, then L3/L2 ≃ L3/L1

L2/L1
, which very concretely is a subquotient of L4/L1. Likewise,

if moreover L′ ⊆ L, then L/L′ has a subquotient L3+L′

L2+L′ =
L3+(L2+L′)

L2+L′ ≃ L3

(L2+L′)∩L3
= L3

L2+(L′∩L3)
.
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Lemma 3.1. Let (C∗, d∗) be an M -filtered complex. Then, the following properties are equivalent.

(a) (C∗, d∗) is a filt-good exact sequence.

(b)
(
G(C∗), G(d∗)

)
is exact.

(c) Any cycle z in the complex is a boundary of an element of the same filt-degree as z.

Proof. (a) =⇒ (b) is immediate; and (c) =⇒ (a) is elementary and almost immediate. Also (b) =⇒ (c)
follows by elementary means; but these include a transfinite induction (with respect to the wellordered set
M). Indeed, if we assume (b) to hold (in full generality), and, for some Ci (in non-extremal position) and any
a ∈ M , that (c) holds for all cycles in F<a(Ci), and consider any cycle z ∈ Ci with fdeg z = a, then its class
z := z+F<a(Ci) ∈ G(Ci)a is a cycle therein, and thus a boundary by(b). Thus, there is some y ∈ Fa(Ci+1),
such that y := y + F<a(Ci+1) 7→ z; or, in other words, such that z′ := z − di+1(y) ∈ F<a(Ci). Say
fdeg z′ = b < a. Since z′ is a cycle, and by the inductive assumption, z′ = di+1(y

′) for some y′ ∈ Fb(Ci+1);
whence indeed z = di+1(y + y′) and fdeg(y + y′) = a. Thus, here,

(
(c) holds in F<a(Ci)

)
=⇒

(
(c) holds in

Fa(Ci)
)
, which is what is needed for the transfinite induction to go through.

We shall in particular be interested in the case where C∗ also is a free resolution of some M -filtered module
N ; i. e., where in addition all Ci are R-free, and the complex is equipped with an augmentation η : C0 −→ N
(respecting the M -filtrations), such that

C1 −→ C0 −→ N −→ 0

is exact. We of course also want the augmented sequence to be filt-good; i. e., we want

G(C1) −→ G(C0) −→ G(N) −→ 0

to be exact. However, seemingly, even all this does not in itself suffice for the functorial properties we need.

Hence, define any free and M -filtered left R-module X (or, technically, any pair (X,P ) ) to be filt-free, if
X has a specified basis P = {pj}j∈J , such that indeed

X =
⊕

j∈J

Rpj ,

and that for any a ∈ M and any x ∈ X we have the equivalence

(3.4)
(
x ∈ Fa(X)

)
⇐⇒ (x =

∑

j∈J ′

xjpj with J ′ ⊆ J , and fdeg(xj) · fdeg(pj) ≤ a for all j ∈ J ′).

In other words, after we also have specified the filt-degrees of the X generators in the specified basis P , the
filt-degrees of the elements in X are determined in the way one would expect. It is an elementary exercise
to verify that any such specification also yields an R-module M -filtration to X; i. e., that (3.4) also works
as a recipee for constructing M -filt-free modules.

We reserve the term (M)-filt-good free resolution of RN for an M -filtered resolution

. . . −→ C1
d1−→ C0

η
−→ N −→ 0

which forms an filt-good exact sequence, and where in addition all the Ci are filt-free. Now, this seems to
be ‘the right concept’, in the sense that, on the one hand, by the usual kinds of arguments, any (M -filtered
left) module N = RN indeed has a filt-good free resolution, while, on the other, such resolution allows the
usual kind of comparison homomorphisms, chain homotopies, et cetera, as we soon shall see.
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For the first property, it is enough to be able to construct a filt-good surjection f : X −→−→L onto any given
filtered module L, from some appropriate filt-free X. Do this by considering any basis (R-module generating
system) {yj}j∈J for L, say with fdeg yj = gj , and by constructing a filtration of X =

⊕
J Rpj by means

of (3.4) and the prescriptions fdeg pj = gj , and, finally, by prescribing f(pj) = yj . (Then, indeed, for any
j ∈ J and any r ∈ R \ {0},

rpj ∈ Fa(X) =⇒ fdeg(r) · gj ≤ a =⇒ fdeg(ryj) ≤ a =⇒ f(rpj) = ryj ∈ Fa(L);

and this easily extends to all x ∈ X.)

Similarly, the salient point for the second property is that given any diagramme

X
↓f

K
g

−→ N −→ 0

ofM -filtered modules and homomorphism, whereX is filt-free with specified basis P = {pj}J and the bottom
line is filt-good exact, there exists a filtered homomomorphism h : X −→ K, such that f = g ◦ h. For each
pj , say with fdeg pj = gj , we have fdeg

(
f(pj)

)
≤ gj , and thus by the goodness some yj ∈ Fa(K)∩g−1(f(pj));

choose h(pj) := yj .

Since M -filtrations also are compatible with e.g. forming quotient modules and taking tensor products,
and employing filt-free resolutions whenever projective or flat ones ordinarily are prescribed, we indeed may
employ theorem 2 in order to deduce the following theorem, except its statements about spectral sequences:

Theorem 3. Let M be a monoid with an admissible order, R an M -filtered ring, and L = LR and N = RN
be an (exhaustively) M -filtered right respectively left R-module. Then (canonically) the torsion modules

TorRi (L,N) are M -filtered, and the TorG(R)
(
G(L), G(N)

)
are M -graded, and for every i ∈ N and every

a ∈ M TorG(R)
(
G(L), G(N)

)
a
is a subquotient of G

(
TorRi (L,N)

)
a
.

Moreover, if in addition these M -filtrations are exhaustive, and the ordinal number of (M,≤) is at most ω,
then there is a convergent spectral sequence (in the usual sense)

TorG(R)
∗

(
G(L)∗, G(N)∗

)
= E1

∗,∗ ⇒ E∞
∗,∗ = G

(
TorR∗ (L,N)

)
∗
.

Finally, any further gradation respected by the involved ring and modules and their filtration subgroups also
are respected by these torsions (and, if existing, by this spectral sequence).

(Recall that the ordinality of M is at most ω if and only if there exists some order preserving injection
ι : M →֒ N, which otherwise need not respect the algebraic structures.) The remaining part of theorem 3 is
proved in section 5.

In the following detailed example, much of the terminology from the preceding constructions is concreti-
cised. However, the multiplicative notation in the general (not necessarily commutative) monoid M is
replaced by the additive one in N.

Example. Let k be a field, and let R = k[x] (the polynomial ring with one variable x), graded and filtered
over N by the usual polynomial degree. The augmentation ε : R−→−→ k (with ε(x) = 0) makes k to an
R-module, with Fm(k) = F0(k) = k for all m ∈ N. Now, consider a copy RN ≃ RR of R, but given the
trivial filtration with Fm(N) = N for all m. Then N indeed is an N-filtered R-module; and it is free as an
R-module; but it is not filt-free.

By the usual considerations, we have TorR∗ (k,N) = TorR0 (k,N) ≃ k, while

TorR∗ (k, k) = TorR1 (k, k)⊕ TorR0 (k, k) ≃ k ⊕ k.

9



Koszul by Gröbner basis

In the latter case, since k is an N-graded R-module, the TorRi (k, k) inherit this grading; and we get

TorRi (k, k) = TorRi (k, k)i

for both i; exhibiting R as a Koszul algebra.

If we take graded associated, we find that G(R) ≃ R (as graded rings), but G(N) = G(N)0 ≃
⊕

j∈N
k;

whence

Tor
G(R)
i

(
k,G(N)

)
≃ Tor

G(R)
i

(
k,
⊕

N

k
)
≃

{⊕
N
k if i ≤ 1

0 else
.

We now also consider the filtrations. The minimal R-free resolution of N is

0 −→ RU
ρ

−→ N −→ 0,

where U 7→ 1R; but this cannot be made to a filt-good free resolution by any filtration on RU . Indeed,
if we put all Fm(RU) = RU , the resolution is a filt-good exact sequence, but RU then is not filt-free for
any specified basis {p}. On the other hand, putting Fm(RU) = Fm(R)U makes RU filt-free, but then the
sequence is not filt-good, since e.g. fdegN (x) = 0, but ρ−1(x) = {xU} ⊆ F1(RU) \ F0(RU).

On the other hand, a minimal filt-free resolution of RN is given by

0 −→ C1
d1−→ C0

η
−→ N −→ 0,

where

C1 =

∞⊕

j=1

RSj , C0 =

∞⊕

j=0

RT j , fdegSj = 1, fdeg T j = 0, d1(S
j) = xT j−1 − T j , and η(T j) = xj

(and where the specified bases for C1 and C0 are {Sj : j ≥ 1} and {T j : j ≥ 0}, respectively).

Tensoring this resolution with k yields

0 −→ k ⊗ C1 =
∞⊕

j=1

kSj k⊗d1−→ k ⊗ C0 =
∞⊕

j=0

kT j , with (k ⊗ d1)(S
j) = −T j (j ≥ 1).

This is not filt-good, since fdeg(Sj) = 1 > 0 = fdeg(−T j) (and k ⊗ d1 is injective). The graded asso-
ciated sequence has (essentially) the same modules; but G(k ⊗ d1) = 0. Hence, indeed (up to canonical
isomorphisms),

Tor
G(R)
1

(
k,G(N)

)
m

= H
(
G(k ⊗ C1)

)
m

= G(k ⊗ C1)m = G(k ⊗ C1)1 =
∞⊕

j=1

kSj , and

Tor
G(R)
0

(
k,G(N)

)
m

= H
(
G(k ⊗ C0)

)
m

= G(k ⊗ C0)m = G(k ⊗ C0)0 =

∞⊕

j=0

kT j .

On the other hand, k ⊗ d1 6= 0, whence indeed

TorR1 (k,N) = H1(k ⊗ C.) = 0 and TorR0 (k,N) = H0(k ⊗ C.) ≃ kT0 ≃ k.

Concretely, for the complex (k ⊗ C∗, k ⊗ d∗), we have

0 = B1
1 = F1(B1) = F1(Z1) ⊂

∞⊕

j=1

kSj = F1(Z
<1
1 ) = F1(k ⊗ C1),

10
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and indeed (up to canonical homomorphisms)

G
(
TorR1 (k,N)

)
1
=

F1(Z1)

F1(B1)
is a subquotient of

F1(Z
<1)

B1
1

= Tor
G(R)
1

(
k,G(N)

)
1
.

Similarly,

0 = B0
0 ⊂ F0(B0) =

∞⊕

j=1

kT j ⊂
∞⊕

j=0

kT j = F0(Z0) = F0(Z
<0
0 ) = F0(k ⊗ C0),

yielding that TorR0 (k,N) = F0(Z0)
F0(B0)

=

⊕
∞

j=0
kT j

⊕
∞

j=1
kT j

= kT 0 is a subquotient of

Tor
G(R)
0

(
k,G(N)

)
= H0

(
G(k ⊗ C.)

)
0
.

Also note, that here k ⊗ d1 induces an injective map from Tor
G(R)
1

(
k,G(N)

)
to Tor

G(R)
0

(
k,G(N)

)
.

Alternatively, we may first consider a minimal filt-goodfree resolution

0 −→ C ′
1

d′
1−→ C ′

0
η′

−→ kR −→ 0.

This time, an ordinary minimal free resolution does work: Put C ′
1 = V R with a specified basis {V } of

filtdegree 1, C ′
0 = R with a specified basis {1} of filtdegree 0, and define the homomorphisms by d′1(V ) = x

and η′ = ε. Tensoring with N yields the complex (C ′
∗ ⊗N, d′∗ ⊗N) with C ′

1 ⊗N = VN , C ′
0 ⊗N = N , and

(still) (d′1 ⊗N)(V ) = x, but now as an element in N (of filtdeg 0) instead of R (where we had fdeg x = 1).
For this complex, we get

0 = B1
1 = F1(B1) = F1(Z1) ⊂ VN = F1(Z

<1
1 ) = F1(C

′
1 ⊗N), and

0 = B0
0 ⊂ xN = F0(B0) ⊂ N = F0(Z0) = F0(Z

<0
0 ) = F0(C

′
0 ⊗N).

and thus G
(
TorR1 (k,N)

)
1
= G

(
H1(C

′
.⊗N)

)
1
= 0/0 = 0 as a subquotient of TorG(R)1

(
k,G(N)

)
1
= VN/0 =

VN , and G
(
TorR0 (k,N)

)
0
= G

(
H0(C

′
. ⊗ N)

)
0
= N/xN ≃ k as a subquotient of TorG(R)1

(
k,G(N)

)
1
=

N/0 = N . Again, d′1⊗N induces a degree-decreasing map from TorG(R)1
(
k,G(N)

)
to TorG(R)0

(
k,G(N)

)
.

4. Gröbner bases.

This section is devoted to a more detailed discussion of what all this has to do with Gröbner bases.

In this section, let M be a fixed strictly wellordered monoid, R an exhaustively M -filtered ring, and a a
(two-sided) ideal a in R. It is M -filtered in the usual manner (with Fa(a) = a ∩ Fa(R)). For the purpose of
this opus, a subset D of a is an (M -filtration) Gröbner basis, if D generates a and lt(D) := {ltx : x ∈ D}
generates G(a), as two-sided ideals in R and G(R), respectively. This rather broad usage of the term is a
bit unusual; perhaps, filt-good basis would be more appropriate, in analogy with the resolution terminology,
and in view of the close relations between Gröbner bases and filt-good resolutions illustrated in this section,
and later in theorem 4.

Put A = R/a. Since we anyhow have G(R/a) = G(R)/G(a) (up to canonical homomorphisms, and by
applying theorem 3 for R/a in lieu of R, and get that, for any L = LA, N = AN and each (i, a) ∈ N×M ,
indeed

(4.1) G
(
TorAi (L,N)

)
a
is a subquotient of Tor

G(A)
i

(
G(L), G(N)

)
a
= Tor

G(R)/G(R) lt(D)G(R)
i

(
G(L), G(N)

)
a
;

also respecting any extra grading on all of R, a, L, and N .
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In the rest of this section, in addition, assume, that k is a field, R is an M -filtered connected k-algebra,
and a is contained in its augmentation ideal c. (In other words, we assume, that F1M (R) = k, contained in
the centre of R, that we have a short exact sequence

0 −→ c
ι

−→ R
ε

−→ k −→ 0,

where ι is the inclusion and ε is an R-bimodule epimorphism, and where ε ◦ ι = 1k, and thus R = k ⊕ c as
k-vector spaces for c := Ker ε; and finally we assume that a ⊆ c.) Applying (4.1) for L = N = k, we do find

that the G
(
TorAi (k, k)

)
a
are subquotients of the respective Tor

G(R)/G(R) lt(D)G(R)
i

(
k, k

)
a
. Now, in the special

case where moreover R is the non-commutative polynomial ring k〈T1, . . . , Tn〉, M = 〈T1, . . . , Tn〉, and a is

homogeneous with respect to the total degree of these polynomials, it follows that G
(
TorAi (k, k)

)
d
can be

non-zero only for (i, d) ∈ N ×N such that Tor
R/R lt(D)R
i

(
k, k

)
d
is non-zero; which together with the known

restrictions of the latter indeed proves theorem 1, as we saw in the introduction.

The rest of the section is not technically necessary for this opus, but perhaps may clarify ‘why’ we should
expect to have the filt-good resolution yielding (4.1). Assume given an R-free resolution

(4.2) . . . −→ Q2
∂2−→ Q1

∂1−→ Q0 = R
ε

−→ k −→ 0.

The projection π : R−→−→A extends naturally to Q∗ (with π(Qm) = A⊗R Qi), yielding a free complex

. . . π(Q2) −→ π(Q1) −→ π(Q0) = A −→ k −→ 0;

but this in general is not exact at π(Qm) for any m ≥ 1. However, it may be extended to one; and we now
shall investigate how such an extension starts (for the moment forgetting all about M -filtrations).

We immediately see that (w. l. o. g.) then we may assume

Q1 =
⊕

C∈C

RC,

where the set {∂1(C)}C is a left ideal generating set of c (and thus a fortiori a generating set for c as a
two-sided ideal). For C ∈ C, put fC = ∂1(C) ∈ R, and dC = π(fC) ∈ A. We thus get a start of an A-free
resolution

(4.3) . . . −→ X2
d2−→ X1

d1−→ X0 −→ k −→ 0

by taking X0 = π(Q0) = A, X1 = π(Q1) = AC =
⊕

C AC, and d1(C) = π · ∂1(C) = dC . On the other hand,
we must take

(4.4) X2 := π(Q2)⊕AG = π(Q2)⊕
⊕

G∈G

AG

for some suitable (in general non-empty) set G, and with suitable d2(G) =
∑

C yG,CC ∈ X1. (Here and
elsewhere, the (direct or not) sums of sets may be infinite, but for sums of elements in rings or modules only
finitely many non-zero summands are allowed.)

The first ‘suitability’ condition is that d2(G) should be a cycle; i. e., that
∑

C yG,CdC = 0 (in A). Choosing
YG,C ∈ π−1(yG,C), this is equivalent to

(4.5) gG :=
∑

C

YG,CfC ∈ a,

for any G ∈ G. In other words, and putting D := {gG}G , we have the equivalence

Im d2 ⊆ Ker d1 ⇐⇒ D ⊆ a.

12
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For the converse inclusion, it is sufficient that D generates a as a two-sided ideal (i.e., that a ⊆ ADA), as we
soon shall see; and in ‘favourable’ situations this also should be necessary. We thus get a direct parallel

between generating sets for the ideal a on the one hand, and beginnings of extensions of π(Q∗)
to A-free resolutions of the other. Since such parallels form a basic idea underlying this opus, we shall
investigate this with some care.

Note, that this d2 may be lifted to an R-module homomorphism d̃2 : X̃2 := Q⊕RG −→ X1, by prescribing
d̃2(C) = ∂2(C) for C ∈ C, and d̃2(G) =

∑
C YG,CC for G ∈ G.

Now, assume that indeed a ⊆ ADA, and consider any z ∈ Ker d1. Say z =
∑

C zCC, where zC = π(ZC);
whence z = π(w) for w :=

∑
ZCC ∈ Q1. Then

d1(z) = 0 =⇒
∑

C

ZCfC = ∂1(w) ∈ a ⊆ ADA = AD +ADc,

whence we may assume

∂1(w) =
∑

G

sGgG +
∑

G

∑

C

tG,CgGuG,CfC .

Now, putting

w′ := d̃2(
∑

G

tG,CG) =
∑

calC

(∑

G

tG,CYG,C

)
C

and
w′′ :=

∑

G

∑

C

tG,CgGuG,CC,

we find that ∂1(w
′ + w′′) = ∂1(w). Thus, w′′′ := w − w′ − w′′ ∈ Q1 is a cycle, and thus a boundary; i. e.,

w′′′ = d̃2(x) for some x ∈ Q2. Hence,

z = π(w′′ + w′′′ + w′) = 0 + d2(π(x) +
∑

G

π(tG,C)G) ∈ Im d2 ,

indeed.

Thus, we have proven, that if D is a generating set or basis of a (as a two-sided ideal), then indeed X∗ is
exact at X1; and, conversely, that this exactness, and indeed just the ‘complexity’, forces D ⊆ a.

On the other hand, if we just assume exactness at X1, and let a′ := ADA ⊆ a, then we may lift any x ∈ a

to a y ∈ Q1. Thus, then π(y) ∈ Ker d1 = Im d2; which eventually forces x ∈ a
′ + ac. In other words, this

exactness yields
a = a

′ + ac.

In ‘favourable situations’, this should force a
′ = a. Those situations include those where in addition

(4.6)
∞⋂

i=1

c
i = 0,

holds, together with enough finiteness to make Nakayama’s lemma applicable. One situation ensuring
both (4.6) and the Nakayama applicability is where in addition R possess an ordinary N grading, and
is connected (so that k = R0 and c =

⊕
i≥1 Ri). In other words, we have proven

Lemma 4.1. If in addition R also is anN-graded connected k-algebra, then the construction in (4.4) and (4.5)
makes (X∗) exact at X1 if and only if D generates a.

After this general analysis, we return to our specific situation. Thus, now, also assume, that the resolution
(4.2) is M -filtered, and indeed is filt-good. Then, given a Gröbner basis D for a, there is an X2 and a d2 as
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given in (4.4), and suitable choices, such that indeed D = {gG}G , and that X2
d2−→ X1

d1−→ X0 is filt-good.
Indeed, any g ∈ D ⊆ a ⊆ c = Ker ε by the filt-goodness and lemma 3.1 may be lifted to a g̃ ∈ Q1 with
fdeg g̃ = fdeg g; now let G = {Gg}g∈D, with d2(Gg) := π(g̃) ∈ X1; and, for any finite subset D′ ⊆ D and
family (xg)g∈D′ of nonzero A elements and a ∈ M , the prescription

∑

D′

xgGg ∈ Fa(X2) ⇐⇒ a ≥ sup{lt(xg) · lt(g) : g ∈ D′}

(where the supremum is the maximum, if D′ 6= ∅ and is 1M else). Elementary verifications (again including
transfinite induction) then show the M -filteredness and filt-goodness.

Conversely, e. g., if at least G(R) (also) is a connected k-algebra, and the construction does yield filt-
goodness at X1, then lt(D) generates G(a); i. e., then D is a Gröbner basis. For, then,

(
G(Q∗), G(∂∗)

)

is a free resolution of G(R)k; and the construction yields a free presentation of k as a left module over
G(A) = G(R)/G(a). Now, apply lemma 4.1 for G(R) and G(a) in lieu of R and a. Thus, we get

Lemma 4.2. If R is M -filtered and also an N-graded connected k-algebra, a is a twosided R-ideal, (4.2)
is a filt-good M -filtered free resolution of Rk, and X2 −→ X1 −→ X0 −→ Ak and D are constructed as
described in (4.4) and (4.5), then this construction is filt-good at X1 if and only if D is a Gröbner basis of
a.

5. Subquotient homologies and spectral sequences with respect to general monoid orders.

This section concerns to what extent the ‘general’ theory of spectral sequences is applicable also for such
filtered complexes as we have encountered in earlier sections. It is not strictly necessary for the main
conclusions of the article, but more intended for the expert who may wonder about the relation of this
approach on the one hand, and e. g. the theory behind Anick’s spectral sequence on the other. (However,
en passant, we shall indeed complete the proof of theorem 3.)

So, what do spectral sequences contribute, above an alternative proof of the main subquotient result (3.2)?
For a starter, they provide intermediate steps between the larger groups and their final subquotents; and in
favourable cases a calculable procedure for passing from the former to the latter, by means of a decreasing
sequence of groups, where each is a subquotient of its predecessor.

Classically, the theory of spectral sequences, and its notation, often is developed for for double complexes in
the first place. Now, that approach often is rather useful; but in my opinion the accompanying notation is not
equally well suited for spectral sequences derived from other (Z-filtered) complexes; and almost impossible
to apply for filtrations over ‘weird’ monoids. Moreover, while ‘all’ spectral sequences depend on the existence
of underlying filtered complexs, typically these complexes are not well defined. Only when the first or second
homologies have been calculated, we may derive e.g. certain Tor’s or Ext’s which are uniquely defined (up to
canonical isomorphisms). Hence, the corresponding spectral sequences often are presented as starting with
the E1 or the E2 terms; which further may obscure the essentially fairly natural underlying mechanisms.

In the presentation here, I employ a modified indexing of the spectral sequence terms; and I derive them
as subquotients of somewhat more basic groups. The approach in some respects is close to that in [W94,
section 5.4]. We also shall lean heavily on the already developed subquotient exibition in section 3.

Thus, as in section 3, again assume that M is an admissibly ordered monoid; and only consider exhaustive
M -filtrations. Recall that for any M -filtered complex

. . .
di+2

−→ Ci+1
di+1

−→ Ci
di−→ Ci−1

di−1

−→ Ci−2 . . . ,

and any appropriate i and any a ∈ M we could consider the sequence (3.1) of subgroups of Fa(Ci), ordered
under set inclusion, and yielding the main exhibition (3.2) of G(Hi(C.))a as a subquotient of Hi(G(C.)a),
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which is a subquotient of G(Ci)a. Now, if in addition M = N (with its usual order), and thus a ∈ N, then
the conventional way of presenting this would be to make the identifications

E0
pq = G(Ci)a, E1

pq = Hi(G(C.)a), and E∞
pq = G(Hi(C.))a,

for p := a and q := i − a; introduce numerous intermediate other subquotients E2
pq, E

3
pq, . . . , and corre-

sponding differentials d∗pq on these, in such a way that (canonically) Er+1
pq is the homology of Er

pq, and then
discuss the ‘convergence’ of the sequence of these intermediates to the smallest and final subquotient E∞

pq .
We shall briefly investigate this; but we avoid the “pq index” conventions better apt for spectral sequences
arising from double complexes than for our more general one. Thus, we write Er

i.a rather than Er
pq; or, in

other words, make the definition Er
p+q.p = Er

pq.

Let us give an explanation of this in terms as close to the terminology from section 3 as possible. First,
we may extend the N-filtrations to Z-filtration, by putting all Fm(∗) = 0 for any m < 0. Second, since in Z

m < a ⇐⇒ m ≤ a− 1, we may rewrite Z<a
i as Za−1

i , where we in general set

Zb
i := {x ∈ Ci : di(x) ∈ F b(Ci−1).

Third, the sequence of inclusions (3.1) may be extended to a longer one

(5.3) 0 ⊆ Fa(B
a
i ) ⊆ Fa(B

a+1
i ) ⊆ . . . ⊆ Fa(Bi) ⊆ Fa(Zi) = Fa(Z

−1
i ) ⊆ Fa(Z

0
i ) ⊆ Fa(Z

1
i ) ⊆ . . . ⊆ Fa(Ci).

Now, for each a = p and i = p+ q, these subgroups, with Fm−1(Ci) added to each, give rise to a multitude
of subquotients of E0

i.a := G(Ci)a. For the moment, we are just interested of the

Er
i.a :=

Fa(Z
a−r
i ) + Fa−1(Ci)

Fa(Ba+ri) + Fa−1(Ci)
;

in other words, up to also factoring out all of lower filtdegrees, the set of ‘quasicycles’ consisting of the Fa(Ci)
elements ‘dropping down’ more than r steps when ‘differentiated’, quoted with the ‘restricted’ boundaries in
Fa(Ci), which ‘dropped down’ at most r steps.

The ‘convergence’ of the spectral sequence now amounts to noting that, on the one hand, a true cycle in
Fa(Ci) amounts to one which ‘drops down’ all the way to the negatively indexed Fm(Ci−1); i.e., by noting
that for any x ∈ Fa(Ci) we have the equivalences

x ∈ Fa(Zi) ⇐⇒ di(x) = 0 ⇐⇒ (di(x) ∈ Fm(Ci−1) for all m ∈ Z) ⇐⇒ x ∈
∞⋂

r=0

Fa(Z
a−r
i );

and that, on the other hand, since the filtration of Ci+1 is exhaustive, that any boundary is a ‘restricted’
one for a sufficiently high r, so that

Fa(Bi) = Fa(Ci) ∩ di+1

( ∞⋃

r=0

Fr+a(Ci+1)
)
=

⋃

r

Fa(B
r
i ).

Finally, the differentials crucially depend on the fact that F<a−r(Ci) = Fa−r−1(Ci). Thus, any element x ∈
Fa(Ci) with the property that fdeg di(x) < a−r in fact has di(x) ∈ Fa−r−1(Ci−1); and moreover this di(x) ∈
Fa−r−1(Zi−1) ⊆ Fa−r−1(Z

a−2r−2
i−1 ). Hence, any element x ∈ Er

i.a may be lifted to some x ∈ Fa(Z
a−r−1
i ),

whose image di(x) ∈ Fa−r−1(Z
(a−r−1)−r−1)
i−1 ) represents some element di(x) in Er

i−1,a−r−1. Moreover, if we

pick another representative x′ ∈ Fa(Ci) (thus with x′ = x), then di(x
′)− di(x) = di(x

′ − x) ∈ Br−1
i−1 , whence

then di(x′) = di(x). This diagramme chasing thus yields a well-defined function dri.a : Er
i.a −→ Er

i−1,a−r−1;
by a general diagramme chasing result, an homomorphism. Since moreover clearly dri.a ◦d

r
i+1.a+r+1 = 0, this

makes (Er
∗.∗, d

r
∗.∗) to a complex, whose cycles correspond to elements ‘dropping down’ one step more, and

correspondingly for its boundaries; indeed essentially making Er+1
∗.∗ its homology.

Note, however, that we only used a small part of all the available subquotients resulting from the chain(5.3),
and that there also are other choices where induced differentials yield other of these subquotients as homology.

To what extent do spectral sequences exist when we instead consider a M -filtration (for an arbitrary
admissibly ordered monoid M)? The short answer is
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• The plethora of intermediate subquotients always exists.

• The conventional way to organise some of these as a spectral sequence works, if the ordinal number for
(M,≤) is at most ω.

• In the special case where the complex is used for calculating TorR/a(k, k) for a non-commutative poly-
nomial ring R = k〈T1, . . . , Tn〉, modulo an ideal which is homogeneous with respect to the totaldegree
in R, the order deg ≤ yields the same Gröbner basis as does ≤, and (M,deg ≤) ≃poset N; whence by

the preceeding point ‘the usual’ spectral sequence TorR/lt(a)(k, k) =⇒ TorR/a(k, k) exists.

The first of these points is obvious from (5.3).

For the second point, and thus the completion of the proof of theorem 3, assume, that indeed M is finite,
or M = {1M = m0,m1, . . .} with m0 < m1 < m2 < . . .. Then the same arguments work as well for
M -filtrations as they did for the case M = N.

The third point may deserve a few more words. In fact, this is the exceptional place in this work where any
algorithm for deriving a Gröbner basis matters. Indeed, given R = k〈T1, . . . , Tn〉 and a as in the statement,
and any admissible order ≤ on the free monoid M := 〈T1, . . . , Tn〉, to begin with, we note that a (as a
twosided R-ideal) has a homogeneous basis, which we may organise as a finite or infinite sequence f1, f2, . . .
of polynomials of non-decreasing total degrees and with only finitely many generators of each total-degree;
and we may assume them monic, so that lt fi = fdeg fi for each i. We now may apply the Buchberger
algoritm, not for the pairs (fi, fj) as such, but for the triplets

(
lt(fi), w, lt(fj)

)
of M elements, such that

fdeg(fi) is a left factor and lt(fj) a right factor of w, that the total degrees satisfy degw < deg(fi)+deg(fj),
and that there is no proper ‘in-factor’ (neither left nor right factor) of w which is the filt-degree of any
already booked polynomial fl. In particular, for any such triple, we have w = lt(fi)w

′ = w′′ lt(fj), say, with
w′ a proper right factor of lt fj , and w′′ a proper right factor of lt fi.

We now process the fi in order, trying to reduce either one untreated fj , or an ‘S-polynomial’ fiw
′−w′′fj

derived from one of the triplets; and always considering a new polynomial of lowest possible degree. The
polynomials to be reduced thus always are homogeneous; and the result of one reduction step always preserves
this property. Hence, the resulting Gröbner basis consists entirely of homogeneous polynomials. Moreover,
wherever the order ≤ of M is applied in order to determine a leading term or to perform one reduction step,
only monomials of the same length (total degree) are compared.

The result of this process is the reduced Gröbner basis D with respect to the given admissible order ≤.
This may be infinite; but the process guarantees that we never go back to a lower total order than the one
we last treated, whence for any given d ∈ N all f ∈ D with deg f ≤ d are calculated within a finite time.

Now, if we instead for ≤ had applied the ‘first total degree; ≤ for tiebreaks’ order deg≤ (which indeed is
admissible by lemma 2.1 and the remarks at the end of section 2), then every calculation and all results of
these had been exactly the same as it was for ≤, since these two orders coincide in outcome for monomials
of the same total-degree, and only such ones are compared in this algorithm. Thus, D also is the reduced
Gröbner basis with respect to deg≤. Moreover, for any totaldegree d, |{w ∈ M : degw = d}| = nd < ∞.
Hence, indeed, (M,deg≤) ≃ (N,≤) as ordered sets; whence also the spectral sequence does exist.
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6. A concrete filt-good field resolution for a quotient of a non-commutative polynomial ring.

We now specialise further. Let 1 ≤ n ∈ N, Λ = k〈T1, . . . , Tm〉, I =
∞⊕
i=1

Λi, P ⊆ I2 a (twosided) Λ ideal

(respecting the N grading of Λ, or not), let M be the free monoid on T1, . . . , Tn, < any admissible order
(i. e., monoid strict well-order) of M , and let D be a minimal Gröbner basis for P , where we without loss of
generality may assume that W2 := lt(D) = {ltx : x ∈ D} consists of monic monomials; i. e., that W2 ⊂ M .

Let A = Λ/P , and note that A is naturally M -filtered but not necessarily M -graded, and is generated by
t1, . . . , tn, say, with ti = π(Ti), considering the short exact sequence

0 → P −→ Λ
π

−→−→ A → 0.

Every element x ∈ A is representable as a (non-commutative) polynomial in the t∗, in many different ways;
however, there is just one representation, the normal form of x, where each appearing monomial ti1 · · · tir is
reduced, i. e., is such that the corresponding Λ monomial Ti1 · · ·Tir /∈ MW2M . If x 6= 0, then ltx is on the
form κti1 · · · tir , with κ ∈ k∗, the monomial reduced, and fdeg x = Ti1 · · ·Tir .

In our applications, indeed P =
∑

i(P∩Λi); in which case it may be convenient to replace the original order
of M with the total deg first one, and to assume the Gröbner basis elements to be (tdeg) homogeneous,
and to construct the resolution tdeg-graded. However, the first results hold in greater generality, without
any such extra assumption of P .

Recall that Λ is a free ideal ring (sensu P. M. Cohn). In particular,

(6.1) I =
n⊕

i=1

ΛTi =
n⊕

i=1

TiΛ.

Moreover, since every element in P is a sum of elements yxz with y, z ∈ Λ and x ∈ D, and any such z = κ+z′

for some κ ∈ k and some z′ ∈ I,

(6.2) P = ΛD + PI.

Recall that Ã := G(A) = Λ/G(P ) is a (non-commutative) monomial ring, and an M -graded augmented

k-algebra, and that (by similar means as for (6.1) and (6.2)) there is a minimal Ã-free resolution of
Ã
k

(6.3) . . .
d̃3−→ X̃2

d̃2−→ X̃1
d̃1−→ X̃0 = Ã

η̃
−→−→ k

with X̃m = ⊕Wm
Ãw, where W0 = {1}, W1 = {T1, . . . , Tn}, and W2 is set before; whence each w ∈ W2 may

be factorised as w = w2w1 for some w1 = Ti ∈ W1; and, for m ≥ 3,

Wm = {wmwm−1 · · ·w1 : wm−1 · · ·w1 ∈ Wm−1 ∧ wm /∈ P ∋ wmwm−1

∧ (no proper left factor of wmwm−1 belongs to P )}.

Moreover, for any such w = wmwm−1 · · ·w1 ∈ Wm, d̃m(w) = π̃(wm)wm−1 · · ·w1 (with π̃ : Λ−→−→ Ã). (See
e. g. the proof of [B78, théorème 1] for details.)

By a slight abuse of notation, we also let ti = π̃(Ti); bearing in mind that thus a monomial ti1 · · · tir is

reducible in A if and only if it vanishes in Ã.

Our next aim is to construct an (in general non-minimal) filt-good free Ak resolution

(6.4) . . .
d3−→ X2

d2−→ X1
d1−→ X0 = A

η
−→−→ k

17
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such that G(6.4) = (6.3); in other words, such that G(Xm) = X̃m, G(dm) = d̃m, et cetera. Thus, for each m
we should set and verify

Xm := ⊕Wm
Aw;

w ∈ Wm =⇒ fdegw = fdeg dm(w) = w; and(6.5)

x ∈ Xm =⇒ fdeg
(
dm(x)

)
< fdeg x ∨ lt

(
dm(x)

)
= d̃m(ltx);(6.6)

z ∈ Xm−1 ∧ dm−1(z) = 0 ∧ fdeg(z) = a =⇒ ∃u ∈ Fa(Xm) : dm(u) = z(6.7)

(mutatis mutandis for m small). We shall do this by (an ordinary) induction with respect to m in the first
place, and by (a transfinite) induction (for a fixed m) with respect to filt-degree in the second.

For any w ∈ Wm, we indeed consider the factorisation w = wm · · ·w1 employed in the definition of the
Wm.

Define d1 by d1(Ti) = ti. For d2, employ the first equality in (6.1), which may be abbreviated I = ΛW1, in
order to create a combined map IeraAW1; apply this for the defining Gröbner basis element for each w ∈ W2.
In other words, for any w ∈ W2 there is an x ∈ D ⊂ I with ltx = w, and there are unique x1, . . . , xn ∈ Λ
such that x =

∑
i xiTi; put d2(w) =

∑
i π(xi)Ti ∈ X1. It is fairly easy to see that the constuctions and

the properties (6.5) and (6.6) are satisfied for m ≤ 2, and that so is the respective modification of (6.7) for
m ≤ 1.

Proof of (6.7) for m = 2. Inductively, assume this true for all a < b for a b ∈ M , and consider
a cycle z ∈ X1 with fdeg z = b. To avoid trivialities, also assume z 6= 0. Thus, there are a κ ∈ k∗, a
v ∈ M , and a Ti ∈ W1, such that lt z = κπ(v)Ti. Hence, π(v) is reduced, but π(v)ti is not. In other words,
vTi ∈ ΛP ; whence there is an x ∈ D with (say) w := ltx ∈ W2, and an y ∈ M , such that vTi = yw.
Moreover, a := fdeg z′ < b for the cycle z′ := z − d2(κπ(y)w), whence by the inductive assumption there is
a u ∈ Fa(X2) with d2(u) = z′. Thus, indeed, z is the image of d2(κπ(y)w + u ∈ Fb(X2).

Now, for any m ≥ 3, assume that dm−1 (and lower d∗) be constructed, with the claimed properties. For
any w = wmw′ = wmwm−1w

′′ = wmwm−1 · · ·w1 ∈ Wm we then may choose a boundary dm(w) ∈ Xm−1

with lt dm(w) = π(wm)w′, in the following manner. Consider

z := dm−1(π(wm)w′) = π(wm)dm−1(w
′) ∈ Xm−2.

Since z is a boundary, it is a cycle. Moreover, since π(wm) is a reduced monomial (in A),

(6.8) a := fdeg z ≤ fdeg(π(wm)w′) = w.

I claim that the inequality in (6.8) is strict. Indeed, by (6.6) (applied inductively), and since wm being
reduced induces ltπ(wm) = π̃(wm), and by construction, else we should have

lt z = d̃m−1

(
lt(π(wm)w′)

)
= π̃(wm)d̃m−1(w

′) = π̃(wm)π̃(wm−1)w
′′ = π̃(wmwm−1)w

′′ = 0,

since, on the other hand, π(wmwm−1) is not reduced.

Thus, instead, indeed, a < w. Moreover, by (6.7), z = dm−1(u) for some u ∈ Fa(Xm) ⊆ F<w(Xm). Now,
put

dm(w) := π(w1)w
′ − u,

which indeed is a cycle in Xm−1, and has a ‘leading term’ π(w1)w
′ = d̃m(w). (6.5) follows directly.

For proving (6.6) for an x ∈ Xm \ {0}, let ltx = κπ(v)w, with κ ∈ k∗, v ∈ M , and w = wmw′ ∈ Wm, put
x′ := x− ltx ∈ F<vw(Xm), and still assume dm(w) = π(w1)w

′ − u. Then fdeg x = vw, and

dm(x) = κπ(vw1)w
′ + dm(x′)− κπ(v)u.
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Now, the last two terms belong to F<vw(Xm−1 (technically, also by applying an inductive assumption with
respect to fdeg x); while

fdeg(κπ(vw1)w
′) =

{
vw if π(vw) is reduced,
less else.

Thus, indeed, in the former case, lt dm(x) = κπ(vw1)w
′ = d̃m(ltx) and fdeg dm(x) = vw, while in the latter

case fdeg dm(x) < vw.

Proof of (6.7) (given the others, for a fixed m). Follow the proof for m = 2, mutatis mutandis.
Thus, consider a cycle z ∈ Xm−1 \ {0} (under the inductive assumption for b := fdeg z), with lt z = κπ(v)w
and z′ = z − lt z (say), and thus π(v) reduced and b = vw = vwm−1w

′ (say). As before, dm−1(κπ(v)w) =
dm−1(z

′) ∈ F<b(Xm−2), yielding that π(vwm−1) is reduced, although π(wm−1) is not. Thus, and (w. l. o. g.)
writing

v = TirTir−1
· · ·Ti1

for some r ≥ 1 there exists a minimal s ∈ {1, . . . , r}, such that Tis · · ·Ti1wm−1 ∈ W2M . Put wm := Tis · · ·Ti1

and y := Tir · · ·Tis+1
(so that v = ywm), and note that by construction wmw ∈ Wm. Hence, we may put

z′ := z − dm(κπ(y)wmw), and proceed as for m = 2.

Summing up, in Gröbner basis terms, we have proved

Theorem 4. Let k be a field, Λ = k〈T1, . . . , Tn〉 the non-commutative polynomial ring in n variables,
I = (T1, . . . , Tn) the augmentation ideal of Λ, P ⊆ I2 a (two-sided) Λ-ideal, and let D be the (possibly
infinite) reduced Gröbner basis of P with respect to some admissible monomial order. Put A = Λ/P . Then
there is a free resolution

. . .
d3−→ X2

d2−→ X1
d1−→ X0

η
−→−→ k

of k considered as a left A-module, with an increasing complex filtration (with respect to the monoid of
monomials in the T∗, and their admissible order), such that its graded associated complex

. . .
G(d3)
−→ G(X2)

G(d2)
−→ G(X1)

G(d1)
−→ G(X0)

G(η)
−→−→ k

is a minimal free resolution of k as a left module for the non-commutative monomial ring Λ/G(P ) =
Λ/(G(D)).

Thus, we directly get the presumed Koszulness result:

Corollary 1. If in addition P is generated by homogeneous elements of degree 2, and also D consists of
quadratic monomials, then A = Λ/P is a Koszul algebra.

Moreover, indeed, this corollary is a special case of a more general one, concerning the rate of growth of
the total-degrees of the non-vanishing homologies for an (N-graded) connected k-algebra A = Λ/P 6= Λ; see
[B86] for details. Note, that such an algebra is Koszul if an only if its rate of growth is 1. Now, the rate of
growth always is finite for non-commutative monomial rings with finite numbers of generators. (In fact, it
then equals one less than the maximal degree for an element in a minimal set of homogeneous generators.)
Hence, and again by [B86], in the situation of the theorem, we get theorem 1, in the form of

Corollary 2. If in addition P is generated by homogeneous elements, then rateA ≤ rate Ã; and if moreover
|D| < ∞, then so is rateA; in fact, then rateA ≤ maxx∈D(deg x)− 1; and then also any Veronese subring

A(d) :=
∞⊕

j=0

Ajd

of A with d ≥ rateA is a Koszul algebra.
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The existence proof of theorem 4 implicitly also provides a recursive process for constructing the differen-
tials of the resolution; at least, if the Gröbner basis is finite. The following example is done in some detail,
in order to clarify how that recursion works. Therein, the M order always is a strict lexicographical one,
reading from left to right. It thus is completely determined by the order on W1 = {T1, . . . , Tn}.

Example. If n = 3 and P = (T 3 − T1T2), then the order T1 > T2 > T3 makes D = {T1T2 − T 2
3 } and

W2 = {T1T2}, whence by the corollary A is Koszul; and it has global homological dimension 2. Thus, the
resolution is

0 −→ AT1T2
d2−→ AT1 ⊕AT2 ⊕AT3

d1−→ A
ε

−→ k,

with d2(T1T2) = t1T2 − t3T3 (and of course d1(Ti) = ti, i = 1, . . . , 3).

However, if we instead consider the order T1 < T2 < T3, we get D = {T 2
3 − T1T2, T3T1T2 − T1T2T3},

and for m ≥ 2 Wm = {Tm−1
3 T1T2, T

m
3 }. Thus, X2 = AT 2

3 ⊕ AT3T1T2, where d2(T
2
3 ) = t3T3 − t1T2 and

d2(T3T1T2) = t3t1T2 − t1t2T3.

Likewise, X3 = AT 3
3 ⊕AT 2

3 T1T2. For constructing (and choosing) d3(T
2
3 T1T2), first note that

d2(t3T3T1T2) = t23t1T2 − t3t1t2T3 = t1t2t1T2 − t1t2t3T3 = −t1t2t3T3 + t1t2t1T2

(in reduced form, with terms in descending filt-degree); whence lt d2(t3T3T1T2) = −t1t2t3T3. Hence and
since d1 · d2 = 0, as seen in the proof, the corresponding Λ monomial has a right factor in W2; indeed,
it is T1T2 · T 2

3 ; and so also lt d2(−t1t2T
2
3 ) = −t1t2t3T3. Thus, with z := t3T3T1T2 + t1t2T

2
3 , we must

have fdeg d2(z) < T1T2T
2
3 ; actually, it is 1, since d2(z) turns out to be 0. We thus may choose to set

d3(T
2
3 T1T2) = z = t3T3T1T2 + t1t2T

2
3 .

Similarly, d2(t3T
2
3 ) = t23T3− t3t1T2 = −t3t1T2+ t1t2T3, and also d2(−T3T1T2) = −t3t1T2 + t1t2T3, whence

we may choose d3(T
3
3 ) = t3T

2
3 + T3T1T2 ∈ X2.

For higher differentials, we need to care a bit more about which ‘subword to substitute’. When we construct
the differential of T33T1T2 ∈ X4, we start by considering the cycle

d3(t3T
2
3 T1T2) = t23T3T1T2 + t3t1t2T

2
3 = t1t2t3T

2
3 + t1t2T3T1T2

in X2, with filt-degree T1T2T
3
3 . The differential of its leading term has a strictly lower filt-degree; which

means that T1T2T
3
3 must have one right factor in W3. Indeed, T 3

3 ∈ W3. We therefore should ‘lift’ the
leading term t1t2t3T

2
3 to d3(t1t2T

3
3 ) = t1t2(t3T

2
3 + T3T1T2); or, rather, ‘correct’ the cycle by that boundary.

We get
d3(t3T

2
3 T1T2)− d3(t1t2T

3
3 ) = (t1t2t3T

2
3 + t1t2T3T1T2)− t1t2(t3T

2
3 + T3T1T2),

which indeed already is zero. Thus, we may choose d4(T
3
3 T1T2) = t3T

2
3 T1T2 − t1t2T

3
3 . Similarly, we may let

d4(T
4
3 ) = t3T

3
3 − T 2

3 T1T2; and indeed the same pattern works for the higher homological degree differentials,
whence in fact for any m ≥ 3 we may put

{
dm(Tm−1

3 T1T2) = t3T
m−2
3 T1T2 −(−1)m t1t2T

m−1
3

dm(Tm
3 ) = t3T

m−1
3 −(−1)m Tm−2

3 T1T2
.

In this example, the graded associated complex G(X∗) has identical module generators, but different
differentials; indeed, here, G(Xm) = Xm, but G(dm)(w) = lt dm(w) for w ∈ Wm. Thus, indeed, as complexes,

G(X∗) = X̃∗, and is a minimal Ã-free resolution of
Ã
k.

For calculating the TorA∗ (k, k), we take the homology of the M -filtered complex C∗ := k×A X∗. Now, the
differential in C∗ does not vanish; indeed, it maps Tm

3 ∈ Cm to (−1)m+ 1Tm−2
3 T1T2 ∈ Cm−1 for m ≥ 3.

(This indeed yields the small Tor we should expect from the facts that A is Koszul, as we saw from considering
the T1 > T2 > T3 order, and that its Koszul dual1 is artinian.) On the other hand, since the differential in

1 Koszul duals form one of the well-known concepts I completely gloss over in this paper; but that concept
is not employed outside this sentence.
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C∗ lowers the filt-degrees, its graded associated complex G(C∗) = k ×
Ã
X̃∗ indeed has trivial differentials,

reflecting the fact that the
Ã
k-resolution X̃∗ −→−→ k indeed is minimal.

REFERENCES
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