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KOSZUL ALGEBRAS, VERONESE SUBRINGS AND RINGS 
WITH LINEAR RESOLUTIONS

JOKGEN BACKELIN and HALF FHOBEKG

0. IXTHODVCTIOX

The results in this paper mainly concern graded algebras over a field 
which are unitary, associative but not necessarily commutative. They 
have, however, applications to commutative algebra and algebraic geo
metry.

In section 1 we make definitions and collect, for reference, results 
that we need in the sequel. In particular we define (homogeneous) Koszul 
algebras (in some articles called Frdberg rings) to be graded algebras R 
for which Tor?,^ (/c, Ic) = 0 for i^j (see 1.16 for seventeen other equivalent 
conditions). To each graded algebra R there is a sequence of associated 
lattices Li{R) of vector spaces. We use, as one of our main techniques, 
the fact developped in [2] that the distributivity of the Zi(J?)’s have 
homological implications.

The main result in section 2, Theorem 4, shows that Koszul algebras 
constitute a natural class, in that it is closed under a number of opera
tions such as taking Veronese subrings, Segre products, tensor products, 
fibre products and coproducts. This generalizes e.g. the result of S. Bar- 
canescu and N. Manolache that a Segre product of Veronese subrings of 
(commutative) polynomial rings is a Koszul algebra (see [5]). As prepara
tions for the main theorem we have two results which may have some 
interest of their own. First we show (Theorem 1) that the distributivity of 
the associated lattices is preserved when taking Veronese subrings, Segre 
products, products and coproducts. Secondly (Proposition 3) we give a 
bound for the degrees of the relations in Veronese subrings and Segre 
products, given the degrees of the relations in the original rings. This 
generalizes a result of 11. Mumford ([12]). In the above mentioned results 
we do not in general assume commutativity.

In sections 3 and 4 we restrict to commutative algebras. The main 
result in section 3 is that the number of non-isomoi’phic Veronese subrings 
of an algebra of Krull dimension one is finite. In section 4 we tie the con
cept of Koszul algebras to some perhaps more well known concepts, in show
ing that a graded algebra has a 2-linear resolution if and only if it is 
both a Koszul algebra and a Golod ring. We also give a relative version 
of this statement.

I. COXVE.VTIOXS VXD XOTATIOXS

/V graded algebra will denote a ring of type R =
xvhere F =. .., is tlie free (non-commutative) associative 
algebra over a commutative field 1: in variables of degree and P 
is a two-sided ideal generated by finitely many homogeneous elements of
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86 J. BACKELIN and R. FROBERG 2-

degree 2. All ideals are Uco-sidecl. I = {T^, . . T,,} and J/P are called 
the augmentation ideals in 7 and li respectively. All tensor products,, 
products and coproducts are over

1. For a graded algebra R = © Ave define the fZth sub-
riifcji of J? as = © Ria- An element in Rfa has degree i in R^'^\

2. For two graded algebras R' = ® R'i and JB" = © R.^ Ave define-
1^0 i^O

their Segre product as R' o R" = @ R\® R\'^ An element in PJ ® R'i'^ »^0 
has degi'ee i in P' o P".

3. For tAvo graded algebras P' and J?'' Ave define their cop>rodiwt 
(or free product or amalgamated sum or fibre sum) over R'LIR", as 
the pushout of R" <- k —> R',

If Jg' = k{T^,..T„yi(fi,..fr) and J2'' = k^S^,..S,„yi{g^,. .g,)^ 
then fc<Zi,... .,fr, 91, ■ ■ fjs)-

4. FortAvo graded algebras P' and R" define their (fibre) product 
OA’^er fc, P'nP", as the pullback of J?' —> fc <- 22".

If 22' = k{T^,.. and R" k^S^,. . g,)^
then R n R" k{T„ ..T„, . .,f„ g,,.. g,, T,8^, S¡T,}
(1 i n, 1 j m).

5. If R'=k{Ti,... .,f,) and 72''=A:<5'i,. . 8„yi{gi,. . gs)r
the tensor product over k is 22'® T,^, 8,„yi(fi,. ..

(Ji,-- ; 9., ^iS} — 8,T,} (1 i n, define the-
nti-commutaiive tensorproduct of 22' and 22" as 22' (® R" = k(^Ti^,. . .,Tny

• • •, S„y!{fi,. . .,fr, 91, ■ • •! 9s, Tt8i + 8iTj) (1 i n, 1 J ni).
6. The 2iiZ&eri series of R = @ Rt isi 1221 (Z) = V (dimjt 22i) andi^O ¡^0

coirespondingly for graded modules.
7. For a graded algebra 22, Toi>(Z:, k) and Ext^(A;, k) bigraded and 

Ave define the double Poincar¿ series of R as

PBGVr)= X (dim,Tori/(fc,/c)).rr = X (dim*Ext?, (fc, k}} 
'> ;go I, j^o

(first degree homological, second induced by the grading of 22) and the 
Poincare series of 22 as Pi{{Z) = P^Z, 1). i

8. If f is a homogeneous element of positive degree in a graded alge
bra 22 we have |22/(/)|(Z) |22|(Z)/(1 + Z‘'‘’®-''|22|(Z)) (coefficientwise)..
/ is called strongly free if we have equalitj’ (cf [1]).

9. If / is a homogeneous element of positive degree, in a co??^/?2Miaiwe-
graded algebra 22 we have \RI{J)\{Z) (1 — I^^K-^) (coefficientAvise),
AA’ith equality if and only if f is a non-zerodivisor.

10. The IcMice associated to a graded algebra 22= V/P is the lattice 
L(R) of subspaces to the gi’aded fc-vectorspace V, generated by {PP^P^ y 
f, g, li 0} under and n. Here 2“ =P^ = V.

11. The ¿th local lattice associated to a graded algebra 22 = V¡P is. 
the lattice of subspaces to Vf, generated by [IfPJn •, f, g, f g -\-

/t = ¿} under-4-and n. This lattice is denoted 2i,(.R).
12. A lattice (i, +, 0 ) is disZnZ)?zii'ye if 2J 0 (5' + r) = (p c\ g) + 

(p n r) for all p, g, r in L. If (i, +, n ) is a finitely generated lattices:
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of subspaces to a vectorspace V, then L is distributive if and only 
if there is a basis J3 for V such that B n i? is a basis for p, for each 
p in L. Sxich a basis is said to distribute L (cf [2, lemma 1.21).

13. A graded algebra R = V¡P is called r-reluted if P is generated by 
elements of degree r.

11. Let J? = y/P ' be 2-related and let 1'* = Homt (K, it) = 
= © Honit (Kj, li) = @ F* witli multiplication induced bv u.v(ab) =

Igo igo
= ■J.(a)v{b} (¡1 e y*, V G V*, a e y„ b e y^). Let PS == {g e V* ; '¡i{Pz) = 0} 
and let P° = (PS) <=!’*. The dual ring to R is defined to be R° = V*}P'’ 
(cf [2, ch. 3]).

1.5. A homomorphism O : R' —> R" of graded algebras is called small 
if and only if the induced homomorphism Tor^' ^(/c, it) Tor#''* (fc, k) is 
injective, or equivalently, if and only if the induced homomorphism 
Ext^',,* (/f, k) —> Ext^;* (7i, k) is surjective.

16. A graded algebra R is called a Koszul algebra if and only if the 
following equivalent conditions are satisfied (cf. e.g. [11], [11] and [2]).

(1) Ext}; (7c, 7c) generates Ext;. (A:, 7c) as an algebra with Yoneda 
multiplication.

(2) Ext5}’«(A:, 7c) = 0 for p^g.
(3) Tor",,(7c. 7c) = 0 for pTf^g. '
(1) P;;(A, Y)|P|(-A-r) 1.
(5) Pn{Z}\R\{-Z} = 1.
(6) {I/Py is small (i.e., R —> Rl{IlP)^ is small).
(7) P is 2-related and P(P) is distributive.
(8) R is 2-related and P,(P) is distributive for all i 2.
(9) R is 2-related and y^ has a P;(P)-distributing basis for alH^2.
(10) R is 2-related and R° satisfies (1) —(9).

<The equivalence of (1) —(1) could be found in [11, thm. 1.2], and that 
these conditions are eciuivalent to (7) —(10) is shown in [2, thm. 3.3]. 
For (1 )<=>(6), cf e.g. [3, bottom of page 2], (1) obviously implies (5). Assuming 
(5) and by [11,1.11] avc have Pr{ — A', 1) |P| (-Y)= P;;(—1, y)|P'(Y) = 1. 
Using Tor"; (7c, 7c) = 0 for j <i this easily gives (3).)

17. The following classes of graded algebras are examples of Koszul 
algebras.

(a) A:<Pv . . ., T„yil where I is generated by an arbitrary set of 
monomials of degree two, [6, cor. 1 in sec. 4].

(b) A;[A'i,. .., A„]/i where I is generated by an arbitrary set of mono
mials of degree two, [6, cor. 2 in sec. 4].

(c) 7c[A\,. . ., A„]/i where I is generated by some special classes of 
monomials and binomials of degree two, [9].

(d) 7c[A\,. . ., o . .. o 7c[A„ . .., [5, thm 2.1],
(e) “Most” commutative 2-related algebras in embedding dimension 

< 3, [4, thm 1].
(f) “Alost” 2-related algebras with at most two relations, [2, thm 

4.6].
(g) All 2-related eommrttative graded algebras R with dinq. P„ g 2, 

[2, thm 4.8].
(h) 7c[A\,..X„']II where I is generated by a regular sequence of 

elements of degree two, [4, lemma 2],
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2, KOSZVt algeukas

The main result in this section is that the class of Koszul algebras is 
closed under a number of operations. In some cases we get slightly more 
general results.

Theorem 1. (a) Lei It be a graded algebra ivitli distributive for 
all i 2. Then is distributive for all i 2 and all d 2.

(b) Lei B' and B" be graded algebras with LfB') and IjfB") distribu
tive for all { 2. Then LfB' o B"} is distributive for all i ^2.

(c) Let B' and B" be graded algebras. Then LfB' TT 12") is distri
butive for all i^2 i/ and ony if both LfB') and LfB") are distribiitive for 
all i 2.

(d) Let B,' and B" be graded algebras. Then LfB'LLB”) is distributive 
for alli'^2 if and only if both LfB') and LfB") are distribiitive for all i'^2.

•-1
Proof, (a) Fix d^2 and i^2. Let Qi = S a-i-i-ki- Then = 

t=o
= ^idlQi- Let TZi : Via —> F'i“'’ be the projection. For f, g, h such that 
/ + (/ + = i we have

yUilpWyW) _ + V,aPi,aV,a}IQi.

Thus the restriction of Ttf' induces a monomorphism of lattices 
Li{B^‘'f^ Li,,{B). Noav use the fact that a sublattice of a distributive 
lattice is distributive. j

(b) Fix an i^2. Let B = B' a B". Then Fj = Fi © F", and if / + 
-j- gr -1- = i then

F/P.L, = (f>p;f;.®f") + (f;®f7p;'f;.').

Noav apply [2, lemma l.Sj.
(c) Let B’ = V'lP', B" = V'lP", and B = B'VlB" = V/P hi the 

natural manner. Fix an i 2. Then F, is the direct sum of all kinds of 
mixed products of length i of copies of Fj and Vf. More precisely, let us j 
write

Fi= © F“, aea(i)
Avhere J.(i) = {a==(fli,.. ., a,)., ai g "}}, and Avhere FJ = F?‘Fi=. . .
.. .F"i for a e A(i).

Thus if we put '(2) = ('> ')•••/) e
then F'( = F'/h and F{' = F"‘h, and for f © g + h = i iva get

= ( I I F>p;Fi + F^,p;'F,^)+ y, y y f}f,m-,' '
agyli/) be.-li/t) c

£ © (F? n F,P„FJ,
a6J(i) V

Avhere the last sum in the first row is over ce "(i/)}. Now assume
that are distributive for j^i. For j == 2,. . i, let B}

>
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(resp. 7J/) be a .L;(7?')-distributing basis (resp. a Z/J?")-distTibuting 
basis). Let

= {byb^, , ,b,^\bf for i odd and b^ e for / even or b^ e Bj^ for i
$

even and ft, e for t odd, where J] ji = i}.
t = \

(1) jdelds that distributes LX-K). Conversely’-, assume that t,(-K) 
is distributive. By (1) there are surjective homomorphisms of lattices 
nJ : Li(Il) Li{R') and k" : —> defined by n V’i
and = p n y'/. Now use the fact that a homomorphic image of a 
distributive lattice is distributive.

(d) With the same notations (mutatis mutandis) as in the proof of (c),

= S I S L Now .
c^i d^h aezl(c) beJ(</) aGJ(i)

proceed as before.
Let R' and P" be 2-related algebras. Using the representation with 

generators and relations in 1.3—1.5 and the definition of the dual ring in 
1.14 yields :

Lemma 2. (a) (P' n P'')° ~ {R')° n (P")°
(b) (P' n R")° (B'r U (P'')°
(c) {R' ® R"r (Rr® {R")°
(d) {R'®R'')° (R')° ® {R"}°

li R' and R" are »-'-related and »-"-related, respectively, then_directly 
from 1.3 —1.5 it follows that P'nP", R'uR", R'®R" and R''®R" are 
max (»-', »-",2)-related. In order to obtain similar estimates for Veronese 
subrings and Segi-e products, we may use the interpretation of the i'th 
degree relations in R = V/P as

P,/(P,_ + F,P,_i).
Note also that any commuiaiive R=V IP has as relations all commu
tators ab-ba b e Fy) of degree two. We denote the ideal in F generated, 
by these conunutators C.

The first half of the folloAving proposition generalizes a result of D. 
Mumford ([12, thm 1]).

Proposition 3. (a) If R is an r-relaied graded algebra^ then R^^'^ is 
[2 + (r — 2}jd}’Telated \ and if furthermore R is commuiaiive^ then R>^^ is 
max ([1 + (r — l)/rf], 2)-related.

In pai'ticular^ if — 1 or if R is commutative and d^rl2, then 
RS^^ is 2-related.

(b) If R' and R/' are r'-related and r"-related^ respectively, then R'oR'’ 
is max {r', r'')-related.

(Here [c] denotes the integer part of e.)
Proof. Let d^2 and let i > [2 + (r — 2)/<Zl, Avhence 7>2 -L 

+ (r-l)7d, i.e. '
(1) id r + 2d — 1.
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Let Q, = I Then P'i') = {P,„ + Q,)IQ, and Pí'í’.rí"» +
t^Q

+ 1 = (Píí-nrfT'd + T^rfP(t-iM + Qi)IQi ~ (P(i-orfPrf +
If 0^/^d —1 then by (1) r/Pri^rz-z-r <= Pzi-ivzKfZ, while if 
^2d^l then r/PrF/rf-/_r<= l'"dAí-i)íi- Thus and since li is r-related,

i(i~r

Pfil ~ 1j fd-Z-r^-Pu-Dd^d + T^d-P(i-l)d Pid*
Z=0

Thus indeed P^/» =
If R is cominutative these arguments may be slightly improved. 

Por arbitrary integers d 2 and i 3 we then have
d

<2) Pu-Udl^d + I'^dPu-ud - I F;P(i_ndFd-z-

/=0

This is so because both sides in (2) contain the graded component (7,^ of ‘ 
the commutator ideal C, where (2) follows from the trivial equality in 
commutative algebra, 

d
(C^id + ■P{í-ndl''d)/C^íd “ {^7(i + :

Hence, if i>max [(1 + {r — !)/<■?], 2), i.e. if (i — l)iZ r and i 3, 
then by (2)

-Píí-Hd^^d + ^'^dPti-lid \ id-f-i = Pidi

whence, as above, P'f’ = + TÍ^^PíÍi.
Finally, if d>r -- 1 (or if P is commutative and d^r¡2)y then [2 +

4- (i‘ ~ 2)/dJ = 2 ([1 -j- (r — l)/d] = 2, respectively), whence P is 2-related.
b) Assume that R' = y'IP' is r'-related, that B" = V^jP" is 

^''-related, that P'oP" = VjP and that i > max (?•', r"). Then
1 4“ i-PÍ—1 = i®) -j- (T i0Pi_i®f 1 ) + (PiPi—1®!' i ) "H

+ (t;®i7p?-i) = ((p:-iT7 + f7p;_j®rr) + (r;®(p;Lirr +
+ rrpiii)) - (p;® ^7) + (v;®p;') = p^-
Examples, If P = . ,, A"rf]/(A'i,. . ,, A"d), then P^''^ has rela- >

tions of degree max [1 + (?• — !)/<?], 2). Thus, this bound in the commu
tative case cannot be improved. Furthermore, P^^^ is not 2-related unless 
<Z > r.

" 2 >
If xS' is the 4-related algebra 7í‘<Pi, then

is 3-related but not 2-related. Thus, there is a real difference for the 
bounds in the commutative and the non-commutative case.

Remarle, If Ave drop the assumption that P is finitely generated, for 
a gi’aded algebra VtP some strange phenomena may occm\ Let P = 
= T^.yiP, vehQre P = Tl, T^T[T^ i =
= 0,1,.,is not finitely generated. Then P^'^^r^P for all
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In the following theorem we collect results on the preservation of 
being Koszul algebra. Some special cases of the theorem are already 
known. E. g. (a) and (b) generalizes the result in 1.17 (d) of S. Barcanescu 
and N. Manolache. The equivalence (i)<=>(iv) in (c) is essentially due to 
S. Priddy (i)=>(ii) in (c) follows easily from results of J. AL Lemaire (see 
the alternative proof on this point). Case (iii) in (e) has a simple homolo- 
.gical proof in the commutative case.

Theorem 4. (a) If li is a Koszul algebra then is a Koszul algebra 
for all d.

(b) If both R' and R'" are Koszul algebras^ then R'oR" is a Koszul 
algebra.

(c) The folloioing five conditions are eguivalent.
(i) Both R' and R'^ are Koszul algebras]

(ii) R'LIR'' is a Koszul algebra]
(iii) R'TIR" is a Koszul algebra]
(iv) R'®R'' is a Koszul algebra]
(v) R'^^R'' is a Koszul algebra.

(d) If R' —> R'^ is small and R" is a Koszul algebra^ then K is a 
Koszul algebra.

(e) Assume that R"' = Rf{f) tehere f is a homogeneous element in the 
graded algebra R'-, and that one of the follozving foiir conditions is satisfied.

(i) f is stro'ibgly free and of degree one or two;
(ii) f is a socle element of degree one]

(iii) f is a socle element of degree two and (/) is small]
(iv) Rl is commutative and f is a non-zerodivisor of degree one or tu)o. 

Then R' is a Koszul algebra if and only if R" is a Koszul algebra.
Proof, (a) follows from Theorem 1 (a), Proposition 3 (a) and 1.16 (8).

(b) follows from Theorem 1 (b), Proposition 3 (b) and 1.16 (8).
(c) The equivalence (i)<=>(ii) folloAvs from Theorem 1 (c) and 1.16 (8),

noting that R'llR" is 2-related if and only if both R' and R" are 2-related, 
but we will also give an alternative proof without using Theorem 1. For 
any graded algebras R and S' we have PaU5(-^) = — 1
and I (Z)“i = 1 J2| (Z)-^ + IaSJ (Z)-i - 1 ([10, Lemma 5.1.9 and 
Lemma 5.1.10]). Thus, if R' and R" are Koszul algebras it easily follows that' 
72'1172" is a Koszul algebra using 1.16 (5). On the other hand, for any 
2-related graded algebra 72 it is true that 72° is the subalgebra of Ext;XA*,fc> 
generated by Ext}i(7L, A:) ([11, thm 1.1]), hence [72°| (Z) Pii{Z) with 
equality if and only if R is a Koszul algebra according to 1.16 (1). Thus, 
supposing 72'il72" to be a Koszul algebra, we have
Pn\Z} + P;,.(Z)- 1 - P^.Uno(Z) = !(-5'U72")°| (Z) = i(72Tn(72")°l (^) =

= |(72')°| (Z) + |(72")°| (Z) - 1 P^X^) + - 1.
Thus we have that | (P')°| (Z) = Pr^^Z) and | (P")°|(Z) = Pr,,{Z) whence P' 
and P" are Koszul algebras.

(i)<^(iv) is [14, Prop. 2.1] (in fact only (i)=>(iv) is stated, but the 
argument works equally well in the other direction).

(i) <=> (iii) (and (iv)<»(v)) follows from Lemma 2 (b) and 1.16 (10) 
(and Lemma 2 (d) and 1.16 (10), respectively).

(d) follows from 1.15 and 1.16 (3).
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Suppose R' and 72" to be as in (e).
If / is strongly free it follows from [1, tlim 2.10] that Toif'(^> I'} — 

k) for ¿¿3. Thus, using that for a graded algebra R= VIP we 
have Tor[\k, k) ~ l/r- and TorilA-, A:) ~ P/(7P + P7), it follows that 
P«„(Z) = PAZ} -Z Yi deg (/) = 1 and P,e„(Z) = P„{Z} + if 
deg (/) = 2, repectively. Thus, using 1.8, it follows easily that | JK"|( — Z) 
Pu„{Z) == 1 if and only if |72'| {—Z)P„,(Z) = 1, whence the equivalence 
follows from 1.16 (5),

If / is a socle element of degree one, we have P"~ P'rrA-’[A']/(X2), 
and k[X']l{X'^) is a Koszul algebra, whence the equivalence follows from 
(c) above.

Now assume that / is a socle element of degree two. Since (/) is small, 
by (d), R' is a Koszul algebra if R" is. We will use 1.16 (8) to 
show the other direction. By the assumptions

(3) PacP^' and P'(_il’i+BiP;_i=Pi=Pi' = Pi-J^i+T^iPi'-i for i^3.
For 7^2, we know that Li{R') (which is generated by (Fz-iPaFf-i-/ ; 
/ = 1,..., i — 1)) is distributive, and we want to show that L,{R") (which 
is generated by (Fy-iPy kj-i-y; f = 1,i — 1)) is distributive. Now 
the idea is to use (3) in order to show that a necessary and sufficient 
small family of conditions for distributivity remains valid when successi
vely the generator-s F/_iP^ri_i_y are replaced by generators Fy-iPa'Fi-i-y. 
Let U.S adopt the notation A(f) = {«• = (rq,..., a,; a^, ..., a, e {',"}}, 
etc., from the proof of Theorem 1 (c). For i^2 and a e >1(7 — 1), let

P(7, <^) = (Fz-iP’^F,-!., ;
Then the familie.s F{i, '{i — 1)) and P(7, "{i — 1)) generate P,(P') and 
Li{R"), respectively, as subspaces of I\.

Hence it is sufficient to prove that for all 7^2 and all a e A(7 — 1),
(4) P(7, a} generates a distributive lattice.
In order to do this we use induction, in the first place with respect to 7, 
and in the second place with respect to the number •)»(«) = | {/; Uf = "} I 
of times “appear in a. Obviously (4) is true for 7 == 2, 3 and for any 
if n(a) = 0 (i.e. if a, = '{i — 1)). Thus, let j^4, (i e >1(7 — 1), 
and assume (4) to hold for any (7, a.) such that i < j or that 7?.(r/) < 
There are integers </, 1i e {1,.. i — 1} such that = ’’and that | A —</l = 1. 
Let (7 be a permutation of the integers 1,.. j — 1 such that c(j — 2) — g 
and that c(J — 1) = /i. By [13] P(j, li) generates a distributive lattice 

' if and only if the following two conditions are satisfied :
(o) Any (j — 2)-subfamily of F{j, generates a distributive lattice, and

(6) \«-i 7

= l’ n n J for k = l,...,j- 3.
/=/2 + l \ /
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Let F = ; i = 1,. . j - 1) be,
an arbitrary (j — 2)-subfamily oiF(,j, 6}. First assume that 1 < i < j — 1. 
By the induction hypothesis F{i, {b^,. . bi_^')') and F{j —i, bj-j))
generate distributive lattices of subspaces of F< and of F>_;, respectively, 
whence by [2, lemma 1.3] F generates a distributive lattice, indeed. If 
i = 1 or •/ = j — 1, proceed correspondingly. Thus (5) holds.

Now fix a Zi such that — 3. Define c e J.(j) by C/ = 1 if
f = g and Cy = bf otherwise. Then 7i(c) — — 1, whence by the induc
tion hypothesis F(i, c) generates a distributive lattice. Furthermore, 
by (3)

s=l / =

s t

i s

t 3

5 t

Avhence (6) holds and Ave have proved the equivalence for (iii).
Finaly, if R' is commutative and/is a non-zerodivisor of degree one 

(two) Ave have = PjA'Z^KI -}- Z) {Pn..{Z} = Pn,{Z)l(l - Z^~})
according to [8, cor 3.4.2 (ii)] ([S, cor 3.4.2 (i)], respectively). Thus, since 
|P"|(Z) = (1 — Z)|P'|(Z) (|P"1(Z) = (1 — Z^)IP'I(Z), respectively) Ave 
easily get | P"|(— Z} PRn{Z) = 1 if and only if | P'|(—Z)Ph,(Z) = 1, hence
(e) folloAA^s in case (iv) by 1.16 (5).

Remark. We believe that the concepts “small socle element” on one 
side and “strongly free” on the other are dual in the following sense.

Conjecture. Assume that R' is 2-related and the R" — R'Kf) for some 
f oi degree two in R', whence {R')° = {R")°l{g) for some g of degree two in 
(P'')°. Then f is strongly free if and only if g is a small socle element. If 
this is true in general, then clearly case (iii) of (e) in the theorem follows 
from case (i). The conjecture is true in the special case when at least one of 
R' and R" is a Koszul algebra according to the theorem. If R' is a Koszul 
algebra and / a socle element of degree tAvo in R', it follows from the theo
rem that R" is a Koszul algebra. It is not true that, if f is a socle ele
ment of degree tAvo, then R" a Koszul algebra implies R’ Koszul alge
bra. A counterexample is

P' = A2, A3]/(Af, A2A3, A1A3-}-Al), f =
(the image of A\A’3).
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3. VERONESE SUBRINGS

All graded algebras in this section are assumed to be commutative. 
If R is a graded (commutative) algebra of Krull dimension then 

dim^J?; is a polynomial /?(j, J?), the Hilbert-Samuel polynomial, of degree 
t—1 for j > 0. (If t = 0 then h{j, R) = 0.) The regularity index of 
R is ¿(72) = max {j ; dim,7?; / h(j, R)} + 1. If | 721(Z) = pCZ'i/ii — 
■where t — dim R, then p(l) is the multiplicity of R.

If R is 0-diniensional we have 72*"’ ~ k for d i{R). We will genera
lize this to l-dimensional algebras.

Theokem 5. If R is a {commutative) graded a'’gel)ra {over an infinite 
field) of Krull dimension 1, there exists a graded algebra R^ and an integer 
(Iq sxich that R^‘'>~R'” if d'^d^. {If 72 ¿s Cohen-Macaulay toe can choose 

= i{R).) Moreover R^ contains a non-zerodivisor x of degree one such 
that R^i{x) /¿[Xi,. .A'„_i)2, w/ie?’e m is the multi
plicity of R. In particular R°° is a Koszul algebra.

fProof. If we factor out a socle element s, we have for .R = Rl{s) 
that 72^“'* ~ Rr'^'' if d > 0 and that dim 72 = 1. Thus we can continue until 
72./(Si,..s,) has no socle, i.e. we can assume 72_to be Cohen-Macaulay. 
Suppose 72 = A;[A\,..., X„']l{Fi,.. ., F^) and that T = ?/ is a non-zerodivi- 
■sor in 72 of degree one. It is easy to see that ¿(72/(7/)) == ¿(72) -|- 1, and 
Iience, if 72 (and thus T/(?/)) is 7--related but not {r — l)-related, i{R)'^

— 1 since ¿(72/(?/)) ^r. 'r^“^ is 2-related for d i{R) according to pro
position 3. Let dim,.Rj = m {= the multiplicity of R) if ^^¿(72). Then 
I R '‘i\{Z) = 1 -b mZ + mZ^ + mZ^ + . . . = (1 H- (w - 1)Z)I{1 - Z) for 
<¿^¿(72). Let = g. in 72, and let G',=g„ in .., A\].
Then 72‘'''^» ~/¡¡[yi,. . ., Avhere J i.s generated by those forms 
5^ for which J] CjfijG^ belongs to (T\, .. ., F,). Since 7/ is a non-

J. k ff
zerodivisor in R yve have 727<"’+*) = kly^g^,. .., ifg,„'\ ~ 7v[yi, • • 
y^hereJ' is generated by those forms Cu.ij'Y,. for which C]i;X'GjT‘G,,— 

j’ ft j, k
= Cj,.GiG^. belongs to (/p ..., Ti'.J. Thus J <= J', but | 72<'‘«n |(Z) = 

J- f^
= |Jg(«"'+')|(2J), whence 72'"» ~ 72<'‘^') for d ¿(72). Ro<e}'i contains a 
non-zerodivisor of degree one (e.g. a; = t/'W) and 172/(3::) |(Z) = 1 
-b {m — 1)Z, whence Rl{x) ~ feCA'i,. . ., A„_i]/(Ai,..., A„_j)^ That 72°° 
is a Koszul algebra follows from 1.17 (b) and theorem 4 (e) (iv).

We call a graded algebra /S' a limit algebra if 4S'~72°° for some one
dimensional garded algebra R. It follows from the proof of theorem 5 
that an algebra R with 1721(^) = (1 -b {"»i — 1)Z)/(1 — Z) is a limit alge
bra if and only if it i.s Cohen-Macaulay.

Example. We list all limit algebras of embedding dimension ^3 
(i.e. isomorphic to J2°° for some 72 of multiplicity ^3). Such an algebra »S' 
bas [jS'KZ) = (1 -b {m — 1)Z)/(1 — Z), m = 1,2 or 3. Any algebra with 
such a series is isomorphic to one of the following (cf [4] for the case 77i=3) :
(1) fc[X-]
(2) k[x, y]i{x^) or i:[A, y]/(yy)
(3) k[_X, y, Zill yvliore I={X^, Xy, Z^) or {X^, AZ, ZZ) or (AZ, AZ, ZZ) 

or (AS AZ, XZ -4- ZS-
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It is easy to check that for all d in all these cases, i.e. they are 
limit algebras.

We can also give examples of limit algebras of higher multiplicity 
Namely, let J2(j) = . • •, Avhere

• • •, + .^2(-^3I • • •, -^n) +•••■!■ JTn)

+ + • • •, ^n-lY-

The J?(j) is a limit algebra of multiplicity it—1 for each J = 0,1,.. ., n—1.
If 22 = /cLJTi,. .■ • -yfr} IS a graded algebra we have

|22|(^)' (1 - Z}-o max f R (1- “ - ■2^)"“^ 1/(1 - Zy-A,

where </ = depth 22, d = dim 22 and fZj = degf^, i = 1,r. R is called 
extremal of numerical character (it, tZ, g, (tZ^,..d,)) if there is equality, 
cf [7].

Proof. Since 1221(Z) = 1 + itZ + nZ~ + nZ^
= (14-(it—1)Z)/(1—Z) and since 22 is 2-related, 22 can be represented as

Proposition Q. If R is a limit algebra of multiplicity n, then 22 is extre
mal of mcmerical character (it, 1,1, (2,. .., 2)). I The number of 2's is |

^n']l{fi,f2, • • •’.^(”j)> 2 for t = 1,.

It is easy to check that (1—Z)“^ max ((1 — ¡{1 — Z)"-^, 1) =
= (1 _ (n - 1)Z)I{1 - Z).

4. RINGS WITH 2-LlNEAR RESOLUTIONS

All graded algebras in this section are assumed to be eom7nutative.
The results in this section are, at least in the absolute case, fairly 

well-known. They are however, as far as we know, not published (cf [15] 
where half of our corollary is proved). We first define Golod maps (resp. 
Golod algebras) and tZ-linear maps (which is the relativization of a ring 
with ¿-linear resolution). We restrict to graded (commutative) algebras.

Let d) : 22' —> 22 be a surjective map of graded Zc-algebras, let I be a, 
graded minimal 22'-algebra resolution and let P == X®n,R.

•h is called a Golod map if the following equivalent conditions are 
satisfied :

(a) For each sequence Vi,.. ., v,, of elements in Z2+(T) there is an 
element y(i;i, . . ., in ml (m the graded maximal ideal in 22) such that

(»1) [y('^)] = for each v in 22+(P) and
(gi) • •, = y{vi y; 7(^1,..., v^}

where 'a — (—I)*®®’a
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(b) P„{Z) = P^,mi-Z{P^^,{Z)-l)), \vliereP^,(Z)= y; dim*ff,(r)^‘ = 
ix=O

~ S diniji. Tor<''(Zf, If}Z\
i=0

R is called a GoZo<Z algebra of the natural map Zv[A\, . .X„] —> JR 
is a Golod map.

is called a d-Unear map if 7/^ /Y) = Tor,;'^-(Zv*, JR) = 0 for j i 
d — Y {i > (J)- JR has a d-Ziiiear resolution if the natural map Zi:[Xi, . . . 

.,A\] -> J? is d-linear.
Theore:u 7, Let O : JR' -> JR be a surjective map of graded algebras. 

If (P is a d-linear 7fiap tben O is a Golod 7nap, If d ~ 2 a7id R' is 
a Koszul algebra the^i R is a Kosz^d algebra.

(b) If <t» is a Golod map a7id R' and R are Koszid algebras^ then O is 
a 2-li7iea7' map.

In the absolute case we immediately get the following corolary.
COROLLARA\ R lias a 2-lmear resolutioii if a^id only if R is both a 

Koszul algebra and a Golod algebra.
Proof, (a) Suppose ® is a (Z-linear map, whence HfY) = 

for i > 0. Choose a basis B for IIand pick for each v in B a represen
tative 2; of bidegree (6^, + <Z — 1) in Y. Let Y('y) = z. For each pair 
V2 in B y(Vy, V2) = y{v)y{v2) lies in Z(Y) n B( Y), so we could
define a 7(2^1, V2) of bidegree {g^ g + 2d 3) for some g. induction 
2/(^1,..lies in Y) n ii/z'''^”25 + 2y and we could continue as above.
Then y is extended Zc-linearly to i/+(Y). Thus T is a Golod map.

Without assumption on O we have (cf [11, 1 11])
1R\{Z) = 1 Ji(r) 1 (-1, z)i\x\{-i,Z) = p^„ (-1, z)/p„, (-1, z).

If P' is a Koszul algebra this equals P^,(—1, Z)|P'|(Z) according to 
1.16 (4), and if (1> is 2-linear this equals (1 + Z(P^{,(Z) — 1))| R’ |(Z). 
Since (h is a Golod map we have P/,(Z) = P„,(Z)/(1 — Z{Pf^,{Z) — 1)), 
so \R\{Z)Pu{Z) = 1, hence R is a Koszul algebra according to 1.16 (5).

Now suppose O is a Golod map and that R' and R are Koszul 
algebras. Then

P;XZ) = PMKi - Z{P^H'{Z} - 1)) = Pn.{Z)Kl - 5; c,Z‘+i),
»>0 

Avhere = dimjt7ii(Y). On the other hand
P^{Z) =^1I\R \(-Z)=\ A1 (-1, ~Z)/17i( Y) 1 (-1, Z) =

where = dim*. This gives c* = c^ 2, Cg = 0^,3 — Cj.g, C3 = 63^^ —
— <^2.4 + ^1.4 since c, j = 0 for i > j. Induction gives c* = c, , + * 
for i > 0, hence 4) is 2-linear.
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