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KOSZUL ALGEBRAS, VERONESE SUBRINGS AND RINGS
WITH LINEAR RESOLUTIONS

JORGEN BACKELIN and RALF FROBERG

0. INTRODUCTION

The results in this paper mainly concern graded algebras over a field
which are unitary, associative but not necessarily commutative. They
have, however, applications to commutative algebra and algebraic geo-
metry.

In section 1 we make definitions and collect, for reference, results
that we need in the sequel. In particular we define (homogeneous) Koszul
algebias (in some articles called Froberg rings) to be graded algebras R
for which Torf; (%, k) = 0 for i (see 1.16 for seventeen other equivalent
conditions). To each graded algebra R there is a sequence of associated
lattices L,(R) of vector spaces. We use, as one of our main technigues,
the fact developped in [2] that the distributivity of the L/(R)’s have
homological implications.

The main result in section 2, Theorem 4, shows that Xoszul algebras
constitute a natural class, in that it is closed under a number of opera-
tions such as taking Veronese subrings, Segre products, tensor products,
fibre products and coproducts. This generalizes e.g. the result of S. Bir-
cidnescu and N. Manolache that a Segre product of Veronese subrings of
(commutative) polynomial rings is a Koszul algebra (see [5]). As prepara-
tions for the main theorem we have two results which may havesome
interest of their own. First we show (Theorem 1) that the distributivity of
the associated lattices is preserved when taking Veronese subrings, Segre
products, products and coproducts. Secondly (Proposition 3) we give a
bound for the degrees of the relations in Veronese subrings and Segre
products, given the degrees of the relations in the original rings. This
generalizes a result of . Mumford ([12]). In the above mentioned results
we do not in general assume commutativity.

In sections 3 and 4 we restrict to commutative algebras. The main
result in section 3 is that the number of non-isomorphic Veronese subrings
of an algebra of Krull dimension one is finite. In section 4 we tie the con-
cept of Koszul algebras to some perhaps more well known concepts, in show-
ing that a graded algebra has a 2-linear resolution if and only if it is
both a Koszul algebra and a Golod ring. We also give a relative version
of this statement.

1. CONXVENTIONS AXD NOTATIONS

A graded algebra will denote a ring of type B = (T, ..., T,)|P,
where V = k(T,,...; T,) is the frec (non-commutative) associative
algebra over a commutative field & in variables 7', of degree one, and P
is a two-sided ideal generated by finitely many homogeneous elements of
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K6 J. BACKELIN and R. FROUBERG .

degree = 2. All ideals are two-sided. I = (Ty,..., T,) and I/P ave called
the azumentaiwn ideals in V and I respectiv dv All tensor products,
products and coproducts are over A.
1. For a graded algebra R = @ R, we define the dth Veronese sub-
=0

ring of R as R = @ R, An element in R, has degree ¢ in R,

1=0
2. For two nfladed algebras R’ = @ R; and R = @ R; we define
© 120 120
their Segre product as R'eR" = @ R, ® R;'. An element in R; ® R}
120
has degree 7 in R o R".

3. For two graded algebras B’ and R"” we define their coproduct
(or free product or amalgamated sum or fibre sum) over k, R'LIR", as
the pushout of R <« k—> R,

I = KTy Tl 2B A B = K8y Sl -2 )
then R’ R"~k(T,,.. T ey S I f1s e v s Srs 915 - - ,Js).

4. For two graded algebl FLs R and R" we define their (fibre) product
over k, R'TTR", as the pullback of R’ —» k « R".

IR = kTyy..., TH/fyy..nf)and B = k(S ..., Su)l(gyy - -5 95)»
then IRTTR” 3_k<T17 cony Loy Sy v vy Sadlfrs e s Sy G195 G5y TSy, S5T)
(lgign, l=j=m).

If B'=k(Ty, ..., T;)(f1 . ’f) and R"=k{(Sy, ..., Sud/(g1 - - - Gs)s
the tensm product over k is R’ R ~k(T,,. 20 T Sy oo oo S [
oo Goe-nfe T8 —8,T)L<i<n, 1£j<m). We define the
nti-commutative tensmpvoduct of R” and R” as R @ R = k(T ...,Thy
Byy ooy S ((frse ey Srs G5 - 7gsaT’Si+ST)(1<7'<'”'7 1=sj=m).
6 The Hilbert series of R = @ R, is |R|(Z) =Y, (dim; R;) Z° and
1220

correspondingly for graded module%

7. For a graded algebra R, Torg(k, k) and Ext?®(%, k) are bigraded and
we define the doublc Poincaré series of R as

PyX,Y)= Y (dim, Tori(k, %)) X'Y’ = Y (dim, Ext% (%, k)) X' Y’

i, 720 i, j=0

(first degree homological, second induced by the crxadmfr of R) and the
Poincaré series of R as Py(Z) = Pg(Z,1). -

8. If f is a homogeneous element of positive deoree in a graded alge-
bra R we have |R/(f)|(Z) =2 | R|(Z)/(1 + A“egf|R|(/)) (coethcxentwl\e)
[ is called strongly free if we have equality (cf [1]).

9. If f is a homogeneous element of positive degree. in a commutative
graded algebra R we have | R/(f)|(Z) = (1 — Z*¢ /)| R|(Z) (coefficientwise),
with equality if and only if f is a non-zerodivisor.

10. The lattice associated to a graded algebra R= V /P is the lattice:

L(R) of subspaces to the graded k-vectorspace V, generated by {I/PI";
fyg,h = 0} under 4 and n. Here I° =P = V.

11. The ith local lattice associated to a graded algebra R = V /P is
the lattice of subspaces to V,, generated by {I[,P.I,; f, g, h=20, f+ g+
4 b = 4} under 4+ and n. This lattice is denoted L,/(R).

12. A lattice (L, 4+, n) is distributive if pn(g+ )= (pngq) +
4+ (par) for all p, ¢, in L. If (L, +, n) is a finitely generated lattice
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of subspaces to a vectorspace V, then I is distributive if and only
it there is a basis B for V such that B n p is a basis for p, for each
P in L. Such a basis is said to distribute I (¢t [2, lemma 1.2]).

13. A graded algebra B = V[P is called r-related if P is generated by
clements of degree < 7.

14. Let R=V/P be 2-rclated and let ¥V* = Hom,(V, k) =
@ Hom, (V;, k) = @ Vi with multiplication induced by wpv(ad) =

1220
= J.((L)V(b) (neVf veViaeV,beV,). Let P = {uecV¥;uP,) = 0}
and let P° — (P V*, The dual ring to R is defined to be R° = V*/P?
{ct [2, ch. 3]).

15. A homomorphism ® : B’ — R" of graded algebras is called small
if and only if the induced homomolphlsm ‘1‘01, )(lc, k) = Tor¥ s (k, k) is
1113ecuve, or eqmvmlentlv, if and only if the induced homomorphlsm
Exti* (k, k) — Bxty * (k, k) is surjective.

: 16. A graded algebra I is called a Koszul algebra if and only if the
following equivalent conditions are satisfied (cf. e.g. {14}, [11] and [2]).

(1) Extk (k, k) generates Ext; (k, k) as an algebra with Yoneda
multiplication.

(2) Extpe(k, k) =0 for p+#gq.

(3) T01’“ (k. k)=0 f01 P#q.
(4) Po(X, X)| R| (~XY) = 1.
(5) Pr(Z) | B|(—Z) 1

(6) (I/]P)? is small (i.e., R —~ R[(I]/P)? is small).

(7) R is 2-related and L(R) is distributive.

(8) R is 2-related and L,(R) is distributive for all 7 > 2.

(9) R is 2-related and V, has a L,(R)-distributing basis for all ¢= 2.

(10) R is 2-related and IR° satisfies (1)—(9).
{The equivalence of (1)—(4) could be found in [11, thm. 1.2}, and that
these conditions are equivalent to (7)—(10) is shown in [2, thm. 3.3].
For (1)<«(6), cf e.g. [3, bottom of page 2]. (4) obviously implies (3). Assuming
(5) and by [11,1.11] we have Pr(—X, 1) | R| (X)= Px(—1, Y)|R{(Y) = 1.
Using Tor®, (k, k) = 0 for j < 4 this easily gives (3).)

17. The following classes of graded algebras are examples of Xoszul
algebras.

(a) {1y, ..., T,>/I where I is generated by an arbitrary set of
monomials of degree two, [6, cor. 1 in sec. 4].

(b) k[X,, ..., X,]/L where I is generated by an arbitrary set of mono-
mials of degree two, [6, cor. 2 in sec. 4].

(¢) k[X,, ..., X,]/I where I is generated by some special classes of
monomials and binomials of degree two, [9].

(Q) B[X .. Xp ]9 o Lo o B[XY, ..., An ]9, [5, thm 2.1].

(e) “Most” commutative 2-related alvebmb in embedding dimension
< 3, [4, thm 1].

(f) “Most” 2-related algebras with at most two relations, [2, thm
4.6].

] (g) All 2-related commutative graded algebras E with dim; R, £ 2,

12, thm 4.8].

(h) E[Ay,..., X,]/L where I is gencrated by a regular sequence of
elements of degree two, [4, lemma 2].
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2. KOSZUL ALGEBRAS

The main result in this section is that the class of Koszul algebras is
closed under a number of operations. In some cases we get slightly more
general results.

TuroreEM 1. (a) Let R be a graded algebra with L(R) distributive for
all i = 2. Then L{RY) is distributive for all © = 2 and all d = 2.

(b) Let R’ and R' be graded a,lqeb)as with L(R") and L,(R'") distribu-
tive for all ¢ = 2. Then L(R' o R") is distributive for all ¢ = 2.

(c) Let R’ and R be graded algebras. Then L, (R'TT R'") is distri-
butive for all 1=2 if and ony if both L(R’) and L(R'") are distributive for
all 7 = 2.

(d) Let R’ and R be graded algebras. Then L,(R'LIR") is distribulive
for all i 2% if and only if both L(R") and L; (R") are distributive for all 1= 2.

Proof. (a) Fix d22 and i22. Let @, = Z VPV i—t—1e- Then Vi =

=V .4]Q: Let m,: Vi —» Vi® be the pIOJeCtlon For f, g, b such that
f+ ¢+ h=1we have

v (d)P(d)V(d) (Qi + VsaPodVia)Q:-

Thus the restriction of =;! induces a monomorphism of lattices
L(R®)— L, (R). Now use the fact that a sublattice of a distributive
lattice is distributive.

(b) Fix an i=2. Let R=R'- R"”. Then V, =V ;® V), and if f 4
4+ g+ h =1 then

VPV, = (V,PV,®@V!) + (Vi®V,/ P,/ V).

Now apply [2, lemma 1.3].

(¢) Let R' = V'[P, R =V"|P", and R = R'TTR"” = V[P in the
natural manner. Fix an ¢ > 2. Then V, is the direct sum of all kinds of
mixed products of length ¢ of copies of V| and V{'. More precisely, let us
write

Vi= @ V5
ag A1)
where A(Q)={a=(ay, ..., a);0,..,a;€{,""}}, and where Vi=V§¥V{. ..
Vi for ae A(9).

Thus if we put ‘(¢3) =(, ', ..., ") € A(?) and "'(i) = (" "o e A(e),

then Vi = Vi and V; = V"W and for f+ g+ h =1 we oet

V,P,V,,=(Z N, VIR VR VIPIV) + Y, Y, ) VIVEYG
(1) ag A{f) beA(h) ag€ A(f) beAr) c

c @ (VinV,PVy),

a € A(i)

where the last sum in the first row is overee A(g)\ {'(¢ J), ()} Now assume
that L,(R’) and L(R") are distributive for j<si. For j = 2,...,14, let Bj

R
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(resp. B)) be a L, R')-distributing bhasis (resp. a L,(R’)-distributing
basis). Let

B;={bb,...b,;b,€ B) for t odd and b, e B}" for ¢ even or b,e B fort

N
even and b, e B for ¢ odd, where Y Je= i}
t:l

(1) yields that B, distributes L(R). Conversely, assume that L,(R)
is distributive. By (1) there are surjective homomorphisms of lattices
wy: L(R) > L(R') and =; : L(R) - L(R"), defined by =, (P)=mp7n Vi
and n;(p) = p n V. Now use the fact that a homomorphlc una<re of a
distributive lattice is distributive.

(d) With the same notations (mutatis mutandis) as in the proof of (¢),

V,P,V,= % Y Y Y, ViP._.JVic & (VinV,P,V,). Now
(=/ dZh a€A(c) bEAW) aed()
proceed as before.
Let R’ and R’ be 2-related algebras. Using the representation with
generators and relations in 1.3—1.5 and the definition of the dual ring in
1.14 yields:

LeEMMA 2. (a) (R'U R")° ~
(b) (R'TTR")° ~
(c) (RI QR“)O : I)O ® (RI')O
(d) (B ® R")° =~ (R')° @ (B")°
If R’ and R" are r’-related and »"’-related, respectively, then directly
from 1.3—1.5 it follows that R'IUR"”, R'TTR", R"QR"” and R'@R" are
max (7, r"",2)-related. In order to obtam sumlfu estimates for Velonese

subringn 'md Segre products, we may use the interpretation of the ¢’ th
degree relations in R — VP as

-Pf/(Pi—lI/‘l + I/?lPi—l)'

Note also that any commaudative algebra R=1 /P has as relations all commu-
tators ab-ba (a, b € V,) of degree two. We denote the ideal in V generated
by these commutators C.

The first half of the following proposition generalizes a result of D.
Mumford ({12, thm 1]).

Prorosirion 3. (a) If R is an r-related graded algebra, then R is
[2 + (r — 2)/d])-related ; and if furthermore R is commutative, then R‘® 4s
max ([1 + (» — 1)/d], 2)-related.

In partz‘cular, it dzr — 1 or if R is commutative and d=r[2, then
R s 2-related.

(b) If R’ and R' are r’-related and »"’-velated, respectively, then R'oR"’
28 mazx (', r'’)-related.

(EHere [c¢] denotes the integer part of c.)

Proof. (a) Let d=2 and let ¢ > [2 -+ (r — 2)/d], whence i>2 +

4+ (r — 1)/d, i.e. -
(1) idzr + 2d — 1.

(R/)o (RII)O
RI
R
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-1

Let @, = Z ViaPaVig=t-pa. Then P = (P + Q:)/Q: and Pi"—l-)lr{d) +

1=0
+ VOPY, = (PyyaVa + VaPo_ra + Q)Q: = (Py-paVa + VaPu1a)/Q:.
If 0<f<d—1 then by (1) V,PViy_sr < Pu-vaVa while it d < f <
£2d — 1 then V, PV, , eV, P,_pne Thus and since R is r-related,
id—r

Pm = Z VfPrVid—f—rC P(i—l)dvd + VdP(t—ndC Pm-
f=0

Thus indeed P = PO VW 4 vidp@,,
If B is commutative these arguments mayv be slightly improved.
For arbitrary integers d =2 and 7= 3 we then have

d
{2) P(i—ndVd + VdPu—nd = fy_.o V/P(t—lmvd—f'

This is so because both sides in (2) contain the graded component C,, of
the commutator ideal C, where (2) follows from the trivial equality in
commutative algebra.

d
(Cia + Piy-1eVa)[Cia = (Cca + Z VJ-P(.'-x)an—f)/Cm-
=0

Hence, if ¢>max [(L + (r — 1)/d], 2), ie. if ({ —1)d = » and 7 = 3,
then by (2) )
fd—7r

PiyneVa + VdP(f-nd = E ViPViggey = Pig,s
/=0

whence, as above, P¥ = P V@ 4 yapld

Finally, if d=» — 1 (or if I is commutative and dZ=7/2), then [2 +
+ (r — 2)jd] =2 ([L + (r — 1)[d] = 2, respectively), whence R is 2-related.

b) Assume that R’ = V'[P’ is 7' -related, that R” = V' [/P" is
7'"-related, that R'-R"” = V/P and that i >max (', 7’'). Then
PV + VP = (P, Vie V) + (Vi@ PiLi® V() + (ViPia®Vy) -+
| + (Vi®ViPLy) = (PieVy + V P_)@VY) + (Vi®(PLTVY +

+ VIPL) = (Pi@VY) + (Vi P) = P.. a

Examples. If R = k[X,,..., A /(X% ..., AY), then R® has rela-
tions of degree max [1 + (» — 1)/d], 2). Thus, this bound in the commu-
tative case cannot be improved. Furthermore, B® is not 2-related unless
dz L 7.

2

If § is the 4-related algebra k(T,, Top[(T Ty T} — T3)I? then
8? is 3-related but not 2-related. Thus, there is a real difference for the
bounds in the commutative and the non-commutative case.

Remark. If we drop the assumption that P is finitely generated, for
2 graded algebra V/P some strange phenomena may occur. Pet R =
= k(T Ty, T3)[P, where P = (T,T,, T35, 13T, T;T5, T}, T, TiTs; ¢ =
= 0,1,...) is not finitely generated. Then R“~ PR for all d=1.
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In the following theorem we collect results on the preservation of
being Koszul algebra. Some special cases of the theorem are already
known. E. g. (a) and (b) generalizes the result in 1.17 (d) of S. Barcanescu
and N. Manolache. The equivalence (i)«(iv) in (c¢) is essentially due to
8. Priddy (i)=(ii) in (c¢) follows casily from results of J. M. Lemaire (see
the alternative proof on this point). Case (iii) in (e) has a simple homolo-
.gical proof in the commutative case.

THEOREM 4. (a) If R is a Kos:ul algebra then R® is a Koszul algebra
Jor all d.

(b) If both R’ and R’ are Koszul algebras, then R'o R" is a Koszul
algebra. ‘

(c) The following five conditions are equivalent.

(i) Both R' and R are Koszul algebras;
(iil) R'UR" is a Koszul algebra ;
(iii) R'TTR" is a IKoszul algebra;
(iv) R'®R" is a Koszul algebra ;
(v) R'@R" is a IKoszul algebra.

(d) If R'— R is small and R" is a Koszul algebra, then R' is a
IKoszul algebra.

() Assume that R = R'[(f) where f is a homogeneous element in the
graded algebra R', and that one of the following four conditions is satisfied.

(i) f is strongly free and of degree ane or two;
(ii) f is a socle element of degree ome;

(iii) f is a socle element of degree two and (f) is small;

(iv) R’ is comimutative and f is a non-zerodivisor of degree one or two.
Then R' is a Koszul algebra if and only if R is a Koszul algebra.

LProof. (a) follows from Theorem 1 (a), Proposition 3 (a) and 1.16 (8).
(b) fellows from Theorem 1 (b), Proposition 3 (b) and 1.16 (8).

(¢) The equivalence (i)<>(ii) follows from Theorem 1 (¢) and 1.16 (8),
noting that R'j| R” is 2-related if and only if both R’ and R'’ are 2-related,
but we will also give an alternative proof without using Theorem 1. For
any graded algebras B and § we have Py 1(Z) = Pi(Z) + P(Z) — 1
and |RUS[(Z)"1= |R[(Z)1+ |S{(Z)"* — 1 ([10, Lemma 35.1.9 and
Lemma 5.1.10]). Thus, if B’ and B’ are Koszul algebras it easily follows that’
R'11 R is a Koszul algebra using 1.16 (5). On the other hand, for any
2-related graded algebra R it is true that R°is the subalgebra of Ext,(k,k)
generated by Extk(k, k) ([11, thm 1.1]), hence |R°|(Z) £ Pi(Z) with
equality if and only if R is a Koszul algebra according to 1.16 (1). Thus,
supposing R']11 R to be a Koszul algebra, we have

Pp(Z) + Ppi(Z)— 1 = Prips (Z) = (B'UR")]| (Z)=[(R')°THR")| (Z)=
= [(R')°] (Z) + |[(B")°|(Z2) — 1 £ Px(Z) + Pr.(Z) — 1.

Thus we have that |(R")°|(Z) = Pr(Z) and |(R")°|(Z) = Px.(Z) whence R’
and R’ are Koszul algebras. :

(1) = (iv) is [14, Prop. 2.17 (in fact only (i)= (iv) is stated, but the
argument works equally well in the other direction).

(1)« (iil) (and (iv) < (v)) follows from Lemma 2 (b) and 1.16 (10)
(and Lemma 2 (d) and 1.16 (10), respectively).

(d) follows from 1.15 and 1.16 (3).
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Suppose R’ and R’ to be as in (e).

If f is strongly free it follows from [1, thm 2.10] that Torl'(k, k)~
~Torf"(k, k) for ¢23. Thus, using that for a graded algebra R=V|P we
have Torf(k, k)~ I[/I* and Torf(k, k)~ P[(IP + PI), it follows that
Pri(Z) = Pr(Z) — Z it deg(f) =1 and PuplZ) = Pu(Z)+ Z* it
deg (f) = 2, repectively. Thus, using 1.8, it follows easily that | R’ |(—Z)
Pri(Z) =1 if and only if |R’'|(—Z)Pr(Z) = 1, whence the equivalence
follows from 1.16 (5).

If f is a socle element of degree one, we have R” =~ R'TTE[.X]/(X?),
and A[X]/(X?) is a Koszul algebra, whence the equivalence follows from
(¢) above.

Now assume that f is a socle element of degree two. Since (f) is small,
by (d), R’ is a Koszul algebra if R is. We will use 1.16 (8) to
show the other direction. By the assumptions

3) Pyc Py and P;_,V,+V P, _,=P;=P;/=P;",V,+V P}, for i>3.

For 722, we know that L,(R’) (which is generated by (V,_,PiV,_._,;;
f=1,...,% —1))is distributive, and we want to show that L,(R’) (which
is generated by (V,_,P,)'V,_,_;; f=1,...,4 — 1)) is distributive. Now
the idea is to use (3) in order to show that a necessary and sufficient
small family of conditions for distributivity remains valid when successi-
vely the generators V,_,P,V";_,_, are replaced by generators V,_, P,'V,_,_,.
Let us adopt the notation A(%) = {z = (ay .. a;; Q..o 0, €{, ")

? S5
etc., from the proof of Theorem 1 (c¢). For 1=2 and « € A(¢ — 1), let

F(iy @) = (Vi PeVioyys f=1,...,i—1).

Then the families I'(i, ‘(s — 1)) and F(i, ""(+ — 1)) generate L,R’) and
L(R'""), respectively, as subspaces of V..

Hence it is sufficient to prove that for all 1=2 and all « € A(s — 1),
(4) F(i, «) generates a distributive lattice.

In order to do this we use induction, in the first place with respect to
and in the second place with respect to the number n(«) = |{f;«, = ""}|
of times “appear in «. Obviously (4) is true for ¢ = 2,3 and for any ¢
if n(a) =0 (i.e. if @ ='(¢ —1)). Thus, let j=4, e A(i — 1), n(£)>0
and assume (4) to hold for any (7, «) such that ¢ < j or that n(«) < n(4).
There are integers ¢, h € {1,...,4 — 1} such that b, = "and that |h—g| = 1.
Let ¢ be 2 permutation of the integers1,...,7 — 1 such that o(j — 2)=g¢
and that o(j — 1) = h. By [13] F(j, ¢) generates o distributive lattice
if and only if the following two conditions are satisfied :

(3) Any (j — 2)-subfamily of F'(j, ¢) gencrates a distributive lattice, and

k i1
bas b bat 17 _
(ﬂ Vi1 P2 Vj-l-os) Y Vo P2 Vo=

(G) s=1 t=k+1
j_l . k ] s .
= E (V(:Jl)—l ZOA VJ—I—ct n m If(ck)—l'PZa Vf—l—oﬁ) for k= ,..,7— 3.
t=k+1 s=1
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Let F = (PyV,_g ..., Vi PYV,_\_ e VioP?™ 5 i=1,...,j —1) be,
an arbitrary () — 2)-subfamily of F(j, 4). Flrst assume that 1 < i1 <j—1.
By the induction hypothesis F(z, (byy oo oy b)) and F(§ — 2y (bryqy - - -5 by—q)
generate distributive lattices of subspaces of V, and of V,_,, 1espect1vely,
whenee by [2, lemma 1.3] I' generates a distributive lattice, indeed. If
t=1o0r1i= j — 1, proceed couebpondmﬂlv Thus (5) holds.

Now fix a k such that 1<k<j — 3. Define ce A(j) by ¢, = 1 if
f =g and ¢, = b, otherwise. Then n(c) = n(4) — 1, whence by the induc-
t],)lon hypothesis [I'(i, ¢) generates a disbributive lattice. Furthermore,

y (3)
k

i—1
bas ’ bt
ﬂ V(as)—l P Vj»l—os n Z V(ot)—1 P V}—l—ct =

s=1 t=k+1

[
m (gs) — 1-P2 VJ —1—as Z Vv (c:t)—ll')Zc V}— 1—ot =

Z ‘I(UC) ‘IP" Tff 1—gt N mT/’\o'i) IPZGSVJ —-1—gs &

t

bat bot
< 2 (]7(01)—11)2 ~|’7j—1—ol n m Tf(o-*)—l-P2 Vj-l—as <
s

¢

has : bot
< m .V(cxs)—-ll)2 Vj—l—os n Z V(ot) l-P V}—I——ct,
s

whence (6) holds and we have proved the equivalence for (iii).

Finaly, if R’ is commutative and f is a non-zerodivisor of degree one
(two) we have Pp.(Z) = Pu(2)/(1+ Z) (Pri(Z)= Pr(Z)/(1 — Z?)
according to [8, cor 3.4.2 (ii)] ([8, cor 3.4.2 (i)], respectively). Thus, since
|R"|(Z) = (1 — Z)|RB'|(Z) (| R"|(Z) = (1 — Z%)|R'|(Z), respectively) we
easily get | R |(—Z) Pg(Z) =1 if and only if | R'|(—Z)Pr,/(Z)= 1, hence
(e) follows in case (iv) by 1.16 (3). '

Remark. We believe that the concepts ‘“small socle element’ on one
side and “strongly free” on the other are dunal in the following sense.

Conjecture. Assume that R’ is 2-related and the B = R’[(f) for some
f of degree two in R’, whence (R')°=(R")°/(g) for some g of degree two in
(R")°. Then f is strongly free if and only if g is a small socle element. If
this is true in general, then clearly case (iii) of (e) in the theorem follows
from case (i). The conjecture s true in the special case when at least one of
R’ and R” is a Koszul algebra according to the theorem. If R’ is a Koszul
algebra and f a socle element of degree two in R’, it follows from the theo-
rem that R’ is a Koszul algebra. It is not true that, if f is a socle ele-
ment of degree two, then R’ a Koszul algebra implies R’ a Koszul alge-
bra. A counterexample is

R = k[X,, X,, X )[(X3, XXy X, X5+ X3), [ = xy

(the image of .X,X,).
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3. VEROXNESIE SUBRIXNGS

All graded algebras in this section are assumed to be commutative.

If R is a graded (commutative) algebra of Xrull dimension ¢, then
dim,R; is a polynomial k(j, R), the Hilbert-Samuel polynomial, of degree
t—1 for j > 0. (If ¢ =0 then R&(j, R)= 0.) The regularity index of
R is i(R) = max{j; dimR; # k(j, R)} + 1. If |R|(Z) = p(Z)|(1 — Z),
where ¢ = dim R, then p(1) is the multiplicity of R.

If R is O-dimensional we have B~k for d = i{(R). We will genera-
lize this to 1l-dimensional algebras.

THEOREM 5. If R is a (commutative) graded «’gebra (over an infinite
Jield) of Krull dimension 1, there exists a graded algebra R® and an integer
d, such that RO~ R> if d>d, (If R is Cohen-Macaulay we can choose
dy = i(R).) Moreover R™ conlains a non-zerodivisor = of degree one such
that R®[(x) ~ E[X, .. o X WXy .oy Xny)?, where m  is the multi-
plicity of R. In particular R*® is a oszul algebra.

_Proof. If we factor out a socle element s, we have for B = R/(s)
that R® ~ R® ifd » 0 and that dim B = 1. Thus we can continue until
R|(8y, - . ., 8;) has no socle, i.e. we can assume R to be Cohen-Macaulay.
Suppose B = k[ Xy, ..., X, J[(Fy, ..., F,)and that Y = ¥ is a non-zerodivi-
sor in R of degree one. It is easy to see that #(R/(y)) = #«(R) + 1, and
hence, if R (and thus T'/(y)) is r-related but not (» — 1)-related, i(R)>
=7 — 1 since #(R/(y)) 2 7. B is 2-related for d = i(R) according to pro-
position 3. Let dim,R; = m (= the multiplicity of R) if j>4(R). Then
| RYZ) =1+ mZ + mZ* 4+ mZ>+ ... = (1L + (m — 1)Z)|(L — Z) for
d>i(R). Let R*™=Ek[g,,...,9,], 9: in R, and let G;=g,, G;in k[ X,,..., X,].
Then RO ~ k[Y,,..., X,]/J, where J is generated by those forms
Y, ¢ X, X, for which Y, ¢,G,G; belongs to (F,, ..., F;). Since y is a non-
3k '

. R

Zerodivisor in R we have RIRI+H — Ely'gy, .. ¥9n] ~ kY, ..., X,

where J' is generated by those forms Y] ¢, ¥, ¥, for which Y] ¢, Y'G,Y'G,=
Iy j

R
.= Y*#Y ¢;,G,G; belongs to (fy,...,F). Thus J<J’, 1)1]11; | REED(Z) =
i k

I
= lR(”R"H)I(Z), whence R% ~ RE®)  for d = 'I,(_R) RO contains a
non-zerodivisor of degree one (e.g. x = y'®™) and |R/(2)|(Z) =1 +
+ (m — 1)Z, whence Rf(x)~ k[X,,..., X, /(X ..., X, _;)% That R®
is a Koszul algebra follows from 1.17 (b) and theorem 4 (e) (iv).

We call a graded algebra § a limit algebra if S~ R* for some one-
dimensional garded algebra R. It follows from the proof of theorem 5
that an algebra R with | R|(Z) = (1 + (m — 1)Z)/(1L — Z) is a limit alge-
bra if and only if it is Cohen-Macaulay.

Ezample. We list all limit algebras of embedding dimension <3
(i.e. isomorphic to B* for some R of multiplicity <3). Such an algebra §
has |S|(Z) = (1 4 (m — 1Z)[(1 — Z), m = 1,2 or 3. Any algebra with
such a series is isomorphic to one of the following (cf [4] for the case m=3) :
(1) B[X]

(2) k[X, Y))(X?) or k[X, Y]/(XY) ,
(3) k[X, X,Z)[I where I=(X* XY, ¥?) or (X? XY, XZ)or (XY, XZ, YZ)
or (X%, XY, AXZ 4 Y?).

Y
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It is easy to check that S ~§ for all ¢ in all these cases, i.c. they are
limit algebras.

\Ve can also give examples of limit algebras of higher multiplicity
Namely, let R(j) = k[X,, ..., X, ]/J() where
J(j) = 'Xl('XZ) AR | ‘Xﬂ) + X?.(XS, RS | Xn) + LI + ‘YI(XJ+1’ ooy .4Yﬂ) +
+ (Xjppy oo Xuzg)®

The R(j)is a limit algebra of multiplicity n—1 for each j=0, 1,

s n—1.
If R=FKk[X,,. ,X,,}/ Ji -+ fr) is a graded algebra we have

|R[(Z)l < (1 — Z)"” max (l'r[ (l — Zdt)/(l — Z)"“’, 1/(1 — Z)a_,)’

where ¢ = depth B, d = dim B and d;, = deg f,, ¢ = 1,
extremal of numerlcal character (n, (l g, (dl, ..
ct [7].

.. 7. R is called
.y 4,)) if there is equality,

ProrosiTiON 6. If R s a limit algebra of multiplicity n,then R is extre-
mal of mumerical character (n,1,1,(2,...,2)). (The number of 2's is (’;))

—(1—}-(97,——1)2)/(1 Z) and since R is 2-related, R can be represented as

E[X, ..o Xa)(fisSas -+ o (;))7 degf, =2 for i =1,..,, (n)-

2

Proof. Since |R|(Z) =1+ nZ + nZ> - nZ° 4 ... =

It is easy to check that (1—Z)~1 max ((1 — ZZ)(;)/(l — Z)y41) =
=(1— (n — 1)2)[(1 — Z).

4. RINGS “’le[ 2-LINEAR RESOLUTIONS

All graded algebras in this section are assumed to be commutative.

The results in this section are, at least in the absolute case, fairly
well-known. They are however, as far as we know, not published (cf [15]
where half of our corollary is proved). We first define Golod maps (resp.
Golod algebras) and d-linear maps (which is the relativization of a ring
with d-linear resolution). We restrict to graded (commutative) algebras.

Let ® : R’ — R be a surjective map of graded k-algebras, let X be a
graded minimal R’-algebra resolution and let ¥ = X ®; R.

® is called a Golod map if the following equivalent conditions are
satisfied :

() For each sequence vy, ..., v, of elements in H +(Y) there is an
element y(v;, . . ., %) in mY (m the graded maximal ideal in R) such that

(g,) [Y('v)] = v for each v in H+(Y) and

(2) A(y(Vy 9« 0y %)) = Y(Vy 5.y V) = ; Y01y e o V) Y(Vigry-n V),
=1
where @ = (—1)I€ 0+l q
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(b) Pi(Z)=P(2)[(L—Z(PR(Z)—1)), where PE(Z)= ¥. dim, H,(¥)Z'=
1=:0

=]
=y dim, Torl (k, R)Z'.
i=0
R is called a Golod algebra of the natural map A[X,..., X, ]—> R
is a Golod map.
® is called a d-linear map if H; (Y) = Torf;(k, B) = 0 for j #1 +
4+ d — 1 (¢ > 0). R has a d-linear resolution if the natural map k[ X,,...
..y A,]—> R is d-linear.

THEOREM 7. Let ® : R’ — R be a surjective map of graded algebras.

(a) If ® is a d-linear map then ® is a Golod map. If d = 2 and R’ is
a Koszul algebra then R is a Koszul algebra.

(b) If ® is a Golod map and R’ and R are Koszul algebras, then @ is
a 2-linear map.

In the absolute case we immediately get the following corolary.
COROLLARY. R has a 2-linear resolution if and only if R is both a
Koszul algebra and a Golod algebra.

Proof. (a) Suppose ® is a d-linear map, whence H,(Y) = H; {, 4-(Y)
for ¢ > 0. Choose a basis B for H . (Y) and pick for each » in B a represen-
tative z of bidegree (¢,9 + d — 1) in Y. Let y(v) = 2. For each pair v,,
v, in B y(vy, v5) = Y(v)y(ve) lies in Z(Y)n#*2Y < B(Y), so we could
define a +y(v,, v,) of hidegree (g, g + 2d — 3) for some g. By induction
Y(Vyy .« . .y Vo) liesin Z(XY) n 22?2 *2Y < B(Y) and we could continue as above.
Then v is extended k-linearly to H ,(Y). Thus ® is a Golod map.

Without assumption on ® we have (c¢f [11, 1 11])

|R[(Z) = |H(Y)| (=1, 2)[| X| (=1, Z) = P{(—1, Z)|Pr (—1, Z).

If R’ is a Koszul algebra this equals P% (—1, Z)| R’ I(Z) according to
1.16 (4), and if & is 2-linear this eqmls (1 + Z(PE(Z) — 1IW)WR'|(Z
Since ® is a Golod map we have P, (Z) = Pp(Z)/(1 — /(Pﬁ,( ) — 1)),
so |R|(Z)P,(Z) = 1, hence R is a Koszul algebra according to 1.16 (5).

Now suppose (D is a Golod map and that R’ and R are Xoszul
algebras. Then

PyZ) = Pu(2)[(1 — Z(PR(Z) — 1)) = Pr(2)[(1 — Y, ¢,Z'*Y),

i>0

where ¢, = dim,; H,(Y). On the other hand
Pp(Z) = 1| RI(—2) = |X| (-1, —2)[| H(Y)| (—1, Z) =
= PplZ)| Y (—1)* ¢, 7,

where ¢; ; = dim; H, ;(Y). This gives €)= €19y Cy = Cpg — Cpgy C3 = Cyq —
— Coq + 014 €1C since ¢; ; =0 for 4 >j. Induction gives ¢, = ¢; ;41
for 3 >0, hence ® is 2-linear.
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