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ABSTRACT

The major theme of this article is combinatorial applications of the relationship
between the Hilbert series of a graded (not necessarily commutative) algebra R, the
Hilbert series of a graded R-module M, and the Poincaré biseries of M, notably
in the case where M has a linear resolution. We interpret this relation as a
combinatorial reciprocity law which for example connects the number of walks in
a digraph with that in its complement. Furthermore we establish theorems on
the existence of linear resolutions for certain residue class rings of algebras with
straightening law and polynomial rings.

Let K be a fleld, and R a finitely generated homogeneous K-algebra, i.e. R =
D, Ri as a vector space, the multiplication on R satisfies the condition R;R; C
Riy;, and as a K-algebra R is generated by R;. It is essential for this paper that R
is not necessarily commutative. Since R is finitely generated, the K-dimension of
R; is finite for each 4, and so the Hilbert series Hp(t) = Y oo (dimg Ry )t" is well
defined. Similarly, if M = @, ., M, is a finite graded R-module, then it has a well
defined Hilbert series Hys(t) = 5 oo (dimg M, )t". If not indicated otherwise, a
module is always a right module.

Though R need not be Noetherian (in the non-commutative case), the modules
that we will consider have a minimal graded resolution by finitely generated free
R-modules

F..o. = @R(_j)ﬁu . @R(_j)ﬂ;-x,j _ e — @R(_j)ﬂoj —_ M — 0.
j j j .

Here R(—j) is the graded R-module @21 R;_j. That the resolution is graded
means that its differential is a homogeneous homomorphism of degree 0. That it is
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minimal is equivalent to the fact that F, ® K has zero differential. Therefore one
may compute the Poincaré biseries

Pfi(t,u) = ) (dimg Torf(M, K);)t/u’
i,]

from F,: since F, @ K has zero differential, dimg TorzR(M, K); = pBij. The Poincaré
series of M is given by Pf(u) = P£(1,u). The numbers §;; are called the graded
Betti numbers of M, and the coefficients 8;(M) =} Bij of Pf(u) are its ordinary
Betti numbers.

The Hilbert series of R and M and the Poincaré biseries of M are related by the
formula "

Hy(t) = Hr(t)Pyi(t, ~1). (1)

In fact, since the resolution is minimal, we have min; #;; > min; f;—;,;. Conse-
quently, for a given 7 there exist only finitely many ¢ with £;; # 0. So the series
PE(t,—1) is well defined, and (1) follows easily if one splits F, into its graded com-
ponents and uses that the Euler characteristic of an exact complex of vector spaces
vanishes.

The most interesting case is that in which M has a linear resolution, i.e. f;; =0
for all : 5% j. Such a resolution is called linear since the matrices representing
the maps between the free modules @ R(—7)P have entries which are zero or
homogeneous elements of degree 1 in R. If F| is linear, then we may essentially
identify the Poincaré biseries with the Poincaré series, and the formula (1) becomes

Hy(t) = Hr(t)Py;(—t). (2)

Let mpg denote the two-sided ideal EB:‘>0 R;; it is called the irrelevant maximal
ideal of R. Since K is naturally isomorphic to R/mpg, we may consider K as an
R-module. For all the algebras R below, K has a minimal graded free resolution by
finite free R-modules. If it is linear, then one says R is a Koszul algebra. For such
an algebra, (2) shows that Hr(t) and P£(~t) are truly reciprocal:

Hp(t)PE(—t) = 1.

The major theme of this article is combinatorial applications of (2). We start with
a discussion of algebras with straightening law, which in the discrete case are just the
Stanley-Reisner rings of order complexes of posets II. For them the combinatorial
application is a reciprocity formula relating the number of multi-chains in IT and
that of the sequences m; £ -+ £ 7, which we will call neg-chains.

If we represent the partial order on II by a directed graph, then the neg-chains
are just the walks in the complementary directed graph, and a generalization from
posets to directed graphs suggests itself. However, to obtain it we must definitely
use polynomial rings in non-commuting variables.
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A further generalization concerns the number of words over a finite alphabet
that do not contain any subword belonging to a list of forbidden words. As soon as
one of the forbidden subwords contains more than 2 letters, the resolutions to be
considered are no longer linear, and therefore the results are not as crisp as in the
case of graphs.

In the last section of the paper we use standard methods to show that all our
Hilbert series and Poincaré biseries are rational functions.

It is natural in the context of this paper to look for Koszul algebras. Interrupting
the combinatorial development after the discussion of algebras with straightening
law, we show that a commutative homogeneous K-algebra R is Koszul if its defining
ideal has a Grobner basis of 2-forms.

Our combinatorial terminology follows Stanley!®. A sequence zi,...,z, will
represent a ring element of degree n; therefore n will be called the degree of such a
sequence.

Our combinatorial results are not entirely new. For example, Theorem 3.1 was
proved by Gessel'? in his thesis, and its most important case is contained in Car-
litz, Scoville, and Vaughan®. Furthermore, closely related results were obtained by
Jackson and Alelounias!® and Goulden and Jackson'3.

After the work on this paper had been completed, we learnt that the algebraic
approach to a proof of Theorem 3.1 was already used by Kobayashi'8.

1. Homogeneous ASLs

Recall that an algebra with straightening law, briefly an ASL, over K on a poset
II (which we always assume to be finite) is a commautative ring A containing K and
IT and satisfying the following conditions:
(ASL-1) the products 71y -+ - mp, m; € I, n € N, with m; <+ < 7, (including n = 0,
for which my - -7, = 1) form a K-basis of A; they are called standard monomials;
(ASL-2) if 7 and p are incomparable elements of II, then every standard monomial
u appearing in the straightening relation

Tp = Zubu, ¢ standard monomial, b, # 0,

contains a factor ¢ such that o < 7 and o < p.

We say that A is homogeneous if A = P,y A: is a graded K-algebra with
Ay = K and if the elements of Il are homogeneous of degree 1. It follows that all
the standard monomials in a straightening relation are homogeneous of degree 2.
(We refer the reader to Eisenbud??, Bruns and Vetter®, or Bruns and Herzog* for
the theory of ASLs.)

For each poset II there exists at least one homogeneous ASL over an arbitrary
ring K, namely the discrete ASL K[II]. It is the residue class ring of the polynomial
ring K[Tr: © € II] with respect to the ideal generated by the products T.T, for
which 7 and p are incomparable (the indeterminates T have degree 1). In other
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words, K[II] is the Stanley-Reisner ring of the poset II, or more precisely, of the
simplicial complex formed by the chains of II. An important class of (in general)
non-discrete ASLs is given by the coordinate rings of Grassmanmans and their
Schubert subvarieties (see Bruns and Vetter®).

Note that the standard monomials of degree n in a homogeneous ASL over IT -
correspond bijectively to the degree n multi-chains in II. Thus if x,(II) is the
number of these multi-chains, the Hilbert series of A is given by

Halt) =Y xa(IDE"

Let & C II be an ideal. (This means: if r €  and p < 7, then p € Q.) It
is easy to see that the residue class ring A/ A4 is again a homogeneous ASL on
IT\ ©Q (considered as a subset of A/QA in a natural way and with the partial order
inherited from II). We want to prove and to interpret combinatorially that A/QA
has a linear resolution over A.

This will follow quite easily from the theory of MSLs developed in Bruns®. Let
A be an ASL. Then an A-module is called a module with straightening law, briefly
an MSL, on a finite poset X C M if the following conditions are satisfied:
(MSL-1) for every o € X there exists an ideal Z(z) C II such that the elements

mfl"'fn, :EE(Y, §1¢I($)7 flg"’géno n_>..0a

constitute a K-basis of M; these elements are called standard elements;
(MSL-2) for every z € X and ¢ € I(z) one has a straightening relation

z€ € ZyA.

y<z

It follows easily that the straightening relations in (MSL-2) can always be chosen

of the form
z§ = Z y(z Bbzeyp), baeyu € K, bagyu # 0,

y<z
in which each yu is a standard element. An MSL over a homogeneous ASL A is
homogeneous if it is a graded A-module in which X consists of elements of degree 0.
In this case, if the straightening relations are chosen as just discussed, then the
elements p appearing on its right hand side have degree 1 and therefore are ele-
ments of II. In particular the straightening relations are homogeneous of degree 1.
Furthermore, (MSL-1) immediately yields the Hilbert series

Hy(t) = ZHA/I(x)A 75)—2(2 Xn(IT\ Z(z) >

zeX n=0 z€X

We will see below that a homogeneous MSL has a linear resolution. For a combi-
natorial description of its Poincaré series we introduce a special class of sequences
in a poset.



Definition. Let II be a poset. Then a sequence 7y,...,7, is called a neg-chain if
Ty & -+ L mn. For a subset  of II we denote the number of degree n neg-chains
T1,...,Tn With m; € Q by v, (11, ).

For compatibility with the notation introduced for MSLS, weset Z(m) = {p € II:
7 £ p}; it is easy to see that Z(7)A is the annihilator of 7 modulo the ideal generated
by the elements o € I, o < .

Theorem 1.1. Let A be a homogeneous ASL on a poset I, and M a homogeneous
MSL over A. Then M has a linear resolution, and its j-th Betts number is

Bi(M) = v;(T, I(=)).
zeX

The proof is based on the following proposition which we quote from Bruns®,
(4.5), (4.6):

Proposition. (a) Let A be an ASL on Il over K, and M an MSL on X over A.
Let ez, € X, denote the elements of the canonical basis of the free module AY.
Then the kernel Nx of the natural epimorphism

AY — M, ey — T,

is generated by the relations required for (MSL-2),

P1:£=ez£"‘zeyax€ya T e X, fEI(x);
y<z

(b) Nx 18 an MSL if we let T(pze) = {m € II: 7 € Z(£)} and

Pee S pyp = <y or z=y, (<,

Proof of 1.1. We must show that M has a free resolution
Fo:voooF R - -2 E,

in which rank F; = v;(II,Z(z)) for all j and, in case j > 0, ; maps the basis
elements of F; to elements which are homogeneous of degree 1 if we assign the
degree 0 to the basis elements of Fj_;.

Note that, by induction, the proposition yields a free resolution of M in which '
all syzygy modules are MSLs. We claim that this resolution satisfies our needs,
provided in each case the straightening relations are chosen to be homogeneous. To
this end we let I'; denote the set of sequences

N ST & with z €&, m € I(z), m € I(mi=1), 1 =2,...,7,
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partially ordered lexicographically.

We use induction on j. For j = 0 the assertion amounts to the fact that the
elements of X' form a minimal system of generators of M. This holds since the
elements of A’ are homogeneous of degree 0 and linearly independent over K by
(MSL-1).

Let 7 > 0. By the induction hypothesis we may assume that N = Keryp;_,
is an MSL on the poset {py: v € I';} (ordered in the same way as T';) and such
that p. is homogeneous of degree 1 for each v = (z,71,..., ;) and, furthermore,
I(py) =I(z) if j =1 and I(p,) = Z(x;) otherwise.

After a shift of the graduation of Fj_; the submodule Kery;_; is therefore a
homogeneous MSL. We choose homogeneous straightening relations and use the
proposition to find a suitable epimorphism F; — N. Its kernel has exactly the
properties we need. O

Corollary 1.2. Let Q be an ideal in II.
(a) Then the residue class ring A/QA has a linear minimal graded free resolution
over A, and 1ts j-th Betti number is the number v;(II, Q) of neg-chains m1,...,m;
wn II with 71 € Q.
(b) In particular K = A/IIA has a linear resolution over A, in other words, a
homogeneous ASL 13 a Koszul algebra.
(c) The following conditions are equivalent:

(i) A/QA has finite projective dimension;

(i) every element of  is comparable to every element of I1;

(iii) the elements of Q form an A-regular sequence.

Proof. Part (a) follows immediately from the theorem if one observes that 4/QA
is an MSL on {1} with Z(1) = Q.

The equivalence of (i) and (ii) in (¢) is immediate from (a). That (iii) == (i) is a
general fact. For (ii) == (iii) one can use for instance that the linear resolution of
A/AQ constructed above is the Koszul complex if (i) is satisfied. As the elements
of ) are homogeneous, the acyclicity of the Koszul complex implies that they form
a regular sequence. [J

Let us call a positively graded K-algebra A strongly Koszul if its irrelevant max-
imal ideal has a system of generators zi,...,zm such that 4/(z;,...,z;) has a
linear resolution for all j. Then part (a) of 1.2 implies that a homogeneous ASL is
strongly Koszul; in fact, the poset II may be enumerated in such a way that every
initial subsequence is a poset ideal.

Part (b) of 1.2 is also covered by a theorem of Kempf'” which states (b) more
generally for homogeneous Hodge algebras (cf. De Concini, Eisenbud, and Procesi®
or Bruns and Herzog* for the notion of a Hodge algebra).

The combinatorial interpretation is an identity involving the generating functions

Hu(t) = Y  xa(I)E", Ha(t) = Y  xa(I\Q)t", and Ho(t) = > va(IL, Q)"



Corollary 1.3. Let II be a poset and Q be an ideal in II. Then
Hg(t) = EQ(—t)HH(t).

In particular, for @ =1I one has Hp(—t)Hp(t) = 1.
Proof. Choose A = K[II] and apply (2) and 1.2. O

Remark 1.4. In the discrete case, which is completely sufficient for the combina-
torial interpretation, A/Q2A is an ASL for arbitrary subsets  of A, and Hy(¢) and
Hg(t) are the Hilbert series of A and A/QA. Even more, it is not difficult to see
that A/QA has a linear resolution and if we replace Hq(t) by its Poincaré series,
then 1.3 remains valid. However, the combinatorial interpretation of this Poincaré
series is easier if one chooses a non-commutative approach. See Remark 3.5 and
Theorem 4.1 below.

We conclude this section with a combinatorial application of 1.2.

Example 1.5. Let m,n be positive integers. We consider the set II = {(z,7) : 1 <
it <m, 1 <j < n}, partially ordered by

(i,j)S(u,v) < 1<u, j<v,

and ask for the number of multi-chains and neg-chains in II of a given degree k.

It is an easy exercise in elementary combinatorics to obtain the number of degree
k multi-chains in II: since I is just the direct product of the linearly ordered sets
{1,...,m} and {1,...,n}, the number of degree k£ multi-chains in II is

m+k—1 nt+k—-1\ [(m+k-1 n+k-—1
k k T\ m-1 n—-1 )
It is harder to count the degree k neg-chains in II. Let Q; jy be the ideal in II

cogenerated by (z,7) (i.e. R ;) = {(v,v): u <iorv < j}), and set Qmtr np1) = I
Then

i(IL Q) =m( -1+ (- Dn~(E-1)[F-1),
(1L, Qi j)) = Z Vk-1(IL, Qy,0)), k2 2.

u<iorv<y

To determine vi(II,II) from this formula is not easy, not even for special m,n. So
we try the approach suggested by Corollary 1.3. The poset II may be identified
in an obvious way with the underlying poset of the determinantal ring R = Ry =
K[X]/I(X) where X = (X;;) is an m X n matrix of indeterminates over K and
I;(X) denotes the ideal in the polynomial ring K[X] = K[X11,... , Xmn], generated
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by all 2-minors of X. If we let (4,7) correspond to the residue class of X;; in R,

then R is a homogeneous ASL on II.
Let § €l or § = (m +1,n+ 1), and R(X;6) = R/QsR. Using Corollary 1.2(a)

we obtain
oo

PR x5 (t) = Z v (1T, Q5) tF

k=0

Since
PE x5 (t) = Hr(=t)™" - Hr(x;s)(—1),

we will get a recursion formula for v(II,Qs) once we know the Hilbert series of R
and R(X; 6). But dimg(Ry) is the number of standard monomials of degree &, that
is the number of degree k multi-chains in II. So

HR(t)zkz;:(m;‘f‘l‘l)(n:fIl)tk.

Since the Krull dimension of R is m 4+n — 1, the Hilbert series Hr(t) can be written
in the form Hg(t) = Qr(t)/(1 — t)™*"~1. To find Qr(t) we rewrite Hr(t) as

Hp(t) = (m_1, Z(r’c+m~—1) (k+1)<n:le>t’“

B <mi1>! '5% ((i t;m)

An inductive evaluation of this expression yields

=2 ("))

k=0

(The numerator polynomials Qr(t) have been determined by Conca and Herzog?
for all the determinantal rings Rr4+1(X).) For § = (u,v) € II the residue class ring
R(X; &) of Ris of the form Rp(X') with an (m —u + 1) X (n — v + 1) matrix X' of

indeterminates; thus we obtain

min{m—u,n—v)+1
—mtu—n4v m—1u n—v
Haoea() = (@ =g memesss S (M (T

k=0

Altogether our considerations yield

min(m~—u,n—v)-41 .— _
Prix;e)(t) = Qr(—t)™1 - (14 ¢)*+v? S (~1)* (mk U> (n 3 v) ik

k=0



The computation of v = v,(II,Qs) depends on the ‘complexity’ of Qr(t). In case
m = 2, we have Qr(t) =1+ (n —1)t, so

w= 3o 3 () ()T

for example

(IO = 3 (n—1) (”;*’1>

i+j=k

and
(L Q) = (n = 1)Ff2n, k>2.

For m = 3 one has

QM0=1+2W~1ﬁ+<”;%%3

and a routine computation shows that

_ 2 = _ _
Qr(—t)"! = Z (k1) _ g B+ yk

(n—=1)(n =2)(a; — az) P

where

1 2n
= 2
91,2 n—Z( + n—l)

are the zeros of Qg(t). So in this case

ve(I1, II) = 2 S (ay Y - ‘("“))(”*."2)

=D — 1), 22, )

for all £ > 0.

2. Linear resolutions and Grodbner bases

Not all commutative homogeneous algebras defined by equations of degree 2 are
Koszul algebras as it is the case for homogeneous ASLs. We will see however that
a homogeneous algebra also has this nice property if its defining ideal is generated
by a Grobner basis of elements of degree 2. In particular the following holds.

Proposition 2.1. Let A = K[X;,...,Xn]/a be a homogeneous K -algebra where a
18 generated by monomaials of degree 2, and let I C A be an ideal which is generated
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by the residue classes of a subset of the indeterminates. Then A/I has a linear
A-resolution.

Proof. The case in which I is the irrelevant maximal ideal was shown by Fréberg?!?.
In general, A/I is an algebra retract of A, and so

P(t) = P4, (1) PR (2),

according to Herzog!%. It is easy to see that the initial degree of the formal power
series

P{y(t)Ha(~t) — Hyu(~t)

gives the first position in the resolution of M where it is not linear. In particular
M has a linear resolution if and only if P{3(t)Ha(—t) = Har(—t). By Froeberg’s
theorem we have P#(t) = Ha(—t)"! and Pfé/l(t) = H,r(—t)"!. This together
with the above equation for the Poincaré series yields Pf/j(t)HA(~t) = Hu/1(—t),

as desired. O

There is an alternative, direct way to prove 2.1. Let A = KJz1,...,2m] be a
homogeneous K-algebra with monomial relations in the z;, and let M be a finite
graded A-module. We call M monomaial if there is a finite chain of graded submod-
ules 0 = My C My C -+ C M, = M such that each M;/M;_, is a cyclic A-module
whose annihilator is an ideal in A generated by monomials in the z;.

Choose an epimorphism ¢: €;_, Ae; —+ M mapping e; to a homogeneous
element in M which represents a generator of M;/M;_;. Then it is easy to see that
Kere is again monomial.

We call M linear if it has a filtration as above such that M;/M;.; = A/J;
where J; is generated by a subset of zy,...,z,,. Suppose now that 4 has monomial
relations of degree 2, and that M is linear. Then one checks easily that Kere is
again a linear A-module. From these observations one deduces that a linear module
over an algebra with monomial relations of degree 2 has a linear resolution.

We are aiming at a result similar to 2.1 for an ideal a whose Grobner basis
consists of forms of degree 2. Let < be a term order on the set of monomials
v =X{'... X% . This means that the set of monomials is linearly ordered by <
and that u < v implies uw < vw; in addition we require that u < v if degu < degw.
The largest monomial occurring in a polynomial f € R, f 5 0, is called its initial
term, and is denoted by in(f). Let a C R be an ideal. The ideal in(a) is the ideal
generated by all monomials in(f), f € a. A set {fi,...,fs}, fi € q, is called a
Grobner basis of a if in(a) = (in(f1)...,in(fs)). A Grobner basis is always a system
of generators, though not necessarily a minimal one.

We keep the assumptions and notation, and assume in addition that a is a ho-
mogenous ideal. Further we denote the residue class of X; moduloa,7=1,...,m,
by z;.
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Theorem 2.2. Let a be an ideal of R = K[X1,...,X ] which has a Grébner basis
of homogeneous elements of degree 2 (with respect to a given term order). Then
(a) A= R/a is a Koszul algebra,

(b) more generally, if in(a+(X;,,...,X;,)) =in(a) + (Xi,,..., X)), then A/I has
a linear A-resolution for the ideal I = (z;,,...,2;,).

The proof of the theorem could be based on the same ideas as that of the main
result in Kempf'” since one may view A as a deformation of R/in(a). We prefer to
give a proof of 2.2 not refering to deformations.

It obviously suffices to prove part (b). The following arguments are standard and
have appeared in similar form in the literature. Thus we will not prove every detail.
We extend the term order in an obvious way to the group G of all monomials in
K[X1,...Xm, X{',...,X7"]. Then G is an ordered group and we may define an
ascending G-filtration (F,R)yeq on R by setting

For all u € G there is a unique largest element v’ € G with v’ < u. We consider
the associated graded ring grp(R) = @, cq FuR/Fu R. It is a G-graded K-algebra
which may as well be viewed as a homogeneous K-algebra if one sets

grr(R)a = P err(R)

deg u=a

for all @ € Z. These notions can be transferred to G-filtered R-modules in a natural
way.

As a homogeneous K-algebra grp(R) is isomorphic to R. We denote the induced
G-filtration on A also by F. If e: R — A is the canonical epimorphism, then, by
definition, F, A = ¢(F,R), and € is a homomorphism of filtered rings inducing a
G-graded surjective homomorphism

gre(e): gre(R) — grp(4).

Identifying grp(R) with R we see that Ker grp(¢) = in(a), so that grp(A) = R/ in(a)
as a homogeneous K-algebra.
Set R' = R/(Xi,...,X; ); then we obtain a commutative diagram of K-algebras

R—Z2 .+ R
| |
A —T— A/I

We equip all algebras in the diagram with the G-filtration induced by the G-filtration
F on R. Note that the induced G-filtration on R' is again defined by the induced
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order of the monomials in R'. Identifying gry R with R and grp(R') with R’ we
obtain a commutative diagram of G-graded (or Z-graded) R-modules with exact
rows and columns

0 — (Xip,o.yXyy) —— R —— R —

J’ - N

0 —— Kergrp(r) —— grp(4) —— grp(4/I) —— 0

where a' is the kernel of R' — A/I. The snake lemma yields that (X;,,...,X;) —
Ker grp(r) is surjective provided in(a) — in(a') is surjective. But this follows
immediately from the assumption in(a + (X;;,...,X;,)) = in(a) + (X4, ..., X3).

We conclude that
gre(A/T) = gre(A)/J
where J is generated by the images of X;,,...,X;, in gre(4).
Since gry(A) = R/ in(a) and since, by hypothesis, in(a) is generated by monomi-
als of degree 2, Proposition 2.1 implies that grp(A/I) has a linear gry(A)-resolution.
Thus the theorem follows from the next proposition (or its Corollary 2.4).

Proposition 2.3. Let R = K[X1,...,Xn], a a graded ideal of R, and A = R/a.
Suppose I 13 a graded ideal of A. Then there exists a (possibly non-minimal) graded
free A-resolution (H.,d.) of A/I which 13 a complez of G-filtered modules with the
property that the associated G-graded complez

) ng(df)

gre(H.) : - — grp(H; grp(Him1) — ...

18 a minimal free G-graded gre(A)-resolution of grp(A/I). Furthermore the filtra-
tion F on H, s such that

dimg(Hi)a = Y dimg grp(Hi)u (3)
deg u=a

for alli,a € Z.

Proof. We will construct the desired complex (H.,d.) with the additional property
that H; has a standard G-filtration for all 1. This means, if H; = B, A(~=J), then

12



F.H; = @j Fy—y; A for some u; € G with degu; = j. For this filtration, grp(H;)
is a free G-graded gry(A)-module and satisfies condition (3).

We construct H; and d; by induction on ¢. We let Hy = A (with the given G-
filtration), and let do be the canonical epimorphism A — A/I. Suppose H; and d;

have been constructed. If z € H;, then there exists a unique element u = v(z) € G ~
such that z € Fy H; and z ¢ F, H; for all v < u. We set in(2) = z + F H;.

Let y1,...,ys be a set of G-homogeneous generators of Kergrp(d;). Since
Ker grp(d;) is generated by the elements in(z), z € Ker d;, z homogeneous, we can
find homogeneous elements z1,...,2, € Kerd; with in(z;) = y; for j = 1,...,s.

Now let a; = degv(zj)forj=1,...,s, and set Hiy; = EB;:l A(—aj) with standard
filtration Fy H;pq = @;=1 Fu_V(zj)A.

Finally we let dit1: Hiy; — H; be the homomorphism mapping the standard
basis of H;t1 to 2z1,...,25. O

Proposition 2.3 yields the following inequality for the Poincaré biseries of A/I
and gre(A/I).
Corollary 2.4. Pf/l(t,u) < ngrr:((j/)l)(t,u), where the inequality is to be under-
stood cocfficientwise. In particular, if grp(A/I) has a linear gr(A)-resolution, then
A/I has a linear A-resolution.

As an example we consider the degrevlex term order: given two monomials u =
X X¢mandv =X . X! in R= K[X1,...,Xm], then u < v if and only if
the first non-vanishing component of the vector

(degu — degv, by, — an,...,b; —ay)

is negative. If v and v are monomials of the same degree such that v is a product
of powers of X;,..., X and X1 is a factor of u, then u < v with respect to the
degrevlex term order.

Corollary 2.5. Let a be an ideal of R which has o Grobner basis of degree 2 ho-
mogeneous elements with respect to the degrevlex term order. Then A/(zi,...,zm)
has a linear A-resolution for alll, 1 <[] < m.

Proof. With the notation of the proof of 2.2 it is enough to show that the map
(X1,...,Xm) = Kergrp(7) is surjective. In fact, let u € in(a’) and pick a homoge-
neous element ¢ € a' with in(g) = u. There exists a homogeneous element f € a
such that f = g 4+ A with b € (Xi,...,X5n). (We consider R' as a subring of R
in a natural way.) Note that g contains no factor X;, ¢ = [,...,m. Thus in the
degrevlex order all monomials of g are larger then those of A. This implies that
in(f) = u. Hence in(f) is mapped identically onto u € in(a'). O

Theorem 2.2 cannot be applied to prove 1.2 since the product of the two in-
comparable elements in the straighening relation do not necessarily form the initial
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term. Examples satisfying the condition of 2.2 are given by the ladder determinantal
rings defined by 2-minors (see Herzog and Trung!®) and hence are Koszul; however,
they are also ASLs. Non-ASL examples to which one can apply 2.2 are (ladder)
determinantal ideals of symmetric matrices generated by 2-minors (see Conca’).
Corollary 2.4 shows that A = R/a is strongly Cohen-Macaulay if a has a Grébner -
basis of degree 2 elements with respect to the degrevlex term order. It would be
interesting to know whether this holds true for different term orders as well.

3. Walks in directed graphs

Each binary relation on a set V may be represented by a subset of V x V. If we
consider V as a set of vertices and draw a directed edge from v to w exactly when
the given relation holds for (v, w) (in this order), then we obtain a directed graph G
on the vertex set V. Conversely, every such graph G determines a binary relation
on V.

In particular, if V' = Il is a poset, then the partial order < on V may be considered
as a directed graph G, and the multi-chains of II are exactly the walks in G. Let
G = (V x V) \ G be the complementary graph of G. If £ is a poset ideal, then
the multi-chains in II \  are the directed walks in G starting outside 2, and the
neg-chains counted by v(II,Q) correspond to the walks in G starting from a vertex
in . At this point a generalization of Corollary 1.3 to arbitrary directed graphs
suggests itself.

So, let V be a finite set whose elements we consider as vertices, G a directed
graphon V, G = (V x V) \ G the complementary graph, and W a subset of V. Let
xn(G) denote the number of degree n walks in G, xn(G, W) the number of degree
n walks in G starting in W = V \ W, and x,(G, W) the number of degree n walks
in G starting in W. (By convention, the number of degree 0 walks starting in a
subset of V is 1.) As above, we define the generating functions

HG(t) = ZXR(G)tn’ HVV(t) = Z XTL(Ga W)tn: and HW(t) = Z Xn(é” W)tn'

Theorem 3.1. With the notation just introduced, Hy (t) = Hw(~t)Hg(t), equiv-
alently

n

Xa(G W) = (=1)xi(G W)xu-i(G)  for all neN.

1=0

In particular one has Hx(—t)Hg(t) = 1.

Proof. Let K(G) be the residue class algebra of the free K-algebra K(V) on V
modulo the two-sided ideal a generated by the products vv' for which (v,v’) ¢ G (for

simplicity we identify a vertex and its corresponding variable), and set A = K(G).
It is clear that Hg(t) is the Hilbert series of A: the monomials (in non-commuting
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variables) which form a K-basis of A are presented by the walks in G. Now we
choose I as the right ideal generated by the elements w € W. The monomials
whose leftmost factor belongs to W form a K-basis of I, and so the residue classes
of those monomials whose leftmost factor is outside W form a K-basis of the right
A-module A/I. Thus Hyy(t) is the Hilbert series of A/I.

We start the free resolution of A/I with the natural choice Fy = A. Next let
Fy = AW be a free right A-module with basis e,, w € W. Then the assignment
ew — w induces a homomorphism ¢;: F} — Fy with Imy; = I. Note that [ =
D uew wA. Thus Kerpy = P, e ¢w Annw. Obviously Annw is the right ideal
generated by those v € V' for which wv € a, equivalently, for which (w,v) € G.

Applying the same argument to each of Annw in place of I and iterating the pro-
cedure, we obtain a linear free resolution of A/I in which the basis of F; corresponds
bijectively to the walks vy,...,v; in G that start from a vertex v, € W.

The asserted equation follows now as above. For the last statement one chooses

wW=V. O

Corollary 3.2. The following are equivalent:
(a) K has finite projective dimension over K(G);
(b) G contains no cycles;

(c) Hg(t)™! is a polynomial.

We would like to present another proof of 3.1 which uses the transfer matriz T
of the graph G (over the real numbers R). In order to define T we enumerate the
vertices v1,...,vm € V. Then Tj; = 1 if (v,,vj) € G, and T;; = 0 otherwise. Let
T be the transfer matrix of G; then E = T + T is the matrix with all entries equal
to 1. For a subset W C V we define its tndicator ey as the row vector whose :-th
component is 1 if v; € W, and 0 otherwise. It follows immediately by induction that
for n > 1 the number of degree n walks starting from a vertex in a subset X C V
and ending in a vertex belonging to Y C V is

(eXTn-—laeY>
where (_,-) denotes the standard scalar product in R™. In particular, the j-th

component of ex7™"! is the number of degree n walks starting in a vertex v € X
and ending in v;. The generating function Hg(t) above can be written

He(t)=1+ Z(ean“'l, ev)t™.

n=1
Furthermore, if we set A(y) = (y,ev), 7(y) = yT, e(y) = yE, and #(y) = (¢ — 7)(v),
then the equation for y,(G,W) in 3.1 reads

A" Hew)) = A" (ev))

n-—1

+ 3 (DAE T ew DA ev) + (=1)"AE T ew)).
=1
The following lemma will show that one has an even stronger equation.
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Lemma 3.3. Let M be a left module over some ring R, 7: M — M an endo-
morphism, e € M, and A\: M — R an arbitrary map. We define ¢: M — M by
e(z) = Az)e. Then

(r—e)"y) =1"() - Z M =€) (y))m " He)

for allz e M and n € N.

Proof. One goes by induction on n. For the induction step one writes (1—¢)™*1(y).=
(r—e)((r—e)™(y)), applies the induction hypothesis, and uses the definition ofe. O

We apply the lemma to the maps introduced above. Note that indeed e(z) =
AMz)ev. Since A is now linear, we obtain from the lemma with y = ey = ey — ey
that

n

(=17 ™ew) = m™ev — ey ) — Z(—-l)""i)\(?""i(ew))'z‘i"l(ev).

1=1

Solving for 7™(ey) yields

™ (ew) = (=1 ew) + (=1 TINE T ew)) T ev) + 77 (ev).

=1

The j-th component of 7™(ey ) is the number XEIJL(G» W) of degree n + 1 walks in
G which start in W and end in the vertex v;. If we modify the remaining notation
accordingly, then we get a vectorial refinement of the second equation in 3.1 (we
have replaced n by n — 1 and ¢ by n —1):

Theorem 3.4. With the notation introduced,

n-1
XDG, W) =D (-G Wi(6) + (PG W) for n2l.

=0

To obtain 3.1, simply sum the equations in 3.4 over j. The question arises
whether one can prove 3.4 homologically. This is indeed possible, and the homo-
logical approach explains the structure of the formula very well.

Let A = K(G). We observed in the proof of 3.1 that the maps in the free resolu-
tion F, of A/I are composed of homomorphisms A — A, 1 — w, of right A-modules.
But such a homomorphism is left multiplication by w, and left multiplication maps
a left ideal into itself. This observation is the starting point for a decomposition of
F, that yields the formula in 3.4.
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Let AUY) = Av; be the left ideal of A generated by v;. Then one has a decom-
position A = K @ @;’;1 AU) of K-vector spaces. Writing the free A-modules F} in
F. as a direct sum of copies of 4, namely F; = A% with 8; = x;(G, W), one may
similarly decompose F; as

F KB @ @(A(j))ﬂ;.
J=1

Furthermore, for ¢ > 1 we split the direct summand K% into the direct sum

m o
@ KXS’)(G’W)

i=1

where for each 7 we have collected the subspaces eX with base elements e of F;
corresponding to those direct summands A on which the map to a component of
Fi—y is left multiplication by v;. Finally we set F) = KX (GW) g (406 for
i>1,and FY = 40

These decompositions are compatible with the grading of F, and furthermore
they even split F, into a direct sum of complexes, since Fi(J ) is mapped nto Fi(i )1:
the maps A — A which occur in F, are left multiplications by an element w € V
or 0. Taking both decompositions simultaneously we obtain an acyclic complex of
K-vector spaces

for each n > 1. Its Euler characteristic is the right hand side of the formula in 3.4
and the degree n piece of its homology is the vector space generated by all degree
n monomials in A/I which end in v;.

One should note that 3.4 improves the special case 1.3 of 3.1. It may be possible
to verify 3.4 for posets by commutative methods. We leave this as a problem for
the reader. (Certainly the decompositions above must be replaced by filtrations.)

Remark 3.5. (a) Froberg!! showed that the residue class algebras of a free algebra
with respect to certain classes of homogeneous relations of degree 2 are Koszul alge-
bras. In the case W = V the resolution in the proof of 3.1 is a (very simple) special
case of Froberg’s construction, which gives the base elements in a free resolution as
monomials in ‘complementary’ variables modulo ‘complementary’ relations.

(b) Let K[Xi,...,Xm] be the polynomial ring in m commuting variables over
K, and a an ideal generated by monomials of degree 2. With a we may associate
the graph G on {v1,...,vm} in which there is a directed edge from v; to v; if and
only if + < j and X;X; ¢ a. Let A = K[Xq,...,X,;]/a. Froberg’s result covers the
free A-resolution of K and shows that every base element in it may be written in
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the form cY;, ---Y; representing a walk in G (Y; is the

i with c € K and v;,,...,v;
variable complementary to X;).
However, if one tries to compute the Hilbert series of A or the Poincaré series

Px () of K over A from G or G, then one gets the correct result almost only in the

r

case in which A is the Stanley-Reisner ring of a partial order on {v1,...,vm}. In .
fact, the following assertions are equivalent:
(i) the relation on {vy,...,vm} given by G is anti-symmetric and transitive;

(il) Ha(t) = Ho(t);

(iii) Pr(t) = Ha(?).

The equivalence of (ii) and (iii) follows from the equations H4(t)Px(—%) = 1 and
Hg(t)Ha(—t) = 1. Furthermore, (ii) holds exactly when the following condition is
fulfilled: a monomial X;, - -+ X;, is non-zero modulo a if and only if so is Xi; Xi; 1
for y = 1,...,7 — 1. This is easily seen to be equivalent to the transitivity of the
relation; the anti-symmetry is automatically satisfied.

4. Walks avoiding vertices

The previous section contains formulas for the number of walks in a graph G
that start in a given subset W of the set of vertices V. These walks correspond
to a monomial basis of the right ideal I of K (@) generated by the elements of W.
We may also consider the two-sided ideal b generated by these elements. Then

K(G)/b = K(Gyw) where Gy is the restriction of G to W =V \ W, ie. Gy =
G N (W x W). The number of degree n walks in G that avoid all the vertices in W
is just the K-dimension of K (G ), so that its generating function is the Hilbert
series of K (G ). In this section we want to give a combinatorial description of the
quotient Hg(t)/Hg,, (t). The method is the same as that which proved 3.1.

Set A = K(G). As aright A-module, b has a minimal system of generators given
by the monomials vy - - - vk, k € N, that represent a walk in G and have vy € W, but
Vi,...,Vk—1 & W. In fact, b is the direct sum of the right ideals generated by each
of these monomials, and the right ideal generated by vy - - - vy is isomorphic to that
generated by vi. Since we know the resolution of v A from the proof of 3.1, we know
that of vy - - - vg: it is linear in the sense that the non-zero entries of the matrices in
it are homogeneous of degree 1. So we can easily build a graded resolution of A/b.
Though this is not a resolution by finite free A-modules in general, the K -dimension
of each graded piece is finite. The reader may verify that one obtains the Poincaré

biseries
P(t,u) —”ZZZM wi (W, w)ti+ry*
wWEW k=1 j=0
where wj(W,w) is the number of walks v1,...,v;,vj4+1 = w with vy,...,v; € W,
We set
ﬁiw}(s) = E{w}(‘s) -1= Z Xk(é7w)3k and JW,w(t) = ij(Waw>tj
k=1 7=0
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Since Hg,, (t) = P(t,—1)Hg(t), the formula above yields
Theorem 4.1. With the notation introduced,

Heo(t) = (14 3 Hiuy(=0)wu(t) Ho(h)

weWw

5. Words and worms

The walks in a directed graph G on the vertex set V may be considered as those
words over the alphabet V' which avoid the ‘forbidden’ subwords (v,w) € G (a
subword is a contiguous subsequence of a word). The association of words avoiding
a set of forbidden subwords with walks in a graph works only if the forbidden
subwords are of degree 2. However, in the algebraic setting we can cover the general
situation by allowing the algebra under consideration to be defined by monomial
relations of arbitrary degree.

Let F be an (not necessarily finite) set of words over a finite alphabet V, which
we consider as forbidden subwords. We assume that F is minimal, that is, no
element of F contains another one as a subword. A worm over F is a sequence
of words fi,...,f;j over V such that fi is a single letter and for each ¢ = 2,...,5
the concatenation fj_1 f; contains a subword belonging to JF, but no initial subword
of fi—1fi contains a subword in F. We say that fi,...,f; is of type (7,0) if L is
the total number of letters in the concatenation fi,..., fj. (Clearly, in the graph
situation the worms are the walks in G, and each worm is of type (7, ) for some j ).
The empty worm is of type (0,0).

We aim at an analogue of 3.1. Thus, given a subset W of V, we set xn(F, W)
equal to the number of n letter words which have their first letter in W = V\ W
and do not contain any of the forbidden subwords. Furthermore, we let 1}, 1)(.7-—' W)
denote the number of worms of type (j,1) over F which have their first letter in W.
(Thus v ,(F, W) = [W].)

Let A = K(F) denote the residue class ring of K (V) modulo the two-sided ideal
generated by the monomials which are represented by forbidden subwords. Then
the Hilbert series H4(t) = Hx(t) is the generating function for the number x,(F)
of n letter words avoiding the forbidden subwords. Finally, set

Hy ()= xa(FW)"  and  Pw(tu)= Y g (F, W)t
n=0 7,{=0

Theorem 5.1. Let V be a finite alphabet, W C V, and F be a set of forbidden
words. Then

Hy (1) = Pw(t,~1)Hz(1).

Proof. As in the proof of 3.1let I denote the right ideal generated by the elements of
W. Again we have I = @@, oy wA. The kernel of the homomorphism A(") — A,
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ew > w, is the direct sum P, o ew(Annw). Therefore we must find the right
annihilator of each w € W in order to determine the first syzygy module of I.
Clearly, a minimal system of generators of Annw is given by the words f such that
wf € F, but no initial subword of wf belongs to F. Thus Annw = @f fA. To
continue the resolution we have to find the annihilator of each of the elements f. -
The annihilator of f is minimally generated by those ¢ for which w, f,g forms a
worm etc.

These arguments show that the base elements of F} in a free resolution F, of A/I
correspond bijectively to the worms of type (j,!) that have their leftmost letter in
W. In order to make the maps in the free resolution homogeneous we must give
such a base element the degree [. Consequently Pw (¢, u) is the Poincaré biseries of

AJI. O

Remark 5.2. The conceivably most general case that one might be able to handle
with our methods is the following: V is a finite alphabet, F and G are sets of
forbidden subwords with F C G, and W is a set of forbidden ‘initial subwords’.
Then one could try to relate the generating function for the number of n letter
words over V avoiding subwords in F with the generating function for the number
of n letter words which (i) avoid subwords in G and also (ii) all the initial subwords

i wW.

6. Rationality

In the first part of this section we want to prove that all the generating functions
that appeared in 1.3, 3.1, 4.1, and 5.1 are rational. (In 5.1 we must assume that
F is finite.) It is enough to do this for the function Hy (¢) in 5.1 since for each
equation at least two of the functions in it are special instances of Hy,(t). This is
well known (cf. Stanley'®) and only included for the reader’s convenience.

Thus we start from the hypothesis of Section 5 and, in addition, assume that F
is finite. Let m be the maximum degree of an element of F, and L be the set of all
m — 1 letter words over V' that do not contain a forbidden subword. We assume L
to be enumerated as ly,...,l,. Then we define a p X p matrix T as follows: if the
last m — 2 letters of [; coincide with the first m — 2 letters of /; and furthermore the
word which consists of /; concatenated with the last letter of [; does not contain
a forbidden subword, then T;; = 1; otherwise Tj; = 0. As the indicator ew of a
subset W of V' we now choose the row vector which has the entry 1 at exactly those
indices 7 for which [; starts with a letter w € W. Then the number of ‘allowed’
degree m — 1 + n letter words with leftmost letter in X C V is

Z(eXT")i.

(The index 7 denotes the i-th component.)
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Let a, denote the number of ‘allowed’ n letter words with first letter in W. Then

Hy®) =1dat+ -+ amogt™ 2 +1t™" 122

i=1 n=0

Let hi(t) = > oo (ewT™)it™ and h(t) = (h1(t),...,hp(t)). Then h(t) = h(¢)tT +
ey, and therefore

h(t) = e (1 = tT)!

Since the entries of (1 —#7)~! are rational functions in ¢, all the components h;(t)
of h(t) are rational functions, and the rationality of Hy (t) follows. It is clear that
Hy,(t) has poles at most at the reciprocals of the eigenvalues of T

Finally we want to show that the Poincaré biseries Pw/(t,u) in Section 5 is a ra-
tional function. For I = (X,... , X ) this result is due to Backelin'. We formulate
it in algebraic terms.

Theorem 6.1. Let K be a field, X1,..., X non-commuting variables over K, and
a the two-sided ideal in R = K(X1,...,Xm) generated by a set M of finitely many
monomials. Let I be the right ideal of A = R/a generated by the residue classes of
finitely many monomials. Then the A-module A/I has a rational Poincaré biseries.

Proof. The right ideal I is a direct sum of finitely many right principal ideals gen-
erated by a monomial. Therefore it is enough to consider a single monomial s.
Its annihilator is again a right ideal generated by finitely many monomials which
appear as final subwords of elements of M etc. (Cf. the description of the worms
in Section 5. Instead with a single letter we start a worm with the monomial s
here.) So it suffices to choose s as a final subword of an element in M. We let
S = {s1,...,84} be the set of final subwords of the elements of M. Denote the
length of s; by l;. Then we define a ¢ x ¢ transfer matrix T by setting T;; = t'
if s;5; = 0 in A, but no initial subword of s;s; is zero. (As usual, t is a variable.)
Otherwise Tj; = 0. Let p;i(t,u) = Zj)k ,6§;C)tkuj be the generating function for the
number of base elements of degree k in the j-th free module in the free resolution of
sA which are mapped to es; where e is a basis element of the (j — 1)-th free module.
Then for p(t,u) = (p1(¢,u),...,pq(t,u)) we obtain the recursion

p(t,u) = p(t, u)uT + po(t)

where po(t) = (3, (l)t’c Zk ) with ﬁok = ( except that ﬁ(r) 1 for
the index r with s = s,. As above 1t follows, that p(t,u) is a vector of rational
functions. The sum of its components is the Poincaré biseries of sA. [

For I = (Xi,...,Xm) Backelin? also proved the analogous result in the commu-
tative case.

21



Acknowledgement

We are very grateful to Ira Gessel for providing us with references for the com-

binatorial aspects of this paper.

References

1.

2.

3.

10.

11.

12.

13.
14.

19.

16.

17.

18.

19.

J. Backelin, La série de Poincaré-Betti d’une algébre & une relation est ra-
tionelle, C. R. Acad. Sc. Paris Sér. A 287 (1978), 843-846.

J. Backelin, Les anneauz locauz a relations monomsiales ont des séries de
Poincaré-Betti rationelles, C. R. Acad. Sc. Paris Sér. I 295 (1982), 607-610.
W. Bruns, Additions to the theory of algebras with straightening law, Commu-
tative algebra (M. Hochster, C. Huneke, and J. D. Sally, eds.), Springer, 1989.
W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press,
1993.

W. Bruns and U. Vetter, Determinantal rings, LNM 1327, Springer, 1988.

L. Carlitz, R. Scoville, and T. Vaughan, Enumeration of pairs of sequences by
rises, falls and levels, Manuscr. Math. 19 (1976), 211-243.

A. Conca, Grobner bases of ideals of minors of a symmetric matriz, J. Algebra
(to appear).

A. Conca and J. Herzog, On the Hilbert function of determinantal rings and
their canonical module, Proc. Amer. Math. Soc. (to appear).

C. De Concini, D. Eisenbud, and C. Procesi, Hodge algebras, Asterisque 91,
Soc. Math. de France, 1982.

D. Eisenbud, Introduction to algebras with straightening laws, Ring theory and
algebra III (B. R. McDonald, ed.), M. Dekker, 1980.

R. Fréberg, Determination of a class of Poincaré series, Math. Scand. 37
(1975), 29-39.

I. Gessel, Generating functions and enumeration of sequences, Ph. D. Thesis,
Massachussetts Institute of Technology, 1977.

I. P. Goulden and D. M. Jackson, Combinatorial enumeration, J. Wiley, 1983.
J. Herzog, Algebra retracts and Poincaré series, Manuscripta Math. 21 (1977),
307-314.

J. Herzog and Ngé Viét Trung, Grébner bases and multiplicity of determinantal
and pfaffian ideals, Adv. in Math. 96 (1992), 1-37.

D. M. Jackson and R. Alelounias, Decomposition based generating funtions for
sequences, Can. J. Math. 29 (1977), 971-1009.

G. R. Kempf, Some wonderful rings in algebraic geometry, J. Algebra 134
(1990), 222-224.

Y. Kobayashi, Partial commutation, homology, and the Mobius inversion for-
mulae, Words, languages, and combinatorics (Kyoto 1990), World Sci. Publish-
ing, 1992, pp. 288-298. ’

R. P. Stanley, Enumerative combinatorics, Vol. I, Wadsworth & Brooks/Cole,
1986.

22



